1
|
Bortolotto VC, Dahleh MMM, Marques LS, Borstmann SMA, Viana CE, Pinheiro FC, Balok FRM, Meichtry LB, Boeira SP, Guerra GP, Nogueira CW, Prigol M. Chrysin modulates the BDNF/TrkB/AKT/Creb neuroplasticity signaling pathway: Acting in the improvement of cognitive flexibility and declarative, working and aversive memory deficits caused by hypothyroidism in C57BL/6 female mice. Neuroscience 2025; 566:28-38. [PMID: 39709060 DOI: 10.1016/j.neuroscience.2024.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Hypothyroidism is known to affect memory consolidation, and our prior research highlighted the potential of chrysin as a therapeutic agent to restore cognitive function. The present study aimed to investigate the action mechanism of chrysin on memory deficits in hypothyroid in C57BL/6 female mice. We assessed cognitive flexibility, declarative, working, and aversive memories while analyzing the BDNF/TrkB/AKT/Creb neuroplasticity signaling pathway and synaptic function in the hippocampus and prefrontal cortex. To induce hypothyroidism, mice were exposed to 0.1 % methimazole (MTZ) in the drinking water for 31 days. After confirming low thyroid hormones levels, the mice received either vehicle or chrysin (20 mg/kg) intragastrically once a day for 28 consecutive days. Memory tests were conducted in two separate experiments (experiment 1: Y-maze and reverse Morris water maze; experiment 2: object recognition task and step-down latency), ensuring no memories overlap. Following the tests, the brain samples were collected to analyses ex vivo. Hypothyroid mice exhibited deficits in cognitive flexibility and various memory types, along with altered protein expression related to the BDNF/TrkB/Creb signaling pathway and increased AKT levels in hippocampus and prefrontal cortex. Chrysin treatment effectively reversed these memory deficits, restored cognitive flexibility, and improved protein levels. Our findings suggest that hypothyroidism impairs cognitive flexibility and memory through the BDNF/TrkB/AKT/Creb pathway, which chrysin modulates, operating as a neuroprotector in hypothyroidism. This research sheds light on the potential therapeutic benefits of chrysin for memory-related issues in hypothyroidism.
Collapse
Affiliation(s)
- Vandreza Cardoso Bortolotto
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences - Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil; Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Department of Nutrition - Federal University of Pampa, Itaqui, RS, 97650-000, Brazil.
| | - Mustafa Munir Mustafa Dahleh
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Department of Nutrition - Federal University of Pampa, Itaqui, RS, 97650-000, Brazil
| | - Luiza Souza Marques
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences - Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Stífani Machado Araujo Borstmann
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Department of Nutrition - Federal University of Pampa, Itaqui, RS, 97650-000, Brazil
| | - Cristini Escobar Viana
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Department of Nutrition - Federal University of Pampa, Itaqui, RS, 97650-000, Brazil
| | - Franciane Cabral Pinheiro
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Department of Nutrition - Federal University of Pampa, Itaqui, RS, 97650-000, Brazil
| | - Franciéle Romero Machado Balok
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Department of Nutrition - Federal University of Pampa, Itaqui, RS, 97650-000, Brazil
| | - Luana Barreto Meichtry
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Department of Nutrition - Federal University of Pampa, Itaqui, RS, 97650-000, Brazil
| | - Silvana Peterini Boeira
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Department of Nutrition - Federal University of Pampa, Itaqui, RS, 97650-000, Brazil
| | - Gustavo Petri Guerra
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Department of Nutrition - Federal University of Pampa, Itaqui, RS, 97650-000, Brazil
| | - Cristina Wayne Nogueira
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences - Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Department of Nutrition - Federal University of Pampa, Itaqui, RS, 97650-000, Brazil
| |
Collapse
|
2
|
Zhang T, Sun J, Jiao Q, Li S, Meng X, Shi J, Wang B. Cannabinoid type 2 receptor deficiency leads to Aβ-induced cognitive impairment through promoting microglial sensitivity to Aβ in the prefrontal cortex in mice. IBRO Neurosci Rep 2024; 17:252-262. [PMID: 39297128 PMCID: PMC11409075 DOI: 10.1016/j.ibneur.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/08/2024] [Accepted: 08/17/2024] [Indexed: 09/21/2024] Open
Abstract
Aims This study is to investigate the effects of Cannabinoid type 2 receptor (CB2R) deficiency on microglia and cognitive function in both Aβ1-42-injected CB2R knockout mice and a transgenic mouse model of Alzheimer's disease (AD) in brain. Methods After hippocampal injection with Aβ1-42 oligomers in CB2R knockout mice with and without CB2R agonist treatment and in transgenic APP/PS1 mice with CB2R deletion, the novel object recognition (NOR) and Morris water maze (MWM) tests were performed to assess the animal behavior performance. Immunofluorescence staining was conducted to detect the microglial morphology and activation status. The expression of proinflammation and anti-inflammation cytokines were determined by qRT-PCR. Results CB2R deficiency significantly aggravated cognitive impairment in both Aβ1-42-induced and transgenic APP/PS1 animal model in NOR. In Aβ-injected mice lacking CB2R and transgenic APP/PS1 mice with CB2R deletion, microglia in the prefrontal cortex exhibited enhanced immunoreactivity with altered morphology. Furthermore, transformation of activated microglial phenotype in the prefrontal cortex was reduced in Aβ1-42-injected CB2R knockout mice after CB2R agonist treatment. The CB2R deficiency significantly increased the expression of proinflammatory cytokines in the prefrontal cortex, while it was observed in the hippocampus in both Aβ1-42-injected and transgenic APP/PS1 AD mouse model. Furthermore, CB2R deficiency increased concentrations of soluble Aβ 40 in the prefrontal cortex, but did not affect plaques deposition. Conclusion CB2R deletion led to enhanced neuroinflammatory responses via direct upregulating microglia activation in the prefrontal cortex during the early symptomatic phase of AD mice. CB2R modulates prefrontal cortical neuroinflammation, which is essential for regulating cognitive functions such as recognition memory at the early stage of AD.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - JiaGuang Sun
- Department of Anesthesiology, Xingtai People's Hospital, Hebei 054000, China
| | - Qiang Jiao
- Henan Institute of Food and Salt Industry Inspection Technology, Henan 450003, China
| | - ShuaiChen Li
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - XiangBo Meng
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - JingPu Shi
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Bo Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
3
|
Shintani T, Yanai S, Kanasaki A, Iida T, Endo S. Long-term d-allose administration ameliorates age-related cognitive impairment and loss of bone strength in male mice. Exp Gerontol 2024; 196:112555. [PMID: 39179160 DOI: 10.1016/j.exger.2024.112555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/12/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Age-related physical and cognitive decline may be ameliorated by consuming functional foods. d-Allose, reported to have multiple health benefits, may temper aging phenotypes, particularly brain function. We investigated whether d-allose supplementation improves cognitive function. A standard battery of behavioral tests was administered to 18-month-old male mice after consuming diet containing 3 % d-allose for 6 months. Following a wire-hanging test, an open-field test, Morris water maze, fear-conditioning, and an analgesia test were sequentially performed. Bone density and strength were assessed afterwards. Possible mechanism(s) under-lying memory changes in hippocampus were also examined with a DNA microarray. d-Allose failed to influence muscle strength, locomotor activity and anxiety, fear memory, or pain sensitivity. However, d-allose improved hippocampus-dependent spatial learning and memory, and it may contribute to increase bone strength. d-Allose also changed the expression of some genes in hippocampus involved in cognitive functions. Long-term d-allose supplementation appears to modestly change aging phenotypes and improve spatial memory.
Collapse
Affiliation(s)
- Tomoya Shintani
- Research and Development, Matsutani Chemical Industry Co., Ltd., 5-3 Kita-Itami, Itami City, Hyogo 664-8508, Japan
| | - Shuichi Yanai
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan; Animal Facility, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Akane Kanasaki
- Research and Development, Matsutani Chemical Industry Co., Ltd., 5-3 Kita-Itami, Itami City, Hyogo 664-8508, Japan.
| | - Tetsuo Iida
- Research and Development, Matsutani Chemical Industry Co., Ltd., 5-3 Kita-Itami, Itami City, Hyogo 664-8508, Japan
| | - Shogo Endo
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| |
Collapse
|
4
|
Haskel MVL, da Silva Correa V, Queiroz R, Bonini JS, da Silva WC. On the participation of glycine receptors in the reconsolidation of spatial long-term memory in male rats. Behav Brain Res 2024; 471:115086. [PMID: 38825024 DOI: 10.1016/j.bbr.2024.115086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/14/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
The effects of intra-hippocampal manipulation of glycine receptors on the reconsolidation of recent and late long-term spatial memory were evaluated and assessed in the Morris water maze. The results obtained from the intra-hippocampal infusion of glycine and taurine demonstrated that taurine at a 100 nmol/side dose impaired the reconsolidation of recent and late long-term spatial memory. In comparison, at a dose of 10 nmol/side, it only affected the reconsolidation of late long-term spatial memory, reinforcing that there are differences between molecular mechanisms underlying recent and late long-term memory reconsolidation. On the other hand, glycine impaired the reconsolidation of early and late spatial memory when infused at a dose of 10 nmol/side, but not at a dose of 100 nmol/side, unless it is co-infused with an allosteric site antagonist of the NMDA receptor. Altogether these results show that glycine acting in situ in the hippocampal CA1 region exerts a pharmacological effect on U-curve, which can be explained by its concomitant action on its ionotropic receptor GlyR and on its NMDA receptor co-agonist site.
