1
|
Luo D, Shi L, Sun Z, Qi F, Liu H, Xue L, Li X, Liu H, Qu P, Zhao H, Dai X, Dong W, Zheng Z, Huang B, Fu L, Zhang X. Genome-Wide Association Studies of Embryogenic Callus Induction Rate in Peanut ( Arachis hypogaea L.). Genes (Basel) 2024; 15:160. [PMID: 38397150 PMCID: PMC10887910 DOI: 10.3390/genes15020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The capability of embryogenic callus induction is a prerequisite for in vitro plant regeneration. However, embryogenic callus induction is strongly genotype-dependent, thus hindering the development of in vitro plant genetic engineering technology. In this study, to examine the genetic variation in embryogenic callus induction rate (CIR) in peanut (Arachis hypogaea L.) at the seventh, eighth, and ninth subcultures (T7, T8, and T9, respectively), we performed genome-wide association studies (GWAS) for CIR in a population of 353 peanut accessions. The coefficient of variation of CIR among the genotypes was high in the T7, T8, and T9 subcultures (33.06%, 34.18%, and 35.54%, respectively), and the average CIR ranged from 1.58 to 1.66. A total of 53 significant single-nucleotide polymorphisms (SNPs) were detected (based on the threshold value -log10(p) = 4.5). Among these SNPs, SNPB03-83801701 showed high phenotypic variance and neared a gene that encodes a peroxisomal ABC transporter 1. SNPA05-94095749, representing a nonsynonymous mutation, was located in the Arahy.MIX90M locus (encoding an auxin response factor 19 protein) at T8, which was associated with callus formation. These results provide guidance for future elucidation of the regulatory mechanism of embryogenic callus induction in peanut.
Collapse
Affiliation(s)
- Dandan Luo
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Lei Shi
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou 450002, China
- Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Ziqi Sun
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou 450002, China
- Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Feiyan Qi
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou 450002, China
- Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Hongfei Liu
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lulu Xue
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xiaona Li
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Han Liu
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Pengyu Qu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Huanhuan Zhao
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xiaodong Dai
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou 450002, China
- Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, China
| | - Wenzhao Dong
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou 450002, China
- Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, China
| | - Zheng Zheng
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou 450002, China
- Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, China
| | - Bingyan Huang
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou 450002, China
- Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, China
| | - Liuyang Fu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xinyou Zhang
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou 450002, China
- Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
- National Innovation Center for Bio-Breeding Industry, Xinxiang 453500, China
| |
Collapse
|
2
|
Amer‐Sarsour F, Tarabeih R, Ofek I, Iraqi FA. Lowering fasting blood glucose with non-dialyzable material of cranberry extract is dependent on host genetic background, sex and diet. Animal Model Exp Med 2023; 6:196-210. [PMID: 36404387 PMCID: PMC10272894 DOI: 10.1002/ame2.12291] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/13/2022] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is a polygenic metabolic disease, characterized by high fasting blood glucose (FBG). The ability of cranberry (CRN) fruit to regulate glycemia in T2D patients is well known. Here, a cohort of 13 lines of the genetically diverse Collaborative Cross (CC) mouse model was assessed for the effect of non-dialyzable material (NDM) of cranberry extract in lowering fasting blood glucose. METHODS Eight-week-old mice were maintained on either a standard chow diet (control group) or a high-fat diet (HFD) for 12 weeks, followed by injections of intraperitoneal (IP) NDM (50 mg/kg) per mouse, three times a week for the next 6 weeks. Absolute FBG (mg/dl) was measured bi-weekly and percentage changes in FBG (%FBG) between weeks 0 and 12 were calculated. RESULTS Statistical analysis showed a significant decrease in FBG between weeks 0 and 12 in male and female mice maintained on CHD. However, a non-significant increase in FBG values was observed in male and female mice maintained on HFD during the same period. Following administration of NDM during the following 6 weeks, the results show a variation in significant levels of FBG lowering between lines, male and female mice and under the different diets. CONCLUSION The results suggest that the efficacy of NDM treatment in lowering FGB depends on host genetic background (pharmacogenetics), sex of the mouse (pharmacosex), and diet (pharmacodiet). All these results support the need for follow-up research to better understand and implement a personalized medicine approach/utilization of NDM for reducing FBG.
Collapse
Affiliation(s)
- Fatima Amer‐Sarsour
- Department of Clinical Microbiology and ImmunologySackler Faculty of Medicine, Tel‐Aviv UniversityTel‐AvivIsrael
| | - Rana Tarabeih
- Department of Clinical Microbiology and ImmunologySackler Faculty of Medicine, Tel‐Aviv UniversityTel‐AvivIsrael
| | - Itzhak Ofek
- Department of Clinical Microbiology and ImmunologySackler Faculty of Medicine, Tel‐Aviv UniversityTel‐AvivIsrael
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and ImmunologySackler Faculty of Medicine, Tel‐Aviv UniversityTel‐AvivIsrael
| |
Collapse
|
3
|
QTLs Related to Rice Callus Regeneration Ability: Localization and Effect Verification of qPRR3. Cells 2022; 11:cells11244125. [PMID: 36552888 PMCID: PMC9777078 DOI: 10.3390/cells11244125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Mature and efficient tissue culture systems are already available for most japonica rice varieties (Oryza sativa ssp. geng). However, it remains challenging to regenerate the majority of indica rice varieties (Oryza sativa ssp. xian). In this study, quantitative trait loci (QTLs) associated with rice callus regeneration ability were identified based on the plant regeneration rate (PRR) and total green plant rate (TGPR) of the 93-11 × Nip recombinant inbred line population. Significant positive correlations were found between PRR and TGPR. A total of three QTLs (one for PRR and two for TGPR) were identified. qPRR3 (located on chromosome 3) was detected for both traits, which could explain 13.40% and 17.07% of the phenotypic variations of PRR and TGPR, respectively. Subsequently, the effect of qPRR3 on callus regeneration ability was validated by cryptographically tagged near-isogenic lines (NILs), and the QTL was narrowed to an interval of approximately 160 kb. The anatomical structure observation of the regenerated callus of the NILs revealed that qPRR3 can improve the callus regeneration ability by promoting the regeneration of shoots.
Collapse
|
4
|
Bhattarai R, Liu H, Siddique KHM, Yan G. Characterisation of a 4A QTL for Metribuzin Resistance in Wheat by Developing Near-Isogenic Lines. PLANTS (BASEL, SWITZERLAND) 2021; 10:1856. [PMID: 34579389 PMCID: PMC8466451 DOI: 10.3390/plants10091856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/26/2021] [Accepted: 09/05/2021] [Indexed: 11/17/2022]
Abstract
Wheat (Triticum aestivum L.) production is constantly affected by weeds in the farming system. Chemical-based weed management is widely practiced; broad-spectrum herbicides such as metribuzin have been successfully used to control weeds in Australia and elsewhere of the world. Breeding metribuzin-resistant wheat through genetic improvement is needed for effective control of weeds. Quantitative trait loci (QTLs) mapping efforts identified a major QTL on wheat chromosome 4A, explaining up to 20% of the phenotypic variance for metribuzin resistance. The quantitative nature of inheritance of this QTL signifies the importance of near-isogenic lines (NILs), which can convert a quantitative trait into a Mendelian factor for better resolution of the QTL. In the current study, NILs were developed using a heterogeneous inbred family method combined with a fast generation-cycling system in a population of Chuan Mai 25 (resistant) and Ritchie (susceptible). Seven pairs of NILs targeting the 4A QTL for metribuzin resistance were confirmed with a molecular marker and phenotyping. The resistant allele from the resistant parent increased metribuzin resistance by 63-85% (average 69%) compared with the susceptible allele from the susceptible parent. Segregation analysis in the NIL pairs for thousand grain weight (TGW) (g), biomass per plant (kg), tillers per plant, plant height (cm), yield per plant, and powdery mildew visual score (0-9) indicated that these traits were linked with metribuzin resistance. Similarly, TGW was observed to co-segregate with metribuzin resistance in most confirmed NILs, signifying that the two traits are controlled by closely linked genes. The most contrasting NILs can be further characterised by transcriptomic and proteomic analyses to identify the candidate genes responsible for metribuzin resistance.
Collapse
Affiliation(s)
- Rudra Bhattarai
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (R.B.); (K.H.M.S.)
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Hui Liu
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (R.B.); (K.H.M.S.)
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Kadambot H. M. Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (R.B.); (K.H.M.S.)
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Guijun Yan
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (R.B.); (K.H.M.S.)
