1
|
Savidge RA. Responses of isolated balsam-fir stem segments to exogenous ACC, IAA, and IBA. FORESTRY RESEARCH 2024; 4:e033. [PMID: 39524409 PMCID: PMC11524308 DOI: 10.48130/forres-0024-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 11/16/2024]
Abstract
In this investigation, the effects of exogenous indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), and 1-aminocyclopropane-1-carboxylic acid (ACC) on anatomical development within cultured segments of Abies balsamea (L.) Mill. were compared, using debudded and defoliated leaders produced in the preceding year as bioassay material. In stem apical regions, IAA promoted radial enlargement of pre-existing cortical resin ducts and attending parenchyma enlargement, whereas IBA promoted cell division and expansion of parenchyma on the outer edge of phloem without altering cortical duct shape. Cortical woody ducts, each partially surrounded by cambium, were observed as a novel but infrequent feature. A single cortical woody duct was spatially associated with each mature leaf as its vascular trace, and they were not encountered elsewhere in the cortex, nor were they induced to form in response to any hormone application. An unknown leaf factor induces the development of cortical woody ducts. Both IAA and IBA promoted cell division in the vascular cambium. The common cellular response at the interface between the latewood boundary and cambial zone was the radial expansion of primary-walled fusiform cambial cell derivatives with little if any ensuing tracheary element (TE) differentiation. Enhanced TE production at basal stem positions occurred when ACC was provided with IAA and/or IBA, and an IAA + IBA + ACC combination produced a basal stem response similar to that in untreated segments having intact leaves. The data support the conclusion that IAA, IBA, and ACC have distinct but complementary roles in the overall regulation of the types of cellular differentiation that contribute to cortex histogenesis and diameter growth of balsam-fir leaders.
Collapse
Affiliation(s)
- Rodney Arthur Savidge
- Independent researcher (retired professor), Fredericton, New Brunswick, E3B 4M6, Canada
| |
Collapse
|
2
|
Verma SK, Mittal S, Gayacharan, Wankhede DP, Parida SK, Chattopadhyay D, Prasad G, Mishra DC, Joshi DC, Singh M, Singh K, Singh AK. Transcriptome Analysis Reveals Key Pathways and Candidate Genes Controlling Seed Development and Size in Ricebean ( Vigna umbellata). Front Genet 2022; 12:791355. [PMID: 35126460 PMCID: PMC8815620 DOI: 10.3389/fgene.2021.791355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/23/2021] [Indexed: 11/27/2022] Open
Abstract
Ricebean (Vigna umbellata) is a lesser known pulse with well-recognized potential. Recently, it has emerged as a legume with endowed nutritional potential because of high concentration of quality protein and other vital nutrients in its seeds. However, the genes and pathways involved in regulating seed development and size are not understood in this crop. In our study, we analyzed the transcriptome of two genotypes with contrasting grain size (IC426787: large seeded and IC552985: small seeded) at two different time points, namely, 5 and 10 days post-anthesis (DPA). The bold seeded genotype across the time points (B5_B10) revealed 6,928 differentially expressed genes (DEGs), whereas the small seeded genotype across the time point (S5_S10) contributed to 14,544 DEGs. We have also identified several candidate genes for seed development-related traits like seed size and 100-seed weight. On the basis of similarity search and domain analysis, some candidate genes (PHO1, cytokinin dehydrogenase, A-type cytokinin, and ARR response negative regulator) related to 100-seed weight and seed size showed downregulation in the small seeded genotype. The MapMan and KEGG analysis confirmed that auxin and cytokinin pathways varied in both the contrasting genotypes and can therefore be the regulators of the seed size and other seed development-related traits in ricebeans. A total of 51 genes encoding SCF TIR1/AFB , Aux/IAA, ARFs, E3 ubiquitin transferase enzyme, and 26S proteasome showing distinct expression dynamics in bold and small genotypes were also identified. We have also validated randomly selected SSR markers in eight accessions of the Vigna species (V. umbellata: 6; Vigna radiata: 1; and Vigna mungo: 1). Cross-species transferability pattern of ricebean-derived SSR markers was higher in V. radiata (73.08%) than V. mungo (50%). To the best of our knowledge, this is the first transcriptomic study conducted in this crop to understand the molecular basis of any trait. It would provide us a comprehensive understanding of the complex transcriptome dynamics during the seed development and gene regulatory mechanism of the seed size determination in ricebeans.
Collapse
Affiliation(s)
| | - Shikha Mittal
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Gayacharan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | | | | | - Geeta Prasad
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | | | - Mohar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Kuldeep Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
3
|
Hemelíková N, Žukauskaitė A, Pospíšil T, Strnad M, Doležal K, Mik V. Caged Phytohormones: From Chemical Inactivation to Controlled Physiological Response. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12111-12125. [PMID: 34610745 DOI: 10.1021/acs.jafc.1c02018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plant hormones, also called phytohormones, are small signaling molecules regulating a wide range of growth and developmental processes. These unique compounds respond to both external (light, temperature, water, nutrition, or pathogen attack) and internal factors (e.g., age) and mediate signal transduction leading to gene expression with the aim of allowing plants to adapt to constantly changing environmental conditions. Within the regulation of biological processes, individual groups of phytohormones act mostly through a web of interconnected responses rather than linear pathways, making elucidation of their mode of action in living organisms quite challenging. To further progress with our knowledge, the development of novel tools for phytohormone research is required. Although plenty of small molecules targeting phytohormone metabolic or signaling pathways (agonists, antagonists, and inhibitors) and labeled or tagged (fluorescently, isotopically, or biotinylated) compounds have been produced, the control over them in vivo is lost at the time of their administration. Caged compounds, on the other hand, represent a new approach to the development of small organic substances for phytohormone research. The term "caged compounds" refers to light-sensitive probes with latent biological activity, where the active molecule can be freed using a light beam in a highly spatio/temporal-, amplitude-, or frequency-defined manner. This review summarizes the up-to-date development in the field of caged plant hormones. Research progress is arranged in chronological order for each phytohormone regardless of the cage compound formulation and bacterial/plant/animal cell applications. Several known drawbacks and possible directions for future research are highlighted.
Collapse
Affiliation(s)
- Noemi Hemelíková
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Asta Žukauskaitė
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Tomáš Pospíšil
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Karel Doležal
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Václav Mik
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| |
Collapse
|
4
|
Oosterbeek M, Lozano-Torres JL, Bakker J, Goverse A. Sedentary Plant-Parasitic Nematodes Alter Auxin Homeostasis via Multiple Strategies. FRONTIERS IN PLANT SCIENCE 2021; 12:668548. [PMID: 34122488 PMCID: PMC8193132 DOI: 10.3389/fpls.2021.668548] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Sedentary endoparasites such as cyst and root-knot nematodes infect many important food crops and are major agro-economical pests worldwide. These plant-parasitic nematodes exploit endogenous molecular and physiological pathways in the roots of their host to establish unique feeding structures. These structures function as highly active transfer cells and metabolic sinks and are essential for the parasites' growth and reproduction. Plant hormones like indole-3-acetic acid (IAA) are a fundamental component in the formation of these feeding complexes. However, their underlying molecular and biochemical mechanisms are still elusive despite recent advances in the field. This review presents a comprehensive overview of known functions of various auxins in plant-parasitic nematode infection sites, based on a systematic analysis of current literature. We evaluate multiple aspects involved in auxin homeostasis in plants, including anabolism, catabolism, transport, and signalling. From these analyses, a picture emerges that plant-parasitic nematodes have evolved multiple strategies to manipulate auxin homeostasis to establish a successful parasitic relationship with their host. Additionally, there appears to be a potential role for auxins other than IAA in plant-parasitic nematode infections that might be of interest to be further elucidated.
Collapse
|
5
|
Levernier N, Pouliquen O, Forterre Y. An Integrative Model of Plant Gravitropism Linking Statoliths Position and Auxin Transport. FRONTIERS IN PLANT SCIENCE 2021; 12:651928. [PMID: 33854523 PMCID: PMC8039511 DOI: 10.3389/fpls.2021.651928] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/03/2021] [Indexed: 05/10/2023]
Abstract
Gravity is a major cue for the proper growth and development of plants. The response of plants to gravity implies starch-filled plastids, the statoliths, which sediments at the bottom of the gravisensing cells, the statocytes. Statoliths are assumed to modify the transport of the growth hormone, auxin, by acting on specific auxin transporters, PIN proteins. However, the complete gravitropic signaling pathway from the intracellular signal associated to statoliths to the plant bending is still not well-understood. In this article, we build on recent experimental results showing that statoliths do not act as gravitational force sensor, but as position sensor, to develop a bottom-up theory of plant gravitropism. The main hypothesis of the model is that the presence of statoliths modifies PIN trafficking close to the cell membrane. This basic assumption, coupled with auxin transport and growth in an idealized tissue made of a one-dimensional array of cells, recovers several major features of the gravitropic response of plants. First, the model provides a new interpretation for the response of a plant to a steady stimulus, the so-called sine-law of plant gravitropism. Second, it predicts the existence of a gravity-independent memory process as observed recently in experiments studying the response to transient stimulus. The model suggests that the timescale of this process is associated to PIN turnover, calling for new experimental studies.
Collapse
|
6
|
Khadr A, Wang GL, Wang YH, Zhang RR, Wang XR, Xu ZS, Tian YS, Xiong AS. Effects of auxin (indole-3-butyric acid) on growth characteristics, lignification, and expression profiles of genes involved in lignin biosynthesis in carrot taproot. PeerJ 2020; 8:e10492. [PMID: 33354430 PMCID: PMC7731654 DOI: 10.7717/peerj.10492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/13/2020] [Indexed: 12/18/2022] Open
Abstract
Carrot is an important root vegetable crop abundant in bioactive compounds including carotenoids, vitamins, and dietary fibers. Carrot intake and its products are gradually growing owing to its high antioxidant activity. Auxins are a class of plant hormones that control many processes of plant growth and development. Yet, the effects of exogenous application of auxin on lignin biosynthesis and gene expression profiles of lignin-related genes in carrot taproot are still unclear. In order to investigate the effect of exogenous indole-3-butyric acid (IBA) on lignin-related gene profiles, lignin accumulation, anatomical structures and morphological characteristics in carrot taproots, carrots were treated with different concentrations of IBA (0, 50, 100, and 150 µM). The results showed that IBA application significantly improved the growth parameters of carrot. The 100 or 150 µM IBA treatment increased the number and area of xylem vessels, whereas transcript levels of lignin-related genes were restricted, resulting in a decline in lignin content in carrot taproots. The results indicate that taproot development and lignin accumulation may be influenced by the auxin levels within carrot plants.
