1
|
Yang X, Li X. Oncogenic role of RNA-binding protein GNL2 in glioma: Promotion of tumor development through enhancing protein synthesis. Oncol Lett 2024; 28:307. [PMID: 38779136 PMCID: PMC11110002 DOI: 10.3892/ol.2024.14440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/27/2024] [Indexed: 05/25/2024] Open
Abstract
RNA-binding proteins (RBPs) are aberrantly expressed in various diseases, including glioma. In the present study, the role and mechanism of RBPs in glioma were investigated. Differentially expressed genes (DEGs) in glioma were screened from public databases and overlapping genes between DEGs and RBPs were selected in a bioinformatics analysis to identify the hub gene. Next, evaluation of expression, survival analysis and cell experiments were performed to examine the impact of the hub gene on glioma. Through bioinformatics analysis, G protein nucleolar 2 (GNL2), programmed cell death 11 (PDCD11) and ribosomal protein S6 (RPS6) were identified as potential biomarkers in glioma prognosis and GNL2 was chosen as the hub gene for further investigation. GNL2 was increased in glioma tissues and related to poor survival outcomes. Cell experiments revealed that GNL2 knockdown inhibited glioma cell growth, migration and invasion. In addition, GNL2 was found to affect the overall protein synthesis of ribosomal protein L11 in glioma cells. In conclusion, GNL2, PDCD11 and RPS6 may serve as potential biomarkers in glioma prognosis. Importantly, GNL2 acts as an oncogene in glioma and it enhances protein synthesis to promote the development of brain glioma.
Collapse
Affiliation(s)
- Xudong Yang
- Department of Neurosurgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215008, P.R. China
| | - Xiangdong Li
- Department of Neurosurgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215008, P.R. China
| |
Collapse
|
2
|
Perdoux R, Barrada A, Boulaiz M, Garau C, Belbachir C, Lecampion C, Montané MH, Menand B. A drug-resistant mutation in plant target of rapamycin validates the specificity of ATP-competitive TOR inhibitors in vivo. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1344-1355. [PMID: 38011587 DOI: 10.1111/tpj.16564] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Kinases are major components of cellular signaling pathways, regulating key cellular activities through phosphorylation. Kinase inhibitors are efficient tools for studying kinase targets and functions, however assessing their kinase specificity in vivo is essential. The identification of resistant kinase mutants has been proposed to be the most convincing approach to achieve this goal. Here, we address this issue in plants via a pharmacogenetic screen for mutants resistant to the ATP-competitive TOR inhibitor AZD-8055. The eukaryotic TOR (Target of Rapamycin) kinase is emerging as a major hub controlling growth responses in plants largely thanks to the use of ATP-competitive inhibitors. We identified a dominant mutation in the DFG motif of the Arabidopsis TOR kinase domain that leads to very strong resistance to AZD-8055. This resistance was characterized by measuring root growth, photosystem II (PSII) activity in leaves and phosphorylation of YAK1 (Yet Another Kinase 1) and RPS6 (Ribosomal protein S6), a direct and an indirect target of TOR respectively. Using other ATP-competitive TOR inhibitors, we also show that the dominant mutation is particularly efficient for resistance to drugs structurally related to AZD-8055. Altogether, this proof-of-concept study demonstrates that a pharmacogenetic screen in Arabidopsis can be used to successfully identify the target of a kinase inhibitor in vivo and therefore to demonstrate inhibitor specificity. Thanks to the conservation of kinase families in eukaryotes, and the possibility of creating amino acid substitutions by genome editing, this work has great potential for extending studies on the evolution of signaling pathways in eukaryotes.
Collapse
Affiliation(s)
- Romain Perdoux
- Aix-Marseille Univ, CEA, CNRS, BIAM, LGBP Team, Marseille, France
| | - Adam Barrada
- Aix-Marseille Univ, CEA, CNRS, BIAM, LGBP Team, Marseille, France
| | - Manal Boulaiz
- Aix-Marseille Univ, CEA, CNRS, BIAM, LGBP Team, Marseille, France
| | - Camille Garau
- Aix-Marseille Univ, CEA, CNRS, BIAM, LGBP Team, Marseille, France
| | | | - Cécile Lecampion
- Aix-Marseille Univ, CEA, CNRS, BIAM, LGBP Team, Marseille, France
| | | | - Benoît Menand
- Aix-Marseille Univ, CEA, CNRS, BIAM, LGBP Team, Marseille, France
| |
Collapse
|
3
|
Gomaa AE, El Mounadi K, Parperides E, Garcia-Ruiz H. Cell Fractionation and the Identification of Host Proteins Involved in Plant-Virus Interactions. Pathogens 2024; 13:53. [PMID: 38251360 PMCID: PMC10819628 DOI: 10.3390/pathogens13010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Plant viruses depend on host cellular factors for their replication and movement. There are cellular proteins that change their localization and/or expression and have a proviral role or antiviral activity and interact with or target viral proteins. Identification of those proteins and their roles during infection is crucial for understanding plant-virus interactions and to design antiviral resistance in crops. Important host proteins have been identified using approaches such as tag-dependent immunoprecipitation or yeast two hybridization that require cloning individual proteins or the entire virus. However, the number of possible interactions between host and viral proteins is immense. Therefore, an alternative method is needed for proteome-wide identification of host proteins involved in host-virus interactions. Here, we present cell fractionation coupled with mass spectrometry as an option to identify protein-protein interactions between viruses and their hosts. This approach involves separating subcellular organelles using differential and/or gradient centrifugation from virus-free and virus-infected cells (1) followed by comparative analysis of the proteomic profiles obtained for each subcellular organelle via mass spectrometry (2). After biological validation, prospect host proteins with proviral or antiviral roles can be subject to fundamental studies in the context of basic biology to shed light on both virus replication and cellular processes. They can also be targeted via gene editing to develop virus-resistant crops.
Collapse
Affiliation(s)
- Amany E. Gomaa
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA (E.P.)
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Kaoutar El Mounadi
- Department of Biology, Kutztown University of Pennsylvania, Kutztown, PA 19530, USA
| | - Eric Parperides
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA (E.P.)
| | - Hernan Garcia-Ruiz
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA (E.P.)
| |
Collapse
|
4
|
Dasgupta A, Urquidi Camacho RA, Enganti R, Cho SK, Tucker LL, Torreverde JS, Abraham PE, von Arnim AG. A phosphorylation-deficient ribosomal protein eS6 is largely functional in Arabidopsis thaliana, rescuing mutant defects from global translation and gene expression to photosynthesis and growth. PLANT DIRECT 2024; 8:e566. [PMID: 38250458 PMCID: PMC10799217 DOI: 10.1002/pld3.566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/04/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
The eukaryote-specific ribosomal protein of the small subunit eS6 is phosphorylated through the target of rapamycin (TOR) kinase pathway. Although this phosphorylation event responds dynamically to environmental conditions and has been studied for over 50 years, its biochemical and physiological significance remains controversial and poorly understood. Here, we report data from Arabidopsis thaliana, which indicate that plants expressing only a phospho-deficient isoform of eS6 grow essentially normally under laboratory conditions. The eS6z (RPS6A) paralog of eS6 functionally rescued a double mutant in both rps6a and rps6b genes when expressed at approximately twice the wild-type dosage. A mutant isoform of eS6z lacking the major six phosphorylatable serine and threonine residues in its carboxyl-terminal tail also rescued the lethality, rosette growth, and polyribosome loading of the double mutant. This isoform also complemented many mutant phenotypes of rps6 that were newly characterized here, including photosynthetic efficiency, and most of the gene expression defects that were measured by transcriptomics and proteomics. However, compared with plants rescued with a phospho-enabled version of eS6z, the phospho-deficient seedlings retained a mild pointed-leaf phenotype, root growth was reduced, and certain cell cycle-related mRNAs and ribosome biogenesis proteins were misexpressed. The residual defects of the phospho-deficient seedlings could be understood as an incomplete rescue of the rps6 mutant defects. There was little or no evidence for gain-of-function defects. As previously published, the phospho-deficient eS6z also rescued the rps6a and rps6b single mutants; however, phosphorylation of the eS6y (RPS6B) paralog remained lower than predicted, further underscoring that plants can tolerate phospho-deficiency of eS6 well. Our data also yield new insights into how plants cope with mutations in essential, duplicated ribosomal protein isoforms.
Collapse
Affiliation(s)
- Anwesha Dasgupta
- Department of Biochemistry & Cellular and Molecular BiologyThe University of TennesseeKnoxvilleTennesseeUSA
| | | | - Ramya Enganti
- Department of Biochemistry & Cellular and Molecular BiologyThe University of TennesseeKnoxvilleTennesseeUSA
| | - Sung Ki Cho
- Department of Biochemistry & Cellular and Molecular BiologyThe University of TennesseeKnoxvilleTennesseeUSA
| | - Lindsey L. Tucker
- Department of Biochemistry & Cellular and Molecular BiologyThe University of TennesseeKnoxvilleTennesseeUSA
| | - John S. Torreverde
- Department of Biochemistry & Cellular and Molecular BiologyThe University of TennesseeKnoxvilleTennesseeUSA
| | - Paul E. Abraham
- Graduate School of Genome Science and TechnologyThe University of TennesseeKnoxvilleTennesseeUSA
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Albrecht G. von Arnim
- Department of Biochemistry & Cellular and Molecular BiologyThe University of TennesseeKnoxvilleTennesseeUSA
- Graduate School of Genome Science and TechnologyThe University of TennesseeKnoxvilleTennesseeUSA
| |
Collapse
|
5
|
Siodmak A, Martinez-Seidel F, Rayapuram N, Bazin J, Alhoraibi H, Gentry-Torfer D, Tabassum N, Sheikh AH, Kise J, Blilou I, Crespi M, Kopka J, Hirt H. Dynamics of ribosome composition and ribosomal protein phosphorylation in immune signaling in Arabidopsis thaliana. Nucleic Acids Res 2023; 51:11876-11892. [PMID: 37823590 PMCID: PMC10681734 DOI: 10.1093/nar/gkad827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
In plants, the detection of microbe-associated molecular patterns (MAMPs) induces primary innate immunity by the activation of mitogen-activated protein kinases (MAPKs). We show here that the MAMP-activated MAPK MPK6 not only modulates defense through transcriptional regulation but also via the ribosomal protein translation machinery. To understand the effects of MPK6 on ribosomes and their constituent ribosomal proteins (RPs), polysomes, monosomes and the phosphorylation status of the RPs, MAMP-treated WT and mpk6 mutant plants were analysed. MAMP-activation induced rapid changes in RP composition of monosomes, polysomes and in the 60S ribosomal subunit in an MPK6-specific manner. Phosphoproteome analysis showed that MAMP-activation of MPK6 regulates the phosphorylation status of the P-stalk ribosomal proteins by phosphorylation of RPP0 and the concomitant dephosphorylation of RPP1 and RPP2. These events coincide with a significant decrease in the abundance of ribosome-bound RPP0s, RPP1s and RPP3s in polysomes. The P-stalk is essential in regulating protein translation by recruiting elongation factors. Accordingly, we found that RPP0C mutant plants are compromised in basal resistance to Pseudomonas syringae infection. These data suggest that MAMP-induced defense also involves MPK6-induced regulation of P-stalk proteins, highlighting a new role of ribosomal regulation in plant innate immunity.
