1
|
Hofwimmer K, de Paula Souza J, Subramanian N, Vujičić M, Rachid L, Méreau H, Zhao C, Dror E, Barreby E, Björkström NK, Wernstedt Asterholm I, Böni-Schnetzler M, Meier DT, Donath MY, Laurencikiene J. IL-1β promotes adipogenesis by directly targeting adipocyte precursors. Nat Commun 2024; 15:7957. [PMID: 39261467 PMCID: PMC11390900 DOI: 10.1038/s41467-024-51938-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
Postprandial IL-1β surges are predominant in the white adipose tissue (WAT), but its consequences are unknown. Here, we investigate the role of IL-1β in WAT energy storage and show that adipocyte-specific deletion of IL-1 receptor 1 (IL1R1) has no metabolic consequences, whereas ubiquitous lack of IL1R1 reduces body weight, WAT mass, and adipocyte formation in mice. Among all major WAT-resident cell types, progenitors express the highest IL1R1 levels. In vitro, IL-1β potently promotes adipogenesis in murine and human adipose-derived stem cells. This effect is exclusive to early-differentiation-stage cells, in which the adipogenic transcription factors C/EBPδ and C/EBPβ are rapidly upregulated by IL-1β and enriched near important adipogenic genes. The pro-adipogenic, but not pro-inflammatory effect of IL-1β is potentiated by acute treatment and blocked by chronic exposure. Thus, we propose that transient postprandial IL-1β surges regulate WAT remodeling by promoting adipogenesis, whereas chronically elevated IL-1β levels in obesity blunts this physiological function.
Collapse
Affiliation(s)
- Kaisa Hofwimmer
- Lipid Laboratory, Unit of Endocrinology, Department of Medicine Huddinge, Karolinska Institutet, SE-141 52, Huddinge, Sweden
| | - Joyce de Paula Souza
- Department of Biomedicine, University of Basel and University Hospital Basel, 4031, Basel, Switzerland
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland
| | - Narmadha Subramanian
- Lipid Laboratory, Unit of Endocrinology, Department of Medicine Huddinge, Karolinska Institutet, SE-141 52, Huddinge, Sweden
| | - Milica Vujičić
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Leila Rachid
- Department of Biomedicine, University of Basel and University Hospital Basel, 4031, Basel, Switzerland
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland
| | - Hélène Méreau
- Department of Biomedicine, University of Basel and University Hospital Basel, 4031, Basel, Switzerland
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland
| | - Cheng Zhao
- Department of Biomedicine, University of Basel and University Hospital Basel, 4031, Basel, Switzerland
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland
| | - Erez Dror
- Department of Biomedicine, University of Basel and University Hospital Basel, 4031, Basel, Switzerland
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland
| | - Emelie Barreby
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, SE-141 52, Huddinge, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, SE-141 52, Huddinge, Sweden
| | - Ingrid Wernstedt Asterholm
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Marianne Böni-Schnetzler
- Department of Biomedicine, University of Basel and University Hospital Basel, 4031, Basel, Switzerland
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland
| | - Daniel T Meier
- Department of Biomedicine, University of Basel and University Hospital Basel, 4031, Basel, Switzerland.
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland.
| | - Marc Y Donath
- Department of Biomedicine, University of Basel and University Hospital Basel, 4031, Basel, Switzerland
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland
| | - Jurga Laurencikiene
- Lipid Laboratory, Unit of Endocrinology, Department of Medicine Huddinge, Karolinska Institutet, SE-141 52, Huddinge, Sweden.
| |
Collapse
|
2
|
Ma H, Qu J, Pang Z, Luo J, Yan M, Xu W, Zhuang H, Liu L, Qu Q. Super-enhancer omics in stem cell. Mol Cancer 2024; 23:153. [PMID: 39090713 PMCID: PMC11293198 DOI: 10.1186/s12943-024-02066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
The hallmarks of stem cells, such as proliferation, self-renewal, development, differentiation, and regeneration, are critical to maintain stem cell identity which is sustained by genetic and epigenetic factors. Super-enhancers (SEs), which consist of clusters of active enhancers, play a central role in maintaining stemness hallmarks by specifically transcriptional model. The SE-navigated transcriptional complex, including SEs, non-coding RNAs, master transcriptional factors, Mediators and other co-activators, forms phase-separated condensates, which offers a toggle for directing diverse stem cell fate. With the burgeoning technologies of multiple-omics applied to examine different aspects of SE, we firstly raise the concept of "super-enhancer omics", inextricably linking to Pan-omics. In the review, we discuss the spatiotemporal organization and concepts of SEs, and describe links between SE-navigated transcriptional complex and stem cell features, such as stem cell identity, self-renewal, pluripotency, differentiation and development. We also elucidate the mechanism of stemness and oncogenic SEs modulating cancer stem cells via genomic and epigenetic alterations hijack in cancer stem cell. Additionally, we discuss the potential of targeting components of the SE complex using small molecule compounds, genome editing, and antisense oligonucleotides to treat SE-associated organ dysfunction and diseases, including cancer. This review also provides insights into the future of stem cell research through the paradigm of SEs.
Collapse
Affiliation(s)
- Hongying Ma
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Jian Qu
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
- Hunan key laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China
| | - Zicheng Pang
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jian Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Min Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Weixin Xu
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Haihui Zhuang
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Linxin Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China.
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.
| |
Collapse
|
3
|
Dong J, Scott TG, Mukherjee R, Guertin MJ. ZNF143 binds DNA and stimulates transcripstion initiation to activate and repress direct target genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.594008. [PMID: 38798607 PMCID: PMC11118474 DOI: 10.1101/2024.05.13.594008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Transcription factors bind to sequence motifs and act as activators or repressors. Transcription factors interface with a constellation of accessory cofactors to regulate distinct mechanistic steps to regulate transcription. We rapidly degraded the essential and ubiquitously expressed transcription factor ZNF143 to determine its function in the transcription cycle. ZNF143 facilitates RNA Polymerase initiation and activates gene expression. ZNF143 binds the promoter of nearly all its activated target genes. ZNF143 also binds near the site of genic transcription initiation to directly repress a subset of genes. Although ZNF143 stimulates initiation at ZNF143-repressed genes (i.e. those that increase expression upon ZNF143 depletion), the molecular context of binding leads to cis repression. ZNF143 competes with other more efficient activators for promoter access, physically occludes transcription initiation sites and promoter-proximal sequence elements, and acts as a molecular roadblock to RNA Polymerases during early elongation. The term context specific is often invoked to describe transcription factors that have both activation and repression functions. We define the context and molecular mechanisms of ZNF143-mediated cis activation and repression.
Collapse
Affiliation(s)
- Jinhong Dong
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, Connecticut, United States of America
| | - Thomas G Scott
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Rudradeep Mukherjee
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, Connecticut, United States of America
| | - Michael J Guertin
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, Connecticut, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, Connecticut, United States of America
| |
Collapse
|
4
|
Pikkupeura LM, Bressan RB, Guiu J, Chen Y, Maimets M, Mayer D, Schweiger PJ, Hansen SL, Maciag GJ, Larsen HL, Lõhmussaar K, Pedersen MT, Teves JMY, Bornholdt J, Benes V, Sandelin A, Jensen KB. Transcriptional and epigenomic profiling identifies YAP signaling as a key regulator of intestinal epithelium maturation. SCIENCE ADVANCES 2023; 9:eadf9460. [PMID: 37436997 DOI: 10.1126/sciadv.adf9460] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
During intestinal organogenesis, equipotent epithelial progenitors mature into phenotypically distinct stem cells that are responsible for lifelong maintenance of the tissue. While the morphological changes associated with the transition are well characterized, the molecular mechanisms underpinning the maturation process are not fully understood. Here, we leverage intestinal organoid cultures to profile transcriptional, chromatin accessibility, DNA methylation, and three-dimensional (3D) chromatin conformation landscapes in fetal and adult epithelial cells. We observed prominent differences in gene expression and enhancer activity, which are accompanied by local changes in 3D organization, DNA accessibility, and methylation between the two cellular states. Using integrative analyses, we identified sustained Yes-Associated Protein (YAP) transcriptional activity as a major gatekeeper of the immature fetal state. We found the YAP-associated transcriptional network to be regulated at various levels of chromatin organization and likely to be coordinated by changes in extracellular matrix composition. Together, our work highlights the value of unbiased profiling of regulatory landscapes for the identification of key mechanisms underlying tissue maturation.
Collapse
Affiliation(s)
- Laura M Pikkupeura
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Bioinformatics Center, Department of Biology, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Raul B Bressan
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Jordi Guiu
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, 3a planta, Av. Granvia de l'Hospitalet 199, Hospitalet de Llobregat 08908, Spain
| | - Yun Chen
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Bioinformatics Center, Department of Biology, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Martti Maimets
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Daniela Mayer
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Pawel J Schweiger
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Stine L Hansen
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Grzegorz J Maciag
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Hjalte L Larsen
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Kadi Lõhmussaar
- Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | | | - Joji M Yap Teves
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Jette Bornholdt
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Bioinformatics Center, Department of Biology, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | | | - Albin Sandelin
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Bioinformatics Center, Department of Biology, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Kim B Jensen
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| |
Collapse
|
5
|
Kravchuk EV, Ashniev GA, Gladkova MG, Orlov AV, Vasileva AV, Boldyreva AV, Burenin AG, Skirda AM, Nikitin PI, Orlova NN. Experimental Validation and Prediction of Super-Enhancers: Advances and Challenges. Cells 2023; 12:cells12081191. [PMID: 37190100 DOI: 10.3390/cells12081191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Super-enhancers (SEs) are cis-regulatory elements of the human genome that have been widely discussed since the discovery and origin of the term. Super-enhancers have been shown to be strongly associated with the expression of genes crucial for cell differentiation, cell stability maintenance, and tumorigenesis. Our goal was to systematize research studies dedicated to the investigation of structure and functions of super-enhancers as well as to define further perspectives of the field in various applications, such as drug development and clinical use. We overviewed the fundamental studies which provided experimental data on various pathologies and their associations with particular super-enhancers. The analysis of mainstream approaches for SE search and prediction allowed us to accumulate existing data and propose directions for further algorithmic improvements of SEs' reliability levels and efficiency. Thus, here we provide the description of the most robust algorithms such as ROSE, imPROSE, and DEEPSEN and suggest their further use for various research and development tasks. The most promising research direction, which is based on topic and number of published studies, are cancer-associated super-enhancers and prospective SE-targeted therapy strategies, most of which are discussed in this review.
Collapse
Affiliation(s)
- Ekaterina V Kravchuk
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, MSU, 1-12, 119991 Moscow, Russia
| | - German A Ashniev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, MSU, 1-12, 119991 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskiye Gory, MSU, 1-73, 119234 Moscow, Russia
| | - Marina G Gladkova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskiye Gory, MSU, 1-73, 119234 Moscow, Russia
| | - Alexey V Orlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Anastasiia V Vasileva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Anna V Boldyreva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Alexandr G Burenin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Artemiy M Skirda
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Petr I Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Natalia N Orlova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| |
Collapse
|
6
|
Ma Z, Bolinger AA, Zhou J, Tian B. Bromodomain-containing protein 4 (BRD4): a key player in inflammatory bowel disease and potential to inspire epigenetic therapeutics. Expert Opin Ther Targets 2023; 27:1-7. [PMID: 36710583 PMCID: PMC11092387 DOI: 10.1080/14728222.2023.2175317] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/29/2023] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Inflammatory bowel diseases (IBDs) are debilitating chronic inflammatory disorders with increasing prevalence worldwide. Epigenetic regulator bromodomain-containing protein 4 (BRD4) is critical in controlling gene expression of IBD-associated inflammatory cytokine networks. BRD4 as a promising therapeutic target is also tightly associated with many other diseases, such as airway inflammation and fibrosis, cancers, infectious diseases and central nervous system disorders. AREAS COVERED This review briefly summarized the critical role of BRD4 in the pathogenesis of IBDs and the current clinical landscape of developing bromodomain and extra terminal domain (BET) inhibitors. The challenges and opportunities as well as future directions of targeting BRD4 inhibition for potential IBD medications were also discussed. EXPERT OPINION Targeting BRD4 with potent and specific inhibitors may offer novel effective therapeutics for IBD patients, particularly those who are refractory to anti-TNFα therapy and IBD-related profibrotic. Developing highly specific BRD4 inhibitors for IBD medications may help erase the drawbacks of most current pan-BET/BRD4 inhibitors, such as off-target effects, poor oral bioavailability, and low gut mucosal absorbance. Novel strategies such as combinatorial therapy, BRD4-based dual inhibitors and proteolysis targeting chimeras (PROTACs) may also have great potential to mitigate side effects and overcome drug resistance during IBD treatment.
