1
|
Gaál E, Farkas A, Türkösi E, Kruppa K, Szakács É, Szőke-Pázsi K, Kovács P, Kalapos B, Darkó É, Said M, Lampar A, Ivanizs L, Valárik M, Doležel J, Molnár I. DArTseq genotyping facilitates identification of Aegilops biuncialis chromatin introgressed into bread wheat Mv9kr1. PLANT MOLECULAR BIOLOGY 2024; 114:122. [PMID: 39508930 PMCID: PMC11543725 DOI: 10.1007/s11103-024-01520-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024]
Abstract
Wild wheat relative Aegilops biuncialis offers valuable traits for crop improvement through interspecific hybridization. However, gene transfer from Aegilops has been hampered by difficulties in detecting introgressed Ub- and Mb-genome chromatin in the wheat background at high resolution. The present study applied DArTseq technology to genotype two backcrossed populations (BC382, BC642) derived from crosses of wheat line Mv9kr1 with Ae. biuncialis accession, MvGB382 (early flowering and drought-tolerant) and MvGB642 (leaf rust-resistant). A total of 11,952 Aegilops-specific Silico-DArT markers and 8,998 wheat-specific markers were identified. Of these, 7,686 markers were assigned to Ub-genome chromosomes and 4,266 to Mb-genome chromosomes and were ordered using chromosome scale reference assemblies of hexaploid wheat and Ae. umbellulata. Ub-genome chromatin was detected in 5.7% of BC382 and 22.7% of BC642 lines, while 88.5% of BC382 and 84% of BC642 lines contained Mb-genome chromatin, predominantly the chromosomes 4Mb and 5Mb. The presence of alien chromatin was confirmed by microscopic analysis of mitotic metaphase cells using GISH and FISH, which allowed precise determination of the size and position of the introgression events. New Mv9kr1-Ae. biuncialis MvGB382 4Mb and 5Mb disomic addition lines together with a 5DS.5DL-5MbL recombination were identified. A possible effect of the 5MbL distal region on seed length has also been observed. Moreover, previously developed Mv9kr1-MvGB642 introgression lines were more precisely characterized. The newly developed cytogenetic stocks represent valuable genetic resources for wheat improvement, highlighting the importance of utilizing diverse genetic materials to enhance wheat breeding strategies.
Collapse
Affiliation(s)
- Eszter Gaál
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - András Farkas
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - Edina Türkösi
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - Klaudia Kruppa
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - Éva Szakács
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - Kitti Szőke-Pázsi
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - Péter Kovács
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - Balázs Kalapos
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - Éva Darkó
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - Mahmoud Said
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, 77900, Czech Republic
- Agricultural Research Centre, Field Crops Research Institute, 9 Gamma Street, Giza, 12619, Egypt
| | - Adam Lampar
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, 77900, Czech Republic
| | - László Ivanizs
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary.
| | - Miroslav Valárik
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, 77900, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, 77900, Czech Republic
| | - István Molnár
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, 77900, Czech Republic
| |
Collapse
|
2
|
Szőke-Pázsi K, Kruppa K, Tulpová Z, Kalapos B, Türkösi E, Gaál E, Darkó É, Said M, Farkas A, Kovács P, Ivanizs L, Doležel J, Rabanus-Wallace MT, Molnár I, Szakács É. DArTseq genotyping facilitates the transfer of "exotic" chromatin from a Secale cereale × S. strictum hybrid into wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1407840. [PMID: 39309182 PMCID: PMC11412823 DOI: 10.3389/fpls.2024.1407840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 09/25/2024]
Abstract
Cultivated and wild species of the genus rye (Secale) are important but underexploited gene sources for increasing the genetic diversity of bread wheat. Gene transfer is possible via bridge genetic materials derived from intergeneric hybrids. During this process, it is essential to precisely identify the rye chromatin in the wheat genetic background. In the present study, backcross generation BC2F8 from a cross between Triticum aestivum (Mv9kr1) and S. cereanum ('Kriszta,' a cultivar from the artificial hybrid of S. cereale and S. strictum) was screened using in-situ hybridization (GISH and FISH) and analyzed by DArTseq genotyping in order to select potentially agronomically useful genotypes for prebreeding purposes. Of the 329,267 high-quality short sequence reads generated, 27,822 SilicoDArT and 8,842 SNP markers specific to S. cereanum 1R-7R chromosomes were identified. Heatmaps of the marker densities along the 'Lo7' rye reference pseudomolecules revealed subtle differences between the FISH- and DArTseq-based results. This study demonstrates that the "exotic" rye chromatin of S. cereanum introgressed into wheat can be reliably identified by high-throughput DArTseq genotyping. The Mv9kr1-'Kriszta' addition and translocation lines presented here may serve as valuable prebreeding genetic materials for the development of stress-tolerant or disease-resistant wheat varieties.
Collapse
Affiliation(s)
- Kitti Szőke-Pázsi
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Klaudia Kruppa
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Zuzana Tulpová
- Institute of Experimental Botany, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - Balázs Kalapos
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Edina Türkösi
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Eszter Gaál
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Éva Darkó
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Mahmoud Said
- Institute of Experimental Botany, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
- Field Crops Research Institute, Agricultural Research Centre, Giza, Cairo, Egypt
| | - András Farkas
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Péter Kovács
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - László Ivanizs
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - M. Timothy Rabanus-Wallace
- School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Research Group Genomics of Genetic Resources, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - István Molnár
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
- Institute of Experimental Botany, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - Éva Szakács
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| |
Collapse
|
3
|
Bruschi M, Bozzoli M, Ratti C, Sciara G, Goudemand E, Devaux P, Ormanbekova D, Forestan C, Corneti S, Stefanelli S, Castelletti S, Fusari E, Novi JB, Frascaroli E, Salvi S, Perovic D, Gadaleta A, Rubies-Autonell C, Sanguineti MC, Tuberosa R, Maccaferri M. Dissecting the genetic basis of resistance to Soil-borne cereal mosaic virus (SBCMV) in durum wheat by bi-parental mapping and GWAS. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:213. [PMID: 39222129 PMCID: PMC11369050 DOI: 10.1007/s00122-024-04709-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
Soil-borne cereal mosaic virus (SBCMV), the causative agent of wheat mosaic, is a Furovirus challenging wheat production all over Europe. Differently from bread wheat, durum wheat shows greater susceptibility and stronger yield penalties, so identification and genetic characterization of resistance sources are major targets for durum genetics and breeding. The Sbm1 locus providing high level of resistance to SBCMV was mapped in bread wheat to the 5DL chromosome arm (Bass in Genome 49:1140-1148, 2006). This excluded the direct use of Sbm1 for durum wheat improvement. Only one major QTL has been mapped in durum wheat, namely QSbm.ubo-2B, on the 2BS chromosome region coincident with Sbm2, already known in bread wheat as reported (Bayles in HGCA Project Report, 2007). Therefore, QSbm.ubo-2B = Sbm2 is considered a pillar for growing durum in SBCMV-affected areas. Herein, we report the fine mapping of Sbm2 based on bi-parental mapping and GWAS, using the Infinium 90 K SNP array and high-throughput KASP®. Fine mapping pointed out a critical haploblock of 3.2 Mb defined by concatenated SNPs successfully converted to high-throughput KASP® markers coded as KUBO. The combination of KUBO-27, wPt-2106-ASO/HRM, KUBO-29, and KUBO-1 allows unequivocal tracing of the Sbm2-resistant haplotype. The interval harbors 52 high- and 41 low-confidence genes, encoding 17 cytochrome p450, three receptor kinases, two defensins, and three NBS-LRR genes. These results pave the way for Sbm2 positional cloning. Importantly, the development of Sbm2 haplotype tagging KASP® provides a valuable case study for improving efficacy of the European variety testing system and, ultimately, the decision-making process related to varietal characterization and choice.
Collapse
Affiliation(s)
- Martina Bruschi
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Matteo Bozzoli
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Claudio Ratti
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Giuseppe Sciara
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Ellen Goudemand
- S.A.S. Florimond-Desprez Veuve and Fils, BP41, 59242, Cappelle-en-Pévèle, France
| | - Pierre Devaux
- S.A.S. Florimond-Desprez Veuve and Fils, BP41, 59242, Cappelle-en-Pévèle, France
| | - Danara Ormanbekova
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Cristian Forestan
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Simona Corneti
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Sandra Stefanelli
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Sara Castelletti
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Elena Fusari
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Jad B Novi
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Elisabetta Frascaroli
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Silvio Salvi
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Dragan Perovic
- Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius Kühn-Institut (JKI), Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Agata Gadaleta
- Department of Soil, Plant and Food Science (Di.S.S.P.A.), University of Bari 'Aldo Moro', 70126, Bari, Italy
| | - Concepcion Rubies-Autonell
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Maria Corinna Sanguineti
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Roberto Tuberosa
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Marco Maccaferri
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy.
| |
Collapse
|
4
|
Wang Y, Chen G, Zeng F, Han Z, Qiu CW, Zeng M, Yang Z, Xu F, Wu D, Deng F, Xu S, Chater C, Korol A, Shabala S, Wu F, Franks P, Nevo E, Chen ZH. Molecular evidence for adaptive evolution of drought tolerance in wild cereals. THE NEW PHYTOLOGIST 2023; 237:497-514. [PMID: 36266957 DOI: 10.1111/nph.18560] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The considerable drought tolerance of wild cereal crop progenitors has diminished during domestication in the pursuit of higher productivity. Regaining this trait in cereal crops is essential for global food security but requires novel genetic insight. Here, we assessed the molecular evidence for natural variation of drought tolerance in wild barley (Hordeum spontaneum), wild emmer wheat (Triticum dicoccoides), and Brachypodium species collected from dry and moist habitats at Evolution Canyon, Israel (ECI). We report that prevailing moist vs dry conditions have differentially shaped the stomatal and photosynthetic traits of these wild cereals in their respective habitats. We present the genomic and transcriptomic evidence accounting for differences, including co-expression gene modules, correlated with physiological traits, and selective sweeps, driven by the xeric site conditions on the African Slope (AS) at ECI. Co-expression gene module 'circadian rhythm' was linked to significant drought-induced delay in flowering time in Brachypodium stacei genotypes. African Slope-specific differentially expressed genes are important in barley drought tolerance, verified by silencing Disease-Related Nonspecific Lipid Transfer 1 (DRN1), Nonphotochemical Quenching 4 (NPQ4), and Brassinosteroid-Responsive Ring-H1 (BRH1). Our results provide new genetic information for the breeding of resilient wheat and barley in a changing global climate with increasingly frequent drought events.
Collapse
Affiliation(s)
- Yuanyuan Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fanrong Zeng
- Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Zhigang Han
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Cheng-Wei Qiu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Meng Zeng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Fei Xu
- Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Dezhi Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fenglin Deng
- Central Laboratory, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shengchun Xu
- Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Caspar Chater
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Abraham Korol
- Institute of Evolution, University of Haifa, Mount Carmel, 34988384, Haifa, Israel
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, 7004, Australia
- School of Biological Science, University of Western Australia, Crawley, WA, 6009, Australia
| | - Feibo Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Peter Franks
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mount Carmel, 34988384, Haifa, Israel
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| |
Collapse
|
5
|
Wu J, Xu D, Fu L, Wu L, Hao W, Li J, Dong Y, Wang F, Wu Y, He Z, Si H, Ma C, Xia X. Fine mapping of a stripe rust resistance gene YrZM175 in bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2665-2673. [PMID: 35986759 DOI: 10.1007/s00122-022-04140-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/23/2022] [Indexed: 05/26/2023]
Abstract
A stripe rust resistance gene YrZM175 in Chinese wheat cultivar Zhongmai 175 was mapped to a genomic interval of 636.4 kb on chromosome arm 2AL, and a candidate gene was predicted. Stripe rust, caused by Puccinia striiformis f. sp. tritici (PST), is a worldwide wheat disease that causes large losses in production. Fine mapping and cloning of resistance genes are important for accurate marker-assisted breeding. Here, we report the fine mapping and candidate gene analysis of stripe rust resistance gene YrZM175 in a Chinese wheat cultivar Zhongmai 175. Fifteen F1, 7,325 F2 plants and 117 F2:3 lines derived from cross Avocet S/Zhongmai 175 were inoculated with PST race CYR32 at the seedling stage in a greenhouse, and F2:3 lines were also evaluated for stripe rust reaction in the field using mixed PST races. Bulked segregant RNA-seq (BSR-seq) analyses revealed 13 SNPs in the region 762.50-768.52 Mb on chromosome arm 2AL. By genome mining, we identified SNPs and InDels between the parents and contrasting bulks and mapped YrZM175 to a 0.72-cM, 636.4-kb interval spanned by YrZM175-InD1 and YrZM175-InD2 (763,452,916-764,089,317 bp) including two putative disease resistance genes based on IWGSC RefSeq v1.0. Collinearity analysis indicated similar target genomic intervals in Chinese Spring, Aegilops tauschii (2D: 647.7-650.5 Mb), Triticum urartu (2A: 750.7-752.3 Mb), Triticum dicoccoides (2A: 771.0-774.5 Mb), Triticum turgidum (2B: 784.7-788.2 Mb), and Triticum aestivum cv. Aikang 58 (2A: 776.3-778.9 Mb) and Jagger (2A: 789.3-791.7 Mb). Through collinearity analysis, sequence alignments of resistant and susceptible parents and gene expression level analysis, we predicted TRITD2Bv1G264480 from Triticum turgidum to be a candidate gene for map-based cloning of YrZM175. A gene-specific marker for TRITD2Bv1G264480 co-segregated with the resistance gene. Molecular marker analysis and stripe rust response data revealed that YrZM175 was different from genes Yr1, Yr17, Yr32, and YrJ22 located on chromosome 2A. Fine mapping of YrZM175 lays a solid foundation for functional gene analysis and marker-assisted selection for improved stripe rust resistance in wheat.