Collapse
Affiliation(s)
- Ahmed Khadr
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Guang-Long Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Rong-Rong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xin-Rui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yong-Sheng Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
The Arabidopsis NRT1/PTR FAMILY protein NPF7.3/NRT1.5 is an indole-3-butyric acid transporter involved in root gravitropism. Proc Natl Acad Sci U S A 2020; 117:31500-31509. [PMID: 33219124 PMCID: PMC7733822 DOI: 10.1073/pnas.2013305117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Active membrane transport of plant hormones and their related compounds is an essential process that determines the distribution of the compounds within plant tissues and, hence, regulates various physiological events. Here, we report that the Arabidopsis NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY 7.3 (NPF7.3) protein functions as a transporter of indole-3-butyric acid (IBA), a precursor of the major endogenous auxin indole-3-acetic acid (IAA). When expressed in yeast, NPF7.3 mediated cellular IBA uptake. Loss-of-function npf7.3 mutants showed defective root gravitropism with reduced IBA levels and auxin responses. Nevertheless, the phenotype was restored by exogenous application of IAA but not by IBA treatment. NPF7.3 was expressed in pericycle cells and the root tip region including root cap cells of primary roots where the IBA-to-IAA conversion occurs. Our findings indicate that NPF7.3-mediated IBA uptake into specific cells is required for the generation of appropriate auxin gradients within root tissues.
Collapse
|
8
|
Zhang S, Tajima H, Nambara E, Blumwald E, Bassil E. Auxin Homeostasis and Distribution of the Auxin Efflux Carrier PIN2 Require Vacuolar NHX-Type Cation/H + Antiporter Activity. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1311. [PMID: 33023035 PMCID: PMC7601841 DOI: 10.3390/plants9101311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/17/2020] [Accepted: 09/29/2020] [Indexed: 11/24/2022]
Abstract
The Arabidopsis vacuolar Na+/H+ transporters (NHXs) are important regulators of intracellular pH, Na+ and K+ homeostasis and necessary for normal plant growth, development, and stress acclimation. Arabidopsis contains four vacuolar NHX isoforms known as AtNHX1 to AtNHX4. The quadruple knockout nhx1nhx2nhx3nhx4, lacking any vacuolar NHX-type antiporter activity, displayed auxin-related phenotypes including loss of apical dominance, reduced root growth, impaired gravitropism and less sensitivity to exogenous IAA and NAA, but not to 2,4-D. In nhx1nhx2nhx3nhx4, the abundance of the auxin efflux carrier PIN2, but not PIN1, was drastically reduced at the plasma membrane and was concomitant with an increase in PIN2 labeled intracellular vesicles. Intracellular trafficking to the vacuole was also delayed in the mutant. Measurements of free IAA content and imaging of the auxin sensor DII-Venus, suggest that auxin accumulates in root tips of nhx1nhx2nhx3nhx4. Collectively, our results indicate that vacuolar NHX dependent cation/H+ antiport activity is needed for proper auxin homeostasis, likely by affecting intracellular trafficking and distribution of the PIN2 efflux carrier.
Collapse
Affiliation(s)
- Shiqi Zhang
- Boyce Thompson Institute, Ithaca, NY 14850, USA;
| | - Hiromi Tajima
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (H.T.); (E.B.)
| | - Eiji Nambara
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 1A1, Canada;
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (H.T.); (E.B.)
| | - Elias Bassil
- Horticultural Sciences Department, Tropical Research and Education Center, University of Florida, Homestead, FL 33031, USA
| |
Collapse
|
9
|
Arieti RS, Staiger CJ. Auxin-induced actin cytoskeleton rearrangements require AUX1. THE NEW PHYTOLOGIST 2020; 226:441-459. [PMID: 31859367 PMCID: PMC7154765 DOI: 10.1111/nph.16382] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/10/2019] [Indexed: 05/06/2023]
Abstract
The actin cytoskeleton is required for cell expansion and implicated in cellular responses to the phytohormone auxin. However, the mechanisms that coordinate auxin signaling, cytoskeletal remodeling and cell expansion are poorly understood. Previous studies examined long-term actin cytoskeleton responses to auxin, but plants respond to auxin within minutes. Before this work, an extracellular auxin receptor - rather than the auxin transporter AUXIN RESISTANT 1 (AUX1) - was considered to precede auxin-induced cytoskeleton reorganization. In order to correlate actin array organization and dynamics with degree of cell expansion, quantitative imaging tools established baseline actin organization and illuminated individual filament behaviors in root epidermal cells under control conditions and after indole-3-acetic acid (IAA) application. We evaluated aux1 mutant actin organization responses to IAA and the membrane-permeable auxin 1-naphthylacetic acid (NAA). Cell length predicted actin organization and dynamics in control roots; short-term IAA treatments stimulated denser and more parallel, longitudinal arrays by inducing filament unbundling within minutes. Although AUX1 is necessary for full actin rearrangements in response to auxin, cytoplasmic auxin (i.e. NAA) stimulated a lesser response. Actin filaments became more 'organized' after IAA stopped elongation, refuting the hypothesis that 'more organized' actin arrays universally correlate with rapid growth. Short-term actin cytoskeleton response to auxin requires AUX1 and/or cytoplasmic auxin.
Collapse
Affiliation(s)
- Ruthie S. Arieti
- Department of Biological SciencesPurdue UniversityWest LafayetteIN47907‐2064USA
- Purdue University Interdisciplinary Life Sciences Graduate Program (PULSe)Purdue UniversityWest LafayetteIN47907USA
- Center for Plant BiologyPurdue UniversityWest LafayetteIN47907USA
| | - Christopher J. Staiger
- Department of Biological SciencesPurdue UniversityWest LafayetteIN47907‐2064USA
- Center for Plant BiologyPurdue UniversityWest LafayetteIN47907USA
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN47907USA
| |
Collapse
|
10
|
Nongmaithem S, Devulapalli S, Sreelakshmi Y, Sharma R. Is naphthylphthalamic acid a specific phytotropin? It elevates ethylene and alters metabolic homeostasis in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110358. [PMID: 31928666 DOI: 10.1016/j.plantsci.2019.110358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/17/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
In higher plants, phytohormone indole-3-acetic acid is characteristically transported from the apex towards the base of the plant, termed as polar auxin transport (PAT). Among the inhibitors blocking PAT, N-1-naphthylphthalamic acid (NPA) that targets ABCB transporters is most commonly used. NPA-treated light-grown Arabidopsis seedlings show severe inhibition of hypocotyl and root elongation. In light-grown tomato seedlings, NPA inhibited root growth, but contrary to Arabidopsis stimulated hypocotyl elongation. The NPA-stimulation of hypocotyl elongation was milder in blue, red, and far-red light-grown seedlings. The NPA-treatment stimulated emission of ethylene from the seedlings. The scrubbing of ethylene by mercuric perchlorate reduced NPA-stimulated hypocotyl elongation. NPA action on hypocotyl elongation was antagonized by 1-methylcyclopropene, an inhibitor of ethylene action. NPA-treated seedlings had reduced levels of indole-3-butyric acid and higher levels of zeatin in the shoots. NPA did not alter indole-3-acetic levels in shoots. The analysis of metabolic networks indicated that NPA-treatment induced moderate shifts in the networks compared to exogenous ethylene that induced a drastic shift in metabolic networks. Our results indicate that in addition to ethylene, NPA-stimulated hypocotyl elongation in tomato may also involve zeatin and indole-3- butyric acid. Our results indicate that NPA-mediated physiological responses may vary in a species-specific fashion.
Collapse
Affiliation(s)
- Sapana Nongmaithem
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Sameera Devulapalli
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rameshwar Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
11
|
Damodaran S, Strader LC. Indole 3-Butyric Acid Metabolism and Transport in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 10:851. [PMID: 31333697 PMCID: PMC6616111 DOI: 10.3389/fpls.2019.00851] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/13/2019] [Indexed: 05/11/2023]
Abstract
Auxin is a crucial phytohormone involved in multiple plant developmental processes. Spatiotemporal regulation of auxin levels is necessary to achieve development of organs in the proper place and at the proper time. These levels can be regulated by conversion of auxin [indole 3-acetic acid (IAA)] from its conjugated forms and its precursors. Indole 3-butyric acid (IBA) is an auxin precursor that is converted to IAA in a peroxisomal β-oxidation process. In Arabidopsis, altered IBA-to-IAA conversion leads to multiple plant defects, indicating that IBA contributes to auxin homeostasis in critical ways. Like IAA, IBA and its conjugates can be transported in plants, yet many IBA carriers still need to be identified. In this review, we discuss IBA transporters identified in Arabidopsis thus far, including the pleiotropic drug resistance (PDR) members of the G subfamily of ATP-binding cassette transporter (ABCG) family, the TRANSPORTER OF IBA1 (TOB1) member of the major facilitator superfamily (MFS) family and hypothesize other potential IBA carriers involved in plant development.
Collapse
Affiliation(s)
- Suresh Damodaran
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Lucia C. Strader
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
- Center for Science and Engineering Living Systems, Washington University in St. Louis, St. Louis, MO, United States
- Center for Engineering MechanoBiology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
12
|
Aryal B, Huynh J, Schneuwly J, Siffert A, Liu J, Alejandro S, Ludwig-Müller J, Martinoia E, Geisler M. ABCG36/PEN3/PDR8 Is an Exporter of the Auxin Precursor, Indole-3-Butyric Acid, and Involved in Auxin-Controlled Development. FRONTIERS IN PLANT SCIENCE 2019; 10:899. [PMID: 31354769 PMCID: PMC6629959 DOI: 10.3389/fpls.2019.00899] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/25/2019] [Indexed: 05/18/2023]
Abstract
The PDR-type ABCG transporter, ABCG36/PDR8/PEN3, is thought to be implicated in the export of a few structurally unrelated substrates, including the auxin precursor, indole-3-butyric acid (IBA), although a clear-cut proof of transport is lacking. An outward facing, lateral root (LR) location for ABCG36 fuelled speculations that it might secrete IBA into the rhizosphere. Here, we provide strong evidence that ABCG36 catalyzes the export of IBA - but not of indole-3-acetic acid - through the plasma membrane. ABCG36 seems to function redundantly with the closely related isoform ABCG37/PDR9/PIS1 in a negative control of rootward IBA transport in roots, which might be dampened by concerted, lateral IBA export. Analyses of single and double mutant phenotypes suggest that both ABCG36 and ABCG37 function cooperatively in auxin-controlled plant development. Both seem to possess a dual function in the control of auxin homeostasis in the root tip and long-range transport in the mature root correlating with non-polar and polar expression profiles in the LR cap and epidermis, respectively.