Collapse
MESH Headings
- Animals
- Receptors, Glycine/metabolism
- Receptors, Glycine/drug effects
- Male
- Glycine/pharmacology
- Rats
- Spatial Memory/drug effects
- Spatial Memory/physiology
- Memory, Long-Term/drug effects
- Memory, Long-Term/physiology
- Rats, Wistar
- Taurine/pharmacology
- Taurine/administration & dosage
- Hippocampus/drug effects
- Hippocampus/metabolism
- Memory Consolidation/drug effects
- Memory Consolidation/physiology
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, N-Methyl-D-Aspartate/drug effects
- CA1 Region, Hippocampal/drug effects
- CA1 Region, Hippocampal/metabolism
- CA1 Region, Hippocampal/physiology
- Maze Learning/drug effects
- Maze Learning/physiology
Collapse
Affiliation(s)
- Maria Vaitsa Loch Haskel
- Program in Physiology, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, Brazil; Laboratory of Neuropsychopharmacology, Department of Pharmacy, State University of Centre-West of Paraná, Guarapuava 85040-167, Brazil
| | - Vinicius da Silva Correa
- Laboratory of Neuropsychopharmacology, Department of Pharmacy, State University of Centre-West of Paraná, Guarapuava 85040-167, Brazil
| | - Ruliam Queiroz
- Program in Physiology, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, Brazil; Laboratory of Neuropsychopharmacology, Department of Pharmacy, State University of Centre-West of Paraná, Guarapuava 85040-167, Brazil
| | - Juliana Sartori Bonini
- Laboratory of Neuropsychopharmacology, Department of Pharmacy, State University of Centre-West of Paraná, Guarapuava 85040-167, Brazil
| | - Weber Claudio da Silva
- Program in Physiology, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, Brazil; Laboratory of Neuropsychopharmacology, Department of Pharmacy, State University of Centre-West of Paraná, Guarapuava 85040-167, Brazil.
| |
Collapse
|
5
|
Hasan SM, Huq MS, Chowdury AZ, Baajour S, Kopchick J, Robison AJ, Thakkar KN, Haddad L, Amirsadri A, Thomas P, Khatib D, Rajan U, Stanley JA, Diwadkar VA. Learning without contingencies: A loss of synergy between memory and reward circuits in schizophrenia. Schizophr Res 2023; 258:21-35. [PMID: 37467677 PMCID: PMC10521382 DOI: 10.1016/j.schres.2023.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 02/09/2023] [Accepted: 06/11/2023] [Indexed: 07/21/2023]
Abstract
Motivational deficits in schizophrenia may interact with foundational cognitive processes including learning and memory to induce impaired cognitive proficiency. If such a loss of synergy exists, it is likely to be underpinned by a loss of synchrony between the brains learning and reward sub-networks. Moreover, this loss should be observed even during tasks devoid of explicit reward contingencies given that such tasks are better models of real world performance than those with artificial contingencies. Here we applied undirected functional connectivity (uFC) analyses to fMRI data acquired while participants engaged in an associative learning task without contingencies or feedback. uFC was estimated and inter-group differences (between schizophrenia patients and controls, n = 54 total, n = 28 patients) were assessed within and between reward (VTA and NAcc) and learning/memory (Basal Ganglia, DPFC, Hippocampus, Parahippocampus, Occipital Lobe) sub-networks. The task paradigm itself alternated between Encoding, Consolidation, and Retrieval conditions, and uFC differences were quantified for each of the conditions. Significantly reduced uFC dominated the connectivity profiles of patients across all conditions. More pertinent to our motivations, these reductions were observed within and across classes of sub-networks (reward-related and learning/memory related). We suggest that disrupted functional connectivity between reward and learning sub-networks may drive many of the performance deficits that characterize schizophrenia. Thus, cognitive deficits in schizophrenia may in fact be underpinned by a loss of synergy between reward-sensitivity and cognitive processes.
Collapse
Affiliation(s)
- Sazid M Hasan
- Oakland University William Beaumont School of Medicine, USA
| | - Munajj S Huq
- Michigan State University, College of Osteopathic Medicine, USA
| | - Asadur Z Chowdury
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Shahira Baajour
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - John Kopchick
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - A J Robison
- Dept. of Physiology, Michigan State University, USA
| | | | - Luay Haddad
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Alireza Amirsadri
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Patricia Thomas
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Dalal Khatib
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Usha Rajan
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Jeffrey A Stanley
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Vaibhav A Diwadkar
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA.
| |
Collapse
|
6
|
Inhibition of hippocampal palmitoyl acyltransferase activity impairs spatial learning and memory consolidation. Neurobiol Learn Mem 2023; 200:107733. [PMID: 36804592 DOI: 10.1016/j.nlm.2023.107733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/12/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
Protein palmitoylation regulates trafficking, mobilization, localization, interaction, and distribution of proteins through the palmitoyl acyltransferases (PATs) enzymes. Protein palmitoylation controls rapid and dynamic changes of the synaptic architecture that modifies the efficiency and strength of synaptic connections, a fundamental mechanism to generate stable and long-lasting memory traces. Although protein palmitoylation in functional synaptic plasticity has been widely described, its role in learning and memory processes is poorly understood. In this work, we found that PATs inhibition into the hippocampus before and after the training of Morris water maze (MWM) and object location memory (OLM) impaired spatial learning. However, we demonstrated that PATs inhibition during the retrieval does not affect the expression of spatial memory in both MWM and OLM. Accordingly, long-term potentiation induction is impaired by inhibiting PATs into the hippocampus before high-frequency electrical stimulation but not after. These findings suggest that PATs activity is necessary to modify neural plasticity, a mechanism required for memory acquisition and consolidation. Like phosphorylation, active palmitoylation is required to regulate the function of already existing proteins that change synaptic strength in the hippocampus to acquire and later consolidate spatial memories.
Collapse
|
7
|
Spatial contextual recognition memory updating is modulated by dopamine release in the dorsal hippocampus from the locus coeruleus. Proc Natl Acad Sci U S A 2022; 119:e2208254119. [PMID: 36442129 PMCID: PMC9894183 DOI: 10.1073/pnas.2208254119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Detecting novelty is critical to consolidate declarative memories, such as spatial contextual recognition memory. It has been shown that stored memories, when retrieved, are susceptible to modification, incorporating new information through an updating process. Catecholamine release in the hippocampal CA1 region consolidates an object location memory (OLM). This work hypothesized that spatial contextual memory updating could be changed by decreasing catecholamine release in the hippocampal CA1 terminals from the locus coeruleus (LC). In a mouse model expressing Cre-recombinase under the control of the tyrosine hydroxylase (TH) promoter, memory updating was impaired by photoinhibition of the CA1 catecholaminergic terminals from the LC (LC-CA1) but not from the ventral tegmental area (VTA-CA1). In vivo microdialysis confirmed that the extracellular concentration of both dopamine (DA) and noradrenaline (NA) decreased after photoinhibition of the LC-CA1 terminals (but not VTA-CA1) during the OLM update session. Furthermore, DA D1/D5 and beta-adrenergic receptor antagonists disrupted behavior, but only the former impaired memory updating. Finally, photoinhibition of LC-CA1 terminals suppressed long-term potentiation (LTP) induction in Schaffer's collaterals as a plausible mechanism for memory updating. These data will help understand the underpinning mechanisms of DA in spatial contextual memory updating.
Collapse
|
8
|
Mohammadi-Farani A, Farhangian S, Shirooie S. Sex differences in acetylcholinesterase modulation during spatial and fear memory extinction in the amygdala; an animal study in the single prolonged stress model of PTSD. Res Pharm Sci 2022; 17:686-696. [PMID: 36704427 PMCID: PMC9872177 DOI: 10.4103/1735-5362.359435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/07/2022] [Accepted: 06/15/2022] [Indexed: 01/28/2023] Open
Abstract
Background and purpose Men and women show different reactions to trauma and that is believed to be the reason behind the higher prevalence of post-traumatic stress disorder (PTSD) in women. Cholinergic signaling has long been known to be involved in the processing of fear-related information and the amygdala is a critical center for fear modulation. The main goal of the current research was to find (a) whether trauma results in different learning/extinction of fear or spatial-related information among male and female rats and (b) if trauma is associated with different acetylcholinesterase (AchE) activity in the amygdala. Experimental approach We used single prolonged stress (SPS) as a PTSD model in this study. Normal and SPS animals of both sexes were tested in contextual and spatial tasks (learning and extinction). AchE activity in the amygdala was also measured during each process. Findings / Results Results indicated that fear and spatial learning were impaired in SPS animals. SPS animals also had deficits in fear and spatial memory extinction and the effect was significantly higher in female- SPS than in the male-SPS group. In the enzymatic tests, AchE activity was increased during the fear extinction test and incremental changes were more significant in the female-SPS group. Conclusion and implications Collectively, these findings provided evidence that sex differences in response to trauma were at least partly related to less fear extinction potential in female subjects. It also indicated that the extinction deficit was associated with reduced cholinergic activity in the amygdala of female animals.
Collapse
Affiliation(s)
- Ahmad Mohammadi-Farani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, I.R. Iran,Department of Physiology and Pharmacology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, I.R. Iran,Corresponding author: A. Mohammadi-Farani Tel: +98-9132267611, Fax: +98-8334265783 ;
| | - Sajad Farhangian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| |
Collapse
|
9
|
Kang J, Kang W, Lee SH. Stronger memory representation after memory reinstatement during retrieval in the human hippocampus. Neuroimage 2022; 260:119493. [PMID: 35868616 DOI: 10.1016/j.neuroimage.2022.119493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/19/2022] Open
Abstract
Memory retrieval allows us to reinstate previously encoded information but is also considered to contribute to memory enhancement. Retrieval-induced enhancement may involve processing to strengthen memory traces, but neural processing beyond reinstatement during retrieval remains elusive. Here, we show that hippocampal processing, different from memory reinstatement, exists during retrieval in the human brain. By tracking changes in the response patterns in the selected hippocampal and cortical regions over time during retrieval based on functional MRI, we found that the representation of associative memory in CA3/DG became stronger even after cortical memory reinstatement, while CA1 showed significant memory representation at retrieval onset with the cortical reinstatement, but not afterwards. This tendency was not observed in the condition without active retrieval. Moreover, subsequent long-term memory performance depended on the delayed CA3/DG representation during retrieval. These findings suggest that CA3/DG contributes to neural processing beyond memory reinstatement during retrieval, which may lead to memory enhancement.
