1
|
Nawaz H, Akgün İ, Şenyiğit U. Effect of deficit irrigation combined with Bacillus simplex on water use efficiency and growth parameters of maize during vegetative stage. BMC PLANT BIOLOGY 2024; 24:135. [PMID: 38403579 PMCID: PMC10895846 DOI: 10.1186/s12870-024-04772-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/27/2024] [Indexed: 02/27/2024]
Abstract
The production of crops depending on many factors including water, nutrient, soil types, climate and crops types, water stress and drought is in one of the important factors affecting crop productivity. The experiment was conducted in pots to evaluate the effect of biofertilizers (Bacillus simplex) with deficit irrigations on the early development and growth of maize crop under greenhouse condition. Pre sowing seed was inoculated with strain of bacteria (B+/B-) and different irrigation levels (no stress: 100% (I1) and deficit irrigation: 75 (I2), 50 (I3), 25 (I4) % of required water amount to reach pot capacity) was performed. Data was collected on different morphological characteristics and root characteristic of maize crop. Highest plant height (125 cm), stem diameter (18.02 mm), leaf area (350 cm- 2), plant weight (180.42 g in fresh, 73.58 g in dry), root length (92.83 cm) root ((91.70 g in fresh, (28.66 g in dry) weight were recorded in pots applied with 100% irrigation followed by 75%. Bacillus treated plants showed significant increase in leaf area (214.20 cm- 2), plant fresh weight (91.65 g) and dry weight (42.05 g), root length (79.20 cm), root fresh (53.52 g) and dry weight (16.70 g) compared with control (without bacteria). Likewise highest relative water content of leaf was observed with I3 followed by I2 and I1 respectively. Highest water use efficiency was recorded as 0.67 g pot- 1 mm- 1 in I1 with B + treatment. Likewise, Bacillus inoculated pots resulted in increased water use efficiency (0.44 g pot- 1 mm- 1) compared with no application (0.36 g pot- 1 mm- 1). It can be endorsed from the outcome that Bacillus inoculation increased plant biomass, root biomass of maize and water use efficiency during early growth stage of maize despite of water stress and can be used under limited water condition for crop combating during moderate to lower stress conditions.
Collapse
Affiliation(s)
- Haq Nawaz
- Department of Field Crops, Faculty of Agriculture, Isparta University of Applied Sciences, Isparta, 32000, Turkey.
| | - İlknur Akgün
- Department of Field Crops, Faculty of Agriculture, Isparta University of Applied Sciences, Isparta, 32000, Turkey
| | - Ulaş Şenyiğit
- Department of Agriculture Structure and Irrigations, Faculty of Agriculture, Isparta University of Applied Sciences, Isparta, 32000, Turkey
| |
Collapse
|
2
|
Kumar T, Tiwari N, Bharadwaj C, Roorkiwal M, Reddy SPP, Patil BS, Kumar S, Hamwieh A, Vinutha T, Bindra S, Singh I, Alam A, Chaturvedi SK, Kumar Y, Nimmy MS, Siddique KHM, Varshney RK. A comprehensive analysis of Trehalose-6-phosphate synthase (TPS) gene for salinity tolerance in chickpea (Cicer arietinum L.). Sci Rep 2022; 12:16315. [PMID: 36175531 PMCID: PMC9523030 DOI: 10.1038/s41598-022-20771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/19/2022] [Indexed: 12/02/2022] Open
Abstract
Soil salinity affects various crop cultivation but legumes are the most sensitive to salinity. Osmotic stress is the first stage of salinity stress caused by excess salts in the soil on plants which adversely affects the growth instantly. The Trehalose-6-phosphate synthase (TPS) genes play a key role in the regulation of abiotic stresses resistance from the high expression of different isoform. Selected genotypes were evaluated to estimate for salt tolerance as well as genetic variability at morphological and molecular level. Allelic variations were identified in some of the selected genotypes for the TPS gene. A comprehensive analysis of the TPS gene from selected genotypes was conducted. Presence of significant genetic variability among the genotypes was found for salinity tolerance. This is the first report of allelic variation of TPS gene from chickpea and results indicates that the SNPs present in these conserved regions may contribute largely to functional distinction. The nucleotide sequence analysis suggests that the TPS gene sequences were found to be conserved among the genotypes. Some selected genotypes were evaluated to estimate for salt tolerance as well as for comparative analysis of physiological, molecular and allelic variability for salt responsive gene Trehalose-6-Phosphate Synthase through sequence similarity. Allelic variations were identified in some selected genotypes for the TPS gene. It is found that Pusa362, Pusa1103, and IG5856 are the most salt-tolerant lines and the results indicates that the identified genotypes can be used as a reliable donor for the chickpea improvement programs for salinity tolerance.
Collapse
Affiliation(s)
- Tapan Kumar
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India.,International Centre for Agricultural Research in the Dry Areas, Amlaha, Madhya Pradesh, 466113, India
| | - Neha Tiwari
- International Centre for Agricultural Research in the Dry Areas, Amlaha, Madhya Pradesh, 466113, India
| | - C Bharadwaj
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India.
| | - Manish Roorkiwal
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sneha Priya Pappula Reddy
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India.,The UWA Institute of Agriculture, UWA, Perth, WA, Australia
| | - B S Patil
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Sudhir Kumar
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Aladdin Hamwieh
- International Centre for Agricultural Research in the Dry Areas, 2 Port Said, Victoria Square, Maadi, Cairo, Egypt
| | - T Vinutha
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | | | | | - Afroz Alam
- Banathali Vidyapith, Banasthali, Rajasthan, India
| | | | | | | | - K H M Siddique
- The UWA Institute of Agriculture, UWA, Perth, WA, Australia
| | - Rajeev K Varshney
- International Chair in Agriculture & Food Security, State Agricultural Biotechnology Center, Centre for Crop & Food Innovation, Food Futures Institute, Murdoch University, Perth, Australia
| |
Collapse
|
3
|
Chen Q, Bao C, Xu F, Ma C, Huang L, Guo Q, Luo M. Silencing GhJUB1L1 (JUB1-like 1) reduces cotton (Gossypium hirsutum) drought tolerance. PLoS One 2021; 16:e0259382. [PMID: 34739505 PMCID: PMC8570493 DOI: 10.1371/journal.pone.0259382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/18/2021] [Indexed: 11/19/2022] Open
Abstract
Drought stress massively restricts plant growth and the yield of crops. Reducing the deleterious effects of drought is necessary for agricultural industry. The plant-specific NAC (NAM, ATAF1/2 and CUC2) transcription factors (TFs) are widely involved in the regulation of plant development and stress response. One of the NAC TF, JUNGBRUNNEN1 (JUB1), has been reported to involve in drought resistance in Arabidopsis. However, little is known of how the JUB1 gene respond to drought stress in cotton. In the present study, we cloned GhJUB1L1, a homologous gene of JUB1 in upland cotton. GhJUB1L1 is preferentially expressed in stem and leaf and could be induced by drought stress. GhJUB1L1 protein localizes to the cell nucleus, and the transcription activation region of which is located in the C-terminal region. Silencing GhJUB1L1 gene via VIGS () reduced cotton drought tolerance, and retarded secondary cell wall (SCW) development. Additionally, the expression of some drought stress-related genes and SCW synthesis-related genes were altered in the GhJUB1L1 silencing plants. Collectively, our findings indicate that GhJUB1L1 may act as a positive regulator in response to drought stress and SCW development in cotton. Our results enriched the roles of NAC TFs in cotton drought tolerance and laid a foundation for the cultivation of transgenic cotton with higher drought tolerance.
Collapse
Affiliation(s)
- Qian Chen
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, China
| | - Chaoya Bao
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, China
| | - Fan Xu
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, China
| | - Caixia Ma
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, China
| | - Li Huang
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, China
| | - Qigao Guo
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- * E-mail: (ML); (QG)
| | - Ming Luo
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, China
- * E-mail: (ML); (QG)
| |
Collapse
|
4
|
Zia R, Nawaz MS, Siddique MJ, Hakim S, Imran A. Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiol Res 2020; 242:126626. [PMID: 33189069 DOI: 10.1016/j.micres.2020.126626] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 12/25/2022]
Abstract
In many regions of the world, the incidence and extent of drought spells are predicted to increase which will create considerable pressure on global agricultural yields. Most likely among all the abiotic stresses, drought has the strongest effect on soil biota and plants along with complex environmental effects on other ecological systems. Plants being sessile appears the least resilient where drought creates osmotic stress, limits nutrient mobility due to soil heterogeneity, and reduces nutrient access to plant roots. Drought tolerance is a complex quantitative trait controlled by many genes and is one of the difficult traits to study and characterize. Nevertheless, existing studies on drought have indicated the mechanisms of drought resistance in plants on the morphological, physiological, and molecular basis and strategies have been devised to cope with the drought stress such as mass screening, breeding, marker-assisted selection, exogenous application of hormones or osmoprotectants and or engineering for drought resistance. These strategies have largely ignored the role of the rhizosphere in the plant's drought response. Studies have shown that soil microbes have a substantial role in modulation of plant response towards biotic and abiotic stress including drought. This response is complex and involves alteration in host root system architecture through hormones, osmoregulation, signaling through reactive oxygen species (ROS), induction of systemic tolerance (IST), production of large chain extracellular polysaccharides (EPS), and transcriptional regulation of host stress response genes. This review focuses on the integrated rhizosphere management strategy for drought stress mitigation in plants with a special focus on rhizosphere management. This combinatorial approach may include rhizosphere engineering by addition of drought-tolerant bacteria, nanoparticles, liquid nano clay (LNC), nutrients, organic matter, along with plant-modification with next-generation genome editing tool (e.g., CRISPR/Cas9) for quickly addressing emerging challenges in agriculture. Furthermore, large volumes of rainwater and wastewater generated daily can be smartly recycled and reused for agriculture. Farmers and other stakeholders will get a proper knowledge-exchange and an ideal road map to utilize available technologies effectively and to translate the measures into successful plant-water stress management. The proposed approach is cost-effective, eco-friendly, user-friendly, and will impart long-lasting benefits on agriculture and ecosystem and reduce vulnerability to climate change.