Collapse
Affiliation(s)
- Bibek Aryal
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - John Huynh
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jerôme Schneuwly
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Alexandra Siffert
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jie Liu
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | | | | | - Markus Geisler
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- *Correspondence: Markus Geisler,
| |
Collapse
|
13
|
Wexler S, Schayek H, Rajendar K, Tal I, Shani E, Meroz Y, Dobrovetsky R, Weinstain R. Characterizing gibberellin flow in planta using photocaged gibberellins. Chem Sci 2018; 10:1500-1505. [PMID: 30809367 PMCID: PMC6354844 DOI: 10.1039/c8sc04528c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022] Open
Abstract
Gibberellins (GAs) are ubiquitous plant hormones that coordinate central developmental and adaptive growth processes in plants. Accurate movement of GAs throughout the plant from their sources to their destination sites is emerging to be a highly regulated and directed process. We report on the development of novel photocaged gibberellins that, in combination with a genetically encoded GA-response marker, provide a unique platform to study GA movement at high-resolution, in real time and in living, intact plants. By applying this platform to the Arabidopsis thaliana endogenous bioactive gibberellin GA4, we measure kinetic parameters of its flow, such as decay length and velocity, in vivo.
Collapse
Affiliation(s)
- Shira Wexler
- School of Plant Sciences and Food Security , Faculty of Life Sciences , Tel Aviv University , Tel Aviv 69978 , Israel .
| | - Hilla Schayek
- School of Plant Sciences and Food Security , Faculty of Life Sciences , Tel Aviv University , Tel Aviv 69978 , Israel .
| | - Kandhikonda Rajendar
- School of Plant Sciences and Food Security , Faculty of Life Sciences , Tel Aviv University , Tel Aviv 69978 , Israel .
| | - Iris Tal
- School of Plant Sciences and Food Security , Faculty of Life Sciences , Tel Aviv University , Tel Aviv 69978 , Israel .
| | - Eilon Shani
- School of Plant Sciences and Food Security , Faculty of Life Sciences , Tel Aviv University , Tel Aviv 69978 , Israel .
| | - Yasmine Meroz
- School of Plant Sciences and Food Security , Faculty of Life Sciences , Tel Aviv University , Tel Aviv 69978 , Israel .
| | - Roman Dobrovetsky
- School of Chemistry , Raymond and Beverly Sackler Faculty of Exact Sciences , Tel Aviv University , Tel Aviv 69978 , Israel
| | - Roy Weinstain
- School of Plant Sciences and Food Security , Faculty of Life Sciences , Tel Aviv University , Tel Aviv 69978 , Israel .
| |
Collapse
|
14
|
Relative Contribution of PIN-Containing Secretory Vesicles and Plasma Membrane PINs to the Directed Auxin Transport: Theoretical Estimation. Int J Mol Sci 2018; 19:ijms19113566. [PMID: 30424546 PMCID: PMC6274947 DOI: 10.3390/ijms19113566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/02/2018] [Accepted: 11/04/2018] [Indexed: 12/17/2022] Open
Abstract
The intercellular transport of auxin is driven by PIN-formed (PIN) auxin efflux carriers. PINs are localized at the plasma membrane (PM) and on constitutively recycling endomembrane vesicles. Therefore, PINs can mediate auxin transport either by direct translocation across the PM or by pumping auxin into secretory vesicles (SVs), leading to its secretory release upon fusion with the PM. Which of these two mechanisms dominates is a matter of debate. Here, we addressed the issue with a mathematical modeling approach. We demonstrate that the efficiency of secretory transport depends on SV size, half-life of PINs on the PM, pH, exocytosis frequency and PIN density. 3D structured illumination microscopy (SIM) was used to determine PIN density on the PM. Combining this data with published values of the other parameters, we show that the transport activity of PINs in SVs would have to be at least 1000× greater than on the PM in order to produce a comparable macroscopic auxin transport. If both transport mechanisms operated simultaneously and PINs were equally active on SVs and PM, the contribution of secretion to the total auxin flux would be negligible. In conclusion, while secretory vesicle-mediated transport of auxin is an intriguing and theoretically possible model, it is unlikely to be a major mechanism of auxin transport in planta.
Collapse
|
15
|
Abidi SSA, Azim Y, Gupta AK, Pradeep CP. Cocrystals of indole-3-acetic acid and indole-3-butyric acid: Synthesis, structural characterization and Hirshfeld surface analysis. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.04.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Resistance from agar medium impacts the helical growth of Arabidopsis primary roots. J Mech Behav Biomed Mater 2018; 85:43-50. [PMID: 29852351 DOI: 10.1016/j.jmbbm.2018.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 01/31/2017] [Accepted: 05/09/2018] [Indexed: 10/14/2022]
Abstract
Agar is widely used in studies of root growth since it can be mixed at different concentrations to impact mechanical impedance. At high concentrations (1.2-1.5%), growth of Arabidopsis roots has been found to be wavy, but little research has explored this behavior based on a quantitative understanding of mechanical behavior. To this end, agar media with concentration ranging from 0.5% to 1.2% were prepared to produce gradient resistance during root penetration, and Young's moduli and penetrometer resistance were tested. Arabidopsis roots were then cultivated in these agar media with gradient stiffness. The result showed that Young's modulus increased linearly with the increase of concentration of agar media. For Arabidopsis primary roots, it was preferred to develop a helical pattern in agar media with concentration from 0.5% to 1.0%. As stiffness of agar increased, the percentage of helical roots and helix diameters in each agar medium declined; root lengths and auxin distributions showed variety. We demonstrate that the size of helical deformation decreases with agar stiffness as expected by theoretical analysis based on a combination of growth-induced mechanical buckling. In conclusion, the resistance from agar media impacts the properties of root helix, and helical roots growth is driven by growth force. Growth force and external mechanical forces contribute to root phenotypes in Arabidopsis.
Collapse
|
17
|
Frick EM, Strader LC. Roles for IBA-derived auxin in plant development. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:169-177. [PMID: 28992091 PMCID: PMC5853464 DOI: 10.1093/jxb/erx298] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/01/2017] [Indexed: 05/18/2023]
Abstract
The plant hormone auxin is a central regulator of plant growth and development. Because auxin plays critical roles in cell division and cell expansion, plants use a number of cellular mechanisms to regulate auxin levels and response. Among these mechanisms is regulated input from the auxin precursor indole-3-butyric acid (IBA) toward the pool of active auxin [indole-3-acetic acid (IAA)]. In this review, we cover the mechanisms of IBA transport and conversion, and discuss specific roles for IBA-derived auxin in driving certain developmental events. We further discuss multiple open questions remaining for the IBA field.
Collapse
Affiliation(s)
- Elizabeth M Frick
- NSF Science and Technology Center for Engineering Mechanobiology, Department of Biology, Washington University in St. Louis, USA
| | - Lucia C Strader
- NSF Science and Technology Center for Engineering Mechanobiology, Department of Biology, Washington University in St. Louis, USA
- Correspondence:
| |
Collapse
|
18
|
Pařízková B, Pernisová M, Novák O. What Has Been Seen Cannot Be Unseen-Detecting Auxin In Vivo. Int J Mol Sci 2017; 18:ijms18122736. [PMID: 29258197 PMCID: PMC5751337 DOI: 10.3390/ijms18122736] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 12/24/2022] Open
Abstract
Auxins mediate various processes that are involved in plant growth and development in response to specific environmental conditions. Its proper spatio-temporal distribution that is driven by polar auxin transport machinery plays a crucial role in the wide range of auxins physiological effects. Numbers of approaches have been developed to either directly or indirectly monitor auxin distribution in vivo in order to elucidate the basis of its precise regulation. Herein, we provide an updated list of valuable techniques used for monitoring auxins in plants, with their utilities and limitations. Because the spatial and temporal resolutions of the presented approaches are different, their combination may provide a comprehensive outcome of auxin distribution in diverse developmental processes.
Collapse
Affiliation(s)
- Barbora Pařízková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Markéta Pernisová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| |
Collapse
|
19
|
Park J, Lee Y, Martinoia E, Geisler M. Plant hormone transporters: what we know and what we would like to know. BMC Biol 2017; 15:93. [PMID: 29070024 PMCID: PMC5655956 DOI: 10.1186/s12915-017-0443-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Hormone transporters are crucial for plant hormone action, which is underlined by severe developmental and physiological impacts caused by their loss-of-function mutations. Here, we summarize recent knowledge on the individual roles of plant hormone transporters in local and long-distance transport. Our inventory reveals that many hormones are transported by members of distinct transporter classes, with an apparent dominance of the ATP-binding cassette (ABC) family and of the Nitrate transport1/Peptide transporter family (NPF). The current need to explore further hormone transporter regulation, their functional interaction, transport directionalities, and substrate specificities is briefly reviewed.
Collapse
Affiliation(s)
- Jiyoung Park
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0116, USA.
| | - Youngsook Lee
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, South Korea
| | - Enrico Martinoia
- Institute for Plant Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Markus Geisler
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.
| |
Collapse
|
20
|
Geisler M, Aryal B, di Donato M, Hao P. A Critical View on ABC Transporters and Their Interacting Partners in Auxin Transport. PLANT & CELL PHYSIOLOGY 2017; 58:1601-1614. [PMID: 29016918 DOI: 10.1093/pcp/pcx104] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/18/2017] [Indexed: 05/24/2023]
Abstract
Different subclasses of ATP-binding cassette (ABC) transporters have been implicated in the transport of native variants of the phytohormone auxin. Here, the putative, individual roles of key members belonging to the ABCB, ABCD and ABCG families, respectively, are highlighted and the knowledge of their assumed expression and transport routes is reviewed and compared with their mutant phenotypes. Protein-protein interactions between ABC transporters and regulatory components during auxin transport are summarized and their importance is critically discussed. There is a focus on the functional interaction between members of the ABCB family and the FKBP42, TWISTED DWARF1, acting as a chaperone during plasma membrane trafficking of ABCBs. Further, the mode and relevance of functional ABCB-PIN interactions is diagnostically re-evaluated. A new nomenclature describing precisely the most likely ABCB-PIN interaction scenarios is suggested. Finally, available tools for the detection and prediction of ABC transporter interactomes are summarized and the potential of future ABC transporter interactome maps is highlighted.
Collapse
Affiliation(s)
- Markus Geisler
- University of Fribourg, Department of Biology, CH-1700 Fribourg, Switzerland
| | - Bibek Aryal
- University of Fribourg, Department of Biology, CH-1700 Fribourg, Switzerland
| | - Martin di Donato
- University of Fribourg, Department of Biology, CH-1700 Fribourg, Switzerland
| | - Pengchao Hao
- University of Fribourg, Department of Biology, CH-1700 Fribourg, Switzerland
| |
Collapse
|
21
|
Qu X, Zhao Z, Tian Z. ERECTA Regulates Cell Elongation by Activating Auxin Biosynthesis in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2017; 8:1688. [PMID: 29021806 PMCID: PMC5623719 DOI: 10.3389/fpls.2017.01688] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/14/2017] [Indexed: 05/19/2023]
Abstract
The ERECTA family genes, ERECTA (ER), ERECTA-LIKE1 (ERL1), and ERECTA-LIKE2 (ERL2), encode leucine-rich repeat receptor-like kinases in Arabidopsis thaliana. Knocking out these three genes can cause severe phenotypes, which indicates that they play significant roles in plant growth and development. However, the molecular mechanism within remains unclear. Here we show that the short hypocotyl phenotypes of er erl1 erl2 mutants are mainly due to the defects of cell elongation rather than the cell division. In contrast, in the ERECTA overexpression transgenic plants, the hypocotyl length is increased with elongated cells. Moreover, we show that the er erl1 erl2 triple mutant contains a low level of auxin, and the expression levels of the key auxin biosynthesis genes are significantly reduced. Consistent with this observation, increasing exogenous or endogenous auxin levels could partially rescue the cell elongation defects of the er erl1 erl2 triple mutant. Therefore, our results provide a molecular basis for auxin mediated ERECTA control of the hypocotyl length in Arabidopsis thaliana.