Collapse
Affiliation(s)
- Joonyoung Kang
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST); Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-Ro, Yuseong-Gu, Daejeon 34141 Republic of Korea
| | - Wonjun Kang
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST)
| | - Sue-Hyun Lee
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST); Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-Ro, Yuseong-Gu, Daejeon 34141 Republic of Korea.
| |
Collapse
|
10
|
Qi S, Tan SM, Wang R, Higginbotham JA, Ritchie JL, Ibarra CK, Arguello AA, Christian RJ, Fuchs RA. Optogenetic inhibition of the dorsal hippocampus CA3 region during early-stage cocaine-memory reconsolidation disrupts subsequent context-induced cocaine seeking in rats. Neuropsychopharmacology 2022; 47:1473-1483. [PMID: 35581381 PMCID: PMC9205994 DOI: 10.1038/s41386-022-01342-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/11/2022] [Accepted: 05/07/2022] [Indexed: 11/09/2022]
Abstract
The dorsal hippocampus (DH) is key to the maintenance of cocaine memories through reconsolidation into long-term memory stores after retrieval-induced memory destabilization. Here, we examined the time-dependent role of the cornu ammonis 3 DH subregion (dCA3) in cocaine-memory reconsolidation by utilizing the temporal and spatial specificity of optogenetics. eNpHR3.0-eYFP- or eYFP-expressing male Sprague-Dawley rats were trained to lever press for cocaine infusions in a distinct context and received extinction training in a different context. Rats were then re-exposed to the cocaine-paired context for 15 min to destabilize cocaine memories (memory reactivation) or remained in their home cages (no-reactivation). Optogenetic dCA3 inhibition for one hour immediately after memory reactivation reduced c-Fos expression (index of neuronal activation) in dCA3 stratum pyramidale (SP) glutamatergic and GABAergic neurons and in stratum lucidum (SL) GABAergic neurons during reconsolidation. Furthermore, dCA3 inhibition attenuated drug-seeking behavior (non-reinforced lever presses) selectively in the cocaine-paired context three days later (recall test), relative to no photoinhibition. This behavioral effect was eNpHR3.0-, memory-reactivation, and time-dependent, indicating a memory-reconsolidation deficit. Based on this observation and our previous finding that protein synthesis in the DH is not necessary for cocaine-memory reconsolidation, we postulate that recurrent pyramidal neuronal activity in the dCA3 may maintain labile cocaine memories prior to protein synthesis-dependent reconsolidation elsewhere, and SL/SP interneurons may facilitate this process by limiting extraneous neuronal activity. Interestingly, SL c-Fos expression was reduced at recall concomitant with impairment in cocaine-seeking behavior, suggesting that SL neurons may also facilitate cocaine-memory retrieval by inhibiting non-engram neuronal activity.
Collapse
Affiliation(s)
- Shuyi Qi
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Shi Min Tan
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Rong Wang
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Jessica A Higginbotham
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Jobe L Ritchie
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Christopher K Ibarra
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Amy A Arguello
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Robert J Christian
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Rita A Fuchs
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA.
- Alcohol and Drug Abuse Research Program, Washington State University, Pullman, Washington, USA.
| |
Collapse
|
11
|
Ramos JMJ. Rapid decay of spatial memory acquired in rats with ventral hippocampus lesions. Behav Brain Res 2022; 431:113962. [PMID: 35697178 DOI: 10.1016/j.bbr.2022.113962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/27/2022]
Abstract
Several memory consolidation theories have proposed that following a learning situation the hippocampus gradually stabilizes labile recent memories into long-lasting remote memories. Most work in this field has focused on the dorsal hippocampus (DHip), giving little consideration to a possible contribution by the ventral hippocampus (VHip), particularly when spatial paradigms are used. However, in recent years a growing number of studies have suggested the existence of a functional continuum, related to spatial processing and navigation, along the dorsoventral hippocampal axis. For this reason, in the present study we compare the effect of DHip vs. VHip lesions on long-term spatial memory retention. Using a four-arm plus-shaped maze, rats with lesions in the DHip, VHip or sham-lesioned learned to criterion a place discrimination task based on allothetic cues. During two retraining phases (2 days and 24 days after learning) retention of the spatial information learned during the acquisition phase was evaluated. The main findings revealed no deficit 2 days after learning, but 24 days after learning both lesioned groups showed a profound impairment compared to control animals (expt. 1). In contrast, when rats learned a cue-guided navigation task in the acquisition phase, both lesioned groups performed the two retention tests, 2 days and 24 days after learning, at the same level as the control group (expt. 2). These results suggest not only that the DHip is vital, but also that normal VHip activity is critical during the post-learning period in order for a recent spatial memory to become a stable long-term memory.
Collapse
Affiliation(s)
- Juan M J Ramos
- Department of Psychobiology and Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada 18071, Spain.
| |
Collapse
|
12
|
Jardine KH, Huff AE, Wideman CE, McGraw SD, Winters BD. The evidence for and against reactivation-induced memory updating in humans and nonhuman animals. Neurosci Biobehav Rev 2022; 136:104598. [PMID: 35247380 DOI: 10.1016/j.neubiorev.2022.104598] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/31/2022]
Abstract
Systematic investigation of reactivation-induced memory updating began in the 1960s, and a wave of research in this area followed the seminal articulation of "reconsolidation" theory in the early 2000s. Myriad studies indicate that memory reactivation can cause previously consolidated memories to become labile and sensitive to weakening, strengthening, or other forms of modification. However, from its nascent period to the present, the field has been beset by inconsistencies in researchers' abilities to replicate seemingly established effects. Here we review these many studies, synthesizing the human and nonhuman animal literature, and suggest that these failures-to-replicate reflect a highly complex and delicately balanced memory modification system, the substrates of which must be finely tuned to enable adaptive memory updating while limiting maladaptive, inaccurate modifications. A systematic approach to the entire body of evidence, integrating positive and null findings, will yield a comprehensive understanding of the complex and dynamic nature of long-term memory storage and the potential for harnessing modification processes to treat mental disorders driven by pervasive maladaptive memories.
Collapse
Affiliation(s)
- Kristen H Jardine
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - A Ethan Huff
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Cassidy E Wideman
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Shelby D McGraw
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Boyer D Winters
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
13
|
Netto CA. Role of brain Β-endorphin in memory modulation revisited. Neuroscience 2022; 497:30-38. [DOI: 10.1016/j.neuroscience.2022.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/30/2022]
|
14
|
Pimentel GA, Crestani AM, Florindo LH. Do spatial and recognition memories have a lateralized processing by the dorsal hippocampus CA3? Behav Brain Res 2022; 416:113566. [PMID: 34499937 DOI: 10.1016/j.bbr.2021.113566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/02/2022]
Abstract
The present study evaluated the function of the right and left CA3 of the dorsal hippocampus (dHPC) in the processing of (i) recognition memory, (ii) recent and remote spatial memory, (iii) working memory and (iv) navigation strategy. Wistar rats were divided into four experimental groups: vehicle group (VG), animals received a bilateral injection of phosphate-saline buffer (PBS) in both right and left dorsal CA3; dHPC-R group, animals received an injection of ibotenic acid (IBO) in the right dorsal CA3; dHPC-L group, animals received an IBO injection in left dorsal CA3; and dHPC-Bi group, animals received bilateral injections of IBO in both dorsal CA3. Rats were submitted to a sequence of behavioral tests: Morris water maze (MWM), object recognition test (ORT), forced T-maze and MWM 30 days after the first exposure. The results showed no evidence of functional lateralization and the dorsal CA3 does not seem to be essential for learning and memory (recent and remote) processing and allocentric navigation analyzed in the MWM and T-maze, respectively. However, rats with right or bilateral lesions in the dorsal CA3 failed to recognize the familiar object in the ORT, suggesting a lateralized processing of recognition memory. That result is unprecedented and contributes to the knowledge about the compartmentalization of HPC functions.
Collapse
Affiliation(s)
- Gabrielle Araujo Pimentel
- Department of Zoology and Botany, Universidade Estadual Paulista (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP 15054-000, Brazil; Graduate Program in Animal Biology, Universidade Estadual Paulista (UNESP), Rua Cristóvão Colombo, 2265̥, São José do Rio Preto, SP 15054-000, Brazil.
| | - Ariela Maltarolo Crestani
- Department of Zoology and Botany, Universidade Estadual Paulista (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP 15054-000, Brazil; Join Graduate Program in Physiological Sciences, Universidade Federal de São Carlos/Universidade Estadual Paulista (UFSCar/UNESP), Rodovia Washington Luiz, km 235̥, São Carlos, SP13565-905, Brazil.
| | - Luiz Henrique Florindo
- Department of Zoology and Botany, Universidade Estadual Paulista (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP 15054-000, Brazil; Graduate Program in Animal Biology, Universidade Estadual Paulista (UNESP), Rua Cristóvão Colombo, 2265̥, São José do Rio Preto, SP 15054-000, Brazil; Join Graduate Program in Physiological Sciences, Universidade Federal de São Carlos/Universidade Estadual Paulista (UFSCar/UNESP), Rodovia Washington Luiz, km 235̥, São Carlos, SP13565-905, Brazil.
| |
Collapse
|
15
|
Rai SP, Krohn M, Pahnke J. Early Cognitive Training Rescues Remote Spatial Memory but Reduces Cognitive Flexibility in Alzheimer's Disease Mice. J Alzheimers Dis 2021; 75:1301-1317. [PMID: 32417783 PMCID: PMC7369118 DOI: 10.3233/jad-200161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Spatial memory dysfunction has been demonstrated in mouse models of Alzheimer's disease (AD) which is consistent with the clinical finding that the early signature of AD includes difficulties in the formation and/or storage of a memory. A stored memory-a long term memory-can be modulated via process called as memory retrieval that can either lead toward memory reconsolidation or even memory extinction. OBJECTIVE We aim to shed light on the fate of the spatial memory during memory reactivation and memory extinction using a water maze task. METHODS In Set-up I, we trained 3-month-old mice (wild-type mice and mice with cerebral β-amyloidosis) and assessed the fate of remote memory after four months of retention interval (RI). In Set-up II, we performed an early-extensive training at 2 months of age, retrained the same mice at 3 months of age, introduced four months of RI, and finally assessed remote spatial memory at 7 months of age. RESULTS We find in β-amyloidosis mice that memory reactivation problems were detectable at 7 months of age and were alleviated by cognitive overtraining. Similarly, forgetting of remote spatial memory was also minimized by cognitive overtraining. Finally, we show that the cognitive training facilitates the recovery of the reactivated spatial memory while reducing the ability to form new spatial memory in AD mice. CONCLUSION This result may explain the rationality behind the cognitive reserve observed in AD patients and elderly with severe β-amyloidosis not corresponding to the actual low dementia symptoms.