Collapse
Affiliation(s)
- Rabisa Zia
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577 Jhang Road, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Muhammad Shoib Nawaz
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577 Jhang Road, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Muhammad Jawad Siddique
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577 Jhang Road, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Sughra Hakim
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577 Jhang Road, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Asma Imran
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577 Jhang Road, Faisalabad, Pakistan.
| |
Collapse
|
5
|
An X, Jin G, Luo X, Chen C, Li W, Zhu G. Transcriptome analysis and transcription factors responsive to drought stress in Hibiscus cannabinus. PeerJ 2020; 8:e8470. [PMID: 32140299 PMCID: PMC7047868 DOI: 10.7717/peerj.8470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/27/2019] [Indexed: 11/20/2022] Open
Abstract
Kenaf is an annual bast fiber crop. Drought stress influences the growth of kenaf stems and causes a marked decrease in fiber yield and quality. Research on the drought resistance of kenaf is therefore important, but limited information is available on the response mechanism of kenaf to drought stress. In this study, a transcriptome analysis of genes associated with the drought stress response in kenaf was performed. About 264,244,210 bp high-quality reads were obtained after strict quality inspection and data cleaning. Compared with the control group, 4,281 genes were differentially expressed in plants treated with drought stress for 7 d (the drought stress group). Compared with the control group, 605 genes showed differential expression in plants subjected to drought stress for 6 d and then watered for 1 d (the rewatering group). Compared with the rewatering group, 5,004 genes were differentially expressed in the drought stress group. In the comparisons between the drought stress and control groups, and between the drought stress and rewatering groups, the pathway that showed the most highly significant enrichment was plant hormone signal transduction. In the comparison between the rewatering and control groups, the pathways that showed the most highly significant enrichment were starch and sucrose metabolism. Eight transcription factors belonging to the AP2/ERF, MYB, NAC, and WRKY families (two transcription factors per family) detected in the leaf transcriptome were associated with the drought stress response. The identified transcription factors provide a basis for further investigation of the response mechanism of kenaf to drought stress.
Collapse
Affiliation(s)
- Xia An
- Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guanrong Jin
- Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiahong Luo
- Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Changli Chen
- Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wenlue Li
- Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guanlin Zhu
- Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
6
|
Thirumalaikumar VP, Devkar V, Mehterov N, Ali S, Ozgur R, Turkan I, Mueller‐Roeber B, Balazadeh S. NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato. PLANT BIOTECHNOLOGY JOURNAL 2018; 16. [PMID: 28640975 PMCID: PMC5787828 DOI: 10.1111/pbi.12776] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Water deficit (drought stress) massively restricts plant growth and the yield of crops; reducing the deleterious effects of drought is therefore of high agricultural relevance. Drought triggers diverse cellular processes including the inhibition of photosynthesis, the accumulation of cell-damaging reactive oxygen species and gene expression reprogramming, besides others. Transcription factors (TF) are central regulators of transcriptional reprogramming and expression of many TF genes is affected by drought, including members of the NAC family. Here, we identify the NAC factor JUNGBRUNNEN1 (JUB1) as a regulator of drought tolerance in tomato (Solanum lycopersicum). Expression of tomato JUB1 (SlJUB1) is enhanced by various abiotic stresses, including drought. Inhibiting SlJUB1 by virus-induced gene silencing drastically lowers drought tolerance concomitant with an increase in ion leakage, an elevation of hydrogen peroxide (H2 O2 ) levels and a decrease in the expression of various drought-responsive genes. In contrast, overexpression of AtJUB1 from Arabidopsis thaliana increases drought tolerance in tomato, alongside with a higher relative leaf water content during drought and reduced H2 O2 levels. AtJUB1 was previously shown to stimulate expression of DREB2A, a TF involved in drought responses, and of the DELLA genes GAI and RGL1. We show here that SlJUB1 similarly controls the expression of the tomato orthologs SlDREB1, SlDREB2 and SlDELLA. Furthermore, AtJUB1 directly binds to the promoters of SlDREB1, SlDREB2 and SlDELLA in tomato. Our study highlights JUB1 as a transcriptional regulator of drought tolerance and suggests considerable conservation of the abiotic stress-related gene regulatory networks controlled by this NAC factor between Arabidopsis and tomato.
Collapse
Affiliation(s)
- Venkatesh P. Thirumalaikumar
- Institute of Biochemistry and BiologyUniversity of PotsdamPotsdam‐GolmGermany
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Vikas Devkar
- Institute of Biochemistry and BiologyUniversity of PotsdamPotsdam‐GolmGermany
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Nikolay Mehterov
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- Present address:
Department of Medical BiologyMedical University of PlovdivBG ‐ 4000PlovdivBulgaria
| | - Shawkat Ali
- Division of Biological and Environmental Sciences and EngineeringCenter for Desert AgricultureKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Rengin Ozgur
- Department of BiologyFaculty of ScienceEge UniversityIzmirTurkey
| | - Ismail Turkan
- Department of BiologyFaculty of ScienceEge UniversityIzmirTurkey
| | - Bernd Mueller‐Roeber
- Institute of Biochemistry and BiologyUniversity of PotsdamPotsdam‐GolmGermany
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Salma Balazadeh
- Institute of Biochemistry and BiologyUniversity of PotsdamPotsdam‐GolmGermany
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| |
Collapse
|
7
|
Böndel KB, Nosenko T, Stephan W. Signatures of natural selection in abiotic stress-responsive genes of Solanum chilense. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171198. [PMID: 29410831 PMCID: PMC5792908 DOI: 10.1098/rsos.171198] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/04/2017] [Indexed: 06/01/2023]
Abstract
Environmental conditions are strong selective forces, which may influence adaptation and speciation. The wild tomato species Solanum chilense, native to South America, is exposed to a range of abiotic stress factors. To identify signatures of natural selection and local adaptation, we analysed 16 genes involved in the abiotic stress response and compared the results to a set of reference genes in 23 populations across the entire species range. The abiotic stress-responsive genes are characterized by elevated nonsynonymous nucleotide diversity and divergence. We detected signatures of positive selection in several abiotic stress-responsive genes on both the population and species levels. Local adaptation to abiotic stresses is particularly apparent at the boundary of the species distribution in populations from coastal low-altitude and mountainous high-altitude regions.
Collapse
|
8
|
Sussmilch FC, McAdam SAM. Surviving a Dry Future: Abscisic Acid (ABA)-Mediated Plant Mechanisms for Conserving Water under Low Humidity. PLANTS (BASEL, SWITZERLAND) 2017; 6:E54. [PMID: 29113039 PMCID: PMC5750630 DOI: 10.3390/plants6040054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/29/2017] [Accepted: 11/01/2017] [Indexed: 12/15/2022]
Abstract
Angiosperms are able to respond rapidly to the first sign of dry conditions, a decrease in air humidity, more accurately described as an increase in the vapor pressure deficit between the leaf and the atmosphere (VPD), by abscisic acid (ABA)-mediated stomatal closure. The genes underlying this response offer valuable candidates for targeted selection of crop varieties with improved drought tolerance, a critical goal for current plant breeding programs, to maximize crop production in drier and increasingly marginalized environments, and meet the demands of a growing population in the face of a changing climate. Here, we review current understanding of the genetic mechanisms underpinning ABA-mediated stomatal closure, a key means for conserving water under dry conditions, examine how these mechanisms evolved, and discuss what remains to be investigated.
Collapse
Affiliation(s)
- Frances C Sussmilch
- School of Biological Sciences, University of Tasmania, Hobart TAS 7001, Australia.
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, D-97082 Würzburg, Germany.
| | - Scott A M McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
9
|
Yang T, Yao S, Hao L, Zhao Y, Lu W, Xiao K. Wheat bHLH-type transcription factor gene TabHLH1 is crucial in mediating osmotic stresses tolerance through modulating largely the ABA-associated pathway. PLANT CELL REPORTS 2016; 35:2309-2323. [PMID: 27541276 DOI: 10.1007/s00299-016-2036-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/03/2016] [Indexed: 05/05/2023]
Abstract
KEY MESSAGE Wheat bHLH family gene TabHLH1 is responsive to drought and salt stresses, and it acts as one crucial regulator in mediating tolerance to aforementioned stresses largely through an ABA-associated pathway. Osmotic stresses are adverse factors for plant growth and crop productivity. In this study, we characterized TabHLH1, a gene encoding wheat bHLH-type transcription factor (TF) protein, in mediating plant adaptation to osmotic stresses. TabHLH1 protein contains a conserved basic-helix-loop-helix (bHLH) domain shared by its plant counterparts. Upon PEG-simulated drought stress, salt stress, and exogenous abscisic acid (ABA), the TabHLH1 transcripts in roots and leaves were induced. Under PEG-simulated drought stress and salt stress treatments, the tobacco seedlings with TabHLH1 overexpression exhibited improved growth and osmotic stress-associated traits, showing increased biomass and reduced leaf water loss rate (WLR) relative to wild type (WT). The transgenic lines also possessed promoted stomata closure under drought stress, salt stress, and exogenous ABA and increased proline and soluble sugar contents and reduced hydrogen peroxide (H2O2) amount under osmotic stress conditions, indicating that TabHLH1-mediated osmolyte accumulation and cellular ROS homeostasis contributed to the drought stress and salt stress tolerance. NtPYL12 and NtSAPK2;1, the genes encoding ABA receptor and SnRK2 family kinase, respectively, showed up-regulated expression in lines overexpressing TabHLH1 under osmotic stress and exogenous ABA conditions; overexpression of them conferred plants modified stomata movement, leaf WLR, and growth feature under drought and high salinity, suggesting that these ABA-signaling genes are mediated by wheat TabHLH1 gene and involved in regulating plant responses to simulated drought and salt stresses. Our investigation indicates that the TabHLH1 gene plays critical roles in plant tolerance to osmotic stresses largely through an ABA-dependent pathway.
Collapse
Affiliation(s)
- Tongren Yang
- College of Life Sciences, Agricultural University of Hebei, Baoding, 071001, China
| | - Sufei Yao
- College of Life Sciences, Agricultural University of Hebei, Baoding, 071001, China
- Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China
| | - Lin Hao
- College of Agronomy, Agricultural University of Hebei, Baoding, 071001, China
- College of Life Sciences, Agricultural University of Hebei, Baoding, 071001, China
| | - Yuanyuan Zhao
- College of Agronomy, Agricultural University of Hebei, Baoding, 071001, China
- Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China
| | - Wenjing Lu
- College of Life Sciences, Agricultural University of Hebei, Baoding, 071001, China.
| | - Kai Xiao
- College of Agronomy, Agricultural University of Hebei, Baoding, 071001, China.
- Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China.
| |
Collapse
|
10
|
Li J, Dong Y, Li C, Pan Y, Yu J. SiASR4, the Target Gene of SiARDP from Setaria italica, Improves Abiotic Stress Adaption in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:2053. [PMID: 28127300 PMCID: PMC5227095 DOI: 10.3389/fpls.2016.02053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/22/2016] [Indexed: 05/05/2023]
Abstract
Drought and other types of abiotic stresses negatively affect plant growth and crop yields. The abscisic acid-, stress-, and ripening-induced (ASR) proteins play important roles in the protection of plants against abiotic stress. However, the regulatory pathway of the gene encoding this protein remains to be elucidated. In this study, the foxtail millet (Setaria italica) ASR gene, SiASR4, was cloned and characterized. SiASR4 localized to the cell nucleus, cytoplasm and cytomembrane, and the protein contained 102 amino acids, including an ABA/WDS (abscisic acid/water-deficit stress) domain, with a molecular mass of 11.5 kDa. The abundance of SiASR4 transcripts increased after treatment with ABA, NaCl, and PEG in foxtail millet seedlings. It has been reported that the S. italica ABA-responsive DRE-binding protein (SiARDP) binds to a DNA sequence with a CCGAC core and that there are five dehydration-responsive element (DRE) motifs within the SiASR4 promoter. Our analyses demonstrated that the SiARDP protein could bind to the SiASR4 promoter in vitro and in vivo. The expression of SiASR4 increased in SiARDP-overexpressing plants. SiASR4-transgenic Arabidopsis and SiASR4-overexpressing foxtail millet exhibited enhanced tolerance to drought and salt stress. Furthermore, the transcription of stress-responsive and reactive oxygen species (ROS) scavenger-associated genes was activated in SiASR4 transgenic plants. Together, these findings show that SiASR4 functions in the adaption to drought and salt stress and is regulated by SiARDP via an ABA-dependent pathway.
Collapse
|
11
|
Böndel KB, Lainer H, Nosenko T, Mboup M, Tellier A, Stephan W. North–South Colonization Associated with Local Adaptation of the Wild Tomato SpeciesSolanum chilense. Mol Biol Evol 2015; 32:2932-43. [DOI: 10.1093/molbev/msv166] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
12
|
An X, Chen J, Zhang J, Liao Y, Dai L, Wang B, Liu L, Peng D. Transcriptome profiling and identification of transcription factors in ramie (Boehmeria nivea L. Gaud) in response to PEG treatment, using illumina paired-end sequencing technology. Int J Mol Sci 2015; 16:3493-511. [PMID: 25658800 PMCID: PMC4346909 DOI: 10.3390/ijms16023493] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/26/2015] [Accepted: 01/28/2015] [Indexed: 12/04/2022] Open
Abstract
Ramie (Boehmeria nivea L. Gaud), commonly known as China grass, is a perennial bast fiber plant of the Urticaceae. In China, ramie farming, industry, and trade provide income for about five million people. Drought stress severely affects ramie stem growth and causes a dramatic decrease in ramie fiber production. There is a need to enhance ramie’s tolerance to drought stress. However, the drought stress regulatory mechanism in ramie remains unknown. Water stress imposed by polyethylene glycol (PEG) is a common and convenient method to evaluate plant drought tolerance. In this study, transcriptome analysis of cDNA collections from ramie subjected to PEG treatment was conducted using Illumina paired-end sequencing, which generated 170 million raw sequence reads. Between leaves and roots subjected to 24 (L2 and R2) and 72 (L3 and R3) h of PEG treatment, 16,798 genes were differentially expressed (9281 in leaves and 8627 in roots). Among these, 25 transcription factors (TFs) from the AP2 (3), MYB (6), NAC (9), zinc finger (5), and bZIP (2) families were considered to be associated with drought stress. The identified TFs could be used to further investigate drought adaptation in ramie.
Collapse
Affiliation(s)
- Xia An
- Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, Ministry of Agriculture, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jie Chen
- Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, Ministry of Agriculture, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jingyu Zhang
- Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, Ministry of Agriculture, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yiwen Liao
- Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, Ministry of Agriculture, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lunjin Dai
- Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, Ministry of Agriculture, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bo Wang
- Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, Ministry of Agriculture, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lijun Liu
- Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, Ministry of Agriculture, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Dingxiang Peng
- Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, Ministry of Agriculture, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
13
|
Choi HW, Hwang BK. Molecular and cellular control of cell death and defense signaling in pepper. PLANTA 2015; 241:1-27. [PMID: 25252816 DOI: 10.1007/s00425-014-2171-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/11/2014] [Indexed: 06/03/2023]
Abstract
Pepper (Capsicum annuum L.) provides a good experimental system for studying the molecular and functional genomics underlying the ability of plants to defend themselves against microbial pathogens. Cell death is a genetically programmed response that requires specific host cellular factors. Hypersensitive response (HR) is defined as rapid cell death in response to a pathogen attack. Pepper plants respond to pathogen attacks by activating genetically controlled HR- or disease-associated cell death. HR cell death, specifically in incompatible interactions between pepper and Xanthomonas campestris pv. vesicatoria, is mediated by the molecular genetics and biochemical machinery that underlie pathogen-induced cell death in plants. Gene expression profiles during the HR-like cell death response, virus-induced gene silencing and transient and transgenic overexpression approaches are used to isolate and identify HR- or disease-associated cell death genes in pepper plants. Reactive oxygen species, nitric oxide, cytosolic calcium ion and defense-related hormones such as salicylic acid, jasmonic acid, ethylene and abscisic acid are involved in the execution of pathogen-induced cell death in plants. In this review, we summarize recent molecular and cellular studies of the pepper cell death-mediated defense response, highlighting the signaling events of cell death in disease-resistant pepper plants. Comprehensive knowledge and understanding of the cellular functions of pepper cell death response genes will aid the development of novel practical approaches to enhance disease resistance in pepper, thereby helping to secure the future supply of safe and nutritious pepper plants worldwide.
Collapse
Affiliation(s)
- Hyong Woo Choi
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713, Republic of Korea
| | | |
Collapse
|
14
|
Ergün N, Özçubukçu S, Kolukirik M, Temizkan Ö. Effects of temperature - heavy metal interactions, antioxidant enzyme activity and gene expression in wheat (Triticum aestivum L.) seedlings. ACTA BIOLOGICA HUNGARICA 2014; 65:439-50. [PMID: 25475983 DOI: 10.1556/abiol.65.2014.4.8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, the effect of heat and chromium (Cr) heavy metal interactions on wheat seedlings (Triticum aestivum L. cv. Ç-1252 and Gun91) was investigated by measuring total chlorophyll and carotenoid levels, catalase (CAT) and ascorbate peroxidase (APX) antioxidant enzyme activities, and MYB73, ERF1 and TaSRG gene expression. Examination of pigment levels demonstrated a decrease in total chlorophyll in both species of wheat under combined heat and heavy metal stress, while the carotenoid levels showed a slight increase. APX activity increased in both species in response to heavy metal stress, but the increase in APX activity in the Gun91 seedlings was higher than that in the Ç-1252 seedlings. CAT activity increased in Gun91 seedlings but decreased in Ç-1252 seedlings. These results showed that Gun91 seedling had higher resistance to Cr and Cr + heat stresses than the Ç-1252 seedling. The quantitative molecular analyses implied that the higher resistance was related to the overexpression of TaMYB73, TaERF1 and TaSRG transcription factors. The increase in the expression levels of these transcription factors was profound under combined Cr and heat stress. This study suggests that TaMYB73, TaERF1 and TaSRG transcription factors regulate Cr and heat stress responsive genes in wheat.
Collapse
Affiliation(s)
- N Ergün
- Mustafa Kemal University, Tayfur Sökmen Campus Science and Art Faculty, Biology Department 31034 Antakya, Hatay Turkey
| | - S Özçubukçu
- Mustafa Kemal University, Tayfur Sökmen Campus Science and Art Faculty, Biology Department 31034 Antakya, Hatay Turkey
| | - M Kolukirik
- Bogazici University ENGY Environmental and Energy Technologies, Biotechnology Research and Development Limited Company 34342 Teknopark Bebek, İstanbul Turkey
| | - Ö Temizkan
- Mustafa Kemal University, Tayfur Sökmen Campus Science and Art Faculty, Biology Department 31034 Antakya, Hatay Turkey
| |
Collapse
|
15
|
Lim S, Baek W, Lee SC. Identification and functional roles of CaDIN1 in abscisic acid signaling and drought sensitivity. PLANT MOLECULAR BIOLOGY 2014; 86:513-25. [PMID: 25149469 DOI: 10.1007/s11103-014-0242-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/19/2014] [Indexed: 06/03/2023]
Abstract
Plants frequently face challenges caused by various abiotic stresses, including drought, and have evolved defense mechanisms to counteract the deleterious effects of these stresses. The phytohormone abscisic acid (ABA) is involved in signal transduction pathways that mediate defense responses of plants to abiotic stress. Here, we report a new function of the CaDIN1 protein in defense responses to abiotic stress. The CaDIN1 gene was strongly induced in pepper leaves exposed to ABA, NaCl, and drought stresses. CaDIN1 proteins share high sequence homology with other known DIN1 proteins and are localized in chloroplasts. We generated CaDIN1-silenced peppers and overexpressing transgenic Arabidopsis plants and evaluated their response to ABA and drought stress. Virus-induced gene silencing of CaDIN1 in pepper plants conferred enhanced tolerance to drought stress, which was accompanied by low levels of lipid peroxidation in dehydrated leaves. CaDIN1-overexpressing transgenic plants exhibited reduced sensitivity to ABA during seed germination and seedling stages. Transgenic plants were more vulnerable to drought than that by the wild-type plants because of decreased expression of ABA responsive stress-related genes and reduced stomatal closure in response to ABA. Together, these results suggest that CaDIN1 modulates drought sensitivity through ABA-mediated cell signaling.