Collapse
Affiliation(s)
| | - Zhong Zhao
- *Correspondence: Zhong Zhao, Zhaoxia Tian,
| | | |
Collapse
|
22
|
Genome-wide identification and expression profiling analysis of ZmPIN, ZmPILS, ZmLAX and ZmABCB auxin transporter gene families in maize (Zea mays L.) under various abiotic stresses. PLoS One 2015; 10:e0118751. [PMID: 25742625 PMCID: PMC4351008 DOI: 10.1371/journal.pone.0118751] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/06/2015] [Indexed: 11/30/2022] Open
Abstract
The auxin influx carriers auxin resistant 1/like aux 1 (AUX/LAX), efflux carriers pin-formed (PIN) (together with PIN-like proteins) and efflux/conditional P-glycoprotein (ABCB) are major protein families involved in auxin polar transport. However, how they function in responses to exogenous auxin and abiotic stresses in maize is largely unknown. In this work, the latest updated maize (Zea mays L.) reference genome sequence was used to characterize and analyze the ZmLAX, ZmPIN, ZmPILS and ZmABCB family genes from maize. The results showed that five ZmLAXs, fifteen ZmPINs, nine ZmPILSs and thirty-five ZmABCBs were mapped on all ten maize chromosomes. Highly diversified gene structures, nonconservative transmembrane helices and tissue-specific expression patterns suggested the possibility of function diversification for these genes. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze the expression patterns of ZmLAX, ZmPIN, ZmPILS and ZmABCB genes under exogenous auxin and different environmental stresses. The expression levels of most ZmPIN, ZmPILS, ZmLAX and ZmABCB genes were induced in shoots and were reduced in roots by various abiotic stresses (drought, salt and cold stresses). The opposite expression response patterns indicated the dynamic auxin transport between shoots and roots under abiotic stresses. Analysis of the expression patterns of ZmPIN, ZmPILS, ZmLAX and ZmABCB genes under drought, salt and cold treatment may help us to understand the possible roles of maize auxin transporter genes in responses and tolerance to environmental stresses.
Collapse
|
23
|
Abstract
Long before its chemical identity was known, the phytohormone auxin was postulated to regulate plant growth. In the late 1800s, Sachs hypothesized that plant growth regulators, present in small amounts, move differentially throughout the plant to regulate growth. Concurrently, Charles Darwin and Francis Darwin were discovering that light and gravity were perceived by the tips of shoots and roots and that the stimulus was transmitted to other tissues, which underwent a growth response. These ideas were improved upon by Boysen-Jensen and Paál and were later developed into the Cholodny-Went hypothesis that tropisms were caused by the asymmetric distribution of a growth-promoting substance. These observations led to many efforts to identify this elusive growth-promoting substance, which we now know as auxin. In this review of auxin field advances over the past century, we start with a seminal paper by Kenneth Thimann and Charles Schneider titled "The relative activities of different auxins" from the American Journal of Botany, in which they compare the growth altering properties of several auxinic compounds. From this point, we explore the modern molecular understanding of auxin-including its biosynthesis, transport, and perception. Finally, we end this review with a discussion of outstanding questions and future directions in the auxin field. Over the past 100 yr, much of our progress in understanding auxin biology has relied on the steady and collective advance of the field of auxin researchers; we expect that the next 100 yr of auxin research will likewise make many exciting advances.
Collapse
|
24
|
Hung CY, Umstead ML, Chen J, Holliday BM, Kittur FS, Henny RJ, Burkey KO, Xie J. Differential expression of a novel gene EaF82a in green and yellow sectors of variegated Epipremnum aureum leaves is related to uneven distribution of auxin. PHYSIOLOGIA PLANTARUM 2014; 152:749-62. [PMID: 24796240 DOI: 10.1111/ppl.12219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 02/26/2014] [Accepted: 03/24/2014] [Indexed: 06/03/2023]
Abstract
EaF82, a gene identified in previous studies of the variegated plant Epipremnum aureum, exhibited a unique expression pattern with greater transcript abundance in yellow sectors than green sectors of variegated leaves, but lower abundance in regenerated pale yellow plants than in green plants derived from leaf tissue culture. Studies of its full-length cDNA and promoter region revealed two members with only the EaF82a expressed. Immunoblotting confirmed that EaF82a encodes a 12 kDa protein and its accumulation consistent with its gene expression patterns in different color tissues. Transient expression of EaF82a-sGFP fusion proteins in protoplasts showed that EaF82a seems to be present in the cytosol as unidentified spots. Sequence motif search reveals a potential auxin responsive element in promoter region. Using transgenic Arabidopsis seedlings carrying EaF82a promoter driving the bacterial uidA (GUS) gene, an increased GUS activity was observed when IAA (indole-3-acetic acid) concentration was elevated. In E. aureum, EaF82a is more abundant at the site where axillary buds emerge and at the lower side of bending nodes where more IAA accumulates relative to the upper side. The measurement of endogenous IAA levels in different color tissues revealed the same pattern of IAA distribution as that of EaF82a expression, further supporting that EaF82a is an IAA responsive gene. EaF82a expression in etiolated transgenic Arabidopsis seedlings responded to IAA under the influence of light suggesting a microenvironment of uneven light condition affects the EaF82a transcript levels and protein accumulation in variegated leaves.
Collapse
Affiliation(s)
- Chiu-Yueh Hung
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, 27707, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Mendiondo GM, Medhurst A, van Roermund CW, Zhang X, Devonshire J, Scholefield D, Fernández J, Axcell B, Ramsay L, Waterham HR, Waugh R, Theodoulou FL, Holdsworth MJ. Barley has two peroxisomal ABC transporters with multiple functions in β-oxidation. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4833-47. [PMID: 24913629 PMCID: PMC4144768 DOI: 10.1093/jxb/eru243] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In oilseed plants, peroxisomal β-oxidation functions not only in lipid catabolism but also in jasmonate biosynthesis and metabolism of pro-auxins. Subfamily D ATP-binding cassette (ABC) transporters mediate import of β-oxidation substrates into the peroxisome, and the Arabidopsis ABCD protein, COMATOSE (CTS), is essential for this function. Here, the roles of peroxisomal ABCD transporters were investigated in barley, where the main storage compound is starch. Barley has two CTS homologues, designated HvABCD1 and HvABCD2, which are widely expressed and present in embryo and aleurone tissues during germination. Suppression of both genes in barley RNA interference (RNAi) lines indicated roles in metabolism of 2,4-dichlorophenoxybutyrate (2,4-DB) and indole butyric acid (IBA), jasmonate biosynthesis, and determination of grain size. Transformation of the Arabidopsis cts-1 null mutant with HvABCD1 and HvABCD2 confirmed these findings. HvABCD2 partially or completely complemented all tested phenotypes of cts-1. In contrast, HvABCD1 failed to complement the germination and establishment phenotypes of cts-1 but increased the sensitivity of hypocotyls to 100 μM IBA and partially complemented the seed size phenotype. HvABCD1 also partially complemented the yeast pxa1/pxa2Δ mutant for fatty acid β-oxidation. It is concluded that the core biochemical functions of peroxisomal ABC transporters are largely conserved between oilseeds and cereals but that their physiological roles and importance may differ.
Collapse
Affiliation(s)
- Guillermina M Mendiondo
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Anne Medhurst
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Carlo W van Roermund
- Laboratory of Genetic Metabolic Diseases, Academic Medical Centre, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Xuebin Zhang
- Biological Chemistry and Crop Protection Department, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Jean Devonshire
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Duncan Scholefield
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - José Fernández
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Barry Axcell
- SABMiller plc., SABMiller House, Church Street, West Woking, Surrey GU21 6HS, UK
| | - Luke Ramsay
- Division of Plant Sciences, College of life Sciences, University of Dundee and The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Hans R Waterham
- Laboratory of Genetic Metabolic Diseases, Academic Medical Centre, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Robbie Waugh
- Division of Plant Sciences, College of life Sciences, University of Dundee and The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Frederica L Theodoulou
- Biological Chemistry and Crop Protection Department, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Michael J Holdsworth
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| |
Collapse
|
26
|
Sokołowska K, Kizińska J, Szewczuk Z, Banasiak A. Auxin conjugated to fluorescent dyes--a tool for the analysis of auxin transport pathways. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:866-77. [PMID: 24397706 DOI: 10.1111/plb.12144] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 11/14/2013] [Indexed: 05/08/2023]
Abstract
Auxin is a small molecule involved in most processes related to plant growth and development. Its effect usually depends on the distribution in tissues and the formation of concentration gradients. Until now there has been no tool for the direct tracking of auxin transport at the cellular and tissue level; therefore the majority of studies have been based on various indirect methods. However, due to their various restrictions, relatively little is known about the relationship between various pathways of auxin transport and specific developmental processes. We present a new research tool: fluorescently labelled auxin in the form of a conjugate with two different fluorescent tracers, FITC and RITC, which allows direct observation of auxin transport in plant tissues. Chemical analysis and biological tests have shown that our conjugates have auxin-like biological activity and transport; therefore they can be used in all experimental systems as an alternative to IAA. In addition, the conjugates are a universal tool that can be applied in studies of all plant groups and species. The conjugation procedure presented in this paper can be adapted to other fluorescent dyes, which are constantly being improved. In our opinion, the conjugates greatly expand the possibilities of research concerning the role of auxin and its transport in different developmental processes in plants.
Collapse
Affiliation(s)
- K Sokołowska
- Department of Plant Developmental Biology, Institute of Experimental Biology, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | | | | | | |
Collapse
|
27
|
Ma Q, Robert S. Auxin biology revealed by small molecules. PHYSIOLOGIA PLANTARUM 2014; 151:25-42. [PMID: 24252105 DOI: 10.1111/ppl.12128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 05/08/2023]
Abstract
The plant hormone auxin regulates virtually every aspect of plant growth and development and unraveling its molecular and cellular modes of action is fundamental for plant biology research. Chemical genomics is the use of small molecules to modify protein functions. This approach currently rises as a powerful technology for basic research. Small compounds with auxin-like activities or affecting auxin-mediated biological processes have been widely used in auxin research. They can serve as a tool complementary to genetic and genomic methods, facilitating the identification of an array of components modulating auxin metabolism, transport and signaling. The employment of high-throughput screening technologies combined with informatics-based chemical design and organic chemical synthesis has since yielded many novel small molecules with more instantaneous, precise and specific functionalities. By applying those small molecules, novel molecular targets can be isolated to further understand and dissect auxin-related pathways and networks that otherwise are too complex to be elucidated only by gene-based methods. Here, we will review examples of recently characterized molecules used in auxin research, highlight the strategies of unraveling the mechanisms of these small molecules and discuss future perspectives of small molecule applications in auxin biology.