Collapse
Affiliation(s)
- Jingchun Wu
- College of Agronomy, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui province, China
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Dengan Xu
- College of Agronomy, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, Shandong province, China
| | - Luping Fu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, Jiangsu province, China
- Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Jiangsu province, Yangzhou, 225009, China
| | - Ling Wu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, 4 Shizishan Road, Chengdu, 610011, Sichuan province, China
| | - Weihao Hao
- College of Agronomy, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui province, China
| | - Jihu Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, Shandong province, China
| | - Yan Dong
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Fengju Wang
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yuying Wu
- College of Agronomy, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, 450002, Henan province, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Centre (CIMMYT) China Office c/o, CAAS, Beijing, 100081, China
| | - Hongqi Si
- College of Agronomy, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui province, China
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui province, China.
| | - Xianchun Xia
- College of Agronomy, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui province, China.
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
6
|
Wu J, Xu D, Fu L, Wu L, Hao W, Li J, Dong Y, Wang F, Wu Y, He Z, Si H, Ma C, Xia X. Fine mapping of a stripe rust resistance gene YrZM175 in bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3485-3496. [PMID: 35986759 DOI: 10.1007/s00122-022-04195-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
A stripe rust resistance gene YrZM175 in Chinese wheat cultivar Zhongmai 175 was mapped to a genomic interval of 636.4 kb on chromosome arm 2AL, and a candidate gene was predicted. Stripe rust, caused by Puccinia striiformis f. sp. tritici (PST), is a worldwide wheat disease that causes large losses in production. Fine mapping and cloning of resistance genes are important for accurate marker-assisted breeding. Here, we report the fine mapping and candidate gene analysis of stripe rust resistance gene YrZM175 in a Chinese wheat cultivar Zhongmai 175. Fifteen F1, 7,325 F2 plants and 117 F2:3 lines derived from cross Avocet S/Zhongmai 175 were inoculated with PST race CYR32 at the seedling stage in a greenhouse, and F2:3 lines were also evaluated for stripe rust reaction in the field using mixed PST races. Bulked segregant RNA-seq (BSR-seq) analyses revealed 13 SNPs in the region 762.50-768.52 Mb on chromosome arm 2AL. By genome mining, we identified SNPs and InDels between the parents and contrasting bulks and mapped YrZM175 to a 0.72-cM, 636.4-kb interval spanned by YrZM175-InD1 and YrZM175-InD2 (763,452,916-764,089,317 bp) including two putative disease resistance genes based on IWGSC RefSeq v1.0. Collinearity analysis indicated similar target genomic intervals in Chinese Spring, Aegilops tauschii (2D: 647.7-650.5 Mb), Triticum urartu (2A: 750.7-752.3 Mb), Triticum dicoccoides (2A: 771.0-774.5 Mb), Triticum turgidum (2B: 784.7-788.2 Mb), and Triticum aestivum cv. Aikang 58 (2A: 776.3-778.9 Mb) and Jagger (2A: 789.3-791.7 Mb). Through collinearity analysis, sequence alignments of resistant and susceptible parents and gene expression level analysis, we predicted TRITD2Bv1G264480 from Triticum turgidum to be a candidate gene for map-based cloning of YrZM175. A gene-specific marker for TRITD2Bv1G264480 co-segregated with the resistance gene. Molecular marker analysis and stripe rust response data revealed that YrZM175 was different from genes Yr1, Yr17, Yr32, and YrJ22 located on chromosome 2A. Fine mapping of YrZM175 lays a solid foundation for functional gene analysis and marker-assisted selection for improved stripe rust resistance in wheat.
Collapse
Affiliation(s)
- Jingchun Wu
- College of Agronomy, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui province, China
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Dengan Xu
- College of Agronomy, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, Shandong province, China
| | - Luping Fu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, Jiangsu province, China
- Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Jiangsu province, Yangzhou, 225009, China
| | - Ling Wu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, 4 Shizishan Road, Chengdu, 610011, Sichuan province, China
| | - Weihao Hao
- College of Agronomy, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui province, China
| | - Jihu Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, Shandong province, China
| | - Yan Dong
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Fengju Wang
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yuying Wu
- College of Agronomy, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, 450002, Henan province, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Centre (CIMMYT) China Office c/o, CAAS, Beijing, 100081, China
| | - Hongqi Si
- College of Agronomy, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui province, China
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui province, China.
| | - Xianchun Xia
- College of Agronomy, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui province, China.
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
7
|
Becher H, Sampson J, Twyford AD. Measuring the Invisible: The Sequences Causal of Genome Size Differences in Eyebrights ( Euphrasia) Revealed by k-mers. FRONTIERS IN PLANT SCIENCE 2022; 13:818410. [PMID: 35968114 PMCID: PMC9372453 DOI: 10.3389/fpls.2022.818410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Genome size variation within plant taxa is due to presence/absence variation, which may affect low-copy sequences or genomic repeats of various frequency classes. However, identifying the sequences underpinning genome size variation is challenging because genome assemblies commonly contain collapsed representations of repetitive sequences and because genome skimming studies by design miss low-copy number sequences. Here, we take a novel approach based on k-mers, short sub-sequences of equal length k, generated from whole-genome sequencing data of diploid eyebrights (Euphrasia), a group of plants that have considerable genome size variation within a ploidy level. We compare k-mer inventories within and between closely related species, and quantify the contribution of different copy number classes to genome size differences. We further match high-copy number k-mers to specific repeat types as retrieved from the RepeatExplorer2 pipeline. We find genome size differences of up to 230Mbp, equivalent to more than 20% genome size variation. The largest contributions to these differences come from rDNA sequences, a 145-nt genomic satellite and a repeat associated with an Angela transposable element. We also find size differences in the low-copy number class (copy number ≤ 10×) of up to 27 Mbp, possibly indicating differences in gene space between our samples. We demonstrate that it is possible to pinpoint the sequences causing genome size variation within species without the use of a reference genome. Such sequences can serve as targets for future cytogenetic studies. We also show that studies of genome size variation should go beyond repeats if they aim to characterise the full range of genomic variants. To allow future work with other taxonomic groups, we share our k-mer analysis pipeline, which is straightforward to run, relying largely on standard GNU command line tools.
Collapse
Affiliation(s)
- Hannes Becher
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Jacob Sampson
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Alex D. Twyford
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
- Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
8
|
Cui C, Lu Q, Zhao Z, Lu S, Duan S, Yang Y, Qiao Y, Chen L, Hu YG. The fine mapping of dwarf gene Rht5 in bread wheat and its effects on plant height and main agronomic traits. PLANTA 2022; 255:114. [PMID: 35507093 DOI: 10.1007/s00425-022-03888-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Rht5 was narrowed to an approximately 1 Mb interval and had pleiotropic effects on plant height, spike length and grain size. TraesCS3B02G025600 was predicted as the possible candidate gene. Plant height is an important component related to plant architecture, lodging resistance, and yield performance. The utilization of dwarf genes has made great contributions to wheat breeding and production. In this study, two F2 populations derived from the crosses of Jinmai47 and Ningchun45 with Marfed M were employed to identify the genetic region of reduce plant height 5 (Rht5), and their derived lines were used to evaluate its effects on plant height and main agronomic traits. Rht5 was fine-mapped between markers Kasp-25 and Kasp-23, in approximately 1 Mb region on chromosome 3BS, which harbored 17 high-confidence annotated genes based on the reference genome of Chinese Spring (IWGSC RefSeq v1.1). TraesCS3B02G025600 were predicted as the possible candidate gene based on its differential expression and sequence variation between dwarf and tall lines and parents. The results of phenotypic evaluation showed that Rht5 had pleiotropic effects on plant height, spike length, culm diameter, grain size and grain yield. The plant height of Rht5 dwarf lines was reduced by an average of 32.67% (32.53 cm) and 27.84% (33.62 cm) in the Jinmai47 and Ningchun45 population, respectively. While Rht5 showed significant and negative pleiotropic effects on culm diameter, aboveground biomass, grain yield, spike length, spikelet number, grain number per spike, grain size, grain weight and filling degree of basal second internode. The culm lodging resistance index (CLRI) of dwarf lines was significantly higher than that of tall lines in the two population. In conclusion, these results lay a foundation for understanding the dwarfing mechanism of Rht5.
Collapse
Affiliation(s)
- Chunge Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiumei Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhangchen Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Shan Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Shan Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yang Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yue Qiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Liang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yin-Gang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
9
|
Kong Z, Cheng R, Yan H, Yuan H, Zhang Y, Li G, Jia H, Xue S, Zhai W, Yuan Y, Ma Z. Fine mapping KT1 on wheat chromosome 5A that conditions kernel dimensions and grain weight. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1101-1111. [PMID: 35083509 DOI: 10.1007/s00122-021-04020-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
KT1 was validated as a novel thickness QTL with major effects on wheat kernel dimensions and weight and fine mapped to a 0.04 cM interval near the chromosome-5A centromere. Kernel size, the principal grain weight determining factor of wheat and a target trait for both domestication and artificial breeding, is mainly defined by kernel length (KL), kernel width (KW) and kernel thickness (KT), of which KW and KT have been shown to be positively related to grain weight (GW). Qkt.nau-5A, a major QTL for KT, was validated using the QTL near-isogenic lines (NILs) in three genetic backgrounds. Genetic analysis using two F2 populations derived from the NILs showed that Qkt.nau-5A was dominant for thicker kernel and inherited like a single gene and therefore was designated as Kernel Thickness 1 (KT1). With 77 recombinant lines identified from a total of 19,160 F2 plants from the two NIL-derived F2 populations, KT1 was mapped to the 0.04 cM Xwgrb1356-Xwgrb1619 interval, which was near the centromere and displayed strong recombination suppression. The KT1 interval showed positive correlation with KW and GW and negative correlation with KL and therefore could be used in breeding for cultivars with round-shaped kernels that are beneficial to higher flour yield. KT1 candidate identification could be achieved through combination of sequence variation analysis with expression profiling of the annotated genes in the interval.
Collapse
Affiliation(s)
- Zhongxin Kong
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ruiru Cheng
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Haisheng Yan
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Haiyun Yuan
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yong Zhang
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Huaiyin Institute of Agriculture Sciences of Xuhuai Region in Jiangsu, Huaian, China
| | - Guoqiang Li
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Haiyan Jia
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shulin Xue
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Wenling Zhai
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yang Yuan
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhengqiang Ma
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
10
|
Wang L, Zhu T, Rodriguez JC, Deal KR, Dubcovsky J, McGuire PE, Lux T, Spannagl M, Mayer KFX, Baldrich P, Meyers BC, Huo N, Gu YQ, Zhou H, Devos KM, Bennetzen JL, Unver T, Budak H, Gulick PJ, Galiba G, Kalapos B, Nelson DR, Li P, You FM, Luo MC, Dvorak J. Aegilops tauschii genome assembly Aet v5.0 features greater sequence contiguity and improved annotation. G3-GENES GENOMES GENETICS 2021; 11:6369516. [PMID: 34515796 PMCID: PMC8664484 DOI: 10.1093/g3journal/jkab325] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/31/2021] [Indexed: 01/01/2023]
Abstract
Aegilops tauschii is the donor of the D subgenome of hexaploid wheat and an important genetic resource. The reference-quality genome sequence Aet v4.0 for Ae. tauschii acc. AL8/78 was therefore an important milestone for wheat biology and breeding. Further advances in sequencing acc. AL8/78 and release of the Aet v5.0 sequence assembly are reported here. Two new optical maps were constructed and used in the revision of pseudomolecules. Gaps were closed with Pacific Biosciences long-read contigs, decreasing the gap number by 38,899. Transposable elements and protein-coding genes were reannotated. The number of annotated high-confidence genes was reduced from 39,635 in Aet v4.0 to 32,885 in Aet v5.0. A total of 2245 biologically important genes, including those affecting plant phenology, grain quality, and tolerance of abiotic stresses in wheat, was manually annotated and disease-resistance genes were annotated by a dedicated pipeline. Disease-resistance genes encoding nucleotide-binding site domains, receptor-like protein kinases, and receptor-like proteins were preferentially located in distal chromosome regions, whereas those encoding transmembrane coiled-coil proteins were dispersed more evenly along the chromosomes. Discovery, annotation, and expression analyses of microRNA (miRNA) precursors, mature miRNAs, and phasiRNAs are reported, including miRNA target genes. Other small RNAs, such as hc-siRNAs and tRFs, were characterized. These advances enhance the utility of the Ae. tauschii genome sequence for wheat genetics, biotechnology, and breeding.
Collapse
Affiliation(s)
- Le Wang
- Department of Plant Sciences, University of California, Davis, Davis, California 95616, USA
| | - Tingting Zhu
- Department of Plant Sciences, University of California, Davis, Davis, California 95616, USA
| | - Juan C Rodriguez
- Department of Plant Sciences, University of California, Davis, Davis, California 95616, USA
| | - Karin R Deal
- Department of Plant Sciences, University of California, Davis, Davis, California 95616, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, Davis, California 95616, USA
| | - Patrick E McGuire
- Department of Plant Sciences, University of California, Davis, Davis, California 95616, USA
| | - Thomas Lux
- Plant Genome and Systems Biology, Helmholtz Zentrum München, Munich 85764, Germany
| | - Manuel Spannagl
- Plant Genome and Systems Biology, Helmholtz Zentrum München, Munich 85764, Germany
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Zentrum München, Munich 85764, Germany
| | - Patricia Baldrich
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA.,University of Missouri, Columbia, Division of Plant Sciences, Columbia, Missouri 65211, USA
| | - Naxin Huo
- Crop Improvement and Genetics Research Unit, USDA-ARS, Albany, California 94710, USA
| | - Yong Q Gu
- Crop Improvement and Genetics Research Unit, USDA-ARS, Albany, California 94710, USA
| | - Hongye Zhou
- Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602, USA
| | - Katrien M Devos
- Institute of Plant Breeding, Genetics and Genomics (Dept. of Crop & Soil Sciences) and Dept. of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | - Turgay Unver
- Ficus Biotechnology, Ostim Teknopark, Ankara 06374, Turkey
| | - Hikmet Budak
- Montana BioAg Inc., Missoula, Montana 59801, USA
| | - Patrick J Gulick
- Department of Biology, Concordia University, Montreal, Quebec H3G 1M8, Canada
| | - Gabor Galiba
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Loránd Research Network, H-2462 Martonvásár, Hungary.,Department of Environmental Sustainability, IES, Hungarian University of Agriculture and Life Sciences, H-8360 Keszthely, Hungary
| | - Balázs Kalapos
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Loránd Research Network, H-2462 Martonvásár, Hungary
| | - David R Nelson
- University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Pingchuan Li
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C5, Canada
| | - Frank M You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C5, Canada
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, Davis, California 95616, USA
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, Davis, California 95616, USA
| |
Collapse
|
11
|
Li N, Tan Q, Ding J, Pan X, Ma Z. Fine mapping of Ne1, the hybrid necrosis gene complementary to Ne2 in common wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2813-2821. [PMID: 34023915 DOI: 10.1007/s00122-021-03860-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Apart from confinement of Ne1 to a 4.45 Mb genomic segment, markers closely linked to Ne2 were identified and incomplete dominance of both genes in conditioning necrosis severity was shown. Hybrid necrosis in plants is characterized by premature death of leaves or plants in F1 hybrids. Interaction of two complementary dominant genes Ne1 and Ne2 in wheat (Triticum aestivum L.) is known to cause hybrid necrosis. However, the mechanism underlying this necrosis is still elusive. To obtain markers closely-linked to these two genes, Ne1-carrying cultivar Zheng891 was crossed with Ne2-carrying cultivar Pan555. Using BC1F1 plants derived from crosses of the F1 plants with the two parental lines, Ne1 and Ne2 were mapped to a 2.2 cM interval and a 2.3 cM interval with newly developed markers, respectively. Ne1 was further delimited to a 0.19 cM interval using 2015 Ne2-carrying F2 plants. Xwgrc3146, Xwgrc3147 and Xwgrc3150, three of the four markers co-segregating with Ne1, were all Zheng891-dominant, suggesting that, compared with Pan555, Ne1 is located in a region with substantial sequence diversity. The Ne1 interval is syntenic to chromosomes 5H, 4, 9 and 2 of barley, Brachypodium distachyon, rice and sorghum, respectively, and corresponds to a 4.45 Mb Chinese Spring sequence. Variations in necrosis severity of the F2 plants differing in Ne1 and Ne2 genotypes implied that these two genes are incompletely dominant in determining the timing and severity of necrosis.
