1
|
Abstract
Memories are stored as ensembles of engram neurons and their successful recall involves the reactivation of these cellular networks. However, significant gaps remain in connecting these cell ensembles with the process of forgetting. Here, we utilized a mouse model of object memory and investigated the conditions in which a memory could be preserved, retrieved, or forgotten. Direct modulation of engram activity via optogenetic stimulation or inhibition either facilitated or prevented the recall of an object memory. In addition, through behavioral and pharmacological interventions, we successfully prevented or accelerated forgetting of an object memory. Finally, we showed that these results can be explained by a computational model in which engrams that are subjectively less relevant for adaptive behavior are more likely to be forgotten. Together, these findings suggest that forgetting may be an adaptive form of engram plasticity which allows engrams to switch from an accessible state to an inaccessible state.
Collapse
Affiliation(s)
- James D O'Leary
- School of Biochemistry and Immunology, Trinity College DublinDublinIreland
- Trinity College Institute of Neuroscience, Trinity College DublinDublinIreland
| | - Rasmus Bruckner
- Trinity College Institute of Neuroscience, Trinity College DublinDublinIreland
- Department of Education and Psychology, Freie Universität BerlinBerlinGermany
- Max Planck Research Group NeuroCode, Max Planck Institute for Human DevelopmentBerlinGermany
| | - Livia Autore
- School of Biochemistry and Immunology, Trinity College DublinDublinIreland
- Trinity College Institute of Neuroscience, Trinity College DublinDublinIreland
| | - Tomás J Ryan
- School of Biochemistry and Immunology, Trinity College DublinDublinIreland
- Trinity College Institute of Neuroscience, Trinity College DublinDublinIreland
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of MelbourneMelbourneAustralia
- Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR)TorontoCanada
| |
Collapse
|
2
|
Peyrot C, Duplessis-Marcotte F, Provencher J, Marin MF. Understanding sex differences in extinction retention: Pre-extinction stress and sex hormone status. Psychoneuroendocrinology 2024; 169:107161. [PMID: 39116520 DOI: 10.1016/j.psyneuen.2024.107161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/29/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
Difficulties in fear regulation can sometimes result in maladaptive fear responses. To better understand how to improve fear regulation, it is important to determine how known factors, such as sex hormone status and stress, might interact to influence fear memory. Research has shown that women with high estradiol levels (mid-cycle) and men exhibit better extinction retention compared to women with low estradiol levels (women in the early follicular cycle or using oral contraceptives). Stress has also been demonstrated to affect both the learning and retention of extinction. Despite documented interactions between stress and sex hormones, their combined effects have not been thoroughly studied. This study aims to examine the impact of stress as a function of sex hormone status on extinction learning and retention. A total of 168 non-clinical participants were studied, including men (n = 46), women using oral contraceptives (n = 38), women in the early follicular phase (n = 40), and women in mid-cycle (n = 44). On Day 1, fear acquisition training was performed. On day 2, prior to extinction training, half of the participants were exposed to a psychosocial stressor, while the other half performed a non-stressful control task. On day 3, extinction retention was tested. Fear was quantified using skin conductance responses, while stress hormones were quantified through saliva samples. Exposure to stress prior to extinction training did not affect extinction learning, regardless of sex hormone status. In contrast, pre-extinction stress exposure had different effects on extinction retention depending on hormone status. Stressed men showed impairment in extinction retention compared to controls, while the experimental condition had no effect on naturally cycling women. Regardless of stress exposure, early follicular women exhibited a deficit in fear regulation, while mid-cycle women showed effective fear regulation. Among women using oral contraceptives, the stress group demonstrated better extinction retention compared to the control group. These results demonstrate the importance of considering sex hormone status and stress exposure during extinction learning, as both components may modulate extinction retention. These results could help identifying hormonal conditions that may enhance the effectiveness of extinction-based psychological therapies used in the treatment of fear-related disorders.
Collapse
Affiliation(s)
- Clémence Peyrot
- Research Centre, Institut universitaire en santé mentale de Montréal, 7331 Hochelaga Street, Montréal, Québec H1N 3J4, Canada; Department of Psychiatry and Addiction, Université de Montréal, 2900 Édouard-Montpetit boulevard, Montréal, Québec H3T 1J4, Canada.
| | - Félix Duplessis-Marcotte
- Research Centre, Institut universitaire en santé mentale de Montréal, 7331 Hochelaga Street, Montréal, Québec H1N 3J4, Canada; Department of Psychology, Université du Québec à Montréal, 100 Sherbrooke Street W, Montréal, Québec H2X 2P3, Canada.
| | - Jessie Provencher
- Research Centre, Institut universitaire en santé mentale de Montréal, 7331 Hochelaga Street, Montréal, Québec H1N 3J4, Canada; Department of Psychology, Université du Québec à Montréal, 100 Sherbrooke Street W, Montréal, Québec H2X 2P3, Canada.
| | - Marie-France Marin
- Research Centre, Institut universitaire en santé mentale de Montréal, 7331 Hochelaga Street, Montréal, Québec H1N 3J4, Canada; Department of Psychiatry and Addiction, Université de Montréal, 2900 Édouard-Montpetit boulevard, Montréal, Québec H3T 1J4, Canada; Department of Psychology, Université du Québec à Montréal, 100 Sherbrooke Street W, Montréal, Québec H2X 2P3, Canada.
| |
Collapse
|
3
|
Liu YR, Chang CH. Activation, but not inactivation, of the medial or lateral orbitofrontal cortex impaired context-specific fear encoding. Neurobiol Learn Mem 2024; 215:107991. [PMID: 39414127 DOI: 10.1016/j.nlm.2024.107991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/28/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
In laboratories, classical fear conditioning and extinction procedures are commonly used to study the behavioral and neural mechanisms underlying fear regulation. Contextual fear conditioning involves the association of an aversive event with the environment where it occurs, which engages the hippocampus and its interactions with the amygdala. The orbitofrontal cortex (OFC), divided into the lateral OFC (lOFC) and medial OFC (mOFC) subregions, plays a crucial role in integrating contextual information from the hippocampus and modulating behavioral responses based on the anticipated outcomes of the context. Because of the extensive anatomical connections of the OFC with the fear circuit, including the hippocampus, the amygdala, and the medial prefrontal cortex, and the reasoning that proper retrieval of fear-related memory is context-dependent, we raised the question to investigate the ability of the animals to discriminate between contexts when they were trained under differential OFC activation levels during the encoding of contextual fear memory. In this study, we conducted a contextual fear conditioning procedure in rats using footshock as an unconditioned stimulus (US), followed by the test of their fear levels in contexts same (dangerous) or different (safe) from the conditioning context. We used a pharmacological approach to modulate the activation levels of the lOFC or the mOFC during conditioning to examine their roles on context-specific fear encoding. Our findings showed that the animals could accurately distinguish between the two contexts in control and OFC hypoactivation groups, but failed to do so if they were trained under OFC hyperactivation. Therefore, OFC hyperactivity disturbed the encoding of contextual information during fear acquisition.
Collapse
Affiliation(s)
- Yu-Rui Liu
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Hui Chang
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu 30013, Taiwan; Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
4
|
Sloan DM, Marx BP. State of the Science: Written Exposure Therapy for the Treatment of Posttraumatic Stress Disorder. Behav Ther 2024; 55:1222-1232. [PMID: 39443063 DOI: 10.1016/j.beth.2024.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 10/25/2024]
Abstract
Although there are effective psychotherapies available for posttraumatic stress disorder (PTSD), brief treatments for PTSD are needed to expand the reach of treatment. Written exposure therapy (WET) is a brief treatment that has the potential to fill an important need in PTSD treatment and has a rapidly expanding evidence base to support its use. In this paper we provide information on how WET was developed, and we present proposed underlying mechanisms of the treatment and evidence supporting the underlying mechanism. The current evidence supporting WET for the treatment of PTSD is reviewed. The evidence indicates that WET is an efficacious and effective treatment approach for PTSD and is noninferior to more time-intensive evidence-based treatments for PTSD. The paper concludes with suggestions for expanding the evidence base of WET that is necessary for it to be considered a first-line treatment approach across clinical practice guidelines.
Collapse
Affiliation(s)
- Denise M Sloan
- National Center for PTSD at VA Boston Healthcare System and Boston University Chobanian and Avedisian School of Medicine.
| | - Brian P Marx
- National Center for PTSD at VA Boston Healthcare System and Boston University Chobanian and Avedisian School of Medicine
| |
Collapse
|
5
|
Cattani A, Arnold DB, McCarthy M, Kopell N. Basolateral amygdala oscillations enable fear learning in a biophysical model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.28.538604. [PMID: 37163011 PMCID: PMC10168360 DOI: 10.1101/2023.04.28.538604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The basolateral amygdala (BLA) is a key site where fear learning takes place through synaptic plasticity. Rodent research shows prominent low theta (~3-6 Hz), high theta (~6-12 Hz), and gamma (>30 Hz) rhythms in the BLA local field potential recordings. However, it is not understood what role these rhythms play in supporting the plasticity. Here, we create a biophysically detailed model of the BLA circuit to show that several classes of interneurons (PV, SOM, and VIP) in the BLA can be critically involved in producing the rhythms; these rhythms promote the formation of a dedicated fear circuit shaped through spike-timing-dependent plasticity. Each class of interneurons is necessary for the plasticity. We find that the low theta rhythm is a biomarker of successful fear conditioning. The model makes use of interneurons commonly found in the cortex and, hence, may apply to a wide variety of associative learning situations.
Collapse
Affiliation(s)
- Anna Cattani
- Department of Mathematics & Statistics, Boston University, Boston, Massachusetts, United States
| | - Don B Arnold
- Department of Biology, University of Southern California, Los Angeles, California, United States
| | - Michelle McCarthy
- Department of Mathematics & Statistics, Boston University, Boston, Massachusetts, United States
| | - Nancy Kopell
- Department of Mathematics & Statistics, Boston University, Boston, Massachusetts, United States
| |
Collapse
|
6
|
Lei L, Lai CSW, Lee TMC, Lam CLM. The effect of transcranial direct current and magnetic stimulation on fear extinction and return of fear: A meta-analysis and systematic review. J Affect Disord 2024; 362:263-286. [PMID: 38908557 DOI: 10.1016/j.jad.2024.06.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND We conducted a meta-analysis and qualitative review on the randomized controlled trials investigating the effects of transcranial direct current stimulation and transcranial magnetic stimulation on fear extinction and the return of fear in non-primate animals and humans. METHODS The meta-analysis was conducted by searching PubMed, Web of science, PsycINFO, and Cochrane Library and extracting fear response in the active and sham groups in the randomized controlled trials. The pooled effect size was quantified by Hedges' g using a three-level meta-analytic model in R. RESULTS We identified 18 articles on the tDCS effect and 5 articles on the TMS effect, with 466 animal subjects and 621 human subjects. Our findings show that tDCS of the prefrontal cortex significantly inhibit fear retrieval in animal models (Hedges' g = -0.50). In human studies, TMS targeting the dorsolateral/ventromedial prefrontal cortex has an inhibiting effect on the return of fear (Hedges' g = -0.24). LIMITATIONS The limited number of studies and the heterogeneous designs of the selected studies made cross-study and cross-species comparison difficult. CONCLUSIONS Our findings shed light on the optimal non-invasive brain stimulation protocols for targeting the neural circuitry of threat extinction in humans.
Collapse
Affiliation(s)
- Letian Lei
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Laboratory of Clinical Psychology and Affective Neuroscience, The University of Hong Kong, Hong Kong, China
| | - Cora S W Lai
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| | - Tatia M C Lee
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China
| | - Charlene L M Lam
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Laboratory of Clinical Psychology and Affective Neuroscience, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Greaves MD, Felmingham KL, Ney LJ, Nicholson EL, Li S, Vervliet B, Harrison BJ, Graham BM, Steward T. Using electrodermal activity to estimate fear learning differences in anxiety: A multiverse analysis. Behav Res Ther 2024; 181:104598. [PMID: 39142133 DOI: 10.1016/j.brat.2024.104598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 08/16/2024]
Abstract
Meta-analyses indicate differences in Pavlovian fear responses between anxious and non-anxious individuals using electrodermal activity (EDA). Recent research, however, has cast doubt on whether these effects are robust to different analytic choices. Using the multiverse approach conceived by Steegen et al. (2016), we surveyed analytic choices typically implemented in clinical fear conditioning research by conducting 1240 analyses reflecting different choice permutations. Only 1.45% of our analyses produced theoretically congruent statistically significant effects, and the strength and direction of the estimated effects varied substantially across EDA processing methods. We conclude that EDA-estimated fear learning differences are vulnerable to researcher degrees of freedom and make recommendations regarding which analytical choices should be approached with a high degree of caution.