Collapse
Affiliation(s)
- Anna Siodmak
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Federico Martinez-Seidel
- Willmitzer Department, Max Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Naganand Rayapuram
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Jeremie Bazin
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France
| | - Hanna Alhoraibi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21551 Jeddah, Saudi Arabia
| | - Dione Gentry-Torfer
- Willmitzer Department, Max Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Naheed Tabassum
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Arsheed H Sheikh
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - José Kenyi González Kise
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Ikram Blilou
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Martin Crespi
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France
| | - Joachim Kopka
- Willmitzer Department, Max Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Heribert Hirt
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, 1030 Vienna, Austria
| |
Collapse
|
6
|
Bakshi A, Moin M, Gayatri MB, Reddy ABM, Datla R, Madhav MS, Kirti PB. Involvement of Target of Rapamycin (TOR) Signaling in the Regulation of Crosstalk between Ribosomal Protein Small Subunit 6 Kinase-1 (RPS6K-1) and Ribosomal Proteins. PLANTS (BASEL, SWITZERLAND) 2023; 12:176. [PMID: 36616305 PMCID: PMC9824793 DOI: 10.3390/plants12010176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The target of rapamycin (TOR) protein phosphorylates its downstream effector p70kDa ribosomal protein S6 kinases (S6K1) for ribosome biogenesis and translation initiation in eukaryotes. However, the molecular mechanism of TOR-S6K1-ribosomal protein (RP) signaling is not well understood in plants. In the present study, we report the transcriptional upregulation of ribosomal protein large and small subunit (RPL and RPS) genes in the previously established TOR overexpressing transgenic lines of rice (in Oryza sativa ssp. indica, variety BPT-5204, TR-2.24 and TR-15.1) and of Arabidopsis thaliana (in Col 0 ecotype, ATR-1.4.27 and ATR-3.7.32). The mRNA levels of RP genes from this study were compared with those previously available in transcriptomic datasets on the expression of RPs in relation to TOR inhibitor and in the TOR-RNAi lines of Arabidopsis thaliana. We further analyzed TOR activity, i.e., S6K1 phosphorylation in SALK lines of Arabidopsis with mutation in rpl6, rpl18, rpl23, rpl24 and rps28C, where the rpl18 mutant showed inactivation of S6K1 phosphorylation. We also predicted similar putative Ser/Thr phosphorylation sites for ribosomal S6 kinases (RSKs) in the RPs of Oryza sativa ssp. indica and Arabidopsis thaliana. The findings of this study indicate that the TOR pathway is possibly interlinked in a cyclic manner via the phosphorylation of S6K1 as a modulatory step for the regulation of RP function to switch 'on'/'off' the translational regulation for balanced plant growth.
Collapse
Affiliation(s)
- Achala Bakshi
- Indian Institute of Rice Research, Rajendranagar, Hyderabad 500030, Telangana, India
- Global Institute for Food Security, Saskatoon, SK S7N 0W9, Canada
| | - Mazahar Moin
- Indian Institute of Rice Research, Rajendranagar, Hyderabad 500030, Telangana, India
- Agri Biotech Foundation, PJTS Agricultural University Campus, Rajendranagar, Hyderabad 500030, Telangana, India
| | - Meher B. Gayatri
- Department of Animal Biology, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Aramati B. M. Reddy
- Department of Animal Biology, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Raju Datla
- Global Institute for Food Security, Saskatoon, SK S7N 0W9, Canada
| | - Maganti S. Madhav
- Indian Institute of Rice Research, Rajendranagar, Hyderabad 500030, Telangana, India
- Central Tobacco Research Institute, Rajahmundry 533105, Andhra Pradesh, India
| | - Pulugurtha B. Kirti
- Agri Biotech Foundation, PJTS Agricultural University Campus, Rajendranagar, Hyderabad 500030, Telangana, India
- Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
7
|
Kendrick R, Chotewutmontri P, Belcher S, Barkan A. Correlated retrograde and developmental regulons implicate multiple retrograde signals as coordinators of chloroplast development in maize. THE PLANT CELL 2022; 34:4897-4919. [PMID: 36073948 PMCID: PMC9709983 DOI: 10.1093/plcell/koac276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/02/2022] [Indexed: 05/09/2023]
Abstract
Signals emanating from chloroplasts influence nuclear gene expression, but roles of retrograde signals during chloroplast development are unclear. To address this gap, we analyzed transcriptomes of non-photosynthetic maize mutants and compared them to transcriptomes of stages of normal leaf development. The transcriptomes of two albino mutants lacking plastid ribosomes resembled transcriptomes at very early stages of normal leaf development, whereas the transcriptomes of two chlorotic mutants with thylakoid targeting or plastid transcription defects resembled those at a slightly later stage. We identified ∼2,700 differentially expressed genes, which fall into six major categories based on the polarity and mutant-specificity of the change. Downregulated genes were generally expressed late in normal development and were enriched in photosynthesis genes, whereas upregulated genes act early and were enriched for functions in chloroplast biogenesis and cytosolic translation. We showed further that target-of-rapamycin (TOR) signaling was elevated in mutants lacking plastid ribosomes and declined in concert with plastid ribosome buildup during normal leaf development. Our results implicate three plastid signals as coordinators of photosynthetic differentiation. One signal requires plastid ribosomes and activates photosynthesis genes. A second signal reflects attainment of chloroplast maturity and represses chloroplast biogenesis genes. A third signal, the consumption of nutrients by developing chloroplasts, represses TOR, promoting termination of cell proliferation during leaf development.
Collapse
Affiliation(s)
- Rennie Kendrick
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | | | - Susan Belcher
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
8
|
Helderman TA, Deurhof L, Bertran A, Richard MMS, Kormelink R, Prins M, Joosten MHAJ, van den Burg HA. Members of the ribosomal protein S6 (RPS6) family act as pro-viral factor for tomato spotted wilt orthotospovirus infectivity in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2022; 23:431-446. [PMID: 34913556 PMCID: PMC8828452 DOI: 10.1111/mpp.13169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 05/07/2023]
Abstract
To identify host factors for tomato spotted wilt orthotospovirus (TSWV), a virus-induced gene silencing (VIGS) screen using tobacco rattle virus (TRV) was performed on Nicotiana benthamiana for TSWV susceptibility. To rule out any negative effect on the plants' performance due to a double viral infection, the method was optimized to allow screening of hundreds of clones in a standardized fashion. To normalize the results obtained in and between experiments, a set of controls was developed to evaluate in a consist manner both VIGS efficacy and the level of TSWV resistance. Using this method, 4532 random clones of an N. benthamiana cDNA library were tested, resulting in five TRV clones that provided nearly complete resistance against TSWV. Here we report on one of these clones, of which the insert targets a small gene family coding for the ribosomal protein S6 (RPS6) that is part of the 40S ribosomal subunit. This RPS6 family is represented by three gene clades in the genome of Solanaceae family members, which were jointly important for TSWV susceptibility. Interestingly, RPS6 is a known host factor implicated in the replication of different plant RNA viruses, including the negative-stranded TSWV and the positive-stranded potato virus X.
Collapse
Affiliation(s)
- Tieme A. Helderman
- Molecular Plant PathologySwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamNetherlands
| | - Laurens Deurhof
- Laboratory of PhytopathologyDepartment of Plant SciencesWageningen UniversityWageningenNetherlands
| | - André Bertran
- Laboratory of VirologyDepartment of Plant SciencesWageningen UniversityWageningenNetherlands
| | - Manon M. S. Richard
- Molecular Plant PathologySwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamNetherlands
| | - Richard Kormelink
- Laboratory of VirologyDepartment of Plant SciencesWageningen UniversityWageningenNetherlands
| | - Marcel Prins
- Molecular Plant PathologySwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamNetherlands
- KeyGene N.V.WageningenNetherlands
| | | | - Harrold A. van den Burg
- Molecular Plant PathologySwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamNetherlands
| |
Collapse
|
9
|
Novel Translational and Phosphorylation Modification Regulation Mechanisms of Tomato ( Solanum lycopersicum) Fruit Ripening Revealed by Integrative Proteomics and Phosphoproteomics. Int J Mol Sci 2021; 22:ijms222111782. [PMID: 34769214 PMCID: PMC8584006 DOI: 10.3390/ijms222111782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/26/2022] Open
Abstract
The tomato is a research model for fruit-ripening, however, its fruit-ripening mechanism still needs more extensive and in-depth exploration. Here, using TMT and LC-MS, the proteome and phosphoproteome of AC++ (wild type) and rin (ripening-inhibitor) mutant fruits were studied to investigate the translation and post-translational regulation mechanisms of tomato fruit-ripening. A total of 6141 proteins and 4011 phosphorylation sites contained quantitative information. One-hundred proteins were identified in both omics’ profiles, which were mainly found in ethylene biosynthesis and signal transduction, photosynthesis regulation, carotenoid and flavonoid biosynthesis, chlorophyll degradation, ribosomal subunit expression changes, MAPK pathway, transcription factors and kinases. The affected protein levels were correlated with their corresponding gene transcript levels, such as NAC-NOR, MADS-RIN, IMA, TAGL1, MADS-MC and TDR4. Changes in the phosphorylation levels of NAC-NOR and IMA were involved in the regulation of tomato fruit-ripening. Although photosynthesis was inhibited, there were diverse primary and secondary metabolic pathways, such as glycolysis, fatty acid metabolism, vitamin metabolism and isoprenoid biosynthesis, regulated by phosphorylation. These data constitute a map of protein—protein phosphorylation in the regulation of tomato fruit-ripening, which lays the foundation for future in-depth study of the sophisticated molecular mechanisms of fruit-ripening and provide guidance for molecular breeding.
Collapse
|
10
|
Li Y, Zhang J, Sun H, Chen Y, Li W, Yu X, Zhao X, Zhang L, Yang J, Xin W, Jiang Y, Wang G, Shi W, Zhu D. lnc-Rps4l-encoded peptide RPS4XL regulates RPS6 phosphorylation and inhibits the proliferation of PASMCs caused by hypoxia. Mol Ther 2021; 29:1411-1424. [PMID: 33429084 PMCID: PMC8058491 DOI: 10.1016/j.ymthe.2021.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/29/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023] Open
Abstract
Pulmonary artery smooth muscle cells (PASMCs) proliferation caused by hypoxia is an important pathological process of pulmonary hypertension (PH). Prevention of PASMCs proliferation can effectively reduce PH mortality. Long non-coding RNAs (lncRNAs) are involved in the proliferation process. Recent evidence has demonstrated that functional peptides encoded by lncRNAs play important roles in cell pathophysiological process. Our previous study has demonstrated that lnc-Rps4l with high coding ability mediates the PASMCs proliferation under hypoxic conditions. We hypothesize in this study that a lnc-Rps4l-encoded peptide is involved in hypoxic-induced PASMCs proliferation. The presence of peptide 40S ribosomal protein S4 X isoform-like (RPS4XL) encoded by lnc-Rps4l in PASMCs under hypoxic conditions was confirmed by bioinformatics, immunofluorescence, and immunohistochemistry. Inhibition of proliferation by the peptide RPS4XL was demonstrated in hypoxic PASMCs by MTT, bromodeoxyuridine (BrdU) incorporation, and immunofluorescence assays. By using the bioinformatics, coimmunoprecipitation (coIP), and mass spectrometry, RPS6 was identified to interact with RPS4XL. Furthermore, lnc-Rps4l-encoded peptide RPS4XL inhibited the RPS6 process via binding to RPS6 and inhibiting RPS6 phosphorylation at p-RPS6 (Ser240+Ser244) phosphorylation site. These results systematically elucidate the role and regulatory network of Rps4l-encoded peptide RPS4XL in PASMCs proliferation. These discoveries provide potential targets for early diagnosis and a leading compound for treatment of hypoxic PH.