Collapse
Affiliation(s)
- Na Li
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qiuyi Tan
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jinhua Ding
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xinglai Pan
- Department of Food Crop Science, Cotton Research Institute, Shanxi Academy of Agriculture Sciences, Yuncheng, Shanxi, China
| | - Zhengqiang Ma
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
12
|
Tock AJ, Holland DM, Jiang W, Osman K, Sanchez-Moran E, Higgins JD, Edwards KJ, Uauy C, Franklin FCH, Henderson IR. Crossover-active regions of the wheat genome are distinguished by DMC1, the chromosome axis, H3K27me3, and signatures of adaptation. Genome Res 2021; 31:1614-1628. [PMID: 34426514 PMCID: PMC8415368 DOI: 10.1101/gr.273672.120] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 07/20/2021] [Indexed: 12/18/2022]
Abstract
The hexaploid bread wheat genome comprises over 16 gigabases of sequence across 21 chromosomes. Meiotic crossovers are highly polarized along the chromosomes, with elevation in the gene-dense distal regions and suppression in the Gypsy retrotransposon-dense centromere-proximal regions. We profiled the genomic landscapes of the meiotic recombinase DMC1 and the chromosome axis protein ASY1 in wheat and investigated their relationships with crossovers, chromatin state, and genetic diversity. DMC1 and ASY1 chromatin immunoprecipitation followed by sequencing (ChIP-seq) revealed strong co-enrichment in the distal, crossover-active regions of the wheat chromosomes. Distal ChIP-seq enrichment is consistent with spatiotemporally biased cytological immunolocalization of DMC1 and ASY1 close to the telomeres during meiotic prophase I. DMC1 and ASY1 ChIP-seq peaks show significant overlap with genes and transposable elements in the Mariner and Mutator superfamilies. However, DMC1 and ASY1 ChIP-seq peaks were detected along the length of each chromosome, including in low-crossover regions. At the fine scale, crossover elevation at DMC1 and ASY1 peaks and genes correlates with enrichment of the Polycomb histone modification H3K27me3. This indicates a role for facultative heterochromatin, coincident with high DMC1 and ASY1, in promoting crossovers in wheat and is reflected in distalized H3K27me3 enrichment observed via ChIP-seq and immunocytology. Genes with elevated crossover rates and high DMC1 and ASY1 ChIP-seq signals are overrepresented for defense-response and immunity annotations, have higher sequence polymorphism, and exhibit signatures of selection. Our findings are consistent with meiotic recombination promoting genetic diversity, shaping host–pathogen co-evolution, and accelerating adaptation by increasing the efficiency of selection.
Collapse
Affiliation(s)
- Andrew J Tock
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Daniel M Holland
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Wei Jiang
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Kim Osman
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Keith J Edwards
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | | | - F Chris H Franklin
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
13
|
Xue S, Lu M, Hu S, Xu H, Ma Y, Lu N, Bai S, Gu A, Wan H, Li S. Characterization of PmHHXM, a New Broad-Spectrum Powdery Mildew Resistance Gene in Chinese Wheat Landrace Honghuaxiaomai. PLANT DISEASE 2021; 105:2089-2096. [PMID: 33417497 DOI: 10.1094/pdis-10-20-2296-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Powdery mildew, caused by fungal pathogen Blumeria graminis f. sp. tritici, is an agronomically important and widespread wheat disease causing severe yield losses. Deployment of broad-spectrum disease resistance genes is the preferred strategy to prevent this pathogen. Chinese wheat landrace Honghuaxiaomai (HHXM) was resistant to all 23 tested B. graminis f. sp. tritici isolates at the seedling stage. The F1, F2, and F2:3 progenies derived from the cross HHXM × Yangmai 158 were used in this study, and genetic analysis revealed that a single dominant gene, designated PmHHXM, conferred resistance to B. graminis f. sp. tritici isolate E09. Bulked segregant analysis and molecular mapping initially located PmHHXM to the distal region of chromosome 4AL. To fine map PmHHXM, we identified two critical recombinants from 592 F2 plants and delimited PmHHXM to a 0.18-cM Xkasp475200 to Xhnu552 interval covering 1.77 Mb, in which a number of disease resistance-related gene clusters were annotated. Comparative mapping of this interval revealed a perturbed synteny among Triticeae species. This study reports the new powdery mildew resistance gene PmHHXM, which seems different from three known quantitative trait loci/genes identified on chromosome 4AL and has significant values for further genetic improvement. Analysis of the polymorphisms of 13 cosegregating markers between HHXM and 170 modern wheat cultivars indicates that Xhnu227 and Xsts478700 developed here are ideal for marker-assisted introgression of this locus in wheat breeding.
Collapse
Affiliation(s)
- Shulin Xue
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Mingxue Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Shanshan Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Hongxing Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Yuyu Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Nan Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Shenglong Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Aoyang Gu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Hongshen Wan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Areas), Chengdu 610066, Sichuan, China
| | - Suoping Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| |
Collapse
|
14
|
Steadham J, Schulden T, Kalia B, Koo DH, Gill BS, Bowden R, Yadav IS, Chhuneja P, Erwin J, Tiwari V, Rawat N. An approach for high-resolution genetic mapping of distant wild relatives of bread wheat: example of fine mapping of Lr57 and Yr40 genes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2671-2686. [PMID: 34013456 DOI: 10.1007/s00122-021-03851-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
The article reports a powerful but simple approach for high-resolution mapping and eventual map-based cloning of agronomically important genes from distant relatives of wheat, using the already existing germplasm resources. Wild relatives of wheat are a rich reservoir of genetic diversity for its improvement. The effective utilization of distant wild relatives in isolation of agronomically important genes is hindered by the lack of recombination between the homoeologous chromosomes. In this study, we propose a simple yet powerful approach that can be applied for high-resolution mapping of a targeted gene from wheat's distant gene pool members. A wheat-Aegilops geniculata translocation line TA5602 with a small terminal segment from chromosome 5 Mg of Ae. geniculata translocated to 5D of wheat contains genes Lr57 and Yr40 for leaf rust and stripe rust resistance, respectively. To map these genes, TA5602 was crossed with a susceptible Ae. geniculata 5 Mg addition line. Chromosome pairing between the 5 Mg chromosomes of susceptible and resistant parents resulted in the development of a high-resolution mapping panel for the targeted genes. Next-generation-sequencing data from flow-sorted 5 Mg chromosome of Ae. geniculata allowed us to generate 5 Mg-specific markers. These markers were used to delineate Lr57 and Yr40 genes each to distinct ~ 1.5 Mb physical intervals flanked by gene markers on 5 Mg. The method presented here will allow researchers worldwide to utilize existing germplasm resources in genebanks and seed repositories toward routinely performing map-based cloning of important genes from tertiary gene pools of wheat.
Collapse
Affiliation(s)
- James Steadham
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Taylor Schulden
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Bhanu Kalia
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Dal-Hoe Koo
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Bikram S Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Robert Bowden
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS, 66506, USA
| | - Inderjit Singh Yadav
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - John Erwin
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Vijay Tiwari
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA.
| | - Nidhi Rawat
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
15
|
Hargreaves W, N'Daiye A, Walkowiak S, Pozniak CJ, Wiebe K, Enns J, Lukens L. The effects of crop attributes, selection, and recombination on Canadian bread wheat molecular variation. THE PLANT GENOME 2021; 14:e20099. [PMID: 34009734 DOI: 10.1002/tpg2.20099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Cultivated germplasm provides an opportunity to investigate how crop agronomic traits, selection for major genes, and differences in crossing-over rates drive patterns of allelic variation. To identify how these factors correlated with allelic variation within a collection of cultivated bread wheat (Triticum aestivum L.), we generated genotypes for 388 accessions grown in Canada over the past 170 yr using filtered single nucleotide polymorphism (SNP) calls from an Illumina Wheat iSelect 90K SNP-array. Entries' breeding program, era of release, grain texture, kernel color, and growth habit contributed to allelic differentiation. Allelic diversity and linkage disequilibrium (LD) of markers flanking some major loci known to affect traits such as gluten strength, growth habit, and grain color were consistent with selective sweeps. Nonetheless, some flanking markers of major loci had low LD and high allelic diversity. Positive selection may have acted upon homoeologous genes that had significant enrichment for the gene ontology terms 'response-to-auxin' and 'response-to-wounding.' Long regions of LD, spanning approximately one-third the length of entire chromosomes, were associated with many pericentromeric regions. These regions were also characterized by low diversity. Enhancing recombination across these regions could generate novel allele combinations to accelerate Canadian wheat improvement.
Collapse
Affiliation(s)
- William Hargreaves
- Department of Plant Agriculture, University of Guelph, Crop Science Building, 50 Stone Road E, Guelph, ON, N1G 2W1, Canada
| | - Amidou N'Daiye
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Sean Walkowiak
- Grain Research Laboratory, Canadian Grain Commission, 196 Innovation Drive, Winnipeg, MB, R3T 6C5, Canada
| | - Curtis J Pozniak
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Krystalee Wiebe
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Jennifer Enns
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Lewis Lukens
- Department of Plant Agriculture, University of Guelph, Crop Science Building, 50 Stone Road E, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
16
|
The Landscape of the Genomic Distribution and the Expression of the F-Box Genes Unveil Genome Plasticity in Hexaploid Wheat during Grain Development and in Response to Heat and Drought Stress. Int J Mol Sci 2021; 22:ijms22063111. [PMID: 33803701 PMCID: PMC8002965 DOI: 10.3390/ijms22063111] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022] Open
Abstract
FBX proteins are subunits of the SCF complex (Skp1-cullin-FBX) belonging to the E3 ligase family, which is involved in the ubiquitin-proteasome 26S (UPS) pathway responsible for the post-translational protein turnover. By targeting, in a selective manner, key regulatory proteins for ubiquitination and 26S proteasome degradation, FBX proteins play a major role in plant responses to diverse developmental and stress conditions. Although studies on the genomic organization of the FBX gene family in various species have been reported, knowledge related to bread wheat (Triticum aestivum) is scarce and needs to be broadened. Using the latest assembly of the wheat genome, we identified 3670 TaFBX genes distributed non-homogeneously within the three subgenomes (A, B and D) and between the 21 chromosomes, establishing it as one of the richest gene families among plant species. Based on the presence of the five different chromosomal regions previously identified, the present study focused on the genomic distribution of the TaFBX family and the identification of differentially expressed genes during the embryogenesis stages and in response to heat and drought stress. Most of the time, when comparing the expected number of genes (taking into account the formal gene distribution on the entire wheat genome), the TaFBX family harbors a different pattern at the various stratum of observation (subgenome, chromosome, chromosomal regions). We report here that the local gene expansion of the TaFBX family must be the consequence of multiple and complex events, including tandem and small-scale duplications. Regarding the differentially expressed TaFBX genes, while the majority of the genes are localized in the distal chromosomal regions (R1 and R3), differentially expressed genes are more present in the interstitial regions (R2a and R2b) than expected, which could be an indication of the preservation of major genes in those specific chromosomal regions.
Collapse
|
17
|
Calderan-Rodrigues MJ, de Barros Dantas LL, Cheavegatti Gianotto A, Caldana C. Applying Molecular Phenotyping Tools to Explore Sugarcane Carbon Potential. FRONTIERS IN PLANT SCIENCE 2021; 12:637166. [PMID: 33679852 PMCID: PMC7935522 DOI: 10.3389/fpls.2021.637166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/27/2021] [Indexed: 05/21/2023]
Abstract
Sugarcane (Saccharum spp.), a C4 grass, has a peculiar feature: it accumulates, gradient-wise, large amounts of carbon (C) as sucrose in its culms through a complex pathway. Apart from being a sustainable crop concerning C efficiency and bioenergetic yield per hectare, sugarcane is used as feedstock for producing ethanol, sugar, high-value compounds, and products (e.g., polymers and succinate), and bioelectricity, earning the title of the world's leading biomass crop. Commercial cultivars, hybrids bearing high levels of polyploidy, and aneuploidy, are selected from a large number of crosses among suitable parental genotypes followed by the cloning of superior individuals among the progeny. Traditionally, these classical breeding strategies have been favoring the selection of cultivars with high sucrose content and resistance to environmental stresses. A current paradigm change in sugarcane breeding programs aims to alter the balance of C partitioning as a means to provide more plasticity in the sustainable use of this biomass for metabolic engineering and green chemistry. The recently available sugarcane genetic assemblies powered by data science provide exciting perspectives to increase biomass, as the current sugarcane yield is roughly 20% of its predicted potential. Nowadays, several molecular phenotyping tools can be applied to meet the predicted sugarcane C potential, mainly targeting two competing pathways: sucrose production/storage and biomass accumulation. Here we discuss how molecular phenotyping can be a powerful tool to assist breeding programs and which strategies could be adopted depending on the desired final products. We also tackle the advances in genetic markers and mapping as well as how functional genomics and genetic transformation might be able to improve yield and saccharification rates. Finally, we review how "omics" advances are promising to speed up plant breeding and reach the unexplored potential of sugarcane in terms of sucrose and biomass production.