Collapse
Affiliation(s)
- Sohee Lim
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| | | | | |
Collapse
|
16
|
Li C, Yue J, Wu X, Xu C, Yu J. An ABA-responsive DRE-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5415-27. [PMID: 25071221 PMCID: PMC4157718 DOI: 10.1093/jxb/eru302] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 05/06/2023]
Abstract
The DREB (dehydration-responsive element binding)-type transcription factors regulate the expression of stress-inducible genes by binding the DRE/CRT cis-elements in promoter regions. The upstream transcription factors that regulate the transcription of DREB transcription factors have not been clearly defined, although the function of DREB transcription factors in abiotic stress is known. In this study, an abscisic acid (ABA)-responsive DREB-binding protein gene (SiARDP) was cloned from foxtail millet (Setaria italica). The transcript level of SiARDP increased not only after drought, high salt, and low temperature stresses, but also after an ABA treatment in foxtail millet seedlings. Two ABA-responsive elements (ABRE1: ACGTGTC; ABRE2: ACGTGGC) exist in the promoter of SiARDP. Further analyses showed that two ABA-responsive element binding (AREB)-type transcription factors, SiAREB1 and SiAREB2, could physically bind to the ABRE core element in vitro and in vivo. The constitutive expression of SiARDP in Arabidopsis thaliana enhanced drought and salt tolerance during seed germination and seedling development, and overexpression of SiARDP in foxtail millet improved drought tolerance. The expression levels of target genes of SiARDP were upregulated in transgenic Arabidopsis and foxtail millet. These results reveal that SiARDP, one of the target genes of SiAREB, is involved in ABA-dependent signal pathways and plays a critical role in the abiotic stress response in plants.
Collapse
Affiliation(s)
- Cong Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jing Yue
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaowei Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Cong Xu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jingjuan Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
Cloning and expression analysis of cDNAs encoding ABA 8'-hydroxylase in peanut plants in response to osmotic stress. PLoS One 2014; 9:e97025. [PMID: 24825163 PMCID: PMC4019641 DOI: 10.1371/journal.pone.0097025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/14/2014] [Indexed: 11/21/2022] Open
Abstract
Abscisic acid (ABA) catabolism is one of the determinants of endogenous ABA levels affecting numerous aspects of plant growth and abiotic-stress responses. The major ABA catabolic pathway is triggered by ABA 8'-hydroxylation catalysed by ABA 8'-hydroxylase, the cytochrome P450 CYP707A family. In this study, the full-length cDNAs of AhCYP707A1 and AhCYP707A2 were cloned and characterized from peanut. Expression analyses showed that AhCYP707A1 and AhCYP707A2 were expressed ubiquitously in peanut roots, stems, and leaves with different transcript accumulation levels, including the higher expression of AhCYP707A1 in roots. The expression of AhCYP707A2 was significantly up-regulated by 20% PEG6000 or 250 mmol/L NaCl in peanut roots, stems, and leaves, whereas the up-regulation of AhCYP707A1 transcript level by PEG6000 or NaCl was observed only in roots instead of leaves and stems. Due to the osmotic and ionic stresses of high concentration of NaCl to plants simultaneously, low concentration of LiCl (30 mmol/L, at which concentration osmotic status of cells is not seriously affected, the toxicity of Li+ being higher than that of Na+) was used to examine whether the effect of NaCl might be related to osmotic or ionic stress. The results revealed visually the susceptibility to osmotic stress and the resistance to salt ions in peanut seedlings. The significant up-regulation of AhCYP707A1, AhCYP707A2 and AhNCED1 transcripts and endogenous ABA levels by PEG6000 or NaCl instead of LiCl, showed that the osmotic stress instead of ionic stress affected the expression of those genes and the biosynthesis of ABA in peanut. The functional expression of AhCYP707A1 cDNA in yeast showed that the microsomal fractions prepared from yeast cell expressing recombinant AhCYP707A1 protein exhibited the catalytic activity of ABA 8'-hydroxylase. These results demonstrate that the expressions of AhCYP707A1 and AhCYP707A2 play an important role in ABA catabolism in peanut, particularly in response to osmotic stress.
Collapse
|
18
|
PI-PLC: Phosphoinositide-Phospholipase C in Plant Signaling. SIGNALING AND COMMUNICATION IN PLANTS 2014. [DOI: 10.1007/978-3-642-42011-5_2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Alexou M. Development-specific responses to drought stress in Aleppo pine (Pinus halepensis Mill.) seedlings. TREE PHYSIOLOGY 2013; 33:1030-1042. [PMID: 24200584 DOI: 10.1093/treephys/tpt084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Aleppo pine (Pinus halepensis Mill.) is a pioneer species, highly competitive due to exceptional resistance to drought. To investigate the stress resistance in the first and second year of development, a steady-state drought experiment was implemented. Photosynthesis (A(net)), stomatal conductance and transpiration (E) were measured on three different sampling dates together with phloem soluble sugars, amino acids and non-structural proteins. Needle ascorbic acid (AsA) and reactive oxygen species were measured to evaluate the seedlings' drought stress condition in the final sampling. Drought impaired A(net) and E by 35 and 31%, respectively, and increased AsA levels up to 10-fold, without significant impact on the phloem metabolites. Phloem sugars related to temperature fluctuations rather than soil moisture and did not relate closely to A(net) levels. Sugars and proteins decreased between the second and third sampling date by 56 and 61%, respectively, and the ratio of sugars to amino acids decreased between the first and third sampling by 81%, while A(net) and water-use efficiency (A(net)/E) decreased only in the older seedlings. Although gas exchange was higher in the older seedlings, ascorbic acid and phloem metabolites were higher in the younger seedlings. It was concluded that the drought stress responses depended significantly on developmental stage, and research on the physiology of Aleppo pine regeneration should focus more on temperature conditions and the duration of drought than its severity.
Collapse
Affiliation(s)
- Maria Alexou
- Forest Research Institute, National Agricultural Research Foundation, Vassilika 57005, Thessaloniki, Greece
| |
Collapse
|
20
|
Hu W, Huang C, Deng X, Zhou S, Chen L, Li Y, Wang C, Ma Z, Yuan Q, Wang Y, Cai R, Liang X, Yang G, He G. TaASR1, a transcription factor gene in wheat, confers drought stress tolerance in transgenic tobacco. PLANT, CELL & ENVIRONMENT 2013; 36:1449-64. [PMID: 23356734 DOI: 10.1111/pce.12074] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 01/15/2013] [Accepted: 01/22/2013] [Indexed: 05/06/2023]
Abstract
Abscisic acid (ABA)-, stress-, and ripening-induced (ASR) proteins are reported to be involved in abiotic stresses. However, it is not known whether ASR genes confer drought stress tolerance by utilizing the antioxidant system. In this study, a wheat ASR gene, TaASR1, was cloned and characterized. TaASR1 transcripts increased after treatments with PEG6000, ABA and H(2)O(2). Overexpression of TaASR1 in tobacco resulted in increased drought/osmotic tolerance, which was demonstrated that transgenic lines had lesser malondialdehyde (MDA), ion leakage (IL) and reactive oxygen species (ROS), but higher relative water content (RWC) and superoxide dismutase (SOD) and catalase (CAT) activities than wild type (WT) under drought stress. Overexpression of TaASR1 in tobacco also enhanced the expression of ROS-related and stress-responsive genes under osmotic stress. In addition, transgenic lines exhibited improved tolerance to oxidative stress by retaining more effective antioxidant system. Finally, TaASR1 was localized in the cell nucleus and functioned as a transcriptional activator. Taken together, our results showed that TaASR1 functions as a positive factor under drought/osmotic stress, involved in the regulation of ROS homeostasis by activating antioxidant system and transcription of stress-associated genes.
Collapse
Affiliation(s)
- Wei Hu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, 430074, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Xu L, Zahid KR, He L, Zhang W, He X, Zhang X, Yang X, Zhu L. GhCAX3 gene, a novel Ca(2+)/H(+) exchanger from cotton, confers regulation of cold response and ABA induced signal transduction. PLoS One 2013; 8:e66303. [PMID: 23776653 PMCID: PMC3679082 DOI: 10.1371/journal.pone.0066303] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 05/04/2013] [Indexed: 01/30/2023] Open
Abstract
As a second messenger, Ca(2+) plays a major role in cold induced transduction via stimulus-specific increases in [Ca(2+)]cyt, which is called calcium signature. During this process, CAXs (Ca(2+)/H(+) exchangers) play critical role. For the first time, a putative Ca(2+)/H(+) exchanger GhCAX3 gene from upland cotton (Gossypium hirsutum cv. 'YZ-1') was isolated and characterized. It was highly expressed in all tissues of cotton except roots and fibers. This gene may act as a regulator in cotton's response to abiotic stresses as it could be up-regulated by Ca(2+), NaCl, ABA and cold stress. Similar to other CAXs, it was proved that GhCAX3 also had Ca(2+) transport activity and the N-terminal regulatory region (NRR) through yeast complementation assay. Over-expression of GhCAX3 in tobacco showed less sensitivity to ABA during seed germination and seedling stages, and the phenotypic difference between wild type (WT) and transgenic plants was more significant when the NRR was truncated. Furthermore, GhCAX3 conferred cold tolerance in yeast as well as in tobacco seedlings based on physiological and molecular studies. However, transgenic plant seeds showed more sensitivity to cold stress compared to WT during seed germination, especially when expressed in N-terminal truncated version. Finally, the extent of sensitivity in transgenic lines was more severe than that in WT line under sodium tungstate treatment (an ABA repressor), indicating that ABA could alleviate cold sensitivity of GhCAX3 seeds, especially in short of its NRR. Meanwhile, we also found that overexpression of GhCAX3 could enhance some cold and ABA responsive marker genes. Taken together, these results suggested that GhCAX3 plays important roles in the cross-talk of ABA and cold signal transduction, and compared to full-length of GhCAX3, the absence of NRR could enhance the tolerance or sensitivity to cold stress, depending on seedling's developmental stages.
Collapse
Affiliation(s)
- Lian Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Kashif Rafiq Zahid
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Liangrong He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
- College of Plant Science, Tarim University, Alaer, Xinjiang, P. R. China
| | - Wenwen Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Xin He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| |
Collapse
|
22
|
Zhang M, Pan J, Kong X, Zhou Y, Liu Y, Sun L, Li D. ZmMKK3, a novel maize group B mitogen-activated protein kinase kinase gene, mediates osmotic stress and ABA signal responses. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1501-10. [PMID: 22835533 DOI: 10.1016/j.jplph.2012.06.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 06/04/2012] [Accepted: 06/07/2012] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are important intracellular signaling modules and function as a convergent point for crosstalk during abiotic stress signaling. In this article, we isolated a novel group B MAPKK gene, ZmMKK3, from Zea mays. ZmMKK3 protein might be localized in both the cytoplasm and the nucleus. RNA blot analysis indicated that the ZmMKK3 transcription was up-regulated by abscisic acid (ABA), hydrogen peroxide (H(2)O(2)) and PEG, and that H(2)O(2) mediated PEG-induced expression of ZmMKK3. Constitutive expression of ZmMKK3 in Nicotiana tabacum reduced H(2)O(2) accumulation under osmotic stress by affecting antioxidant defense systems and alleviated reactive oxygen species-mediated injury under oxidative stress. Transgenic tobacco exhibited attenuated ABA sensitivity by means of an increased germination rate and main root growth. Taken together, these results indicate that ZmMKK3 is a positive regulator of osmotic tolerance and ABA signaling in plants.