Collapse
Affiliation(s)
- Qian Ma
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | | |
Collapse
|
28
|
Orozco-Nunnelly DA, Muhammad D, Mezzich R, Lee BS, Jayathilaka L, Kaufman LS, Warpeha KM. Pirin1 (PRN1) is a multifunctional protein that regulates quercetin, and impacts specific light and UV responses in the seed-to-seedling transition of Arabidopsis thaliana. PLoS One 2014; 9:e93371. [PMID: 24705271 PMCID: PMC3976398 DOI: 10.1371/journal.pone.0093371] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 03/04/2014] [Indexed: 11/26/2022] Open
Abstract
Pirins are cupin-fold proteins, implicated in apoptosis and cellular stress in eukaryotic organisms. Pirin1 (PRN1) plays a role in seed germination and transcription of a light- and ABA-regulated gene under specific conditions in the model plant system Arabidopsis thaliana. Herein, we describe that PRN1 possesses previously unreported functions that can profoundly affect early growth, development, and stress responses. In vitro-translated PRN1 possesses quercetinase activity. When PRN1 was incubated with G-protein-α subunit (GPA1) in the inactive conformation (GDP-bound), quercetinase activity was observed. Quercetinase activity was not observed when PRN1 was incubated with GPA1 in the active form (GTP-bound). Dark-grown prn1 mutant seedlings produced more quercetin after UV (317 nm) induction, compared to levels observed in wild type (WT) seedlings. prn1 mutant seedlings survived a dose of high-energy UV (254 nm) radiation that killed WT seedlings. prn1 mutant seedlings grown for 3 days in continuous white light display disoriented hypocotyl growth compared to WT, but hypocotyls of dark-grown prn1 seedlings appeared like WT. prn1 mutant seedlings transformed with GFP constructs containing the native PRN1 promoter and full ORF (PRN1::PRN1-GFP) were restored to WT responses, in that they did not survive UV (254 nm), and there was no significant hypocotyl disorientation in response to white light. prn1 mutants transformed with PRN1::PRN1-GFP were observed by confocal microscopy, where expression in the cotyledon epidermis was largely localized to the nucleus, adjacent to the nucleus, and diffuse and punctate expression occurred within some cells. WT seedlings transformed with the 35S::PRN1-GFP construct exhibited widespread expression in the epidermis of the cotyledon, also with localization in the nucleus. PRN1 may play a critical role in cellular quercetin levels and influence light- or hormonal-directed early development.
Collapse
Affiliation(s)
- Danielle A. Orozco-Nunnelly
- Molecular, Cell and Developmental Group, Department of Biological Sciences, Department of Biological Sciences, University of Illinois at Chicago (UIC), Chicago, Illinois, United States of America
| | - DurreShahwar Muhammad
- Molecular, Cell and Developmental Group, Department of Biological Sciences, Department of Biological Sciences, University of Illinois at Chicago (UIC), Chicago, Illinois, United States of America
| | - Raquel Mezzich
- Molecular, Cell and Developmental Group, Department of Biological Sciences, Department of Biological Sciences, University of Illinois at Chicago (UIC), Chicago, Illinois, United States of America
| | - Bao-Shiang Lee
- Protein Research Laboratory, University of Illinois at Chicago (UIC), Chicago, Illinois, United States of America
| | - Lasanthi Jayathilaka
- Protein Research Laboratory, University of Illinois at Chicago (UIC), Chicago, Illinois, United States of America
| | - Lon S. Kaufman
- Molecular, Cell and Developmental Group, Department of Biological Sciences, Department of Biological Sciences, University of Illinois at Chicago (UIC), Chicago, Illinois, United States of America
| | - Katherine M. Warpeha
- Molecular, Cell and Developmental Group, Department of Biological Sciences, Department of Biological Sciences, University of Illinois at Chicago (UIC), Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
29
|
Seifertová D, Skůpa P, Rychtář J, Laňková M, Pařezová M, Dobrev PI, Hoyerová K, Petrášek J, Zažímalová E. Characterization of transmembrane auxin transport in Arabidopsis suspension-cultured cells. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:429-37. [PMID: 24594395 DOI: 10.1016/j.jplph.2013.09.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 09/24/2013] [Accepted: 09/28/2013] [Indexed: 05/21/2023]
Abstract
Polar auxin transport is a crucial process for control and coordination of plant development. Studies of auxin transport through plant tissues and organs showed that auxin is transported by a combination of phloem flow and the active, carrier-mediated cell-to-cell transport. Since plant organs and even tissues are too complex for determination of the kinetics of carrier-mediated auxin uptake and efflux on the cellular level, simplified models of cell suspension cultures are often used, and several tobacco cell lines have been established for auxin transport assays. However, there are very few data available on the specificity and kinetics of auxin transport across the plasma membrane for Arabidopsis thaliana suspension-cultured cells. In this report, the characteristics of carrier-mediated uptake (influx) and efflux for the native auxin indole-3-acetic acid and synthetic auxins, naphthalene-1-acetic and 2,4-dichlorophenoxyacetic acids (NAA and 2,4-D, respectively) in A. thaliana ecotype Landsberg erecta suspension-cultured cells (LE line) are provided. By auxin competition assays and inhibitor treatments, we show that, similarly to tobacco cells, uptake carriers have high affinity towards 2,4-D and that NAA is a good tool for studies of auxin efflux in LE cells. In contrast to tobacco cells, metabolic profiling showed that only a small proportion of NAA is metabolized in LE cells. These results show that the LE cell line is a useful experimental system for measurements of kinetics of auxin carriers on the cellular level that is complementary to tobacco cells.
Collapse
Affiliation(s)
- Daniela Seifertová
- Institute of Experimental Botany ASCR, Rozvojová 263, 165 02 Prague 6, Czech Republic.
| | - Petr Skůpa
- Institute of Experimental Botany ASCR, Rozvojová 263, 165 02 Prague 6, Czech Republic.
| | - Jan Rychtář
- Department of Mathematics and Statistics, The University of North Carolina at Greensboro, 130 Petty Building, NC 27403, USA.
| | - Martina Laňková
- Institute of Experimental Botany ASCR, Rozvojová 263, 165 02 Prague 6, Czech Republic.
| | - Markéta Pařezová
- Institute of Experimental Botany ASCR, Rozvojová 263, 165 02 Prague 6, Czech Republic.
| | - Petre I Dobrev
- Institute of Experimental Botany ASCR, Rozvojová 263, 165 02 Prague 6, Czech Republic.
| | - Klára Hoyerová
- Institute of Experimental Botany ASCR, Rozvojová 263, 165 02 Prague 6, Czech Republic.
| | - Jan Petrášek
- Institute of Experimental Botany ASCR, Rozvojová 263, 165 02 Prague 6, Czech Republic.
| | - Eva Zažímalová
- Institute of Experimental Botany ASCR, Rozvojová 263, 165 02 Prague 6, Czech Republic.
| |
Collapse
|
30
|
|
31
|
Simon S, Kubeš M, Baster P, Robert S, Dobrev PI, Friml J, Petrášek J, Zažímalová E. Defining the selectivity of processes along the auxin response chain: a study using auxin analogues. THE NEW PHYTOLOGIST 2013; 200:1034-48. [PMID: 23914741 DOI: 10.1111/nph.12437] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/25/2013] [Indexed: 05/08/2023]
Abstract
The mode of action of auxin is based on its non-uniform distribution within tissues and organs. Despite the wide use of several auxin analogues in research and agriculture, little is known about the specificity of different auxin-related transport and signalling processes towards these compounds. Using seedlings of Arabidopsis thaliana and suspension-cultured cells of Nicotiana tabacum (BY-2), the physiological activity of several auxin analogues was investigated, together with their capacity to induce auxin-dependent gene expression, to inhibit endocytosis and to be transported across the plasma membrane. This study shows that the specificity criteria for different auxin-related processes vary widely. Notably, the special behaviour of some synthetic auxin analogues suggests that they might be useful tools in investigations of the molecular mechanism of auxin action. Thus, due to their differential stimulatory effects on DR5 expression, indole-3-propionic (IPA) and 2,4,5-trichlorophenoxy acetic (2,4,5-T) acids can serve in studies of TRANSPORT INHIBITOR RESPONSE 1/AUXIN SIGNALLING F-BOX (TIR1/AFB)-mediated auxin signalling, and 5-fluoroindole-3-acetic acid (5-F-IAA) can help to discriminate between transcriptional and non-transcriptional pathways of auxin signalling. The results demonstrate that the major determinants for the auxin-like physiological potential of a particular compound are very complex and involve its chemical and metabolic stability, its ability to distribute in tissues in a polar manner and its activity towards auxin signalling machinery.
Collapse
Affiliation(s)
- Sibu Simon
- Institute of Experimental Botany, The Academy of Sciences of the Czech Republic, Rozvojová 263, 16502, Prague 6, Czech Republic; Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Genetics, Ghent University, 9052, Ghent, Belgium; Developmental and Cell Physiology of Plants, Institute of Science and Technology (IST Austria), 3400, Klosterneuburg, Austria
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Schlicht M, Ludwig-Müller J, Burbach C, Volkmann D, Baluska F. Indole-3-butyric acid induces lateral root formation via peroxisome-derived indole-3-acetic acid and nitric oxide. THE NEW PHYTOLOGIST 2013; 200:473-482. [PMID: 23795714 DOI: 10.1111/nph.12377] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/20/2013] [Indexed: 05/18/2023]
Abstract
Controlled plant growth requires regulation through a variety of signaling molecules, including steroids, peptides, radicals of oxygen and nitrogen, as well as the 'classical' phytohormone groups. Auxin is critical for the control of plant growth and also orchestrates many developmental processes, such as the formation of new roots. It modulates root architecture both slowly, through actions at the transcriptional level and, more rapidly, by mechanisms targeting primarily plasma membrane sensory systems and intracellular signaling pathways. The latter reactions use several second messengers, including Ca(2+) , nitric oxide (NO) and reactive oxygen species (ROS). Here, we investigated the different roles of two auxins, the major auxin indole-3-acetic acid (IAA) and another endogenous auxin indole-3-butyric acid (IBA), in the lateral root formation process of Arabidopsis and maize. This was mainly analyzed by different types of fluorescence microscopy and inhibitors of NO production. This study revealed that peroxisomal IBA to IAA conversion is followed by peroxisomal NO, which is important for IBA-induced lateral root formation. We conclude that peroxisomal NO emerges as a new player in auxin-induced root organogenesis. In particular, the spatially and temporally coordinated release of NO and IAA from peroxisomes is behind the strong promotion of lateral root formation via IBA.