Collapse
Affiliation(s)
- Surya Prakash Rai
- Department of Neuro-/Pathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
| | - Markus Krohn
- Department of Neuro-/Pathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway.,Current address: University of Lübeck, Lübeck, Germany
| | - Jens Pahnke
- Department of Neuro-/Pathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway.,LIED, University of Lübeck, Lübeck, Germany.,Department of Pharmacology, Faculty of Medicine, University of Latvia, Rīga, Latvia.,Department for Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Halle, Germany
| |
Collapse
|
16
|
Lods M, Pacary E, Mazier W, Farrugia F, Mortessagne P, Masachs N, Charrier V, Massa F, Cota D, Ferreira G, Abrous DN, Tronel S. Adult-born neurons immature during learning are necessary for remote memory reconsolidation in rats. Nat Commun 2021; 12:1778. [PMID: 33741954 PMCID: PMC7979763 DOI: 10.1038/s41467-021-22069-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/25/2021] [Indexed: 01/09/2023] Open
Abstract
Memory reconsolidation, the process by which memories are again stabilized after being reactivated, has strengthened the idea that memory stabilization is a highly plastic process. To date, the molecular and cellular bases of reconsolidation have been extensively investigated particularly within the hippocampus. However, the role of adult neurogenesis in memory reconsolidation is unclear. Here, we combined functional imaging, retroviral and chemogenetic approaches in rats to tag and manipulate different populations of rat adult-born neurons. We find that both mature and immature adult-born neurons are activated by remote memory retrieval. However, only specific silencing of the adult-born neurons immature during learning impairs remote memory retrieval-induced reconsolidation. Hence, our findings show that adult-born neurons immature during learning are required for the maintenance and update of remote memory reconsolidation.
Collapse
Affiliation(s)
- Marie Lods
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Emilie Pacary
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Wilfrid Mazier
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Fanny Farrugia
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Pierre Mortessagne
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Nuria Masachs
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Vanessa Charrier
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Federico Massa
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Guillaume Ferreira
- INRA, Bordeaux INP, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux Cedex, France
| | - Djoher Nora Abrous
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France.
| | - Sophie Tronel
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France.
| |
Collapse
|
17
|
Zorzo C, Arias JL, Méndez M. Recovering Spatial Information through Reactivation: Brain Oxidative Metabolism Involvement in Males and Females. Neuroscience 2021; 459:1-15. [PMID: 33571597 DOI: 10.1016/j.neuroscience.2021.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Memory involves a complex network system of interconnected brain areas in which labile trace memories are transformed into enduring ones and reorganized in a time-dependant manner. Although it has been observed that remote memories are less prone to destabilizing, they can become fragile and lead to behavioural decline. We explored the behavioural outcomes of male and female rats in response to the reactivation of a previously acquired allocentric spatial reference memory, under conditions in which animals have shown a retrieval decay. In addition, we assessed their brain metabolic activity through cytochrome c oxidase (CCO) histochemistry. Our results show that a spatial memory amnesia-like behaviour with a time interval of 45 days can be recovered after re-exposure to the environmental configuration with the reinforced contingencies. Moreover, we observed that, following reactivation, male rats reveal a decrease in metabolic activity in septal nuclei and thalamic structures, whereas female rats add a metabolic reduction in the hippocampus, amygdala, mPFC, and retrosplenial, parietal and rhinal cortices, suggesting that they efficiently employ these brain areas when reactivation a memory that has suffered a decay with time. Finally, although male and female rats perform the behavioural task equally, we found sex differences at the brain metabolism level, revealing the differential contribution of brain limbic system energy demands by sex, even when their performance is similar. In conclusion, our work provides behavioural and brain data about remote spatial retrieval and memory reactivation processes.
Collapse
Affiliation(s)
- Candela Zorzo
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijoo, s/n, E-33003 Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), E-33003 Oviedo, Spain.
| | - Jorge L Arias
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijoo, s/n, E-33003 Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), E-33003 Oviedo, Spain
| | - Marta Méndez
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijoo, s/n, E-33003 Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), E-33003 Oviedo, Spain
| |
Collapse
|
18
|
Molecular Mechanisms of Reconsolidation-Dependent Memory Updating. Int J Mol Sci 2020; 21:ijms21186580. [PMID: 32916796 PMCID: PMC7555418 DOI: 10.3390/ijms21186580] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
Memory is not a stable record of experience, but instead is an ongoing process that allows existing memories to be modified with new information through a reconsolidation-dependent updating process. For a previously stable memory to be updated, the memory must first become labile through a process called destabilization. Destabilization is a protein degradation-dependent process that occurs when new information is presented. Following destabilization, a memory becomes stable again through a protein synthesis-dependent process called restabilization. Much work remains to fully characterize the mechanisms that underlie both destabilization and subsequent restabilization, however. In this article, we briefly review the discovery of reconsolidation as a potential mechanism for memory updating. We then discuss the behavioral paradigms that have been used to identify the molecular mechanisms of reconsolidation-dependent memory updating. Finally, we outline what is known about the molecular mechanisms that support the memory updating process. Understanding the molecular mechanisms underlying reconsolidation-dependent memory updating is an important step toward leveraging this process in a therapeutic setting to modify maladaptive memories and to improve memory when it fails.
Collapse
|
19
|
Abstract
Memory reconsolidation occurs when a retrieving event destabilizes transiently a consolidated memory, triggering thereby a new process of restabilization that ensures memory persistence. Although this phenomenon has received wide attention, the effect of new information cooccurring with the reconsolidation process has been less explored. Here we demonstrate that a memory-retrieving event sets a neural tag, which enables the reconsolidation of memory after binding proteins provided by the original or a different contiguous experience. We characterized the specific temporal window during which this association is effective and identified the protein kinase A (PKA) and the extracellular signal-regulated kinase 1 and 2 (ERK 1/2) pathways as the mechanisms related to the setting of the reconsolidation tag and the synthesis of proteins. Our results show, therefore, that memory reconsolidation is mediated by a "behavioral tagging" process, which is common to different memory forms. They represent a significant advance in understanding the fate of memories reconsolidated while being adjacent to other events, and provide a tool for designing noninvasive strategies to attenuate (pathological/traumatic) or improve (education-related) memories.
Collapse
|
20
|
Lumsden EW, McCowan L, Pescrille JD, Fawcett WP, Chen H, Albuquerque EX, Mamczarz J, Pereira EFR. Learning and memory retention deficits in prepubertal guinea pigs prenatally exposed to low levels of the organophosphorus insecticide malathion. Neurotoxicol Teratol 2020; 81:106914. [PMID: 32652103 DOI: 10.1016/j.ntt.2020.106914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/16/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
High doses of malathion, an organophosphorus (OP) insecticide ubiquitously used in agriculture, residential settings, and public health programs worldwide, induce a well-defined toxidrome that results from the inhibition of acetylcholinesterase (AChE). However, prenatal exposures to malathion levels that are below the threshold for AChE inhibition have been associated with increased risks of neurodevelopmental disorders, including autism spectrum disorder with intellectual disability comorbidity. The present study tested the hypothesis that prenatal exposures to a non-AChE-inhibiting dose of malathion are causally related to sex-biased cognitive deficits later in life in a precocial species. To this end, pregnant guinea pigs were injected subcutaneously with malathion (20 mg/kg) or vehicle (peanut oil, 0.5 ml/kg) once daily between approximate gestational days 53 and 63. This malathion dose regimen caused no significant AChE inhibition in the brain or blood of dams and offspring and had no significant effect on the postnatal growth of the offspring. Around postnatal day 30, locomotor activity and habituation, a form of non-associative learning, were comparable between malathion- and peanut oil-exposed offspring. However, in the Morris water maze, malathion-exposed offspring presented significant sex-dependent spatial learning deficits in addition to memory impairments. These results are far-reaching as they indicate that: (i) malathion is a developmental neurotoxicant and (ii) AChE inhibition is not an adequate biomarker to derive safety limits of malathion exposures during gestation. Continued studies are necessary to identify the time and dose dependence of the developmental neurotoxicity of malathion and the mechanisms underlying the detrimental effects of this insecticide in the developing brain.
Collapse
Affiliation(s)
- Eric W Lumsden
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Lillian McCowan
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Joseph D Pescrille
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - William P Fawcett
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Hegang Chen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Edson X Albuquerque
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Jacek Mamczarz
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America.
| | - Edna F R Pereira
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| |
Collapse
|
21
|
Mohammadi-Farani A, Pourmotabbed A, Ardeshirizadeh Y. Effects of HDAC inhibitors on spatial memory and memory extinction in SPS-induced PTSD rats. Res Pharm Sci 2020; 15:241-248. [PMID: 33088324 PMCID: PMC7540814 DOI: 10.4103/1735-5362.288426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/06/2020] [Accepted: 02/25/2020] [Indexed: 11/04/2022] Open
Abstract
Background and purpose Neurobiological changes in memory processes seem to play a role in the pathophysiology of post-traumatic stress disorder (PTSD). Memory itself is influenced by PTSD, too. Histone deacetylase inhibitors (HDAIs) have shown promising results in the extinction of fear-related memories in animals and hence they seem to be important for the treatment of PTSD. Data are scarce about the effect of HDAIs in spatial memory formation/extinction in PTSD models. The main goal of the present work is to find the effect of sodium butyrate (NaBu), as an HDAI, on spatial memory and spatial memory extinction in rats exposed to single prolonged stress procedure (SPS). Experimental approach Different doses of NaBu were administered subcutaneously for 7 days in different groups of rats after SPS procedure. Learning, memory, and extinction of memory were evaluated in the Morris water maze test of spatial memory in 6 consecutive days. Findings / Results The results show that NaBu (0.5 mg/kg) alleviates impaired learning and memory in SPS rats. It also facilitates the extinction of newly formed memory in the animals. Conclusion and implications Our data suggest that the administration of HDAIs after a traumatic experience can prevent the aversive effects of SPS on spatial memory. It also reinforces the notion that extinction of spatial memory involves the same or similar brain circuitry that is involved in the extinction of fear memories in PTSD patients.
Collapse
Affiliation(s)
- Ahmad Mohammadi-Farani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran.,Department of Pharmacology, Toxicology and Medical Services, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Ali Pourmotabbed
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Yazdan Ardeshirizadeh
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| |
Collapse
|
22
|
Menezes J, Souto das Neves BH, Gonçalves R, Benetti F, Mello-Carpes PB. Maternal deprivation impairs memory and cognitive flexibility, effect that is avoided by environmental enrichment. Behav Brain Res 2020; 381:112468. [DOI: 10.1016/j.bbr.2020.112468] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 11/24/2022]
|
23
|
Helfer P, Shultz TR. A computational model of systems memory consolidation and reconsolidation. Hippocampus 2019; 30:659-677. [PMID: 31872960 DOI: 10.1002/hipo.23187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/05/2019] [Accepted: 12/04/2019] [Indexed: 12/27/2022]
Abstract
In the mammalian brain, newly acquired memories depend on the hippocampus (HPC) for maintenance and recall, but over time, the neocortex takes over these functions, rendering memories HPC-independent. The process responsible for this transformation is called systems memory consolidation. Reactivation of a well-consolidated memory can trigger a temporary return to a HPC-dependent state, a phenomenon known as systems memory reconsolidation. The neural mechanisms underlying systems memory consolidation and reconsolidation are not well understood. Here, we propose a neural model based on well-documented mechanisms of synaptic plasticity and stability and describe a computational implementation that demonstrates the model's ability to account for a range of findings from the systems consolidation and reconsolidation literature. We derive several predictions from the computational model and suggest experiments that may test its validity.