Collapse
Affiliation(s)
- Zonghui Ma
- Chemical Biology Program, Department of Pharmacology and Toxicology University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Andrew A. Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bing Tian
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
7
|
Eshraghisamani R, Mirto AJ, Wang J, Behr MA, Barkema HW, De Buck J. Identification of essential genes in Mycobacterium avium subsp. paratuberculosis genome for persistence in dairy calves. Front Microbiol 2022; 13:994421. [PMID: 36338087 PMCID: PMC9631821 DOI: 10.3389/fmicb.2022.994421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/05/2022] [Indexed: 11/02/2023] Open
Abstract
To cause disease Mycobacterium avium subsp. paratuberculosis needs to enter mammalian cells, arrest phagosomal maturation and manipulate the host immune system. The genetic basis of the bacterial capacity to achieve these outcomes remains largely unknown. Identifying these genes would allow us to gain a deeper understanding of MAP's pathogenesis and potentially develop a live attenuated Johne's disease vaccine by knocking out these genes. MAP genes demonstrated to be essential for colonization in the natural host, ruminants, are unknown. Genome-wide transposon mutagenesis and high-throughput sequencing were combined to evaluate the essentiality of each coding region in the bacterial genome to survive in dairy calves. A saturated library of 3,852 MAP Tn mutants, with insertions in 56% of TA sites, interrupting 88% of genes, was created using a MycoMarT7 phagemid containing a mariner transposon. Six calves were inoculated with a high dose of a library of MAP mutants, 1011 CFUs, (input) at 2 weeks of age. Following 2 months of incubation, MAP cells were isolated from the ileum, jejunum, and their associated lymph nodes of calves, resulting in approximately 100,000 colonies grown on solid media across 6 animals (output). Targeted next-generation sequencing was used to identify the disrupted genes in all the mutants in the input pool and the output pool recovered from the tissues to identify in vivo essential genes. Statistical analysis for the determination of essential genes was performed by a Hidden Markov Model (HMM), categorizing genes into essential genes that are devoid of insertions and growth-defect genes whose disruption impairs the growth of the organism. Sequence analysis identified 430 in vivo essential and 260 in vivo growth-defect genes. Gene ontology enrichment analysis of the in vivo essential and growth-defect genes with the highest reduction in the tissues revealed a high representation of genes involved in metabolism and respiration, cell wall and cell processing, virulence, and information pathway processes. This study has systematically identified essential genes for the growth and persistence of MAP in the natural host body.
Collapse
Affiliation(s)
- Razieh Eshraghisamani
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Amanda J. Mirto
- Environmental Health and Safety, University of Wisconsin-Madison, Madison, WI, United States
| | - Joyce Wang
- Department of Medicine, Faculty of Medicine, Health Centre, McGill University, Montréal, QC, Canada
| | - Marcel A. Behr
- Department of Medicine, Faculty of Medicine, Health Centre, McGill University, Montréal, QC, Canada
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeroen De Buck
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Zhou RW, Xu J, Martin TC, Zachem AL, He J, Ozturk S, Demircioglu D, Bansal A, Trotta AP, Giotti B, Gryder B, Shen Y, Wu X, Carcamo S, Bosch K, Hopkins B, Tsankov A, Steinhagen R, Jones DR, Asara J, Chipuk JE, Brody R, Itzkowitz S, Chio IIC, Hasson D, Bernstein E, Parsons RE. A local tumor microenvironment acquired super-enhancer induces an oncogenic driver in colorectal carcinoma. Nat Commun 2022; 13:6041. [PMID: 36253360 PMCID: PMC9576746 DOI: 10.1038/s41467-022-33377-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
Tumors exhibit enhancer reprogramming compared to normal tissue. The etiology is largely attributed to cell-intrinsic genomic alterations. Here, using freshly resected primary CRC tumors and patient-matched adjacent normal colon, we find divergent epigenetic landscapes between CRC tumors and cell lines. Intriguingly, this phenomenon extends to highly recurrent aberrant super-enhancers gained in CRC over normal. We find one such super-enhancer activated in epithelial cancer cells due to surrounding inflammation in the tumor microenvironment. We restore this super-enhancer and its expressed gene, PDZK1IP1, following treatment with cytokines or xenotransplantation into nude mice, thus demonstrating cell-extrinsic etiology. We demonstrate mechanistically that PDZK1IP1 enhances the reductive capacity CRC cancer cells via the pentose phosphate pathway. We show this activation enables efficient growth under oxidative conditions, challenging the previous notion that PDZK1IP1 acts as a tumor suppressor in CRC. Collectively, these observations highlight the significance of epigenomic profiling on primary specimens.
Collapse
Affiliation(s)
- Royce W Zhou
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jia Xu
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tiphaine C Martin
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alexis L Zachem
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - John He
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sait Ozturk
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Deniz Demircioglu
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ankita Bansal
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Andrew P Trotta
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bruno Giotti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Berkley Gryder
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yao Shen
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xuewei Wu
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Saul Carcamo
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kaitlyn Bosch
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Benjamin Hopkins
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alexander Tsankov
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Randolph Steinhagen
- Division of Colon and Rectal Surgery, Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Drew R Jones
- Metabolomics Core Resource Laboratory, NYU Langone Health, New York, NY, 10016, USA
| | - John Asara
- Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rachel Brody
- Mount Sinai Biorepository, Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Steven Itzkowitz
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Iok In Christine Chio
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA
| | - Dan Hasson
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Emily Bernstein
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ramon E Parsons
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
9
|
Tan SYX, Zhang J, Tee WW. Epigenetic Regulation of Inflammatory Signaling and Inflammation-Induced Cancer. Front Cell Dev Biol 2022; 10:931493. [PMID: 35757000 PMCID: PMC9213816 DOI: 10.3389/fcell.2022.931493] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/23/2022] [Indexed: 01/10/2023] Open
Abstract
Epigenetics comprise a diverse array of reversible and dynamic modifications to the cell’s genome without implicating any DNA sequence alterations. Both the external environment surrounding the organism, as well as the internal microenvironment of cells and tissues, contribute to these epigenetic processes that play critical roles in cell fate specification and organismal development. On the other hand, dysregulation of epigenetic activities can initiate and sustain carcinogenesis, which is often augmented by inflammation. Chronic inflammation, one of the major hallmarks of cancer, stems from proinflammatory cytokines that are secreted by tumor and tumor-associated cells in the tumor microenvironment. At the same time, inflammatory signaling can establish positive and negative feedback circuits with chromatin to modulate changes in the global epigenetic landscape. In this review, we provide an in-depth discussion of the interconnected crosstalk between epigenetics and inflammation, specifically how epigenetic mechanisms at different hierarchical levels of the genome control inflammatory gene transcription, which in turn enact changes within the cell’s epigenomic profile, especially in the context of inflammation-induced cancer.
Collapse
Affiliation(s)
- Shawn Ying Xuan Tan
- Chromatin Dynamics and Disease Epigenetics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Jieqiong Zhang
- Chromatin Dynamics and Disease Epigenetics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wee-Wei Tee
- Chromatin Dynamics and Disease Epigenetics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
10
|
Portuguez AS, Grbesa I, Tal M, Deitch R, Raz D, Kliker L, Weismann R, Schwartz M, Loza O, Cohen L, Marchenkov-Flam L, Sung MH, Kaplan T, Hakim O. Ep300 sequestration to functionally distinct glucocorticoid receptor binding loci underlie rapid gene activation and repression. Nucleic Acids Res 2022; 50:6702-6714. [PMID: 35713523 PMCID: PMC9262608 DOI: 10.1093/nar/gkac488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
The rapid transcriptional response to the transcription factor, glucocorticoid receptor (GR), including gene activation or repression, is mediated by the spatial association of genes with multiple GR binding sites (GBSs) over large genomic distances. However, only a minority of the GBSs have independent GR-mediated activating capacity, and GBSs with independent repressive activity were rarely reported. To understand the positive and negative effects of GR we mapped the regulatory environment of its gene targets. We show that the chromatin interaction networks of GR-activated and repressed genes are spatially separated and vary in the features and configuration of their GBS and other non-GBS regulatory elements. The convergence of the KLF4 pathway in GR-activated domains and the STAT6 pathway in GR-repressed domains, impose opposite transcriptional effects to GR, independent of hormone application. Moreover, the ROR and Rev-erb transcription factors serve as positive and negative regulators, respectively, of GR-mediated gene activation. We found that the spatial crosstalk between GBSs and non-GBSs provides a physical platform for sequestering the Ep300 co-activator from non-GR regulatory loci in both GR-activated and -repressed gene compartments. While this allows rapid gene repression, Ep300 recruitment to GBSs is productive specifically in the activated compartments, thus providing the basis for gene induction.
Collapse
Affiliation(s)
| | | | - Moran Tal
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Rachel Deitch
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Dana Raz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Limor Kliker
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Ran Weismann
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Michal Schwartz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Olga Loza
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Leslie Cohen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Libi Marchenkov-Flam
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Myong-Hee Sung
- Laboratory of Molecular Biology and Immunology, NIA, National Institutes of Health, Baltimore, MD 21224, USA
| | - Tommy Kaplan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel,Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Ofir Hakim
- To whom correspondence should be addressed. Tel: +972 3 738 4295; Fax: +972 3 738 4296;
| |
Collapse
|
11
|
Integrative analysis reveals multiple modes of LXR transcriptional regulation in liver. Proc Natl Acad Sci U S A 2022; 119:2122683119. [PMID: 35145035 PMCID: PMC8851562 DOI: 10.1073/pnas.2122683119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 02/08/2023] Open
Abstract
The nuclear receptors liver X receptor (LXR) α and β play crucial roles in hepatic metabolism. Many genes induced in response to pharmacologic LXR agonism have been defined; however, the transcriptional consequences of loss of LXR binding to its genomic targets are less well characterized. Here, we addressed how deletion of both LXRα and LXRβ from mouse liver (LXR double knockout [DKO]) affects the transcriptional regulatory landscape by integrating changes in LXR binding, chromatin accessibility, and gene expression. Many genes involved in fatty acid metabolism showed reduced expression and chromatin accessibility at their intergenic and intronic regions in LXRDKO livers. Genes that were up-regulated with LXR deletion had increased chromatin accessibility at their promoter regions and were enriched for functions not linked to lipid metabolism. Loss of LXR binding in liver reduced the activity of a broad set of hepatic transcription factors, inferred through changes in motif accessibility. By contrast, accessibility at promoter nuclear factor Y (NF-Y) motifs was increased in the absence of LXR. Unexpectedly, we also defined a small set of LXR targets for direct ligand-dependent repression. These genes have LXR-binding sites but showed increased expression in LXRDKO liver and reduced expression in response to the LXR agonist. In summary, the binding of LXRs to the hepatic genome has broad effects on the transcriptional landscape that extend beyond its canonical function as an activator of lipid metabolic genes.