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
5
|
Amer-Sarsour F, Abu Saleh R, Ofek I, Iraqi FA. Studying the pharmacogenomic effect of cranberry extract on reducing body weight using collaborative cross mice. Food Funct 2021; 12:4972-4982. [PMID: 34100468 DOI: 10.1039/d0fo02865g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The non-dialyzable material (NDM) of polyphenol-rich cranberry extract (CRE) powder (NDM-CRE) was studied for its effect of inducing body weight (BW) loss in 13 different mouse lines with well-defined genetically diverse backgrounds, named the collaborative cross (CC). From the age of 8 weeks, the mice were maintained on a high-fat diet (HFD) for 18 weeks, to induce obesity, and BW was measured biweekly. From week 12, CRE was injected intraperitoneally (IP) (50 mg kg-1) 3 times a week per mouse for a 6 week period. Statistical analysis results have shown a significant increase in body weight between week 0 and week 12; the increase in BW of 13 lines of mice on HFD was in the range of 10.41% to 68.65% for males and 9.78% to 64.74% for females. After injecting NDM-CRE extract, our analysis has shown an induced change in BW between week 12 and week 18. In males, NDM-CRE caused a significant decrease in BW of 5 out of the 13 lines in the range of -5.68% to -16.69% and a significant increase of 8.31% in BW of one male line, whereas in seven lines there was no significant decrease (-2.14% to -4.09%). In females, NDM-CRE caused a significant decrease in BW of 5 out of the 13 lines in the range of -3.90% to -11.83%, whereas in eight lines there were no significant changes in BW and it ranged between -1.50% and 4.90%. The broad-sense heritability (H2) and genetic coefficient of variation (CVg) were estimated and found to be between 0.71 and 0.81 for H2, and 0.18 and 0.24 for CVg of females and males, respectively, with respect to the efficacy of NDM-CRE on body weight reduction. Our results have shown that hosts with different genetic backgrounds respond differently to body weight increase, as well as to NDM-CRE treatment for body weight reduction. These results provide a platform for assessing more CC lines and mapping genes underlying the efficacy of the NDM-CRE treatment as a way of understanding pharmacogenomics.
Collapse
Affiliation(s)
- Fatima Amer-Sarsour
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Israel.
| | | | | | | |
Collapse
|
6
|
Soller M, Abu-Toamih Atamni HJ, Binenbaum I, Chatziioannou A, Iraqi FA. Designing a QTL Mapping Study for Implementation in the Realized Collaborative Cross Genetic Reference Population. ACTA ACUST UNITED AC 2020; 9:e66. [PMID: 31756057 DOI: 10.1002/cpmo.66] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Collaborative Cross (CC) mouse resource is a next-generation mouse genetic reference population (GRP) designed for high-resolution mapping of quantitative trait loci (QTL) of large effect affecting complex traits during health and disease. The CC resource consists of a set of 72 recombinant inbred lines (RILs) generated by reciprocal crossing of five classical and three wild-derived mouse founder strains. Complex traits are controlled by variations within multiple genes and environmental factors, and their mutual interactions. These traits are observed at multiple levels of the animals' systems, including metabolism, body weight, immune profile, and susceptibility or resistance to the development and progress of infectious or chronic diseases. Herein, we present general guidelines for design of QTL mapping experiments using the CC resource-along with full step-by-step protocols and methods that were implemented in our lab for the phenotypic and genotypic characterization of the different CC lines-for mapping the genes underlying host response to infectious and chronic diseases. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: CC lines for whole body mass index (BMI) Basic Protocol 2: A detailed assessment of the power to detect effect sizes based on the number of lines used, and the number of replicates per line Basic Protocol 3: Obtaining power for QTL with given target effect by interpolating in Table 1 of Keele et al. (2019).
Collapse
Affiliation(s)
- Morris Soller
- Department of Genetics, Silverman Institute for Life Sciences, Hebrew University, Jerusalem, Israel
| | - Hanifa J Abu-Toamih Atamni
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Ilona Binenbaum
- Department of Biology, University of Patras, Patras, Greece.,Institute of Biology, Medicinal Chemistry & Biotechnology, NHRF, Athens, Greece
| | | | - Fuad A Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| |
Collapse
|
7
|
Abu‐Toamih Atamni HJ, Iraqi FA. Efficient protocols and methods for high-throughput utilization of the Collaborative Cross mouse model for dissecting the genetic basis of complex traits. Animal Model Exp Med 2019; 2:137-149. [PMID: 31773089 PMCID: PMC6762040 DOI: 10.1002/ame2.12074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 12/25/2022] Open
Abstract
The Collaborative Cross (CC) mouse model is a next-generation mouse genetic reference population (GRP) designated for a high-resolution quantitative trait loci (QTL) mapping of complex traits during health and disease. The CC lines were generated from reciprocal crosses of eight divergent mouse founder strains composed of five classical and three wild-derived strains. Complex traits are defined to be controlled by variations within multiple genes and the gene/environment interactions. In this article, we introduce and present variety of protocols and results of studying the host response to infectious and chronic diseases, including type 2 diabetes and metabolic diseases, body composition, immune response, colorectal cancer, susceptibility to Aspergillus fumigatus, Klebsiella pneumoniae, Pseudomonas aeruginosa, sepsis, and mixed infections of Porphyromonas gingivalis and Fusobacterium nucleatum, which were conducted at our laboratory using the CC mouse population. These traits are observed at multiple levels of the body systems, including metabolism, body weight, immune profile, susceptibility or resistance to the development and progress of infectious or chronic diseases. Herein, we present full protocols and step-by-step methods, implemented in our laboratory for the phenotypic and genotypic characterization of the different CC lines, mapping the gene underlying the host response to these infections and chronic diseases. The CC mouse model is a unique and powerful GRP for dissecting the host genetic architectures underlying complex traits, including chronic and infectious diseases.
Collapse
Affiliation(s)
- Hanifa J. Abu‐Toamih Atamni
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel AvivRamat AvivIsrael
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel AvivRamat AvivIsrael
| |
Collapse
|
8
|
Study of QTLs linked to awn length and their relationships with chloroplasts under control and saline environments in bread wheat. Genes Genomics 2018; 41:223-231. [PMID: 30378005 DOI: 10.1007/s13258-018-0757-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/24/2018] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Some studies in wheat showed that awns may have a useful effect on yield, especially under drought stress. Up to this time few researches has identified the awn length QTLs with different effect in salinity stress. OBJECTIVE The primary objective of this study was to examine the additive (a) and the epistatic (aa) QTLs involve in wheat awns length in control and saline environments. METHODS A F7 RIL population consisting of 319 sister lines, derived from a cross between wheat cultivars Roshan and Falat (seri82), and the two parents were grown in two environments (control and Saline) based on an alpha lattice design with two replications in each environment. At flowering, awn length was measured for each line. For QTL analysis, the linkage map of the ''Roshan × Falat'' population was used, which included 748 markers including 719 DArT, 29 simple sequenced repeats (SSRs). Additive and pleiotropic QTLs were identified. In order to reveal the relationship between the identified QTL for awns length and the role of the gene or genes that it expresses, the awns length locus location and characteristics of its related CDS, gene, UTRs, ORF, exons and Introns were studied using ensemble plant ( http://plants.ensembl.org/Triticum_aestivum ). Furthermore, the promoter analysis has been done using NSITE-PL. RESULTS We identified 6 additive QTLs for awn length by QTL Cartographer program using single-environment phenotypical values. Also, we detected three additive and two epistatic QTLs for awn length by the QTLNetwork program using multi-environment phenotypical values. Our results showed that none of the additive and epistatic QTLs had interactions with environment. One of the additive QTLs located on chromosome 4A was co-located with QTLs for number of sterile spikelet per spike in both environment and number of seed per spike in control environment. COCLUSION Studies of the locus linked to the awns length QTL revealed the role of awn and its chloroplasts in grain filing during abiotic stress could be enhanced by over expression of some genes like GTP-Binding proteins which are enriched in chloroplasts encoded by genes included wPt-5730 locus.
Collapse
|
9
|
Khan MA, Tong F, Wang W, He J, Zhao T, Gai J. Analysis of QTL-allele system conferring drought tolerance at seedling stage in a nested association mapping population of soybean [Glycine max (L.) Merr.] using a novel GWAS procedure. PLANTA 2018; 248:947-962. [PMID: 29980855 DOI: 10.1007/s00425-018-2952-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/02/2018] [Indexed: 05/20/2023]
Abstract
MAIN CONCLUSION RTM-GWAS identified 111 DT QTLs, 262 alleles with high proportion of QEI and genetic variation accounting for 88.55-95.92% PV in NAM, from which QTL-allele matrices were established and candidate genes annotated. Drought tolerance (DT) is one of the major challenges for world soybean production. A nested association mapping (NAM) population with 403 lines comprising two recombinant inbred line (RIL) populations: M8206 × TongShan and ZhengYang × M8206 was tested for DT using polyethylene-glycol (PEG) treatment under spring and summer environments. The population was sequenced using restriction-site-associated DNA sequencing (RAD-seq) filtered with minor allele frequency (MAF) ≥ 0.01, 55,936 single nucleotide polymorphisms (SNPs) were obtained and organized into 6137 SNP linkage disequilibrium blocks (SNPLDBs). The restricted two-stage multi-locus genome-wide association studies (RTM-GWAS) identified 73 and 38 QTLs with 174 and 88 alleles contributed main effect 40.43 and 26.11% to phenotypic variance (PV) and QTL-environment interaction (QEI) effect 24.64 and 10.35% to PV for relative root length (RRL) and relative shoot length (RSL), respectively. The DT traits were characterized with high proportion of QEI variation (37.52-41.65%), plus genetic variation (46.90-58.40%) in a total of 88.55-95.92% PV. The identified QTLs-alleles were organized into main-effect and QEI-effect QTL-allele matrices, showing the genetic and QEI architecture of the three parents/NAM population. From the matrices, the possible best genotype was predicted to have a weighted average value over two indicators (WAV) of 1.873, while the top ten optimal crosses among RILs with 95th percentile WAV 1.098-1.132, transgressive over the parents (0.651-0.773) but much less than 1.873, implying further pyramiding potential. From the matrices, 134 candidate genes were annotated involved in nine biological processes. The present results provide a novel way for molecular breeding in QTL-allele-based genomic selection for optimal cross selection.