Collapse
Affiliation(s)
- Yiying Li
- Biopharmaceutical Key Laboratory of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province 150081, P.R. China
| | - Junting Zhang
- Biopharmaceutical Key Laboratory of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province 150081, P.R. China
| | - Hanliang Sun
- Biopharmaceutical Key Laboratory of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province 150081, P.R. China
| | - Yujie Chen
- Biopharmaceutical Key Laboratory of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province 150081, P.R. China
| | - Wendi Li
- College of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang Province 150081, P.R. China
| | - Xiufeng Yu
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, P.R. China
| | - Xijuan Zhao
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, P.R. China
| | - Lixin Zhang
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, P.R. China
| | - Jianfeng Yang
- College of Pharmacy, Harbin Medical University, Daqing 163319, P.R. China
| | - Wei Xin
- Biopharmaceutical Key Laboratory of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province 150081, P.R. China
| | - Yuan Jiang
- Biopharmaceutical Key Laboratory of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province 150081, P.R. China
| | - Guilin Wang
- College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, Heilongjiang Province 163319, P.R. China
| | - Wenbin Shi
- College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, Heilongjiang Province 163319, P.R. China
| | - Daling Zhu
- Biopharmaceutical Key Laboratory of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province 150081, P.R. China; Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, P.R. China.
| |
Collapse
|
11
|
Obomighie I, Lapenas K, Murphy BE, Bowles AMC, Bechtold U, Prischi F. The Role of Ribosomal Protein S6 Kinases in Plant Homeostasis. Front Mol Biosci 2021; 8:636560. [PMID: 33778006 PMCID: PMC7988200 DOI: 10.3389/fmolb.2021.636560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/11/2021] [Indexed: 01/11/2023] Open
Abstract
The p70 ribosomal S6 kinase (S6K) family is a group of highly conserved kinases in eukaryotes that regulates cell growth, cell proliferation, and stress response via modulating protein synthesis and ribosomal biogenesis. S6Ks are downstream effectors of the Target of Rapamycin (TOR) pathway, which connects nutrient and energy signaling to growth and homeostasis, under normal and stress conditions. The plant S6K family includes two isoforms, S6K1 and S6K2, which, despite their high level of sequence similarity, have distinct functions and regulation mechanisms. Significant advances on the characterization of human S6Ks have occurred in the past few years, while studies on plant S6Ks are scarce. In this article, we review expression and activation of the two S6K isoforms in plants and we discuss their roles in mediating responses to stresses and developmental cues.
Collapse
Affiliation(s)
| | - Kestutis Lapenas
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Billy E Murphy
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | | | - Ulrike Bechtold
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Filippo Prischi
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| |
Collapse
|
12
|
Zhigailov AV, Stanbekova GE, Beisenov DK, Nizkorodova AS, Polimbetova NS, Iskakov BK. Constructing the constitutively active ribosomal protein S6 kinase 2 from Arabidopsis thaliana (AtRPS6K2) and testing its activity in vitro. Vavilovskii Zhurnal Genet Selektsii 2021; 24:233-238. [PMID: 33659803 PMCID: PMC7904244 DOI: 10.18699/vj20.39-o] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ribosomal protein S6 (RPS6) is the only phosphorylatable protein of the eukaryotic 40S ribosomal subunit. Ribosomes with phosphorylated RPS6 can selectively translate 5'TOP-(5'-terminal oligopyrimidine)-containing mRNAs that encode most proteins of the translation apparatus. The study of translational control of 5'TOP-mRNAs, which are preferentially translated when RPS6 is phosphorylated and cease to be translated when RPS6 is de-phosphorylated, is particularly important. In Arabidopsis thaliana, AtRPS6 is phosphorylated by kinase AtRPS6K2, which should in turn be phosphorylated by upper level kinases (AtPDK1 - at serine (S) 296, AtTOR - at threonine (T) 455 and S437) for full activation. We have cloned AtRPS6K2 cDNA gene and carried out in vitro mutagenesis replacing codons encoding S296, S437 and T455 by triplets of phosphomimetic glutamic acid (E). After the expression of both natural and mutated cDNAs in Escherichia coli cells, two recombinant proteins were isolated: native AtRPS6K2 and presumably constitutively active AtRPS6K2(S296E, S437E, T455E). The activity of these variants was tested in vitro. Both kinases could phosphorylate wheat (Triticum aestivum L.) TaRPS6 as part of 40S ribosomal subunits isolated from wheat embryos, though the non-mutated variant had less activity than phosphomimetic one. The ability of recombinant non-mutated kinase to phosphorylate TaRPS6 can be explained by its phosphorylation by bacterial kinases during the expression and isolation steps. The phosphomimetically mutated AtRPS6K2(S296E, S437E, T455E) can serve as a tool to investigate preferential translation of 5'TOP-mRNAs in wheat germ cell-free system, in which most of 40S ribosomal subunits have phosphorylated TaRPS6. Besides, such an approach has a biotechnological application in producing genetically modified plants with increased biomass and productivity through stimulation of cell growth and division.
Collapse
Affiliation(s)
- A V Zhigailov
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - G E Stanbekova
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - D K Beisenov
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - A S Nizkorodova
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - N S Polimbetova
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - B K Iskakov
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| |
Collapse
|
13
|
Genome-Wide Analysis of Ribosomal Protein GhRPS6 and Its Role in Cotton Verticillium Wilt Resistance. Int J Mol Sci 2021; 22:ijms22041795. [PMID: 33670294 PMCID: PMC7918698 DOI: 10.3390/ijms22041795] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 01/02/2023] Open
Abstract
Verticillium wilt is threatening the world’s cotton production. The pathogenic fungus Verticillium dahliae can survive in the soil in the form of microsclerotia for a long time, colonize through the root of cotton, and invade into vascular bundles, causing yellowing and wilting of cotton leaves, and in serious cases, leading to plant death. Breeding resistant varieties is the most economical and effective method to control Verticillium wilt. In previous studies, proteomic analysis was carried out on different cotton varieties inoculated with V. dahliae strain Vd080. It was found that GhRPS6 was phosphorylated after inoculation, and the phosphorylation level in resistant cultivars was 1.5 times than that in susceptible cultivars. In this study, knockdown of GhRPS6 expression results in the reduction of SA and JA content, and suppresses a series of defensive response, enhancing cotton plants susceptibility to V. dahliae. Overexpression in Arabidopsis thaliana transgenic plants was found to be more resistant to V. dahliae. Further, serines at 237 and 240 were mutated to phenylalanine, respectively and jointly. The transgenic Arabidopsis plants demonstrated that seri-237 compromised the plant resistance to V. dahliae. Subcellular localization in Nicotiana benthamiana showed that GhRPS6 was localized in the nucleus. Additionally, the pathogen inoculation and phosphorylation site mutation did not change its localization. These results indicate that GhRPS6 is a potential molecular target for improving resistance to Verticillium wilt in cotton. This lays a foundation for breeding disease-resistant varieties.
Collapse
|
14
|
Panchy N, von Arnim AG, Hong T. Early Detection of Daylengths with a Feedforward Circuit Coregulated by Circadian and Diurnal Cycles. Biophys J 2020; 119:1878-1895. [PMID: 33086045 PMCID: PMC7677250 DOI: 10.1016/j.bpj.2020.09.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Light-entrained circadian clocks confer rhythmic dynamics of cellular and molecular activities to animals and plants. These intrinsic clocks allow stable anticipations to light-dark (diel) cycles. Many genes in the model plant Arabidopsis thaliana are regulated by diel cycles via pathways independent of the clock, suggesting that the integration of circadian and light signals is important for the fitness of plants. Previous studies of light-clock signal integrations have focused on moderate phase adjustment of the two signals. However, dynamical features of integrations across a broad range of phases remain elusive. Phosphorylation of ribosomal protein of the small subunit 6 (eS6), a ubiquitous post-translational modification across kingdoms, is influenced by the circadian clock and the light-dark (diel) cycle in an opposite manner. To understand this striking phenomenon and its underlying information processing capabilities, we built a mathematical model for the eS6 phosphorylation (eS6-P) control circuit. We found that the dynamics of eS6-P can be explained by a feedforward circuit with inputs from both circadian and diel cycles. Furthermore, the early day response of this circuit with dual rhythmic inputs is sensitive to the changes in daylength, including both transient and gradual changes observed in realistic light intervals across a year, because of weather and seasons. By analyzing published gene expression data, we found that the dynamics produced by the eS6-P control circuit can be observed in the expression profiles of a large number of genes. Our work provides mechanistic insights into the complex dynamics of a ribosomal protein, and it proposes a previously underappreciated function of the circadian clock, which not only prepares organisms for normal diel cycles but also helps to detect both transient and seasonal changes with a predictive power.
Collapse
Affiliation(s)
- Nicholas Panchy
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, Tennessee; National Institute for Mathematical and Biological Synthesis, Knoxville, Tennessee
| | - Albrecht G von Arnim
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, Tennessee
| | - Tian Hong
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, Tennessee; National Institute for Mathematical and Biological Synthesis, Knoxville, Tennessee.
| |
Collapse
|
15
|
Díaz-Granados VH, López-López JM, Flores-Sánchez J, Olguin-Alor R, Bedoya-López A, Dinkova TD, Salazar-Díaz K, Vázquez-Santana S, Vázquez-Ramos JM, Lara-Núñez A. Glucose modulates proliferation in root apical meristems via TOR in maize during germination. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:126-135. [PMID: 32745931 DOI: 10.1016/j.plaphy.2020.07.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/08/2020] [Accepted: 07/21/2020] [Indexed: 05/25/2023]
Abstract
The Glucose-Target of Rapamycin (Glc-TOR) pathway has been studied in different biological systems, but scarcely during early seed germination. This work examines its importance for cell proliferation, expression of cell cycle key genes, their protein levels, besides morphology and cellularization of the root apical meristem of maize (Zea mays) embryo axes during germination under the influence of two simple sugars, glucose and sucrose, and a specific inhibitor of TOR activity, AZD 8055. The two sugars promote germination similarly and to an extent, independently of TOR activity. However, the Glc-TOR pathway increases the number of cells committed to proliferation, increasing the expression of a cell cycle gene, ZmCycD4;2, a putative G1/S regulator. Also, Glc-TOR may have influence on the protein stability of another G1/S cyclin, ZmCycD3, but had no influence on ZmCDKA;1 or ZmKRP3 or their proteins. Results suggest that the Glc-TOR pathway participates in the regulation of proliferation through different mechanisms that, in the end, modify the timing of seed germination.