Collapse
Affiliation(s)
| | | | | | - Camila Caldana
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- *Correspondence: Camila Caldana,
| |
Collapse
|
18
|
Miki Y, Yoshida K, Enoki H, Komura S, Suzuki K, Inamori M, Nishijima R, Takumi S. GRAS-Di system facilitates high-density genetic map construction and QTL identification in recombinant inbred lines of the wheat progenitor Aegilops tauschii. Sci Rep 2020; 10:21455. [PMID: 33293651 PMCID: PMC7723059 DOI: 10.1038/s41598-020-78589-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Due to large and complex genomes of Triticeae species, skim sequencing approaches have cost and analytical advantages for detecting genetic markers and building linkage maps. Here, we develop a high-density linkage map and identify quantitative trait loci (QTLs) for recombinant inbred lines of Aegilops tauschii, a D-genome donor of bread wheat, using the recently developed genotyping by Random Amplicon Sequencing-Direct (GRAS-Di) system, which facilitates skimming of the large and complicated genome and generates a large number of genetic markers. The deduced linkage groups based on the GRAS-Di genetic markers corresponded to the chromosome number of Ae. tauschii. We successfully identified stable QTLs for flowering time and spikelet shape-related traits. Genotype differences of RILs at the QTL-linked markers were significantly associated with the trait variations. In particular, one of the QTL-linked markers for flowering time was mapped close to VRN3 (also known as FLOWERING LOCUS T), which controls flowering. The GRAS-Di system is, therefore, an efficient and useful application for genotyping and linkage mapping in species with large and complex genomes, such as Triticeae species.
Collapse
Affiliation(s)
- Yuka Miki
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, Japan
| | - Kentaro Yoshida
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, Japan.
| | - Hiroyuki Enoki
- toyota Motor Corporation, 1099, Marune, Kurozasa-cho, Miyoshi, Aichi, Japan
| | - Shoya Komura
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, Japan
| | - Kazuyo Suzuki
- toyota Motor Corporation, 1099, Marune, Kurozasa-cho, Miyoshi, Aichi, Japan
| | - Minoru Inamori
- toyota Motor Corporation, 1099, Marune, Kurozasa-cho, Miyoshi, Aichi, Japan
| | - Ryo Nishijima
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, Japan
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, Japan
| |
Collapse
|
19
|
A haplotype-led approach to increase the precision of wheat breeding. Commun Biol 2020; 3:712. [PMID: 33239669 PMCID: PMC7689427 DOI: 10.1038/s42003-020-01413-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Crop productivity must increase at unprecedented rates to meet the needs of the growing worldwide population. Exploiting natural variation for the genetic improvement of crops plays a central role in increasing productivity. Although current genomic technologies can be used for high-throughput identification of genetic variation, methods for efficiently exploiting this genetic potential in a targeted, systematic manner are lacking. Here, we developed a haplotype-based approach to identify genetic diversity for crop improvement using genome assemblies from 15 bread wheat (Triticum aestivum) cultivars. We used stringent criteria to identify identical-by-state haplotypes and distinguish these from near-identical sequences (~99.95% identity). We showed that each cultivar shares ~59 % of its genome with other sequenced cultivars and we detected the presence of extended haplotype blocks containing hundreds to thousands of genes across all wheat chromosomes. We found that genic sequence alone was insufficient to fully differentiate between haplotypes, as were commonly used array-based genotyping chips due to their gene centric design. We successfully used this approach for focused discovery of novel haplotypes from a landrace collection and documented their potential for trait improvement in modern bread wheat. This study provides a framework for defining and exploiting haplotypes to increase the efficiency and precision of wheat breeding towards optimising the agronomic performance of this crucial crop. Brinton, Uauy and colleagues utilize genomic data from the 10+ Wheat Genome Project to develop a useful tool for studying and generating new wheat cultivars. This framework uses advanced exploitation of wheat haplotypes to bring newfound precision and efficiency to wheat breeding.
Collapse
|
20
|
Baker L, Grewal S, Yang CY, Hubbart-Edwards S, Scholefield D, Ashling S, Burridge AJ, Przewieslik-Allen AM, Wilkinson PA, King IP, King J. Exploiting the genome of Thinopyrum elongatum to expand the gene pool of hexaploid wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2213-2226. [PMID: 32313991 PMCID: PMC7311493 DOI: 10.1007/s00122-020-03591-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/31/2020] [Indexed: 05/23/2023]
Abstract
One hundred and thirty four introgressions from Thinopyrum elongatum have been transferred into a wheat background and were characterised using 263 SNP markers. Species within the genus Thinopyrum have been shown to carry genetic variation for a very wide range of traits including biotic and abiotic stresses and quality. Research has shown that one of the species within this genus, Th. elongatum, has a close relationship with the genomes of wheat making it a highly suitable candidate to expand the gene pool of wheat. Homoeologous recombination, in the absence of the Ph1 gene, has been exploited to transfer an estimated 134 introgressions from Th. elongatum into a hexaploid wheat background. The introgressions were detected and characterised using 263 single nucleotide polymorphism markers from a 35 K Axiom® Wheat-Relative Genotyping Array, spread across seven linkage groups and validated using genomic in situ hybridisation. The genetic map had a total length of 187.8 cM and the average chromosome length was 26.8 cM. Comparative analyses of the genetic map of Th. elongatum and the physical map of hexaploid wheat confirmed previous work that indicated good synteny at the macro-level, although Th. elongatum does not contain the 4A/5A/7B translocation found in wheat.
Collapse
Affiliation(s)
- Lauren Baker
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Surbhi Grewal
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Cai-Yun Yang
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Stella Hubbart-Edwards
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Duncan Scholefield
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Stephen Ashling
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Amanda J Burridge
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | | | - Paul A Wilkinson
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Ian P King
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Julie King
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK.
| |
Collapse
|
21
|
Varietal variation and chromosome behaviour during meiosis in Solanum tuberosum. Heredity (Edinb) 2020; 125:212-226. [PMID: 32523055 PMCID: PMC7490355 DOI: 10.1038/s41437-020-0328-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 02/05/2023] Open
Abstract
Naturally occurring autopolyploid species, such as the autotetraploid potato Solanum tuberosum, face a variety of challenges during meiosis. These include proper pairing, recombination and correct segregation of multiple homologous chromosomes, which can form complex multivalent configurations at metaphase I, and in turn alter allelic segregation ratios through double reduction. Here, we present a reference map of meiotic stages in diploid and tetraploid S. tuberosum using fluorescence in situ hybridisation (FISH) to differentiate individual meiotic chromosomes 1 and 2. A diploid-like behaviour at metaphase I involving bivalent configurations was predominant in all three tetraploid varieties. The crossover frequency per bivalent was significantly reduced in the tetraploids compared with a diploid variety, which likely indicates meiotic adaptation to the autotetraploid state. Nevertheless, bivalents were accompanied by a substantial frequency of multivalents, which varied by variety and by chromosome (7-48%). We identified possible sites of synaptic partner switching, leading to multivalent formation, and found potential defects in the polymerisation and/or maintenance of the synaptonemal complex in tetraploids. These findings demonstrate the rise of S. tuberosum as a model for autotetraploid meiotic recombination research and highlight constraints on meiotic chromosome configurations and chiasma frequencies as an important feature of an evolved autotetraploid meiosis.
Collapse
|
22
|
Schwarzkopf EJ, Motamayor JC, Cornejo OE. Genetic differentiation and intrinsic genomic features explain variation in recombination hotspots among cocoa tree populations. BMC Genomics 2020; 21:332. [PMID: 32349675 PMCID: PMC7191684 DOI: 10.1186/s12864-020-6746-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022] Open
Abstract
Background Recombination plays an important evolutionary role by breaking up haplotypes and shuffling genetic variation. This process impacts the ability of selection to eliminate deleterious mutations or increase the frequency of beneficial mutations in a population. To understand the role of recombination generating and maintaining haplotypic variation in a population, we can construct fine-scale recombination maps. Such maps have been used to study a variety of model organisms and proven to be informative of how selection and demographics shape species-wide variation. Here we present a fine-scale recombination map for ten populations of Theobroma cacao – a non-model, long-lived, woody crop. We use this map to elucidate the dynamics of recombination rates in distinct populations of the same species, one of which is domesticated. Results Mean recombination rates in range between 2.5 and 8.6 cM/Mb for most populations of T. cacao with the exception of the domesticated Criollo (525 cM/Mb) and Guianna, a more recently established population (46.5 cM/Mb). We found little overlap in the location of hotspots of recombination across populations. We also found that hotspot regions contained fewer known retroelement sequences than expected and were overrepresented near transcription start and termination sites. We find mutations in FIGL-1, a protein shown to downregulate cross-over frequency in Arabidopsis, statistically associated to higher recombination rates in domesticated Criollo. Conclusions We generated fine-scale recombination maps for ten populations of Theobroma cacao and used them to understand what processes are associated with population-level variation in this species. Our results provide support to the hypothesis of increased recombination rates in domesticated plants (Criollo population). We propose a testable mechanistic hypothesis for the change in recombination rate in domesticated populations in the form of mutations to a previously identified recombination-suppressing protein. Finally, we establish a number of possible correlates of recombination hotspots that help explain general patterns of recombination in this species.
Collapse
Affiliation(s)
| | | | - Omar E Cornejo
- School of Biological Sciences, Washington State University, Pullman, WA, USA.
| |
Collapse
|
23
|
Hagen IJ, Lien S, Billing AM, Elgvin TO, Trier C, Niskanen AK, Tarka M, Slate J, Sætre G, Jensen H. A genome‐wide linkage map for the house sparrow (Passer domesticus) provides insights into the evolutionary history of the avian genome. Mol Ecol Resour 2020; 20:544-559. [DOI: 10.1111/1755-0998.13134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/07/2019] [Accepted: 12/10/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Ingerid J. Hagen
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
- Norwegian Institute for Nature Research (NINA) Trondheim Norway
| | - Sigbjørn Lien
- Centre for Integrative Genetics Department of Animal and Aquacultural Sciences Faculty of Biosciences Norwegian University of Life Sciences Ås Norway
| | - Anna M. Billing
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Tore O. Elgvin
- Centre for Ecological and Evolutionary Synthesis Department of Biology University of Oslo Oslo Norway
| | - Cassandra Trier
- Centre for Ecological and Evolutionary Synthesis Department of Biology University of Oslo Oslo Norway
| | - Alina K. Niskanen
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
- Ecology and Genetics Research Unit University of Oulu Oulu Finland
| | - Maja Tarka
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
- Department of Biology Lund University Lund Sweden
| | - Jon Slate
- Department of Animal and Plant Sciences University of Sheffield Western Bank Sheffield UK
| | - Glenn‐Peter Sætre
- Centre for Ecological and Evolutionary Synthesis Department of Biology University of Oslo Oslo Norway
| | - Henrik Jensen
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
| |
Collapse
|
24
|
Matias Hurtado FM, Pinto MDS, de Oliveira PN, Riaño-Pachón DM, Inocente LB, Carrer H. Analysis of NAC Domain Transcription Factor Genes of Tectona grandis L.f. Involved in Secondary Cell Wall Deposition. Genes (Basel) 2019; 11:E20. [PMID: 31878092 PMCID: PMC7016782 DOI: 10.3390/genes11010020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 11/16/2022] Open
Abstract
NAC proteins are one of the largest families of plant-specific transcription factors (TFs). They regulate diverse complex biological processes, including secondary xylem differentiation and wood formation. Recent genomic and transcriptomic studies of Tectona grandis L.f. (teak), one of the most valuable hardwood trees in the world, have allowed identification and analysis of developmental genes. In the present work, T. grandis NAC genes were identified and analyzed regarding to their evolution and expression profile during wood formation. We analyzed the recently published T. grandis genome, and identified 130 NAC proteins that are coded by 107 gene loci. These proteins were classified into 23 clades of the NAC family, together with Populus, Eucalyptus, and Arabidopsis. Data on transcript expression revealed specific temporal and spatial expression patterns for the majority of teak NAC genes. RT-PCR indicated expression of VND genes (Tg11g04450-VND2 and Tg15g08390-VND4) related to secondary cell wall formation in xylem vessels of 16-year-old juvenile trees. Our findings open a way to further understanding of NAC transcription factor genes in T. grandis wood biosynthesis, while they are potentially useful for future studies aiming to improve biomass and wood quality using biotechnological approaches.