Collapse
|
12
|
Perrin HJ, Currin KW, Vadlamudi S, Pandey GK, Ng KK, Wabitsch M, Laakso M, Love MI, Mohlke KL. Chromatin accessibility and gene expression during adipocyte differentiation identify context-dependent effects at cardiometabolic GWAS loci. PLoS Genet 2021; 17:e1009865. [PMID: 34699533 PMCID: PMC8570510 DOI: 10.1371/journal.pgen.1009865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/05/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022] Open
Abstract
Chromatin accessibility and gene expression in relevant cell contexts can guide identification of regulatory elements and mechanisms at genome-wide association study (GWAS) loci. To identify regulatory elements that display differential activity across adipocyte differentiation, we performed ATAC-seq and RNA-seq in a human cell model of preadipocytes and adipocytes at days 4 and 14 of differentiation. For comparison, we created a consensus map of ATAC-seq peaks in 11 human subcutaneous adipose tissue samples. We identified 58,387 context-dependent chromatin accessibility peaks and 3,090 context-dependent genes between all timepoint comparisons (log2 fold change>1, FDR<5%) with 15,919 adipocyte- and 18,244 preadipocyte-dependent peaks. Adipocyte-dependent peaks showed increased overlap (60.1%) with Roadmap Epigenomics adipocyte nuclei enhancers compared to preadipocyte-dependent peaks (11.5%). We linked context-dependent peaks to genes based on adipocyte promoter capture Hi-C data, overlap with adipose eQTL variants, and context-dependent gene expression. Of 16,167 context-dependent peaks linked to a gene, 5,145 were linked by two or more strategies to 1,670 genes. Among GWAS loci for cardiometabolic traits, adipocyte-dependent peaks, but not preadipocyte-dependent peaks, showed significant enrichment (LD score regression P<0.005) for waist-to-hip ratio and modest enrichment (P < 0.05) for HDL-cholesterol. We identified 659 peaks linked to 503 genes by two or more approaches and overlapping a GWAS signal, suggesting a regulatory mechanism at these loci. To identify variants that may alter chromatin accessibility between timepoints, we identified 582 variants in 454 context-dependent peaks that demonstrated allelic imbalance in accessibility (FDR<5%), of which 55 peaks also overlapped GWAS variants. At one GWAS locus for palmitoleic acid, rs603424 was located in an adipocyte-dependent peak linked to SCD and exhibited allelic differences in transcriptional activity in adipocytes (P = 0.003) but not preadipocytes (P = 0.09). These results demonstrate that context-dependent peaks and genes can guide discovery of regulatory variants at GWAS loci and aid identification of regulatory mechanisms. Cardiovascular and metabolic diseases are widespread, and an increased understanding of genetic mechanisms behind these diseases could improve treatment. Chromatin accessibility and gene expression in relevant cell contexts can guide identification of regulatory elements and genetic mechanisms for disease traits. A relevant context for cardiovascular and metabolic disease traits is adipocyte differentiation. To identify regulatory elements and genes that display differences in activity during adipocyte differentiation, we profiled chromatin accessibility and gene expression in a human cell model of preadipocytes and adipocytes. We identified chromatin regions that change accessibility during differentiation and predicted genes they may affect. We also linked these chromatin regions to genetic variants associated with risk of disease. At one genomic region linked to fatty acids, a chromatin region more accessible in adipocytes linked to a fatty acid synthesis gene and exhibited allelic differences in transcriptional activity in adipocytes but not preadipocytes. These results demonstrate that chromatin regions and genes that change during cell context can guide discovery of regulatory variants and aid identification of disease mechanisms.
Collapse
Affiliation(s)
- Hannah J. Perrin
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kevin W. Currin
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Swarooparani Vadlamudi
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Gautam K. Pandey
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kenneth K. Ng
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine, Ulm University Hospital, Ulm, Germany
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Michael I. Love
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Karen L. Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
13
|
Akıncılar SC, Wu L, NG QF, Chua JYH, Unal B, Noda T, Chor WHJ, Ikawa M, Tergaonkar V. NAIL: an evolutionarily conserved lncRNA essential for licensing coordinated activation of p38 and NFκB in colitis. Gut 2021; 70:1857-1871. [PMID: 33239342 PMCID: PMC8458091 DOI: 10.1136/gutjnl-2020-322980] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE NFκB is the key modulator in inflammatory disorders. However, the key regulators that activate, fine-tune or shut off NFκB activity in inflammatory conditions are poorly understood. In this study, we aim to investigate the roles that NFκB-specific long non-coding RNAs (lncRNAs) play in regulating inflammatory networks. DESIGN Using the first genetic-screen to identify NFκB-specific lncRNAs, we performed RNA-seq from the p65-/- and Ikkβ-/- mouse embryonic fibroblasts and report the identification of an evolutionary conserved lncRNA designated mNAIL (mice) or hNAIL (human). hNAIL is upregulated in human inflammatory disorders, including UC. We generated mNAILΔNFκB mice, wherein deletion of two NFκB sites in the proximal promoter of mNAIL abolishes its induction, to study its function in colitis. RESULTS NAIL regulates inflammation via sequestering and inactivating Wip1, a known negative regulator of proinflammatory p38 kinase and NFκB subunit p65. Wip1 inactivation leads to coordinated activation of p38 and covalent modifications of NFκB, essential for its genome-wide occupancy on specific targets. NAIL enables an orchestrated response for p38 and NFκB coactivation that leads to differentiation of precursor cells into immature myeloid cells in bone marrow, recruitment of macrophages to inflamed area and expression of inflammatory genes in colitis. CONCLUSION NAIL directly regulates initiation and progression of colitis and its expression is highly correlated with NFκB activity which makes it a perfect candidate to serve as a biomarker and a therapeutic target for IBD and other inflammation-associated diseases.
Collapse
Affiliation(s)
- Semih Can Akıncılar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Institute of Molecular and Cell Biology, Singapore
| | - Lele Wu
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Institute of Molecular and Cell Biology, Singapore
| | - Qin Feng NG
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Institute of Molecular and Cell Biology, Singapore
| | - Joelle Yi Heng Chua
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Institute of Molecular and Cell Biology, Singapore
| | - Bilal Unal
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Institute of Molecular and Cell Biology, Singapore
| | - Taichi Noda
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Wei Hong Jeff Chor
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Institute of Molecular and Cell Biology, Singapore
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Vinay Tergaonkar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Institute of Molecular and Cell Biology, Singapore .,Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| |
Collapse
|
14
|
Bansal K, Michelson DA, Ramirez RN, Viny AD, Levine RL, Benoist C, Mathis D. Aire regulates chromatin looping by evicting CTCF from domain boundaries and favoring accumulation of cohesin on superenhancers. Proc Natl Acad Sci U S A 2021; 118:e2110991118. [PMID: 34518235 PMCID: PMC8463806 DOI: 10.1073/pnas.2110991118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 11/18/2022] Open
Abstract
Aire controls immunological tolerance by driving promiscuous expression of a large swath of the genome in medullary thymic epithelial cells (mTECs). Its molecular mechanism remains enigmatic. High-resolution chromosome-conformation capture (Hi-C) experiments on ex vivo mTECs revealed Aire to have a widespread impact on higher-order chromatin structure, disfavoring architectural loops while favoring transcriptional loops. In the presence of Aire, cohesin complexes concentrated on superenhancers together with mediator complexes, while the CCCTC-binding factor (CTCF) was relatively depleted from structural domain boundaries. In particular, Aire associated with the cohesin loader, NIPBL, strengthening this factor's affiliation with cohesin's enzymatic subunits. mTEC transcripts up-regulated in the presence of Aire corresponded closely to those down-regulated in the absence of one of the cohesin subunits, SA-2. A mechanistic model incorporating these findings explains many of the unusual features of Aire's impact on mTEC transcription, providing molecular insight into tolerance induction.
Collapse
Affiliation(s)
- Kushagra Bansal
- Department of Immunology, Harvard Medical School, Boston, MA 02115
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India
| | - Daniel A Michelson
- Department of Immunology, Harvard Medical School, Boston, MA 02115
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Ricardo N Ramirez
- Department of Immunology, Harvard Medical School, Boston, MA 02115
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Aaron D Viny
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Christophe Benoist
- Department of Immunology, Harvard Medical School, Boston, MA 02115;
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA 02115;
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| |
Collapse
|
15
|
An optimized BRD4 inhibitor effectively eliminates NF-κB-driven triple-negative breast cancer cells. Bioorg Chem 2021; 114:105158. [PMID: 34378541 DOI: 10.1016/j.bioorg.2021.105158] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/31/2022]
Abstract
Acetylation of NF-κB's RelA subunit at lysine-310 (AcLys310) helps to maintain constitutive NF-κB activity in cancers such as triple-negative breast cancer (TNBC). Bromodomain-containing factor BRD4 binds to acetylated RelA to promote the activity of NF-κB. Hence, interfering with the acetylated RelA-BRD4 interaction is a potential strategy for treating NF-κB-driven TNBC. Here, a new compound 13a was obtained by structural optimization and modification of our previously reported compound. In comparison with the well-known BRD4 inhibitor (+)-JQ1, 13a showed more potent anticancer activity in NF-κB-active MDA-MB-231 cells. Mechanistically, 13a antagonized the protein-protein interaction (PPI) between BRD4 and acetylated RelA, decreased levels of IL-6, IL-8, Snail, Vimentin, and ZEB1, induced cell senescence and DNA damage, and weakened the adhesion, metastasis, and invasion ability of TNBC cells. Our results provide insights into avenues for the further development of potent BRD4-acetylated RelA PPI inhibitors. Moreover, our findings highlight the effectiveness and feasibility of blocking the interaction between BRD4 and acetylated RelA against NF-κB-active cancers, and of screening antagonists of this PPI.
Collapse
|
16
|
Higashijima Y, Kanki Y. Potential roles of super enhancers in inflammatory gene transcription. FEBS J 2021; 289:5762-5775. [PMID: 34173323 DOI: 10.1111/febs.16089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/26/2021] [Accepted: 06/24/2021] [Indexed: 12/15/2022]
Abstract
Acute and chronic inflammation is a basic pathological event that contributes to atherosclerosis, cancer, infectious diseases, and immune disorders. Inflammation is an adaptive process to both external and internal stimuli experienced by the human body. Although the mechanism of gene transcription is highly complicated and orchestrated in a timely and spatial manner, recent developments in next-generation sequencing, genome-editing, cryo-electron microscopy, and single cell-based technologies could provide us with insights into the roles of super enhancers (SEs). Initially, SEs were implicated in determining cell fate; subsequent studies have clarified that SEs are associated with various pathological conditions, including cancer and inflammatory diseases. Recent technological advances have unveiled the molecular mechanisms of SEs, which involve epigenetic histone modifications, chromatin three-dimensional structures, and phase-separated condensates. In this review, we discuss the relationship between inflammation and SEs and the therapeutic potential of SEs for inflammatory diseases.
Collapse
Affiliation(s)
- Yoshiki Higashijima
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Yasuharu Kanki
- Isotope Science Center, The University of Tokyo, Japan.,Laboratory of Laboratory/Sports Medicine, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Japan
| |
Collapse
|
17
|
Cai D, Han JDJ. Aging-associated lncRNAs are evolutionarily conserved and participate in NFκB signaling. NATURE AGING 2021; 1:438-453. [PMID: 37118014 DOI: 10.1038/s43587-021-00056-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/10/2021] [Indexed: 04/30/2023]
Abstract
The transcriptome undergoes global changes during aging, including both protein-coding and noncoding RNAs. Using comparative genomics, we identify aging-associated long noncoding RNAs (lncRNAs) that are under evolutionary constraint and are more conserved than lncRNAs that do not change with age. Aging-associated lncRNAs are enriched for functional elements, including binding sites for RNA-binding proteins and transcription factors, in particular nuclear factor kappa B (NFκB). Using CRISPR screening, we discovered that 13 of the aging-associated lncRNAs were regulators of the NFκB pathway, and we named this family 'NFκB modulating aging-related lncRNAs (NFKBMARLs)'. Further characterization of NFκBMARL-1 reveals it can be traced to 29 Ma before humans and is induced by NFκB during aging, inflammation and senescence. Reciprocally, NFκBMARL-1 directly regulates transcription of the NFκB inhibitor NFKBIZ in cis within the same topologically associated domain by binding to the NFKBIZ enhancer and recruiting RELA to the NFKBIZ promoter. These findings reveal many aging-associated lncRNAs are evolutionarily conserved components of the NFκB pathway.
Collapse
Affiliation(s)
- Donghong Cai
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing-Dong J Han
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China.
| |
Collapse
|
18
|
Repression of transcription by the glucocorticoid receptor: A parsimonious model for the genomics era. J Biol Chem 2021; 296:100687. [PMID: 33891947 PMCID: PMC8141881 DOI: 10.1016/j.jbc.2021.100687] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoids are potent anti-inflammatory drugs that are used to treat an extraordinary range of human disease, including COVID-19, underscoring the ongoing importance of understanding their molecular mechanisms. Early studies of GR signaling led to broad acceptance of models in which glucocorticoid receptor (GR) monomers tether repressively to inflammatory transcription factors, thus abrogating inflammatory gene expression. However, newer data challenge this core concept and present an exciting opportunity to reframe our understanding of GR signaling. Here, we present an alternate, two-part model for transcriptional repression by glucocorticoids. First, widespread GR-mediated induction of transcription results in rapid, primary repression of inflammatory gene transcription and associated enhancers through competition-based mechanisms. Second, a subset of GR-induced genes, including targets that are regulated in coordination with inflammatory transcription factors such as NF-κB, exerts secondary repressive effects on inflammatory gene expression. Within this framework, emerging data indicate that the gene set regulated through the cooperative convergence of GR and NF-κB signaling is central to the broad clinical effectiveness of glucocorticoids in terminating inflammation and promoting tissue repair.