Collapse
Affiliation(s)
- Matthew D Greaves
- Department of Psychiatry, The University of Melbourne, Victoria, Australia; Melbourne School of Psychological Sciences, The University of Melbourne, Victoria, Australia
| | - Kim L Felmingham
- Melbourne School of Psychological Sciences, The University of Melbourne, Victoria, Australia.
| | - Luke J Ney
- School of Psychology and Counselling, Queensland University of Technology, Australia
| | - Emma L Nicholson
- Melbourne School of Psychological Sciences, The University of Melbourne, Victoria, Australia
| | - Stella Li
- School of Psychology, The University of New South Wales, Sydney, New South Wales, Australia
| | - Bram Vervliet
- Laboratory of Biological Psychology, KU Leuven, Belgium; Leuven Brain Institute, KU Leuven, Belgium
| | - Ben J Harrison
- Department of Psychiatry, The University of Melbourne, Victoria, Australia
| | - Bronwyn M Graham
- School of Psychology, The University of New South Wales, Sydney, New South Wales, Australia
| | - Trevor Steward
- Department of Psychiatry, The University of Melbourne, Victoria, Australia; Melbourne School of Psychological Sciences, The University of Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Ávila-Gámiz F, Pérez-Cano AM, Pérez-Berlanga JM, Zambrana-Infantes EN, Mañas-Padilla MC, Gil-Rodríguez S, Tronel S, Santín LJ, Ladrón de Guevara-Miranda D. Sequential physical and cognitive training disrupts cocaine-context associations via multi-level stimulation of adult hippocampal neurogenesis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111148. [PMID: 39284561 DOI: 10.1016/j.pnpbp.2024.111148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Cocaine-related contextual cues are a recurrent source of craving and relapse. Extinction of cue-driven cocaine seeking remains a clinical challenge, and the search for adjuvants is ongoing. In this regard, combining physical and cognitive training is emerging as a promising strategy that has shown synergistic benefits on brain structure and function, including enhancement of adult hippocampal neurogenesis (AHN), which has been recently linked to reduced maintenance of maladaptive drug seeking. Here, we examined whether this behavioral approach disrupts cocaine-context associations via improved AHN. To this aim, C57BL/6J mice (N = 37) developed a cocaine-induced conditioned place preference (CPP) and underwent interventions consisting of exercise and/or spatial working memory training. Bromodeoxyuridine (BrdU) was administered during early running sessions to tag a subset of new dentate granule cells (DGCs) reaching a critical window of survival during spatial learning. Once these DGCs became functionally mature (∼ 6 weeks-old), mice received extinction training before testing CPP extinction and reinstatement. We found that single and combined treatments accelerated CPP extinction and prevented reinstatement induced by a low cocaine priming (2 mg/kg). Remarkably, the dual-intervention mice showed a significant decrease of CPP after extinction relative to untreated animals. Moreover, combining the two strategies led to increased number and functional integration of BrdU+ DGCs, which in turn maximized the effect of spatial training (but not exercise) to reduce CPP persistence. Together, our findings suggests that sequencing physical and cognitive training may redound to decreased maintenance of cocaine-context associations, with multi-level stimulation of AHN as a potential underlying mechanism.
Collapse
Affiliation(s)
- Fabiola Ávila-Gámiz
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain
| | - Ana M Pérez-Cano
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain
| | - José Manuel Pérez-Berlanga
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain
| | - Emma N Zambrana-Infantes
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain
| | - M Carmen Mañas-Padilla
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain
| | - Sara Gil-Rodríguez
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain
| | - Sophie Tronel
- University of Bordeaux, INSERM, Magendie, U1215, F-33000 Bordeaux, France
| | - Luis J Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain.
| | - David Ladrón de Guevara-Miranda
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain.
| |
Collapse
|
9
|
Smith SW, Arroyo Antúnez BE, DeBartelo J, Sullivan WE, Roane HS, Craig AR. Synthesized alternative reinforcement and resurgence. J Exp Anal Behav 2024; 122:195-206. [PMID: 39086124 DOI: 10.1002/jeab.4202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
In treatments based on differential reinforcement of alternative behavior, applied researchers and clinicians often provide multiple, qualitatively different reinforcers (i.e., synthesized reinforcement) rather than a single reinforcer (i.e., isolated reinforcement) contingent on alternative behavior. Some research shows that providing synthesized reinforcement for alternative responses within such treatments produces more rapid and complete suppression of target behavior; however, there is limited research evaluating the durability of these effects during treatment disruptions. Conceptual explanations of resurgence (e.g., resurgence as choice, context theory) suggest that treatments that include synthesized alternative reinforcement may lead to more resurgence of target behavior when alternative reinforcement is disrupted relative to treatments using isolated reinforcement. We evaluated this hypothesis within a three-phase resurgence evaluation. We exposed rats to isolated or synthesized reinforcement for alternative responding in the second phase, and we exposed rats to extinction in the third phase. Synthesized alternative reinforcement produced more rapid and complete suppression of target behavior than did isolated reinforcement in the second phase; however, exposure to extinction following synthesized reinforcement produced more resurgence. We discuss these results in terms of their implications for applied research and their support for current conceptual explanations for resurgence.
Collapse
Affiliation(s)
- Sean W Smith
- SUNY Upstate Medical University, Syracuse, NY, USA
| | | | | | | | | | | |
Collapse
|
10
|
Dixon LM, Brocklehurst S, Hills J, Foister S, Wilson PW, Reid AMA, Caughey S, Sandilands V, Boswell T, Dunn IC, D'Eath RB. Dilution of broiler breeder diets with oat hulls prolongs feeding but does not affect central control of appetite. Poult Sci 2024; 103:104262. [PMID: 39353330 PMCID: PMC11464247 DOI: 10.1016/j.psj.2024.104262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 10/04/2024] Open
Abstract
The parents of broiler (meat) chickens (ie, broiler breeders) are food-restricted until sexual maturity, ensuring good health and reproduction, but resulting in hunger. We investigated whether diets with added insoluble fiber promote satiety and reduce behavioral, motivational, and physiological signs of hunger. Ninety-six broiler breeders were fed 1 of 4 feed treatments (n = 24 per diet) from 6 to 12 wk of age: 1) a commercial diet fed to the recommended ration (R) or 2) ad libitum (AL), the same diet as R but mixed with oat hulls at 3) 20% (OH20%) or 4) 40% (OH40%). The R, OH20% and OH40% diets were approximately iso-energetic and resulted in mean 12 wk of age weights within 2.5% of each other (1.21 kg), while AL birds weighed 221% as much (2.67kg). At 12 wk of age, agouti-related protein (AGRP) expression, was, on average, more than 12 times lower in AL birds (P < 0.001) but did not differ between the fiber diet treatments and R. Pro-opiomelanocortin (POMC) expression, was, on average, over 1.5 times higher in AL birds, but was not statistically significantly affected by feed treatments (P = 0.33). In their home pens, AL birds stood/sat more, foraged less and fed more in total (P < 0.001) and OH40% birds spent longer feeding than R (P = 0.001). Motivation to forage tested by willingness to walk through water to access an area of wood shavings (without food) was not significantly affected by diet (P = 0.33). However, restricted birds were willing to cross in only 7.3% to 12.5% of tests. Mostly birds stayed on the start platform, where AL birds sat more than other treatments and OH40% birds reduced walking relative to R birds (P = 0.016). Across the behavioral and physiological measurements there was a dichotomy of effects in response to approximately iso-energetic diets differing in fiber. There were some potentially beneficial behavioral effects related to reduced foraging and walking. However, there was no evidence that these diets significantly improved physiological measures of satiety of broiler breeders.
Collapse
Affiliation(s)
| | | | | | - Simone Foister
- Innovent Technology Ltd, Northern Agri-Tech Innovation Hub, Easter Bush, UK
| | - Peter W Wilson
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Easter Bush, UK
| | - Angus M A Reid
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Easter Bush, UK
| | - Sarah Caughey
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Easter Bush, UK
| | | | - Tim Boswell
- Centre for Behavior and Evolution, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Ian C Dunn
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Easter Bush, UK
| | | |
Collapse
|
11
|
Hornstein E, Lazar L, Eisenberger N. Loneliness and the persistence of fear: Perceived social isolation reduces evaluative fear extinction. PLoS One 2024; 19:e0303895. [PMID: 39159214 PMCID: PMC11333009 DOI: 10.1371/journal.pone.0303895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/02/2024] [Indexed: 08/21/2024] Open
Abstract
Loneliness has been linked to a host of harmful physical and mental health outcomes, detrimental effects that may stem from increases in threat-responding caused by altered fear learning in lonely individuals. In particular, the heightened threat-vigilance that is a hallmark of loneliness may augment the processes by which fear learning occurs, ultimately resulting in a greater number of perceived threatening cues in the environment. However, almost no research has examined how loneliness alters fear learning processes in humans. Here, we investigated the effect of loneliness on fear learning during an evaluative learning procedure in which participants (n = 782) were taught to associate fearful, positive, or neutral control stimuli with neutral images. Results showed that reduced extinction of evaluative fear associations occurred in high (vs. low) lonely individuals, but there was no difference in extinction of evaluative appetitive (also known as positive or reward) associations, suggesting this effect is specific to fear learning. In addition to shedding light on the link between loneliness and poor health, these results represent an important step forward in the growing understanding of the powerful impact of social bonds on fear learning processes.
Collapse
Affiliation(s)
- Erica Hornstein
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Lee Lazar
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Naomi Eisenberger
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
12
|
Mitra S, Asthana MK. Attenuating conditioned fear using imagery-based interventions: An overview. Neurosci Biobehav Rev 2024; 163:105751. [PMID: 38838877 DOI: 10.1016/j.neubiorev.2024.105751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
A growing literature has sought to include mental imagery in fear conditioning studies. Imaginal extinction and imagery rescripting are mental imagery-based interventions that reduce conditioned fear. In the current study, we reviewed the recent findings on the efficacy of imaginal extinction and imagery rescripting as interventions to attenuate conditioned fear responses among healthy individuals. In accordance with the PRISMA guidelines, we conducted a literature search in four databases, PubMed, Scopus, Science Direct, and Web of Science to find published original empirical articles involving imagery-based interventions using a fear conditioning paradigm. The inclusion criteria were (i) use of an imagery-based intervention (either imaginal extinction or imagery rescripting), and (ii) use of a differential fear conditioning paradigm. 13 original articles reporting 15 experimental studies were included in the review. The review revealed that imagery-based interventions are effective in reducing conditioned fear. Although studies have shown that imaginal extinction and standard extinction have comparable effects in fear extinction, many studies have not been conducted to confirm the findings, or explore the underlying mechanisms. We also found the need for a standardized intervention protocol to enhance experimental control in intervention-based fear conditioning studies.
Collapse
Affiliation(s)
- Sharmili Mitra
- Department of Humanities and Social Sciences, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Manish Kumar Asthana
- Department of Humanities and Social Sciences, Indian Institute of Technology Roorkee, Uttarakhand 247667, India; Department of Design, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
13
|
Rosenberg BM, Barnes-Horowitz NM, Zbozinek TD, Craske MG. Reward processes in extinction learning and applications to exposure therapy. J Anxiety Disord 2024; 106:102911. [PMID: 39128178 PMCID: PMC11384290 DOI: 10.1016/j.janxdis.2024.102911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024]
Abstract
Anxiety disorders are common and highly distressing mental health conditions. Exposure therapy is a gold-standard treatment for anxiety disorders. Mechanisms of Pavlovian fear learning, and particularly fear extinction, are central to exposure therapy. A growing body of evidence suggests an important role of reward processes during Pavlovian fear extinction. Nonetheless, predominant models of exposure therapy do not currently incorporate reward processes. Herein, we present a theoretical model of reward processes in relation to Pavlovian mechanisms of exposure therapy, including a focus on dopaminergic prediction error signaling, coinciding positive emotional experiences (i.e., relief), and unexpected positive outcomes. We then highlight avenues for further research and discuss potential strategies to leverage reward processes to maximize exposure therapy response, such as pre-exposure interventions to increase reward sensitivity or post-exposure rehearsal (e.g., savoring, imaginal recounting strategies) to enhance retrieval and retention of learned associations.