Collapse
Affiliation(s)
- Fernando Manuel Matias Hurtado
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Av. Pádua Dias, 11, CP 9, Piracicaba, SP 13418-900, Brazil; (F.M.M.H.); (M.d.S.P.); (P.N.d.O.)
| | - Maísa de Siqueira Pinto
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Av. Pádua Dias, 11, CP 9, Piracicaba, SP 13418-900, Brazil; (F.M.M.H.); (M.d.S.P.); (P.N.d.O.)
| | - Perla Novais de Oliveira
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Av. Pádua Dias, 11, CP 9, Piracicaba, SP 13418-900, Brazil; (F.M.M.H.); (M.d.S.P.); (P.N.d.O.)
| | - Diego Mauricio Riaño-Pachón
- Computational, Evolutionary and Systems Biology Laboratory, Center for Nuclear Energy in Agriculture (CENA), University of São Paulo. Av. Centenário 303, Piracicaba, SP 13416-000, Brazil;
| | - Laura Beatriz Inocente
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Av. Pádua Dias, 11, CP 9, Piracicaba, SP 13418-900, Brazil; (F.M.M.H.); (M.d.S.P.); (P.N.d.O.)
| | - Helaine Carrer
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Av. Pádua Dias, 11, CP 9, Piracicaba, SP 13418-900, Brazil; (F.M.M.H.); (M.d.S.P.); (P.N.d.O.)
| |
Collapse
|
25
|
Serba DD, Muleta KT, St Amand P, Bernardo A, Bai G, Perumal R, Bashir E. Genetic Diversity, Population Structure, and Linkage Disequilibrium of Pearl Millet. THE PLANT GENOME 2019; 12:1-12. [PMID: 33016587 DOI: 10.3835/plantgenome2018.11.0091] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/07/2019] [Indexed: 05/09/2023]
Abstract
Mapping of GBS reads of 398 accessions to the draft genome sequence identified 82,112 SNPs Model-based clustering analysis revealed a hierarchical genetic structure of six subgroups Greater LD decay in the west-African subpopulation is likely due to long history of recombination Genetic differentiation analysis among subpopulations revealed variation in selection signatures Pearl millet [Cenchrus americanus (L.) Morrone syn. Pennisetum glaucum (L.) R. Br.] is one of the most extensively cultivated cereals in the world, after wheat (Triticum aestivum L.), maize (Zea mays L.), rice (Oryza sativa L.), barley (Hordeum vulgare L.), and sorghum [Sorghum bicolor (L.) Moench]. It is the main component of traditional farming systems and a staple food in the arid and semiarid regions of Africa and southern Asia. However, its genetic improvement is lagging behind other major cereals and the yield is still low. Genotyping-by-sequencing (GBS)-based single-nucleotide polymorphism (SNP) markers were screened on a total of 398 accessions from different geographic regions to assess genetic diversity, population structure, and linkage disequilibrium (LD). By mapping the GBS reads to the reference genome sequence, 82,112 genome-wide SNPs were discovered. The telomeric regions of the chromosomes have the higher SNP density than in pericentromeric regions. Model-based clustering analysis of the population revealed a hierarchical genetic structure of six subgroups that mostly overlap with the geographic origins or sources of the genotypes but with differing levels of admixtures. A neighbor-joining phylogeny analysis revealed that germplasm from western Africa rooted the dendrogram with much diversity within each subgroup. Greater LD decay was observed in the west-African subpopulation than in the other subpopulations, indicating a long history of recombination among landraces. Also, genome scan of genetic differentiatation detected different selection histories among subpopulations. These results have potential application in the development of genomic-assisted breeding in pearl millet and heterotic grouping of the lines for improved hybrid performance.
Collapse
Affiliation(s)
- Desalegn D Serba
- Kansas State Univ., Agricultural Research Center-Hays, Hays, 1232 240th Avenue, Hays, KS, 67601, USA
| | - Kebede T Muleta
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS
| | - Paul St Amand
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS
| | - Amy Bernardo
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS
| | - Guihua Bai
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS
| | - Ramasamy Perumal
- Kansas State Univ., Agricultural Research Center-Hays, Hays, 1232 240th Avenue, Hays, KS, 67601, USA
| | - Elfadil Bashir
- Kansas State Univ., Agricultural Research Center-Hays, Hays, 1232 240th Avenue, Hays, KS, 67601, USA
| |
Collapse
|
26
|
Soriano JM, Alvaro F. Discovering consensus genomic regions in wheat for root-related traits by QTL meta-analysis. Sci Rep 2019; 9:10537. [PMID: 31332216 PMCID: PMC6646344 DOI: 10.1038/s41598-019-47038-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 07/09/2019] [Indexed: 11/25/2022] Open
Abstract
Root system architecture is crucial for wheat adaptation to drought stress, but phenotyping for root traits in breeding programmes is difficult and time-consuming owing to the belowground characteristics of the system. Identifying quantitative trait loci (QTLs) and linked molecular markers and using marker-assisted selection is an efficient way to increase selection efficiency and boost genetic gains in breeding programmes. Hundreds of QTLs have been identified for different root traits in the last few years. In the current study, consensus QTL regions were identified through QTL meta-analysis. First, a consensus map comprising 7352 markers was constructed. For the meta-analysis, 754 QTLs were retrieved from the literature and 634 of them were projected onto the consensus map. Meta-analysis grouped 557 QTLs in 94 consensus QTL regions, or meta-QTLs (MQTLs), and 18 QTLs remained as singletons. The recently published genome sequence of wheat was used to search for gene models within the MQTL peaks. As a result, gene models for 68 of the 94 Root_MQTLs were found, 35 of them related to root architecture and/or drought stress response. This work will facilitate QTL cloning and pyramiding to develop new cultivars with specific root architecture for coping with environmental constraints.
Collapse
Affiliation(s)
- Jose Miguel Soriano
- Sustainable Field Crops Programme, IRTA (Institute for Food and Agricultural Research and Technology), Lleida, Spain.
| | - Fanny Alvaro
- Sustainable Field Crops Programme, IRTA (Institute for Food and Agricultural Research and Technology), Lleida, Spain
| |
Collapse
|
27
|
Steiner B, Buerstmayr M, Wagner C, Danler A, Eshonkulov B, Ehn M, Buerstmayr H. Fine-mapping of the Fusarium head blight resistance QTL Qfhs.ifa-5A identifies two resistance QTL associated with anther extrusion. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2039-2053. [PMID: 30949717 PMCID: PMC6588648 DOI: 10.1007/s00122-019-03336-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/25/2019] [Indexed: 05/09/2023]
Abstract
Fine-mapping separated Qfhs.ifa-5A into a major QTL mapping across the centromere and a minor effect QTL positioned at the distal half of 5AS. Both increase Fusarium resistance and anther extrusion. The Fusarium head blight (FHB) resistance QTL Qfhs.ifa-5A resides in the low-recombinogenic pericentromeric region of chromosome 5A making fine-mapping particularly arduous. Qfhs.ifa-5A primarily contributes resistance to fungal entry with the favorable allele descending from the highly Fusarium resistant cultivar Sumai-3. Fine-mapping a near-isogenic recombinant inbred line population partitioned the Qfhs.ifa-5A interval into 12 bins. Near-isogenic lines recombining at the interval were phenotyped for FHB severity, anther retention and plant height. Composite interval mapping separated the initially single QTL into two QTL. The major effect QTL Qfhs.ifa-5Ac mapped across the centromere and the smaller effect QTL Qfhs.ifa-5AS mapped to the distal half of 5AS. Although Qfhs.ifa-5Ac and Qfhs.ifa-5AS intervals were as small as 0.1 and 0.2 cM, their corresponding physical distances were large, comprising 44.1 Mbp and 49.2 Mbp, respectively. Sumai-3 alleles at either QTL improved FHB resistance and increased anther extrusion suggesting a pleiotropic effect of anthers on resistance. This hypothesis was supported by greenhouse experiments using the susceptible cultivar Remus and its resistant near-isogenic line NIL3 carrying the entire Qfhs.ifa-5A segment. By manually removing anthers prior to spray inoculation both, Remus and NIL3 became almost equally resistant in the early phase of the disease development and were significantly less diseased than variants without anther manipulation. At late time points the positive effect of the anther removal became smaller for Remus and disappeared completely for NIL3. Results affirm that absence of anthers enhanced resistance to initial infection but did not protect plants from fungal spreading within spikes.
Collapse
Affiliation(s)
- Barbara Steiner
- Department of Agrobiotechnology (IFA-Tulln), Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430, Tulln, Austria
| | - Maria Buerstmayr
- Department of Agrobiotechnology (IFA-Tulln), Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430, Tulln, Austria.
| | - Christian Wagner
- Department of Agrobiotechnology (IFA-Tulln), Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430, Tulln, Austria
| | - Andrea Danler
- Department of Agrobiotechnology (IFA-Tulln), Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430, Tulln, Austria
| | - Babur Eshonkulov
- Samarkand Institute of Veterinary Medicine, Samarkand, Uzbekistan
| | - Magdalena Ehn
- Department of Agrobiotechnology (IFA-Tulln), Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430, Tulln, Austria
| | - Hermann Buerstmayr
- Department of Agrobiotechnology (IFA-Tulln), Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430, Tulln, Austria
| |
Collapse
|
28
|
Naz AA, Dadshani S, Ballvora A, Pillen K, Léon J. Genetic Analysis and Transfer of Favorable Exotic QTL Alleles for Grain Yield Across D Genome Using Two Advanced Backcross Wheat Populations. FRONTIERS IN PLANT SCIENCE 2019; 10:711. [PMID: 31214227 PMCID: PMC6557981 DOI: 10.3389/fpls.2019.00711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
Hexaploid wheat evolved through a spontaneous hybridization of tetraploid wheat (Triticum turgidum, AABB) with diploid wild grass (Aegilops tauschii, DD). Recent genome sequencing found alarmingly low genetic diversity and abundance of repeated sequences across D genome as compared to AB genomes. This characteristic feature of D genome often results in a low recombination rate and abrupt changes in chromosome, which are the major hurdles to utilize the genetic potential of D genome in wheat breeding. In the present study, we evaluated two advanced backcross populations designated as B22 (250 BC2F3:6 lines) and Z86 (150 BC2F3:6 lines) to test their yield potential and to enrich the D genome diversity simultaneously. The populations B22 and Z86 were derived by crossing winter wheat cultivars Batis and Zentos with synthetic hexaploid wheat accessions Syn022L and Syn086L, respectively. These populations were genotyped using SNP markers and phenotyped for yield traits in ten environments in Germany. Marker analysis identified lower recombination rate across D genome as compared to A and B genomes in both populations. Further, we compared the genotype data with the trait grain yield to identify favorable exotic introgressions from synthetic wheat accessions. QTL analysis identified seven and 13 favorable exotic QTL alleles associated with enhancement or at least stable grain yield in populations B22 and Z86, respectively. These favorable introgressions were located on all chromosomes from 1D to 7D. The strongest exotic QTL allele on chromosome 1D at SNP marker RAC875_c51493_471 resulted in a relative increase of 8.6% in grain yield as compared to cultivated allele. The identified exotic introgressions will help to refine useful exotic chromosome segments for their incorporation for improving yield and increasing D genome diversity among cultivated varieties.
Collapse
Affiliation(s)
- Ali Ahmad Naz
- Institute of Crop Science and Resource Conservation, Plant Breeding, University of Bonn, Bonn, Germany
| | - Said Dadshani
- Institute of Crop Science and Resource Conservation, Plant Breeding, University of Bonn, Bonn, Germany
| | - Agim Ballvora
- Institute of Crop Science and Resource Conservation, Plant Breeding, University of Bonn, Bonn, Germany
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Plant Breeding, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Jens Léon
- Institute of Crop Science and Resource Conservation, Plant Breeding, University of Bonn, Bonn, Germany
| |
Collapse
|
29
|
Fazlikhani L, Keilwagen J, Kopahnke D, Deising H, Ordon F, Perovic D. High Resolution Mapping of Rph MBR1012 Conferring Resistance to Puccinia hordei in Barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2019; 10:640. [PMID: 31191570 PMCID: PMC6541035 DOI: 10.3389/fpls.2019.00640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/29/2019] [Indexed: 06/01/2023]
Abstract
Isolation of disease resistance genes in barley was hampered by the large genome size, but has become easy due to the availability of the reference genome sequence. During the last years, many genomic resources, e.g., the Illumina 9K iSelect, the 50K Infinium arrays, the Barley Genome Zipper, POPSEQ, and genotyping by sequencing (GBS), were developed that enable enhanced gene isolation in combination with the barley genome sequence. In the present study, we developed a fine map of the barley leaf rust resistance gene Rph MBR1012. 537 segmental homozygous recombinant inbred lines (RILs) derived from 4775 F2-plants were used to construct a high-resolution mapping population (HRMP). The Barley Genome Zipper, the 9K iSelect chip, the 50K Infinium chip and GBS were used to develop 56 molecular markers located in the target interval of 8 cM. This interval was narrowed down to about 0.07 cM corresponding to 0.44 Mb of the barley reference genome. Eleven low-confidence and 18 high-confidence genes were identified in this interval. Five of these are putative disease resistance genes and were subjected to allele-specific sequencing. In addition, comparison of the genetic map and the reference genome revealed an inversion of 1.34 Mb located distally to the resistance locus. In conclusion, the barley reference sequence and the respective gene annotation delivered detailed information about the physical size of the target interval, the genes located in the target interval and facilitated the efficient development of molecular markers for marker-assisted selection for RphMBR1012.
Collapse
Affiliation(s)
- Leila Fazlikhani
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute (JKI), Quedlinburg, Germany
- Department of Phytopathology and Plant Protection, Institute of Agricultural and Nutrition Sciences, Faculty of Natural Sciences III, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Jens Keilwagen
- Institute for Biosafety in Plant Biotechnology, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute (JKI), Quedlinburg, Germany
| | - Doris Kopahnke
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute (JKI), Quedlinburg, Germany
| | - Holger Deising
- Department of Phytopathology and Plant Protection, Institute of Agricultural and Nutrition Sciences, Faculty of Natural Sciences III, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute (JKI), Quedlinburg, Germany
| | - Dragan Perovic
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute (JKI), Quedlinburg, Germany
| |
Collapse
|
30
|
Miki Y, Yoshida K, Mizuno N, Nasuda S, Sato K, Takumi S. Origin of wheat B-genome chromosomes inferred from RNA sequencing analysis of leaf transcripts from section Sitopsis species of Aegilops. DNA Res 2019; 26:171-182. [PMID: 30715317 PMCID: PMC6476730 DOI: 10.1093/dnares/dsy047] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/22/2018] [Indexed: 12/16/2022] Open
Abstract
Dramatic changes occasionally occur in intergenic regions leading to genomic alterations during speciation and will consequently obscure the ancestral species that have contributed to the formation of allopolyploid organisms. The S genome of five species of section Sitopsis of genus Aegilops is considered to be an origin of B-genome in cultivated tetraploid and hexaploid wheat species, although its actual donor is still unclear. Here, we attempted to elucidate phylogenetic relationship among Sitopsis species by performing RNA sequencing of the coding regions of each chromosome. Thus, genome-wide polymorphisms were extensively analyzed in 19 accessions of the Sitopsis species in reference to the tetraploid and hexaploid wheat B genome sequences and consequently were efficiently anchored to the B-genome chromosomes. The results of our genome-wide exon sequencing and resultant phylogenetic analysis indicate that Ae. speltoides is likely to be the direct donor of all chromosomes of the wheat B genome. Our results also indicate that the genome differentiation during wheat allopolyploidization from S to B proceeds at different speeds over the chromosomes rather than at constant rate and recombination could be a factor determining the speed. This observation is potentially generalized to genome differentiation during plant allopolyploid evolution.