Collapse
Affiliation(s)
- Maoying Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Conde A, Chaves MM, Gerós H. Membrane transport, sensing and signaling in plant adaptation to environmental stress. PLANT & CELL PHYSIOLOGY 2011; 52:1583-602. [PMID: 21828102 DOI: 10.1093/pcp/pcr107] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plants are generally well adapted to a wide range of environmental conditions. Even though they have notably prospered in our planet, stressful conditions such as salinity, drought and cold or heat, which are increasingly being observed worldwide in the context of the ongoing climate changes, limit their growth and productivity. Behind the remarkable ability of plants to cope with these stresses and still thrive, sophisticated and efficient mechanisms to re-establish and maintain ion and cellular homeostasis are involved. Among the plant arsenal to maintain homeostasis are efficient stress sensing and signaling mechanisms, plant cell detoxification systems, compatible solute and osmoprotectant accumulation and a vital rearrangement of solute transport and compartmentation. The key role of solute transport systems and signaling proteins in cellular homeostasis is addressed in the present work. The full understanding of the plant cell complex defense mechanisms under stress may allow for the engineering of more tolerant plants or the optimization of cultivation practices to improve yield and productivity, which is crucial at the present time as food resources are progressively scarce.
Collapse
Affiliation(s)
- Artur Conde
- Centro de Investigacão e de Tecnologias Agro-Ambientais e Biológicas, Portugal
| | | | | |
Collapse
|
24
|
Zhang L, Xi D, Li S, Gao Z, Zhao S, Shi J, Wu C, Guo X. A cotton group C MAP kinase gene, GhMPK2, positively regulates salt and drought tolerance in tobacco. PLANT MOLECULAR BIOLOGY 2011; 77:17-31. [PMID: 21590508 DOI: 10.1007/s11103-011-9788-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 05/08/2011] [Indexed: 05/22/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play important roles in mediating biotic and abiotic stress responses. In plants, MAPKs are classified into four major groups (A-D) according to their sequence homology and conserved phosphorylation motifs. Compared with well-studied MAPKs in groups A and B, little is known about group C. In this study, we functionally characterised a stress-responsive group C MAPK gene (GhMPK2) from cotton (Gossypium hirsutum). Northern blot analysis indicated that GhMPK2 was induced by abscisic acid (ABA) and abiotic stresses, such as NaCl, PEG, and dehydration. Subcellular localization analysis suggested that GhMPK2 may activate its specific targets in the nucleus. Constitutive overexpression of GhMPK2 in tobacco (Nicotiana tabacum) conferred reduced sensitivity to ABA during both seed germination and vegetative growth. Interestingly, transgenic plants had a decreased rate of water loss and exhibited enhanced drought and salt tolerance. Additionally, transgenic plants showed improved osmotic adjustment capacity, elevated proline accumulation and up-regulated expression of several stress-related genes, including DIN1, Osmotin and NtLEA5. β-glucuronidase (GUS) expression driven by the GhMPK2 promoter was clearly enhanced by treatment with NaCl, PEG, and ABA. These results strongly suggest that GhMPK2 positively regulates salt and drought tolerance in transgenic plants.
Collapse
Affiliation(s)
- Liang Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
• Plant two-pore K(+) channels (TPKs) have been shown previously to play a role in vacuolar K(+) homeostasis. TPK activity is insensitive to membrane voltage, but regulated by cytoplasmic calcium and 14-3-3 proteins. This study reports that membrane stretch and osmotic gradients also alter the activity of TPKs from Arabidopsis, rice and barley, and that this may have a physiological relevance for osmotic homeostasis. • Mechanosensitivity was studied using patch clamp experiments and TPKs from Arabidopsis, rice and barley. In addition, the capability of TPKs to act as osmosensors was determined. By using protoplast disruption assays and intact plant survival assays, in genotypes that differed in TPK expression, the physiological relevance of TPK-based osmosensing was tested. • TPKs from all three species showed varying degrees of mechanosensitivity. TPK activity in channels from all three species was sensitive to trans-tonoplast osmotic gradients. TPK osmosensing is likely to proceed via the detection of small perturbations in membrane tension. Intact plant and protoplast assays showed that TPK-based osmosensing is important during exposure to rapid changes in external osmolarity. • Vacuolar TPK channels can act as intracellular osmosensors and rapidly increase channel activity during hypo-osmotic shock to release vacuolar K(+) .
Collapse
|
26
|
Ziaf K, Loukehaich R, Gong P, Liu H, Han Q, Wang T, Li H, Ye Z. A multiple stress-responsive gene ERD15 from Solanum pennellii confers stress tolerance in tobacco. PLANT & CELL PHYSIOLOGY 2011; 52:1055-67. [PMID: 21576192 DOI: 10.1093/pcp/pcr057] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Wild species often show more tolerance to environmental stress factors than their cultivated counterparts. An early responsive-to-dehydration gene was cloned from a drought- and salt-tolerant wild tomato Solanum pennellii (SpERD15). SpERD15 transcript accumulated differentially in different organs, and was remarkably induced by dehydration, salinity, cold and treatment with plant growth regulators. The protein encoded by SpERD15 was predominantly localized in the nucleus. Interestingly, we found that the majority of the transgenic tobacco plants were co-suppressed along with the overexpressing line. Overexpressing plants manifested stress tolerance accompanied by the accumulation of more soluble sugars and proline, and limited lipid peroxidation compared with co-suppression lines, which were more sensitive than the wild type. The differential contents of these compatible solutes in different transgenic lines were related to the changes in the expression of the genes involved in the production of some important osmolytes (P5CS and Sucrose synthase). Reduced lipid peroxidation over a broad range of stress factors was in agreement with increased expression of stress-responsive genes (ADH and GAPDH). Overexpression of SpERD15 increased the efficiency of PSII (F(v)/F(m)) in transgenic tobacco plants by maintaining PSII quinone acceptors in a partially oxidized form. The results show that SpERD15 augments stress tolerance by enhancing the efficiency of PSII through the protection of cellular membranes, as conferred by the accumulation of compatible solutes and limited lipid peroxidation.
Collapse
MESH Headings
- Acclimatization
- Cells, Cultured
- Chlorophyll/analysis
- Cloning, Molecular
- Cold Temperature
- Droughts
- Gene Expression Regulation, Plant
- Genes, Plant
- Germination
- Lipid Peroxidation
- Malondialdehyde/analysis
- Oxidation-Reduction
- Phenotype
- Photosynthesis
- Photosystem II Protein Complex/physiology
- Phylogeny
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/physiology
- Proline/analysis
- RNA Interference
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Salinity
- Seeds/physiology
- Sequence Analysis, DNA
- Sequence Analysis, Protein
- Solanum/genetics
- Solanum/metabolism
- Solanum/physiology
- Stress, Physiological
- Nicotiana/genetics
- Nicotiana/metabolism
- Nicotiana/physiology
Collapse
Affiliation(s)
- Khurram Ziaf
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, PR China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
El Kar C, Ferchichi A, Attia F, Bouajila J. Pomegranate (Punica granatum) Juices: Chemical Composition, Micronutrient Cations, and Antioxidant Capacity. J Food Sci 2011; 76:C795-800. [DOI: 10.1111/j.1750-3841.2011.02211.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
28
|
He X, Hou X, Shen Y, Huang Z. TaSRG
, a wheat transcription factor, significantly affects salt tolerance in transgenic rice and Arabidopsis. FEBS Lett 2011; 585:1231-7. [DOI: 10.1016/j.febslet.2011.03.055] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/14/2011] [Accepted: 03/24/2011] [Indexed: 11/24/2022]
|
29
|
|
30
|
Des Marais DL, Juenger TE. Pleiotropy, plasticity, and the evolution of plant abiotic stress tolerance. Ann N Y Acad Sci 2010; 1206:56-79. [PMID: 20860683 DOI: 10.1111/j.1749-6632.2010.05703.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Progress in understanding the mechanisms of adaptive plant abiotic stress response has historically come from two separate fields. Molecular biologists employ mutagenic screens, experimental manipulations, and controlled stress treatment to identify genes that, when perturbed, have fairly large effects on phenotype. By contrast, quantitative and evolutionary geneticists generally study naturally occurring variants to inform multigenic models of trait architecture in an effort to predict, for example, the evolutionary response to selection. We discuss five emerging themes from the molecular study of osmotic stress response: the multigenic nature of adaptive response, the modular organization of response to specific cues, the pleiotropic effects of key signaling proteins, the integration of many environmental signals, and the abundant cross-talk between signaling pathways. We argue that these concepts can be incorporated into existing models of trait evolution and provide examples of what may constitute the molecular basis of plasticity and evolvability of abiotic stress response. We conclude by considering future directions in the study of the functional molecular evolution of abiotic stress response that may facilitate new discoveries in molecular biology, evolutionary studies, and plant breeding.
Collapse
Affiliation(s)
- David L Des Marais
- Section of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
31
|
Huang H, Qi SD, Qi F, Wu CA, Yang GD, Zheng CC. NtKTI1, a Kunitz trypsin inhibitor with antifungal activity from Nicotiana tabacum, plays an important role in tobacco's defense response. FEBS J 2010; 277:4076-88. [PMID: 20735473 DOI: 10.1111/j.1742-4658.2010.07803.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A cDNA library from tobacco inoculated with Rhizoctonia solani was constructed, and several cDNA fragments were identified by differential hybridization screening. One cDNA clone that was dramatically repressed, NtKTI1, was confirmed as a member of the Kunitz plant proteinase inhibitor family. RT-PCR analysis revealed that NtKTI1 was constitutively expressed throughout the whole plant and preferentially expressed in the roots and stems. Furthermore, RT-PCR analysis showed that NtKTI1 expression was repressed after R. solani inoculation, mechanical wounding and salicylic acid treatment, but was unaffected by methyl jasmonate, abscisic acid and NaCl treatment. In vitro assays showed that NtKTI1 exerted prominent antifungal activity towards R. solani and moderate antifungal activity against Rhizopus nigricans and Phytophthora parasitica var. nicotianae. Bioassays of transgenic tobacco demonstrated that overexpression of NtKTI1 enhanced significantly the resistance of tobacco against R. solani, and the antisense lines exhibited higher susceptibility than control lines towards the phytopathogen. Taken together, these studies suggest that NtKTI1 may be a functional Kunitz trypsin inhibitor with antifungal activity against several important phytopathogens in the tobacco defense response.