Collapse
Affiliation(s)
- Markus Schlicht
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| | - Jutta Ludwig-Müller
- Institut für Botanik, Technische Universität Dresden, 01062, Dresden, Germany
| | - Christian Burbach
- Department of Plant Cell Biology IZMB, University of Bonn, 53115, Bonn, Germany
| | - Dieter Volkmann
- Department of Plant Cell Biology IZMB, University of Bonn, 53115, Bonn, Germany
| | - Frantisek Baluska
- Department of Plant Cell Biology IZMB, University of Bonn, 53115, Bonn, Germany
| |
Collapse
|
33
|
Cazzonelli CI, Vanstraelen M, Simon S, Yin K, Carron-Arthur A, Nisar N, Tarle G, Cuttriss AJ, Searle IR, Benkova E, Mathesius U, Masle J, Friml J, Pogson BJ. Role of the Arabidopsis PIN6 auxin transporter in auxin homeostasis and auxin-mediated development. PLoS One 2013; 8:e70069. [PMID: 23922907 PMCID: PMC3726503 DOI: 10.1371/journal.pone.0070069] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 06/15/2013] [Indexed: 01/11/2023] Open
Abstract
Plant-specific PIN-formed (PIN) efflux transporters for the plant hormone auxin are required for tissue-specific directional auxin transport and cellular auxin homeostasis. The Arabidopsis PIN protein family has been shown to play important roles in developmental processes such as embryogenesis, organogenesis, vascular tissue differentiation, root meristem patterning and tropic growth. Here we analyzed roles of the less characterised Arabidopsis PIN6 auxin transporter. PIN6 is auxin-inducible and is expressed during multiple auxin-regulated developmental processes. Loss of pin6 function interfered with primary root growth and lateral root development. Misexpression of PIN6 affected auxin transport and interfered with auxin homeostasis in other growth processes such as shoot apical dominance, lateral root primordia development, adventitious root formation, root hair outgrowth and root waving. These changes in auxin-regulated growth correlated with a reduction in total auxin transport as well as with an altered activity of DR5-GUS auxin response reporter. Overall, the data indicate that PIN6 regulates auxin homeostasis during plant development.
Collapse
Affiliation(s)
- Christopher I Cazzonelli
- Australian Research Council Centre of Excellence in Plant Energy Biology, College of Medicine, Biology and Environment, Research School of Biology, The Australian National University, Canberra, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sukumar P, Maloney GS, Muday GK. Localized induction of the ATP-binding cassette B19 auxin transporter enhances adventitious root formation in Arabidopsis. PLANT PHYSIOLOGY 2013; 162:1392-405. [PMID: 23677937 PMCID: PMC3707546 DOI: 10.1104/pp.113.217174] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/03/2013] [Indexed: 05/18/2023]
Abstract
Adventitious roots emerge from aerial plant tissues, and the induction of these roots is essential for clonal propagation of agriculturally important plant species. This process has received extensive study in horticultural species but much less focus in genetically tractable model species. We have explored the role of auxin transport in this process in Arabidopsis (Arabidopsis thaliana) seedlings in which adventitious root initiation was induced by excising roots from low-light-grown hypocotyls. Inhibition of auxin transport from the shoot apex abolishes adventitious root formation under these conditions. Root excision was accompanied by a rapid increase in radioactive indole-3-acetic acid (IAA) transport and its accumulation in the hypocotyl above the point of excision where adventitious roots emerge. Local increases in auxin-responsive gene expression were also observed above the site of excision using three auxin-responsive reporters. These changes in auxin accumulation preceded cell division events, monitored by a cyclin B1 reporter (pCYCB1;1:GUS), and adventitious root initiation. We examined excision-induced adventitious root formation in auxin influx and efflux mutants, including auxin insensitive1, pin-formed1 (pin1), pin2, pin3, and pin7, with the most profound reductions observed in ATP-binding cassette B19 (ABCB19). An ABCB19 overexpression line forms more adventitious roots than the wild type in intact seedlings. Examination of transcriptional and translational fusions between ABCB19 and green fluorescent protein indicates that excision locally induced the accumulation of ABCB19 transcript and protein that is temporally and spatially linked to local IAA accumulation leading to adventitious root formation. These experiments are consistent with localized synthesis of ABCB19 protein after hypocotyl excision leads to enhanced IAA transport and local IAA accumulation driving adventitious root formation.
Collapse
|
35
|
Korasick DA, Enders TA, Strader LC. Auxin biosynthesis and storage forms. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2541-55. [PMID: 23580748 PMCID: PMC3695655 DOI: 10.1093/jxb/ert080] [Citation(s) in RCA: 300] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The plant hormone auxin drives plant growth and morphogenesis. The levels and distribution of the active auxin indole-3-acetic acid (IAA) are tightly controlled through synthesis, inactivation, and transport. Many auxin precursors and modified auxin forms, used to regulate auxin homeostasis, have been identified; however, very little is known about the integration of multiple auxin biosynthesis and inactivation pathways. This review discusses the many ways auxin levels are regulated through biosynthesis, storage forms, and inactivation, and the potential roles modified auxins play in regulating the bioactive pool of auxin to affect plant growth and development.
Collapse
Affiliation(s)
- David A. Korasick
- Department of Biology, Washington University in St. Louis, St Louis, MO 63130, USA
| | - Tara A. Enders
- Department of Biology, Washington University in St. Louis, St Louis, MO 63130, USA
| | - Lucia C. Strader
- Department of Biology, Washington University in St. Louis, St Louis, MO 63130, USA
| |
Collapse
|
36
|
Jin SH, Ma XM, Han P, Wang B, Sun YG, Zhang GZ, Li YJ, Hou BK. UGT74D1 is a novel auxin glycosyltransferase from Arabidopsis thaliana. PLoS One 2013; 8:e61705. [PMID: 23613909 DOI: 10.1371/journal.pone.061705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 03/12/2013] [Indexed: 05/28/2023] Open
Abstract
Auxin is one type of phytohormones that plays important roles in nearly all aspects of plant growth and developmental processes. The glycosylation of auxins is considered to be an essential mechanism to control the level of active auxins. Thus, the identification of auxin glycosyltransferases is of great significance for further understanding the auxin regulation. In this study, we biochemically screened the group L of Arabidopsis thaliana glycosyltransferase superfamily for enzymatic activity toward auxins. UGT74D1 was identified to be a novel auxin glycosyltransferase. Through HPLC and LC-MS analysis of reaction products in vitro by testing eight substrates including auxins and other compounds, we found that UGT74D1 had a strong glucosylating activity toward indole-3-butyric acid [IBA], indole-3-propionic acid [IPA], indole-3-acetic acid [IAA] and naphthaleneacetic acid [NAA], catalyzing them to form corresponding glucose esters. Biochemical characterization showed that this enzyme had a maximum activity in HEPES buffer at pH 6.0 and 37°C. In addition, the enzymatic activity analysis of crude protein and the IBA metabolite analysis from transgenic Arabidopsis plants overexpressing UGT74D1 gene were also carried out. Experimental results indicated that over-production of the UGT74D1 in plants indeed led to increased level of the glucose conjugate of IBA. Moreover, UGT74D1 overexpression lines displayed curling leaf phenotype, suggesting a physiological role of UGT74D1 in affecting the activity of auxins. Our current data provide a new target gene for further genetic studies to understand the auxin regulation by glycosylation in plants.
Collapse
Affiliation(s)
- Shang-Hui Jin
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China, Jinan, Shandong Province, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Jin SH, Ma XM, Han P, Wang B, Sun YG, Zhang GZ, Li YJ, Hou BK. UGT74D1 is a novel auxin glycosyltransferase from Arabidopsis thaliana. PLoS One 2013; 8:e61705. [PMID: 23613909 PMCID: PMC3628222 DOI: 10.1371/journal.pone.0061705] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 03/12/2013] [Indexed: 01/14/2023] Open
Abstract
Auxin is one type of phytohormones that plays important roles in nearly all aspects of plant growth and developmental processes. The glycosylation of auxins is considered to be an essential mechanism to control the level of active auxins. Thus, the identification of auxin glycosyltransferases is of great significance for further understanding the auxin regulation. In this study, we biochemically screened the group L of Arabidopsis thaliana glycosyltransferase superfamily for enzymatic activity toward auxins. UGT74D1 was identified to be a novel auxin glycosyltransferase. Through HPLC and LC-MS analysis of reaction products in vitro by testing eight substrates including auxins and other compounds, we found that UGT74D1 had a strong glucosylating activity toward indole-3-butyric acid [IBA], indole-3-propionic acid [IPA], indole-3-acetic acid [IAA] and naphthaleneacetic acid [NAA], catalyzing them to form corresponding glucose esters. Biochemical characterization showed that this enzyme had a maximum activity in HEPES buffer at pH 6.0 and 37°C. In addition, the enzymatic activity analysis of crude protein and the IBA metabolite analysis from transgenic Arabidopsis plants overexpressing UGT74D1 gene were also carried out. Experimental results indicated that over-production of the UGT74D1 in plants indeed led to increased level of the glucose conjugate of IBA. Moreover, UGT74D1 overexpression lines displayed curling leaf phenotype, suggesting a physiological role of UGT74D1 in affecting the activity of auxins. Our current data provide a new target gene for further genetic studies to understand the auxin regulation by glycosylation in plants.