Collapse
Affiliation(s)
- Víctor Hugo Díaz-Granados
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Jorge Manuel López-López
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Jesús Flores-Sánchez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Roxana Olguin-Alor
- Laboratorio Nacional de Citometría de Flujo, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Andrea Bedoya-López
- Laboratorio Nacional de Citometría de Flujo, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Tzvetanka D Dinkova
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Kenia Salazar-Díaz
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Sonia Vázquez-Santana
- Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Jorge Manuel Vázquez-Ramos
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Aurora Lara-Núñez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
16
|
Bhattacharya O, Ortiz I, Walling LL. Methodology: an optimized, high-yield tomato leaf chloroplast isolation and stroma extraction protocol for proteomics analyses and identification of chloroplast co-localizing proteins. PLANT METHODS 2020; 16:131. [PMID: 32983250 PMCID: PMC7513546 DOI: 10.1186/s13007-020-00667-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/04/2020] [Indexed: 06/09/2023]
Abstract
BACKGROUND Chloroplasts are critical organelles that perceive and convey metabolic and stress signals to different cellular components, while remaining the seat of photosynthesis and a metabolic factory. The proteomes of intact leaves, chloroplasts, and suborganellar fractions of plastids have been evaluated in the model plant Arabidopsis, however fewer studies have characterized the proteomes of plastids in crops. Tomato (Solanum lycopersicum) is an important world-wide crop and a model system for the study of wounding, herbivory and fruit ripening. While significant advances have been made in understanding proteome and metabolome changes in fruit ripening, far less is known about the tomato chloroplast proteome or its subcompartments. RESULTS With the long-term goal of understanding chloroplast proteome dynamics in response to stress, we describe a high-yielding method to isolate intact tomato chloroplasts and stromal proteins for proteomic studies. The parameters that limit tomato chloroplast yields were identified and revised to increase yields. Compared to published data, our optimized method increased chloroplast yields by 6.7- and 4.3-fold relative to published spinach and Arabidopsis leaf protocols, respectively; furthermore, tomato stromal protein yields were up to 79-fold higher than Arabidopsis stromal proteins yields. We provide immunoblot evidence for the purity of the stromal proteome isolated using our enhanced methods. In addition, we leverage our nanoliquid chromatography tandem mass spectrometry (nanoLC-MS/MS) data to assess the quality of our stromal proteome. Using strict criteria, proteins detected by 1 peptide spectral match, by one peptide, or were sporadically detected were designated as low-level contaminating proteins. A set of 254 proteins that reproducibly co-isolated with the tomato chloroplast stroma were identified. The subcellular localization, frequency of detection, normalized spectral abundance, and functions of the co-isolating proteins are discussed. CONCLUSIONS Our optimized method for chloroplast isolation increased the yields of tomato chloroplasts eightfold enabling the proteomics analysis of the chloroplast stromal proteome. The set of 254 proteins that co-isolate with the chloroplast stroma provides opportunities for developing a better understanding of the extensive and dynamic interactions of chloroplasts with other organelles. These co-isolating proteins also have the potential for expanding our knowledge of proteins that are co-localized in multiple subcellular organelles.
Collapse
Affiliation(s)
- Oindrila Bhattacharya
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA 92521 USA
| | - Irma Ortiz
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA 92521 USA
| | - Linda L. Walling
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA 92521 USA
| |
Collapse
|
17
|
Pereyra CM, Aznar NR, Rodriguez MS, Salerno GL, Martínez-Noël GMA. Target of rapamycin signaling is tightly and differently regulated in the plant response under distinct abiotic stresses. PLANTA 2019; 251:21. [PMID: 31781934 DOI: 10.1007/s00425-019-03305-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
TOR signaling is finely regulated under diverse abiotic stresses and may be required for the plant response with a different time-course depending on the duration and nature of the stress. Target of rapamycin (TOR) signaling is a central regulator of growth and development in eukaryotic organisms. However, its regulation under stress conditions has not yet been elucidated. In Arabidopsis, we show that TOR transcripts and activity in planta are finely regulated within hours after the onset of salt, osmotic, cold and oxidative stress. The expression of genes encoding the partner proteins of the TOR complex, RAPTOR3G and LST8-1, is also regulated. Besides, the data indicate that TOR activity increases at some time during the adverse condition. Interestingly, in oxidative stress, the major TOR activity increment occurred transiently at the early phase of treatment, while in salt, osmotic and cold stress, it was around 1 day after the unfavorable condition was applied. Those results suggest that the TOR signaling has an important role in the plant response to an exposure to stress. Moreover, basal ROS (H2O2) levels and their modification under abiotic stresses were altered in TOR complex mutants. On the other hand, the root phenotypic analysis of the effects caused by the diverse abiotic stresses on TOR complex mutants revealed that they were differently affected, being in some cases less sensitive, than wild-type plants to long-term unfavorable conditions. Therefore, in this work, we demonstrated that TOR signaling is tightly regulated under abiotic stresses, at transcript and activity level, with different and specific time-course patterns according to the type of abiotic stress in Arabidopsis. Taking our results together, we propose that TOR signaling should be necessary during the plant stress response.
Collapse
Affiliation(s)
- Cintia M Pereyra
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Fundación para Investigaciones Biológicas Aplicadas (FIBA), Vieytes 3103, Mar Del Plata, Argentina
| | - Néstor R Aznar
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Fundación para Investigaciones Biológicas Aplicadas (FIBA), Vieytes 3103, Mar Del Plata, Argentina
| | - Marianela S Rodriguez
- Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino 60 cuadras km 5.5 X5020ICA, Córdoba, Argentina
- Unidad de Estudios Agropecuarios (UDEA- CONICET), Camino 60 cuadras km 5.5 X5020ICA, Córdoba, Argentina
| | - Graciela L Salerno
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Fundación para Investigaciones Biológicas Aplicadas (FIBA), Vieytes 3103, Mar Del Plata, Argentina
| | - Giselle M A Martínez-Noël
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Fundación para Investigaciones Biológicas Aplicadas (FIBA), Vieytes 3103, Mar Del Plata, Argentina.
| |
Collapse
|
18
|
Quilichini TD, Gao P, Pandey PK, Xiang D, Ren M, Datla R. A role for TOR signaling at every stage of plant life. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2285-2296. [PMID: 30911763 DOI: 10.1093/jxb/erz125] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/13/2019] [Indexed: 05/19/2023]
Abstract
From scientific advances in medical research to the plethora of anti-aging products available, our obsession with slowing the aging process and increasing life span is indisputable. A large research effort has been levied towards this perpetual search for the fountain of youth, yet the molecular mechanisms governing an organism's life span and the causes of aging are only beginning to emerge in animals and remain largely unanswered in plants. As one central pathway in eukaryotes controlling cell growth, development, and metabolism, the target of rapamycin (TOR) plays an evolutionarily conserved role in aging and the determination of life span. The modulation of TOR pathway components in a wide range of species, including the model plant Arabidopsis thaliana, has effects on life span. However, the mechanisms enabling some of the longest living species to endure, including trees that can live for millennia, have not been defined. Here, we introduce key TOR research from plant systems and discuss its implications in the plant life cycle and the broader field of life span research. TOR pathway functions in plant life cycle progression and life span determination are discussed, noting key differences from yeast and animal systems and the importance of 'omics' research for the continued progression of TOR signaling research.
Collapse
Affiliation(s)
| | - Peng Gao
- National Research Council of Canada, Saskatoon, SK, Canada
| | | | - Daoquan Xiang
- National Research Council of Canada, Saskatoon, SK, Canada
| | - Maozhi Ren
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Raju Datla
- National Research Council of Canada, Saskatoon, SK, Canada
| |
Collapse
|
19
|
Khan MA. Phosphorylation of translation initiation factor eIFiso4E promotes translation through enhanced binding to potyvirus VPg. J Biochem 2019; 165:167-176. [PMID: 30371907 DOI: 10.1093/jb/mvy091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/28/2018] [Indexed: 12/13/2022] Open
Abstract
Interactions of phosphorylated eIFiso4E binding to VPg as a function of temperature and ionic strength were assessed employing fluorescence spectroscopic. Phosphorylation increased the binding affinity ∼3.5-fold between VPg and eIFiso4E under equilibrium conditions. Binding affinity of VPg for eIFiso4Ep correlates with the ability to enhance in vitro protein synthesis. Addition of VPg and eIFiso4Ep together to Dep WGE enhances the translation for both uncapped and capped mRNA. However, capped mRNA translation was inhibited with addition of eIFiso4Ep alone in dep WGE, suggesting that phosphorylation prevents the cap binding and favours the VPg binding to promotes translation. Temperature dependence showed that the phosphorylated form of the eIFiso4E is preferred for complex formation. A van't Hoff analysis reveals that eIFiso4Ep binding to VPg was enthalpy driven (ΔH = -43.9 ± 0.3 kJ.mol-1) and entropy-opposed (ΔS = -4.3 ± 0.1 J.mol-1K-1). Phosphorylation increased the enthalpic contributions ∼33% for eIFiso4Ep-VPg complex. The thermodynamic values and ionic strength dependence of binding data suggesting that phosphorylation increased hydrogen-bonding and decreased hydrophobic interactions, which leads to more stable complex formation and favour efficient viral translation. Overall these data correlate well with the observed translational data and provide more detailed information on the translational strategy of potyviruses.
Collapse
Affiliation(s)
- Mateen A Khan
- Department of Chemistry & Biochemistry, Hunter College of the City University of New York, 695 Park Ave, New York, USA.,Department of Life Sciences, College of Science and General Studies, Alfaisal University, Takhasusi Street, P.O. Box-50927, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Abstract
This chapter describes a method of plant cytosolic ribosomes isolation typically used for further proteomic studies. Detailed description procedures including plant material disruption, various centrifugation steps, sucrose cushion centrifugation, and quality control of preparation are provided.
Collapse
|
21
|
Reynoso MA, Pauluzzi GC, Kajala K, Cabanlit S, Velasco J, Bazin J, Deal R, Sinha NR, Brady SM, Bailey-Serres J. Nuclear Transcriptomes at High Resolution Using Retooled INTACT. PLANT PHYSIOLOGY 2018; 176:270-281. [PMID: 28956755 PMCID: PMC5761756 DOI: 10.1104/pp.17.00688] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/26/2017] [Indexed: 05/03/2023]
Abstract
Isolated nuclei provide access to early steps in gene regulation involving chromatin as well as transcript production and processing. Here, we describe transfer of the isolation of nuclei from tagged specific cell types (INTACT) to the monocot rice (Oryza sativa L.). The purification of biotinylated nuclei was redesigned by replacing the outer nuclear-envelope-targeting domain of the nuclear tagging fusion (NTF) protein with an outer nuclear-envelope-anchored domain. This modified NTF was combined with codon-optimized Escherichia coli BirA in a single T-DNA construct. We also developed inexpensive methods for INTACT, T-DNA insertion mapping, and profiling of the complete nuclear transcriptome, including a ribosomal RNA degradation procedure that minimizes pre-ribosomal RNA (pre-rRNA) transcripts. A high-resolution comparison of nuclear and steady-state poly(A)+ transcript populations of seedling root tips confirmed the capture of pre-messenger RNA (pre-mRNA) and exposed distinctions in diversity and abundance of the nuclear and total transcriptomes. This retooled INTACT can enable high-resolution monitoring of the nuclear transcriptome and chromatin in specific cell types of rice and other species.
Collapse
Affiliation(s)
- Mauricio A Reynoso
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Germain C Pauluzzi
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Kaisa Kajala
- Department of Plant Biology, University of California, Davis, California 95616
- Genome Center, University of California, Davis, California 95616
| | - Sean Cabanlit
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Joel Velasco
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Jérémie Bazin
- IPS2, Institute of Plant Science-Paris Saclay (CNRS-INRA), University of Paris-Saclay, F-911405, Orsay, France
| | - Roger Deal
- Department of Biology, Emory University, Atlanta, Georgia 30322
| | - Neelima R Sinha
- Department of Plant Biology, University of California, Davis, California 95616
| | - Siobhan M Brady
- Department of Plant Biology, University of California, Davis, California 95616
- Genome Center, University of California, Davis, California 95616
| | - Julia Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| |
Collapse
|
22
|
Khan MA, Goss DJ. Kinetic analyses of phosphorylated and non-phosphorylated eIFiso4E binding to mRNA cap analogues. Int J Biol Macromol 2017; 106:387-395. [PMID: 28797816 DOI: 10.1016/j.ijbiomac.2017.08.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/24/2017] [Accepted: 08/04/2017] [Indexed: 01/23/2023]
Abstract
Phosphorylation of eukaryotic initiation factors was previously shown to interact with m7G cap and play an important role in the regulation of translation initiation of protein synthesis. To gain further insight into the phosphorylation process of plant protein synthesis, the kinetics of phosphorylated wheat eIFiso4E binding to m7G cap analogues were examined. Phosphorylation of wheat eIFiso4E showed similar kinetic effects to human eIF4E binding to m7-G cap. Phosphorylation of eIFiso4E decreased the kinetic rate (2-fold) and increased the dissociation rate (2-fold) as compared to non-phosphorylated eIFiso4E binding to both mono- and di-nucleotide analogues at 22°C. Phosphorylated and non-phosphorylated eIFiso4E-m7G cap binding rates were found to be independent of concentration, suggesting conformational changes were rate limiting. Rate constant for phosphorylated and non-phosphorylated eIFiso4E binding to m7-G cap increased with temperature. Phosphorylation of eIFiso4E decreased (2-fold) the activation energy for both m7-G cap analogues binding as compared to non-phosphorylated eIFiso4E. The reduced energy barrier for the formation of eIFiso4E-m7-G cap complex suggests a more stable platform for further initiation complex formation and possible means of adapting variety of environmental conditions. Furthermore, the formation of phosphorylated eIFiso4E-cap complex may contribute to modulation of the initiation of protein synthesis in plants.