Collapse
Affiliation(s)
- Benjamin M Rosenberg
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
| | - Nora M Barnes-Horowitz
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
| | - Tomislav D Zbozinek
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Michelle G Craske
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
14
|
Kennedy NGW, Lee JC, Killcross S, Westbrook RF, Holmes NM. Prediction error determines how memories are organized in the brain. eLife 2024; 13:RP95849. [PMID: 39027985 PMCID: PMC11259430 DOI: 10.7554/elife.95849] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
How is new information organized in memory? According to latent state theories, this is determined by the level of surprise, or prediction error, generated by the new information: a small prediction error leads to the updating of existing memory, large prediction error leads to encoding of a new memory. We tested this idea using a protocol in which rats were first conditioned to fear a stimulus paired with shock. The stimulus was then gradually extinguished by progressively reducing the shock intensity until the stimulus was presented alone. Consistent with latent state theories, this gradual extinction protocol (small prediction errors) was better than standard extinction (large prediction errors) in producing long-term suppression of fear responses, and the benefit of gradual extinction was due to updating of the conditioning memory with information about extinction. Thus, prediction error determines how new information is organized in memory, and latent state theories adequately describe the ways in which this occurs.
Collapse
Affiliation(s)
| | - Jessica C Lee
- School of Psychology, University of New South WalesSydneyAustralia
- School of Psychology, University of SydneySydneyAustralia
| | - Simon Killcross
- School of Psychology, University of New South WalesSydneyAustralia
| | - R Fred Westbrook
- School of Psychology, University of New South WalesSydneyAustralia
| | - Nathan M Holmes
- School of Psychology, University of New South WalesSydneyAustralia
| |
Collapse
|
15
|
Burwell SC, Yan H, Lim SS, Shields BC, Tadross MR. Natural phasic inhibition of dopamine neurons signals cognitive rigidity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593320. [PMID: 38766037 PMCID: PMC11100816 DOI: 10.1101/2024.05.09.593320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
When animals unexpectedly fail, their dopamine neurons undergo phasic inhibition that canonically drives extinction learning-a cognitive-flexibility mechanism for discarding outdated strategies. However, the existing evidence equates natural and artificial phasic inhibition, despite their spatiotemporal differences. Addressing this gap, we targeted a GABAA-receptor antagonist precisely to dopamine neurons, yielding three unexpected findings. First, this intervention blocked natural phasic inhibition selectively, leaving tonic activity unaffected. Second, blocking natural phasic inhibition accelerated extinction learning-opposite to canonical mechanisms. Third, our approach selectively benefitted perseverative mice, restoring rapid extinction without affecting new reward learning. Our findings reveal that extinction learning is rapid by default and slowed by natural phasic inhibition-challenging foundational learning theories, while delineating a synaptic mechanism and therapeutic target for cognitive rigidity.
Collapse
Affiliation(s)
- Sasha C.V. Burwell
- Department of Neurobiology, Duke University, Durham, NC
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Haidun Yan
- Department of Biomedical Engineering, Duke University, NC
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Shaun S.X. Lim
- Department of Biomedical Engineering, Duke University, NC
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Brenda C. Shields
- Department of Biomedical Engineering, Duke University, NC
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Michael R. Tadross
- Department of Neurobiology, Duke University, Durham, NC
- Department of Biomedical Engineering, Duke University, NC
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| |
Collapse
|
16
|
Kalisch R, Russo SJ, Müller MB. Neurobiology and systems biology of stress resilience. Physiol Rev 2024; 104:1205-1263. [PMID: 38483288 PMCID: PMC11381009 DOI: 10.1152/physrev.00042.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 05/16/2024] Open
Abstract
Stress resilience is the phenomenon that some people maintain their mental health despite exposure to adversity or show only temporary impairments followed by quick recovery. Resilience research attempts to unravel the factors and mechanisms that make resilience possible and to harness its insights for the development of preventative interventions in individuals at risk for acquiring stress-related dysfunctions. Biological resilience research has been lagging behind the psychological and social sciences but has seen a massive surge in recent years. At the same time, progress in this field has been hampered by methodological challenges related to finding suitable operationalizations and study designs, replicating findings, and modeling resilience in animals. We embed a review of behavioral, neuroimaging, neurobiological, and systems biological findings in adults in a critical methods discussion. We find preliminary evidence that hippocampus-based pattern separation and prefrontal-based cognitive control functions protect against the development of pathological fears in the aftermath of singular, event-type stressors [as found in fear-related disorders, including simpler forms of posttraumatic stress disorder (PTSD)] by facilitating the perception of safety. Reward system-based pursuit and savoring of positive reinforcers appear to protect against the development of more generalized dysfunctions of the anxious-depressive spectrum resulting from more severe or longer-lasting stressors (as in depression, generalized or comorbid anxiety, or severe PTSD). Links between preserved functioning of these neural systems under stress and neuroplasticity, immunoregulation, gut microbiome composition, and integrity of the gut barrier and the blood-brain barrier are beginning to emerge. On this basis, avenues for biological interventions are pointed out.
Collapse
Affiliation(s)
- Raffael Kalisch
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Scott J Russo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Marianne B Müller
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
17
|
Tanner MK, Hohorst AA, Westerman JD, Mendoza CS, Han R, Moya NA, Jaime J, Alvarez LM, Dryden MQ, Balolia A, Abdul RA, Loetz EC, Greenwood BN. Pharmacological manipulations of the dorsomedial and dorsolateral striatum during fear extinction reveal opposing roles in fear renewal. Neurobiol Learn Mem 2024; 212:107937. [PMID: 38735637 PMCID: PMC11187715 DOI: 10.1016/j.nlm.2024.107937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/17/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Systemic manipulations that enhance dopamine (DA) transmission around the time of fear extinction can strengthen fear extinction and reduce conditioned fear relapse. Prior studies investigating the brain regions where DA augments fear extinction focus on targets of mesolimbic and mesocortical DA systems originating in the ventral tegmental area, given the role of these DA neurons in prediction error. The dorsal striatum (DS), a primary target of the nigrostriatal DA system originating in the substantia nigra (SN), is implicated in behaviors beyond its canonical role in movement, such as reward and punishment, goal-directed action, and stimulus-response associations, but whether DS DA contributes to fear extinction is unknown. We have observed that chemogenetic stimulation of SN DA neurons during fear extinction prevents the return of fear in contexts different from the extinction context, a form of relapse called renewal. This effect of SN DA stimulation is mimicked by a DA D1 receptor (D1R) agonist injected into the DS, thus implicating DS DA in fear extinction. Different DS subregions subserve unique functions of the DS, but it is unclear where in the DS D1R agonist acts during fear extinction to reduce renewal. Furthermore, although fear extinction increases neural activity in DS subregions, whether neural activity in DS subregions is causally involved in fear extinction is unknown. To explore the role of DS subregions in fear extinction, adult, male Long-Evans rats received microinjections of either the D1R agonist SKF38393 or a cocktail consisting of GABAA/GABAB receptor agonists muscimol/baclofen selectively into either dorsomedial (DMS) or dorsolateral (DLS) DS subregions immediately prior to fear extinction, and extinction retention and renewal were subsequently assessed drug-free. While increasing D1R signaling in the DMS during fear extinction did not impact fear extinction retention or renewal, DMS inactivation reduced later renewal. In contrast, DLS inactivation had no effect on fear extinction retention or renewal but increasing D1R signaling in the DLS during extinction reduced fear renewal. These data suggest that DMS and DLS activity during fear extinction can have opposing effects on later fear renewal, with the DMS promoting renewal and the DLS opposing renewal. Mechanisms through which the DS could influence the contextual gating of fear extinction are discussed.
Collapse
Affiliation(s)
- Margaret K Tanner
- Department of Psychology, University of Colorado Denver, Denver, CO, USA
| | - Alyssa A Hohorst
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | | | | | - Rebecca Han
- Department of Psychology, University of Colorado Denver, Denver, CO, USA
| | - Nicolette A Moya
- Department of Neuroscience, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Jennifer Jaime
- The Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lareina M Alvarez
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | - Miles Q Dryden
- Department of Psychology, University of Colorado Denver, Denver, CO, USA
| | - Aleezah Balolia
- Neuroscience Program, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Remla A Abdul
- Department of Psychology, University of Colorado Denver, Denver, CO, USA
| | - Esteban C Loetz
- Department of Psychology, University of Colorado Denver, Denver, CO, USA
| | | |
Collapse
|
18
|
Shi P, Chen W, Li J, Weng Y, Zhang M, Zheng X. Novelty-retrieval-extinction paradigm to decrease high-intensity fear memory recurrence. J Affect Disord 2024; 354:26-35. [PMID: 38452938 DOI: 10.1016/j.jad.2024.02.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND The retrieval-extinction paradigm based on memory reconsolidation can prevent fear memory recurrence more effectively than the extinction paradigm. High-intensity fear memories tend to resist reconsolidation. Novelty-retrieval-extinction can promote the reconsolidation of fear memory lacking neuroplasticity in rodents; however, whether it could effectively promote high-intensity fear memory reconsolidation in humans remains unclear. METHODS Using 120 human participants, we implemented the use of the environment (novel vs. familiar) with the help of virtual reality technology. Novelty environment exploration was combined with retrieval-extinction in fear memory of two intensity levels (normal vs. high) to examine whether novelty facilitates the reconsolidation of high-intensity fear memory and prevents recurrence. Skin conductance responses were used to clarify novelty-retrieval-extinction effects at the behavioral level across three experiments. RESULTS Retrieval-extinction could prevent the reinstatement of normal-intensity fear memory; however, for high-intensity fear memory, only the novelty-retrieval-extinction could prevent recurrence; we further validated that novelty-retrieval-extinction may be effective only when the environment is novel. LIMITATIONS Although the high-intensity fear memory is higher than normal-intensity in this study, it may be insufficient relative to fear experienced in real-world contexts or by individuals with mental disorders. CONCLUSIONS To some extent, these findings indicate that the novelty-retrieval-extinction paradigm could prevent the recurrence of high-intensity fear memory, and we infer that novelty of environment may play an important role in novelty-retrieval-extinction paradigm. The results of this study have positive implications for the existing retrieval extinction paradigm and the clinical treatment of phobia.
Collapse
Affiliation(s)
- Pei Shi
- School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Wei Chen
- School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Junjiao Li
- College of Teacher Education, Guangdong University of Education, Guangzhou, China
| | - Yuhan Weng
- School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Mingyue Zhang
- School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Xifu Zheng
- School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
19
|
Wehrli JM, Xia Y, Abivardi A, Kleim B, Bach DR. The impact of doxycycline on human contextual fear memory. Psychopharmacology (Berl) 2024; 241:1065-1077. [PMID: 38334789 PMCID: PMC11031495 DOI: 10.1007/s00213-024-06540-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/20/2024] [Indexed: 02/10/2024]
Abstract
RATIONALE Previous work identified an attenuating effect of the matrix metalloproteinase (MMP) inhibitor doxycycline on fear memory consolidation. This may present a new mechanistic approach for the prevention of trauma-related disorders. However, so far, this has only been unambiguously demonstrated in a cued delay fear conditioning paradigm, in which a simple geometric cue predicted a temporally overlapping aversive outcome. This form of learning is mainly amygdala dependent. Psychological trauma often involves the encoding of contextual cues, which putatively necessitates partly different neural circuits including the hippocampus. The role of MMP signalling in the underlying neural pathways in humans is unknown. METHODS Here, we investigated the effect of doxycycline on configural fear conditioning in a double-blind placebo-controlled randomised trial with 100 (50 females) healthy human participants. RESULTS Our results show that participants successfully learned and retained, after 1 week, the context-shock association in both groups. We find no group difference in fear memory retention in either of our pre-registered outcome measures, startle eye-blink responses and pupil dilation. Contrary to expectations, we identified elevated fear-potentiated startle in the doxycycline group early in the recall test, compared to the placebo group. CONCLUSION Our results suggest that doxycycline does not substantially attenuate contextual fear memory. This might limit its potential for clinical application.