Collapse
Affiliation(s)
- Mueen Alam Khan
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
| | - Fei Tong
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
| | - Wubin Wang
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing, 210095, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jianbo He
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing, 210095, Jiangsu, China
| | - Tuanjie Zhao
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing, 210095, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Junyi Gai
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China.
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China.
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing, 210095, Jiangsu, China.
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
10
|
Glucose tolerance female-specific QTL mapped in collaborative cross mice. Mamm Genome 2016; 28:20-30. [PMID: 27807798 DOI: 10.1007/s00335-016-9667-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022]
Abstract
Type-2 diabetes (T2D) is a complex metabolic disease characterized by impaired glucose tolerance. Despite environmental high risk factors, host genetic background is a strong component of T2D development. Herein, novel highly genetically diverse strains of collaborative cross (CC) lines from mice were assessed to map quantitative trait loci (QTL) associated with variations of glucose-tolerance response. In total, 501 mice of 58 CC lines were maintained on high-fat (42 % fat) diet for 12 weeks. Thereafter, an intraperitoneal glucose tolerance test (IPGTT) was performed for 180 min. Subsequently, the values of Area under curve for the glucose at zero and 180 min (AUC0-180), were measured, and used for QTL mapping. Heritability and coefficient of variations in glucose tolerance (CVg) were calculated. One-way analysis of variation was significant (P < 0.001) for AUC0-180 between the CC lines as well between both sexes. Despite Significant variations for both sexes, QTL analysis was significant, only for females, reporting a significant female-sex-dependent QTL (~2.5 Mbp) associated with IPGTT AUC0-180 trait, located on Chromosome 8 (32-34.5 Mbp, containing 51 genes). Gene browse revealed QTL for body weight/size, genes involved in immune system, and two main protein-coding genes involved in the Glucose homeostasis, Mboat4 and Leprotl1. Heritability and coefficient of genetic variance (CVg) were 0.49 and 0.31 for females, while for males, these values 0.34 and 0.22, respectively. Our findings demonstrate the roles of genetic factors controlling glucose tolerance, which significantly differ between sexes requiring independent studies for females and males toward T2D prevention and therapy.
Collapse
|
11
|
Merchuk-Ovnat L, Barak V, Fahima T, Ordon F, Lidzbarsky GA, Krugman T, Saranga Y. Ancestral QTL Alleles from Wild Emmer Wheat Improve Drought Resistance and Productivity in Modern Wheat Cultivars. FRONTIERS IN PLANT SCIENCE 2016; 7:452. [PMID: 27148287 PMCID: PMC4832586 DOI: 10.3389/fpls.2016.00452] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/22/2016] [Indexed: 05/21/2023]
Abstract
Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is considered a promising source for improving stress resistances in domesticated wheat. Here we explored the potential of selected quantitative trait loci (QTLs) from wild emmer wheat, introgressed via marker-assisted selection, to enhance drought resistance in elite durum (T. turgidum ssp. durum) and bread (T. aestivum) wheat cultivars. The resultant near-isogenic lines (BC3F3 and BC3F4) were genotyped using SNP array to confirm the introgressed genomic regions and evaluated in two consecutive years under well-watered (690-710 mm) and water-limited (290-320 mm) conditions. Three of the introgressed QTLs were successfully validated, two in the background of durum wheat cv. Uzan (on chromosomes 1BL and 2BS), and one in the background of bread wheat cvs. Bar Nir and Zahir (chromosome 7AS). In most cases, the QTL x environment interaction was validated in terms of improved grain yield and biomass-specifically under drought (7AS QTL in cv. Bar Nir background), under both treatments (2BS QTL), and a greater stability across treatments (1BL QTL). The results provide a first demonstration that introgression of wild emmer QTL alleles can enhance productivity and yield stability across environments in domesticated wheat, thereby enriching the modern gene pool with essential diversity for the improvement of drought resistance.
Collapse
Affiliation(s)
- Lianne Merchuk-Ovnat
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of JerusalemRehovot, Israel
| | - Vered Barak
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of JerusalemRehovot, Israel
| | - Tzion Fahima
- Institute of Evolution and Department of Evolutionary and Environmental Biology, University of HaifaHaifa, Israel
| | - Frank Ordon
- Federal Research Centre for Cultivated Plants, Julius Kuehn-Institute, Institute for Resistance Research and Stress ToleranceQuedlinburg, Germany
| | - Gabriel A. Lidzbarsky
- Institute of Evolution and Department of Evolutionary and Environmental Biology, University of HaifaHaifa, Israel
| | - Tamar Krugman
- Institute of Evolution and Department of Evolutionary and Environmental Biology, University of HaifaHaifa, Israel
| | - Yehoshua Saranga
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of JerusalemRehovot, Israel
| |
Collapse
|
12
|
Lv Y, Guo Z, Li X, Ye H, Li X, Xiong L. New insights into the genetic basis of natural chilling and cold shock tolerance in rice by genome-wide association analysis. PLANT, CELL & ENVIRONMENT 2016; 39:556-70. [PMID: 26381647 DOI: 10.1111/pce.12635] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 09/11/2015] [Accepted: 09/12/2015] [Indexed: 05/19/2023]
Abstract
In order to understand cold adaptability and explore additional genetic resources for the cold tolerance improvement of rice, we investigated the genetic variation of 529 rice accessions under natural chilling and cold shock stress conditions at the seedling stage using genome-wide association studies; a total of 132 loci were identified. Among them, 12 loci were common for both chilling and cold shock tolerance, suggesting that rice has a distinct and overlapping genetic response and adaptation to the two stresses. Haplotype analysis of a known gene OsMYB2, which is involved in cold tolerance, revealed indica-japonica differentiation and latitude tendency for the haplotypes of this gene. By checking the subpopulation and geographical distribution of accessions with tolerance or sensitivity under these two stress conditions, we found that the chilling tolerance group, which mainly consisted of japonica accessions, has a wider latitudinal distribution than the chilling sensitivity group. We conclude that the genetic basis of natural chilling stress tolerance in rice is distinct from that of cold shock stress frequently used for low-temperature treatment in the laboratory and the cold adaptability of rice is associated with the subpopulation and latitudinal distribution.
Collapse
Affiliation(s)
- Yan Lv
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Zilong Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaokai Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Haiyan Ye
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
13
|
Atamni HJAT, Mott R, Soller M, Iraqi FA. High-fat-diet induced development of increased fasting glucose levels and impaired response to intraperitoneal glucose challenge in the collaborative cross mouse genetic reference population. BMC Genet 2016; 17:10. [PMID: 26728312 PMCID: PMC4700737 DOI: 10.1186/s12863-015-0321-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/20/2015] [Indexed: 12/17/2022] Open
Abstract
Background The prevalence of Type 2 Diabetes (T2D) mellitus in the past decades, has reached epidemic proportions. Several lines of evidence support the role of genetic variation in the pathogenesis of T2D and insulin resistance. Elucidating these factors could contribute to developing new medical treatments and tools to identify those most at risk. The aim of this study was to characterize the phenotypic response of the Collaborative Cross (CC) mouse genetic resource population to high-fat diet (HFD) induced T2D-like disease to evluate its suitability for this purpose. Results We studied 683 mice of 21 different lines of the CC population. Of these, 265 mice (149 males and 116 females) were challenged by HFD (42 % fat); and 384 mice (239 males and145 females) of 17 of the 21 lines were reared as control group on standard Chow diet (18 % fat). Briefly, 8 week old mice were maintained on HFD until 20 weeks of age, and subsequently assessed by intraperitoneal glucose tolerance test (IPGTT). Biweekly body weight (BW), body length (BL), waist circumstance (WC), and body mass index (BMI) were measured. On statistical analysis, trait measurements taken at 20 weeks of age showed significant sex by diet interaction across the different lines and traits. Consequently, males and females were analyzed, separately. Differences among lines were analyzed by ANOVA and shown to be significant (P <0.05), for BW, WC, BMI, fasting blood glucose, and IPGTT-AUC. We use these data to infer broad sense heritability adjusted for number of mice tested in each line; coefficient of genetic variation; genetic correlations between the same trait in the two sexes, and phenotypic correlations between different traits in the same sex. Conclusions These results are consistent with the hypothesis that host susceptibility to HFD-induced T2D is a complex trait and controlled by multiple genetic factors and sex, and that the CC population can be a powerful tool for genetic dissection of this trait. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0321-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hanifa J Abu-Toamih Atamni
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Tel-Aviv, 69978, Israel.
| | | | | | - Fuad A Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Tel-Aviv, 69978, Israel.
| |
Collapse
|
14
|
Kopriva S. Plant sulfur nutrition: From Sachs to Big Data. PLANT SIGNALING & BEHAVIOR 2015; 10:e1055436. [PMID: 26305261 PMCID: PMC4883835 DOI: 10.1080/15592324.2015.1055436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 05/03/2023]
Abstract
Together with water and carbon dioxide plants require 14 essential mineral nutrients to finish their life cycle. The research in plant nutrition can be traced back to Julius Sachs, who was the first to experimentally prove the essentiality of mineral nutrients for plants. Among those elements Sachs showed to be essential is sulfur. Plant sulfur nutrition has been not as extensively studied as the nutrition of nitrogen and phosphate, probably because sulfur was not limiting for agriculture. However, with the reduction of atmospheric sulfur dioxide emissions sulfur deficiency has become common. The research in sulfur nutrition has changed over the years from using yeast and algae as experimental material to adopting Arabidopsis as the plant model as well as from simple biochemical measurements of individual parameters to system biology. Here the evolution of sulfur research from the times of Sachs to the current Big Data is outlined.