Collapse
Affiliation(s)
- Mateen A Khan
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, NY 10065, USA; Department of Life Sciences, College of Science and General Studies, Alfaisal University, Riyadh 11533, KSA, Saudi Arabia.
| | - Dixie J Goss
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, NY 10065, USA.
| |
Collapse
|
23
|
Rajamäki ML, Xi D, Sikorskaite-Gudziuniene S, Valkonen JPT, Whitham SA. Differential Requirement of the Ribosomal Protein S6 and Ribosomal Protein S6 Kinase for Plant-Virus Accumulation and Interaction of S6 Kinase with Potyviral VPg. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:374-384. [PMID: 28437137 DOI: 10.1094/mpmi-06-16-0122-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ribosomal protein S6 (RPS6) is an indispensable plant protein regulated, in part, by ribosomal protein S6 kinase (S6K) which, in turn, is a key regulator of plant responses to stresses and developmental cues. Increased expression of RPS6 was detected in Nicotiana benthamiana during infection by diverse plant viruses. Silencing of the RPS6 and S6K genes in N. benthamiana affected accumulation of Cucumber mosaic virus, Turnip mosaic virus (TuMV), and Potato virus A (PVA) in contrast to Turnip crinkle virus and Tobacco mosaic virus. In addition, the viral genome-linked protein (VPg) of TuMV and PVA interacted with S6K in plant cells, as detected by bimolecular fluorescence complementation assay. The VPg-S6K interaction was detected in cytoplasm, nucleus, and nucleolus, whereas the green fluorescent protein-tagged S6K alone showed cytoplasmic localization only. These results demonstrate that the requirement for RPS6 and S6K differs for diverse plant viruses with different translation initiation strategies and suggest that potyviral VPg-S6K interaction may affect S6K functions in both the cytoplasm and the nucleus.
Collapse
Affiliation(s)
- Minna-Liisa Rajamäki
- 1 Department of Agricultural Sciences, P.O. Box 27, FI-00014 University of Helsinki, Helsinki, Finland
| | - Dehui Xi
- 2 College of Life Science, Sichuan University, Chengdu, 610064, China; and
| | | | - Jari P T Valkonen
- 1 Department of Agricultural Sciences, P.O. Box 27, FI-00014 University of Helsinki, Helsinki, Finland
| | - Steven A Whitham
- 3 Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011, U.S.A
| |
Collapse
|
24
|
Merchante C, Stepanova AN, Alonso JM. Translation regulation in plants: an interesting past, an exciting present and a promising future. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:628-653. [PMID: 28244193 DOI: 10.1111/tpj.13520] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 05/19/2023]
Abstract
Changes in gene expression are at the core of most biological processes, from cell differentiation to organ development, including the adaptation of the whole organism to the ever-changing environment. Although the central role of transcriptional regulation is solidly established and the general mechanisms involved in this type of regulation are relatively well understood, it is clear that regulation at a translational level also plays an essential role in modulating gene expression. Despite the large number of examples illustrating the critical role played by translational regulation in determining the expression levels of a gene, our understanding of the molecular mechanisms behind such types of regulation has been slow to emerge. With the recent development of high-throughput approaches to map and quantify different critical parameters affecting translation, such as RNA structure, protein-RNA interactions and ribosome occupancy at the genome level, a renewed enthusiasm toward studying translation regulation is warranted. The use of these new powerful technologies in well-established and uncharacterized translation-dependent processes holds the promise to decipher the likely complex and diverse, but also fascinating, mechanisms behind the regulation of translation.
Collapse
Affiliation(s)
- Catharina Merchante
- Departamento de Biologia Molecular y Bioquimica, Universidad de Malaga-Instituto de Hortofruticultura Subtropical y Mediterranea, IHSM-UMA-CSIC, Malaga, Andalucía, Spain
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, Genetics Graduate Program, North Carolina State University, Raleigh, NC, 27607, USA
| | - Jose M Alonso
- Department of Plant and Microbial Biology, Genetics Graduate Program, North Carolina State University, Raleigh, NC, 27607, USA
| |
Collapse
|
25
|
Analysis of Ribosome-Associated mRNAs in Rice Reveals the Importance of Transcript Size and GC Content in Translation. G3-GENES GENOMES GENETICS 2017; 7:203-219. [PMID: 27852012 PMCID: PMC5217110 DOI: 10.1534/g3.116.036020] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Gene expression is controlled at transcriptional and post-transcriptional levels including decoding of messenger RNA (mRNA) into polypeptides via ribosome-mediated translation. Translational regulation has been intensively studied in the model dicot plant Arabidopsis thaliana, and in this study, we assessed the translational status [proportion of steady-state mRNA associated with ribosomes] of mRNAs by Translating Ribosome Affinity Purification followed by mRNA-sequencing (TRAP-seq) in rice (Oryza sativa), a model monocot plant and the most important food crop. A survey of three tissues found that most transcribed rice genes are translated whereas few transposable elements are associated with ribosomes. Genes with short and GC-rich coding regions are overrepresented in ribosome-associated mRNAs, suggesting that the GC-richness characteristic of coding sequences in grasses may be an adaptation that favors efficient translation. Transcripts with retained introns and extended 5′ untranslated regions are underrepresented on ribosomes, and rice genes belonging to different evolutionary lineages exhibited differential enrichment on the ribosomes that was associated with GC content. Genes involved in photosynthesis and stress responses are preferentially associated with ribosomes, whereas genes in epigenetic regulation pathways are the least enriched on ribosomes. Such variation is more dramatic in rice than that in Arabidopsis and is correlated with the wide variation of GC content of transcripts in rice. Taken together, variation in the translation status of individual transcripts reflects important mechanisms of gene regulation, which may have a role in evolution and diversification.
Collapse
|
26
|
Enganti R, Cho SK, Toperzer JD, Urquidi-Camacho RA, Cakir OS, Ray AP, Abraham PE, Hettich RL, von Arnim AG. Phosphorylation of Ribosomal Protein RPS6 Integrates Light Signals and Circadian Clock Signals. FRONTIERS IN PLANT SCIENCE 2017; 8:2210. [PMID: 29403507 PMCID: PMC5780430 DOI: 10.3389/fpls.2017.02210] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/15/2017] [Indexed: 05/20/2023]
Abstract
The translation of mRNA into protein is tightly regulated by the light environment as well as by the circadian clock. Although changes in translational efficiency have been well documented at the level of mRNA-ribosome loading, the underlying mechanisms are unclear. The reversible phosphorylation of RIBOSOMAL PROTEIN OF THE SMALL SUBUNIT 6 (RPS6) has been known for 40 years, but the biochemical significance of this event remains unclear to this day. Here, we confirm using a clock-deficient strain of Arabidopsis thaliana that RPS6 phosphorylation (RPS6-P) is controlled by the diel light-dark cycle with a peak during the day. Strikingly, when wild-type, clock-enabled, seedlings that have been entrained to a light-dark cycle are placed under free-running conditions, the circadian clock drives a cycle of RPS6-P with an opposite phase, peaking during the subjective night. We show that in wild-type seedlings under a light-dark cycle, the incoherent light and clock signals are integrated by the plant to cause an oscillation in RPS6-P with a reduced amplitude with a peak during the day. Sucrose can stimulate RPS6-P, as seen when sucrose in the medium masks the light response of etiolated seedlings. However, the diel cycles of RPS6-P are observed in the presence of 1% sucrose and in its absence. Sucrose at a high concentration of 3% appears to interfere with the robust integration of light and clock signals at the level of RPS6-P. Finally, we addressed whether RPS6-P occurs uniformly in polysomes, non-polysomal ribosomes and their subunits, and non-ribosomal protein. It is the polysomal RPS6 whose phosphorylation is most highly stimulated by light and repressed by darkness. These data exemplify a striking case of contrasting biochemical regulation between clock signals and light signals. Although the physiological significance of RPS6-P remains unknown, our data provide a mechanistic basis for the future understanding of this enigmatic event.
Collapse
Affiliation(s)
- Ramya Enganti
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, United States
| | - Sung Ki Cho
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, United States
| | - Jody D. Toperzer
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, United States
| | - Ricardo A. Urquidi-Camacho
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN, United States
| | - Ozkan S. Cakir
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, United States
| | - Alexandria P. Ray
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, United States
| | - Paul E. Abraham
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Robert L. Hettich
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Albrecht G. von Arnim
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, United States
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN, United States
- *Correspondence: Albrecht G. von Arnim,
| |
Collapse
|
27
|
Roustan V, Bakhtiari S, Roustan PJ, Weckwerth W. Quantitative in vivo phosphoproteomics reveals reversible signaling processes during nitrogen starvation and recovery in the biofuel model organism Chlamydomonas reinhardtii. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:280. [PMID: 29209414 PMCID: PMC5704542 DOI: 10.1186/s13068-017-0949-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/01/2017] [Indexed: 05/22/2023]
Abstract
BACKGROUND Nitrogen deprivation and replenishment induces massive changes at the physiological and molecular level in the green alga Chlamydomonas reinhardtii, including reversible starch and lipid accumulation. Stress signal perception and acclimation involves transient protein phosphorylation. This study aims to provide the first experimental phosphoprotein dataset for the adaptation of C. reinhardtii during nitrogen depletion and recovery growth phases and its impact on lipid accumulation. RESULTS To decipher the signaling pathways involved in this dynamic process, we applied a label-free in vivo shotgun phosphoproteomics analysis on nitrogen-depleted and recovered samples. 1227 phosphopeptides belonging to 732 phosphoproteins were identified and quantified. 470 phosphopeptides showed a significant change across the experimental set-up. Multivariate statistics revealed the reversible phosphorylation process and the time/condition-dependent dynamic rearrangement of the phosphoproteome. Protein-protein interaction analysis of differentially regulated phosphoproteins identified protein kinases and phosphatases, such as DYRKP and an AtGRIK1 orthologue, called CDPKK2, as central players in the coordination of translational, photosynthetic, proteomic and metabolomic activity. Phosphorylation of RPS6, ATG13, and NNK1 proteins points toward a specific regulation of the TOR pathway under nitrogen deprivation. Differential phosphorylation pattern of several eukaryotic initiation factor proteins (EIF) suggests a major control on protein translation and turnover. CONCLUSION This work provides the first phosphoproteomics dataset obtained for Chlamydomonas responses to nitrogen availability, revealing multifactorial signaling pathways and their regulatory function for biofuel production. The reproducibility of the experimental set-up allows direct comparison with proteomics and metabolomics datasets and refines therefore the current model of Chlamydomonas acclimation to various nitrogen levels. Integration of physiological, proteomics, metabolomics, and phosphoproteomics data reveals three phases of acclimation to N availability: (i) a rapid response triggering starch accumulation as well as energy metabolism while chloroplast structure is conserved followed by (ii) chloroplast degradation combined with cell autophagy and lipid accumulation and finally (iii) chloroplast regeneration and cell growth activation after nitrogen replenishment. Plastid development seems to be further interconnected with primary metabolism and energy stress signaling in order to coordinate cellular mechanism to nitrogen availability stress.