Collapse
|
19
|
Yuan X, Scott IC, Wilson MD. Heart Enhancers: Development and Disease Control at a Distance. Front Genet 2021; 12:642975. [PMID: 33777110 PMCID: PMC7987942 DOI: 10.3389/fgene.2021.642975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
Bound by lineage-determining transcription factors and signaling effectors, enhancers play essential roles in controlling spatiotemporal gene expression profiles during development, homeostasis and disease. Recent synergistic advances in functional genomic technologies, combined with the developmental biology toolbox, have resulted in unprecedented genome-wide annotation of heart enhancers and their target genes. Starting with early studies of vertebrate heart enhancers and ending with state-of-the-art genome-wide enhancer discovery and testing, we will review how studying heart enhancers in metazoan species has helped inform our understanding of cardiac development and disease.
Collapse
Affiliation(s)
- Xuefei Yuan
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ian C. Scott
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michael D. Wilson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Alizada A, Khyzha N, Wang L, Antounians L, Chen X, Khor M, Liang M, Rathnakumar K, Weirauch MT, Medina-Rivera A, Fish JE, Wilson MD. Conserved regulatory logic at accessible and inaccessible chromatin during the acute inflammatory response in mammals. Nat Commun 2021; 12:567. [PMID: 33495464 PMCID: PMC7835376 DOI: 10.1038/s41467-020-20765-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022] Open
Abstract
The regulatory elements controlling gene expression during acute inflammation are not fully elucidated. Here we report the identification of a set of NF-κB-bound elements and common chromatin landscapes underlying the acute inflammatory response across cell-types and mammalian species. Using primary vascular endothelial cells (human/mouse/bovine) treated with the pro-inflammatory cytokine, Tumor Necrosis Factor-α, we identify extensive (~30%) conserved orthologous binding of NF-κB to accessible, as well as nucleosome-occluded chromatin. Regions with the highest NF-κB occupancy pre-stimulation show dramatic increases in NF-κB binding and chromatin accessibility post-stimulation. These 'pre-bound' regions are typically conserved (~56%), contain multiple NF-κB motifs, are utilized by diverse cell types, and overlap rare non-coding mutations and common genetic variation associated with both inflammatory and cardiovascular phenotypes. Genetic ablation of conserved, 'pre-bound' NF-κB regions within the super-enhancer associated with the chemokine-encoding CCL2 gene and elsewhere supports the functional relevance of these elements.
Collapse
Affiliation(s)
- Azad Alizada
- Hospital for Sick Children, Genetics and Genome Biology, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Nadiya Khyzha
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- University Health Network, Toronto General Hospital Research Institute, Toronto, Canada
| | - Liangxi Wang
- Hospital for Sick Children, Genetics and Genome Biology, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Lina Antounians
- Hospital for Sick Children, Genetics and Genome Biology, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Melvin Khor
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- University Health Network, Toronto General Hospital Research Institute, Toronto, Canada
| | - Minggao Liang
- Hospital for Sick Children, Genetics and Genome Biology, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Kumaragurubaran Rathnakumar
- Hospital for Sick Children, Genetics and Genome Biology, Toronto, Canada
- University Health Network, Toronto General Hospital Research Institute, Toronto, Canada
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Alejandra Medina-Rivera
- Hospital for Sick Children, Genetics and Genome Biology, Toronto, Canada
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Jason E Fish
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
- University Health Network, Toronto General Hospital Research Institute, Toronto, Canada.
- University Health Network, Peter Munk Cardiac Centre, Toronto, Canada.
| | - Michael D Wilson
- Hospital for Sick Children, Genetics and Genome Biology, Toronto, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.
| |
Collapse
|
21
|
The Bromodomain Protein 4 Contributes to the Regulation of Alternative Splicing. Cell Rep 2020; 29:2450-2460.e5. [PMID: 31747612 DOI: 10.1016/j.celrep.2019.10.066] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/13/2019] [Accepted: 10/15/2019] [Indexed: 12/26/2022] Open
Abstract
The bromodomain protein 4 (BRD4) is an atypical kinase and histone acetyl transferase (HAT) that binds to acetylated histones and contributes to chromatin remodeling and early transcriptional elongation. During transcription, BRD4 travels with the elongation complex. Since most alternative splicing events take place co-transcriptionally, we asked if BRD4 plays a role in regulating alternative splicing. We report that distinct patterns of alternative splicing are associated with a conditional deletion of BRD4 during thymocyte differentiation in vivo. Similarly, the depletion of BRD4 in T cell acute lymphoblastic leukemia (T-ALL) cells alters patterns of splicing. Most alternatively spliced events affected by BRD4 are exon skipping. Importantly, BRD4 interacts with components of the splicing machinery, as assessed by both immunoprecipitation (IP) and proximity ligation assays (PLAs), and co-localizes on chromatin with the splicing regulator, FUS. We propose that BRD4 contributes to patterns of alternative splicing through its interaction with the splicing machinery during transcription elongation.
Collapse
|
22
|
Kulikowski E, Rakai BD, Wong NCW. Inhibitors of bromodomain and extra-terminal proteins for treating multiple human diseases. Med Res Rev 2020; 41:223-245. [PMID: 32926459 PMCID: PMC7756446 DOI: 10.1002/med.21730] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
Clinical development of bromodomain and extra‐terminal (BET) protein inhibitors differs from the traditional course of drug development. These drugs are simultaneously being evaluated for treating a wide spectrum of human diseases due to their novel mechanism of action. BET proteins are epigenetic “readers,” which play a primary role in transcription. Here, we briefly describe the BET family of proteins, of which BRD4 has been studied most extensively. We discuss BRD4 activity at latent enhancers as an example of BET protein function. We examine BRD4 redistribution and enhancer reprogramming in embryonic development, cancer, cardiovascular, autoimmune, and metabolic diseases, presenting hallmark studies that highlight BET proteins as attractive targets for therapeutic intervention. We review the currently available approaches to targeting BET proteins, methods of selectively targeting individual bromodomains, and review studies that compare the effects of selective BET inhibition to those of pan‐BET inhibition. Lastly, we examine the current clinical landscape of BET inhibitor development.
Collapse
|
23
|
Zheng C, Liu M, Fan H. Targeting complexes of super-enhancers is a promising strategy for cancer therapy. Oncol Lett 2020; 20:2557-2566. [PMID: 32782573 PMCID: PMC7400756 DOI: 10.3892/ol.2020.11855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 05/27/2020] [Indexed: 12/16/2022] Open
Abstract
The hyperactivation and overexpression of critical oncogenes is a common occurrence in multiple types of malignant tumors. Recently, the abnormal activation mechanism of an oncogene by a super-enhancer (SE) has attracted significant attention. A series of changes (insertion, deletion, translocation and rearrangement) in the genome occurring in cancer cells may generate new SEs, leading to the overexpression of SE-driven oncogenes. SEs are composed of typical enhancers densely loaded with mediator complexes, transcription factors, and chromatin regulators, and drive the overexpression of oncogenes associated with cellular identity and disease. Cyclin-dependent kinase 7 (CDK7) and bromodomain protein 4 (BRD4) are critical mediator complexes associated with SE-mediated transcription. Clinical trials have shown that emerging small-molecule inhibitors (CDK7 and BRD4 inhibitor), targeting the SE exert a notable effect on cancer treatment. Increasing evidences has illustrated that the SE and its associated complexes play a critical role in the development of various types of cancer. The present review discusses the composition, function and regulation of SEs and their contribution to oncogenic transcription. In addition, creative therapeutic approaches that target SE, their advantages and disadvantages, as well as the problems with their clinical application are discussed. It was found that targeting SE may be used in conventional treatment and establish more access for patients with cancer.
Collapse
Affiliation(s)
- Chuqian Zheng
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Min Liu
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210018, P.R. China
| | - Hong Fan
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
24
|
Bromodomain Protein BRD4 Accelerates Glucocorticoid Dysregulation of Bone Mass and Marrow Adiposis by Modulating H3K9 and Foxp1. Cells 2020; 9:cells9061500. [PMID: 32575577 PMCID: PMC7349708 DOI: 10.3390/cells9061500] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Glucocorticoid provokes bone mass loss and fatty marrow, accelerating osteoporosis development. Bromodomain protein BRD4, an acetyl–histone-binding chromatin reader, regulates stem cell and tissue homeostasis. We uncovered that glucocorticoid inhibited acetyl Lys-9 at the histone 3 (H3K9ac)-binding Runx2 promoter and decreased osteogenic differentiation, whereas bromodomain protein 4 (BRD4) and adipocyte formation were upregulated in bone-marrow mesenchymal progenitor cells. BRD4 knockdown improved H3K9ac occupation at the Runx2 promoter and osteogenesis, but attenuated glucocorticoid-mediated adipocyte formation together with the unaffected H3K9ac-binding PPARγ2 promoter. BRD4 regulated epigenome related to fatty acid metabolism and the forkhead box P1 (Foxp1) pathway, which occupied the PPARγ2 promoter to modulate glucocorticoid-induced adipocytic activity. In vivo, BRD4 inhibitor JQ-1 treatment mitigated methylprednisolone-induced suppression of bone mass, trabecular microstructure, mineral acquisition, and osteogenic differentiation. Foxp1 signaling, marrow fat, and adipocyte formation in glucocorticoid-treated skeleton were reversed upon JQ-1 treatment. Taken together, glucocorticoid-induced H3K9 hypoacetylation augmented BRD4 action to Foxp1, which steered mesenchymal progenitor cells toward adipocytes at the cost of osteogenic differentiation in osteoporotic skeletons. BRD4 inhibition slowed bone mass loss and marrow adiposity. Collective investigations convey a new epigenetic insight into acetyl histone reader BRD4 control of osteogenesis and adipogenesis in skeleton, and highlight the remedial effects of the BRD4 inhibitor on glucocorticoid-induced osteoporosis.
Collapse
|
25
|
Fan Q, Nørgaard RC, Grytten I, Ness CM, Lucas C, Vekterud K, Soedling H, Matthews J, Lemma RB, Gabrielsen OS, Bindesbøll C, Ulven SM, Nebb HI, Grønning-Wang LM, Sæther T. LXRα Regulates ChREBPα Transactivity in a Target Gene-Specific Manner through an Agonist-Modulated LBD-LID Interaction. Cells 2020; 9:cells9051214. [PMID: 32414201 PMCID: PMC7290792 DOI: 10.3390/cells9051214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/19/2020] [Accepted: 05/07/2020] [Indexed: 01/02/2023] Open
Abstract
The cholesterol-sensing nuclear receptor liver X receptor (LXR) and the glucose-sensing transcription factor carbohydrate responsive element-binding protein (ChREBP) are central players in regulating glucose and lipid metabolism in the liver. More knowledge of their mechanistic interplay is needed to understand their role in pathological conditions like fatty liver disease and insulin resistance. In the current study, LXR and ChREBP co-occupancy was examined by analyzing ChIP-seq datasets from mice livers. LXR and ChREBP interaction was determined by Co-immunoprecipitation (CoIP) and their transactivity was assessed by real-time quantitative polymerase chain reaction (qPCR) of target genes and gene reporter assays. Chromatin binding capacity was determined by ChIP-qPCR assays. Our data show that LXRα and ChREBPα interact physically and show a high co-occupancy at regulatory regions in the mouse genome. LXRα co-activates ChREBPα and regulates ChREBP-specific target genes in vitro and in vivo. This co-activation is dependent on functional recognition elements for ChREBP but not for LXR, indicating that ChREBPα recruits LXRα to chromatin in trans. The two factors interact via their key activation domains; the low glucose inhibitory domain (LID) of ChREBPα and the ligand-binding domain (LBD) of LXRα. While unliganded LXRα co-activates ChREBPα, ligand-bound LXRα surprisingly represses ChREBPα activity on ChREBP-specific target genes. Mechanistically, this is due to a destabilized LXRα:ChREBPα interaction, leading to reduced ChREBP-binding to chromatin and restricted activation of glycolytic and lipogenic target genes. This ligand-driven molecular switch highlights an unappreciated role of LXRα in responding to nutritional cues that was overlooked due to LXR lipogenesis-promoting function.