Collapse
Affiliation(s)
- Stanislav Kopriva
- Botanical Institute; Cluster of Excellence on Plant Sciences; University of Cologne; Cologne, Germany
| |
Collapse
|
15
|
Abstract
While the role of viral variants has long been known to play a key role in causing variation in disease severity, it is also clear that host genetic variation plays a critical role in determining virus-induced disease responses. However, a variety of factors, including confounding environmental variables, rare genetic variants requiring extremely large cohorts, the temporal dynamics of infections, and ethical limitation on human studies, have made the identification and dissection of variant host genes and pathways difficult within human populations. This difficulty has led to the development of a variety of experimental approaches used to identify host genetic contributions to disease responses. In this chapter, we describe the history of genetic associations within the human population, the development of experimentally tractable systems, and the insights these specific approaches provide. We conclude with a discussion of recent advances that allow for the investigation of the role of complex genetic networks that underlie host responses to infection, with the goal of drawing connections to human infections. In particular, we highlight the need for robust animal models with which to directly control and assess the role of host genetics on viral infection outcomes.
Collapse
|
16
|
The Collaborative Cross – A next generation mouse genetic resource population for high resolution genomic analysis of complex traits. Livest Sci 2014. [DOI: 10.1016/j.livsci.2014.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Hernandez-Valladares M, Rihet P, Iraqi FA. Host susceptibility to malaria in human and mice: compatible approaches to identify potential resistant genes. Physiol Genomics 2014; 46:1-16. [DOI: 10.1152/physiolgenomics.00044.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is growing evidence for human genetic factors controlling the outcome of malaria infection, while molecular basis of this genetic control is still poorly understood. Case-control and family-based studies have been carried out to identify genes underlying host susceptibility to malarial infection. Parasitemia and mild malaria have been genetically linked to human chromosomes 5q31-q33 and 6p21.3, and several immune genes located within those regions have been associated with malaria-related phenotypes. Association and linkage studies of resistance to malaria are not easy to carry out in human populations, because of the difficulty in surveying a significant number of families. Murine models have proven to be an excellent genetic tool for studying host response to malaria; their use allowed mapping 14 resistance loci, eight of them controlling parasitic levels and six controlling cerebral malaria. Once quantitative trait loci or genes have been identified, the human ortholog may then be identified. Comparative mapping studies showed that a couple of human and mouse might share similar genetically controlled mechanisms of resistance. In this way, char8, which controls parasitemia, was mapped on chromosome 11; char8 corresponds to human chromosome 5q31-q33 and contains immune genes, such as Il3, Il4, Il5, Il12b, Il13, Irf1, and Csf2. Nevertheless, part of the genetic factors controlling malaria traits might differ in both hosts because of specific host-pathogen interactions. Finally, novel genetic tools including animal models were recently developed and will offer new opportunities for identifying genetic factors underlying host phenotypic response to malaria, which will help in better therapeutic strategies including vaccine and drug development.
Collapse
Affiliation(s)
| | - Pascal Rihet
- UMR1090 TAGC, INSERM, Marseille, France
- Aix-Marseille University, Marseille, France; and
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| |
Collapse
|
18
|
Li S, Yan S, Wang AH, Zou G, Huang X, Han B, Qian Q, Tao Y. Identification of QTLs associated with tissue culture response through sequencing-based genotyping of RILs derived from 93-11 × Nipponbare in rice (Oryza sativa). PLANT CELL REPORTS 2013; 32:103-16. [PMID: 23064615 DOI: 10.1007/s00299-012-1345-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/21/2012] [Accepted: 09/11/2012] [Indexed: 05/08/2023]
Abstract
KEY MESSAGE : The performance of callus induction and callus differentiation was evaluated by 9 indices for 140 RILs; 2 major QTLs associated with plant regeneration were identified. In order to investigate the genetic mechanisms of tissue culture response, 140 recombinant inbred lines (RILs) derived from 93-11 (Oryza sativa ssp. indica) × Nipponbare (Oryza sativa ssp. japonica) and a high quality genetic map based on the SNPs generated from deep sequencing of the RIL genomes, were used to identify the quantitative trait loci (QTLs) associated with in vitro tissue culture response (TCR) from mature seed in rice. The performance of callus induction was evaluated by indices of induced-callus color (ICC), induced-callus size (ICS), induced-callus friability (ICF) and callus induction rate (CIR), respectively, and the performance of callus differentiation was evaluated by indices of callus proliferation ability (CPA), callus browning tendency (CBT), callus greening ability (CGA), the average number of regenerated shoots per callus (NRS) and regeneration rate (%, RR), respectively. A total of 25 QTLs, 2 each for ICC, ICS, ICF, CIR and CBA, 3 for CPA, 4 each for CGA, NRS and RR, respectively, were detected and located on 8 rice chromosomes. Significant correlations were observed among the traits of CGA, NRS and RR, and QTLs identified for these three indices were co-located on chromosomes 3 and 7, and the additive effects came from both Nipponbare and 93-11, respectively. The results obtained from this study provide guidance for further fine mapping and gene cloning of the major QTL of TCR and the knowledge of the genes underlying the traits investigated would be very helpful for revealing the molecular bases of tissue culture response.
Collapse
Affiliation(s)
- Sujuan Li
- The College of Agriculture and Biotechnology, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Su Z, Hao C, Wang L, Dong Y, Zhang X. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:211-23. [PMID: 20838758 DOI: 10.1007/s00122-010-1437-z] [Citation(s) in RCA: 229] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Accepted: 08/25/2010] [Indexed: 05/20/2023]
Abstract
The OsGW2 gene is involved in rice grain development, influencing grain width and weight. Its ortholog in wheat, TaGW2, was considered as a candidate gene related to grain development. We found that TaGW2 is constitutively expressed, with three orthologs expressing simultaneously. The coding sequence (CDS) of TaGW2 is 1,275 bp encoding a protein with 424 amino acids, and has a functional domain shared with OsGW2. No divergence was detected within the CDS sequences in the same locus in ten varieties. Genome-specific primers were designed based on the sequence divergence of the promoter regions in the three orthologous genes, and TaGW2 was located in homologous group 6 chromosomes through CS nulli-tetrasomic (NT). Two SNPs were detected in the promoter region of TaGW2-6A, forming two haplotypes: Hap-6A-A (-593A and -739G) and Hap-6A-G (-593G and -769A). A cleaved amplified polymorphic sequence (CAPS) marker was developed based on the -593 A-G polymorphism to distinguish the two haplotypes in TaGW2-6A. This gene was fine mapped 0.6 cM from marker cfd80.2 near the centromere in a recombinant inbred line (RIL) population. Two hundred sixty-five Chinese wheat varieties were genotyped and association analysis revealed that Hap-6A-A was significantly associated with wider grains and higher one-thousand grain weight (TGW) in two crop seasons. qRT-PCR revealed a negative relationship between TaGW2 expression level and grain width. The Hap-6A-A frequencies in Chinese varieties released at different periods showed that it had been strongly positively selected in breeding. In landraces, Hap-6A-A is mainly distributed in southern Chinese wheat regions. Association analysis also indicated that Hap-6A-A not only increased TGW by more than 3 g, but also had earlier heading and maturity. In contrast to Chinese varieties, Hap-6A-G was the predominant haplotype in European varieties; Hap-6A-A was mainly present in varieties released in the former Yugoslavia, Italy, Bulgaria, Hungary and Portugal.
Collapse
Affiliation(s)
- Zhenqi Su
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | | | | | | |
Collapse
|
20
|
Burgess-Herbert SL, Tsaih SW, Stylianou IM, Walsh K, Cox AJ, Paigen B. An experimental assessment of in silico haplotype association mapping in laboratory mice. BMC Genet 2009; 10:81. [PMID: 20003225 PMCID: PMC2797012 DOI: 10.1186/1471-2156-10-81] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 12/09/2009] [Indexed: 11/10/2022] Open
Abstract
Background To assess the utility of haplotype association mapping (HAM) as a quantitative trait locus (QTL) discovery tool, we conducted HAM analyses for red blood cell count (RBC) and high density lipoprotein cholesterol (HDL) in mice. We then experimentally tested each HAM QTL using published crosses or new F2 intercrosses guided by the haplotype at the HAM peaks. Results The HAM for RBC, using 33 classic inbred lines, revealed 8 QTLs; 2 of these were true positives as shown by published crosses. A HAM-guided (C57BL/6J × CBA/J)F2 intercross we carried out verified 2 more as true positives and 4 as false positives. The HAM for HDL, using 81 strains including recombinant inbred lines and chromosome substitution strains, detected 46 QTLs. Of these, 36 were true positives as shown by published crosses. A HAM-guided (C57BL/6J × A/J)F2 intercross that we carried out verified 2 more as true positives and 8 as false positives. By testing each HAM QTL for RBC and HDL, we demonstrated that 78% of the 54 HAM peaks were true positives and 22% were false positives. Interestingly, all false positives were in significant allelic association with one or more real QTL. Conclusion Because type I errors (false positives) can be detected experimentally, we conclude that HAM is useful for QTL detection and narrowing. We advocate the powerful and economical combined approach demonstrated here: the use of HAM for QTL discovery, followed by mitigation of the false positive problem by testing the HAM-predicted QTLs with small HAM-guided experimental crosses.