Collapse
Affiliation(s)
- Peter Helfer
- Department of Psychology, McGill University, 2001 McGill College, Montreal, QC, Canada
| | - Thomas R Shultz
- Department of Psychology, McGill University, 2001 McGill College, Montreal, QC, Canada
| |
Collapse
|
24
|
Gonzalez MC, Rossato JI, Radiske A, Pádua Reis M, Cammarota M. Recognition memory reconsolidation requires hippocampal Zif268. Sci Rep 2019; 9:16620. [PMID: 31719567 PMCID: PMC6851087 DOI: 10.1038/s41598-019-53005-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/25/2019] [Indexed: 01/17/2023] Open
Abstract
Object recognition memory (ORM) serves to distinguish familiar items from novel ones. Reconsolidation is the process by which active memories are updated. The hippocampus is engaged in ORM reconsolidation through a mechanism involving induction of long-term potentiation (LTP). The transcription factor Zif268 is essential for hippocampal LTP maintenance and has been frequently associated with memory processes. However, its possible involvement in ORM reconsolidation has not been determined conclusively. Using Zif268 antisense oligonucleotides in combination with behavioural, biochemical and electrophysiological tools in rats, we found that hippocampal Zif268 is necessary to update ORM through reconsolidation but not to retrieve it or keep it stored. Our results also suggest that knocking down hippocampal Zif268 during ORM reconsolidation deletes the active recognition memory trace.
Collapse
Affiliation(s)
- Maria Carolina Gonzalez
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, RN 59056-450, Natal, Brazil
| | - Janine I Rossato
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, RN 59056-450, Natal, Brazil.,Departament of Physiology, Federal University of Rio Grande do Norte, Av. Sen. Salgado Filho 3000, RN 59064-741, Natal, Brazil
| | - Andressa Radiske
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, RN 59056-450, Natal, Brazil
| | - Marina Pádua Reis
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, RN 59056-450, Natal, Brazil
| | - Martín Cammarota
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, RN 59056-450, Natal, Brazil.
| |
Collapse
|
25
|
Murray S, Chen EY. Examining Adolescence as a Sensitive Period for High-Fat, High-Sugar Diet Exposure: A Systematic Review of the Animal Literature. Front Neurosci 2019; 13:1108. [PMID: 31708722 PMCID: PMC6823907 DOI: 10.3389/fnins.2019.01108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/01/2019] [Indexed: 01/08/2023] Open
Abstract
Animal studies suggest that poor nutrition (e.g., high-fat, high-sugar diets) may lead to impairments in cognitive functioning. Accumulating evidence suggests that the deleterious effects of these diets appear more pronounced in animals maintained on this diet early in life, consistent with the notion that the developing brain may be especially vulnerable to environmental insults. The current paper provides the first systematic review of studies comparing the effects of high-fat, high-sugar diet exposure during adolescence and adulthood on memory performance. The majority of studies (7/8) identified here report diet-induced memory problems when diet exposure began in adolescence but not adulthood. These findings lend support to the hypothesis that adolescence is a sensitive period during which palatable diets may contribute to negative neurocognitive effects. The current review explores putative mechanisms involved in diet-induced cognitive dysfunction and highlights promising areas for further research.
Collapse
Affiliation(s)
- Susan Murray
- Department of Psychology, Temple University, Philadelphia, PA, United States
| | - Eunice Y Chen
- Department of Psychology, Temple University, Philadelphia, PA, United States
| |
Collapse
|
26
|
Marschner L, Schreurs A, Lechat B, Mogensen J, Roebroek A, Ahmed T, Balschun D. Single mild traumatic brain injury results in transiently impaired spatial long-term memory and altered search strategies. Behav Brain Res 2019; 365:222-230. [DOI: 10.1016/j.bbr.2018.02.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 10/02/2017] [Accepted: 02/26/2018] [Indexed: 11/16/2022]
|
27
|
Janickova H, Kljakic O, Rosborough K, Raulic S, Matovic S, Gros R, Saksida LM, Bussey TJ, Inoue W, Prado VF, Prado MAM. Selective decrease of cholinergic signaling from pedunculopontine and laterodorsal tegmental nuclei has little impact on cognition but markedly increases susceptibility to stress. FASEB J 2019; 33:7018-7036. [PMID: 30857416 DOI: 10.1096/fj.201802108r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The pedunculopontine tegmental nucleus (PPT) and laterodorsal tegmental nucleus (LDT) are heterogeneous brainstem structures that contain cholinergic, glutamatergic, and GABAergic neurons. PPT/LDT neurons are suggested to modulate both cognitive and noncognitive functions, yet the extent to which acetylcholine (ACh) signaling from the PPT/LDT is necessary for normal behavior remains uncertain. We addressed this issue by using a mouse model in which PPT/LDT cholinergic signaling is highly decreased by selective deletion of the vesicular ACh transporter (VAChT) gene. This approach interferes exclusively with ACh signaling, leaving signaling by other neurotransmitters from PPT/LDT cholinergic neurons intact and sparing other cells. VAChT mutants were examined on different PPT/LDT-associated cognitive domains. Interestingly, VAChT mutants showed no attentional deficits and only minor cognitive flexibility impairments while presenting large deficiencies in both spatial and cued Morris water maze (MWM) tasks. Conversely, working spatial memory determined with the Y-maze and spatial memory measured with the Barnes maze were not affected, suggesting that deficits in MWM were unrelated to spatial memory abnormalities. Supporting this interpretation, VAChT mutants exhibited alterations in anxiety-like behavior and increased corticosterone levels after exposure to the MWM, suggesting altered stress response. Thus, PPT/LDT VAChT-mutant mice present little cognitive impairment per se, yet they exhibit increased susceptibility to stress, which may lead to performance deficits in more stressful conditions.-Janickova, H., Kljakic, O., Rosborough, K., Raulic, S., Matovic, S., Gros, R., Saksida, L. M., Bussey, T. J., Inoue, W., Prado, V. F., Prado, M. A. M. Selective decrease of cholinergic signaling from pedunculopontine and laterodorsal tegmental nuclei has little impact on cognition but markedly increases susceptibility to stress.
Collapse
Affiliation(s)
- Helena Janickova
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Ornela Kljakic
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Kaie Rosborough
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Sanda Raulic
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Sara Matovic
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; and
| | - Robert Gros
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; and
| | - Lisa M Saksida
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; and.,Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - Timothy J Bussey
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; and.,Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - Wataru Inoue
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; and
| | - Vania F Prado
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; and.,Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - Marco A M Prado
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; and.,Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
28
|
Sosa PM, Gonçalves R, Carpes FP, Mello-Carpes PB. Active memory reactivation previous to the introduction of a new related content improves students' learning. ADVANCES IN PHYSIOLOGY EDUCATION 2018; 42:75-78. [PMID: 29341807 DOI: 10.1152/advan.00077.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Priscila Marques Sosa
- Physiology Research Group, Federal University of Pampa, Uruguaiana, Rio Grande do Sul, Brazil
| | - Rithiele Gonçalves
- Physiology Research Group, Federal University of Pampa, Uruguaiana, Rio Grande do Sul, Brazil
| | - Felipe P Carpes
- Applied Neuromechanics Research Group, Federal University of Pampa, Uruguaiana, Rio Grande do Sul, Brazil
| | - Pâmela B Mello-Carpes
- Physiology Research Group, Federal University of Pampa, Uruguaiana, Rio Grande do Sul, Brazil
| |
Collapse
|
29
|
Villain H, Benkahoul A, Birmes P, Ferry B, Roullet P. Influence of early stress on memory reconsolidation: Implications for post-traumatic stress disorder treatment. PLoS One 2018; 13:e0191563. [PMID: 29352277 PMCID: PMC5774817 DOI: 10.1371/journal.pone.0191563] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 01/08/2018] [Indexed: 11/19/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a common consequence of exposure to a life-threatening event. Currently, pharmacological treatments are limited by high rates of relapse, and novel treatment approaches are needed. We have recently demonstrated that propranolol, a β-adrenergic antagonist, inhibited aversive memory reconsolidation in animals. Following this, in an open-label study 70% of patients with PTSD treated with propranolol during reactivation of traumatic memory exhibited full remission. However, the reason why 30% of these patients did not respond positively to propranolol treatment is still unclear. One of the major candidates as factor of treatment resistance is the patient's early-life traumatic history. To test the role of this factor, mice with pre- or postnatal stress are being tested in fear conditioning and in a new behavioral task, the "city-like", specifically designed as a mouse model of PTSD. After reactivation of the traumatic event, mice received propranolol injection to block the noradrenergic system during memory reconsolidation. Results show that, in the “city-like” test, control mice strongly avoided the shock compartment but also the compartments containing cues associated with the electric shocks. Injection of propranolol after reactivation greatly reduced the memory of the traumatic event, but this effect was not present when mice had received pre- or postnatal stress. Moreover, propranolol produced only a very weak effect in the fear conditioning test, and never changed the corticosterone level whatever the behavioral experiment. Taken together our results suggest that our new behavioural paradigm is well adapted to PTSD study in mice, and that early stress exposure may have an impact on propranolol PTSD treatment outcome. These data are critical to understanding the effect of propranolol treatment, in order to improve the therapeutic protocol currently used in humans.