Collapse
Affiliation(s)
- Yuka Miki
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Kentaro Yoshida
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Nobuyuki Mizuno
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shuhei Nasuda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
31
|
Xu J, Dai X, Ramasamy RK, Wang L, Zhu T, McGuire PE, Jorgensen CM, Dehghani H, Gulick PJ, Luo MC, Müller HG, Dvorak J. Aegilops tauschii Genome Sequence: A Framework for Meta-analysis of Wheat QTLs. G3 (BETHESDA, MD.) 2019; 9:841-853. [PMID: 30670607 PMCID: PMC6404623 DOI: 10.1534/g3.118.200921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/12/2019] [Indexed: 12/22/2022]
Abstract
Numerous quantitative trait loci (QTL) have been mapped in tetraploid and hexaploid wheat and wheat relatives, mostly with simple sequence repeat (SSR) or single nucleotide polymorphism (SNP) markers. To conduct meta-analysis of QTL requires projecting them onto a common genomic framework, either a consensus genetic map or genomic sequence. The latter strategy is pursued here. Of 774 QTL mapped in wheat and wheat relatives found in the literature, 585 (75.6%) were successfully projected onto the Aegilops tauschii pseudomolecules. QTL mapped with SNP markers were more successfully projected (92.2%) than those mapped with SSR markers (66.2%). The QTL were not distributed homogeneously along chromosome arms. Their frequencies increased in the proximal-to-distal direction but declined in the most distal regions and were weakly correlated with recombination rates along the chromosome arms. Databases for projected SSR markers and QTL were constructed and incorporated into the Ae. tauschii JBrowse. To facilitate meta-QTL analysis, eight clusters of QTL were used to estimate standard deviations ([Formula: see text]) of independently mapped QTL projected onto the Ae. tauschii genome sequence. The standard deviations [Formula: see text] were modeled as an exponential decay function of recombination rates along the Ae. tauschii chromosomes. We implemented four hypothesis tests for determining the membership of query QTL. The hypothesis tests and estimation procedure for [Formula: see text] were implemented in a web portal for meta-analysis of projected QTL. Twenty-one QTL for Fusarium head blight resistance mapped on wheat chromosomes 3A, 3B, and 3D were analyzed to illustrate the use of the portal for meta-QTL analyses.
Collapse
Affiliation(s)
- Jiale Xu
- Department of Plant Sciences, University of California, Davis, California
| | - Xiongtao Dai
- Department of Statistics, Iowa State University, Iowa
| | - Ramesh K Ramasamy
- Department of Plant Sciences, University of California, Davis, California
| | - Le Wang
- Department of Plant Sciences, University of California, Davis, California
| | - Tingting Zhu
- Department of Plant Sciences, University of California, Davis, California
| | - Patrick E McGuire
- Department of Plant Sciences, University of California, Davis, California
| | - Chad M Jorgensen
- Department of Plant Sciences, University of California, Davis, California
| | - Hamid Dehghani
- Department of Plant Sciences, University of California, Davis, California
- Department of Plant Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran, and
| | - Patrick J Gulick
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, California
| | - Hans-Georg Müller
- Department of Statistics, University of California, Davis, California
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, California,
| |
Collapse
|
32
|
Brinton J, Uauy C. A reductionist approach to dissecting grain weight and yield in wheat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:337-358. [PMID: 30421518 PMCID: PMC6492019 DOI: 10.1111/jipb.12741] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/07/2018] [Indexed: 05/20/2023]
Abstract
Grain yield is a highly polygenic trait that is influenced by the environment and integrates events throughout the life cycle of a plant. In wheat, the major grain yield components often present compensatory effects among them, which alongside the polyploid nature of wheat, makes their genetic and physiological study challenging. We propose a reductionist and systematic approach as an initial step to understand the gene networks regulating each individual yield component. Here, we focus on grain weight and discuss the importance of examining individual sub-components, not only to help in their genetic dissection, but also to inform our mechanistic understanding of how they interrelate. This knowledge should allow the development of novel combinations, across homoeologs and between complementary modes of action, thereby advancing towards a more integrated strategy for yield improvement. We argue that this will break barriers in terms of phenotypic variation, enhance our understanding of the physiology of yield, and potentially deliver improved on-farm yield.
Collapse
Affiliation(s)
- Jemima Brinton
- John Innes CentreNorwich Research ParkNorwich NR4 7UHUnited Kingdom
| | - Cristobal Uauy
- John Innes CentreNorwich Research ParkNorwich NR4 7UHUnited Kingdom
| |
Collapse
|
33
|
Gutierrez-Gonzalez JJ, Mascher M, Poland J, Muehlbauer GJ. Dense genotyping-by-sequencing linkage maps of two Synthetic W7984×Opata reference populations provide insights into wheat structural diversity. Sci Rep 2019; 9:1793. [PMID: 30741967 PMCID: PMC6370774 DOI: 10.1038/s41598-018-38111-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/18/2018] [Indexed: 11/24/2022] Open
Abstract
Wheat (Triticum aestivum) genetic maps are a key enabling tool for genetic studies. We used genotyping-by-sequencing-(GBS) derived markers to map recombinant inbred line (RIL) and doubled haploid (DH) populations from crosses of W7984 by Opata, and used the maps to explore features of recombination control. The RIL and DH populations, SynOpRIL and SynOpDH, were composed of 906 and 92 individuals, respectively. Two high-density genetic linkage framework maps were constructed of 2,842 and 2,961 cM, harboring 3,634 and 6,580 markers, respectively. Using imputation, we added 43,013 and 86,042 markers to the SynOpRIL and SynOpDH maps. We observed preferential recombination in telomeric regions and reduced recombination in pericentromeric regions. Recombination rates varied between subgenomes, with the D genomes of the two populations exhibiting the highest recombination rates of 0.26-0.27 cM/Mb. QTL mapping identified two additive and three epistatic loci associated with crossover number. Additionally, we used published POPSEQ data from SynOpDH to explore the structural variation in W7984 and Opata. We found that chromosome 5AS is missing from W7984. We also found 2,332 variations larger than 100 kb. Structural variants were more abundant in distal regions, and overlapped 9,196 genes. The two maps provide a resource for trait mapping and genomic-assisted breeding.
Collapse
Affiliation(s)
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Seeland OT, Gatersleben, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Jesse Poland
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, 4024 Throckmorton Plant Sciences Center, Manhattan, KS, 66506, USA
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, 55108, USA.
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA.
| |
Collapse
|
34
|
Borrill P, Harrington SA, Uauy C. Applying the latest advances in genomics and phenomics for trait discovery in polyploid wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:56-72. [PMID: 30407665 PMCID: PMC6378701 DOI: 10.1111/tpj.14150] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/23/2018] [Accepted: 10/30/2018] [Indexed: 05/10/2023]
Abstract
Improving traits in wheat has historically been challenging due to its large and polyploid genome, limited genetic diversity and in-field phenotyping constraints. However, within recent years many of these barriers have been lowered. The availability of a chromosome-level assembly of the wheat genome now facilitates a step-change in wheat genetics and provides a common platform for resources, including variation data, gene expression data and genetic markers. The development of sequenced mutant populations and gene-editing techniques now enables the rapid assessment of gene function in wheat directly. The ability to alter gene function in a targeted manner will unmask the effects of homoeolog redundancy and allow the hidden potential of this polyploid genome to be discovered. New techniques to identify and exploit the genetic diversity within wheat wild relatives now enable wheat breeders to take advantage of these additional sources of variation to address challenges facing food production. Finally, advances in phenomics have unlocked rapid screening of populations for many traits of interest both in greenhouses and in the field. Looking forwards, integrating diverse data types, including genomic, epigenetic and phenomics data, will take advantage of big data approaches including machine learning to understand trait biology in wheat in unprecedented detail.
Collapse
Affiliation(s)
- Philippa Borrill
- School of BiosciencesThe University of BirminghamBirminghamB15 2TTUK
| | | | | |
Collapse
|
35
|
Genome wide characterization of barley NAC transcription factors enables the identification of grain-specific transcription factors exclusive for the Poaceae family of monocotyledonous plants. PLoS One 2018; 13:e0209769. [PMID: 30592743 PMCID: PMC6310276 DOI: 10.1371/journal.pone.0209769] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/11/2018] [Indexed: 12/30/2022] Open
Abstract
The plant NAC transcription factors depict one of the largest plant transcription factor families. They regulate a wide range of different developmental processes and most probably played an important role in the evolutionary diversification of plants. This makes comparative studies of the NAC transcription factor family between individual species and genera highly relevant and such studies have in recent years been greatly facilitated by the increasing number of fully sequenced complex plant genomes. This study combines the characterization of the NAC transcription factors in the recently sequenced genome of the cereal crop barley with expression analysis and a comprehensive phylogenetic characterization of the NAC transcription factors in other monocotyledonous plant species. Our results provide evidence for the emergence of a NAC transcription factor subclade that is exclusively expressed in the grains of the Poaceae family of grasses. These notably comprise a number of cereal crops other than barley, such as wheat, rice, maize or millet, which are all cultivated for their starchy edible grains. Apparently, the grain specific subclade emerged from a well described subgroup of NAC transcription factors associated with the senescence process. A promoter exchange subsequently resulted in grain specific expression. We propose to designate this transcription factor subclade Grain-NACs and we discuss their involvement in programmed cell death as well as their potential role in the evolution of the Poaceae grain, which doubtlessly is of central importance for human nutrition.
Collapse
|
36
|
Xia C, Wang M, Yin C, Cornejo OE, Hulbert SH, Chen X. Genomic insights into host adaptation between the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) and the barley stripe rust pathogen (Puccinia striiformis f. sp. hordei). BMC Genomics 2018; 19:664. [PMID: 30208837 PMCID: PMC6134786 DOI: 10.1186/s12864-018-5041-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 08/27/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Plant fungal pathogens can rapidly evolve and adapt to new environmental conditions in response to sudden changes of host populations in agro-ecosystems. However, the genomic basis of their host adaptation, especially at the forma specialis level, remains unclear. RESULTS We sequenced two isolates each representing Puccinia striiformis f. sp. tritici (Pst) and P. striiformis f. sp. hordei (Psh), different formae speciales of the stripe rust fungus P. striiformis highly adapted to wheat and barley, respectively. The divergence of Pst and Psh, estimated to start 8.12 million years ago, has been driven by high nucleotide mutation rates. The high genomic variation within dikaryotic urediniospores of P. striiformis has provided raw genetic materials for genome evolution. No specific gene families have enriched in either isolate, but extensive gene loss events have occurred in both Pst and Psh after the divergence from their most recent common ancestor. A large number of isolate-specific genes were identified, with unique genomic features compared to the conserved genes, including 1) significantly shorter in length; 2) significantly less expressed; 3) significantly closer to transposable elements; and 4) redundant in pathways. The presence of specific genes in one isolate (or forma specialis) was resulted from the loss of the homologues in the other isolate (or forma specialis) by the replacements of transposable elements or losses of genomic fragments. In addition, different patterns and numbers of telomeric repeats were observed between the isolates. CONCLUSIONS Host adaptation of P. striiformis at the forma specialis level is a complex pathogenic trait, involving not only virulence-related genes but also other genes. Gene loss, which might be adaptive and driven by transposable element activities, provides genomic basis for host adaptation of different formae speciales of P. striiformis.
Collapse
Affiliation(s)
- Chongjing Xia
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430 USA
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430 USA
| | - Chuntao Yin
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430 USA
| | - Omar E. Cornejo
- School of Biological Sciences, Washington State University, Pullman, WA 99164-7520 USA
| | - Scot H. Hulbert
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430 USA
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430 USA
- Wheat Health, Genetics, and Quality Research Unit, Agriculture Research Service, U.S. Department of Agriculture, Pullman, WA 99164-6430 USA
| |
Collapse
|
37
|
Jordan KW, Wang S, He F, Chao S, Lun Y, Paux E, Sourdille P, Sherman J, Akhunova A, Blake NK, Pumphrey MO, Glover K, Dubcovsky J, Talbert L, Akhunov ED. The genetic architecture of genome-wide recombination rate variation in allopolyploid wheat revealed by nested association mapping. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:1039-1054. [PMID: 29952048 PMCID: PMC6174997 DOI: 10.1111/tpj.14009] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/21/2018] [Accepted: 06/06/2018] [Indexed: 05/18/2023]
Abstract
Recombination affects the fate of alleles in populations by imposing constraints on the reshuffling of genetic information. Understanding the genetic basis of these constraints is critical for manipulating the recombination process to improve the resolution of genetic mapping, and reducing the negative effects of linkage drag and deleterious genetic load in breeding. Using sequence-based genotyping of a wheat nested association mapping (NAM) population of 2,100 recombinant inbred lines created by crossing 29 diverse lines, we mapped QTL affecting the distribution and frequency of 102 000 crossovers (CO). Genome-wide recombination rate variation was mostly defined by rare alleles with small effects together explaining up to 48.6% of variation. Most QTL were additive and showed predominantly trans-acting effects. The QTL affecting the proximal COs also acted additively without increasing the frequency of distal COs. We showed that the regions with decreased recombination carry more single nucleotide polymorphisms (SNPs) with possible deleterious effects than the regions with a high recombination rate. Therefore, our study offers insights into the genetic basis of recombination rate variation in wheat and its effect on the distribution of deleterious SNPs across the genome. The identified trans-acting additive QTL can be utilized to manipulate CO frequency and distribution in the large polyploid wheat genome opening the possibility to improve the efficiency of gene pyramiding and reducing the deleterious genetic load in the low-recombining pericentromeric regions of chromosomes.