Collapse
|
21
|
Stich B, Melchinger AE. Comparison of mixed-model approaches for association mapping in rapeseed, potato, sugar beet, maize, and Arabidopsis. BMC Genomics 2009; 10:94. [PMID: 19250529 PMCID: PMC2676307 DOI: 10.1186/1471-2164-10-94] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 02/27/2009] [Indexed: 11/23/2022] Open
Abstract
Background In recent years, several attempts have been made in plant genetics to detect QTL by using association mapping methods. The objectives of this study were to (i) evaluate various methods for association mapping in five plant species and (ii) for three traits in each of the plant species compare the Topt, the restricted maximum likelihood (REML) estimate of the conditional probability that two genotypes carry at the same locus alleles that are identical in state but not identical by descent. In order to compare the association mapping methods based on scenarios with realistic estimates of population structure and familial relatedness, we analyzed phenotypic and genotypic data of rapeseed, potato, sugar beet, maize, and Arabidopsis. For the same reason, QTL effects were simulated on top of the observed phenotypic values when examining the adjusted power for QTL detection. Results The correlation between the Topt values identified using REML deviance profiles and profiles of the mean of squared difference between observed and expected P values was 0.83. Conclusion The mixed-model association mapping approaches using a kinship matrix, which was based on Topt, were more appropriate for association mapping than the recently proposed QK method with respect to the adherence to the nominal α level and the adjusted power for QTL detection. Furthermore, we showed that Topt differs considerably among the five plant species but only marginally among different traits.
Collapse
Affiliation(s)
- Benjamin Stich
- Department of Applied Genetics and Plant Breeding, Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70593, Stuttgart, Germany.
| | | |
Collapse
|
22
|
Stich B, Melchinger AE. Comparison of mixed-model approaches for association mapping in rapeseed, potato, sugar beet, maize, and Arabidopsis. BMC Genomics 2009. [PMID: 19250529 DOI: 10.1186/1471‐2164‐10‐94] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In recent years, several attempts have been made in plant genetics to detect QTL by using association mapping methods. The objectives of this study were to (i) evaluate various methods for association mapping in five plant species and (ii) for three traits in each of the plant species compare the Topt, the restricted maximum likelihood (REML) estimate of the conditional probability that two genotypes carry at the same locus alleles that are identical in state but not identical by descent. In order to compare the association mapping methods based on scenarios with realistic estimates of population structure and familial relatedness, we analyzed phenotypic and genotypic data of rapeseed, potato, sugar beet, maize, and Arabidopsis. For the same reason, QTL effects were simulated on top of the observed phenotypic values when examining the adjusted power for QTL detection. RESULTS The correlation between the Topt values identified using REML deviance profiles and profiles of the mean of squared difference between observed and expected P values was 0.83. CONCLUSION The mixed-model association mapping approaches using a kinship matrix, which was based on Topt, were more appropriate for association mapping than the recently proposed QK method with respect to the adherence to the nominal alpha level and the adjusted power for QTL detection. Furthermore, we showed that Topt differs considerably among the five plant species but only marginally among different traits.
Collapse
Affiliation(s)
- Benjamin Stich
- Department of Applied Genetics and Plant Breeding, Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70593, Stuttgart, Germany.
| | | |
Collapse
|
23
|
Recombinant near-isogenic lines: a resource for the mendelization of heterotic QTL in maize. Mol Genet Genomics 2009; 281:447-57. [DOI: 10.1007/s00438-008-0422-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 12/27/2008] [Indexed: 10/21/2022]
|
24
|
Plotnin R, Rutter M. Child Development, Molecular Genetics, and What to Do with Genes Once They Are Found. Child Dev 2008. [DOI: 10.1111/j.1467-8624.1998.tb06169.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Wan X, Weng J, Zhai H, Wang J, Lei C, Liu X, Guo T, Jiang L, Su N, Wan J. Quantitative trait loci (QTL) analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hotspot region on chromosome 5. Genetics 2008; 179:2239-52. [PMID: 18689882 PMCID: PMC2516094 DOI: 10.1534/genetics.108.089862] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 05/20/2008] [Indexed: 11/18/2022] Open
Abstract
Rice grain width and shape play a crucial role in determining grain quality and yield. The genetic basis of rice grain width was dissected into six additive quantitative trait loci (QTL) and 11 pairs of epistatic QTL using an F(7) recombinant inbred line (RIL) population derived from a single cross between Asominori (japonica) and IR24 (indica). QTL by environment interactions were evaluated in four environments. Chromosome segment substitution lines (CSSLs) harboring the six additive effect QTL were used to evaluate gene action across eight environments. A major, stable QTL, qGW-5, consistently decreased rice grain width in both the Asominori/IR24 RIL and CSSL populations with the genetic background Asominori. By investigating the distorted segregation of phenotypic values of rice grain width and genotypes of molecular markers in BC(4)F(2) and BC(4)F(3) populations, qGW-5 was dissected into a single recessive gene, gw-5, which controlled both grain width and length-width ratio. gw-5 was narrowed down to a 49.7-kb genomic region with high recombination frequencies on chromosome 5 using 6781 BC(4)F(2) individuals and 10 newly developed simple sequence repeat markers. Our results provide a basis for map-based cloning of the gw-5 gene and for marker-aided gene/QTL pyramiding in rice quality breeding.
Collapse
Affiliation(s)
- Xiangyuan Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Frascaroli E, Canè MA, Landi P, Pea G, Gianfranceschi L, Villa M, Morgante M, Pè ME. Classical genetic and quantitative trait loci analyses of heterosis in a maize hybrid between two elite inbred lines. Genetics 2007; 176:625-44. [PMID: 17339211 PMCID: PMC1893040 DOI: 10.1534/genetics.106.064493] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 02/17/2007] [Indexed: 11/18/2022] Open
Abstract
The exploitation of heterosis is one of the most outstanding advancements in plant breeding, although its genetic basis is not well understood yet. This research was conducted on the materials arising from the maize single cross B73 x H99 to study heterosis by procedures of classical genetic and quantitative trait loci (QTL) analyses. Materials were the basic generations, the derived 142 recombinant inbred lines (RILs), and the three testcross populations obtained by crossing the 142 RILs to each parent and their F(1). For seedling weight (SW), number of kernels per plant (NK), and grain yield (GY), heterosis was >100% and the average degree of dominance was >1. Epistasis was significant for SW and NK but not for GY. Several QTL were identified and in most cases they were in the additive-dominance range for traits with low heterosis and mostly in the dominance-overdominance range for plant height (PH), SW, NK, and GY. Only a few QTL with digenic epistasis were identified. The importance of dominance effects was confirmed by highly significant correlations between heterozygosity level and phenotypic performance, especially for GY. Some chromosome regions presented overlaps of overdominant QTL for SW, PH, NK, and GY, suggesting pleiotropic effects on overall plant vigor.
Collapse
Affiliation(s)
- Elisabetta Frascaroli
- Department of Agroenvironmental Sciences and Technologies, University of Bologna, 40127 Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Sheehan MJ, Kennedy LM, Costich DE, Brutnell TP. Subfunctionalization of PhyB1 and PhyB2 in the control of seedling and mature plant traits in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:338-53. [PMID: 17181778 DOI: 10.1111/j.1365-313x.2006.02962.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Phytochromes are the primary red/far-red photoreceptors of higher plants, mediating numerous developmental processes throughout the life cycle, from germination to flowering. In seed plants, phytochromes are encoded by a small gene family with each member performing both distinct and redundant roles in mediating physiological responses to light cues. Studies in both eudicot and monocot species have defined a central role for phytochrome B in mediating responses to light in the control of several agronomically important traits, including plant height, transitions to flowering and axillary branch meristem development. Here we characterize Mutator-induced alleles of PhyB1 and a naturally occurring deletion allele of PhyB2 in Zea mays (maize). Using single and double mutants, we show that the highly similar PhyB1 and PhyB2 genes encode proteins with both overlapping and non-redundant functions that control seedling and mature plant traits. PHYB1 and PHYB2 regulate elongation of sheath and stem tissues of mature plants and contribute to the light-mediated regulation of PhyA and Cab gene transcripts. However, PHYB1 and not PHYB2 contributes significantly to the inhibition of mesocotyl elongation under red light, whereas PHYB2 and to a lesser extent PHYB1 mediate the photoperiod-dependent floral transition. This sub functionalization of PHYB activities in maize has probably occurred since the tetraploidization of maize, and may contribute to flowering time variation in modern-day varieties.