Collapse
Affiliation(s)
- Hélène Villain
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Aïcha Benkahoul
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Philippe Birmes
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS,Toulouse, France
| | - Barbara Ferry
- Centre of Research in Neuroscience Lyon—UMR CNRS 5292—INSERM U 1028—Université Claude Bernard Lyon 1,Lyon, France
| | - Pascal Roullet
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
- * E-mail:
| |
Collapse
|
30
|
Kalm M, Andreasson U, Björk-Eriksson T, Zetterberg H, Pekny M, Blennow K, Pekna M, Blomgren K. C3 deficiency ameliorates the negative effects of irradiation of the young brain on hippocampal development and learning. Oncotarget 2017; 7:19382-94. [PMID: 27029069 PMCID: PMC4991390 DOI: 10.18632/oncotarget.8400] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy in the treatment of pediatric brain tumors is often associated with debilitating late-appearing adverse effects, such as intellectual impairment. Areas in the brain harboring stem cells are particularly sensitive to irradiation (IR) and loss of these cells may contribute to cognitive deficits. It has been demonstrated that IR-induced inflammation negatively affects neural progenitor differentiation. In this study, we used mice lacking the third complement component (C3−/−) to investigate the role of complement in a mouse model of IR-induced injury to the granule cell layer (GCL) of the hippocampus. C3−/− and wild type (WT) mice received a single, moderate dose of 8 Gy to the brain on postnatal day 10. The C3−/− mice displayed 55 % more microglia (Iba-1+) and a trend towards increase in proliferating cells in the GCL compared to WT mice 7 days after IR. Importantly, months after IR C3−/− mice made fewer errors than WT mice in a reversal learning test indicating better learning capacity in C3−/− mice after IR. Notably, months after IR C3−/− and WT mice had similar GCL volumes, survival of newborn cells (BrdU), microglia (Iba-1) and astrocyte (S100β) numbers in the GCL. In summary, our data show that the complement system contributes to IR-induced loss of proliferating cells and maladaptive inflammatory responses in the acute phase after IR, leading to impaired learning capacity in adulthood. Targeting the complement system is hence promising for future strategies to reduce the long-term adverse consequences of IR in the young brain.
Collapse
Affiliation(s)
- Marie Kalm
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Andreasson
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden
| | | | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Milos Pekny
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Hunter Medical Research Institute, University of Newcastle, New South Wales, Australia
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Marcela Pekna
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Hunter Medical Research Institute, University of Newcastle, New South Wales, Australia
| | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
31
|
Luna D, Manzanares-Silva M, Rodríguez-González K, Carranza-Jasso R. Extinción y renovación de la memoria espacial en humanos. UNIVERSITAS PSYCHOLOGICA 2017. [DOI: 10.11144/javeriana.upsy15-5.erme] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Participantes humanos fueron entrenados en un laberinto virtual de agua para localizar en dos fases sucesivas una plataforma cuya ubicación fue específica a la fase vigente. Posteriormente realizaron una prueba sin plataforma. El Grupo ABA realizó la primera fase y la prueba en un contexto A, y la segunda fase en un contexto B. El Grupo ABB realizó la primera fase en el contexto A, y la segunda fase y la prueba en el contexto B. Ambos grupos localizaron la plataforma en cada fase. Durante la prueba, la última ubicación de la plataforma fue preferida por el Grupo ABB, mientras que la primera ubicación fue preferida por el Grupo ABA. Estos resultados indican renovación de la memoria espacial en humanos.
Collapse
|
32
|
Postconditioning with sevoflurane ameliorates spatial learning and memory deficit after hemorrhage shock and resuscitation in rats. J Surg Res 2016; 206:307-315. [DOI: 10.1016/j.jss.2016.08.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/07/2016] [Accepted: 08/04/2016] [Indexed: 11/19/2022]
|
33
|
Effects of thalamic hemorrhagic lesions on explicit and implicit learning during the acquisition and retrieval phases in an animal model of central post-stroke pain. Behav Brain Res 2016; 317:251-262. [PMID: 27681112 DOI: 10.1016/j.bbr.2016.09.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/18/2016] [Accepted: 09/24/2016] [Indexed: 12/21/2022]
Abstract
Hemorrhagic stroke has many symptoms, including central pain, learning and memory impairments, motor deficits, language problems, emotional disturbances, and social maladjustment. Lesions of the ventral basal complex (VBC) of the thalamus elicit thermal and mechanical hyperalgesia, forming an animal model of central post-stroke pain (CPSP). However, no research has yet examined the involvement of learning and memory in CPSP using an animal model. The present study examined whether VBC lesions affect motor function, conditioned place preference (CPP; implicit memory), and spatial learning (explicit memory) in the acquisition and retrieval phases. The results showed that rats with VBC lesions exhibited thermal hyperalgesia in the acquisition and retrieval phases, indicating that these lesions can induce CPSP. During these phases, the rats with VBC lesions exhibited enhanced (morphine-induced) CPP learning. These lesions did not affect the rats' total distance travelled, time spent, or velocity in the spatial learning tasks. The lesions also did not affect motor function in the rotarod task. Altogether, VBC lesions resulted in CPSP and facilitated CPP (implicit memory). However, the lesions did not affect spatial learning (explicit memory) or motor function. The relationship between CPSP and learning and memory is important for patients who suffer from such central pain. The implications of the present study may provide insights into helping reduce CPSP and its associated symptoms.
Collapse
|
34
|
Griffiths KR, Lagopoulos J, Hermens DF, Lee RSC, Guastella AJ, Hickie IB, Balleine BW. Impaired causal awareness and associated cortical-basal ganglia structural changes in youth psychiatric disorders. NEUROIMAGE-CLINICAL 2016; 12:285-92. [PMID: 27551665 PMCID: PMC4983644 DOI: 10.1016/j.nicl.2016.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/11/2016] [Accepted: 06/22/2016] [Indexed: 02/06/2023]
Abstract
Background Cognitive impairments contribute significantly to disease burden in young individuals presenting with major psychiatric disorders. The capacity to encode the consequences of one's actions may be of particular importance for real-world functioning due to its fundamental role in goal-directed behavior. Methods Here, we investigated a dimensional measure of causal awareness during a probabilistic learning task in 92 young individuals with an admixture of major mood and psychotic illnesses, at early and more established stages. Using automated gray matter segmentation of T1-weighted images, we estimated the volume and shapes of major subcortical structures and investigated their association with causal awareness. Results The low causal awareness (LCA) group (n = 35) reported increased social disability (p = .004) and reduced right pallidal size, specifically within the dorsolateral surfaces (p = .02), relative to the unimpaired high causal awareness (HCA) patients (n = 57). In early-stage illness, LCA had a smaller right thalamus (p = .002) relative to HCA. Exploratory investigations suggested that in developed psychotic syndromes, causal awareness was correlated with left hippocampal size (p = .006) whereas, in more persistent affective disorders, causal awareness was correlated with left amygdala size (p = .013), specifically within the anterior aspect. Discussion Low causal awareness occurs across diagnoses and stages of illness and is associated with poor functional outcomes. Our results suggest that there may be shared neural underpinnings of its dysfunction in the early course of mood and psychotic disorders, however in more established illness, there is greater neurobiological divergence in causal awareness correlates between diagnoses. Impaired awareness of causal relationships occurs trans-diagnostically. Participants with low causal awareness have poorer functional outcomes. Low causal awareness was associated with reduced right pallidal size Low causal awareness was associated with a lateralized limbic-pallidal circuit. Results suggest common neural dysfunction in early mood and psychotic disorders.
Collapse
Affiliation(s)
| | | | | | - Rico S C Lee
- Brain and Mind Centre, University of Sydney, Australia
| | | | - Ian B Hickie
- Brain and Mind Centre, University of Sydney, Australia
| | | |
Collapse
|
35
|
Illouz T, Madar R, Clague C, Griffioen KJ, Louzoun Y, Okun E. Unbiased classification of spatial strategies in the Barnes maze. Bioinformatics 2016; 32:3314-3320. [DOI: 10.1093/bioinformatics/btw376] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/12/2016] [Indexed: 01/24/2023] Open
|
36
|
Kibaly C, Kam AY, Loh HH, Law PY. Naltrexone Facilitates Learning and Delays Extinction by Increasing AMPA Receptor Phosphorylation and Membrane Insertion. Biol Psychiatry 2016; 79:906-16. [PMID: 26049209 PMCID: PMC4630208 DOI: 10.1016/j.biopsych.2015.04.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 04/09/2015] [Accepted: 04/11/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND The opioid antagonists naloxone/naltrexone are involved in improving learning and memory, but their cellular and molecular mechanisms remain unknown. We investigated the effect of naloxone/naltrexone on hippocampal α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) trafficking, a molecular substrate of learning and memory, as a probable mechanism for the antagonists activity. METHODS To measure naloxone/naltrexone-regulated AMPAR trafficking, pHluorin-GluA1 imaging and biochemical analyses were performed on primary hippocampal neurons. To establish the in vivo role of GluA1-Serine 845 (S845) phosphorylation on the behavioral effect induced by inhibition of the endogenous μ-opioid receptor (MOR) by naltrexone, MOR knockout, and GluA1-S845A mutant (in which Ser(845) was mutated to Ala) mice were tested in a water maze after chronic naltrexone administration. Behavioral responses and GluA1 levels in the hippocampal postsynaptic density in wild-type and GluA1-S845A mutant mice were compared using western blot analysis. RESULTS In vitro prolonged naloxone/naltrexone exposure significantly increased synaptic and extrasynaptic GluA1 membrane expression as well as GluA1-S845 phosphorylation. In the MOR knockout and GluA1-S845A mutant mice, naltrexone did not improve learning, which suggests that naltrexone acts via inhibition of endogenous MOR action and alteration of GluA1 phosphorylation. Naltrexone-treated wild-type mice had significantly increased phosphorylated GluA1-S845 and GluA1 levels in their hippocampal postsynaptic density on the third day of acquisition, which is the time when naltrexone significantly improved learning. CONCLUSIONS The beneficial effect of naltrexone on spatial learning and memory under normal conditions appears to be the result of increasing GluA1-S845 phosphorylation-dependent AMPAR trafficking. These results can be further explored in a mouse model of memory loss.