Collapse
Affiliation(s)
- Hao Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | | | | | | | | | | |
Collapse
|
32
|
Hossain MA, Hasanuzzaman M, Fujita M. Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2010; 16:259-72. [PMID: 23572976 PMCID: PMC3550671 DOI: 10.1007/s12298-010-0028-4] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The present study investigates the possible mediatory role of exogenously applied glycinebetaine (betaine) and proline on reactive oxygen species (ROS) and methylglyoxal (MG) detoxification systems in mung bean seedlings subjected to cadmium (Cd) stress (1 mM CdCl2, 48 h). Cadmium stress caused a significant increase in glutathione (GSH) and glutathione disulfide (GSSG) content, while the ascorbate (AsA) content decreased significantly with a sharp increase in hydrogen peroxide (H2O2) and lipid peroxidation level (MDA). Ascorbate peroxidase (APX), glutathione S-transferase (GST), glutathione peroxidase (GPX), and glyoxalase I (Gly I) activities were increased in response to Cd stress, while the activities of catalase (CAT), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and glyoxalase II (Gly II) were sharply decreased. Exogenous application of 5 mM betaine or 5 mM proline resulted in an increase in GSH and AsA content, maintenance of a high GSH/GSSG ratio and increased the activities of APX, DHAR, MDHAR, GR, GST, GPX, CAT, Gly I and Gly II involved in ROS and MG detoxification system as compared to the control and mostly also Cd-stressed plants, with a concomitant decrease in GSSG content, H2O2 and lipid peroxidation level. These findings together with our earlier findings suggest that both betaine and proline provide a protective action against Cd-induced oxidative stress by reducing H2O2 and lipid peroxidation levels and by increasing the antioxidant defense and MG detoxification systems.
Collapse
Affiliation(s)
- Mohammad Anwar Hossain
- />Department of Applied Biological Science, Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795 Japan
- />Department of Genetics & Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202 Bangladesh
| | - Mirza Hasanuzzaman
- />Department of Applied Biological Science, Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795 Japan
- />Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka, 1207 Bangladesh
| | - Masayuki Fujita
- />Department of Applied Biological Science, Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795 Japan
| |
Collapse
|
33
|
Kader MA, Lindberg S. Cytosolic calcium and pH signaling in plants under salinity stress. PLANT SIGNALING & BEHAVIOR 2010; 5:233-8. [PMID: 20037468 PMCID: PMC2881266 DOI: 10.4161/psb.5.3.10740] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Accepted: 11/23/2009] [Indexed: 05/18/2023]
Abstract
Calcium is one of the essential nutrients for growth and development of plants. It is an important component of various structures in cell wall and membranes. Besides some fundamental roles under normal condition, calcium functions as a major secondary-messenger molecule in plants under different developmental cues and various stress conditions including salinity stress. Also changes in cytosolic pH, pH(cyt), either individually, or in coordination with changes in cytosolic Ca(2+) concentration, [Ca(2+)](cyt), evoke a wide range of cellular functions in plants including signal transduction in plant-defense responses against stresses. It is believed that salinity stress, like other stresses, is perceived at cell membrane, either extra cellular or intracellular, which then triggers an intracellular-signaling cascade including the generation of secondary messenger molecules like Ca(2+) and protons. The variety and complexity of Ca(2+) and pH signaling result from the nature of the stresses as well as the tolerance level of the plant species against that specific stress. The nature of changes in [Ca(2+)](cyt) concentration, in terms of amplitude, frequency and duration, is likely very important for decoding the specific downstream responses for salinity stress tolerance in planta. It has been observed that the signatures of [Ca(2+)](cyt) and pH differ in various studies reported so far depending on the techniques used to measure them, and also depending on the plant organs where they are measured, such as root, shoot tissues or cells. This review describes the recent advances about the changes in [Ca(2+)](cyt) and pH(cyt) at both cellular and whole-plant levels under salinity stress condition, and in various salinity-tolerant and -sensitive plant species.
Collapse
Affiliation(s)
- Md Abdul Kader
- Department of Botany, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
34
|
Li S, Xu C, Yang Y, Xia G. Functional analysis of TaDi19A, a salt-responsive gene in wheat. PLANT, CELL & ENVIRONMENT 2010; 33:117-29. [PMID: 19895399 DOI: 10.1111/j.1365-3040.2009.02063.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A salinity stress upregulated expressed sequence tag (EST) was selected from a suppression subtractive hybridization cDNA library, constructed from the salinity-tolerant wheat cultivar Shanrong No. 3. Sequence analysis showed that the corresponding gene (named TaDi19A) belonged to the Di19 family. TaDi19A was constitutively expressed in both the root and leaf of wheat seedlings grown under non-stressed conditions, but was substantially up-regulated by the imposition of stress (salinity, osmotic stress and cold), or the supply of stress-related hormones [abscisic acid (ABA) and ethylene]. The heterologous over-expression of TaDi19A in Arabidopsis thaliana increased the plants' sensitivity to salinity stress, ABA and mannitol during the germination stage. Root elongation in these transgenic lines showed a reduced tolerance to salinity stress and a reduced sensitivity to ethophon. The expression of the ABA signal pathway genes ABI1, RAB18, ERD15 and ABF3, and SOS2 (SOS pathway) was altered in the transgenic lines. TaDi19A plays a role in the plant's response to abiotic stress, and some possible mechanisms of its action are proposed.
Collapse
Affiliation(s)
- Shuo Li
- School of Life Science, Shandong University, 27 Shandanan Road, Jinan, Shandong, China
| | | | | | | |
Collapse
|
35
|
Silva P, Gerós H. Regulation by salt of vacuolar H+-ATPase and H+-pyrophosphatase activities and Na+/H+ exchange. PLANT SIGNALING & BEHAVIOR 2009; 4:718-26. [PMID: 19820346 PMCID: PMC2801382 DOI: 10.4161/psb.4.8.9236] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 06/09/2009] [Indexed: 05/20/2023]
Abstract
Over the last decades several efforts have been carried out to determine the mechanisms of salt homeostasis in plants and, more recently, to identify genes implicated in salt tolerance, with some plants being successfully genetically engineered to improve resistance to salt. It is well established that the efficient exclusion of Na(+) excess from the cytoplasm and vacuolar Na(+) accumulation are the most important steps towards the maintenance of ion homeostasis inside the cell. Therefore, the vacuole of plant cells plays a pivotal role in the storage of salt. After the identification of the vacuolar Na(+)/H(+) antiporter Nhx1 in Saccharomyces cerevisiae, the first plant Na(+)/H(+) antiporter, AtNHX1, was isolated from Arabidopsis and its overexpression resulted in plants exhibiting increased salt tolerance. Also, the identification of the plasma membrane Na(+)/H(+) exchanger SOS1 and how it is regulated by a protein kinase SOS2 and a calcium binding protein SOS3 were great achievements in the understanding of plant salt resistance. Both tonoplast and plasma membrane antiporters exclude Na+ from the cytosol driven by the proton-motive force generated by the plasma membrane H(+)-ATPase and by the vacuolar membrane H(+)-ATPase and H(+)-pyrophosphatase and it has been shown that the activity of these proteins responds to salinity. In this review we focus on the transcriptional and post-transcriptional regulation by salt of tonoplast proton pumps and Na(+)/H(+) exchangers and on the signalling pathways involved in salt sensing.
Collapse
Affiliation(s)
- Paulo Silva
- Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas (CITAB); Portugal
- Departamento de Biologia; Universidade do Minho; Braga, Portugal
| | - Hernâni Gerós
- Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas (CITAB); Portugal
- Departamento de Biologia; Universidade do Minho; Braga, Portugal
| |
Collapse
|
36
|
Kodama Y, Tamura T, Hirasawa W, Nakamura K, Sano H. A novel protein phosphorylation pathway involved in osmotic-stress response in tobacco plants. Biochimie 2009; 91:533-9. [PMID: 19340923 DOI: 10.1016/j.biochi.2009.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Osmotic stress is one of the severest environmental pressures for plants, commonly occurring under natural growing condition due to drought, salinity, cold and wounding. Plants sensitively respond to these stresses by activating a set of genes, which encode proteins necessary to overcome the crises. We screened such genes from tobacco plants, and identified a particular clone, which encoded a 45 kDa protein kinase belonging to the plant receptor-like cytoplasmic protein kinase class-VII, NAK (novel Arabidopsis protein kinase) group. The clone was consequently designated as NtNAK (Nicotiana tabacum NAK, accession number: DQ447159). GFP-NtNAK fusion protein was localized in both cytoplasm and nucleus, and bacterially expressed NtNAK exhibited in vitro kinase activity. Its transcripts were clearly induced upon treatments of leaves with salt, mannitol, low temperature and also with abscisic and jasmonic acids and ethylene. These properties indicated NtNAK to be a typical osmo-stress-responsive protein kinase. Its target protein(s) were then screened by the yeast two-hybrid system, and one clone encoding a 32 kDa protein was identified. The protein resembled a potato stress-responsive protein CK251806, and designated as NtCK25 (accession number: DQ448851). Bacterially expressed NtCK25 was phosphorylated by NtNAK, and NtCK25-GFP fusion protein was exclusively localized in nucleus. The structure of NtCK25 was found to be similar to a human nuclear body protein, SP110, which is involved in DNA/protein binding regulation. This suggested that, perceiving osmo-stress signal, NtNAK phosphorylates and activates NtCK25, which might function in regulation of nucleus function. The present study thus suggests that NtNAK/NtCK25 constitutes a novel phosphorylation pathway for osmotic-stress response in plants.