Collapse
Affiliation(s)
- Moira J Sheehan
- Department of Plant Biology, Cornell University, Tower Road, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
28
|
Xi ZY, He FH, Zeng RZ, Zhang ZM, Ding XH, Li WT, Zhang GQ. Development of a wide population of chromosome single-segment substitution lines in the genetic background of an elite cultivar of rice (Oryza sativa L.). Genome 2006; 49:476-84. [PMID: 16767172 DOI: 10.1139/g06-005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Naturally occurring allelic variations underlying complex traits are useful resources for the functional analysis of plant genes. To facilitate the genetic analysis of complex traits and the use of marker-assisted breeding in rice, we developed a wide population consisting of 217 chromosome single-segment substitution lines (SSSLs) using Oryza sativa L. 'Hua-Jing-Xian74' (HJX74), an elite Indica cultivar, as recipient, and 6 other accessions, including 2 Indica and 4 Japonica, as donors. Each SSSL contains a single substituted chromosome segment derived from 1 of the 6 donors in the genetic background of HJX74. The total size of the substituted segments in the SSSL population was 4695.0 cM, which was 3.1 times that of rice genome. To evaluate the potential application of these SSSLs for quantitative trait loci detection, phenotypic variations of the quantitative traits of days to heading and grain length in the population consisting of 210 SSSLs were observed under natural environmental conditions. The results demonstrated that there was a wide range of phenotypic variation in the traits in the SSSL population. These genetic materials will be powerful tools to dissect complex traits into a set of monogenic loci and to assign phenotypic values to different alleles at the locus of interest.
Collapse
Affiliation(s)
- Zhang-Ying Xi
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, PR China
| | | | | | | | | | | | | |
Collapse
|
29
|
Hancock JF. Contributions of domesticated plant studies to our understanding of plant evolution. ANNALS OF BOTANY 2005; 96:953-63. [PMID: 16159942 PMCID: PMC4247096 DOI: 10.1093/aob/mci259] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 06/08/2005] [Accepted: 07/29/2005] [Indexed: 05/04/2023]
Abstract
BACKGROUND Plant evolutionary theory has been greatly enriched by studies on crop species. Over the last century, important information has been generated on many aspects of population biology, speciation and polyploid genetics. SCOPE Searches for quantitative trait loci (QTL) in crop species have uncovered numerous blocks of genes that have dramatic effects on adaptation, particularly during the domestication process. Many of these QTL have epistatic and pleiotropic effects making rapid evolutionary change possible. Most of the pioneering work on the molecular basis of self-incompatibility has been conducted on crop species, along with the sequencing of the phytopathogenic resistance genes (R genes) responsible for the 'gene-to-gene' relations of coevolution observed in host-pathogen relationships. Some of the better examples of co-adaptation and early acting inbreeding depression have also been elucidated in crops. Crop-wild progenitor interactions have provided rich opportunities to study the evolution of novel adaptations subsequent to hybridization. Most crop/wild F1 hybrids have reduced fitness, but in some instances the crop relatives have acquired genes that make them more efficient weeds through crop mimicry. Studies on autopolyploid alfalfa and potato have uncovered the means by which polyploid gametes are formed and have led to hypotheses about how multiallelic interactions are associated with fitness and self-fertility. Research on the cole crops and wheat has discovered that newly formed polyploids can undergo dramatic genome rearrangements that could lead to rapid evolutionary change. CONCLUSIONS Many more important evolutionary discoveries are on the horizon, now that the whole genome sequence is available of the two major subspecies of rice Oryza sativa ssp. japonica and O. sativa ssp. indica. The rice sequence data can be used to study the origin of genes and gene families, track rates of sequence divergence over time, and provide hints about how genes evolve and generate products with novel biological properties. The rice sequence data has already been mined to show that transposable elements often carry fragments of cellular genes. This type of genome shuffling could play a role in creating novel, reorganized genes with new adaptive properties.
Collapse
Affiliation(s)
- James F Hancock
- Department of Horticulture, Michigan State University, East Lansing, MI 49924, USA.
| |
Collapse
|
30
|
Ebitani T, Takeuchi Y, Nonoue Y, Yamamoto T, Takeuchi K, Yano M. Construction and Evaluation of Chromosome Segment Substitution Lines Carrying Overlapping Chromosome Segments of indica Rice Cultivar 'Kasalath' in a Genetic Background of japonica Elite Cultivar 'Koshihikari'. BREEDING SCIENCE 2005; 55:65-73. [PMID: 0 DOI: 10.1270/jsbbs.55.65] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Takeshi Ebitani
- National Institute of Agrobiological Sciences
- Present address: Toyama Agricultural Research Center
| | - Yoshinobu Takeuchi
- Institute of Society for Techno-innovation of Agriculture, Forestry and Fisheries
- Present address: National Institute of Crop Science
| | - Yasunori Nonoue
- Institute of Society for Techno-innovation of Agriculture, Forestry and Fisheries
| | - Toshio Yamamoto
- Institute of Society for Techno-innovation of Agriculture, Forestry and Fisheries
- Present address: Honda Research Institute Japan Co, Ltd
| | | | | |
Collapse
|
31
|
Ferdig MT, Cooper RA, Mu J, Deng B, Joy DA, Su XZ, Wellems TE. Dissecting the loci of low-level quinine resistance in malaria parasites. Mol Microbiol 2004; 52:985-97. [PMID: 15130119 DOI: 10.1111/j.1365-2958.2004.04035.x] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Quinine (QN) remains effective against Plasmodium falciparum, but its decreasing efficacy is documented from different continents. Multiple genes are likely to contribute to the evolution of QN resistance. To locate genes contributing to QN response variation, we have searched a P. falciparum genetic cross for quantitative trait loci (QTL). Results identify additive QTL in segments of chromosomes (Chrs) 13, 7 and 5, and pairwise effects from two additional loci of Chrs 9 and 6 that interact, respectively, with the QTL of Chrs 13 and 7. The mapped segments of Chrs 7 and 5 contain pfcrt, the determinant of chloroquine resistance (CQR), and pfmdr1, a gene known to affect QN responses. Association of pfcrt with a QTL of QN resistance supports anecdotal evidence for an evolutionary relationship between CQR and reduced QN sensitivity. The Chr 13 segment contains several candidate genes, one of which (pfnhe-1) encodes a putative Na(+)/H(+) exchanger. A repeat polymorphism in pfnhe-1 shows significant association with low QN response in a collection of P. falciparum strains from Asia, Africa and Central and South America. Dissection of the genes and modifiers involved in QN response will require experimental strategies that can evaluate multiple genes from different chromosomes in combination.
Collapse
Affiliation(s)
- Michael T Ferdig
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 4, Room 126, NIH Campus, Bethesda, MD 20892-0425, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The progress made in DNA marker technology has been tremendous and exciting. DNA markers have provided valuable tools in various analyses ranging from phylogenetic analysis to the positional cloning of genes. The development of high-density molecular maps which has been facilitated by PCR-based markers, have made the mapping and tagging of almost any trait possible. Marker-assisted selection has the potential to deploy favorable gene combinations for disease control. Comparative studies between incompatible species using these markers has resulted in synteny maps which are useful not only in predicting genome organization and evolution but also have practical application in plant breeding. DNA marker technology has found application in fingerprinting genotypes, in determining seed purity, in systematic sampling of germplasm, and in phylogenetic analysis. This review discusses the use of this technology for the genetic improvement of plants.
Collapse
Affiliation(s)
- L S Kumar
- Plant Molecular Biology Unit, Division of Biochemical Science, National Chemical Laboratory, Pune 411008, India.
| |
Collapse
|
33
|
Li ZK, Yu SB, Lafitte HR, Huang N, Courtois B, Hittalmani S, Vijayakumar CHM, Liu GF, Wang GC, Shashidhar HE, Zhuang JY, Zheng KL, Singh VP, Sidhu JS, Srivantaneeyakul S, Khush GS. QTL x environment interactions in rice. I. heading date and plant height. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 108:141-53. [PMID: 12961067 DOI: 10.1007/s00122-003-1401-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2003] [Accepted: 06/26/2003] [Indexed: 05/21/2023]
Abstract
One hundred twenty six doubled-haploid (DH) rice lines were evaluated in nine diverse Asian environments to reveal the genetic basis of genotype x environment interactions (GEI) for plant height (PH) and heading date (HD). A subset of lines was also evaluated in four water-limited environments, where the environmental basis of G x E could be more precisely defined. Responses to the environments were resolved into individual QTL x environment interactions using replicated phenotyping and the mixed linear-model approach. A total of 37 main-effect QTLs and 29 epistatic QTLs were identified. On average, these QTLs were detectable in 56% of the environments. When detected in multiple environments, the main effects of most QTLs were consistent in direction but varied considerably in magnitude across environments. Some QTLs had opposite effects in different environments, particularly in water-limited environments, indicating that they responded to the environments differently. Inconsistent QTL detection across environments was due primarily to non- or weak-expression of the QTL, and in part to significant QTL x environment interaction effects in the opposite direction to QTL main effects, and to pronounced epistasis. QTL x environment interactions were trait- and gene-specific. The greater GEI for HD than for PH in rice were reflected by more environment-specific QTLs, greater frequency and magnitude of QTL x environment interaction effects, and more pronounced epistasis for HD than for PH. Our results demonstrated that QTL x environment interaction is an important property of many QTLs, even for highly heritable traits such as height and maturity. Information about QTL x environment interaction is essential if marker-assisted selection is to be applied to the manipulation of quantitative traits.