Collapse
Affiliation(s)
- Cherkaouia Kibaly
- Department of Pharmacology and Basic Research Center on Molecular and Cell Biology of Drug Addiction, University of Minnesota, Minneapolis, Minnesota.
| | | | | | | |
Collapse
|
37
|
Méndez-Couz M, González-Pardo H, Vallejo G, Arias JL, Conejo NM. Spatial memory extinction differentially affects dorsal and ventral hippocampal metabolic activity and associated functional brain networks. Hippocampus 2016; 26:1265-75. [DOI: 10.1002/hipo.22602] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/22/2016] [Accepted: 04/08/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Marta Méndez-Couz
- Laboratory of Neuroscience; Department of Psychology; Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo; Plaza Feijoo Oviedo Spain
| | - Héctor González-Pardo
- Laboratory of Neuroscience; Department of Psychology; Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo; Plaza Feijoo Oviedo Spain
| | - Guillermo Vallejo
- Methodology Area; Department of Psychology; Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo; Plaza Feijoo Oviedo Spain
| | - Jorge L. Arias
- Laboratory of Neuroscience; Department of Psychology; Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo; Plaza Feijoo Oviedo Spain
| | - Nélida M. Conejo
- Laboratory of Neuroscience; Department of Psychology; Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo; Plaza Feijoo Oviedo Spain
| |
Collapse
|
38
|
Diehl F, Ramos PB, Dos Santos JM, Barros DM, Yunes JS. Behavioral alterations induced by repeated saxitoxin exposure in drinking water. J Venom Anim Toxins Incl Trop Dis 2016; 22:18. [PMID: 27190499 PMCID: PMC4869272 DOI: 10.1186/s40409-016-0072-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/09/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Blooms of the saxitoxin-producing cyanobacterium Cylindrospermopsis raciborskii have been contaminating drinking water reservoirs in Brazil for many years. Although acute effects of saxitoxin intoxication are well known, chronic deleterious outcomes caused by repeated saxitoxin exposure still require further investigation. The aim of the present work is to investigate the effects of consumption of drinking water contaminated with C. raciborskii for 30 days on learning and memory processes in rats. METHODS The effects of saxitoxin (3 or 9 μg/L STX equivalents) or cyanobacteria on behavior was determined using the open field habituation task, elevated plus maze anxiety model task, inhibitory avoidance task, and referential Morris water maze task. RESULTS No effects of saxitoxin consumption was observed on anxiety and motor exploratory parameters in the elevated plus maze and open field habituation tasks, respectively. However, groups treated with 9 μg/L STX equivalents displayed a decreased memory performance in the inhibitory avoidance and Morris water maze tasks. CONCLUSIONS These results suggest an amnesic effect of saxitoxin on aversive and spatial memories.
Collapse
Affiliation(s)
- Felipe Diehl
- Postgraduate Program in Physical, Chemical and Geological Oceanography, Institute of Oceanography, Federal University of Rio Grande (FURG), Rio Grande, RS Brazil ; Institute of Oceanography, Federal University of Rio Grande (FURG), Caixa Postal 474, Rio Grande, RS CEP 96203-900 Brazil
| | - Patricia Baptista Ramos
- Postgraduate Program in Physical, Chemical and Geological Oceanography, Institute of Oceanography, Federal University of Rio Grande (FURG), Rio Grande, RS Brazil
| | - Juliane Marques Dos Santos
- Postgraduate Program in Physical, Chemical and Geological Oceanography, Institute of Oceanography, Federal University of Rio Grande (FURG), Rio Grande, RS Brazil
| | - Daniela Martí Barros
- Postgraduate Program in Compared Animal Physiology, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS Brazil
| | - João Sarkis Yunes
- Postgraduate Program in Physical, Chemical and Geological Oceanography, Institute of Oceanography, Federal University of Rio Grande (FURG), Rio Grande, RS Brazil
| |
Collapse
|
39
|
Druzian AF, Melo JADO, Souza ASD. The influence of enriched environment on spatial memory in Swiss mice of different ages. ARQUIVOS DE NEURO-PSIQUIATRIA 2016. [PMID: 26222362 DOI: 10.1590/0004-282x20150089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The objective of this study was to evaluate the influence of enriched environment on spatial memory acquisition in mice of three different age groups. Weanling, young, and young adult female Swiss mice were housed in a standard control or enriched environment for 50 days, and their spatial memory was tested with the Morris Water Maze. We did not observe an experimental effect for spatial memory acquisition, and there was neither an effect of time of analysis nor an interaction between experimental group and time of analysis. Regarding effects of experimental group and training day in relation to latency in finding the hidden platform, we did find an effect in the experimental young adult mice group (p = 0.027), but there was no interaction between these factors in all three groups. Based on these findings environmental enrichment did not enhance spatial memory acquisition in female Swiss mice in the tested age groups.
Collapse
Affiliation(s)
| | | | - Albert Schiaveto de Souza
- Faculdade de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| |
Collapse
|
40
|
Illouz T, Madar R, Louzoun Y, Griffioen KJ, Okun E. Unraveling cognitive traits using the Morris water maze unbiased strategy classification (MUST-C) algorithm. Brain Behav Immun 2016; 52:132-144. [PMID: 26522398 DOI: 10.1016/j.bbi.2015.10.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/22/2015] [Accepted: 10/22/2015] [Indexed: 12/31/2022] Open
Abstract
The assessment of spatial cognitive learning in rodents is a central approach in neuroscience, as it enables one to assess and quantify the effects of treatments and genetic manipulations from a broad perspective. Although the Morris water maze (MWM) is a well-validated paradigm for testing spatial learning abilities, manual categorization of performance in the MWM into behavioral strategies is subject to individual interpretation, and thus to biases. Here we offer a support vector machine (SVM) - based, automated, MWM unbiased strategy classification (MUST-C) algorithm, as well as a cognitive score scale. This model was examined and validated by analyzing data obtained from five MWM experiments with changing platform sizes, revealing a limitation in the spatial capacity of the hippocampus. We have further employed this algorithm to extract novel mechanistic insights on the impact of members of the Toll-like receptor pathway on cognitive spatial learning and memory. The MUST-C algorithm can greatly benefit MWM users as it provides a standardized method of strategy classification as well as a cognitive scoring scale, which cannot be derived from typical analysis of MWM data.
Collapse
Affiliation(s)
- Tomer Illouz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Ravit Madar
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Yoram Louzoun
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel; Department of Mathematics, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Kathleen J Griffioen
- Department of Biology and Chemistry, Liberty University, Lynchburg, VA 24515, USA
| | - Eitan Okun
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel.
| |
Collapse
|
41
|
Rossato JI, Köhler CA, Radiske A, Bevilaqua LRM, Cammarota M. Inactivation of the dorsal hippocampus or the medial prefrontal cortex impairs retrieval but has differential effect on spatial memory reconsolidation. Neurobiol Learn Mem 2015; 125:146-51. [PMID: 26348793 DOI: 10.1016/j.nlm.2015.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 08/10/2015] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
Abstract
Active memories can incorporate new information through reconsolidation. However, the notion that memory retrieval is necessary for reconsolidation has been recently challenged. Non-reinforced retrieval induces hippocampus and medial prefrontal cortex (mPFC)-dependent reconsolidation of spatial memory in the Morris water maze (MWM). We found that the effect of protein synthesis inhibition on this process is abolished when retrieval of the learned spatial preference is hindered through mPFC inactivation but not when it is blocked by deactivation of dorsal CA1. Our results do not fully agree with the hypothesis that retrieval is unneeded for reconsolidation. Instead, they support the idea that a hierarchic interaction between the hippocampus and the mPFC controls spatial memory in the MWM, and indicate that this cortex is sufficient to retrieve the information essential to reconsolidate the spatial memory trace, even when the hippocampus is inactivated.
Collapse
Affiliation(s)
- Janine I Rossato
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, RN 59056-450, Natal, Brazil
| | - Cristiano A Köhler
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, RN 59056-450, Natal, Brazil
| | - Andressa Radiske
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, RN 59056-450, Natal, Brazil
| | - Lia R M Bevilaqua
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, RN 59056-450, Natal, Brazil
| | - Martín Cammarota
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, RN 59056-450, Natal, Brazil.
| |
Collapse
|
42
|
Storozheva ZI, Gruden MA, Proshin AT, Sewell RDE. Learning ability is a key outcome determinant of GSK-3 inhibition on visuospatial memory in rats. J Psychopharmacol 2015; 29:822-35. [PMID: 25735991 DOI: 10.1177/0269881115573805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Learning aptitude has never been a focus of visuospatial performance studies, particularly on memory consolidation and reconsolidation. The aim of this study was to determine the consequences of learning ability on memory consolidation/reconsolidation following inhibition of glucose synthase kinase-3 (GSK-3) by 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8). The anxiety-like nature of rats was characterized in the elevated plus maze. The rats were then trained for four days in the Morris water maze (MWM) and classified as 'superior', 'intermediate' or 'inferior' learners. There were no major differences between superior, intermediate or inferior learners with respect to anxiety which might have influenced learning. After training (day-5), TDZD-8 (2.0 mg/kg) was administered and half of the cohort were exposed to a MWM retrieval trial. Ten days later, animals were subjected to repeated MWM learning. TDZD-8 without a retrieval trial impaired subsequent reconsolidation in inferior learners, but enhanced it in superior learners. There was no modification of performance in intermediate learners. In TDZD-8-treated subjects exposed to retrieval, the pattern of outcomes was identical whereby impairment of reconsolidation occurred in inferior learners, enhancement occurred in superior learners but there was no modification of performance in intermediate learners. Thus, learning ability was a key determinant of the qualitative outcome from GSK-3 inhibition on visuospatial memory.
Collapse
Affiliation(s)
- Zinaida I Storozheva
- Federal State Budgetary Scientific Institution, P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russian Federation Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russian Federation
| | - Marina A Gruden
- Federal State Budgetary Scientific Institution, P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russian Federation
| | - Andrey T Proshin
- Federal State Budgetary Scientific Institution, P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russian Federation
| | - Robert D E Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
43
|
Méndez-Couz M, Conejo NM, Vallejo G, Arias JL. Brain functional network changes following Prelimbic area inactivation in a spatial memory extinction task. Behav Brain Res 2015; 287:247-55. [DOI: 10.1016/j.bbr.2015.03.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/11/2015] [Accepted: 03/16/2015] [Indexed: 02/07/2023]
|
44
|
Almeida-Corrêa S, Amaral OB. Memory labilization in reconsolidation and extinction--evidence for a common plasticity system? ACTA ACUST UNITED AC 2014; 108:292-306. [PMID: 25173958 DOI: 10.1016/j.jphysparis.2014.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/27/2014] [Accepted: 08/20/2014] [Indexed: 12/19/2022]
Abstract
Reconsolidation and extinction are two processes occurring upon memory retrieval that have received great attention in memory research over the last decade, partly due to their purported potential in the treatment of anxiety disorders. Due to their opposite behavioral effects, the two phenomena have usually been considered as separate entities, with few attempts to build a unified view of how both could be produced by similar mechanisms. Based on computational modeling, we have previously proposed that reconsolidation and extinction are behavioral outcomes of the same set of plasticity systems, albeit working at different synapses. One of these systems seems to be pharmacologically similar to the one involved in initial memory consolidation, and likely involves traditional Hebbian plasticity, while the second seems to be more involved with the labilization of existing memories and/or synaptic changes. In this article, we review the evidence for the existence of a plasticity system specifically involved in memory labilization, as well as its possible molecular requirements, anatomical substrates, synaptic mechanisms and physiological roles. Based on these data, we propose that the field of memory updating might ultimately benefit from a paradigm shift in which reconsolidation and extinction are viewed not as separate processes but as different instantiations of plasticity systems responsible for reinforcement and labilization of synaptic changes.