Collapse
Affiliation(s)
- Qiong Fan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (Q.F.); (K.V.); (C.B.)
| | - Rikke Christine Nørgaard
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (R.C.N.); (C.M.N.); (C.L.); (H.S.); (J.M.); (S.M.U.); (H.I.N.); (L.M.G.-W.)
| | - Ivar Grytten
- Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, N-0317 Oslo, Norway;
| | - Cecilie Maria Ness
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (R.C.N.); (C.M.N.); (C.L.); (H.S.); (J.M.); (S.M.U.); (H.I.N.); (L.M.G.-W.)
| | - Christin Lucas
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (R.C.N.); (C.M.N.); (C.L.); (H.S.); (J.M.); (S.M.U.); (H.I.N.); (L.M.G.-W.)
| | - Kristin Vekterud
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (Q.F.); (K.V.); (C.B.)
| | - Helen Soedling
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (R.C.N.); (C.M.N.); (C.L.); (H.S.); (J.M.); (S.M.U.); (H.I.N.); (L.M.G.-W.)
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (R.C.N.); (C.M.N.); (C.L.); (H.S.); (J.M.); (S.M.U.); (H.I.N.); (L.M.G.-W.)
| | - Roza Berhanu Lemma
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, N-0317 Oslo, Norway; (R.B.L.); (O.S.G.)
| | - Odd Stokke Gabrielsen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, N-0317 Oslo, Norway; (R.B.L.); (O.S.G.)
| | - Christian Bindesbøll
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (Q.F.); (K.V.); (C.B.)
| | - Stine Marie Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (R.C.N.); (C.M.N.); (C.L.); (H.S.); (J.M.); (S.M.U.); (H.I.N.); (L.M.G.-W.)
| | - Hilde Irene Nebb
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (R.C.N.); (C.M.N.); (C.L.); (H.S.); (J.M.); (S.M.U.); (H.I.N.); (L.M.G.-W.)
| | - Line Mariann Grønning-Wang
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (R.C.N.); (C.M.N.); (C.L.); (H.S.); (J.M.); (S.M.U.); (H.I.N.); (L.M.G.-W.)
| | - Thomas Sæther
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (Q.F.); (K.V.); (C.B.)
- Correspondence: ; Tel.: +47-22-851510
| |
Collapse
|
26
|
Dubois V, Gheeraert C, Vankrunkelsven W, Dubois‐Chevalier J, Dehondt H, Bobowski‐Gerard M, Vinod M, Zummo FP, Güiza F, Ploton M, Dorchies E, Pineau L, Boulinguiez A, Vallez E, Woitrain E, Baugé E, Lalloyer F, Duhem C, Rabhi N, van Kesteren RE, Chiang C, Lancel S, Duez H, Annicotte J, Paumelle R, Vanhorebeek I, Van den Berghe G, Staels B, Lefebvre P, Eeckhoute J. Endoplasmic reticulum stress actively suppresses hepatic molecular identity in damaged liver. Mol Syst Biol 2020; 16:e9156. [PMID: 32407006 PMCID: PMC7224309 DOI: 10.15252/msb.20199156] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Liver injury triggers adaptive remodeling of the hepatic transcriptome for repair/regeneration. We demonstrate that this involves particularly profound transcriptomic alterations where acute induction of genes involved in handling of endoplasmic reticulum stress (ERS) is accompanied by partial hepatic dedifferentiation. Importantly, widespread hepatic gene downregulation could not simply be ascribed to cofactor squelching secondary to ERS gene induction, but rather involves a combination of active repressive mechanisms. ERS acts through inhibition of the liver-identity (LIVER-ID) transcription factor (TF) network, initiated by rapid LIVER-ID TF protein loss. In addition, induction of the transcriptional repressor NFIL3 further contributes to LIVER-ID gene repression. Alteration to the liver TF repertoire translates into compromised activity of regulatory regions characterized by the densest co-recruitment of LIVER-ID TFs and decommissioning of BRD4 super-enhancers driving hepatic identity. While transient repression of the hepatic molecular identity is an intrinsic part of liver repair, sustained disequilibrium between the ERS and LIVER-ID transcriptional programs is linked to liver dysfunction as shown using mouse models of acute liver injury and livers from deceased human septic patients.
Collapse
Affiliation(s)
- Vanessa Dubois
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
- Present address:
Clinical and Experimental EndocrinologyDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA)KU LeuvenLeuvenBelgium
| | - Céline Gheeraert
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| | - Wouter Vankrunkelsven
- Clinical Division and Laboratory of Intensive Care MedicineDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | | | - Hélène Dehondt
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| | | | - Manjula Vinod
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| | | | - Fabian Güiza
- Clinical Division and Laboratory of Intensive Care MedicineDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Maheul Ploton
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| | - Emilie Dorchies
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| | - Laurent Pineau
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| | - Alexis Boulinguiez
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| | - Emmanuelle Vallez
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| | - Eloise Woitrain
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| | - Eric Baugé
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| | - Fanny Lalloyer
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| | - Christian Duhem
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| | - Nabil Rabhi
- UMR 8199 ‐ EGIDCNRSInstitut Pasteur de LilleUniversity of LilleLilleFrance
| | - Ronald E van Kesteren
- Center for Neurogenomics and Cognitive ResearchNeuroscience Campus AmsterdamVU UniversityAmsterdamThe Netherlands
| | - Cheng‐Ming Chiang
- Simmons Comprehensive Cancer CenterDepartments of Biochemistry and PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Steve Lancel
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| | - Hélène Duez
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| | | | - Réjane Paumelle
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| | - Ilse Vanhorebeek
- Clinical Division and Laboratory of Intensive Care MedicineDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Greet Van den Berghe
- Clinical Division and Laboratory of Intensive Care MedicineDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Bart Staels
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| | - Philippe Lefebvre
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| | - Jérôme Eeckhoute
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| |
Collapse
|
27
|
Xiang M, Grosso RA, Takeda A, Pan J, Bekkhus T, Brulois K, Dermadi D, Nordling S, Vanlandewijck M, Jalkanen S, Ulvmar MH, Butcher EC. A Single-Cell Transcriptional Roadmap of the Mouse and Human Lymph Node Lymphatic Vasculature. Front Cardiovasc Med 2020; 7:52. [PMID: 32426372 PMCID: PMC7204639 DOI: 10.3389/fcvm.2020.00052] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/18/2020] [Indexed: 01/08/2023] Open
Abstract
Single-cell transcriptomics promise to revolutionize our understanding of the vasculature. Emerging computational methods applied to high-dimensional single-cell data allow integration of results between samples and species and illuminate the diversity and underlying developmental and architectural organization of cell populations. Here, we illustrate these methods in the analysis of mouse lymph node (LN) lymphatic endothelial cells (LEC) at single-cell resolution. Clustering identifies five well-delineated subsets, including two medullary sinus subsets not previously recognized as distinct. Nearest neighbor alignments in trajectory space position the major subsets in a sequence that recapitulates the known features and suggests novel features of LN lymphatic organization, providing a transcriptional map of the lymphatic endothelial niches and of the transitions between them. Differences in gene expression reveal specialized programs for (1) subcapsular ceiling endothelial interactions with the capsule connective tissue and cells; (2) subcapsular floor regulation of lymph borne cell entry into the LN parenchyma and antigen presentation; and (3) pathogen interactions and (4) LN remodeling in distinct medullary subsets. LEC of the subcapsular sinus floor and medulla, which represent major sites of cell entry and exit from the LN parenchyma respectively, respond robustly to oxazolone inflammation challenge with enriched signaling pathways that converge on both innate and adaptive immune responses. Integration of mouse and human single-cell profiles reveals a conserved cross-species pattern of lymphatic vascular niches and gene expression, as well as specialized human subsets and genes unique to each species. The examples provided demonstrate the power of single-cell analysis in elucidating endothelial cell heterogeneity, vascular organization, and endothelial cell responses. We discuss the findings from the perspective of LEC functions in relation to niche formations in the unique stromal and highly immunological environment of the LN.
Collapse
Affiliation(s)
- Menglan Xiang
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Palo Alto Veterans Institute for Research, Palo Alto, CA, United States
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Rubén Adrián Grosso
- The Beijer Laboratory, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Akira Takeda
- MediCity Research Laboratory and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Junliang Pan
- Palo Alto Veterans Institute for Research, Palo Alto, CA, United States
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Tove Bekkhus
- The Beijer Laboratory, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Kevin Brulois
- Palo Alto Veterans Institute for Research, Palo Alto, CA, United States
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Denis Dermadi
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Palo Alto Veterans Institute for Research, Palo Alto, CA, United States
| | - Sofia Nordling
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Palo Alto Veterans Institute for Research, Palo Alto, CA, United States
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Michael Vanlandewijck
- The Beijer Laboratory, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Stockholm, Sweden
| | - Sirpa Jalkanen
- MediCity Research Laboratory and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Maria H. Ulvmar
- The Beijer Laboratory, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Eugene C. Butcher
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Palo Alto Veterans Institute for Research, Palo Alto, CA, United States
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| |
Collapse
|
28
|
Higashijima Y, Matsui Y, Shimamura T, Nakaki R, Nagai N, Tsutsumi S, Abe Y, Link VM, Osaka M, Yoshida M, Watanabe R, Tanaka T, Taguchi A, Miura M, Ruan X, Li G, Inoue T, Nangaku M, Kimura H, Furukawa T, Aburatani H, Wada Y, Ruan Y, Glass CK, Kanki Y. Coordinated demethylation of H3K9 and H3K27 is required for rapid inflammatory responses of endothelial cells. EMBO J 2020; 39:e103949. [PMID: 32125007 DOI: 10.15252/embj.2019103949] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Histone H3 lysine-9 di-methylation (H3K9me2) and lysine-27 tri-methylation (H3K27me3) are linked to repression of gene expression, but the functions of repressive histone methylation dynamics during inflammatory responses remain enigmatic. Here, we report that lysine demethylases 7A (KDM7A) and 6A (UTX) play crucial roles in tumor necrosis factor (TNF)-α signaling in endothelial cells (ECs), where they are regulated by a novel TNF-α-responsive microRNA, miR-3679-5p. TNF-α rapidly induces co-occupancy of KDM7A and UTX at nuclear factor kappa-B (NF-κB)-associated elements in human ECs. KDM7A and UTX demethylate H3K9me2 and H3K27me3, respectively, and are both required for activation of NF-κB-dependent inflammatory genes. Chromosome conformation capture-based methods furthermore uncover increased interactions between TNF-α-induced super enhancers at NF-κB-relevant loci, coinciding with KDM7A and UTX recruitments. Simultaneous pharmacological inhibition of KDM7A and UTX significantly reduces leukocyte adhesion in mice, establishing the biological and potential translational relevance of this mechanism. Collectively, these findings suggest that rapid erasure of repressive histone marks by KDM7A and UTX is essential for NF-κB-dependent regulation of genes that control inflammatory responses of ECs.
Collapse
Affiliation(s)
- Yoshiki Higashijima
- Department of Bioinformational Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan.,Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Yusuke Matsui
- Division of Biomedical and Health Informatics, Graduate school of medicine, Nagoya university, Nagoya, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Nao Nagai
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Shuichi Tsutsumi
- Division of Genome Sciences, RCAST, The University of Tokyo, Tokyo, Japan
| | - Yohei Abe
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Verena M Link
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.,Faculty of Biology, Division of Evolutionary Biology, Ludwig-Maximilian University of Munich, Munich, Germany.,Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mizuko Osaka
- Department of Nutrition in Cardiovascular Disease, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Life Sciences and Bioethics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masayuki Yoshida
- Department of Life Sciences and Bioethics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryo Watanabe
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshihiro Tanaka
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akashi Taguchi
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Mai Miura
- Isotope Science Center, The University of Tokyo, Tokyo, Japan.,Laboratory for Systems Biology and Medicine, RCAST, The University of Tokyo, Tokyo, Japan
| | - Xiaoan Ruan
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Guoliang Li
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Tsuyoshi Inoue
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Tetsushi Furukawa
- Department of Bioinformational Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Aburatani
- Division of Genome Sciences, RCAST, The University of Tokyo, Tokyo, Japan
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Yijun Ruan
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yasuharu Kanki
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Arnold PR, Wells AD, Li XC. Diversity and Emerging Roles of Enhancer RNA in Regulation of Gene Expression and Cell Fate. Front Cell Dev Biol 2020; 7:377. [PMID: 31993419 PMCID: PMC6971116 DOI: 10.3389/fcell.2019.00377] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/17/2019] [Indexed: 12/27/2022] Open
Abstract
Enhancers are cis-regulatory elements in the genome that cooperate with promoters to control target gene transcription. Unlike promoters, enhancers are not necessarily adjacent to target genes and can exert their functions regardless of enhancer orientations, positions and spatial segregations from target genes. Thus, for a long time, the question as to how enhancers act in a temporal and spatial manner attracted considerable attention. The recent discovery that enhancers are also abundantly transcribed raises interesting questions about the exact roles of enhancer RNA (eRNA) in gene regulation. In this review, we highlight the process of enhancer transcription and the diverse features of eRNA. We review eRNA functions, which include enhancer-promoter looping, chromatin modifying, and transcription regulating. As eRNA are transcribed from active enhancers, they exhibit tissue and lineage specificity, and serve as markers of cell state and function. Finally, we discuss the unique relationship between eRNA and super enhancers in phase separation wherein eRNA may contribute significantly to cell fate decisions.