Collapse
Affiliation(s)
- Jelena M Wehrli
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, 8008, Zurich, Switzerland
| | - Yanfang Xia
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, 8008, Zurich, Switzerland
| | - Aslan Abivardi
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, 8008, Zurich, Switzerland
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, FMRIB Building, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Birgit Kleim
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, 8008, Zurich, Switzerland
| | - Dominik R Bach
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, 8008, Zurich, Switzerland.
- Wellcome Centre for Human Neuroimaging, University College London, Russell Square House, 10-12 Russell Square, London, WC1B 5EH, UK.
- Hertz Chair for Artificial Intelligence and Neuroscience, Transdisciplinary Research Area Life & Health , University of Bonn, Am Probsthof 49, 53121, Bonn, Germany.
| |
Collapse
|
20
|
Navarro V, Dwyer DM, Honey RC. Variation in the effectiveness of reinforcement and nonreinforcement in generating different conditioned behaviors. Neurobiol Learn Mem 2024; 211:107915. [PMID: 38527649 DOI: 10.1016/j.nlm.2024.107915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/04/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Rat autoshaping procedures generate two readily measurable conditioned responses: During lever presentations that have previously signaled food, rats approach the food well (called goal-tracking) and interact with the lever itself (called sign-tracking). We investigated how reinforced and nonreinforced trials affect the overall and temporal distributions of these two responses across 10-second lever presentations. In two experiments, reinforced trials generated more goal-tracking than sign-tracking, and nonreinforced trials resulted in a larger reduction in goal-tracking than sign-tracking. The effect of reinforced trials was evident as an increase in goal-tracking and reduction in sign-tracking across the duration of the lever presentations, and nonreinforced trials resulted in this pattern transiently reversing and then becoming less evident with further training. These dissociations are consistent with a recent elaboration of the Rescorla-Wagner model, HeiDI (Honey, R.C., Dwyer, D.M., & Iliescu, A.F. (2020a). HeiDI: A model for Pavlovian learning and performance with reciprocal associations. Psychological Review, 127, 829-852.), a model in which responses related to the nature of the unconditioned stimulus (e.g., goal-tracking) have a different origin than those related to the nature of the conditioned stimulus (e.g., sign-tracking).
Collapse
|
21
|
Raskin M, Keller NE, Agee LA, Shumake J, Smits JA, Telch MJ, Otto MW, Lee HJ, Monfils MH. Carbon Dioxide Reactivity Differentially Predicts Fear Expression After Extinction and Retrieval-Extinction in Rats. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100310. [PMID: 38680941 PMCID: PMC11047292 DOI: 10.1016/j.bpsgos.2024.100310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/11/2024] [Accepted: 03/11/2024] [Indexed: 05/01/2024] Open
Abstract
Background Cues present during a traumatic event may result in persistent fear responses. These responses can be attenuated through extinction learning, a core component of exposure therapy. Exposure/extinction is effective for some people, but not all. We recently demonstrated that carbon dioxide (CO2) reactivity predicts fear extinction memory and orexin activation and that orexin activation predicts fear extinction memory, which suggests that a CO2 challenge may enable identification of whether an individual is a good candidate for an extinction-based approach. Another method to attenuate conditioned responses, retrieval-extinction, renders the original associative memory labile via distinct neural mechanisms. The purpose of the current study was to examine whether we could replicate previous findings that retrieval-extinction is more effective than extinction at preventing the return of fear and that CO2 reactivity predicts fear memory after extinction. We also examined whether CO2 reactivity predicts fear memory after retrieval-extinction. Methods Male rats first underwent a CO2 challenge and fear conditioning and were assigned to receive either standard extinction (n = 28) or retrieval-extinction (n = 28). Then, they underwent a long-term memory (LTM) test and a reinstatement test. Results We found that retrieval-extinction resulted in lower freezing during extinction, LTM, and reinstatement than standard extinction. Using the best subset approach to linear regression, we found that CO2 reactivity predicted LTM after extinction and also predicted LTM after retrieval-extinction, although to a lesser degree. Conclusions CO2 reactivity could be used as a screening tool to determine whether an individual may be a good candidate for an extinction-based therapeutic approach.
Collapse
Affiliation(s)
- Marissa Raskin
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas
| | - Nicole E. Keller
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas
| | - Laura A. Agee
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Jason Shumake
- Department of Psychology, University of Texas at Austin, Austin, Texas
| | - Jasper A.J. Smits
- Department of Psychology, University of Texas at Austin, Austin, Texas
| | - Michael J. Telch
- Department of Psychology, University of Texas at Austin, Austin, Texas
| | - Michael W. Otto
- Department of Psychological & Brain Sciences, Boston University, Boston, Massachusetts
| | - Hongjoo J. Lee
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas
- Department of Psychology, University of Texas at Austin, Austin, Texas
| | - Marie-H. Monfils
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas
- Department of Psychology, University of Texas at Austin, Austin, Texas
| |
Collapse
|
22
|
Conoscenti MA, Weatherill DB, Huang Y, Tordjman R, Fanselow MS. Isolation of the differential effects of chronic and acute stress in a manner that is not confounded by stress severity. Neurobiol Stress 2024; 30:100616. [PMID: 38384783 PMCID: PMC10879813 DOI: 10.1016/j.ynstr.2024.100616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024] Open
Abstract
Firm conclusions regarding the differential effects of the maladaptive consequences of acute versus chronic stress on the etiology and symptomatology of stress disorders await a model that isolates chronicity as a variable for studying the differential effects of acute versus chronic stress. This is because most previous studies have confounded chronicity with the total amount of stress. Here, we have modified the stress-enhanced fear learning (SEFL) protocol, which models some aspects of posttraumatic stress disorder (PTSD) following an acute stressor, to create a chronic variant that does not have this confound. Comparing results from this new protocol to the acute protocol, we found that chronic stress further potentiates enhanced fear-learning beyond the nonassociative enhancement induced by acute stress. This additional component is not observed when the unconditional stimulus (US) used during subsequent fear learning is distinct from the US used as the stressor, and is enhanced when glucose is administered following stressor exposure, suggesting that it is associative in nature. Furthermore, extinction of stressor-context fear blocks this additional associative component of SEFL as well as reinstatement of generalized fear, suggesting reinstatement of generalized fear may underlie this additional SEFL component.
Collapse
Affiliation(s)
- Michael A. Conoscenti
- Department of Psychology, University of California, Los Angeles, CA, USA
- Staglin Center for Brain and Behavioral Health, University of California, Los Angeles, CA, USA
| | - Daniel B. Weatherill
- Department of Psychology, University of California, Los Angeles, CA, USA
- Staglin Center for Brain and Behavioral Health, University of California, Los Angeles, CA, USA
| | - Yuqing Huang
- Department of Psychology, University of California, Los Angeles, CA, USA
- Staglin Center for Brain and Behavioral Health, University of California, Los Angeles, CA, USA
| | - Raphael Tordjman
- Department of Psychology, University of California, Los Angeles, CA, USA
- Staglin Center for Brain and Behavioral Health, University of California, Los Angeles, CA, USA
| | - Michael S. Fanselow
- Department of Psychology, University of California, Los Angeles, CA, USA
- Staglin Center for Brain and Behavioral Health, University of California, Los Angeles, CA, USA
- Brain Research Institute, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
23
|
Wang Y, Olsson S, Lipp OV, Ney LJ. Renewal in human fear conditioning: A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 159:105606. [PMID: 38431150 DOI: 10.1016/j.neubiorev.2024.105606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/13/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Renewal is a 'return of fear' manipulation in human fear conditioning to investigate learning processes underlying anxiety and trauma. Even though renewal paradigms are widely used, no study has compared the strength of different renewal paradigms. We conduct a systematic review (N = 80) and meta-analysis (N = 23) of human fear conditioning studies assessing renewal. Our analysis shows that the classic ABA design is the most effective paradigm, compared to ABC and ABBA designs. We present evidence that conducting extinction in multiple contexts and increasing the similarity between acquisition and extinction contexts reduce renewal. Furthermore, we show that additional cues can be used as safety and 'protection from extinction' cues. The review shows that alcohol weakens the extinction process and that older adults appear less sensitive to context changes and thus show less renewal. The large variability in approaches to study renewal in humans suggests that standardisation of fear conditioning procedures across laboratories would be of great benefit to the field.
Collapse
Affiliation(s)
- Yi Wang
- School of Psychology and Counselling, Queensland University of Technology, Australia.
| | - Sarah Olsson
- School of Psychology and Counselling, Queensland University of Technology, Australia
| | - Ottmar V Lipp
- School of Psychology and Counselling, Queensland University of Technology, Australia
| | - Luke J Ney
- School of Psychology and Counselling, Queensland University of Technology, Australia
| |
Collapse
|
24
|
Cisler JM, Dunsmoor JE, Privratsky AA, James GA. Decoding neural reactivation of threat during fear learning, extinction, and recall in a randomized clinical trial of L-DOPA among women with PTSD. Psychol Med 2024; 54:1091-1101. [PMID: 37807886 DOI: 10.1017/s0033291723002891] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
BACKGROUND Laboratory paradigms are widely used to study fear learning in posttraumatic stress disorder (PTSD). Recent basic science models demonstrate that, during fear learning, patterns of activity in large neuronal ensembles for the conditioned stimuli (CS) begin to reinstate neural activity patterns for the unconditioned stimuli (US), suggesting a direct way of quantifying fear memory strength for the CS. Here, we translate this concept to human neuroimaging and test the impact of post-learning dopaminergic neurotransmission on fear memory strength during fear acquisition, extinction, and recall among women with PTSD in a re-analysis of previously reported data. METHODS Participants (N = 79) completed a context-dependent fear acquisition and extinction task on day 1 and extinction recall tests 24 h later. We decoded activity patterns in large-scale functional networks for the US, then applied this decoder to activity patterns toward the CS on day 1 and day 2. RESULTS US decoder output for the CS+ increased during acquisition and decreased during extinction in networks traditionally implicated in human fear learning. The strength of US neural reactivation also predicted individuals skin conductance responses. Participants randomized to receive L-DOPA (n = 43) following extinction on day 1 demonstrated less US neural reactivation on day 2 relative to the placebo group (n = 28). CONCLUSION These results support neural reactivation as a measure of memory strength between competing memories of threat and safety and further demonstrate the role of dopaminergic neurotransmission in the consolidation of fear extinction memories.
Collapse
Affiliation(s)
- Josh M Cisler
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Institute for Early Life Adversity Research, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Joseph E Dunsmoor
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Institute for Early Life Adversity Research, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | | | - G Andrew James
- Brain Imaging Research Center, Department of Psychiatry, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
25
|
Kampa M, Stark R, Klucken T. The impact of extinction timing on pre-extinction arousal and subsequent return of fear. Learn Mem 2024; 31:a053902. [PMID: 38627067 PMCID: PMC11098463 DOI: 10.1101/lm.053902.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/07/2024] [Indexed: 04/19/2024]
Abstract
Exposure-based therapy is effective in treating anxiety, but a return of fear in the form of relapse is common. Exposure is based on the extinction of Pavlovian fear conditioning. Both animal and human studies point to increased arousal during immediate compared to delayed extinction (>+24 h), which presumably impairs extinction learning and increases the subsequent return of fear. Impaired extinction learning under arousal might interfere with psychotherapeutic interventions. The aim of the present study was to investigate whether arousal before extinction differs between extinction groups and whether arousal before extinction predicts the return of fear in a later (retention) test. As a highlight, both the time between fear acquisition and extinction (immediate vs. delayed) and the time between extinction and test (early vs. late test) were systematically varied. We performed follow-up analyses on data from 103 young, healthy participants to test the above hypotheses. Subjective arousal ratings and physiological arousal measures of sympathetic and hypothalamic pituitary adrenal axis activation (tonic skin conductance and salivary cortisol) were collected. Increased pre-extinction arousal in the immediate extinction group was only confirmed for subjective arousal. In linear regression analyses, none of the arousal measures predicted a significant return of fear in the different experimental groups. Only when we aggregated across the two test groups, tonic skin conductance at the onset of extinction predicted the return of fear in skin conductance responses. The overall results provide little evidence that pre-extinction arousal affects subsequent extinction learning and memory. In terms of clinical relevance, there is no clear evidence that exposure could be improved by reducing subjective or physiological arousal.