Collapse
Affiliation(s)
- Z K Li
- Plant Breeding, Genetics, and Biochemistry Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, The Philippines.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Farnir F, Grisart B, Coppieters W, Riquet J, Berzi P, Cambisano N, Karim L, Mni M, Moisio S, Simon P, Wagenaar D, Vilkki J, Georges M. Simultaneous mining of linkage and linkage disequilibrium to fine map quantitative trait loci in outbred half-sib pedigrees: revisiting the location of a quantitative trait locus with major effect on milk production on bovine chromosome 14. Genetics 2002; 161:275-87. [PMID: 12019241 PMCID: PMC1462117 DOI: 10.1093/genetics/161.1.275] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A maximum-likelihood QTL mapping method that simultaneously exploits linkage and linkage disequilibrium and that is applicable in outbred half-sib pedigrees is described. The method is applied to fine map a QTL with major effect on milk fat content in a 3-cM marker interval on proximal BTA14. This proximal location is confirmed by applying a haplotype-based association method referred to as recombinant ancestral haplotype analysis. The origin of the discrepancy between the QTL position derived in this work and that of a previous analysis is examined and shown to be due to the existence of distinct marker haplotypes associated with QTL alleles having large substitution effects.
Collapse
Affiliation(s)
- Frédéric Farnir
- Department of Genetics, Faculty of Veterinary Medicine, University of Liège (B43), 4000-Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 2002; 296:92-100. [PMID: 11935018 DOI: 10.1126/science.1068275] [Citation(s) in RCA: 1846] [Impact Index Per Article: 83.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The genome of the japonica subspecies of rice, an important cereal and model monocot, was sequenced and assembled by whole-genome shotgun sequencing. The assembled sequence covers 93% of the 420-megabase genome. Gene predictions on the assembled sequence suggest that the genome contains 32,000 to 50,000 genes. Homologs of 98% of the known maize, wheat, and barley proteins are found in rice. Synteny and gene homology between rice and the other cereal genomes are extensive, whereas synteny with Arabidopsis is limited. Assignment of candidate rice orthologs to Arabidopsis genes is possible in many cases. The rice genome sequence provides a foundation for the improvement of cereals, our most important crops.
Collapse
Affiliation(s)
- Stephen A Goff
- Torrey Mesa Research Institute, Syngenta, 3115 Merryfield Row, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Buckler ES, Thornsberry JM. Plant molecular diversity and applications to genomics. CURRENT OPINION IN PLANT BIOLOGY 2002; 5:107-11. [PMID: 11856604 DOI: 10.1016/s1369-5266(02)00238-8] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Surveys of nucleotide diversity are beginning to show how genomes have been shaped by evolution. Nucleotide diversity is also being used to discover the function of genes through the mapping of quantitative trait loci (QTL) in structured populations, the positional cloning of strong QTL, and association mapping.
Collapse
Affiliation(s)
- Edward S Buckler
- USDA-ARS and Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695-7614, USA.
| | | |
Collapse
|
37
|
Yamaya T, Obara M, Nakajima H, Sasaki S, Hayakawa T, Sato T. Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. JOURNAL OF EXPERIMENTAL BOTANY 2002; 53:917-25. [PMID: 11912234 DOI: 10.1093/jexbot/53.370.917] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Immunocytological studies in this laboratory have suggested that NADH-dependent glutamate synthase (NADH-GOGAT; EC 1.4.1.14) in developing organs of rice (Oryza sativa L. cv. Sasanishiki) is involved in the utilization of glutamine remobilized from senescing organs through the phloem. Because most of the indica cultivars contained less NADH-GOGAT in their sink organs than japonica cultivars, over-expression of NADH-GOGAT gene from japonica rice was investigated using Kasalath, an indica cultivar. Several T0 transgenic Kasalath lines over-producing NADH-GOGAT under the control of a NADH-GOGAT promoter of Sasanishiki, a japonica rice, showed an increase in grain weight (80% as a maximum), indicating that NADH-GOGAT is indeed a key step for nitrogen utilization and grain filling in rice. A genetic approach using 98 backcross-inbred lines (BC(1)F(6)) developed between Nipponbare (a japonica rice) and Kasalath were employed to detect putative quantitative trait loci (QTLs) associated with the contents of cytosolic glutamine synthetase (GS1; EC 6.3.1.2), which is probably involved in the export of nitrogen from senescing organs and those of NADH-GOGAT. Immunoblotting analyses showed transgressive segregations toward lower or greater contents of these enzyme proteins in these BC(1)F(6). Seven chromosomal QTL regions were detected for GS1 protein content and six for NADH-GOGAT. Some of these QTLs were located in QTL regions for various biochemical and agronomic traits affected by nitrogen recycling. The relationships between the genetic variability of complex agronomic traits and traits for these two enzymes are discussed.
Collapse
Affiliation(s)
- Tomoyuki Yamaya
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai 981-8555, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Ball RD. Bayesian methods for quantitative trait loci mapping based on model selection: approximate analysis using the Bayesian information criterion. Genetics 2001; 159:1351-64. [PMID: 11729175 PMCID: PMC1461867 DOI: 10.1093/genetics/159.3.1351] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We describe an approximate method for the analysis of quantitative trait loci (QTL) based on model selection from multiple regression models with trait values regressed on marker genotypes, using a modification of the easily calculated Bayesian information criterion to estimate the posterior probability of models with various subsets of markers as variables. The BIC-delta criterion, with the parameter delta increasing the penalty for additional variables in a model, is further modified to incorporate prior information, and missing values are handled by multiple imputation. Marginal probabilities for model sizes are calculated, and the posterior probability of nonzero model size is interpreted as the posterior probability of existence of a QTL linked to one or more markers. The method is demonstrated on analysis of associations between wood density and markers on two linkage groups in Pinus radiata. Selection bias, which is the bias that results from using the same data to both select the variables in a model and estimate the coefficients, is shown to be a problem for commonly used non-Bayesian methods for QTL mapping, which do not average over alternative possible models that are consistent with the data.
Collapse
Affiliation(s)
- R D Ball
- New Zealand Forest Research Institute, Rotorua 3201, New Zealand.
| |
Collapse
|
39
|
Obara M, Kajiura M, Fukuta Y, Yano M, Hayashi M, Yamaya T, Sato T. Mapping of QTLs associated with cytosolic glutamine synthetase and NADH-glutamate synthase in rice (Oryza sativa L.). JOURNAL OF EXPERIMENTAL BOTANY 2001; 52:1209-1217. [PMID: 11432939 DOI: 10.1093/jexbot/52.359.1209] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Ninety-eight backcross inbred lines (BC1F6) developed between Nipponbare, a japonica rice, and Kasalath, an indica rice were employed to detect putative quantitative trait loci (QTLs) associated with the contents of cytosolic glutamine synthetase (GS1; EC 6.3.1.2) and NADH-glutamate synthase (NADH-GOGAT; EC 1.4.1.14) in leaves. Immunoblotting analyses showed transgressive segregations toward lower or greater contents of these enzyme proteins in these backcross inbred lines. Seven chromosomal QTL regions for GS1 protein content and six for NADH-GOGAT protein content were detected. Some of these QTLs were located in QTL regions for various biochemical and physiological traits affected by nitrogen recycling. These findings suggested that the variation in GS1 and NADH-GOGAT protein contents in this population is related to the changes in the rate of nitrogen recycling from senescing organs to developing organs, leading to changes in these physiological traits. Furthermore, a structural gene for GS1 was mapped between two RFLP markers, C560 and C1408, on chromosome 2 and co-located in the QTL region for one-spikelet weight. A QTL region for NADH-GOGAT protein content was detected at the position mapped for the NADH-GOGAT structural gene on chromosome 1. A QTL region for soluble protein content in developing leaves was also detected in this region. Although fine mapping is required to identify individual genes in the future, QTL analysis could be a useful post-genomic tool to study the gene functions for regulation of nitrogen recycling in rice.
Collapse
Affiliation(s)
- M Obara
- Department of Applied Plant Science, Graduate School of Agricultural Sciences, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Sullivan PF, O'Neill FA, Walsh D, Ma Y, Kendler KS, Straub RE. Analysis of epistasis in linked regions in the Irish study of high-density schizophrenia families. ACTA ACUST UNITED AC 2001; 105:266-70. [PMID: 11353447 DOI: 10.1002/ajmg.1324] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epistasis may be important in the etiology of schizophrenia. Analysis of epistasis has been important in the positional cloning of a gene involved in the etiology of type II diabetes mellitus. We investigated the importance of epistasis among six linked regions in 268 multiplex pedigrees in the Irish Study of High-Density Schizophrenia Families (ISHDSF) by computing pairwise correlations between nonparametric linkage scores for narrow, intermediate, and broad diagnostic definitions. The linked regions were on chromosomes 2, 4, 5, 6, 8, and 10. No correlation reached our a priori level of statistical significance. Using this statistical approach, we did not find evidence of important epistatic effects among these six regions in the ISHDSF.