Collapse
Affiliation(s)
- Preston R Arnold
- Texas A&M Health Science Center, College of Medicine, Bryan, TX, United States.,Immunobiology and Transplant Sciences, Department of Surgery, Houston Methodist Hospital, Houston, TX, United States
| | - Andrew D Wells
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xian C Li
- Immunobiology and Transplant Sciences, Department of Surgery, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
30
|
Gegonne A, Chen QR, Dey A, Etzensperger R, Tai X, Singer A, Meerzaman D, Ozato K, Singer DS. Immature CD8 Single-Positive Thymocytes Are a Molecularly Distinct Subpopulation, Selectively Dependent on BRD4 for Their Differentiation. Cell Rep 2019; 24:117-129. [PMID: 29972774 PMCID: PMC6298745 DOI: 10.1016/j.celrep.2018.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/09/2018] [Accepted: 06/01/2018] [Indexed: 01/27/2023] Open
Abstract
T cell differentiation in the thymus proceeds in an ordered sequence of developmental events characterized by variable expression of CD4 and CD8 coreceptors. Here, we report that immature single-positive (ISP) thymocytes are molecularly distinct from all other T cell populations in the thymus in their expression of a gene profile that is dependent on the transcription factor BRD4. Conditional deletion of BRD4 at various stages of thymic differentiation reveals that BRD4 selectively regulates the further differentiation of ISPs by targeting cell cycle and metabolic pathways, but it does not affect the extensive proliferation that results in the generation of ISPs. These studies lead to the conclusion that the ISP subpopulation is not a hybrid transitional state but a molecularly distinct subpopulation that is selectively dependent on BRD4.
Collapse
Affiliation(s)
- Anne Gegonne
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Qing-Rong Chen
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, NIH, Rockville, MD 20892, USA
| | - Anup Dey
- Division of Developmental Biology, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Ruth Etzensperger
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Xuguang Tai
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Alfred Singer
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Daoud Meerzaman
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, NIH, Rockville, MD 20892, USA
| | - Keiko Ozato
- Division of Developmental Biology, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Dinah S Singer
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
31
|
Sathyan KM, McKenna BD, Anderson WD, Duarte FM, Core L, Guertin MJ. An improved auxin-inducible degron system preserves native protein levels and enables rapid and specific protein depletion. Genes Dev 2019; 33:1441-1455. [PMID: 31467088 PMCID: PMC6771385 DOI: 10.1101/gad.328237.119] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022]
Abstract
Rapid perturbation of protein function permits the ability to define primary molecular responses while avoiding downstream cumulative effects of protein dysregulation. The auxin-inducible degron (AID) system was developed as a tool to achieve rapid and inducible protein degradation in nonplant systems. However, tagging proteins at their endogenous loci results in chronic auxin-independent degradation by the proteasome. To correct this deficiency, we expressed the auxin response transcription factor (ARF) in an improved inducible degron system. ARF is absent from previously engineered AID systems but is a critical component of native auxin signaling. In plants, ARF directly interacts with AID in the absence of auxin, and we found that expression of the ARF PB1 (Phox and Bem1) domain suppresses constitutive degradation of AID-tagged proteins. Moreover, the rate of auxin-induced AID degradation is substantially faster in the ARF-AID system. To test the ARF-AID system in a quantitative and sensitive manner, we measured genome-wide changes in nascent transcription after rapidly depleting the ZNF143 transcription factor. Transcriptional profiling indicates that ZNF143 activates transcription in cis and regulates promoter-proximal paused RNA polymerase density. Rapidly inducible degradation systems that preserve the target protein's native expression levels and patterns will revolutionize the study of biological systems by enabling specific and temporally defined protein dysregulation.
Collapse
Affiliation(s)
- Kizhakke Mattada Sathyan
- Biochemistry and Molecular Genetics Department, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Brian D McKenna
- Biochemistry and Molecular Genetics Department, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Warren D Anderson
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Fabiana M Duarte
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Leighton Core
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Michael J Guertin
- Biochemistry and Molecular Genetics Department, University of Virginia, Charlottesville, Virginia 22908, USA.,Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia 22908, USA.,Cancer Center, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
32
|
Open Chromatin Profiling in Adipose Tissue Marks Genomic Regions with Functional Roles in Cardiometabolic Traits. G3-GENES GENOMES GENETICS 2019; 9:2521-2533. [PMID: 31186305 PMCID: PMC6686932 DOI: 10.1534/g3.119.400294] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Identifying the regulatory mechanisms of genome-wide association study (GWAS) loci affecting adipose tissue has been restricted due to limited characterization of adipose transcriptional regulatory elements. We profiled chromatin accessibility in three frozen human subcutaneous adipose tissue needle biopsies and preadipocytes and adipocytes from the Simpson Golabi-Behmel Syndrome (SGBS) cell strain using an assay for transposase-accessible chromatin (ATAC-seq). We identified 68,571 representative accessible chromatin regions (peaks) across adipose tissue samples (FDR < 5%). GWAS loci for eight cardiometabolic traits were enriched in these peaks (P < 0.005), with the strongest enrichment for waist-hip ratio. Of 110 recently described cardiometabolic GWAS loci colocalized with adipose tissue eQTLs, 59 loci had one or more variants overlapping an adipose tissue peak. Annotated variants at the SNX10 waist-hip ratio locus and the ATP2A1-SH2B1 body mass index locus showed allelic differences in regulatory assays. These adipose tissue accessible chromatin regions elucidate genetic variants that may alter adipose tissue function to impact cardiometabolic traits.
Collapse
|
33
|
Silveira MAD, Bilodeau S. Defining the Transcriptional Ecosystem. Mol Cell 2019; 72:920-924. [PMID: 30576654 DOI: 10.1016/j.molcel.2018.11.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 10/27/2022]
Abstract
Fine tuning of the transcriptional program requires the competing action of multiple protein complexes in a well-organized environment. Genome folding creates proximity between genes, leading to accumulation of regulatory factors and formation of local microenvironments. Many roles of this complex organization controlling gene transcription remain to be explored. In this Perspective, we are proposing the existence of a transcriptional ecosystem equilibrium: a mechanism balancing transcriptional regulation between connected genes during environmental disturbances. This model is derived from chromosome architecture studies assigning genes to specific DNA structures and evidence establishing that the transcription machinery and coregulators create dynamic phase separation droplets surrounding active genes. Defining connected genes as ecosystems rather than individuals will cement that transcriptional regulation is a biochemical equilibrium and force a reassessment of direct and indirect responses to environmental disturbances.
Collapse
Affiliation(s)
- Maruhen A D Silveira
- Centre de Recherche du CHU de Québec - Université Laval, Axe Oncologie, Québec, QC G1V 4G2, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC G1R 3S3, Canada
| | - Steve Bilodeau
- Centre de Recherche du CHU de Québec - Université Laval, Axe Oncologie, Québec, QC G1V 4G2, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC G1R 3S3, Canada; Centre de Recherche en Données Massives de l'Université Laval, Québec, QC G1V 0A6, Canada; Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
34
|
Borghini L, Hibberd M, Davila S. Changes in H3K27ac following lipopolysaccharide stimulation of nasopharyngeal epithelial cells. BMC Genomics 2018; 19:969. [PMID: 30587130 PMCID: PMC6307289 DOI: 10.1186/s12864-018-5295-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 11/21/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The epithelium is the first line of defense against pathogens. Notably the epithelial cells lining the respiratory track are crucial in sensing airborne microbes and mounting an effective immune response via the expression of target genes such as cytokines and chemokines. Gene expression regulation following microbial recognition is partly regulated by chromatin re-organization and has been described in immune cells but data from epithelial cells is not as detailed. Here, we report genome-wide changes of the H3K27ac mark, characteristic of activated enhancers and promoters, after stimulation of nasopharyngeal epithelial cells with the bacterial endotoxin Lipopolysaccharide (LPS). RESULTS In this study, we have identified 626 regions where the H3K27ac mark showed reproducible increase following LPS induction in epithelial cells. This indicated that sensing of LPS led to opening of the chromatin in our system. Moreover, this phenomenon seemed to happen extensively at enhancers regions and we could observe instances of Super-enhancer formation. As expected, LPS-increased H3K27ac regions were found in the vicinity of genes relevant for LPS response and these changes correlated with up-regulation of their expression. In addition, we found the induction of H3K27ac mark to overlap with the binding of one of the NF-kB members and key regulator of the innate immune response, RELA, following LPS sensing. Indeed, inhibiting the NF-kB pathway abolished the deposition of H3K27ac at the TNF locus, a target of RELA, suggesting that these two phenomena are associated. CONCLUSIONS Enhancers' selection and activation following microbial or inflammatory stimuli has been described previously and shown to be mediated via the NF-kB pathway. Here, we demonstrate that this is also likely to occur in the case of LPS-sensing by nasopharyngeal epithelial cells as well. In addition to validating previous findings, we generated a valuable data set relevant to the host immune response to epithelial cell colonizing or infecting pathogens.
Collapse
Affiliation(s)
- Lisa Borghini
- Human Genetics, Genome Institute of Singapore, Singapore, 138672, Singapore. .,Infectious Disease, Genome Institute of Singapore, Singapore, 138672, Singapore.