Collapse
Affiliation(s)
- Miriam Kampa
- Department of Clinical Psychology and Psychotherapy, University of Siegen, 57072 Siegen, Germany
- Bender Institute of Neuroimaging, Justus Liebig University, 35394 Giessen, Germany
| | - Rudolf Stark
- Bender Institute of Neuroimaging, Justus Liebig University, 35394 Giessen, Germany
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University, 35394 Giessen, Germany
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg, 35032 Marburg, Germany and Justus Liebig University, 35394 Giessen, Germany
| | - Tim Klucken
- Department of Clinical Psychology and Psychotherapy, University of Siegen, 57072 Siegen, Germany
| |
Collapse
|
26
|
Alonso-Lozares I, Wilbers P, Asperl L, Teijsse S, van der Neut C, Schetters D, van Mourik Y, McDonald AJ, Heistek T, Mansvelder HD, De Vries TJ, Marchant NJ. Lateral hypothalamic GABAergic neurons encode alcohol memories. Curr Biol 2024; 34:1086-1097.e6. [PMID: 38423016 DOI: 10.1016/j.cub.2024.01.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/02/2024] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
In alcohol use disorder, the alcohol memories persist during abstinence, and exposure to stimuli associated with alcohol use can lead to relapse. This highlights the importance of investigating the neural substrates underlying not only relapse but also encoding and expression of alcohol memories. GABAergic neurons in the lateral hypothalamus (LH-GABA) have been shown to be critical for food-cue memories and motivation; however, the extent to which this role extends to alcohol-cue memories and motivations remains unexplored. In this study, we aimed to describe how alcohol-related memories are encoded and expressed in LH GABAergic neurons. Our first step was to monitor LH-GABA calcium transients during acquisition, extinction, and reinstatement of an alcohol-cue memory using fiber photometry. We trained the rats on a Pavlovian conditioning task, where one conditioned stimulus (CS+) predicted alcohol (20% EtOH) and another conditioned stimulus (CS-) had no outcome. We then extinguished this association through non-reinforced presentations of the CS+ and CS- and finally, in two different groups, we measured relapse under non-primed and alcohol-primed induced reinstatement. Our results show that initially both cues caused increased LH-GABA activity, and after learning only the alcohol cue increased LH-GABA activity. After extinction, this activity decreases, and we found no differences in LH-GABA activity during reinstatement in either group. Next, we inhibited LH-GABA neurons with optogenetics to show that activity of these neurons is necessary for the formation of an alcohol-cue association. These findings suggest that LH-GABA might be involved in attentional processes modulated by learning.
Collapse
Affiliation(s)
- Isis Alonso-Lozares
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Pelle Wilbers
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Lina Asperl
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Sem Teijsse
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Charlotte van der Neut
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Dustin Schetters
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Yvar van Mourik
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Allison J McDonald
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Tim Heistek
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam 1081 HZ, the Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam 1081 HZ, the Netherlands
| | - Taco J De Vries
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Nathan J Marchant
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands.
| |
Collapse
|
27
|
Hulsman AM, van de Pavert I, Roelofs K, Klumpers F. Tackling Costly Fearful Avoidance Using Pavlovian Counterconditioning. Behav Ther 2024; 55:361-375. [PMID: 38418046 DOI: 10.1016/j.beth.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 03/01/2024]
Abstract
Avoidance behavior constitutes a major transdiagnostic symptom that exacerbates anxiety. It hampers fear extinction and predicts poor therapy-outcome. Pavlovian counterconditioning with a reward could alleviate avoidance better than traditional extinction by reducing negative valence of the feared situation. However, previous studies are scarce and did not consider that pathological avoidance is often costly and typically evolves from an approach-avoidance conflict. Therefore, we used an approach-avoidance conflict paradigm to model effects of counterconditioning on costly avoidance (i.e., avoidance that leads to missing out on rewards). Results from our preregistered Bayesian Mixed Model analyses in 51 healthy participants (43 females) indicated that counterconditioning was more effective in reducing negative valuation and decreasing costly avoidance than traditional extinction. This study supports application of a simple counterconditioning technique, shows that its efficacy transfers to more complex avoidance situations, and suggests treatment may benefit from increasing reward drive in combination with extinction to overcome avoidance. Application in a clinical sample is a necessary next step to assess clinical utility of counterconditioning.
Collapse
Affiliation(s)
- Anneloes M Hulsman
- Donders Centre for Cognitive Neuroimaging, Radboud University; Behavioural Science Institute, Radboud University
| | - Iris van de Pavert
- Donders Centre for Cognitive Neuroimaging, Radboud University; Behavioural Science Institute, Radboud University; KU Leuven
| | - Karin Roelofs
- Donders Centre for Cognitive Neuroimaging, Radboud University; Behavioural Science Institute, Radboud University
| | - Floris Klumpers
- Donders Centre for Cognitive Neuroimaging, Radboud University; Behavioural Science Institute, Radboud University.
| |
Collapse
|
28
|
Hamati R, Ahrens J, Shvetz C, Holahan MR, Tuominen L. 65 years of research on dopamine's role in classical fear conditioning and extinction: A systematic review. Eur J Neurosci 2024; 59:1099-1140. [PMID: 37848184 DOI: 10.1111/ejn.16157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023]
Abstract
Dopamine, a catecholamine neurotransmitter, has historically been associated with the encoding of reward, whereas its role in aversion has received less attention. Here, we systematically gathered the vast evidence of the role of dopamine in the simplest forms of aversive learning: classical fear conditioning and extinction. In the past, crude methods were used to augment or inhibit dopamine to study its relationship with fear conditioning and extinction. More advanced techniques such as conditional genetic, chemogenic and optogenetic approaches now provide causal evidence for dopamine's role in these learning processes. Dopamine neurons encode conditioned stimuli during fear conditioning and extinction and convey the signal via activation of D1-4 receptor sites particularly in the amygdala, prefrontal cortex and striatum. The coordinated activation of dopamine receptors allows for the continuous formation, consolidation, retrieval and updating of fear and extinction memory in a dynamic and reciprocal manner. Based on the reviewed literature, we conclude that dopamine is crucial for the encoding of classical fear conditioning and extinction and contributes in a way that is comparable to its role in encoding reward.
Collapse
Affiliation(s)
- Rami Hamati
- Neuroscience Graduate Program, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - Jessica Ahrens
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Cecelia Shvetz
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Matthew R Holahan
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Lauri Tuominen
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
- Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
29
|
Peyrot C, Provencher J, Duplessis Marcotte F, Cernik R, Marin MF. Using unconditioned responses to predict fear acquisition, fear extinction learning, and extinction retention patterns: Sex hormone status matters. Behav Brain Res 2024; 459:114802. [PMID: 38081517 DOI: 10.1016/j.bbr.2023.114802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Following a traumatic event, fear dysregulation can increase the likelihood of developing post-traumatic stress disorder (PTSD). This psychopathology is twice as prevalent in women than in men. High physiological reactivity following trauma may be an early risk indicator for the development of PTSD. Elevated physiological reactivity and low estradiol levels have individually been associated with higher fear acquisition and/or lower extinction retention. Thus, sex hormone status may also modulate fear regulation abilities. However, it is unknown whether these two vulnerability factors interact to modulate fear learning and regulation. Using a fear conditioning and extinction protocol, we examined whether physiological reactivity to the aversive stimulus during fear acquisition training predicted fear responses during fear learning, extinction learning, and extinction retention. We verified whether these associations differed according to sex hormone status. Seventy-seven non-clinical participants were recruited including oral contraceptive users (n = 18), early follicular women (n = 20, [low estradiol]), mid-cycle women (n = 20, [high estradiol]), and men (n = 19). Participants underwent a three-day fear conditioning and extinction protocol (day 1: fear acquisition training; day 2: extinction training; day 3: retention test). Skin conductance responses were recorded. In early follicular women, physiological reactivity predicted conditioned and extinguished stimulus fear responses during all phases. For the remaining women, this effect was only present during fear learning and extinction learning. These findings highlight the importance of considering physiological reactivity and sex hormone status following a traumatic event. This knowledge could aid in the early identification of those at higher risk of developing PTSD.
Collapse
Affiliation(s)
- Clémence Peyrot
- Research Centre, Institut universitaire en santé mentale de Montréal, 7331 Hochelaga Street, H1N 3J4 Montréal, Québec, Canada; Department of Psychiatry and Addiction, Université de Montréal, 2900 Édouard-Montpetit boulevard, Montréal, Québec H3T 1J4, Canada.
| | - Jessie Provencher
- Research Centre, Institut universitaire en santé mentale de Montréal, 7331 Hochelaga Street, H1N 3J4 Montréal, Québec, Canada; Department of Psychology, Université du Québec à Montréal, 100 Sherbrooke Street W, Montréal, Québec H2X 2P3, Canada.
| | - Félix Duplessis Marcotte
- Research Centre, Institut universitaire en santé mentale de Montréal, 7331 Hochelaga Street, H1N 3J4 Montréal, Québec, Canada; Department of Psychology, Université du Québec à Montréal, 100 Sherbrooke Street W, Montréal, Québec H2X 2P3, Canada.
| | - Rebecca Cernik
- Research Centre, Institut universitaire en santé mentale de Montréal, 7331 Hochelaga Street, H1N 3J4 Montréal, Québec, Canada; Department of Psychology, Université du Québec à Montréal, 100 Sherbrooke Street W, Montréal, Québec H2X 2P3, Canada.
| | - Marie-France Marin
- Research Centre, Institut universitaire en santé mentale de Montréal, 7331 Hochelaga Street, H1N 3J4 Montréal, Québec, Canada; Department of Psychiatry and Addiction, Université de Montréal, 2900 Édouard-Montpetit boulevard, Montréal, Québec H3T 1J4, Canada; Department of Psychology, Université du Québec à Montréal, 100 Sherbrooke Street W, Montréal, Québec H2X 2P3, Canada.
| |
Collapse
|
30
|
Lissek S, Tegenthoff M. Dissimilarities of neural representations of extinction trials are associated with extinction learning performance and renewal level. Front Behav Neurosci 2024; 18:1307825. [PMID: 38468709 PMCID: PMC10925752 DOI: 10.3389/fnbeh.2024.1307825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/13/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Renewal of extinguished responses is associated with higher activity in specific extinction-relevant brain regions, i.e., hippocampus (HC), inferior frontal gyrus (IFG), and ventromedial PFC (vmPFC). HC is involved in processing of context information, while IFG and vmPFC use such context information for selecting and deciding among competing response options. However, it is as yet unknown to what extent trials with changed versus unchanged outcome, or extinction trials that evoke renewal (i.e., extinction context differs from acquisition and test context: ABA trials) and trials that do not (i.e., same context in all phases: AAA trials) are represented differentially in extinction-relevant brain regions. Methods In this study, we applied representational similarity analysis (RSA) to determine differences in neural representations of these trial types and their relationship to extinction error rates and renewal level. Results Overall, individuals with renewal (REN) and those without (NoREN) did not differ significantly in their discrimination levels between ABA and AAA extinction trials, with the exception of right posterior HC, where REN exhibited more pronounced context-related discrimination. In addition, higher dissimilarity of representations in bilateral posterior HC, as well as in several IFG regions, during extinction learning was linked to lower ABA renewal rates. Both REN and NoREN benefitted from prediction error feedback from ABA extinction errors for context- and outcome-related discrimination of trials in IFG, vmPFC, and HC, but only the NoREN group also benefitted from error feedback from AAA extinction errors. Discussion Thus, while in both groups the presence of a novel context supported formation of distinct representations, only in NoREN the expectancy violation of the surprising change of outcome alone had a similar effect. In addition, only in NoREN context-related discrimination was linked to error feedback in vmPFC. In summary, the findings show that context- and outcome-related discrimination of trials in HC, vmPFC, and IFG is linked to extinction learning errors, regardless of renewal propensity, and at the same time point towards differential context processing strategies in REN and NoREN. Moreover, better discrimination of context-related trials during extinction learning promotes less renewal during extinction recall, suggesting that renewal may be related to suboptimal context-related trial discrimination.