Collapse
Affiliation(s)
- Shang-Hui Jin
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China, Jinan, Shandong Province, P. R. China
- School of Life Science, Shandong University, Jinan, Shandong Province, P. R. China
| | - Xin-Mei Ma
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China, Jinan, Shandong Province, P. R. China
- School of Life Science, Shandong University, Jinan, Shandong Province, P. R. China
| | - Ping Han
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China, Jinan, Shandong Province, P. R. China
- School of Life Science, Shandong University, Jinan, Shandong Province, P. R. China
| | - Bo Wang
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China, Jinan, Shandong Province, P. R. China
- School of Life Science, Shandong University, Jinan, Shandong Province, P. R. China
| | - Yan-Guo Sun
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China, Jinan, Shandong Province, P. R. China
- School of Life Science, Shandong University, Jinan, Shandong Province, P. R. China
| | - Gui-Zhi Zhang
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China, Jinan, Shandong Province, P. R. China
- School of Life Science, Shandong University, Jinan, Shandong Province, P. R. China
| | - Yan-Jie Li
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China, Jinan, Shandong Province, P. R. China
- School of Life Science, Shandong University, Jinan, Shandong Province, P. R. China
| | - Bing-Kai Hou
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China, Jinan, Shandong Province, P. R. China
- School of Life Science, Shandong University, Jinan, Shandong Province, P. R. China
- * E-mail:
| |
Collapse
|
38
|
Li G, Li B, Dong G, Feng X, Kronzucker HJ, Shi W. Ammonium-induced shoot ethylene production is associated with the inhibition of lateral root formation in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1413-1425. [PMID: 23382554 DOI: 10.1093/jxb/ert019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Foliar NH4(+) exposure is linked to inhibition of lateral root (LR) formation. Here, the role of shoot ethylene in NH4(+)-induced inhibition of LR formation in Arabidopsis was investigated using wild-type and mutant lines that show either blocked ethylene signalling (etr1) or enhanced ethylene synthesis (eto1, xbat32). NH4(+) exposure of wild-type Arabidopsis led to pronounced inhibition of LR production chiefly in the distal root, and triggered ethylene evolution and enhanced activity of the ethylene reporter EBS:GUS in the shoot. It is shown that shoot contact with NH4(+) is necessary to stimulate shoot ethylene evolution. The ethylene antagonists Ag(+) and aminoethoxyvinylglycine (AVG) mitigated LR inhibition under NH4(+) treatment. The decrease in LR production was significantly greater for eto1-1 and xbat32 and significantly less for etr1-3. Enhanced shoot ethylene synthesis/signalling blocked recovery of LR production when auxin was applied in the presence of NH4(+) and negatively impacted shoot AUX1 expression. The findings highlight the important role of shoot ethylene evolution in NH4(+)-mediated inhibition of LR formation.
Collapse
Affiliation(s)
- Guangjie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing 210008, China
| | | | | | | | | | | |
Collapse
|
39
|
Remy E, Cabrito TR, Baster P, Batista RA, Teixeira MC, Friml J, Sá-Correia I, Duque P. A major facilitator superfamily transporter plays a dual role in polar auxin transport and drought stress tolerance in Arabidopsis. THE PLANT CELL 2013; 25:901-26. [PMID: 23524662 PMCID: PMC3634696 DOI: 10.1105/tpc.113.110353] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 02/01/2013] [Accepted: 03/05/2013] [Indexed: 05/18/2023]
Abstract
Many key aspects of plant development are regulated by the polarized transport of the phytohormone auxin. Cellular auxin efflux, the rate-limiting step in this process, has been shown to rely on the coordinated action of PIN-formed (PIN) and B-type ATP binding cassette (ABCB) carriers. Here, we report that polar auxin transport in the Arabidopsis thaliana root also requires the action of a Major Facilitator Superfamily (MFS) transporter, Zinc-Induced Facilitator-Like 1 (ZIFL1). Sequencing, promoter-reporter, and fluorescent protein fusion experiments indicate that the full-length ZIFL1.1 protein and a truncated splice isoform, ZIFL1.3, localize to the tonoplast of root cells and the plasma membrane of leaf stomatal guard cells, respectively. Using reverse genetics, we show that the ZIFL1.1 transporter regulates various root auxin-related processes, while the ZIFL1.3 isoform mediates drought tolerance by regulating stomatal closure. Auxin transport and immunolocalization assays demonstrate that ZIFL1.1 indirectly modulates cellular auxin efflux during shootward auxin transport at the root tip, likely by regulating plasma membrane PIN2 abundance. Finally, heterologous expression in yeast revealed that ZIFL1.1 and ZIFL1.3 share H(+)-coupled K(+) transport activity. Thus, by determining the subcellular and tissue distribution of two isoforms, alternative splicing dictates a dual function for the ZIFL1 transporter. We propose that this MFS carrier regulates stomatal movements and polar auxin transport by modulating potassium and proton fluxes in Arabidopsis cells.
Collapse
Affiliation(s)
- Estelle Remy
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Tânia R. Cabrito
- Institute for Biotechnology and BioEngineering, Center for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Technical University of Lisbon, 1049-001 Lisbon, Portugal
| | - Pawel Baster
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | | | - Miguel C. Teixeira
- Institute for Biotechnology and BioEngineering, Center for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Technical University of Lisbon, 1049-001 Lisbon, Portugal
| | - Jiri Friml
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Isabel Sá-Correia
- Institute for Biotechnology and BioEngineering, Center for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Technical University of Lisbon, 1049-001 Lisbon, Portugal
| | - Paula Duque
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| |
Collapse
|
40
|
|
41
|
da Costa CT, de Almeida MR, Ruedell CM, Schwambach J, Maraschin FS, Fett-Neto AG. When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings. FRONTIERS IN PLANT SCIENCE 2013; 4:133. [PMID: 23717317 PMCID: PMC3653114 DOI: 10.3389/fpls.2013.00133] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/21/2013] [Indexed: 05/18/2023]
Abstract
Adventitious rooting (AR) is a multifactorial response leading to new roots at the base of stem cuttings, and the establishment of a complete and autonomous plant. AR has two main phases: (a) induction, with a requirement for higher auxin concentration; (b) formation, inhibited by high auxin and in which anatomical changes take place. The first stages of this process in severed organs necessarily include wounding and water stress responses which may trigger hormonal changes that contribute to reprogram target cells that are competent to respond to rooting stimuli. At severance, the roles of jasmonate and abscisic acid are critical for wound response and perhaps sink strength establishment, although their negative roles on the cell cycle may inhibit root induction. Strigolactones may also inhibit AR. A reduced concentration of cytokinins in cuttings results from the separation of the root system, whose tips are a relevant source of these root induction inhibitors. The combined increased accumulation of basipetally transported auxins from the shoot apex at the cutting base is often sufficient for AR in easy-to-root species. The role of peroxidases and phenolic compounds in auxin catabolism may be critical at these early stages right after wounding. The events leading to AR strongly depend on mother plant nutritional status, both in terms of minerals and carbohydrates, as well as on sink establishment at cutting bases. Auxins play a central role in AR. Auxin transporters control auxin canalization to target cells. There, auxins act primarily through selective proteolysis and cell wall loosening, via their receptor proteins TIR1 (transport inhibitor response 1) and ABP1 (Auxin-Binding Protein 1). A complex microRNA circuitry is involved in the control of auxin response factors essential for gene expression in AR. After root establishment, new hormonal controls take place, with auxins being required at lower concentrations for root meristem maintenance and cytokinins needed for root tissue differentiation.
Collapse
Affiliation(s)
- Cibele T. da Costa
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Cibele T. da Costa and Márcia R. de Almeida have contributed equally to this work
| | - Márcia R. de Almeida
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Cibele T. da Costa and Márcia R. de Almeida have contributed equally to this work
| | - Carolina M. Ruedell
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Joseli Schwambach
- Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Felipe S. Maraschin
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Arthur G. Fett-Neto
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- *Correspondence: Arthur G. Fett-Neto, Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, P.O. Box 15005, Porto Alegre 91501-970, Rio Grande do Sul, Brazil. e-mail:
| |
Collapse
|
42
|
Chae K, Isaacs CG, Reeves PH, Maloney GS, Muday GK, Nagpal P, Reed JW. Arabidopsis SMALL AUXIN UP RNA63 promotes hypocotyl and stamen filament elongation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:684-97. [PMID: 22507274 DOI: 10.1111/j.1365-313x.2012.05024.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Auxin regulates plant growth and development in part by activating gene expression. Arabidopsis thaliana SMALL AUXIN UP RNAs (SAURs) are a family of early auxin-responsive genes with unknown functionality. Here, we show that transgenic plant lines expressing artificial microRNA constructs (aMIR-SAUR-A or -B) that target a SAUR subfamily (SAUR61-SAUR68 and SAUR75) had slightly reduced hypocotyl and stamen filament elongation. In contrast, transgenic plants expressing SAUR63:GFP or SAUR63:GUS fusions had long hypocotyls, petals and stamen filaments, suggesting that these protein fusions caused a gain of function. SAUR63:GFP and SAUR63:GUS seedlings also accumulated a higher level of basipetally transported auxin in the hypocotyl than did wild-type seedlings, and had wavy hypocotyls and twisted inflorescence stems. Mutations in auxin efflux carriers could partially suppress some SAUR63:GUS phenotypes. In contrast, SAUR63:HA plants had wild-type elongation and auxin transport. SAUR63:GFP protein had a longer half-life than SAUR63:HA. Fluorescence imaging and microsomal fractionation studies revealed that SAUR63:GFP was localized mainly in the plasma membrane, whereas SAUR63:HA was present in both soluble and membrane fractions. Low light conditions increased SAUR63:HA protein turnover rate. These results indicate that membrane-associated Arabidopsis SAUR63 promotes auxin-stimulated organ elongation.
Collapse
Affiliation(s)
- Keun Chae
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Muday GK, Rahman A, Binder BM. Auxin and ethylene: collaborators or competitors? TRENDS IN PLANT SCIENCE 2012; 17:181-95. [PMID: 22406007 DOI: 10.1016/j.tplants.2012.02.001] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/01/2012] [Accepted: 02/03/2012] [Indexed: 05/18/2023]
Abstract
The individual roles of auxin and ethylene in controlling the growth and development of young seedlings have been well studied. In recent years, these two hormones have been shown to act synergistically to control specific growth and developmental processes, such as root elongation and root hair formation, as well as antagonistically in other processes, such as lateral root formation and hypocotyl elongation. This review examines the growth and developmental processes that are regulated by crosstalk between these two hormones and explores the mechanistic basis for the regulation of these processes. The emerging trend from these experiments is that ethylene modulates auxin synthesis, transport, and signaling with unique targets and responses in a range of tissues to fine-tune seedling growth and development.
Collapse
Affiliation(s)
- Gloria K Muday
- Department of Biology, Wake Forest University, Winston-Salem, NC 27106, USA.
| | | | | |
Collapse
|
44
|
Liu X, Barkawi L, Gardner G, Cohen JD. Transport of indole-3-butyric acid and indole-3-acetic acid in Arabidopsis hypocotyls using stable isotope labeling. PLANT PHYSIOLOGY 2012; 158:1988-2000. [PMID: 22323783 PMCID: PMC3320201 DOI: 10.1104/pp.111.191288] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The polar transport of the natural auxins indole-3-butyric acid (IBA) and indole-3-acetic acid (IAA) has been described in Arabidopsis (Arabidopsis thaliana) hypocotyls using radioactive tracers. Because radioactive assays alone cannot distinguish IBA from its metabolites, the detected transport from applied [3H]IBA may have resulted from the transport of IBA metabolites, including IAA. To test this hypothesis, we used a mass spectrometry-based method to quantify the transport of IBA in Arabidopsis hypocotyls by following the movement of [13C1]IBA and the [13C1]IAA derived from [13C1]IBA. We also assayed [13C6]IAA transport in a parallel control experiment. We found that the amount of transported [13C1]IBA was dramatically lower than [13C6]IAA, and the IBA transport was not reduced by the auxin transport inhibitor N-1-naphthylphthalamic acid. Significant amounts of the applied [13C1]IBA were converted to [13C1]IAA during transport, but [13C1]IBA transport was independent of IBA-to-IAA conversion. We also found that most of the [13C1]IBA was converted to ester-linked [13C1]IBA at the apical end of hypocotyls, and ester-linked [13C1]IBA was also found in the basal end at a level higher than free [13C1]IBA. In contrast, most of the [13C6]IAA was converted to amide-linked [13C6]IAA at the apical end of hypocotyls, but very little conjugated [13C6]IAA was found in the basal end. Our results demonstrate that the polar transport of IBA is much lower than IAA in Arabidopsis hypocotyls, and the transport mechanism is distinct from IAA transport. These experiments also establish a method for quantifying the movement of small molecules in plants using stable isotope labeling.