| | - Martin Hibberd
- Infectious Disease, Genome Institute of Singapore, Singapore, 138672, Singapore.,Present Address: Pathogen Molecular Biology, Infectious & Tropical Disease, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Sonia Davila
- Human Genetics, Genome Institute of Singapore, Singapore, 138672, Singapore.,Present Address: SingHealth Duke-NUS Institute of Precision Medicine (PRISM), Singapore, 169609, Singapore
| |
Collapse
|
35
|
Czimmerer Z, Daniel B, Horvath A, Rückerl D, Nagy G, Kiss M, Peloquin M, Budai MM, Cuaranta-Monroy I, Simandi Z, Steiner L, Nagy B, Poliska S, Banko C, Bacso Z, Schulman IG, Sauer S, Deleuze JF, Allen JE, Benko S, Nagy L. The Transcription Factor STAT6 Mediates Direct Repression of Inflammatory Enhancers and Limits Activation of Alternatively Polarized Macrophages. Immunity 2018; 48:75-90.e6. [PMID: 29343442 PMCID: PMC5772169 DOI: 10.1016/j.immuni.2017.12.010] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/09/2017] [Accepted: 12/11/2017] [Indexed: 11/29/2022]
Abstract
The molecular basis of signal-dependent transcriptional activation has been extensively studied in macrophage polarization, but our understanding remains limited regarding the molecular determinants of repression. Here we show that IL-4-activated STAT6 transcription factor is required for the direct transcriptional repression of a large number of genes during in vitro and in vivo alternative macrophage polarization. Repression results in decreased lineage-determining transcription factor, p300, and RNA polymerase II binding followed by reduced enhancer RNA expression, H3K27 acetylation, and chromatin accessibility. The repressor function of STAT6 is HDAC3 dependent on a subset of IL-4-repressed genes. In addition, STAT6-repressed enhancers show extensive overlap with the NF-κB p65 cistrome and exhibit decreased responsiveness to lipopolysaccharide after IL-4 stimulus on a subset of genes. As a consequence, macrophages exhibit diminished inflammasome activation, decreased IL-1β production, and pyroptosis. Thus, the IL-4-STAT6 signaling pathway establishes an alternative polarization-specific epigenenomic signature resulting in dampened macrophage responsiveness to inflammatory stimuli. IL-4-activated STAT6 acts as a transcriptional repressor in macrophages IL-4-STAT6-repressed enhancers associate with reduced LDTF and p300 binding Inflammatory responsiveness of the IL-4-repressed enhancers is attenuated IL-4 limits the LPS-induced inflammasome activation, IL-1β production, and pyroptosis
Collapse
Affiliation(s)
- Zsolt Czimmerer
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bence Daniel
- Sanford-Burnham-Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - Attila Horvath
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dominik Rückerl
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Gergely Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE "Lendület" Immunogenomics Research Group, University of Debrecen, Debrecen, Hungary
| | - Mate Kiss
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Matthew Peloquin
- Sanford-Burnham-Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - Marietta M Budai
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ixchelt Cuaranta-Monroy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Simandi
- Sanford-Burnham-Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - Laszlo Steiner
- UD-Genomed Medical Genomic Technologies Ltd., Debrecen, Hungary
| | - Bela Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilard Poliska
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Csaba Banko
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Bacso
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ira G Schulman
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Sascha Sauer
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany; CU Systems Medicine, University of Würzburg, Würzburg, Germany; Max Delbrück Center for Molecular Medicine (BIMSB and BIH), Berlin, Germany
| | | | - Judith E Allen
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Szilvia Benko
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Sanford-Burnham-Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA; MTA-DE "Lendület" Immunogenomics Research Group, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
36
|
Janus P, Szołtysek K, Zając G, Stokowy T, Walaszczyk A, Widłak W, Wojtaś B, Gielniewski B, Iwanaszko M, Braun R, Cockell S, Perkins ND, Kimmel M, Widlak P. Pro-inflammatory cytokine and high doses of ionizing radiation have similar effects on the expression of NF-kappaB-dependent genes. Cell Signal 2018; 46:23-31. [PMID: 29476964 DOI: 10.1016/j.cellsig.2018.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/22/2022]
Abstract
The NF-κB transcription factors are activated via diverse molecular mechanisms in response to various types of stimuli. A plethora of functions associated with specific sets of target genes could be regulated differentially by this factor, affecting cellular response to stress including an anticancer treatment. Here we aimed to compare subsets of NF-κB-dependent genes induced in cells stimulated with a pro-inflammatory cytokine and in cells damaged by a high dose of ionizing radiation (4 and 10 Gy). The RelA-containing NF-κB species were activated by the canonical TNFα-induced and the atypical radiation-induced pathways in human osteosarcoma cells. NF-κB-dependent genes were identified using the gene expression profiling (by RNA-Seq) in cells with downregulated RELA combined with the global profiling of RelA binding sites (by ChIP-Seq), with subsequent validation of selected candidates by quantitative PCR. There were 37 NF-κB-dependent protein-coding genes identified: in all cases RelA bound in their regulatory regions upon activation while downregulation of RELA suppressed their stimulus-induced upregulation, which apparently indicated the positive regulation mode. This set of genes included a few "novel" NF-κB-dependent species. Moreover, the evidence for possible negative regulation of ATF3 gene by NF-κB was collected. The kinetics of the NF-κB activation was slower in cells exposed to radiation than in cytokine-stimulated ones. However, subsets of NF-κB-dependent genes upregulated by both types of stimuli were essentially the same. Hence, one should expect that similar cellular processes resulting from activation of the NF-κB pathway could be induced in cells responding to pro-inflammatory cytokines and in cells where so-called "sterile inflammation" response was initiated by radiation-induced damage.
Collapse
Affiliation(s)
- Patryk Janus
- Maria Skłodowska-Curie Institute, Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Katarzyna Szołtysek
- Maria Skłodowska-Curie Institute, Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Gracjana Zając
- Maria Skłodowska-Curie Institute, Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Tomasz Stokowy
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anna Walaszczyk
- Maria Skłodowska-Curie Institute, Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Wiesława Widłak
- Maria Skłodowska-Curie Institute, Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Bartosz Wojtaś
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | | | - Marta Iwanaszko
- Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Rosemary Braun
- Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Simon Cockell
- Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Neil D Perkins
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, UK
| | | | - Piotr Widlak
- Maria Skłodowska-Curie Institute, Oncology Center, Gliwice Branch, Gliwice, Poland.
| |
Collapse
|
37
|
Wu J, Wang Q, Dai W, Wang W, Yue M, Wang J. Massive GGAAs in genomic repetitive sequences serve as a nuclear reservoir of NF-κB. J Genet Genomics 2018; 45:193-203. [PMID: PMID : 29748061 DOI: 10.1016/j.jgg.2018.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 12/01/2022]
Abstract
Nuclear factor κB (NF-κB) is a DNA-binding transcription factor. Characterizing its genomic binding sites is crucial for understanding its gene regulatory function and mechanism in cells. This study characterized the binding sites of NF-κB RelA/p65 in the tumor neurosis factor-α (TNFα) stimulated HeLa cells by a precise chromatin immunoprecipitation-sequencing (ChIP-seq). The results revealed that NF-κB binds nontraditional motifs (nt-motifs) containing conserved GGAA quadruplet. Moreover, nt-motifs mainly distribute in the peaks nearby centromeres that contain a larger number of repetitive elements such as satellite, simple repeats and short interspersed nuclear elements (SINEs). This intracellular binding pattern was then confirmed by the in vitro detection, indicating that NF-κB dimers can bind the nontraditional κB (nt-κB) sites with low affinity. However, this binding hardly activates transcription. This study thus deduced that NF-κB binding nt-motifs may realize functions other than gene regulation as NF-κB binding traditional motifs (t-motifs). To testify the deduction, many ChIP-seq data of other cell lines were then analyzed. The results indicate that NF-κB binding nt-motifs is also widely present in other cells. The ChIP-seq data analysis also revealed that nt-motifs more widely distribute in the peaks with low-fold enrichment. Importantly, it was also found that NF-κB binding nt-motifs is mainly present in the resting cells, whereas NF-κB binding t-motifs is mainly present in the stimulated cells. Astonishingly, no known function was enriched by the gene annotation of nt-motif peaks. Based on these results, this study proposed that the nt-κB sites that extensively distribute in larger numbers of repeat elements function as a nuclear reservoir of NF-κB. The nuclear NF-κB proteins stored at nt-κB sites in the resting cells may be recruited to the t-κB sites for regulating its target genes upon stimulation.
Collapse
Affiliation(s)
- Jian Wu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Qiao Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Wei Dai
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Wei Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Ming Yue
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210002, China
| | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.
| |
Collapse
|
38
|
Krah NM, Murtaugh LC. Differentiation and Inflammation: 'Best Enemies' in Gastrointestinal Carcinogenesis. Trends Cancer 2018. [PMID: 28630946 DOI: 10.1016/j.trecan.2016.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
While recent studies demonstrate that cancer can arise from mutant stem cells, this hypothesis does not explain why tissues without defined stem cell populations are susceptible to inflammation-driven tumorigenesis. We propose that chronic inflammatory diseases, such as colitis and pancreatitis, predispose to gastrointestinal (GI) adenocarcinoma by reprogramming differentiated cells. Focusing on colon and pancreas, we discuss recently discovered connections between inflammation and loss of cell differentiation, and propose that dysregulation of cell fate may be a novel rate-limiting step of tumorigenesis. We review studies identifying differentiation mechanisms that limit tumor initiation and that, upon reactivation, can prevent or revert the cancer cell transformed phenotype. Together, these findings suggest that differentiation-targeted treatments hold promise as a therapeutic strategy in GI cancer.
Collapse
Affiliation(s)
- Nathan M Krah
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - L Charles Murtaugh
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
39
|
Czimmerer Z, Horvath A, Daniel B, Nagy G, Cuaranta-Monroy I, Kiss M, Kolostyak Z, Poliska S, Steiner L, Giannakis N, Varga T, Nagy L. Dynamic transcriptional control of macrophage miRNA signature via inflammation responsive enhancers revealed using a combination of next generation sequencing-based approaches. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:14-28. [DOI: 10.1016/j.bbagrm.2017.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/23/2017] [Accepted: 11/09/2017] [Indexed: 12/26/2022]
|
40
|
Hayward CPM, Liang M, Tasneem S, Soomro A, Waye JS, Paterson AD, Rivard GE, Wilson MD. The duplication mutation of Quebec platelet disorder dysregulates PLAU, but not C10orf55, selectively increasing production of normal PLAU transcripts by megakaryocytes but not granulocytes. PLoS One 2017; 12:e0173991. [PMID: 28301587 PMCID: PMC5354430 DOI: 10.1371/journal.pone.0173991] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/01/2017] [Indexed: 12/13/2022] Open
Abstract
Quebec Platelet disorder (QPD) is a unique bleeding disorder that markedly increases urokinase plasminogen activator (uPA) in megakaryocytes and platelets but not in plasma or urine. The cause is tandem duplication of a 78 kb region of chromosome 10 containing PLAU (the uPA gene) and C10orf55, a gene of unknown function. QPD increases uPA in platelets and megakaryocytes >100 fold, far more than expected for a gene duplication. To investigate the tissue-specific effect that PLAU duplication has on gene expression and transcript structure in QPD, we tested if QPD leads to: 1) overexpression of normal or unique PLAU transcripts; 2) increased uPA in leukocytes; 3) altered levels of C10orf55 mRNA and/or protein in megakaryocytes and leukocytes; and 4) global changes in megakaryocyte gene expression. Primary cells and cultured megakaryocytes from donors were prepared for quantitative reverse polymerase chain reaction analyses, RNA-seq and protein expression analyses. Rapidly isolated blood leukocytes from QPD subjects showed only a 3.9 fold increase in PLAU transcript levels, in keeping with the normal to minimally increased uPA in affinity purified, QPD leukocytes. All subjects had more uPA in granulocytes than monocytes and minimal uPA in lymphocytes. QPD leukocytes expressed PLAU alleles in proportions consistent with an extra copy of PLAU on the disease chromosome, unlike QPD megakaryocytes. QPD PLAU transcripts were consistent with reference gene models, with a much higher proportion of reads originating from the disease chromosome in megakaryocytes than granulocytes. QPD and control megakaryocytes contained minimal reads for C10orf55, and C10orf55 protein was not increased in QPD megakaryocytes or platelets. Finally, our QPD megakaryocyte transcriptome analysis revealed a global down regulation of the interferon type 1 pathway. We suggest that the low endogenous levels of uPA in blood are actively regulated, and that the regulatory mechanisms are disrupted in QPD in a megakaryocyte-specific manner.
Collapse
Affiliation(s)
- Catherine P. M. Hayward
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Hamilton Regional Laboratory Medicine Program, Hamilton, ON, Canada
- * E-mail: (CPMH); (MDW)
| | - Minggao Liang
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Subia Tasneem
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Asim Soomro
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - John S. Waye
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Hamilton Regional Laboratory Medicine Program, Hamilton, ON, Canada
| | - Andrew D. Paterson
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Dalla Lana School of Public Health and Institute of Medical Sciences, University of Toronto, ON, Canada
| | - Georges E. Rivard
- Hematology/ Oncology, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
| | - Michael D. Wilson
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Canada
- * E-mail: (CPMH); (MDW)
| |
Collapse
|
41
|
Khyzha N, Alizada A, Wilson MD, Fish JE. Epigenetics of Atherosclerosis: Emerging Mechanisms and Methods. Trends Mol Med 2017; 23:332-347. [PMID: 28291707 DOI: 10.1016/j.molmed.2017.02.004] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/13/2017] [Accepted: 02/16/2017] [Indexed: 12/26/2022]
Abstract
Atherosclerosis is a vascular pathology characterized by inflammation and plaque build-up within arterial vessel walls. Vessel occlusion, often occurring after plaque rupture, can result in myocardial and cerebral infarction. Epigenetic changes are increasingly being associated with atherosclerosis and are of interest from both therapeutic and biomarker perspectives. Emerging genomic approaches that profile DNA methylation, chromatin accessibility, post-translational histone modifications, transcription factor binding, and RNA expression in low or single cell populations are poised to enhance our spatiotemporal understanding of atherogenesis. Here, we review recent therapeutically relevant epigenetic discoveries and emerging technologies that may generate new opportunities for atherosclerosis research.
Collapse
Affiliation(s)
- Nadiya Khyzha
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Canada
| | - Azad Alizada
- Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Canada; Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Michael D Wilson
- Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Canada; Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada.
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Canada.
| |
Collapse
|
42
|
Ko JY, Oh S, Yoo KH. Functional Enhancers As Master Regulators of Tissue-Specific Gene Regulation and Cancer Development. Mol Cells 2017; 40:169-177. [PMID: 28359147 PMCID: PMC5386954 DOI: 10.14348/molcells.2017.0033] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/30/2022] Open
Abstract
Tissue-specific transcription is critical for normal development, and abnormalities causing undesirable gene expression may lead to diseases such as cancer. Such highly organized transcription is controlled by enhancers with specific DNA sequences recognized by transcription factors. Enhancers are associated with chromatin modifications that are distinct epigenetic features in a tissue-specific manner. Recently, super-enhancers comprising enhancer clusters co-occupied by lineage-specific factors have been identified in diverse cell types such as adipocytes, hair follicle stem cells, and mammary epithelial cells. In addition, noncoding RNAs, named eRNAs, are synthesized at super-enhancer regions before their target genes are transcribed. Many functional studies revealed that super-enhancers and eRNAs are essential for the regulation of tissue-specific gene expression. In this review, we summarize recent findings concerning enhancer function in tissue-specific gene regulation and cancer development.