Collapse
Affiliation(s)
- Valentin Roustan
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Shiva Bakhtiari
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Pierre-Jean Roustan
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
Dobrenel T, Caldana C, Hanson J, Robaglia C, Vincentz M, Veit B, Meyer C. TOR Signaling and Nutrient Sensing. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:261-85. [PMID: 26905651 DOI: 10.1146/annurev-arplant-043014-114648] [Citation(s) in RCA: 247] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
All living organisms rely on nutrients to sustain cell metabolism and energy production, which in turn need to be adjusted based on available resources. The evolutionarily conserved target of rapamycin (TOR) protein kinase is a central regulatory hub that connects environmental information about the quantity and quality of nutrients to developmental and metabolic processes in order to maintain cellular homeostasis. TOR is activated by both nitrogen and carbon metabolites and promotes energy-consuming processes such as cell division, mRNA translation, and anabolism in times of abundance while repressing nutrient remobilization through autophagy. In animals and yeasts, TOR acts antagonistically to the starvation-induced AMP-activated kinase (AMPK)/sucrose nonfermenting 1 (Snf1) kinase, called Snf1-related kinase 1 (SnRK1) in plants. This review summarizes the immense knowledge on the relationship between TOR signaling and nutrients in nonphotosynthetic organisms and presents recent findings in plants that illuminate the crucial role of this pathway in conveying nutrient-derived signals and regulating many aspects of metabolism and growth.
Collapse
Affiliation(s)
- Thomas Dobrenel
- Institut Jean-Pierre Bourgin, UMR 1318 INRA AgroParisTech, ERL CNRS 3559, Saclay Plant Sciences, Versailles 78026, France;
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, Umeå 90187, Sweden
| | - Camila Caldana
- Molecular Physiology of Plant Biomass Production Group, Max Planck Partner Group, Brazilian Bioethanol Science and Technology Laboratory, CEP 13083-100 Campinas, São Paulo, Brazil
| | - Johannes Hanson
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, Umeå 90187, Sweden
| | - Christophe Robaglia
- Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, DSV, IBEB, SBVME, CEA, CNRS, Aix Marseille Université, Faculté des Sciences de Luminy, Marseille 13009, France
| | - Michel Vincentz
- Laboratório de Genética de Plantas, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, CEP 13083-875 Campinas, São Paulo, Brazil
| | - Bruce Veit
- Forage Improvement, AgResearch, Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Christian Meyer
- Institut Jean-Pierre Bourgin, UMR 1318 INRA AgroParisTech, ERL CNRS 3559, Saclay Plant Sciences, Versailles 78026, France;
| |
Collapse
|
29
|
Sun L, Yu Y, Hu W, Min Q, Kang H, Li Y, Hong Y, Wang X, Hong Y. Ribosomal protein S6 kinase1 coordinates with TOR-Raptor2 to regulate thylakoid membrane biosynthesis in rice. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:639-49. [PMID: 27102613 DOI: 10.1016/j.bbalip.2016.04.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/16/2016] [Accepted: 04/15/2016] [Indexed: 01/01/2023]
Abstract
Ribosomal protein S6 kinase (S6K) functions as a key component in the target of rapamycin (TOR) pathway involved in multiple processes in eukaryotes. The role and regulation of TOR-S6K in lipid metabolism remained unknown in plants. Here we provide genetic and pharmacological evidence that TOR-Raptor2-S6K1 is important for thylakoid galactolipid biosynthesis and thylakoid grana modeling in rice (Oryza sativa L.). Genetic suppression of S6K1 caused pale yellow-green leaves, defective thylakoid grana architecture. S6K1 directly interacts with Raptor2, a core component in TOR signaling, and S6K1 activity is regulated by Raptor2 and TOR. Plants with suppressed Raptor2 expression or reduced TOR activity by inhibitors mimicked the S6K1-deficient phenotype. A significant reduction in galactolipid content was found in the s6k1, raptor2 mutant or TOR-inhibited plants, which was accompanied by decreased transcript levels of the set of genes such as lipid phosphate phosphatase α5 (LPPα5), MGDG synthase 1 (MGD1), and DGDG synthase 1 (DGD1) involved in galactolipid synthesis, compared to the control plants. Moreover, loss of LPPα5 exhibited a similar phenotype with pale yellow-green leaves. These results suggest that TOR-Raptor2-S6K1 is important for modulating thylakoid membrane lipid biosynthesis, homeostasis, thus enhancing thylakoid grana architecture and normal photosynthesis ability in rice.
Collapse
Affiliation(s)
- Linxiao Sun
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yonghua Yu
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weiqin Hu
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiming Min
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huiling Kang
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yilu Li
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Hong
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuemin Wang
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
30
|
Wu L, Tian L, Wang S, Zhang J, Liu P, Tian Z, Zhang H, Liu H, Chen Y. Comparative Proteomic Analysis of the Response of Maize (Zea mays L.) Leaves to Long Photoperiod Condition. FRONTIERS IN PLANT SCIENCE 2016; 7:752. [PMID: 27313588 PMCID: PMC4889979 DOI: 10.3389/fpls.2016.00752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 05/17/2016] [Indexed: 05/11/2023]
Abstract
Maize (Zea mays L.), an important industrial material and food source, shows an astonishing environmental adaptation. A remarkable feature of its post-domestication adaptation from tropical to temperate environments is adaptation to a long photoperiod (LP). Many photoperiod-related genes have been identified in previous transcriptomics analysis, but proteomics shows less evidence for this mechanism of photoperiod response. In this study, we sampled newly expanded leaves of maize at the three- and six-leaf stages from an LP-sensitive introgression line H496, the donor CML288, LP-insensitive inbred line, and recurrent parent Huangzao4 (HZ4) grown under long days (15 h light and 9 h dark). To characterize the proteomic changes in response to LP, the iTRAQ-labeling method was used to determine the proteome profiles of plants exposed to LP. A total of 943 proteins differentially expressed at the three- and six-leaf stages in HZ4 and H496 were identified. Functional analysis was performed by which the proteins were classified into stress defense, signal transduction, carbohydrate metabolism, protein metabolism, energy production, and transport functional groups using the WEGO online tool. The enriched gene ontology categories among the identified proteins were identified statistically with the Cytoscape plugin ClueGO + Cluepedia. Twenty Gene Ontology terms showed the highest significance, including those associated with protein processing in the endoplasmic reticulum, splicesome, ribosome, glyoxylate, dicarboxylate metabolism, L-malate dehydrogenase activity, and RNA transport. In addition, for subcellular location, all proteins showed significant enrichment of the mitochondrial outer membrane. The sugars producted by photosynthesis in plants are also a pivotal metabolic output in the circadian regulation. The results permit the prediction of several crucial proteins to photoperiod response and provide a foundation for further study of the influence of LP treatments on the circadian response in short-day plants.
Collapse
Affiliation(s)
- Liuji Wu
- Henan Agricultural University and Synergetic Innovation Center of Henan Grain CropsZhengzhou, China
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhou, China
| | - Lei Tian
- Henan Agricultural University and Synergetic Innovation Center of Henan Grain CropsZhengzhou, China
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhou, China
| | - Shunxi Wang
- Henan Agricultural University and Synergetic Innovation Center of Henan Grain CropsZhengzhou, China
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhou, China
| | - Jun Zhang
- Food Crops Research Institute, Henan Academy of Agricultural ScienceZhengzhou, China
| | - Ping Liu
- Henan Agricultural University and Synergetic Innovation Center of Henan Grain CropsZhengzhou, China
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhou, China
| | - Zhiqiang Tian
- Henan Agricultural University and Synergetic Innovation Center of Henan Grain CropsZhengzhou, China
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhou, China
| | - Huimin Zhang
- Henan Agricultural University and Synergetic Innovation Center of Henan Grain CropsZhengzhou, China
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhou, China
| | - Haiping Liu
- Department of Biological Science, Michigan Technological UniversityMichigan, MI, USA
| | - Yanhui Chen
- Henan Agricultural University and Synergetic Innovation Center of Henan Grain CropsZhengzhou, China
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhou, China
- *Correspondence: Yanhui Chen
| |
Collapse
|
31
|
Dobrenel T, Mancera-Martínez E, Forzani C, Azzopardi M, Davanture M, Moreau M, Schepetilnikov M, Chicher J, Langella O, Zivy M, Robaglia C, Ryabova LA, Hanson J, Meyer C. The Arabidopsis TOR Kinase Specifically Regulates the Expression of Nuclear Genes Coding for Plastidic Ribosomal Proteins and the Phosphorylation of the Cytosolic Ribosomal Protein S6. FRONTIERS IN PLANT SCIENCE 2016; 7:1611. [PMID: 27877176 PMCID: PMC5100631 DOI: 10.3389/fpls.2016.01611] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/12/2016] [Indexed: 05/05/2023]
Abstract
Protein translation is an energy consuming process that has to be fine-tuned at both the cell and organism levels to match the availability of resources. The target of rapamycin kinase (TOR) is a key regulator of a large range of biological processes in response to environmental cues. In this study, we have investigated the effects of TOR inactivation on the expression and regulation of Arabidopsis ribosomal proteins at different levels of analysis, namely from transcriptomic to phosphoproteomic. TOR inactivation resulted in a coordinated down-regulation of the transcription and translation of nuclear-encoded mRNAs coding for plastidic ribosomal proteins, which could explain the chlorotic phenotype of the TOR silenced plants. We have identified in the 5' untranslated regions (UTRs) of this set of genes a conserved sequence related to the 5' terminal oligopyrimidine motif, which is known to confer translational regulation by the TOR kinase in other eukaryotes. Furthermore, the phosphoproteomic analysis of the ribosomal fraction following TOR inactivation revealed a lower phosphorylation of the conserved Ser240 residue in the C-terminal region of the 40S ribosomal protein S6 (RPS6). These results were confirmed by Western blot analysis using an antibody that specifically recognizes phosphorylated Ser240 in RPS6. Finally, this antibody was used to follow TOR activity in plants. Our results thus uncover a multi-level regulation of plant ribosomal genes and proteins by the TOR kinase.