Collapse
Affiliation(s)
- Yutaka Kodama
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | | | | | | | | |
Collapse
|
37
|
Nakamura K, Sano H. A plasma-membrane linker for the phosphoinositide-specific phospholipase C in tobacco plants. PLANT SIGNALING & BEHAVIOR 2009; 4:26-9. [PMID: 19704699 PMCID: PMC2634064 DOI: 10.4161/psb.4.1.7222] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 10/15/2008] [Indexed: 05/10/2023]
Abstract
We previously screened genes that were transcriptionally activated during the early stage of wound response in tobacco plants (Nicotiana tabacum), and isolated a particular clone, which encoded a membrane-located protein, designated as NtC7. Upon overexpression in tobacco plants, NtC7 conferred a marked tolerance to osmotic stress, suggesting it to be involved in maintenance of osmotic adjustments. In this study, we searched for proteins which interact with NtC7 by the yeast two-hybrid screening, and isolated a clone encoding phosphoinositide-specific phospholipase C, designated as NtPI-PLC. Physical interaction between NtC7 and C2 domain of NtPI-PLC was confirmed by the pull-down assay. Expression of fused protein to green-fluorescence protein in onion epidermal cell layers indicated both proteins to predominantly localize to the plasma membrane. Their interaction in planta was shown by the bimolecular fluorescence complementation, which exhibited a clear fluorescence of reconstituted yellow fluorescence protein. Transcripts of NtC7 and NtPI-PLC were markedly increased 30 to 60 min after wounding. PI-PLC is one of key enzymes in metabolism of inositol phospholipids, which function in signal transduction and also in response to stresses including osmotic changes. It was shown to localize to plasma-membrane and, to a lesser extent, to cytosol. However, molecular mechanism of membrane localization has remained to be determined, because of the apparent lack of domains for membrane association. The present results suggest that one of such mechanisms is tethering NtPI-PLC to the plasma membrane through interaction with NtC7, which possesses a transmembrane domain at the C-terminus.
Collapse
Affiliation(s)
- Kimiyo Nakamura
- Research and Education Center for Genetic Information; Nara Institute of Science and Technology; Nara Japan
| | - Hiroshi Sano
- Research and Education Center for Genetic Information; Nara Institute of Science and Technology; Nara Japan
- Department of Botany; Stockholm University; Stockholm Sweden
| |
Collapse
|
38
|
Vij S, Giri J, Dansana PK, Kapoor S, Tyagi AK. The receptor-like cytoplasmic kinase (OsRLCK) gene family in rice: organization, phylogenetic relationship, and expression during development and stress. MOLECULAR PLANT 2008; 1:732-50. [PMID: 19825577 DOI: 10.1093/mp/ssn047] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Receptor-like cytoplasmic kinases (RLCKs) in plants belong to the super family of receptor-like kinases (RLKs). These proteins show homology to RLKs in kinase domain but lack the transmembrane domain. Some of the functionally characterized RLCKs from plants have been shown to play roles in development and stress responses. Previously, 149 and 187 RLCK encoding genes were identified from Arabidopsis and rice, respectively. By using HMM-based domain structure and phylogenetic relationships, we have identified 379 OsRLCKs from rice. OsRLCKs are distributed on all 12 chromosomes of rice and some members are located on duplicated chromosomal segments. Several OsRLCKs probably also undergo alternative splicing, some having evidence only in the form of gene models. To understand their possible functions, expression patterns during landmark stages of vegetative and reproductive development as well as abiotic and biotic stress using microarray and MPSS-based data were analyzed. Real-time PCR-based expression profiling for a selected few genes confirmed the outcome of microarray analysis. Differential expression patterns observed for majority of OsRLCKs during development and stress suggest their involvement in diverse functions in rice. Majority of the stress-responsive OsRLCKs were also found to be localized within mapped regions of abiotic stress QTLs. Outcome of this study would help in selecting organ/development stage specific OsRLCK genes/targets for functional validation studies.
Collapse
Affiliation(s)
- Shubha Vij
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | | | | | | | | |
Collapse
|
39
|
An SH, Choi HW, Hwang IS, Hong JK, Hwang BK. A novel pepper membrane-located receptor-like protein gene CaMRP1 is required for disease susceptibility, methyl jasmonate insensitivity and salt tolerance. PLANT MOLECULAR BIOLOGY 2008; 67:519-533. [PMID: 18427932 DOI: 10.1007/s11103-008-9337-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 04/09/2008] [Indexed: 05/26/2023]
Abstract
Plant receptor proteins are involved in the signaling networks required for defense against pathogens. The novel pepper pathogen-induced gene CaMRP1 was isolated from pepper leaves infected with Xanthomonas campestris pv. vesicatoria (Xcv). This gene is predicted to encode a membrane-located receptor-like protein that has an N-terminal signal peptide and a C-terminal transmembrane helix. A CaMRP1-GFP fusion protein localized primarily to the plasma membrane of plant cells. Strong and early induction of CaMRP1 expression occurred following exposure of pepper plants to Xcv, Colletotricum coccodes, methyl jasmonate (MeJA) and wounding stress. Virus-induced gene silencing (VIGS) of CaMRP1 in pepper conferred enhanced basal resistance to Xcv infection, accompanied by induction of genes encoding basic PR1 (CaBPR1), defensin (CaDEF1) and SAR8.2 (CaSAR82A). In contrast, CaMRP1 overexpression (OX) in transgenic Arabidopsis plants resulted in increased disease susceptibility to Hyaloperonospora parasitica infection. Arabidopsis plants overexpressing CaMRP1 exhibited insensitivity to MeJA by causing reduced expression of MeJA-responsive genes. Overexpression also resulted in tolerance to NaCl and during salt stress, the expression of several abscisic acid-responsive genes was induced. Together, these results suggest that pepper CaMRP1 may belong to a new subfamily of membrane-located receptor-like proteins that regulate disease susceptibility, MeJA-insensitivity and salt tolerance.
Collapse
Affiliation(s)
- Soo Hyun An
- Laboratory of Molecular Plant Pathology, School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul 136-713, Republic of Korea
| | | | | | | | | |
Collapse
|
40
|
Sokol A, Kwiatkowska A, Jerzmanowski A, Prymakowska-Bosak M. Up-regulation of stress-inducible genes in tobacco and Arabidopsis cells in response to abiotic stresses and ABA treatment correlates with dynamic changes in histone H3 and H4 modifications. PLANTA 2007; 227:245-54. [PMID: 17721787 DOI: 10.1007/s00425-007-0612-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 08/03/2007] [Indexed: 05/16/2023]
Abstract
Animal cells react to mitogenic or stress stimuli by rapid up-regulation of immediate-early (IE) genes and a parallel increase in characteristic modifications of core histones: chromatin changes, collectively termed the nucleosomal response. With regard to plants little is known about the accompanying changes at the chromatin level. We have used tobacco BY-2 and Arabidopsis T87 cell lines to study the nucleosomal response of plant cells to high salinity, cold and exogenous abscisic acid (ABA). When in quiescent stage, both tobacco and Arabidopsis cells show the typical nucleosomal response to high salinity and cold stress, manifested by rapid transient up-regulation of histone H3 Ser-10 phosphorylation, immediately followed by transient up-regulation of H3 phosphoacetylation and histone H4 acetylation. For each of the studied stresses the observed nucleosomal response was strictly correlated with the induction of stress-type specific genes. The dynamics of histone modifications in BY-2 cells in response to exogenous ABA exhibited a more complex pattern than that evoked by the two abiotic stresses, probably due to superposition of the primary and secondary effects of ABA. A rapid increase in H3 Ser-10 phosphorylation was also observed in whole leaves subjected to high salinity; however, the rate of change in this modification was much slower than in cultured cells. Together, these results indicate that the quiescent BY-2 and T87 cell lines show a typical nucleosomal response to abiotic stresses and ABA treatment and may represent suitable models for the study of chromatin-mediated mechanisms of stress tolerance in plants.
Collapse
Affiliation(s)
- Agnieszka Sokol
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Pawinskiego 5A, 02-106, Warsaw, Poland
| | | | | | | |
Collapse
|
41
|
Cessna SG, Matsumoto TK, Lamb GN, Rice SJ, Hochstedler WW. The externally derived portion of the hyperosmotic shock-activated cytosolic calcium pulse mediates adaptation to ionic stress in suspension-cultured tobacco cells. JOURNAL OF PLANT PHYSIOLOGY 2007; 164:815-23. [PMID: 17240476 DOI: 10.1016/j.jplph.2006.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 11/16/2006] [Accepted: 11/27/2006] [Indexed: 05/13/2023]
Abstract
The influx of Ca(2+) into the cytosol has long been suggested to serve as a signaling intermediate in the acquisition of tolerance to hyperosmotic and/or salinity stresses. Here we use aequorin-transformed suspension-cultured tobacco cells to directly assess the role of cytosolic calcium (Ca(2+)(cyt)) signaling in salinity tolerance acquisition. Aequorin luminescence recordings and (45)Ca influx measurements using inhibitors of Ca(2+) influx (Gd(3+) and the Ca(2+)-selective chelator EGTA), and modulators of organellar Ca(2+) release (phospholipase C inhibitors U73122 or neomycin) demonstrate that hyperosmolarity, whether imposed by NaCl or by a non-ionic molecule sorbitol, induces a rapid (returning to baseline levels of Ca(2+) within 10 min) and complex Ca(2+)(cyt) pulse in tobacco cells, deriving both from Gd(3+)-sensitive externally derived Ca(2+) influx and from U73122- and neomycin-sensitive Ca(2+) release from an organelle. To determine whether each of the two components of this brief Ca(2+) signal regulate adaptation to hyperosmotic shock, the Ca(2+) pulse was modified by the addition of Gd(3+), U73122, neomycin, or excess Ca(2+), and then cells were treated with salt or sorbitol. After 10 min the cell culture medias were diluted with additional hyperosmotic media to reduce the toxic affects of the modulators, and the growth of cells was measured after 1 week. Gd(3+) treatment reduced growth in salt relative to control cells but not in sorbitol, and exposure to excess Ca(2+) increased growth in salt but not in sorbitol. In contrast, exposure to inhibitors of IP(3) formation had no effect on growth in salt or sorbitol. Therefore, although hyperosmotic treatment stimulates both Ca(2+) influx and Ca(2+) release from an internal Ca(2+) depot, only Ca(2+) influx has a measurable impact on ionic stress tolerance acquisition in tobacco cell suspensions. In contrast, osmoadaptation in these cells appears to occur independent of Ca(2+) signaling.