Collapse
Affiliation(s)
- Je Yeong Ko
- Molecular Medicine Laboratory, Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310,
Korea
| | - Sumin Oh
- Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310,
Korea
| | - Kyung Hyun Yoo
- Laboratory of Biomedical Genomics, Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310,
Korea
| |
Collapse
|
43
|
Vlahopoulos SA. Aberrant control of NF-κB in cancer permits transcriptional and phenotypic plasticity, to curtail dependence on host tissue: molecular mode. Cancer Biol Med 2017; 14:254-270. [PMID: 28884042 PMCID: PMC5570602 DOI: 10.20892/j.issn.2095-3941.2017.0029] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of the transcription factor NF-κB in shaping the cancer microenvironment is becoming increasingly clear. Inflammation alters the activity of enzymes that modulate NF-κB function, and causes extensive changes in genomic chromatin that ultimately drastically alter cell-specific gene expression. NF-κB regulates the expression of cytokines and adhesion factors that control interactions among adjacent cells. As such, NF-κB fine tunes tissue cellular composition, as well as tissues' interactions with the immune system. Therefore, NF-κB changes the cell response to hormones and to contact with neighboring cells. Activating NF-κB confers transcriptional and phenotypic plasticity to a cell and thereby enables profound local changes in tissue function and composition. Research suggests that the regulation of NF-κB target genes is specifically altered in cancer. Such alterations occur not only due to mutations of NF-κB regulatory proteins, but also because of changes in the activity of specific proteostatic modules and metabolic pathways. This article describes the molecular mode of NF-κB regulation with a few characteristic examples of target genes.
Collapse
Affiliation(s)
- Spiros A Vlahopoulos
- The First Department of Pediatrics, University of Athens, Horemeio Research Laboratory, Athens 11527, Greece
| |
Collapse
|
44
|
Malinen M, Niskanen EA, Kaikkonen MU, Palvimo JJ. Crosstalk between androgen and pro-inflammatory signaling remodels androgen receptor and NF-κB cistrome to reprogram the prostate cancer cell transcriptome. Nucleic Acids Res 2016; 45:619-630. [PMID: 27672034 PMCID: PMC5314794 DOI: 10.1093/nar/gkw855] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/14/2016] [Accepted: 09/18/2016] [Indexed: 01/01/2023] Open
Abstract
Inflammatory processes and androgen signaling are critical for the growth of prostate cancer (PC), the most common cancer among males in Western countries. To understand the importance of potential interplay between pro-inflammatory and androgen signaling for gene regulation, we have interrogated the crosstalk between androgen receptor (AR) and NF-κB, a key transcriptional mediator of inflammatory responses, by utilizing genome-wide chromatin immunoprecipitation sequencing and global run-on sequencing in PC cells. Co-stimulation of LNCaP cells with androgen and pro-inflammatory cytokine TNFα invoked a transcriptome which was very distinct from that induced by either stimulation alone. The altered transcriptome that included gene programs linked to cell migration and invasiveness was orchestrated by significant remodeling of NF-κB and AR cistrome and enhancer landscape. Although androgen multiplied the NF-κB cistrome and TNFα restrained the AR cistrome, there was no general reciprocal tethering of the AR to the NF-κB on chromatin. Instead, redistribution of FOXA1, PIAS1 and PIAS2 contributed to the exposure of latent NF-κB chromatin-binding sites and masking of AR chromatin-binding sites. Taken together, concomitant androgen and pro-inflammatory signaling significantly remodels especially the NF-κB cistrome, reprogramming the PC cell transcriptome in fashion that may contribute to the progression of PC.
Collapse
Affiliation(s)
- Marjo Malinen
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Einari A Niskanen
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Minna U Kaikkonen
- A.I. Virtanen Institute, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
45
|
Kolovos P, Georgomanolis T, Koeferle A, Larkin JD, Brant L, Nikolicć M, Gusmao EG, Zirkel A, Knoch TA, van Ijcken WF, Cook PR, Costa IG, Grosveld FG, Papantonis A. Binding of nuclear factor κB to noncanonical consensus sites reveals its multimodal role during the early inflammatory response. Genome Res 2016; 26:1478-1489. [PMID: 27633323 PMCID: PMC5088591 DOI: 10.1101/gr.210005.116] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/14/2016] [Indexed: 01/25/2023]
Abstract
Mammalian cells have developed intricate mechanisms to interpret, integrate, and respond to extracellular stimuli. For example, tumor necrosis factor (TNF) rapidly activates proinflammatory genes, but our understanding of how this occurs against the ongoing transcriptional program of the cell is far from complete. Here, we monitor the early phase of this cascade at high spatiotemporal resolution in TNF-stimulated human endothelial cells. NF-κB, the transcription factor complex driving the response, interferes with the regulatory machinery by binding active enhancers already in interaction with gene promoters. Notably, >50% of these enhancers do not encode canonical NF-κB binding motifs. Using a combination of genomics tools, we find that binding site selection plays a key role in NF-κΒ–mediated transcriptional activation and repression. We demonstrate the latter by describing the synergy between NF-κΒ and the corepressor JDP2. Finally, detailed analysis of a 2.8-Mbp locus using sub-kbp-resolution targeted chromatin conformation capture and genome editing uncovers how NF-κΒ that has just entered the nucleus exploits pre-existing chromatin looping to exert its multimodal role. This work highlights the involvement of topology in cis-regulatory element function during acute transcriptional responses, where primary DNA sequence and its higher-order structure constitute a regulatory context leading to either gene activation or repression.
Collapse
Affiliation(s)
- Petros Kolovos
- Department of Cell Biology, Erasmus Medical Centre, 3015 CN Rotterdam, The Netherlands
| | | | - Anna Koeferle
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE Oxford, United Kingdom
| | - Joshua D Larkin
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE Oxford, United Kingdom
| | - Lilija Brant
- Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany
| | - Miloš Nikolicć
- Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany
| | - Eduardo G Gusmao
- IZKF Computational Biology Research Group, RWTH Aachen University Medical School, 52062 Aachen, Germany
| | - Anne Zirkel
- Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany
| | - Tobias A Knoch
- Department of Cell Biology, Erasmus Medical Centre, 3015 CN Rotterdam, The Netherlands
| | | | - Peter R Cook
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE Oxford, United Kingdom
| | - Ivan G Costa
- IZKF Computational Biology Research Group, RWTH Aachen University Medical School, 52062 Aachen, Germany
| | - Frank G Grosveld
- Department of Cell Biology, Erasmus Medical Centre, 3015 CN Rotterdam, The Netherlands
| | - Argyris Papantonis
- Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
46
|
Schmidt SF, Madsen JGS, Frafjord KØ, Poulsen LLC, Salö S, Boergesen M, Loft A, Larsen BD, Madsen MS, Holst JJ, Maechler P, Dalgaard LT, Mandrup S. Integrative Genomics Outlines a Biphasic Glucose Response and a ChREBP-RORγ Axis Regulating Proliferation in β Cells. Cell Rep 2016; 16:2359-72. [PMID: 27545881 DOI: 10.1016/j.celrep.2016.07.063] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/26/2016] [Accepted: 07/25/2016] [Indexed: 12/27/2022] Open
Abstract
Glucose is an important inducer of insulin secretion, but it also stimulates long-term adaptive changes in gene expression that can either promote or antagonize the proliferative potential and function of β cells. Here, we have generated time-resolved profiles of enhancer and transcriptional activity in response to glucose in the INS-1E pancreatic β cell line. Our data outline a biphasic response with a first transcriptional wave during which metabolic genes are activated, and a second wave where cell-cycle genes are activated and β cell identity genes are repressed. The glucose-sensing transcription factor ChREBP directly activates first wave enhancers, whereas repression and activation of second wave enhancers are indirect. By integrating motif enrichment within late-regulated enhancers with expression profiles of the associated transcription factors, we have identified multiple putative regulators of the second wave. These include RORγ, the activity of which is important for glucose-induced proliferation of both INS-1E and primary rat β cells.
Collapse
Affiliation(s)
- Søren Fisker Schmidt
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Jesper Grud Skat Madsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark; NNF Center of Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Kari Østerli Frafjord
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Lars la Cour Poulsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Sofia Salö
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Michael Boergesen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Anne Loft
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Bjørk Ditlev Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Maria Stahl Madsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Jens Juul Holst
- NNF Center of Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen N, Denmark; Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark.
| |
Collapse
|
47
|
Hsu C, Jaquet V, Gencoglu M, Becskei A. Protein Dimerization Generates Bistability in Positive Feedback Loops. Cell Rep 2016; 16:1204-1210. [DOI: 10.1016/j.celrep.2016.06.072] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 05/22/2016] [Accepted: 06/16/2016] [Indexed: 12/26/2022] Open
|
48
|
Abstract
Cofactor squelching is the term used to describe competition between transcription factors (TFs) for a limited amount of cofactors in a cell with the functional consequence that TFs in a given cell interfere with the activity of each other. Since cofactor squelching was proposed based primarily on reporter assays some 30 years ago, it has remained controversial, and the idea that it could be a physiologically relevant mechanism for transcriptional repression has not received much support. However, recent genome-wide studies have demonstrated that signal-dependent TFs are very often absent from the enhancers that are acutely repressed by those signals, which is consistent with an indirect mechanism of repression such as squelching. Here we review these recent studies in the light of the classical studies of cofactor squelching, and we discuss how TF cooperativity in so-called hotspots and super-enhancers may sensitize these to cofactor squelching.
Collapse
Affiliation(s)
- Søren Fisker Schmidt
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense M, Denmark
| | - Bjørk Ditlev Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense M, Denmark
| | - Anne Loft
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense M, Denmark
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense M, Denmark
| |
Collapse
|
49
|
Saint-André V, Federation AJ, Lin CY, Abraham BJ, Reddy J, Lee TI, Bradner JE, Young RA. Models of human core transcriptional regulatory circuitries. Genome Res 2016; 26:385-96. [PMID: 26843070 PMCID: PMC4772020 DOI: 10.1101/gr.197590.115] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 12/21/2015] [Indexed: 01/06/2023]
Abstract
A small set of core transcription factors (TFs) dominates control of the gene expression program in embryonic stem cells and other well-studied cellular models. These core TFs collectively regulate their own gene expression, thus forming an interconnected auto-regulatory loop that can be considered the core transcriptional regulatory circuitry (CRC) for that cell type. There is limited knowledge of core TFs, and thus models of core regulatory circuitry, for most cell types. We recently discovered that genes encoding known core TFs forming CRCs are driven by super-enhancers, which provides an opportunity to systematically predict CRCs in poorly studied cell types through super-enhancer mapping. Here, we use super-enhancer maps to generate CRC models for 75 human cell and tissue types. These core circuitry models should prove valuable for further investigating cell-type–specific transcriptional regulation in healthy and diseased cells.
Collapse
Affiliation(s)
- Violaine Saint-André
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Alexander J Federation
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Charles Y Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Brian J Abraham
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Jessica Reddy
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Tong Ihn Lee
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
50
|
Ounzain S, Pedrazzini T. Super-enhancer lncs to cardiovascular development and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1953-60. [PMID: 26620798 DOI: 10.1016/j.bbamcr.2015.11.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 01/12/2023]
Abstract
Cardiac development, function and pathological remodelling in response to stress depend on the dynamic control of tissue specific gene expression by distant acting transcriptional enhancers. Recently, super-enhancers (SEs), also known as stretch or large enhancer clusters, are emerging as sentinel regulators within the gene regulatory networks that underpin cellular functions. It is becoming increasingly evident that long noncoding RNAs (lncRNAs) associated with these sequences play fundamental roles for enhancer activity and the regulation of the gene programs hardwired by them. Here, we review this emerging landscape, focusing on the roles of SEs and their derived lncRNAs in cardiovascular development and disease. We propose that exploration of this genomic landscape could provide novel therapeutic targets and approaches for the amelioration of cardiovascular disease. Ultimately we envisage a future of ncRNA therapeutics targeting the SE landscape to alleviate cardiovascular disease. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Samir Ounzain
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Switzerland.
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Switzerland.
| |
Collapse
|