Collapse
Affiliation(s)
- Silke Lissek
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Martin Tegenthoff
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
31
|
Nawrocik-Madrid A, AlTfaili H, Lamb RJ, Ginsburg BC. A rapid procedure to assess shifts in discriminative control over drinking during recovery-like behavior. Alcohol 2024; 121:87-93. [PMID: 38395371 DOI: 10.1016/j.alcohol.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/27/2023] [Accepted: 01/29/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Previously, we reported that recovery-like behavior decreases stimulus control over drinking, and this likely plays a role in the clinical observation that longer recovery increases relapse resistance. Those studies were conducted using a procedure that required repeated assessment, preventing a longitudinal analysis of the changes in stimulus control over time in each individual. Here we recapitulate those results and extend them to female rats using a more efficient procedure that allows repeated assessment of changes in stimulus control over drinking during recovery. METHODS Under a multiple concurrent schedule, rats were trained to reliably respond predominantly for ethanol (concurrent Ethanol FR5, Food FR150) in the presence of one stimulus and for food (concurrent Ethanol FR5, Food FR5) in the presence of another stimulus. Stimuli were either lights or tones, depending on the group. After that, a drinking phase in which only the stimulus occasioning ethanol responding was presented (10 or 20 sessions) followed by recovery-like sessions in which only the stimulus occasioning food responding was presented. During these sessions, rats were exposed to the ethanol stimulus under extinction during the first component on sessions 0, 1, 2, 4, 8, and 16. The number of food responses during these stimulus exposures prior to the first five ethanol responses was the primary measure. RESULTS Consistent with the earlier procedure, the number of food responses during ethanol tests increased as a function of the number of recovery sessions completed, regardless of whether the stimuli were visual or auditory. However, there were no significant effects of extended alcohol exposure or sex. CONCLUSIONS A rapid procedure consistent with the earlier procedure and clinical evidence was developed in which stimulus control over drinking decreased following longer periods of recovery. Under conditions tested, stimulus type, length of drinking history, and sex did not affect this relationship.
Collapse
Affiliation(s)
- Acacia Nawrocik-Madrid
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Hanana AlTfaili
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - R J Lamb
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Brett C Ginsburg
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States.
| |
Collapse
|
32
|
Ritger AC, Parker RK, Trask S, Ferrara NC. Elevated fear states facilitate ventral hippocampal engagement of basolateral amygdala neuronal activity. Front Behav Neurosci 2024; 18:1347525. [PMID: 38420349 PMCID: PMC10899678 DOI: 10.3389/fnbeh.2024.1347525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Fear memory formation and retention rely on the activation of distributed neural circuits. The basolateral amygdala (BLA) and ventral hippocampus (VH) in particular are two regions that support contextual fear memory processes and share reciprocal connections. The VH → BLA pathway is critical for increases in fear after initial learning, in both fear renewal following extinction learning and during fear generalization. This raises the possibility that functional changes in VH projections to the BLA support increases in learned fear. In line with this, fear can also be increased with alterations to the original content of the memory via reconsolidation, as in fear elevation procedures. However, very little is known about the functional changes in the VH → BLA pathway supporting reconsolidation-related increases in fear. In this study, we used in vivo extracellular electrophysiology to examine the functional neuronal changes within the BLA and in the VH → BLA pathway as a result of fear elevation and standard fear retrieval procedures. Elevated fear expression was accompanied by higher BLA spontaneous firing compared to a standard fear retrieval condition. Across a range of stimulation frequencies, we also found that VH stimulation evoked higher BLA firing following fear elevation compared to standard retrieval. These results suggest that fear elevation is associated with an increased capacity of the VH to drive neuronal activity in the BLA, highlighting a potential circuit involved in strengthening existing fear memories.
Collapse
Affiliation(s)
- Alexandra C. Ritger
- Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Rachel K. Parker
- Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Sydney Trask
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
| | - Nicole C. Ferrara
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
33
|
Merlo SA, Belluscio MA, Pedreira ME, Merlo E. Memory persistence: from fundamental mechanisms to translational opportunities. Transl Psychiatry 2024; 14:98. [PMID: 38355584 PMCID: PMC10867010 DOI: 10.1038/s41398-024-02808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/05/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
Memory persistence is a double edge sword. Persistence of adaptive memories is essential for survival and even determines who we are. Neurodegenerative conditions with significant memory loss such as Alzheimer's disease, testify how defects of memory persistence have severe and irreversible effects on personality, among other symptoms. Yet, maintenance of overly strong maladaptive memories underlies highly debilitating psychiatric conditions including post-traumatic stress disorder, specific phobia, substance dependence and binge eating disorder. Here we review the neurobiological mechanisms supporting memory formation, persistence, inhibition and forgetting. We then shift the focus to how such mechanisms have been exploited to alter the persistence of laboratory-generated memories in human healthy volunteers as a proof of concept. Finally, we review the effect of behavioural and pharmacological interventions in anxiety and addiction disorder patients, highlighting key findings, gaps, and future directions for basic and translational research.
Collapse
Affiliation(s)
- Santiago Abel Merlo
- Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología y Biofísica Bernardo Houssay, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio Bases Neuronales del Comportamiento, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariano Andrés Belluscio
- Instituto de Fisiología y Biofísica Bernardo Houssay, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio Bases Neuronales del Comportamiento, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria Eugenia Pedreira
- Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
34
|
Plas SL, Tuna T, Bayer H, Juliano VAL, Sweck SO, Arellano Perez AD, Hassell JE, Maren S. Neural circuits for the adaptive regulation of fear and extinction memory. Front Behav Neurosci 2024; 18:1352797. [PMID: 38370858 PMCID: PMC10869525 DOI: 10.3389/fnbeh.2024.1352797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
The regulation of fear memories is critical for adaptive behaviors and dysregulation of these processes is implicated in trauma- and stress-related disorders. Treatments for these disorders include pharmacological interventions as well as exposure-based therapies, which rely upon extinction learning. Considerable attention has been directed toward elucidating the neural mechanisms underlying fear and extinction learning. In this review, we will discuss historic discoveries and emerging evidence on the neural mechanisms of the adaptive regulation of fear and extinction memories. We will focus on neural circuits regulating the acquisition and extinction of Pavlovian fear conditioning in rodent models, particularly the role of the medial prefrontal cortex and hippocampus in the contextual control of extinguished fear memories. We will also consider new work revealing an important role for the thalamic nucleus reuniens in the modulation of prefrontal-hippocampal interactions in extinction learning and memory. Finally, we will explore the effects of stress on this circuit and the clinical implications of these findings.
Collapse
Affiliation(s)
- Samantha L. Plas
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
- Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Tuğçe Tuna
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
- Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Hugo Bayer
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
- Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Vitor A. L. Juliano
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Samantha O. Sweck
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
- Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Angel D. Arellano Perez
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - James E. Hassell
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Stephen Maren
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
- Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
35
|
Shen MJ, Prigerson HG, Maciejewski PK, Daly B, Adelman R, McConnell Trevino KM. A communication intervention to improve prognostic understanding and engagement in advance care planning among diverse advanced cancer patient-caregiver dyads: A pilot study. Palliat Support Care 2024; 22:10-18. [PMID: 37526150 PMCID: PMC10901460 DOI: 10.1017/s1478951523000901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
OBJECTIVES Accurate prognostic understanding among patients with advanced cancer and their caregivers is associated with greater engagement in advance care planning (ACP) and receipt of goal-concordant care. Poor prognostic understanding is more prevalent among racial and ethnic minority patients. The purpose of this study was to examine the feasibility, acceptability, and impact of a patient-caregiver communication-based intervention to improve prognostic understanding, engagement in ACP, and completion of advance directives among a racially and ethnically diverse, urban sample of patients and their caregivers. METHODS Patients with advanced cancer and their caregivers (n = 22 dyads) completed assessments of prognostic understanding, engagement in ACP, and completion of advance directives at baseline and post-intervention, Talking About Cancer (TAC). TAC is a 7-session intervention delivered remotely by licensed social workers that includes distress management and communication skills, review of prognosis, and information on ACP. RESULTS TAC met a priori benchmarks for feasibility, acceptability, and fidelity. Prognostic understanding and engagement in ACP did not change over time. However, patients showed increases in completion of advance directives. SIGNIFICANCE OF RESULTS TAC was feasible, acceptable, and delivered with high fidelity. Involvement of caregivers in TAC may provide added layers of support to patients facing advanced cancer diagnoses, especially among racial and ethnic minorities. Trends indicated greater completion of advance directives but not in prognostic understanding or engagement in ACP. Future research is needed to optimize the intervention to improve acceptability, tailor to diverse patient populations, and examine the efficacy of TAC in a randomized controlled trial.
Collapse
Affiliation(s)
- Megan J Shen
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Holly G Prigerson
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Paul K Maciejewski
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Bobby Daly
- Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronald Adelman
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Kelly M McConnell Trevino
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
36
|
Cisler JM, Dunsmoor JE, Fonzo GA, Nemeroff CB. Latent-state and model-based learning in PTSD. Trends Neurosci 2024; 47:150-162. [PMID: 38212163 PMCID: PMC10923154 DOI: 10.1016/j.tins.2023.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
Post-traumatic stress disorder (PTSD) is characterized by altered emotional and behavioral responding following a traumatic event. In this article, we review the concepts of latent-state and model-based learning (i.e., learning and inferring abstract task representations) and discuss their relevance for clinical and neuroscience models of PTSD. Recent data demonstrate evidence for brain and behavioral biases in these learning processes in PTSD. These new data potentially recast excessive fear towards trauma cues as a problem in learning and updating abstract task representations, as opposed to traditional conceptualizations focused on stimulus-specific learning. Biases in latent-state and model-based learning may also be a common mechanism targeted in common therapies for PTSD. We highlight key knowledge gaps that need to be addressed to further elaborate how latent-state learning and its associated neurocircuitry mechanisms function in PTSD and how to optimize treatments to target these processes.
Collapse
Affiliation(s)
- Josh M Cisler
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin, Austin, TX, USA; Institute for Early Life Adversity Research, University of Texas at Austin, Austin, TX, USA.
| | - Joseph E Dunsmoor
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin, Austin, TX, USA; Institute for Early Life Adversity Research, University of Texas at Austin, Austin, TX, USA
| | - Gregory A Fonzo
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin, Austin, TX, USA; Institute for Early Life Adversity Research, University of Texas at Austin, Austin, TX, USA
| | - Charles B Nemeroff
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin, Austin, TX, USA; Institute for Early Life Adversity Research, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
37
|
Jürgensen AM, Sakagiannis P, Schleyer M, Gerber B, Nawrot MP. Prediction error drives associative learning and conditioned behavior in a spiking model of Drosophila larva. iScience 2024; 27:108640. [PMID: 38292165 PMCID: PMC10824792 DOI: 10.1016/j.isci.2023.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 11/10/2023] [Accepted: 12/01/2023] [Indexed: 02/01/2024] Open
Abstract
Predicting reinforcement from sensory cues is beneficial for goal-directed behavior. In insect brains, underlying associations between cues and reinforcement, encoded by dopaminergic neurons, are formed in the mushroom body. We propose a spiking model of the Drosophila larva mushroom body. It includes a feedback motif conveying learned reinforcement expectation to dopaminergic neurons, which can compute prediction error as the difference between expected and present reinforcement. We demonstrate that this can serve as a driving force in learning. When combined with synaptic homeostasis, our model accounts for theoretically derived features of acquisition and loss of associations that depend on the intensity of the reinforcement and its temporal proximity to the cue. From modeling olfactory learning over the time course of behavioral experiments and simulating the locomotion of individual larvae toward or away from odor sources in a virtual environment, we conclude that learning driven by prediction errors can explain larval behavior.