Collapse
Affiliation(s)
- Xing Liu
- Plant Biological Sciences Graduate Program, Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota 55108, USA.
| | | | | | | |
Collapse
|
45
|
Liu X, Cohen JD, Gardner G. Low-fluence red light increases the transport and biosynthesis of auxin. PLANT PHYSIOLOGY 2011; 157:891-904. [PMID: 21807888 PMCID: PMC3192557 DOI: 10.1104/pp.111.181388] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In plants, light is an important environmental signal that induces photomorphogenesis and interacts with endogenous signals, including hormones. We found that light increased polar auxin transport in dark-grown Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum) hypocotyls. In tomato, this increase was induced by low-fluence red or blue light followed by 1 d of darkness. It was reduced in phyA, phyB1, and phyB2 tomato mutants and was reversed by far-red light applied immediately after the red or blue light exposure, suggesting that phytochrome is involved in this response. We further found that the free indole-3-acetic acid (IAA) level in hypocotyl regions below the hook was increased by red light, while the level of conjugated IAA was unchanged. Analysis of IAA synthesized from [¹³C]indole or [¹³C]tryptophan (Trp) revealed that both Trp-dependent and Trp-independent IAA biosynthesis were increased by low-fluence red light in the top section (meristem, cotyledons, and hook), and the Trp-independent pathway appears to become the primary route for IAA biosynthesis after red light exposure. IAA biosynthesis in tissues below the top section was not affected by red light, suggesting that the increase of free IAA in this region was due to increased transport of IAA from above. Our study provides a comprehensive view of light effects on the transport and biosynthesis of IAA, showing that red light increases both IAA biosynthesis in the top section and polar auxin transport in hypocotyls, leading to unchanged free IAA levels in the top section and increased free IAA levels in the lower hypocotyl regions.
Collapse
Affiliation(s)
- Xing Liu
- Plant Biological Sciences Graduate Program, Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota 55108, USA.
| | | | | |
Collapse
|
46
|
Vamerali T, Bandiera M, Hartley W, Carletti P, Mosca G. Assisted phytoremediation of mixed metal(loid)-polluted pyrite waste: effects of foliar and substrate IBA application on fodder radish. CHEMOSPHERE 2011; 84:213-9. [PMID: 21570105 DOI: 10.1016/j.chemosphere.2011.04.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 04/14/2011] [Accepted: 04/15/2011] [Indexed: 05/21/2023]
Abstract
Exogenous application of plant-growth promoting substances may potentially improve phytoremediation of metal-polluted substrates by increasing shoot and root growth. In a pot-based study, fodder radish (Raphanus sativus L. var. oleiformis Pers.) was grown in As-Zn-Cu-Co-Pb-contaminated pyrite waste, and treated with indolebutyric acid (IBA) either by foliar spraying (10 mgL(-1)), or by direct application of IBA to the substrate (0.1 and 1 mgkg(-1)) in association, or not, with foliar spraying. With the exception of foliar spraying, IBA reduced above-ground biomass, whilst direct application of IBA to the substrate surface reduced root biomass (-59%). Trace element concentrations were generally increased, but removals (mg per plant) greatly reduced with IBA application, together with greater metal leaching from the substrate. It is concluded that, in our case, IBA had a negative effect on plant growth and phytoextraction of trace elements, possibly due to unsuitable root indoleacetic acid concentration following soil IBA application, the direct chelating effect of IBA and the low microbial activity in the pyrite waste affecting its breakdown.
Collapse
Affiliation(s)
- Teofilo Vamerali
- Department of Environmental Sciences, University of Parma, Viale G.P. Usberti 11/A, 43100 Parma, Italy.
| | | | | | | | | |
Collapse
|
47
|
Lewis DR, Ramirez MV, Miller ND, Vallabhaneni P, Ray WK, Helm RF, Winkel BS, Muday GK. Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks. PLANT PHYSIOLOGY 2011; 156:144-64. [PMID: 21427279 PMCID: PMC3091047 DOI: 10.1104/pp.111.172502] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 03/19/2011] [Indexed: 05/18/2023]
Abstract
Auxin and ethylene are key regulators of plant growth and development, and thus the transcriptional networks that mediate responses to these hormones have been the subject of intense research. This study dissected the hormonal cross talk regulating the synthesis of flavonols and examined their impact on root growth and development. We analyzed the effects of auxin and an ethylene precursor on roots of wild-type and hormone-insensitive Arabidopsis (Arabidopsis thaliana) mutants at the transcript, protein, and metabolite levels at high spatial and temporal resolution. Indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) differentially increased flavonol pathway transcripts and flavonol accumulation, altering the relative abundance of quercetin and kaempferol. The IAA, but not ACC, response is lost in the transport inhibitor response1 (tir1) auxin receptor mutant, while ACC responses, but not IAA responses, are lost in ethylene insensitive2 (ein2) and ethylene resistant1 (etr1) ethylene signaling mutants. A kinetic analysis identified increases in transcripts encoding the transcriptional regulators MYB12, Transparent Testa Glabra1, and Production of Anthocyanin Pigment after hormone treatments, which preceded increases in transcripts encoding flavonoid biosynthetic enzymes. In addition, myb12 mutants were insensitive to the effects of auxin and ethylene on flavonol metabolism. The equivalent phenotypes for transparent testa4 (tt4), which makes no flavonols, and tt7, which makes kaempferol but not quercetin, showed that quercetin derivatives are the inhibitors of basipetal root auxin transport, gravitropism, and elongation growth. Collectively, these experiments demonstrate that auxin and ethylene regulate flavonol biosynthesis through distinct signaling networks involving TIR1 and EIN2/ETR1, respectively, both of which converge on MYB12. This study also provides new evidence that quercetin is the flavonol that modulates basipetal auxin transport.
Collapse
|
48
|
Strader LC, Bartel B. Transport and metabolism of the endogenous auxin precursor indole-3-butyric acid. MOLECULAR PLANT 2011; 4:477-86. [PMID: 21357648 PMCID: PMC3098716 DOI: 10.1093/mp/ssr006] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plant growth and morphogenesis depend on the levels and distribution of the plant hormone auxin. Plants tightly regulate cellular levels of the active auxin indole-3-acetic acid (IAA) through synthesis, inactivation, and transport. Although the transporters that move IAA into and out of cells are well characterized and play important roles in development, little is known about the transport of IAA precursors. In this review, we discuss the accumulating evidence suggesting that the IAA precursor indole-3-butyric acid (IBA) is transported independently of the characterized IAA transport machinery along with the recent identification of specific IBA efflux carriers and enzymes suggested to metabolize IBA. These studies have revealed important roles for IBA in maintaining IAA levels and distribution within the plant to support normal development.
Collapse
Affiliation(s)
| | - Bonnie Bartel
- To whom correspondence should be addressed. E-mail , fax 713-348-5154, tel. 713-348-5602
| |
Collapse
|
49
|
Simon S, Petrášek J. Why plants need more than one type of auxin. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:454-60. [PMID: 21421392 DOI: 10.1016/j.plantsci.2010.12.007] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 12/13/2010] [Accepted: 12/15/2010] [Indexed: 05/04/2023]
Abstract
The versatile functionality and physiological importance of the phytohormone auxin is a major focus of attention in contemporary plant science. Recent studies have substantially contributed to our understanding of the molecular mechanisms underlying the physiological role of auxin in plant development. The mechanism of auxin action includes both fast responses not involving gene expression, possibly mediated by Auxin Binding Protein 1 (ABP1), and slower responses requiring auxin-regulated gene expression mediated by F-box proteins. These two mechanisms of action have been described to varying degrees for the major endogenous auxin indole-3-acetic acid (IAA) and for the synthetic auxins 2,4-dichlorophenoxyacetic acid (2,4-D) and naphthalene-1-acetic acid (NAA). However, in addition to IAA, plants synthesize three other compounds that are commonly regarded as "endogenous auxins", namely, 4-chloroindole-3-acetic acid (4-Cl-IAA), indole-3-butyric acid (IBA) and phenylacetic acid (PAA). Although a spectrum of auxinic effects has been identified for all these as well as several other endogenous compounds, we remain largely ignorant of many aspects of their mechanisms of action and the extent to which they contribute to auxin-regulated plant development. Here, we briefly summarize the action of IBA, 4-Cl-IAA and PAA, and discuss the extent to which their action overlaps with that of IAA or results from their metabolic conversions to IAA. Other possible pathways for their action are considered. We present a scheme for homeostatic regulation of IAA levels that embraces other endogenous auxins in terms of the described mechanism of auxin action including its receptor and downstream signal transduction events.
Collapse
Affiliation(s)
- Sibu Simon
- Institute of Experimental Botany, ASCR, Rozvojová 263, 16502 Praha 6, Czech Republic
| | | |
Collapse
|
50
|
Yadav S, David A, Bhatla SC. Nitric oxide modulates specific steps of auxin-induced adventitious rooting in sunflower. PLANT SIGNALING & BEHAVIOR 2010; 5:1163-6. [PMID: 20948300 PMCID: PMC3115341 DOI: 10.4161/psb.5.10.12159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 04/23/2010] [Indexed: 05/19/2023]
Abstract
Present work on indole-3-acetic acid (IAA)-induced adventitious rooting in sunflower hypocotyl highlights a clear demarcation of nitric oxide (NO)-dependent and NO-independent roles of auxin in this developmental process. Of the three phases of adventitious rooting, induction is strictly auxin-dependent though initiation and extension are regulated by an interaction of IAA with NO. A vital role of auxin-efflux transporters (PIN) is also evident from 1-napthylphthalamic acid (NPA)-triggered suppression of adventitious roots (AR). Use of actin depolymerizing agent, Latrunculin B (Lat B), has demonstrated the necessity of functional actin filaments in auxin-induced AR response, possibly through its effect on actin-mediated recycling of auxin transporter proteins. Thus, evidence for a linkage between IAA, NO and actin during AR formation has been established.
Collapse
Affiliation(s)
- Sunita Yadav
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi, India
| | | | | |
Collapse
|