Collapse
Affiliation(s)
- Suellen Almeida-Corrêa
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Brazil
| | - Olavo B Amaral
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Brazil.
| |
Collapse
|
45
|
Boitard C, Cavaroc A, Sauvant J, Aubert A, Castanon N, Layé S, Ferreira G. Impairment of hippocampal-dependent memory induced by juvenile high-fat diet intake is associated with enhanced hippocampal inflammation in rats. Brain Behav Immun 2014; 40:9-17. [PMID: 24662056 DOI: 10.1016/j.bbi.2014.03.005] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/26/2014] [Accepted: 03/10/2014] [Indexed: 12/22/2022] Open
Abstract
In addition to metabolic and cardiovascular disorders, obesity pandemic is associated with chronic low-grade inflammation as well as adverse cognitive outcomes. However, the existence of critical periods of development that differ in terms of sensitivity to the effects of diet-induced obesity remains unexplored. Using short exposure to a high-fat diet (HFD) exerting no effects when given to adult mice, we recently found impairment of hippocampal-dependent memory and plasticity after similar HFD exposure encompassing adolescence (from weaning to adulthood) showing the vulnerability of the juvenile period (Boitard et al., 2012). Given that inflammatory processes modulate hippocampal functions, we evaluated in rats whether the detrimental effect of juvenile HFD (jHFD) on hippocampal-dependent memory is associated with over-expression of hippocampal pro-inflammatory cytokines. jHFD exposure impaired long-term spatial reference memory in the Morris water maze without affecting acquisition or short-term memory. This suggests an effect on consolidation processes. Moreover, jHFD consumption delayed spatial reversal learning. jHFD intake did neither affect basal expression of pro-inflammatory cytokines at the periphery nor in the brain, but potentiated the enhancement of Interleukin-1-beta and Tumor Necrosis Factor-alpha expression specifically in the hippocampus after a peripheral immune challenge with lipopolysaccharide. Interestingly, whereas the same duration of HFD intake at adulthood induced similar weight gain and metabolic alterations as jHFD intake, it did neither affect spatial performance (long-term memory or reversal learning) nor lipopolysaccharide-induced cytokine expression in the hippocampus. Finally, spatial reversal learning enhanced Interleukin-1-beta in the hippocampus, but not in the frontal cortex and the hypothalamus, of jHFD-fed rats. These results indicate that juvenile HFD intake promotes exaggerated pro-inflammatory cytokines expression in the hippocampus which is likely to contribute to spatial memory impairment.
Collapse
Affiliation(s)
- Chloé Boitard
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | - Amandine Cavaroc
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | - Julie Sauvant
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | - Agnès Aubert
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | - Nathalie Castanon
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | - Sophie Layé
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | - Guillaume Ferreira
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France.
| |
Collapse
|
46
|
De Jaeger X, Courtey J, Brus M, Artinian J, Villain H, Bacquié E, Roullet P. Characterization of spatial memory reconsolidation. Learn Mem 2014; 21:316-24. [PMID: 25171423 PMCID: PMC4024619 DOI: 10.1101/lm.033415.113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Reconsolidation is necessary for the restabilization of reactivated memory traces. However, experimental parameters have been suggested as boundary conditions for this process. Here we investigated the role of a spatial memory trace's age, strength, and update on the reconsolidation process in mice. We first found that protein synthesis is necessary for reconsolidation to occur in the hippocampal CA3 region after reactivation of partially acquired and old memories but not for strongly acquired and recent memories. We also demonstrated that the update of a previously stable memory required, again, a memory reconsolidation in the hippocampal CA3. Finally, we found that the reactivation of a strongly acquired memory requires an activation of the anterior cingulate cortex as soon as 24 h after acquisition. This study demonstrates the importance of the knowledge of the task on the dynamic nature of memory reconsolidation processing.
Collapse
Affiliation(s)
- Xavier De Jaeger
- Université de Toulouse, Université Paul Sabatier, 31062 Toulouse Cedex 9, France Centre de Recherches sur la Cognition Animale, CNRS UMR 5169, 31062 Toulouse Cedex 9, France
| | - Julie Courtey
- Université de Toulouse, Université Paul Sabatier, 31062 Toulouse Cedex 9, France Centre de Recherches sur la Cognition Animale, CNRS UMR 5169, 31062 Toulouse Cedex 9, France
| | - Maïna Brus
- Université de Toulouse, Université Paul Sabatier, 31062 Toulouse Cedex 9, France Centre de Recherches sur la Cognition Animale, CNRS UMR 5169, 31062 Toulouse Cedex 9, France
| | - Julien Artinian
- Université de Toulouse, Université Paul Sabatier, 31062 Toulouse Cedex 9, France Centre de Recherches sur la Cognition Animale, CNRS UMR 5169, 31062 Toulouse Cedex 9, France
| | - Hélène Villain
- Université de Toulouse, Université Paul Sabatier, 31062 Toulouse Cedex 9, France Centre de Recherches sur la Cognition Animale, CNRS UMR 5169, 31062 Toulouse Cedex 9, France
| | - Elodie Bacquié
- Université de Toulouse, Université Paul Sabatier, 31062 Toulouse Cedex 9, France Centre de Recherches sur la Cognition Animale, CNRS UMR 5169, 31062 Toulouse Cedex 9, France
| | - Pascal Roullet
- Université de Toulouse, Université Paul Sabatier, 31062 Toulouse Cedex 9, France Centre de Recherches sur la Cognition Animale, CNRS UMR 5169, 31062 Toulouse Cedex 9, France
| |
Collapse
|
47
|
Spatial memory extinction: a c-Fos protein mapping study. Behav Brain Res 2013; 260:101-10. [PMID: 24315832 DOI: 10.1016/j.bbr.2013.11.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/18/2013] [Accepted: 11/22/2013] [Indexed: 02/07/2023]
Abstract
While the neuronal basis of spatial memory consolidation has been thoroughly studied, the substrates mediating the process of extinction remain largely unknown. This study aimed to evaluate the functional contribution of selected brain regions during the extinction of a previously acquired spatial memory task in the Morris water maze. For that purpose, we used adult male Wistar rats trained in a spatial reference memory task. Learning-related changes in c-Fos inmunoreactive cells after training were evaluated in cortical and subcortical regions. Results show that removal of the hidden platform in the water maze induced extinction of the previously reinforced escape behavior after 16 trials, without spontaneous recovery 24h later. Extinction was related with significantly higher numbers of c-Fos positive nuclei in amygdala nuclei and prefrontal cortex. On the other hand, the lateral mammillary bodies showed higher number of c-Fos positive cells than the control group. Therefore, in contrast with the results obtained in studies of classical conditioning, we show the involvement of diencephalic structures mediating this kind of learning. In summary, our findings suggest that medial prefrontal cortex, the amygdala complex and diencephalic structures like the lateral mammillary nuclei are relevant for the extinction of spatial memory.
Collapse
|
48
|
Cassini LF, Sierra RO, Haubrich J, Crestani AP, Santana F, de Oliveira Alvares L, Quillfeldt JA. Memory reconsolidation allows the consolidation of a concomitant weak learning through a synaptic tagging and capture mechanism. Hippocampus 2013; 23:931-41. [PMID: 23733489 DOI: 10.1002/hipo.22149] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 05/20/2013] [Accepted: 05/20/2013] [Indexed: 12/21/2022]
Abstract
Motivated by the synaptic tagging and capture (STC) hypothesis, it was recently shown that a weak learning, only able to produce short-term memory (STM), can succeed in establishing long-term memory (LTM) with a concomitant, stronger experience. This is consistent with the capture, by the first-tagged event, of the so-called plasticity-related proteins (PRPs) provided by the second one. Here, we describe how a concomitant session of reactivation/reconsolidation of a stronger, contextual fear conditioning (CFC) memory, allowed LTM to result from a weak spatial object recognition (wSOR) training. Consistent with an STC process, the effect was observed only during a critical time window and was dependent on the CFC reconsolidation-related protein synthesis. Retrieval by itself (without reconsolidation) did not have the same promoting effect. We also found that the inactivation of the NMDA receptor by AP5 prevented wSOR training to receive this support of CFC reconsolidation (supposedly through the production of PRPs), which may be the equivalent of blocking the setting of a learning tag in the dorsal CA1 region for that task. Furthermore, either a Water Maze reconsolidation, or a CFC extinction session, allowed the formation of wSOR-LTM. These results suggest for the first time that a reconsolidation session can promote the consolidation of a concomitant weak learning through a probable STC mechanism. These findings allow new insights concerning the influence of reconsolidation in the acquisition of memories of otherwise unrelated events during daily life situations.
Collapse
Affiliation(s)
- Lindsey F Cassini
- Psychobiology and Neurocomputation Laboratory, Biophysics Department, Institute of Biosciences, 91.501-970; Graduate Program in Neuroscience, Institute of Health Sciences, 90.046-900, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | | | | | |
Collapse
|
49
|
Besnard A, Caboche J, Laroche S. Reconsolidation of memory: A decade of debate. Prog Neurobiol 2012; 99:61-80. [PMID: 22877586 DOI: 10.1016/j.pneurobio.2012.07.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/13/2012] [Accepted: 07/08/2012] [Indexed: 10/28/2022]
|
50
|
Fiorenza NG, Sartor D, Myskiw JC, Izquierdo I. Treatment of fear memories: interactions between extinction and reconsolidation. AN ACAD BRAS CIENC 2012; 83:1363-72. [PMID: 22146964 DOI: 10.1590/s0001-37652011000400023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 09/08/2011] [Indexed: 01/28/2023] Open
Abstract
Retrieval labilizes memory traces and these gates two protein synthesis-dependent processes in the brain: extinction, which inhibits further retrieval, and reconsolidation, which may enhance retrieval or change its content. Extinction may itself suffer reconsolidation. Interactions among these processes may be applied to treatments of fear memories, such as those underlying post-traumatic stress disorders.
Collapse
Affiliation(s)
- Natália G Fiorenza
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | | | | | | |
Collapse
|