Collapse
Affiliation(s)
- Anna-Maria Jürgensen
- Computational Systems Neuroscience, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | - Panagiotis Sakagiannis
- Computational Systems Neuroscience, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | - Michael Schleyer
- Leibniz Institute for Neurobiology (LIN), Department of Genetics, 39118 Magdeburg, Germany
- Institute for the Advancement of Higher Education, Faculty of Science, Hokkaido University, Sapporo 060-08080, Japan
| | - Bertram Gerber
- Leibniz Institute for Neurobiology (LIN), Department of Genetics, 39118 Magdeburg, Germany
- Institute for Biology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Brain and Behavioral Sciences (CBBS), Otto-von-Guericke University, 39118 Magdeburg, Germany
| | - Martin Paul Nawrot
- Computational Systems Neuroscience, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
38
|
Clarke-Williams CJ, Lopes-Dos-Santos V, Lefèvre L, Brizee D, Causse AA, Rothaermel R, Hartwich K, Perestenko PV, Toth R, McNamara CG, Sharott A, Dupret D. Coordinating brain-distributed network activities in memory resistant to extinction. Cell 2024; 187:409-427.e19. [PMID: 38242086 PMCID: PMC7615560 DOI: 10.1016/j.cell.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/13/2023] [Accepted: 12/13/2023] [Indexed: 01/21/2024]
Abstract
Certain memories resist extinction to continue invigorating maladaptive actions. The robustness of these memories could depend on their widely distributed implementation across populations of neurons in multiple brain regions. However, how dispersed neuronal activities are collectively organized to underpin a persistent memory-guided behavior remains unknown. To investigate this, we simultaneously monitored the prefrontal cortex, nucleus accumbens, amygdala, hippocampus, and ventral tegmental area (VTA) of the mouse brain from initial recall to post-extinction renewal of a memory involving cocaine experience. We uncover a higher-order pattern of short-lived beta-frequency (15-25 Hz) activities that are transiently coordinated across these networks during memory retrieval. The output of a divergent pathway from upstream VTA glutamatergic neurons, paced by a slower (4-Hz) oscillation, actuates this multi-network beta-band coactivation; its closed-loop phase-informed suppression prevents renewal of cocaine-biased behavior. Binding brain-distributed neural activities in this temporally structured manner may constitute an organizational principle of robust memory expression.
Collapse
Affiliation(s)
- Charlie J Clarke-Williams
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK.
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Laura Lefèvre
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Demi Brizee
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Adrien A Causse
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Roman Rothaermel
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Katja Hartwich
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Pavel V Perestenko
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Robert Toth
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Colin G McNamara
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Andrew Sharott
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK.
| |
Collapse
|
39
|
Battaglia S, Di Fazio C, Mazzà M, Tamietto M, Avenanti A. Targeting Human Glucocorticoid Receptors in Fear Learning: A Multiscale Integrated Approach to Study Functional Connectivity. Int J Mol Sci 2024; 25:864. [PMID: 38255937 PMCID: PMC10815285 DOI: 10.3390/ijms25020864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Fear extinction is a phenomenon that involves a gradual reduction in conditioned fear responses through repeated exposure to fear-inducing cues. Functional brain connectivity assessments, such as functional magnetic resonance imaging (fMRI), provide valuable insights into how brain regions communicate during these processes. Stress, a ubiquitous aspect of life, influences fear learning and extinction by changing the activity of the amygdala, prefrontal cortex, and hippocampus, leading to enhanced fear responses and/or impaired extinction. Glucocorticoid receptors (GRs) are key to the stress response and show a dual function in fear regulation: while they enhance the consolidation of fear memories, they also facilitate extinction. Accordingly, GR dysregulation is associated with anxiety and mood disorders. Recent advancements in cognitive neuroscience underscore the need for a comprehensive understanding that integrates perspectives from the molecular, cellular, and systems levels. In particular, neuropharmacology provides valuable insights into neurotransmitter and receptor systems, aiding the investigation of mechanisms underlying fear regulation and potential therapeutic targets. A notable player in this context is cortisol, a key stress hormone, which significantly influences both fear memory reconsolidation and extinction processes. Gaining a thorough understanding of these intricate interactions has implications in terms of addressing psychiatric disorders related to stress. This review sheds light on the complex interactions between cognitive processes, emotions, and their neural bases. In this endeavor, our aim is to reshape the comprehension of fear, stress, and their implications for emotional well-being, ultimately aiding in the development of therapeutic interventions.
Collapse
Affiliation(s)
- Simone Battaglia
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology “Renzo Canestrari”, Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Chiara Di Fazio
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology “Renzo Canestrari”, Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Matteo Mazzà
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology “Renzo Canestrari”, Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
| | - Marco Tamietto
- Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Alessio Avenanti
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology “Renzo Canestrari”, Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Neuropsicology and Cognitive Neuroscience Research Center (CINPSI Neurocog), Universidad Católica del Maule, Talca 3460000, Chile
| |
Collapse
|
40
|
Jürgensen AM, Schmitt FJ, Nawrot MP. Minimal circuit motifs for second-order conditioning in the insect mushroom body. Front Physiol 2024; 14:1326307. [PMID: 38269060 PMCID: PMC10806035 DOI: 10.3389/fphys.2023.1326307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024] Open
Abstract
In well-established first-order conditioning experiments, the concurrence of a sensory cue with reinforcement forms an association, allowing the cue to predict future reinforcement. In the insect mushroom body, a brain region central to learning and memory, such associations are encoded in the synapses between its intrinsic and output neurons. This process is mediated by the activity of dopaminergic neurons that encode reinforcement signals. In second-order conditioning, a new sensory cue is paired with an already established one that presumably activates dopaminergic neurons due to its predictive power of the reinforcement. We explored minimal circuit motifs in the mushroom body for their ability to support second-order conditioning using mechanistic models. We found that dopaminergic neurons can either be activated directly by the mushroom body's intrinsic neurons or via feedback from the output neurons via several pathways. We demonstrated that the circuit motifs differ in their computational efficiency and robustness. Beyond previous research, we suggest an additional motif that relies on feedforward input of the mushroom body intrinsic neurons to dopaminergic neurons as a promising candidate for experimental evaluation. It differentiates well between trained and novel stimuli, demonstrating robust performance across a range of model parameters.
Collapse
Affiliation(s)
- Anna-Maria Jürgensen
- Computational Systems Neuroscience, Institute of Zoology, University of Cologne, Cologne, Germany
| | | | | |
Collapse
|
41
|
Briggs JF, McMullen KM. Retrograde amnesia for the stress-induced impairment of extinction: time-dependent and not so forgotten. Learn Mem 2024; 31:a053895. [PMID: 38286522 PMCID: PMC10903941 DOI: 10.1101/lm.053895.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/05/2023] [Indexed: 01/31/2024]
Abstract
We investigated whether retrograde amnesia for the stress-induced impairment of extinction retrieval shares similar characteristics with original acquisition memories. The first experiment demonstrated that cycloheximide administered shortly after a single restraint stress session alleviated the impairment of extinction retrieval but not when administered following a longer delay (i.e., the amnesia for stress is time-dependent). A second experiment showed that the retrograde amnesia for stress could be alleviated by a second brief exposure to the stressor. These results demonstrating that amnesia for stress shares characteristics similar to original memories are explained using a retrieval-based memory integration model of retrograde amnesia.
Collapse
Affiliation(s)
- James F Briggs
- Department of Psychology, Susquehanna University, Selinsgrove, Pennsylvania 17870, USA
| | - Kaitlyn M McMullen
- Department of Psychology, Susquehanna University, Selinsgrove, Pennsylvania 17870, USA
| |
Collapse
|
42
|
Fujimaki S, Hu T, Kosaki Y. Resurgence of goal-directed actions and habits. J Exp Anal Behav 2024; 121:97-107. [PMID: 37710380 DOI: 10.1002/jeab.884] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/25/2023] [Indexed: 09/16/2023]
Abstract
This study investigated how goal-directed and habitual behaviors recover after extinction within the context of the resurgence effect, a form of relapse induced by the removal or worsening of alternative reinforcement. Rats were trained to press a target lever with one reinforcer (O1) for either minimal (4) or extended (16) sessions. An extinction test after the completion of O1 devaluation confirmed that minimal and extended training formed goal-directed and habitual behaviors, respectively. Then, pressing an alternative lever was reinforced with a second reinforcer (O2) while the target response was placed on extinction. When O2 was discontinued, the minimally trained target response resurged with goal-directed status as in the extinction test. However, the extinguished habitual behavior in the extensively trained rats did not recover as a habit but instead with goal-directed status, possibly due to the context specificity of habits or the introduction of a new response-reinforcer contingency. The critical finding that reinforcer devaluation consistently led to less resurgence regardless of the amount of acquisition training provides a clinical implication that coupling differential-reinforcement-of-alternative-behavior (DRA) treatments with the devaluation of the associated reinforcer of problematic behavior could effectively diminish its recurrence.
Collapse
Affiliation(s)
| | - Ting Hu
- Waseda University, Tokyo, Japan
| | | |
Collapse
|
43
|
Ortega-de San Luis C, Pezzoli M, Urrieta E, Ryan TJ. Engram cell connectivity as a mechanism for information encoding and memory function. Curr Biol 2023; 33:5368-5380.e5. [PMID: 37992719 DOI: 10.1016/j.cub.2023.10.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/18/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023]
Abstract
Information derived from experiences is incorporated into the brain as changes to ensembles of cells, termed engram cells, which allow memory storage and recall. The mechanism by which those changes hold specific information is unclear. Here, we test the hypothesis that the specific synaptic wiring between engram cells is the substrate of information storage. First, we monitor how learning modifies the connectivity pattern between engram cells at a monosynaptic connection involving the hippocampal ventral CA1 (vCA1) region and the amygdala. Then, we assess the functional significance of these connectivity changes by artificially activating or inhibiting its presynaptic and postsynaptic components, respectively. Finally, we identify a synaptic plasticity mechanism mediated by postsynaptic density protein 95 (PSD-95), which impacts the connectivity pattern among engram cells and contributes to the long-term stability of the memory. These findings impact our theory of learning and memory by helping us explain the translation of specific information into engram cells and how these connections shape brain function.
Collapse
Affiliation(s)
- Clara Ortega-de San Luis
- School of Biochemistry and Immunology, Trinity College of Dublin, Dublin D02 PN40, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Maurizio Pezzoli
- School of Biochemistry and Immunology, Trinity College of Dublin, Dublin D02 PN40, Ireland; Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Esteban Urrieta
- School of Biochemistry and Immunology, Trinity College of Dublin, Dublin D02 PN40, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Tomás J Ryan
- School of Biochemistry and Immunology, Trinity College of Dublin, Dublin D02 PN40, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin D02 PN40, Ireland; Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC 3052, Australia; Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
44
|
Radiske A, de Castro CM, Rossato JI, Gonzalez MC, Cammarota M. Hippocampal CaMKII inhibition induces reactivation-dependent amnesia for extinction memory and causes fear relapse. Sci Rep 2023; 13:21712. [PMID: 38066022 PMCID: PMC10709345 DOI: 10.1038/s41598-023-48454-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Hippocampal GluN2B subunit-containing NMDAR (GluN2B-NMDAR) activation during recall destabilizes fear extinction memory, which must undergo brain-derived neurotrophic factor (BDNF)-dependent reconsolidation to persist. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a Ser/Thr protein kinase essential for hippocampus-dependent memory processing that acts downstream GluN2B-NMDAR and controls BDNF expression, but its participation in fear extinction memory reconsolidation has not yet been studied. Using a combination of pharmacological and behavioral tools, we found that in adult male Wistar rats, intra dorsal-CA1 administration of the CaMKII inhibitors autocamtide-2-related inhibitory peptide (AIP) and KN-93, but not of their inactive analogs scrambled AIP and KN-92, after fear extinction memory recall impaired extinction and caused GluN2B-NMDAR-dependent recovery of fear. Our results indicate that hippocampal CaMKII is necessary for fear extinction reconsolidation, and suggest that modulation of its activity around the time of recall controls the inhibition that extinction exerts on learned fear.