Collapse
Affiliation(s)
- P F Sullivan
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia 23298, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Shibata D, Liu YG. Agrobacterium-mediated plant transformation with large DNA fragments. TRENDS IN PLANT SCIENCE 2000; 5:354-7. [PMID: 10908881 DOI: 10.1016/s1360-1385(00)01689-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Affiliation(s)
- D Shibata
- Kazusa DNA Research Institute, Yana 1532-3, Kisarazu, Chiba 292-0812, Japan.
| | | |
Collapse
|
43
|
de Koning DJ, Rattink AP, Harlizius B, van Arendonk JA, Brascamp EW, Groenen MA. Genome-wide scan for body composition in pigs reveals important role of imprinting. Proc Natl Acad Sci U S A 2000; 97:7947-50. [PMID: 10859367 PMCID: PMC16650 DOI: 10.1073/pnas.140216397] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The role of imprinting in body composition was investigated in an experimental cross between Chinese Meishan pigs and commercial Dutch pigs. A whole-genome scan revealed significant evidence for five quantitative trait loci (QTL) affecting body composition, of which four were imprinted. Imprinting was tested with a statistical model that separated the expression of paternally and maternally inherited alleles. For back fat thickness, a paternally expressed QTL was found on Sus scrofa chromosome 2 (SSC2), and a Mendelian-expressed QTL was found on SSC7. In the same region of SSC7, a maternally expressed QTL affecting muscle depth was found. Chromosome 6 harbored a maternally expressed QTL on the short arm and a paternally expressed QTL on the long arm, both affecting intramuscular fat content. The individual QTL explained from 2% up to 10% of the phenotypic variance. The known homologies to human and mouse did not reveal positional candidate genes. This study demonstrates that testing for imprinting should become a standard procedure to unravel the genetic control of multifactorial traits.
Collapse
Affiliation(s)
- D J de Koning
- Animal Breeding and Genetics Group, Wageningen Institute of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
44
|
Riquet J, Coppieters W, Cambisano N, Arranz JJ, Berzi P, Davis SK, Grisart B, Farnir F, Karim L, Mni M, Simon P, Taylor JF, Vanmanshoven P, Wagenaar D, Womack JE, Georges M. Fine-mapping of quantitative trait loci by identity by descent in outbred populations: application to milk production in dairy cattle. Proc Natl Acad Sci U S A 1999; 96:9252-7. [PMID: 10430929 PMCID: PMC17766 DOI: 10.1073/pnas.96.16.9252] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We previously mapped a quantitative trait locus (QTL) affecting milk production to bovine chromosome 14. To refine the map position of this QTL, we have increased the density of the genetic map of BTA14q11-16 by addition of nine microsatellites and three single nucleotide polymorphisms. Fine-mapping of the QTL was accomplished by a two-tiered approach. In the first phase, we identified seven sires heterozygous "Qq" for the QTL by marker-assisted segregation analysis in a Holstein-Friesian pedigree comprising 1,158 individuals. In a second phase, we genotyped the seven selected sires for the newly developed high-density marker map and searched for a shared haplotype flanking an hypothetical, identical-by-descent QTL allele with large substitution effect. The seven chromosomes increasing milk fat percentage were indeed shown to carry a common chromosome segment with an estimated size of 5 cM predicted to contain the studied QTL. The same haplotype was shown to be associated with increased fat percentage in the general population as well, providing additional support in favor of the location of the QTL within the corresponding interval.
Collapse
Affiliation(s)
- J Riquet
- Department of Genetics, Faculty of Veterinary Medicine, University of Liège (B43), 20 Bd de Colonster, 4000-Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hamre K, Tharp R, Poon K, Xiong X, Smeyne RJ. Differential strain susceptibility following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration acts in an autosomal dominant fashion: quantitative analysis in seven strains of Mus musculus. Brain Res 1999; 828:91-103. [PMID: 10320728 DOI: 10.1016/s0006-8993(99)01273-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been used as a potent neurotoxin to approximate, in animals, the pathology that is observed in human Parkinson's disease. In this study, we examine the toxicity of MPTP in seven strains of mice, spanning a genetic continuum of Mus musculus as a prelude to uncovering complex traits associated with MPTP toxicity. Seven days following injection of 80 mg/kg MPTP (4x20 mg/kg every 2 h), we find that the individual mouse strains exhibit dramatic differences in SNpc neuron survival, ranging from 63% cell loss in C57BL/6J mice to 14% cell loss in Swiss-Webster (SW) mice. In order to determine if the susceptibility trait was dominant, additive or recessive, we crossed C57Bl/6J mice with either SWR/J or AKR/J mice and examined the effect of MPTP on F1 C57BL/6JxSWR/J or F1 C57BL/6JxAKR/J animals. We find that all of the F1 animals were phenotypically identical to the C57BL/6J animals. In addition, no gender differences were noted in any of the MPTP-treated inbred mice or in the F1 animals. These results suggest that susceptibility to cell loss following MPTP is autosomal dominant and this polymorphism is carried on the C57BL/6J allele.
Collapse
Affiliation(s)
- K Hamre
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA
| | | | | | | | | |
Collapse
|
46
|
Marklund L, Nyström PE, Stern S, Andersson-Eklund L, Andersson L. Confirmed quantitative trait loci for fatness and growth on pig chromosome 4. Heredity (Edinb) 1999; 82 ( Pt 2):134-41. [PMID: 10098263 DOI: 10.1038/sj.hdy.6884630] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Quantitative trait loci (QTLs) with large effects on fatness and growth have been identified previously on pig chromosome 4 in an intercross between the European wild pig and Large White domestic pigs. Two F2 sows, heterozygous for the actual chromosome region, were backcrossed to a Large White boar, and two backcross (BC1) boars were in turn backcrossed to Large White/Landrace sows. One of the boars was heterozygous for an intact wild pig-derived QTL region, whereas the other carried a recombinant haplotype. A total of 85 BC2 animals were produced. Phenotypical measurements included daily weight gain, ultrasonic measurements of fat depth at 70 and 90 kg and several carcass traits. QTL segregation was deduced using 15 markers previously assigned to chromosome 4. Highly significant QTL effects were observed on all fatness traits and on the length of the carcass. A small but significant effect on growth was also observed. The results confirm the presence of one or more QTLs on chromosome 4 affecting fatness and growth. There was a good agreement between the estimates of QTL effects in the F2 and BC2 generations. The results from the recombinant sire family allowed us to map the major QTL effect distal to the recombination breakpoint. We propose that this confirmed QTL with a major effect on fatness is designated FAT1.
Collapse
Affiliation(s)
- L Marklund
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
47
|
Yoshida Y, Ushijima T, Yamashita S, Imai K, Sugimura T, Nagao M. Development of the arbitrarily primed-representational difference analysis method and chromosomal mapping of isolated high throughput rat genetic markers. Proc Natl Acad Sci U S A 1999; 96:610-5. [PMID: 9892681 PMCID: PMC15184 DOI: 10.1073/pnas.96.2.610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Linkage mapping of quantitative trait loci requires analysis of a large number of animals. Although genetic markers isolated by representational difference analysis (RDA) and its modifications meet the needs, the number of these markers has been limited. In the present study, we established the arbitrarily primed (AP)-RDA method to isolate virtually an unlimited number of the high throughput genetic markers. A representation of the genome, an AP-amplicon, was prepared by AP-PCR with a single primer or with a combination of primers using genomic DNA of the ACI/N (ACI) or BUF/Nac (BUF) rat as a template. By subtracting the AP-amplicon of ACI from that of BUF, a total of 40 polymorphic and independent markers were isolated in seven series of AP-RDA using a single primer. Two series of AP-RDA with primer combination yielded seven additional independent markers. All of the markers gave clear positive/negative signals by hybridization of a filter where AP-amplicons from F2 rats of ACI and BUF were dot-blotted at a high density without any concentration or purification. All of the 47 independent markers were mapped to unique chromosomal positions by linkage analysis, even though some arbitrary primers had very similar sequences. The markers were also informative between other strains of rats. Simultaneous hybridization of multiple filters made it possible to genotype a large number of rats simultaneously for multiple genetic loci. The AP-RDA method promises isolation of a large number of high throughput genetic markers in any species and is expected to facilitate linkage mapping of subtle quantitative trait loci.
Collapse
Affiliation(s)
- Y Yoshida
- Carcinogenesis Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
A number of recent advances in genomic research will change and improve livestock production in the near future. Genetic linkage maps have been developed for a number of livestock species including cattle, sheep, and pigs. These maps allow scientists to identify chromosomal regions that influence traits of economic importance. This information will lead to improved genetic selection practices by identifying animals with superior copies of the chromosomal regions that affect the selected trait. This mapping information will also be used to identify the genes controlling the trait. A number of genomic regions or loci have already been reported that affect production, carcass or disease traits, and in a few cases, a specific gene has been identified. Production of transgenic animals with sequence changes in these genes may be beneficial for evaluating the effect of the gene upon the selected trait and more specifically the effect of certain polymorphisms (mutations) within the gene.
Collapse
Affiliation(s)
- S M Kappes
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| |
Collapse
|
49
|
|
50
|
Yan J, Zhu J, He C, Benmoussa M, Wu P. Molecular dissection of developmental behavior of plant height in rice (Oryza sativa L.). Genetics 1998; 150:1257-65. [PMID: 9799277 PMCID: PMC1460389 DOI: 10.1093/genetics/150.3.1257] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A doubled haploid population of 123 lines from IR64/Azucena was used to dissect the developmental behavior and genotype by environment interaction for plant height by conditional and unconditional quantitative trait loci (QTL) mapping methods in rice. It was shown that the number of QTL detected was different at various measuring stages. Some QTL could be detected at all stages and some only at one or several stages. More QTL could be found on the basis of time-dependent measures of different stages. By conditional QTL mapping of time-dependent measures, it is possible to reveal dynamic gene expression for quantitative traits. Mapping QTL for genetic main effects and GE interaction effects could help us in understanding the nature of QTL x environment interaction for the development of quantitative traits.
Collapse
Affiliation(s)
- J Yan
- Department of Agronomy, Zhejiang Agricultural University, Hangzhou, 310029, China
| | | | | | | | | |
Collapse
|