Collapse
Affiliation(s)
- Thomas Dobrenel
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-SaclayVersailles, France
- Université Paris-Sud–Université Paris-SaclayOrsay, France
- Umeå Plant Science Center, Department of Plant Physiology, Umeå UniversityUmeå, Sweden
| | - Eder Mancera-Martínez
- Institut de Biologie Moléculaire des Plantes, UPR 2357 CNRS, Université de StrasbourgStrasbourg, France
| | - Céline Forzani
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-SaclayVersailles, France
| | - Marianne Azzopardi
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-SaclayVersailles, France
| | | | - Manon Moreau
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-SaclayVersailles, France
- Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, DSV, IBEB, SBVME, CEA, CNRS, Aix-Marseille Université, Faculté des Sciences de LuminyMarseille, France
| | - Mikhail Schepetilnikov
- Institut de Biologie Moléculaire des Plantes, UPR 2357 CNRS, Université de StrasbourgStrasbourg, France
| | - Johana Chicher
- Plateforme Protéomique Strasbourg-Esplanade, CNRS FRC1589, Institut de Biologie Moléculaire et CellulaireStrasbourg, France
| | | | - Michel Zivy
- Plateforme PAPPSO, UMR GQE-Le MoulonGif sur Yvette, France
| | - Christophe Robaglia
- Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, DSV, IBEB, SBVME, CEA, CNRS, Aix-Marseille Université, Faculté des Sciences de LuminyMarseille, France
| | - Lyubov A. Ryabova
- Institut de Biologie Moléculaire des Plantes, UPR 2357 CNRS, Université de StrasbourgStrasbourg, France
| | - Johannes Hanson
- Umeå Plant Science Center, Department of Plant Physiology, Umeå UniversityUmeå, Sweden
| | - Christian Meyer
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-SaclayVersailles, France
- *Correspondence: Christian Meyer,
| |
Collapse
|
32
|
Spatial Regulation of Root Growth: Placing the Plant TOR Pathway in a Developmental Perspective. Int J Mol Sci 2015; 16:19671-97. [PMID: 26295391 PMCID: PMC4581319 DOI: 10.3390/ijms160819671] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/11/2015] [Accepted: 08/11/2015] [Indexed: 12/30/2022] Open
Abstract
Plant cells contain specialized structures, such as a cell wall and a large vacuole, which play a major role in cell growth. Roots follow an organized pattern of development, making them the organs of choice for studying the spatio-temporal regulation of cell proliferation and growth in plants. During root growth, cells originate from the initials surrounding the quiescent center, proliferate in the division zone of the meristem, and then increase in length in the elongation zone, reaching their final size and differentiation stage in the mature zone. Phytohormones, especially auxins and cytokinins, control the dynamic balance between cell division and differentiation and therefore organ size. Plant growth is also regulated by metabolites and nutrients, such as the sugars produced by photosynthesis or nitrate assimilated from the soil. Recent literature has shown that the conserved eukaryotic TOR (target of rapamycin) kinase pathway plays an important role in orchestrating plant growth. We will summarize how the regulation of cell proliferation and cell expansion by phytohormones are at the heart of root growth and then discuss recent data indicating that the TOR pathway integrates hormonal and nutritive signals to orchestrate root growth.
Collapse
|
33
|
Ribosomal Protein S6 Phosphorylation: Four Decades of Research. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 320:41-73. [PMID: 26614871 DOI: 10.1016/bs.ircmb.2015.07.006] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The phosphorylation of ribosomal protein S6 (rpS6) has been described for the first time about four decades ago. Since then, numerous studies have shown that this modification occurs in response to a wide variety of stimuli on five evolutionarily conserved serine residues. However, despite a large body of information on the respective kinases and the signal transduction pathways, the physiological role of rpS6 phosphorylation remained obscure until genetic manipulations were applied in both yeast and mammals in an attempt to block this modification. Thus, studies based on both mice and cultured cells subjected to disruption of the genes encoding rpS6 and the respective kinases, as well as the substitution of the phosphorylatable serine residues in rpS6, have laid the ground for the elucidation of the multiple roles of this protein and its posttranslational modification. This review focuses primarily on newly identified kinases that phosphorylate rpS6, pathways that transduce various signals into rpS6 phosphorylation, and the recently established physiological functions of this modification. It should be noted, however, that despite the significant progress made in the last decade, the molecular mechanism(s) underlying the diverse effects of rpS6 phosphorylation on cellular and organismal physiology are still poorly understood.
Collapse
|
34
|
Hummel M, Dobrenel T, Cordewener JJHG, Davanture M, Meyer C, Smeekens SJCM, Bailey-Serres J, America TAHP, Hanson J. Proteomic LC-MS analysis of Arabidopsis cytosolic ribosomes: Identification of ribosomal protein paralogs and re-annotation of the ribosomal protein genes. J Proteomics 2015; 128:436-49. [PMID: 26232565 DOI: 10.1016/j.jprot.2015.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/17/2015] [Accepted: 07/01/2015] [Indexed: 12/01/2022]
Abstract
UNLABELLED Arabidopsis thaliana cytosolic ribosomes are large complexes containing eighty-one distinct ribosomal proteins (r-proteins), four ribosomal RNAs (rRNA) and a plethora of associated (non-ribosomal) proteins. In plants, r-proteins of cytosolic ribosomes are each encoded by two to seven different expressed and similar genes, forming an r-protein family. Distinctions in the r-protein coding sequences of gene family members are a source of variation between ribosomes. We performed proteomic investigation of actively translating cytosolic ribosomes purified using both immunopurification and a classic sucrose cushion centrifugation-based protocol from plants of different developmental stages. Both 1D and 2D LC-MS(E) with data-independent acquisition as well as conventional data-dependent MS/MS procedures were applied. This approach provided detailed identification of 165 r-protein paralogs with high coverage based on proteotypic peptides. The detected r-proteins were the products of the majority (68%) of the 242 cytosolic r-protein genes encoded by the genome. A total of 70 distinct r-proteins were identified. Based on these results and information from DNA microarray and ribosome footprint profiling studies a re-annotation of Arabidopsis r-proteins and genes is proposed. This compendium of the cytosolic r-protein proteome will serve as a template for future investigations on the dynamic structure and function of plant ribosomes. BIOLOGICAL SIGNIFICANCE Translation is one of the most energy demanding processes in a living cell and is therefore carefully regulated. Translational activity is tightly linked to growth control and growth regulating mechanism. Recently established translational profiling technologies, including the profiling of mRNAs associated with polysomes and the mapping of ribosome footprints on mRNAs, have revealed that the expression of gene expression is often fine-tuned by differential translation of gene transcripts. The eukaryotic ribosome, the hub of these important processes, consists of close to eighty different proteins (depending on species) and four large RNAs assembled into two highly conserved subunits. In plants and to lesser extent in yeast, the r-proteins are encoded by more than one actively transcribed gene. As r-protein gene paralogs frequently do not encode identical proteins and are regulated by growth conditions and development, in vivo ribosomes are heterogeneous in their protein content. The regulatory and physiological importance of this heterogeneity is unknown. Here, an improved annotation of the more than two hundred r-protein genes of Arabidopsis is presented that combines proteomic and advanced mRNA expression data. This proteomic investigation and re-annotation of Arabidopsis ribosomes establish a base for future investigations of translational control in plants.
Collapse
Affiliation(s)
- Maureen Hummel
- Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands; Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521-0124, USA
| | - Thomas Dobrenel
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden; Institut Jean-Pierre Bourgin, UMR 1318 INRA AgroParisTech, Saclay Plant Sciences, F-78026 Versailles, France
| | - Jan J H G Cordewener
- BU Bioscience, Plant Research International, P.O. Box 619, 6700 AP Wageningen, The Netherlands
| | - Marlène Davanture
- Plateforme PAPPSO, UMR de Génétique Végétale, Ferme du Moulon, Gif sur Yvette, France
| | - Christian Meyer
- Institut Jean-Pierre Bourgin, UMR 1318 INRA AgroParisTech, Saclay Plant Sciences, F-78026 Versailles, France
| | - Sjef J C M Smeekens
- Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands; Centre for BioSystems Genomics, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| | - Julia Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521-0124, USA
| | - Twan A H P America
- Centre for BioSystems Genomics, P.O. Box 98, 6700 AB Wageningen, The Netherlands; Netherlands Proteomics Centre, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Johannes Hanson
- Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands; Umeå Plant Science Center, Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden.
| |
Collapse
|
35
|
Choudhary MK, Nomura Y, Wang L, Nakagami H, Somers DE. Quantitative Circadian Phosphoproteomic Analysis of Arabidopsis Reveals Extensive Clock Control of Key Components in Physiological, Metabolic, and Signaling Pathways. Mol Cell Proteomics 2015; 14:2243-60. [PMID: 26091701 DOI: 10.1074/mcp.m114.047183] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Indexed: 01/01/2023] Open
Abstract
The circadian clock provides adaptive advantages to an organism, resulting in increased fitness and survival. The phosphorylation events that regulate circadian-dependent signaling and the processes which post-translationally respond to clock-gated signals are largely unknown. To better elucidate post-translational events tied to the circadian system we carried out a survey of circadian-regulated protein phosphorylation events in Arabidopsis seedlings. A large-scale mass spectrometry-based quantitative phosphoproteomics approach employing TiO2-based phosphopeptide enrichment techniques identified and quantified 1586 phosphopeptides on 1080 protein groups. A total of 102 phosphopeptides displayed significant changes in abundance, enabling the identification of specific patterns of response to circadian rhythms. Our approach was sensitive enough to quantitate oscillations in the phosphorylation of low abundance clock proteins (early flowering4; ELF4 and pseudoresponse regulator3; PRR3) as well as other transcription factors and kinases. During constant light, extensive cyclic changes in phosphorylation status occurred in critical regulators, implicating direct or indirect regulation by the circadian system. These included proteins influencing transcriptional regulation, translation, metabolism, stress and phytohormones-mediated responses. We validated our analysis using the elf4-211 allele, in which an S45L transition removes the phosphorylation herein identified. We show that removal of this phosphorylatable site diminishes interaction with early flowering3 (ELF3), a key partner in a tripartite evening complex required for circadian cycling. elf4-211 lengthens period, which increases with increasing temperature, relative to the wild type, resulting in a more stable temperature compensation of circadian period over a wider temperature range.
Collapse
Affiliation(s)
- Mani Kant Choudhary
- From the ‡Division of Integrative Biosciences and Biotechnology, POSTECH, Hyojadong, Pohang, Kyungbuk, 790-784, Republic of Korea
| | - Yuko Nomura
- ¶Plant Proteomics Research Unit, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa, 230-0045, Japan
| | - Lei Wang
- From the ‡Division of Integrative Biosciences and Biotechnology, POSTECH, Hyojadong, Pohang, Kyungbuk, 790-784, Republic of Korea §Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210; ‖Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hirofumi Nakagami
- ¶Plant Proteomics Research Unit, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa, 230-0045, Japan
| | - David E Somers
- From the ‡Division of Integrative Biosciences and Biotechnology, POSTECH, Hyojadong, Pohang, Kyungbuk, 790-784, Republic of Korea §Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210;
| |
Collapse
|
36
|
Browning KS, Bailey-Serres J. Mechanism of cytoplasmic mRNA translation. THE ARABIDOPSIS BOOK 2015; 13:e0176. [PMID: 26019692 PMCID: PMC4441251 DOI: 10.1199/tab.0176] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Protein synthesis is a fundamental process in gene expression that depends upon the abundance and accessibility of the mRNA transcript as well as the activity of many protein and RNA-protein complexes. Here we focus on the intricate mechanics of mRNA translation in the cytoplasm of higher plants. This chapter includes an inventory of the plant translational apparatus and a detailed review of the translational processes of initiation, elongation, and termination. The majority of mechanistic studies of cytoplasmic translation have been carried out in yeast and mammalian systems. The factors and mechanisms of translation are for the most part conserved across eukaryotes; however, some distinctions are known to exist in plants. A comprehensive understanding of the complex translational apparatus and its regulation in plants is warranted, as the modulation of protein production is critical to development, environmental plasticity and biomass yield in diverse ecosystems and agricultural settings.