Collapse
Affiliation(s)
| | - Shichen Wang
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
- Present address:
TEES‐AgriLife Center for Bioinformatics and Genomic Systems EngineeringTexas A&M University101 Gateway, Suite ACollege StationTX77845USA
| | - Fei He
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
| | - Shiaoman Chao
- USDA‐ARS Cereal Crops Research Unit1605 Albrecht Blvd NFargoNDUSA
| | - Yanni Lun
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
- Present address:
TEES‐AgriLife Center for Bioinformatics and Genomic Systems EngineeringTexas A&M University101 Gateway, Suite ACollege StationTX77845USA
| | - Etienne Paux
- INRA GDEC Auvergne‐Rhône‐AlpesClermont‐FerrandFrance
| | | | | | - Alina Akhunova
- Integrated Genomics FacilityKansas State UniversityManhattanKSUSA
| | | | | | - Karl Glover
- Department of Agronomy, Horticulture and Plant ScienceSouth Dakota State UniversityBrookingsSDUSA
| | - Jorge Dubcovsky
- Department of Plant SciencesUniversity of CaliforniaDavis, DavisCAUSA
- Howard Hughes Medical InstituteChevy ChaseMD20815USA
| | | | | |
Collapse
|
38
|
Ramírez-González RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini L, Davey M, Jacobs J, van Ex F, Pasha A, Khedikar Y, Robinson SJ, Cory AT, Florio T, Concia L, Juery C, Schoonbeek H, Steuernagel B, Xiang D, Ridout CJ, Chalhoub B, Mayer KFX, Benhamed M, Latrasse D, Bendahmane A, Wulff BBH, Appels R, Tiwari V, Datla R, Choulet F, Pozniak CJ, Provart NJ, Sharpe AG, Paux E, Spannagl M, Bräutigam A, Uauy C. The transcriptional landscape of polyploid wheat. Science 2018; 361:eaar6089. [PMID: 30115782 DOI: 10.1126/science.aar6089] [Citation(s) in RCA: 563] [Impact Index Per Article: 80.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 07/11/2018] [Indexed: 12/14/2022]
Abstract
The coordinated expression of highly related homoeologous genes in polyploid species underlies the phenotypes of many of the world's major crops. Here we combine extensive gene expression datasets to produce a comprehensive, genome-wide analysis of homoeolog expression patterns in hexaploid bread wheat. Bias in homoeolog expression varies between tissues, with ~30% of wheat homoeologs showing nonbalanced expression. We found expression asymmetries along wheat chromosomes, with homoeologs showing the largest inter-tissue, inter-cultivar, and coding sequence variation, most often located in high-recombination distal ends of chromosomes. These transcriptionally dynamic genes potentially represent the first steps toward neo- or subfunctionalization of wheat homoeologs. Coexpression networks reveal extensive coordination of homoeologs throughout development and, alongside a detailed expression atlas, provide a framework to target candidate genes underpinning agronomic traits in wheat.
Collapse
|
39
|
Dvorak J, Wang L, Zhu T, Jorgensen CM, Deal KR, Dai X, Dawson MW, Müller HG, Luo MC, Ramasamy RK, Dehghani H, Gu YQ, Gill BS, Distelfeld A, Devos KM, Qi P, You FM, Gulick PJ, McGuire PE. Structural variation and rates of genome evolution in the grass family seen through comparison of sequences of genomes greatly differing in size. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:487-503. [PMID: 29770515 DOI: 10.1111/tpj.13964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 05/05/2023]
Abstract
Homology was searched with genes annotated in the Aegilops tauschii pseudomolecules against genes annotated in the pseudomolecules of tetraploid wild emmer wheat, Brachypodium distachyon, sorghum and rice. Similar searches were performed with genes annotated in the rice pseudomolecules. Matrices of collinear genes and rearrangements in their order were constructed. Optical BioNano genome maps were constructed and used to validate rearrangements unique to the wild emmer and Ae. tauschii genomes. Most common rearrangements were short paracentric inversions and short intrachromosomal translocations. Intrachromosomal translocations outnumbered segmental intrachromosomal duplications. The densities of paracentric inversion lengths were approximated by exponential distributions in all six genomes. Densities of collinear genes along the Ae. tauschii chromosomes were highly correlated with meiotic recombination rates but those of rearrangements were not, suggesting different causes of the erosion of gene collinearity and evolution of major chromosome rearrangements. Frequent rearrangements sharing breakpoints suggested that chromosomes have been rearranged recurrently at some sites. The distal 4 Mb of the short arms of rice chromosomes Os11 and Os12 and corresponding regions in the sorghum, B. distachyon and Triticeae genomes contain clusters of interstitial translocations including from 1 to 7 collinear genes. The rates of acquisition of major rearrangements were greater in the large wild emmer wheat and Ae. tauschii genomes than in the lineage preceding their divergence or in the B. distachyon, rice and sorghum lineages. It is suggested that synergy between large quantities of dynamic transposable elements and annual growth habit have been the primary causes of the fast evolution of the Triticeae genomes.
Collapse
Affiliation(s)
- Jan Dvorak
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Le Wang
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Tingting Zhu
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Chad M Jorgensen
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Karin R Deal
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Xiongtao Dai
- Department of Statistics, University of California, Davis, CA, USA
| | - Matthew W Dawson
- Department of Statistics, University of California, Davis, CA, USA
| | | | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Ramesh K Ramasamy
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Hamid Dehghani
- Department of Plant Sciences, University of California, Davis, CA, USA
- Department of Plant Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Yong Q Gu
- Crop Improvement & Genetics Research, USDA-ARS, Albany, CA, USA
| | - Bikram S Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Assaf Distelfeld
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Katrien M Devos
- Institute of Plant Breeding, Genetics and Genomics (Department of Crop & Soil Sciences), University of Georgia, Athens, GA, USA
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - Peng Qi
- Institute of Plant Breeding, Genetics and Genomics (Department of Crop & Soil Sciences), University of Georgia, Athens, GA, USA
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - Frank M You
- Agriculture & Agri-Food Canada, Morden, MB, Canada
| | - Patrick J Gulick
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Patrick E McGuire
- Department of Plant Sciences, University of California, Davis, CA, USA
| |
Collapse
|
40
|
Naranjo T. Variable Patterning of Chromatin Remodeling, Telomere Positioning, Synapsis, and Chiasma Formation of Individual Rye Chromosomes in Meiosis of Wheat-Rye Additions. FRONTIERS IN PLANT SCIENCE 2018; 9:880. [PMID: 30013585 PMCID: PMC6036140 DOI: 10.3389/fpls.2018.00880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Meiosis, the type of cell division that halves the chromosome number, shows a considerable degree of diversity among species. Unraveling molecular mechanisms of the meiotic machinery has been mainly based on meiotic mutants, where the effects of a change were assessed on chromosomes of the particular species. An alternative approach is to study the meiotic behavior of the chromosomes introgressed into different genetic backgrounds. As an allohexaploid, common wheat tolerates introgression of chromosomes from related species, such as rye. The behavior of individual pairs of rye homologues added to wheat has been monitored in meiotic prophase I and metaphase I. Chromosome 4R increased its length in early prophase I much more than other chromosomes studied, implying chromosome specific patterns of chromatin organization. Chromosome conformation affected clustering of telomeres but not their dispersion. Telomeres of the short arm of submetacentric chromosomes 4R, 5R, and 6R failed more often to be included in the telomere cluster either than the telomeres of the long arms or telomeres of metacentrics such as 2R, 3R, and 7R. The disturbed migration of the telomeres of 5RS and 6RS was associated with failure of synapsis and chiasma formation. However, despite the failed convergence of its telomere, the 4RS arm developed normal synapsis, perhaps because the strong increase of its length in early prophase I facilitated homologous encounters in intercalary regions. Surprisingly, chiasma frequencies in both arms of 4R were reduced. Similarly, the short arm of metacentric chromosome 2R often failed to form chiasmata despite normal synapsis. Chromosomes 1R, 3R, and 7R showed a regular meiotic behavior. These observations are discussed in the context of the behavior that these chromosomes show in rye itself.
Collapse
|
41
|
Haenel Q, Laurentino TG, Roesti M, Berner D. Meta-analysis of chromosome-scale crossover rate variation in eukaryotes and its significance to evolutionary genomics. Mol Ecol 2018; 27:2477-2497. [PMID: 29676042 DOI: 10.1111/mec.14699] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 01/02/2023]
Abstract
Understanding the distribution of crossovers along chromosomes is crucial to evolutionary genomics because the crossover rate determines how strongly a genome region is influenced by natural selection on linked sites. Nevertheless, generalities in the chromosome-scale distribution of crossovers have not been investigated formally. We fill this gap by synthesizing joint information on genetic and physical maps across 62 animal, plant and fungal species. Our quantitative analysis reveals a strong and taxonomically widespread reduction of the crossover rate in the centre of chromosomes relative to their peripheries. We demonstrate that this pattern is poorly explained by the position of the centromere, but find that the magnitude of the relative reduction in the crossover rate in chromosome centres increases with chromosome length. That is, long chromosomes often display a dramatically low crossover rate in their centre, whereas short chromosomes exhibit a relatively homogeneous crossover rate. This observation is compatible with a model in which crossover is initiated from the chromosome tips, an idea with preliminary support from mechanistic investigations of meiotic recombination. Consequently, we show that organisms achieve a higher genome-wide crossover rate by evolving smaller chromosomes. Summarizing theory and providing empirical examples, we finally highlight that taxonomically widespread and systematic heterogeneity in crossover rate along chromosomes generates predictable broad-scale trends in genetic diversity and population differentiation by modifying the impact of natural selection among regions within a genome. We conclude by emphasizing that chromosome-scale heterogeneity in crossover rate should urgently be incorporated into analytical tools in evolutionary genomics, and in the interpretation of resulting patterns.
Collapse
Affiliation(s)
- Quiterie Haenel
- Zoological Institute, University of Basel, Basel, Switzerland
| | | | - Marius Roesti
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Berner
- Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
42
|
Buerstmayr M, Steiner B, Wagner C, Schwarz P, Brugger K, Barabaschi D, Volante A, Valè G, Cattivelli L, Buerstmayr H. High-resolution mapping of the pericentromeric region on wheat chromosome arm 5AS harbouring the Fusarium head blight resistance QTL Qfhs.ifa-5A. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1046-1056. [PMID: 29024288 PMCID: PMC5902775 DOI: 10.1111/pbi.12850] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/17/2017] [Accepted: 10/08/2017] [Indexed: 05/24/2023]
Abstract
The Qfhs.ifa-5A allele, contributing to enhanced Fusarium head blight resistance in wheat, resides in a low-recombinogenic region of chromosome 5A close to the centromere. A near-isogenic RIL population segregating for the Qfhs.ifa-5A resistance allele was developed and among 3650 lines as few as four recombined within the pericentromeric C-5AS1-0.40 bin, yielding only a single recombination point. Genetic mapping of the pericentromeric region using a recombination-dependent approach was thus not successful. To facilitate fine-mapping the physically large Qfhs.ifa-5A interval, two gamma-irradiated deletion panels were generated: (i) seeds of line NIL3 carrying the Qfhs.ifa-5A resistance allele in an otherwise susceptible background were irradiated and plants thereof were selfed to obtain deletions in homozygous state and (ii) a radiation hybrid panel was produced using irradiated pollen of the wheat line Chinese Spring (CS) for pollinating the CS-nullisomic5Atetrasomic5B. In total, 5157 radiation selfing and 276 radiation hybrid plants were screened for deletions on 5AS and plants containing deletions were analysed using 102 5AS-specific markers. Combining genotypic information of both panels yielded an 817-fold map improvement (cR/cM) for the centromeric bin and was 389-fold increased across the Qfhs.ifa-5A interval compared to the genetic map, with an average map resolution of 0.77 Mb/cR. We successfully proved that the RH mapping technique can effectively resolve marker order in low-recombining regions, including pericentromeric intervals, and simultaneously allow developing an in vivo panel of sister lines differing for induced deletions across the Qfhs.ifa-5A interval that can be used for phenotyping.
Collapse
Affiliation(s)
- Maria Buerstmayr
- Department of Agrobiotechnology TullnBOKU ‐ University of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Barbara Steiner
- Department of Agrobiotechnology TullnBOKU ‐ University of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Christian Wagner
- Department of Agrobiotechnology TullnBOKU ‐ University of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Petra Schwarz
- Department of Agrobiotechnology TullnBOKU ‐ University of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Klaus Brugger
- Department of Agrobiotechnology TullnBOKU ‐ University of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Delfina Barabaschi
- Council for Agricultural Research and Economics (CREA)Genomics Research CentreFiorenzuola d'ArdaItaly
| | - Andrea Volante
- Council for Agricultural Research and Economics (CREA)Research Centre for Cereal and Industrial CropsVercelliItaly
| | - Giampiero Valè
- Council for Agricultural Research and Economics (CREA)Research Centre for Cereal and Industrial CropsVercelliItaly
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics (CREA)Genomics Research CentreFiorenzuola d'ArdaItaly
| | - Hermann Buerstmayr
- Department of Agrobiotechnology TullnBOKU ‐ University of Natural Resources and Life Sciences, ViennaTullnAustria
| |
Collapse
|
43
|
Loginova DB, Silkova OG. The Genome of Bread Wheat Triticum aestivum L.: Unique Structural and Functional Properties. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418040105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Zhou Y, Chen Z, Cheng M, Chen J, Zhu T, Wang R, Liu Y, Qi P, Chen G, Jiang Q, Wei Y, Luo M, Nevo E, Allaby RG, Liu D, Wang J, Dvorák J, Zheng Y. Uncovering the dispersion history, adaptive evolution and selection of wheat in China. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:280-291. [PMID: 28635103 PMCID: PMC5785339 DOI: 10.1111/pbi.12770] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/01/2017] [Accepted: 06/03/2017] [Indexed: 05/18/2023]
Abstract
Wheat was introduced to China approximately 4500 years ago, where it adapted over a span of time to various environments in agro-ecological growing zones. We investigated 717 Chinese and 14 Iranian/Turkish geographically diverse, locally adapted wheat landraces with 27 933 DArTseq (for 717 landraces) and 312 831 Wheat660K (for a subset of 285 landraces) markers. This study highlights the adaptive evolutionary history of wheat cultivation in China. Environmental stresses and independent selection efforts have resulted in considerable genome-wide divergence at the population level in Chinese wheat landraces. In total, 148 regions of the wheat genome show signs of selection in at least one geographic area. Our data show adaptive events across geographic areas, from the xeric northwest to the mesic south, along and among homoeologous chromosomes, with fewer variations in the D genome than in the A and B genomes. Multiple variations in interdependent functional genes such as regulatory and metabolic genes controlling germination and flowering time were characterized, showing clear allelic frequency changes corresponding to the dispersion of wheat in China. Population structure and selection data reveal that Chinese wheat spread from the northwestern Caspian Sea region to South China, adapting during its agricultural trajectory to increasingly mesic and warm climatic areas.