Collapse
Affiliation(s)
- Stephen G Cessna
- Departments of Biology and Chemistry, Eastern Mennonite University, 1200 Park Road, Harrisonburg, VA 22802, USA.
| | | | | | | | | |
Collapse
|
42
|
Novikova GV, Moshkov IE, Los DA. Protein sensors and transducers of cold and osmotic stress in cyanobacteria and plants. Mol Biol 2007. [DOI: 10.1134/s0026893307030089] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Vij S, Tyagi AK. Emerging trends in the functional genomics of the abiotic stress response in crop plants. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:361-80. [PMID: 17430544 DOI: 10.1111/j.1467-7652.2007.00239.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plants are exposed to different abiotic stresses, such as water deficit, high temperature, salinity, cold, heavy metals and mechanical wounding, under field conditions. It is estimated that such stress conditions can potentially reduce the yield of crop plants by more than 50%. Investigations of the physiological, biochemical and molecular aspects of stress tolerance have been conducted to unravel the intrinsic mechanisms developed during evolution to mitigate against stress by plants. Before the advent of the genomics era, researchers primarily used a gene-by-gene approach to decipher the function of the genes involved in the abiotic stress response. However, abiotic stress tolerance is a complex trait and, although large numbers of genes have been identified to be involved in the abiotic stress response, there remain large gaps in our understanding of the trait. The availability of the genome sequences of certain important plant species has enabled the use of strategies, such as genome-wide expression profiling, to identify the genes associated with the stress response, followed by the verification of gene function by the analysis of mutants and transgenics. Certain components of both abscisic acid-dependent and -independent cascades involved in the stress response have already been identified. Information originating from the genome-wide analysis of abiotic stress tolerance will help to provide an insight into the stress-responsive network(s), and may allow the modification of this network to reduce the loss caused by stress and to increase agricultural productivity.
Collapse
Affiliation(s)
- Shubha Vij
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | | |
Collapse
|
44
|
Zang X, Komatsu S. A proteomics approach for identifying osmotic-stress-related proteins in rice. PHYTOCHEMISTRY 2007; 68:426-37. [PMID: 17169384 DOI: 10.1016/j.phytochem.2006.11.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 09/08/2006] [Accepted: 11/02/2006] [Indexed: 05/13/2023]
Abstract
Osmotic stress can endanger the survival of plants. To investigate the mechanisms of how plants respond to osmotic stress, rice protein profiles from mannitol-treated plants, were monitored using a proteomics approach. Two-week-old rice seedlings were treated with 400mM mannitol for 48h. After separation of proteins from the basal part of leaf sheaths by two-dimensional polyacrylamide gel electrophoresis, 327 proteins were detected. The levels of 12 proteins increased and the levels of three proteins decreased with increasing concentration or duration, of mannitol treatment. Levels of a heat shock protein and a dnaK-type molecular chaperone were reduced under osmotic, cold, salt and drought stresses, and ABA treatment, whereas a 26S proteasome regulatory subunit was found to be responsive only to osmotic stress. Furthermore, proteins whose accumulation was sensitive to osmotic stress are present in an osmotic-tolerant cultivar. These results indicate that specific proteins expressed in the basal part of rice leaf sheaths show a coordinated response to cope with osmotic stress.
Collapse
Affiliation(s)
- Xin Zang
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-8602, Japan
| | | |
Collapse
|
45
|
|
46
|
Kodama Y, Sano H. Evolution of a basic helix-loop-helix protein from a transcriptional repressor to a plastid-resident regulatory factor: involvement in hypersensitive cell death in tobacco plants. J Biol Chem 2006; 281:35369-80. [PMID: 16966334 DOI: 10.1074/jbc.m604140200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The tobacco gene NtWIN4 (Nicotiana tabacum wound-induced clone 4) is transiently up-regulated in response not only to wounding but also to pathogen attack. NtWIN4 encodes a putative basic helix-loop-helix protein with an apparent molecular mass of 28 kDa that exhibited clear nuclear transcription repression activity in Dual-Luciferase assays. However, immunoblotting indicated the existence of a 17-kDa form of NtWIN4 localized exclusively in tobacco leaf chloroplasts. Subsequent peptide dissection analyses with green fluorescent protein fusions revealed that a polypeptide of 81 amino acids starting at position 13 from the N terminus is maximally necessary for this localization. Further fine dissection analysis strongly suggested that the protein actually begins at the second Met located at position 27, yielding a signal peptide of 67 amino acids. However, the last C-terminal 15 amino acids overlap with the conserved basic region critical for DNA binding, so NtWIN4 presumably does not function as a transcription factor in planta. Transgenic tobacco plants constitutively overexpressing NtWIN4 demonstrated mortality with abnormal features, including albinism, and transient expression upon agroinfiltration resulted in distinct necrosis with a sharp decrease in chlorophyll content, consistent with the phenomenon known as chlorosis. Transgenic RNA interference tobacco plants exhibited reduced hypersensitive cell death, showing delayed tissue necrosis upon pathogen infection. These results suggest that NtWIN4 arose by divergence, becoming a chloroplast-resident factor from a nuclear transcriptional repressor by obtaining a transit peptide sequence, and that, upon translocation, it interacts with chloroplast components to induce hypersensitive cell death through chloroplast disruption, thereby contributing to plant stress responses.
Collapse
Affiliation(s)
- Yutaka Kodama
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | | |
Collapse
|
47
|
Sreenivasulu N, Sopory SK, Kavi Kishor PB. Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 2006; 388:1-13. [PMID: 17134853 DOI: 10.1016/j.gene.2006.10.009] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 10/08/2006] [Accepted: 10/12/2006] [Indexed: 01/01/2023]
Abstract
Environmental constraints that include abiotic stress factors such as salt, drought, cold and extreme temperatures severely limit crop productivity. Improvement of crop plants with traits that confer tolerance to these stresses was practiced using traditional and modern breeding methods. Molecular breeding and genetic engineering contributed substantially to our understanding of the complexity of stress response. Mechanisms that operate signal perception, transduction and downstream regulatory factors are now being examined and an understanding of cellular pathways involved in abiotic stress responses provide valuable information on such responses. This review presents genomic-assisted methods which have helped to reveal complex regulatory networks controlling abiotic stress tolerance mechanisms by high-throughput expression profiling and gene inactivation techniques. Further, an account of stress-inducible regulatory genes which have been transferred into crop plants to enhance stress tolerance is discussed as possible modes of integrating information gained from functional genomics into knowledge-based breeding programs. In addition, we envision an integrative genomic and breeding approach to reveal developmental programs that enhance yield stability and improve grain quality under unfavorable environmental conditions of abiotic stresses.
Collapse
Affiliation(s)
- N Sreenivasulu
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany.
| | | | | |
Collapse
|
48
|
Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A 2006. [PMID: 16924117 DOI: 10.1073/pnas060488210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
Drought and salinity are major abiotic stresses to crop production. Here, we show that overexpression of stress responsive gene SNAC1 (STRESS-RESPONSIVE NAC 1) significantly enhances drought resistance in transgenic rice (22-34% higher seed setting than control) in the field under severe drought stress conditions at the reproductive stage while showing no phenotypic changes or yield penalty. The transgenic rice also shows significantly improved drought resistance and salt tolerance at the vegetative stage. Compared with WT, the transgenic rice are more sensitive to abscisic acid and lose water more slowly by closing more stomatal pores, yet display no significant difference in the rate of photosynthesis. SNAC1 is induced predominantly in guard cells by drought and encodes a NAM, ATAF, and CUC (NAC) transcription factor with transactivation activity. DNA chip analysis revealed that a large number of stress-related genes were up-regulated in the SNAC1-overexpressing rice plants. Our data suggest that SNAC1 holds promising utility in improving drought and salinity tolerance in rice.
Collapse
Affiliation(s)
- Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Wuhan 430070, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A 2006; 103:12987-92. [PMID: 16924117 PMCID: PMC1559740 DOI: 10.1073/pnas.0604882103] [Citation(s) in RCA: 824] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Drought and salinity are major abiotic stresses to crop production. Here, we show that overexpression of stress responsive gene SNAC1 (STRESS-RESPONSIVE NAC 1) significantly enhances drought resistance in transgenic rice (22-34% higher seed setting than control) in the field under severe drought stress conditions at the reproductive stage while showing no phenotypic changes or yield penalty. The transgenic rice also shows significantly improved drought resistance and salt tolerance at the vegetative stage. Compared with WT, the transgenic rice are more sensitive to abscisic acid and lose water more slowly by closing more stomatal pores, yet display no significant difference in the rate of photosynthesis. SNAC1 is induced predominantly in guard cells by drought and encodes a NAM, ATAF, and CUC (NAC) transcription factor with transactivation activity. DNA chip analysis revealed that a large number of stress-related genes were up-regulated in the SNAC1-overexpressing rice plants. Our data suggest that SNAC1 holds promising utility in improving drought and salinity tolerance in rice.
Collapse
Affiliation(s)
- Honghong Hu
- *National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan) and
| | - Mingqiu Dai
- *National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan) and
| | - Jialing Yao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Benze Xiao
- *National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan) and
| | - Xianghua Li
- *National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan) and
| | - Qifa Zhang
- *National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan) and
| | - Lizhong Xiong
- *National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan) and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
50
|
Ham BK, Park JM, Lee SB, Kim MJ, Lee IJ, Kim KJ, Kwon CS, Paek KH. Tobacco Tsip1, a DnaJ-type Zn finger protein, is recruited to and potentiates Tsi1-mediated transcriptional activation. THE PLANT CELL 2006; 18:2005-20. [PMID: 16844903 PMCID: PMC1533966 DOI: 10.1105/tpc.106.043158] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2006] [Revised: 04/08/2006] [Accepted: 06/20/2006] [Indexed: 05/10/2023]
Abstract
Tobacco stress-induced1 (Tsi1) is an ethylene-responsive-element binding protein/APETALA2-type transcription factor that plays an important role in both biotic and abiotic stress signaling pathways. We show that Tsi1-interacting protein1 (Tsip1), a DnaJ-type Zn finger protein, interacts with Tsi1 in vitro and in yeast (Saccharomyces cerevisiae). The transcript level of Tsip1 in tobacco (Nicotiana tabacum) increased upon treatment with salicylic acid (SA), ethylene, gibberellic acid, NaCl, and virus challenge. Tsip1 appeared to be physically associated with the chloroplast surface but dissociated from it after SA treatment. Tsip1 colocalized and coimmunoprecipitated with Tsi1 in plant cells following SA treatment. Tsip1 expression increased Tsi1-mediated transcription and was able to functionally compensate for loss of the Tsi1 transcriptional activation domain through a direct interaction with Tsi1. Transgenic plants simultaneously coexpressing Tsi1 and Tsip1 displayed stronger pathogen resistance and salt tolerance than did transgenic plants expressing either Tsi1 or Tsip1 alone. Concurrent with this, the expression of a subset of stress-related genes was induced in a cooperative manner in Tsi1/Tsip1 transgenic plants. These results together implied that Tsi1 recruits Tsip1 to the promoters of stress-related genes to potentiate Tsi1-mediated transcriptional activation.
Collapse
Affiliation(s)
- Byung-Kook Ham
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|