Collapse
Affiliation(s)
- Andressa Radiske
- Memory Research Laboratory - Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Edmond and Lily Safra International Institute of Neuroscience, Macaiba, RN, Brazil
- Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Carla Miranda de Castro
- Memory Research Laboratory - Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Janine I Rossato
- Memory Research Laboratory - Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Maria Carolina Gonzalez
- Memory Research Laboratory - Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Edmond and Lily Safra International Institute of Neuroscience, Macaiba, RN, Brazil
| | - Martín Cammarota
- Memory Research Laboratory - Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
45
|
Brown A, Martins M, Richard I, Chaudhri N. Context-induced renewal of passive but not active coping behaviours in the shock-probe defensive burying task. Learn Behav 2023; 51:468-481. [PMID: 37095421 DOI: 10.3758/s13420-023-00583-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
Renewal is the return of extinguished responding after removal from the extinction context. Renewal has been extensively studied using classical aversive conditioning procedures that measure a passive freezing response to an aversive conditioned stimulus. However, coping responses to aversive stimuli are complex and can be reflected in passive and active behaviours. Using the shock-probe defensive burying task, we investigated whether different coping responses are susceptible to renewal. During conditioning, male, Long-Evans rats were placed into a specific context (Context A) where an electrified shock-probe delivered a 3 mA shock upon contact. During extinction, the shock-probe was unarmed in either the same (Context A) or a different context (Context B). Renewal of conditioned responses was assessed in the conditioning context (ABA) or in a novel context (ABC or AAB). Renewal of passive coping responses, indicated by an increased latency and a decreased duration of shock-probe contacts, was observed in all groups. However, renewal of passive coping, measured by increased time spent on the side of the chamber opposite the shock-probe, was only found in the ABA group. Renewal of active coping responses linked to defensive burying was not observed in any group. The present findings highlight the presence of multiple psychological processes underlying even basic forms of aversive conditioning and demonstrate the importance of assessing a broader set of behaviours to tease apart these different underlying mechanisms. The current findings suggest that passive coping responses may be more reliable indicators for assessing renewal than active coping behaviours associated with defensive burying.
Collapse
Affiliation(s)
- Alexa Brown
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B-1R6, Canada.
| | - Melissa Martins
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B-1R6, Canada
| | - Isabelle Richard
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B-1R6, Canada
| | - Nadia Chaudhri
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B-1R6, Canada
| |
Collapse
|
46
|
Kirchner L, Kube T, D'Astolfo L, Strahler J, Herbstreit R, Rief W. How to modify expectations of social rejection? An experimental study using a false-feedback paradigm. J Behav Ther Exp Psychiatry 2023; 81:101859. [PMID: 37182428 DOI: 10.1016/j.jbtep.2023.101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 01/16/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND OBJECTIVES Negative expectations (NEs) are fundamental to various mental disorders. Finding ways to modulate NEs would help to improve clinical treatment. The present study investigated how previously formed expectations of social rejection are revised in the context of novel positive social experiences, and whether their revision can be modulated by differentially shifting participants' attentional focus. METHODS Our sample of 124 healthy participants was randomly assigned to four experimental conditions and received manipulated social feedback in multiple alleged webcam conferences. All groups went through three experimental phases that began with predominantly negative social feedback, then either transitioned to predominantly positive social feedback or continued to predominantly negative social feedback, and ultimately transitioning to a phase with no explicit social feedback. The experimental conditions differed in what they were instructed to focus on when receiving positive social feedback. RESULTS Receiving novel positive social feedback led to substantial changes in social expectations, but this effect was not modulated by the instructions the participants were given. Descriptive trends revealed that both instructions improved NE modification, although this effect was not robust to extinction in one condition. LIMITATIONS To prevent our cover story from being compromised, we could not perform an immediate manipulation check of the instructions given. Nevertheless, some of the sample seemed suspicious about the cover story. CONCLUSION Our results suggest that established expectations of social rejection can be revised when unexpectedly experiencing social acceptance. Nevertheless, more research is needed on potential instructions that could be used to optimize the modification of NEs.
Collapse
Affiliation(s)
- Lukas Kirchner
- Philipps-University of Marburg, Gutenbergstraße 18, 35032, Marburg, Germany.
| | - Tobias Kube
- University of Koblenz-Landau, Ostbahnstraße 10, 76829, Landau, Germany
| | - Lisa D'Astolfo
- Philipps-University of Marburg, Gutenbergstraße 18, 35032, Marburg, Germany
| | - Jana Strahler
- Albert-Ludwigs-University of Freiburg, Sandfangweg 4, 79102, Freiburg, Germany
| | - René Herbstreit
- Philipps-University of Marburg, Gutenbergstraße 18, 35032, Marburg, Germany
| | - Winfried Rief
- Philipps-University of Marburg, Gutenbergstraße 18, 35032, Marburg, Germany
| |
Collapse
|
47
|
González VV, Blaisdell AP. Inhibition and paradoxical choice. Learn Behav 2023; 51:458-467. [PMID: 37145372 PMCID: PMC10716068 DOI: 10.3758/s13420-023-00584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/06/2023]
Abstract
The present study evaluated the role of inhibition in paradoxical choice in pigeons. In a paradoxical choice procedure, pigeons receive a choice between two alternatives. Choosing the "suboptimal" alternative is followed 20% of the time by one cue (the S+) that is always reinforced, and 80% of the time by another cue (S-) that is never reinforced. Thus, this alternative leads to an overall reinforcement rate of 20%. Choosing the "optimal" alternative, however, is followed by one of two cues (S3 or S4), each reinforced 50% of the time. Thus, this alternative leads to an overall reinforcement rate of 50%. González and Blaisdell (2021) reported that development of paradoxical choice was positively correlated to the development of inhibition to the S- (signal that no food will be delivered on that trial) post-choice stimulus. The current experiment tested the hypothesis that inhibition to a post-choice stimulus is causally related to suboptimal preference. Following acquisition of suboptimal preference, pigeons received two manipulations: in one condition one of the cues in the optimal alternative (S4) was extinguished and, in another condition, the S- cue was partially reinforced. When tested on the choice task afterward, both manipulations resulted in a decrement in suboptimal preference. This result is paradoxical given that both manipulations made the suboptimal alternative the richer option. We discuss the implications of our results, arguing that inhibition of a post-choice cue increases attraction to or value of that choice.
Collapse
Affiliation(s)
- Valeria V González
- Department of Psychology, University of California, 1285 Franz Hall, Los Angeles, CA, 90095-1563, USA.
| | - Aaron P Blaisdell
- Department of Psychology, University of California, 1285 Franz Hall, Los Angeles, CA, 90095-1563, USA
| |
Collapse
|
48
|
Jentsch VL, Wolf OT, Otto T, Merz CJ. The impact of physical exercise on the consolidation of fear extinction memories. Psychophysiology 2023; 60:e14373. [PMID: 37350416 DOI: 10.1111/psyp.14373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/11/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
Based on the mechanisms of fear extinction, exposure therapy is the most common treatment for anxiety disorders. However, extinguished fear responses can reemerge even after successful treatment. Novel interventions enhancing exposure therapy efficacy are therefore critically needed. Physical exercise improves learning and memory and was also shown to enhance extinction processes. This study tested whether physical exercise following fear extinction training improves the consolidation of extinction memories. Sixty healthy men underwent a differential fearconditioning paradigm with fear acquisition training on day 1 and fear extinction training followed by an exercise or resting control intervention on day 2. On day 3, retrieval and reinstatement were tested including two additional but perceptually similar stimuli to explore the generalization of exercise effects. Exercise significantly increased heart rate, salivary alpha amylase, and cortisol, indicating successful exercise manipulation. Contrary to our expectations, exercise did not enhance but rather impaired extinction memory retrieval on the next day, evidenced by significantly stronger differential skin conductance responses (SCRs) and pupil dilation (PD). Importantly, although conditioned fear responses were successfully acquired, they did not fully extinguish, explaining why exercise might have boosted the consolidation of the original fear memory trace instead. Additionally, stronger differential SCRs and PD toward the novel stimuli suggest that the memory enhancing effects of exercise also generalized to perceptually similar stimuli. Together, these findings indicate that physical exercise can facilitate both the long-term retrievability and generalization of extinction memories, but presumably only when extinction was successful in the first place.
Collapse
Affiliation(s)
- Valerie L Jentsch
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Oliver T Wolf
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Tobias Otto
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Christian J Merz
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
49
|
Nostadt A, Merz CJ, Wolf OT, Tegenthoff M, Lissek S. Cortisol decreases activation in extinction related brain areas resulting in an impaired recall of context-dependent extinction memory. Neurobiol Learn Mem 2023; 205:107844. [PMID: 37866754 DOI: 10.1016/j.nlm.2023.107844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 08/08/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
Conditioned responding gradually stops during successful extinction learning. The renewal effect is defined as the recovery of a extinguished conditioned response when the context of extinction is different from acquisition. The stress hormone cortisol is known to have an influence on extinction memory and associative learning. Different effects of cortisol on behaviour and brain activity have been observed with respect to stress timing, duration, and intensity. However, the influence of cortisol prior to the initial encoding of stimulus-outcome associations on extinction learning, renewal and its behavioural and neurobiological correlates is still largely unknown. In our study, 60 human participants received 20 mg cortisol or placebo and then learned, extinguished, and recalled the associations between food stimuli presented in distinct contexts and different outcomes in three subsequent task phases. Learning performance during acquisition and extinction phases was equally good for both treatment groups. In the cortisol group, significantly more participants showed renewal compared to placebo. In the subgroup of participants with renewal, cortisol treated participants showed significantly better extinction learning performance compared to placebo. Participants showing renewal had in general difficulties with recalling extinction memory, but in contrast to placebo, the cortisol group exhibited a context-dependent impairment of extinction memory recall. Imaging analyses revealed that cortisol decreased activation in the hippocampus during acquisition. The cortisol group also showed reduced dorsolateral prefrontal cortex activation when extinction learning took place in a different context, but enhanced activation in inferior frontal gyrus during extinction learning without context change. During recall, cortisol decreased ventromedial prefrontal cortex activation. Taken together, our findings illustrate cortisol as a potent modulator of extinction learning and recall of extinction memory which also promotes renewal.
Collapse
Affiliation(s)
- Alina Nostadt
- BG University Hospital Bergmannsheil, Department of Neurology, Ruhr University Bochum, Germany.
| | - Christian J Merz
- Department of Cognitive Psychology, Faculty of Psychology, Ruhr University Bochum, Germany
| | - Oliver T Wolf
- Department of Cognitive Psychology, Faculty of Psychology, Ruhr University Bochum, Germany
| | - Martin Tegenthoff
- BG University Hospital Bergmannsheil, Department of Neurology, Ruhr University Bochum, Germany
| | - Silke Lissek
- BG University Hospital Bergmannsheil, Department of Neurology, Ruhr University Bochum, Germany
| |
Collapse
|
50
|
Lam CLM, Barry TJ, Yiend J, Lee TMC. The role of consciousness in threat extinction learning. Conscious Cogn 2023; 116:103599. [PMID: 37976781 DOI: 10.1016/j.concog.2023.103599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
Extinction learning is regarded as a core mechanism underlying exposure therapy. The extent to which learned threats can be extinguished without conscious awareness is a controversial and on-going debate. We investigated whether implicit vs. explicit exposure to a threatened stimulus can modulate defence responses measured using pupillometry. Healthy participants underwent a threat conditioning paradigm in which one of the conditioned stimuli (CS) was perceptually suppressed using continuous flash suppression (CFS). Participants' pupillary responses, CS pleasantness ratings, and trial-by-trial awareness of the CS were recorded. During Extinction, participants' pupils dilated more in the trials in which they were unaware of the CS than in those in which they were aware of it (Cohen's d = 0.57). After reinstatement, the percentage of fear recovery was greater for the CFS-suppressed CS than the CS with full awareness. The current study suggests that the modulation of fear responses by extinction with reduced visual awareness is weaker compared to extinction with full perceptual awareness.
Collapse
Affiliation(s)
- Charlene L M Lam
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong; Laboratory of Clinical Psychology and Affective Neuroscience, The University of Hong Kong, Hong Kong.
| | - Tom J Barry
- Department of Psychology, University of Bath, UK
| | - Jenny Yiend
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Tatia M C Lee
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong; Laboratory of Clinical Psychology and Affective Neuroscience, The University of Hong Kong, Hong Kong; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Hong Kong
| |
Collapse
|