Collapse
Affiliation(s)
- Yong Zhou
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuanChina
| | - Zhongxu Chen
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuanChina
| | - Mengping Cheng
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuanChina
| | - Jian Chen
- Chengdu City Institute of ArchaeologyChengduSichuanChina
| | - Tingting Zhu
- Department of Plant SciencesUniversity of CaliforniaDavisCAUSA
| | - Rui Wang
- State Key Lab of CAD&CGZhejiang UniversityHangzhouZhejiangChina
| | - Yaxi Liu
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuanChina
| | - Pengfei Qi
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuanChina
| | - Guoyue Chen
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuanChina
| | - Qiantao Jiang
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuanChina
| | - Yuming Wei
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuanChina
| | - Ming‐Cheng Luo
- Department of Plant SciencesUniversity of CaliforniaDavisCAUSA
| | - Eviatar Nevo
- Institute of EvolutionUniversity of HaifaHaifaIsrael
| | | | - Dengcai Liu
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuanChina
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest ChinaSichuan Agricultural UniversityYaanSichuanChina
| | - Jirui Wang
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuanChina
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest ChinaSichuan Agricultural UniversityYaanSichuanChina
| | - Jan Dvorák
- Department of Plant SciencesUniversity of CaliforniaDavisCAUSA
| | - Youliang Zheng
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuanChina
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest ChinaSichuan Agricultural UniversityYaanSichuanChina
| |
Collapse
|
45
|
Shen C, Li X, Zhang R, Lin Z. Genome-wide recombination rate variation in a recombination map of cotton. PLoS One 2017; 12:e0188682. [PMID: 29176878 PMCID: PMC5703465 DOI: 10.1371/journal.pone.0188682] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/10/2017] [Indexed: 01/03/2023] Open
Abstract
Recombination is crucial for genetic evolution, which not only provides new allele combinations but also influences the biological evolution and efficacy of natural selection. However, recombination variation is not well understood outside of the complex species’ genomes, and it is particularly unclear in Gossypium. Cotton is the most important natural fibre crop and the second largest oil-seed crop. Here, we found that the genetic and physical maps distances did not have a simple linear relationship. Recombination rates were unevenly distributed throughout the cotton genome, which showed marked changes along the chromosome lengths and recombination was completely suppressed in the centromeric regions. Recombination rates significantly varied between A-subgenome (At) (range = 1.60 to 3.26 centimorgan/megabase [cM/Mb]) and D-subgenome (Dt) (range = 2.17 to 4.97 cM/Mb), which explained why the genetic maps of At and Dt are similar but the physical map of Dt is only half that of At. The translocation regions between A02 and A03 and between A04 and A05, and the inversion regions on A10, D10, A07 and D07 indicated relatively high recombination rates in the distal regions of the chromosomes. Recombination rates were positively correlated with the densities of genes, markers and the distance from the centromere, and negatively correlated with transposable elements (TEs). The gene ontology (GO) categories showed that genes in high recombination regions may tend to response to environmental stimuli, and genes in low recombination regions are related to mitosis and meiosis, which suggested that they may provide the primary driving force in adaptive evolution and assure the stability of basic cell cycle in a rapidly changing environment. Global knowledge of recombination rates will facilitate genetics and breeding in cotton.
Collapse
Affiliation(s)
- Chao Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ximei Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Agronomy and Plant Protection, Qingdao Agricultural University/Shandong Key Laboratory of Dryland Farming Technology, Qingdao, Shandong, China
| | - Ruiting Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
46
|
Jorgensen C, Luo MC, Ramasamy R, Dawson M, Gill BS, Korol AB, Distelfeld A, Dvorak J. A High-Density Genetic Map of Wild Emmer Wheat from the Karaca Dağ Region Provides New Evidence on the Structure and Evolution of Wheat Chromosomes. FRONTIERS IN PLANT SCIENCE 2017; 8:1798. [PMID: 29104581 PMCID: PMC5655018 DOI: 10.3389/fpls.2017.01798] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 10/03/2017] [Indexed: 05/05/2023]
Abstract
Wild emmer (Triticum turgidum ssp. dicoccoides) is a progenitor of all cultivated wheat grown today. It has been hypothesized that emmer was domesticated in the Karaca Dağ region in southeastern Turkey. A total of 445 recombinant inbred lines of T. turgidum ssp. durum cv. 'Langdon' x wild emmer accession PI 428082 from this region was developed and genotyped with the Illumina 90K single nucleotide polymorphism Infinium assay. A genetic map comprising 2,650 segregating markers was constructed. The order of the segregating markers and an additional 8,264 co-segregating markers in the Aegilops tauschii reference genome sequence was used to compare synteny of the tetraploid wheat with the Brachypodium distachyon, rice, and sorghum. These comparisons revealed the presence of 15 structural chromosome rearrangements, in addition to the already known 4A-5A-7B rearrangements. The most common type was an intra-chromosomal translocation in which the translocated segment was short and was translocated only a short distance along the chromosome. A large reciprocal translocation, one small non-reciprocal translocation, and three large and one small paracentric inversions were also discovered. The use of inversions for a phylogeny reconstruction in the Triticum-Aegilops alliance was illustrated. The genetic map was inconsistent with the current model of evolution of the rearranged chromosomes 4A-5A-7B. Genetic diversity in the rearranged chromosome 4A showed that the rearrangements might have been contemporary with wild emmer speciation. A selective sweep was found in the centromeric region of chromosome 4A in Karaca Dağ wild emmer but not in 4A of T. aestivum. The absence of diversity from a large portion of chromosome 4A of wild emmer, believed to be ancestral to all domesticated wheat, is puzzling.
Collapse
Affiliation(s)
- Chad Jorgensen
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Ramesh Ramasamy
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Mathew Dawson
- Department of Statistics, University of California, Davis, Davis, CA, United States
| | - Bikram S. Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | | | - Assaf Distelfeld
- Institute for Cereal Crops Improvement, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
47
|
Alipour H, Bihamta MR, Mohammadi V, Peyghambari SA, Bai G, Zhang G. Genotyping-by-Sequencing (GBS) Revealed Molecular Genetic Diversity of Iranian Wheat Landraces and Cultivars. FRONTIERS IN PLANT SCIENCE 2017; 8:1293. [PMID: 28912785 PMCID: PMC5583605 DOI: 10.3389/fpls.2017.01293] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/07/2017] [Indexed: 05/22/2023]
Abstract
Background: Genetic diversity is an essential resource for breeders to improve new cultivars with desirable characteristics. Recently, genotyping-by-sequencing (GBS), a next-generation sequencing (NGS) technology that can simplify complex genomes, has now be used as a high-throughput and cost-effective molecular tool for routine breeding and screening in many crop species, including the species with a large genome. Results: We genotyped a diversity panel of 369 Iranian hexaploid wheat accessions including 270 landraces collected between 1931 and 1968 in different climate zones and 99 cultivars released between 1942 to 2014 using 16,506 GBS-based single nucleotide polymorphism (GBS-SNP) markers. The B genome had the highest number of mapped SNPs while the D genome had the lowest on both the Chinese Spring and W7984 references. Structure and cluster analyses divided the panel into three groups with two landrace groups and one cultivar group, suggesting a high differentiation between landraces and cultivars and between landraces. The cultivar group can be further divided into four subgroups with one subgroup was mostly derived from Iranian ancestor(s). Similarly, landrace groups can be further divided based on years of collection and climate zones where the accessions were collected. Molecular analysis of variance indicated that the genetic variation was larger between groups than within group. Conclusion: Obvious genetic diversity in Iranian wheat was revealed by analysis of GBS-SNPs and thus breeders can select genetically distant parents for crossing in breeding. The diverse Iranian landraces provide rich genetic sources of tolerance to biotic and abiotic stresses, and they can be useful resources for the improvement of wheat production in Iran and other countries.
Collapse
Affiliation(s)
- Hadi Alipour
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Urmia UniversityUrmia, Iran
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of TehranKaraj, Iran
- Agronomy Department, Kansas State University, ManhattanKS, United States
| | - Mohammad R. Bihamta
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of TehranKaraj, Iran
| | - Valiollah Mohammadi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of TehranKaraj, Iran
| | - Seyed A. Peyghambari
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of TehranKaraj, Iran
| | - Guihua Bai
- Hard Winter Wheat Genetics Research Unit, United States Department of Agriculture – Agricultural Research Service, ManhattanKS, United States
| | - Guorong Zhang
- Agronomy Department, Kansas State University, ManhattanKS, United States
| |
Collapse
|
48
|
Building Ultra-High-Density Linkage Maps Based on Efficient Filtering of Trustable Markers. Genetics 2017; 206:1285-1295. [PMID: 28512186 DOI: 10.1534/genetics.116.197491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 05/09/2017] [Indexed: 12/18/2022] Open
Abstract
The study is focused on addressing the problem of building genetic maps in the presence of ∼103-104 of markers per chromosome. We consider a spectrum of situations with intrachromosomal heterogeneity of recombination rate, different level of genotyping errors, and missing data. In the ideal scenario of the absence of errors and missing data, the majority of markers should appear as groups of cosegregating markers ("twins") representing no challenge for map construction. The central aspect of the proposed approach is to take into account the structure of the marker space, where each twin group (TG) and singleton markers are represented as points of this space. The confounding effect of genotyping errors and missing data leads to reduction of TG size, but upon a low level of these effects surviving TGs can still be used as a source of reliable skeletal markers. Increase in the level of confounding effects results in a considerable decrease in the number or even disappearance of usable TGs and, correspondingly, of skeletal markers. Here, we show that the paucity of informative markers can be compensated by detecting kernels of markers in the marker space using a clustering procedure, and demonstrate the utility of this approach for high-density genetic map construction on simulated and experimentally obtained genotyping datasets.
Collapse
|
49
|
Hao C, Wang Y, Chao S, Li T, Liu H, Wang L, Zhang X. The iSelect 9 K SNP analysis revealed polyploidization induced revolutionary changes and intense human selection causing strong haplotype blocks in wheat. Sci Rep 2017; 7:41247. [PMID: 28134278 PMCID: PMC5278348 DOI: 10.1038/srep41247] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 12/19/2016] [Indexed: 01/05/2023] Open
Abstract
A Chinese wheat mini core collection was genotyped using the wheat 9 K iSelect SNP array. Total 2420 and 2396 polymorphic SNPs were detected on the A and the B genome chromosomes, which formed 878 haplotype blocks. There were more blocks in the B genome, but the average block size was significantly (P < 0.05) smaller than those in the A genome. Intense selection (domestication and breeding) had a stronger effect on the A than on the B genome chromosomes. Based on the genetic pedigrees, many blocks can be traced back to a well-known Strampelli cross, which was made one century ago. Furthermore, polyploidization of wheat (both tetraploidization and hexaploidization) induced revolutionary changes in both the A and the B genomes, with a greater increase of gene diversity compared to their diploid ancestors. Modern breeding has dramatically increased diversity in the gene coding regions, though obvious blocks were formed on most of the chromosomes in both tetraploid and hexaploid wheats. Tag-SNP markers identified in this study can be used for marker assisted selection using haplotype blocks as a wheat breeding strategy. This strategy can also be employed to facilitate genome selection in other self-pollinating crop species.
Collapse
Affiliation(s)
- Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancment, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuquan Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancment, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shiaoman Chao
- US Department of Agriculture-Agricultural Research Service Biosciences Research Laboratory, Fargo, ND 58102, USA
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancment, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongxia Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancment, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lanfen Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancment, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancment, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
50
|
Balcárková B, Frenkel Z, Škopová M, Abrouk M, Kumar A, Chao S, Kianian SF, Akhunov E, Korol AB, Doležel J, Valárik M. A High Resolution Radiation Hybrid Map of Wheat Chromosome 4A. FRONTIERS IN PLANT SCIENCE 2017; 7:2063. [PMID: 28119729 PMCID: PMC5222868 DOI: 10.3389/fpls.2016.02063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/26/2016] [Indexed: 05/18/2023]
Abstract
Bread wheat has a large and complex allohexaploid genome with low recombination level at chromosome centromeric and peri-centromeric regions. This significantly hampers ordering of markers, contigs of physical maps and sequence scaffolds and impedes obtaining of high-quality reference genome sequence. Here we report on the construction of high-density and high-resolution radiation hybrid (RH) map of chromosome 4A supported by high-density chromosome deletion map. A total of 119 endosperm-based RH lines of two RH panels and 15 chromosome deletion bin lines were genotyped with 90K iSelect single nucleotide polymorphism (SNP) array. A total of 2316 and 2695 markers were successfully mapped to the 4A RH and deletion maps, respectively. The chromosome deletion map was ordered in 19 bins and allowed precise identification of centromeric region and verification of the RH panel reliability. The 4A-specific RH map comprises 1080 mapping bins and spans 6550.9 cR with a resolution of 0.13 Mb/cR. Significantly higher mapping resolution in the centromeric region was observed as compared to recombination maps. Relatively even distribution of deletion frequency along the chromosome in the RH panel was observed and putative functional centromere was delimited within a region characterized by two SNP markers.
Collapse
Affiliation(s)
- Barbora Balcárková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| | - Zeev Frenkel
- Institute of Evolution, University of HaifaHaifa, Israel
| | - Monika Škopová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| | - Michael Abrouk
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| | - Ajay Kumar
- Department of Plant Sciences, North Dakota State University, FargoND, USA
| | - Shiaoman Chao
- Biosciences Research Laboratory, United States Department of Agriculture-Agricultural Research Service, FargoND, USA
| | - Shahryar F. Kianian
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, University of Minnesota, St. PaulMN, USA
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, ManhattanKS, USA
| | | | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| | - Miroslav Valárik
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| |
Collapse
|