Collapse
Affiliation(s)
- Karen S. Browning
- Department of Molecular Biosciences and Institute for Cell and Molecular Biology, University of Texas at Austin, Austin TX 78712-0165
- Both authors contributed equally to this work
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, University of California, Riverside, CA, 92521 USA
- Both authors contributed equally to this work
| |
Collapse
|
37
|
Translating Ribosome Affinity Purification (TRAP) followed by RNA sequencing technology (TRAP-SEQ) for quantitative assessment of plant translatomes. Methods Mol Biol 2015; 1284:185-207. [PMID: 25757773 DOI: 10.1007/978-1-4939-2444-8_9] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Translating Ribosome Affinity Purification (TRAP) is a technology to isolate the population of mRNAs associated with at least one 80S ribosome, referred as the translatome. TRAP is based on the expression of an epitope-tagged version of a ribosomal protein and the affinity purification of ribosomes and associated mRNAs using antibodies conjugated to agarose beads. Quantitative assessment of the translatome is achieved by direct RNA sequencing (RNA-SEQ), which provides accurate quantitation of ribosome-associated mRNAs and reveals alternatively spliced isoforms. Here we present a detailed procedure for TRAP, as well as a guide for preparation of RNA-SEQ libraries (TRAP-SEQ) and a primary data analysis. This methodology enables the study of translational dynamic by assessing rapid changes in translatomes, at organ or cell-type level, during development or in response to endogenous or exogenous stimuli.
Collapse
|
38
|
Narayanan K, Ramirez SI, Lokugamage KG, Makino S. Coronavirus nonstructural protein 1: Common and distinct functions in the regulation of host and viral gene expression. Virus Res 2014; 202:89-100. [PMID: 25432065 PMCID: PMC4444399 DOI: 10.1016/j.virusres.2014.11.019] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 01/16/2023]
Abstract
Novel strategies to inhibit host gene expression by coronavirus nonstructural protein 1. Summarizes the conserved and divergent functions of Alpha and Betacoronavirus nsp1. Provides a mechanistic insight into the unique properties of SARS coronavirus nsp1.
The recent emergence of two highly pathogenic human coronaviruses (CoVs), severe acute respiratory syndrome CoV and Middle East respiratory syndrome CoV, has ignited a strong interest in the identification of viral factors that determine the virulence and pathogenesis of CoVs. The nonstructural protein 1 (nsp1) of CoVs has attracted considerable attention in this regard as a potential virulence factor and a target for CoV vaccine development because of accumulating evidence that point to its role in the downregulation of host innate immune responses to CoV infection. Studies have revealed both functional conservation and mechanistic divergence among the nsp1 of different mammalian CoVs in perturbing host gene expression and antiviral responses. This review summarizes the current knowledge about the biological functions of CoV nsp1 that provides an insight into the novel strategies utilized by this viral protein to modulate host and viral gene expression during CoV infection.
Collapse
Affiliation(s)
- Krishna Narayanan
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1019, United States.
| | - Sydney I Ramirez
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1019, United States.
| | - Kumari G Lokugamage
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1019, United States.
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1019, United States.
| |
Collapse
|
39
|
Ron M, Kajala K, Pauluzzi G, Wang D, Reynoso MA, Zumstein K, Garcha J, Winte S, Masson H, Inagaki S, Federici F, Sinha N, Deal RB, Bailey-Serres J, Brady SM. Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. PLANT PHYSIOLOGY 2014; 166:455-69. [PMID: 24868032 PMCID: PMC4213079 DOI: 10.1104/pp.114.239392] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/26/2014] [Indexed: 05/18/2023]
Abstract
Agrobacterium rhizogenes (or Rhizobium rhizogenes) is able to transform plant genomes and induce the production of hairy roots. We describe the use of A. rhizogenes in tomato (Solanum spp.) to rapidly assess gene expression and function. Gene expression of reporters is indistinguishable in plants transformed by Agrobacterium tumefaciens as compared with A. rhizogenes. A root cell type- and tissue-specific promoter resource has been generated for domesticated and wild tomato (Solanum lycopersicum and Solanum pennellii, respectively) using these approaches. Imaging of tomato roots using A. rhizogenes coupled with laser scanning confocal microscopy is facilitated by the use of a membrane-tagged protein fused to a red fluorescent protein marker present in binary vectors. Tomato-optimized isolation of nuclei tagged in specific cell types and translating ribosome affinity purification binary vectors were generated and used to monitor associated messenger RNA abundance or chromatin modification. Finally, transcriptional reporters, translational reporters, and clustered regularly interspaced short palindromic repeats-associated nuclease9 genome editing demonstrate that SHORT-ROOT and SCARECROW gene function is conserved between Arabidopsis (Arabidopsis thaliana) and tomato.
Collapse
Affiliation(s)
- Mily Ron
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Kaisa Kajala
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Germain Pauluzzi
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Dongxue Wang
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Mauricio A Reynoso
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Kristina Zumstein
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Jasmine Garcha
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Sonja Winte
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Helen Masson
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Soichi Inagaki
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Fernán Federici
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Neelima Sinha
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Roger B Deal
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Julia Bailey-Serres
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Siobhan M Brady
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| |
Collapse
|
40
|
Kim YK, Kim S, Shin YJ, Hur YS, Kim WY, Lee MS, Cheon CI, Verma DPS. Ribosomal protein S6, a target of rapamycin, is involved in the regulation of rRNA genes by possible epigenetic changes in Arabidopsis. J Biol Chem 2014; 289:3901-12. [PMID: 24302738 PMCID: PMC3924259 DOI: 10.1074/jbc.m113.515015] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/14/2013] [Indexed: 12/24/2022] Open
Abstract
The target of rapamycin (TOR) kinase pathway regulates various biological processes, including translation, synthesis of ribosomal proteins, and transcription of rRNA. The ribosomal protein S6 (RPS6) is one of the well known downstream components of the TOR pathway. Ribosomal proteins have been known to have diverse functions in regulating cellular metabolism as well as protein synthesis. So far, however, little is known about other possible role(s) of RPS6 in plants, besides being a component of the 40 S ribosomal subunit and acting as a target of TOR. Here, we report that RPS6 may have a novel function via interaction with histone deacetylase 2B (AtHD2B) that belongs to the plant-specific histone deacetylase HD2 family. RPS6 and AtHD2B were localized to the nucleolus. Co-expression of RPS6 and AtHD2B caused a change in the location of both RPS6 and AtHD2B to one or several nucleolar spots. ChIP analysis suggests that RPS6 directly interacts with the rRNA gene promoter. Protoplasts overexpressing both AtHD2B and RPS6 exhibited down-regulation of pre-18 S rRNA synthesis with a concomitant decrease in transcription of some of the ribosomal proteins, suggesting their direct role in ribosome biogenesis and plant development. This is consistent with the mutation in rps6b that results in reduction in 18 S rRNA transcription and decreased root growth. We propose that the interaction between RPS6 and AtHD2B brings about a change in the chromatin structure of rDNA and thus plays an important role in linking TOR signaling to rDNA transcription and ribosome biogenesis in plants.
Collapse
MESH Headings
- Arabidopsis/cytology
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Cell Nucleolus/genetics
- Cell Nucleolus/metabolism
- DNA, Plant/genetics
- DNA, Plant/metabolism
- DNA, Ribosomal/genetics
- DNA, Ribosomal/metabolism
- Epigenesis, Genetic/physiology
- Genes, Plant/physiology
- Genes, rRNA/physiology
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Promoter Regions, Genetic/physiology
- Protoplasts/cytology
- Protoplasts/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Ribosomal, 18S/biosynthesis
- RNA, Ribosomal, 18S/genetics
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
| | - Sunghan Kim
- the Department of Plant Science, Seoul National University, Seoul 151-742, Korea, and
- the Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, Ohio 43210
| | | | | | - Woo-Young Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Korea
| | | | | | - Desh Pal S. Verma
- the Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
41
|
Villa-Hernández JM, Dinkova TD, Aguilar-Caballero R, Rivera-Cabrera F, Sánchez de Jiménez E, Pérez-Flores LJ. Regulation of ribosome biogenesis in maize embryonic axes during germination. Biochimie 2013; 95:1871-9. [PMID: 23806421 DOI: 10.1016/j.biochi.2013.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 06/14/2013] [Indexed: 11/28/2022]
Abstract
Ribosome biogenesis is a pre-requisite for cell growth and proliferation; it is however, a highly regulated process that consumes a great quantity of energy. It requires the coordinated production of rRNA, ribosomal proteins and non-ribosomal factors which participate in the processing and mobilization of the new ribosomes. Ribosome biogenesis has been studied in yeast and animals; however, there is little information about this process in plants. The objective of the present work was to study ribosome biogenesis in maize seeds during germination, a stage characterized for its fast growth, and the effect of insulin in this process. Insulin has been reported to accelerate germination and to induce seedling growth. It was observed that among the first events reactivated just after 3 h of imbibition are the rDNA transcription and the pre-rRNA processing and that insulin stimulates both of them (40-230%). The transcript of nucleolin, a protein which regulates rDNA transcription and pre-rRNA processing, is among the messages stored in quiescent dry seeds and it is mobilized into the polysomal fraction during the first hours of imbibition (6 h). In contrast, de novo ribosomal protein synthesis was low during the first hours of imbibition (3 and 6 h) increasing by 60 times in later stages (24 h). Insulin increased this synthesis (75%) at 24 h of imbibition; however, not all ribosomal proteins were similarly regulated. In this regard, an increase in RPS6 and RPL7 protein levels was observed, whereas RPL3 protein levels did not change even though its transcription was induced. Results show that ribosome biogenesis in the first stages of imbibition is carried out with newly synthesized rRNA and ribosomal proteins translated from stored mRNA.
Collapse
Affiliation(s)
- J M Villa-Hernández
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Av. San Rafael Atlixco 186, Col. Vicentina, CP 09340 D. F. México, Mexico
| | | | | | | | | | | |
Collapse
|
42
|
Boex-Fontvieille E, Daventure M, Jossier M, Zivy M, Hodges M, Tcherkez G. Photosynthetic control of Arabidopsis leaf cytoplasmic translation initiation by protein phosphorylation. PLoS One 2013; 8:e70692. [PMID: 23894680 PMCID: PMC3722150 DOI: 10.1371/journal.pone.0070692] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/20/2013] [Indexed: 01/26/2023] Open
Abstract
Photosynthetic CO2 assimilation is the carbon source for plant anabolism, including amino acid production and protein synthesis. The biosynthesis of leaf proteins is known for decades to correlate with photosynthetic activity but the mechanisms controlling this effect are not documented. The cornerstone of the regulation of protein synthesis is believed to be translation initiation, which involves multiple phosphorylation events in Eukaryotes. We took advantage of phosphoproteomic methods applied to Arabidopsis thaliana rosettes harvested under controlled photosynthetic gas-exchange conditions to characterize the phosphorylation pattern of ribosomal proteins (RPs) and eukaryotic initiation factors (eIFs). The analyses detected 14 and 11 new RP and eIF phosphorylation sites, respectively, revealed significant CO2-dependent and/or light/dark phosphorylation patterns and showed concerted changes in 13 eIF phosphorylation sites and 9 ribosomal phosphorylation sites. In addition to the well-recognized role of the ribosomal small subunit protein RPS6, our data indicate the involvement of eIF3, eIF4A, eIF4B, eIF4G and eIF5 phosphorylation in controlling translation initiation when photosynthesis varies. The response of protein biosynthesis to the photosynthetic input thus appears to be the result of a complex regulation network involving both stimulating (e.g. RPS6, eIF4B phosphorylation) and inhibiting (e.g. eIF4G phosphorylation) molecular events.
Collapse
Affiliation(s)
- Edouard Boex-Fontvieille
- Institut de Biologie des Plantes, CNRS UMR 8618, Saclay Plant Sciences, Université Paris-Sud, Orsay, France
| | - Marlène Daventure
- Plateforme PAPPSO, UMR de Génétique Végétale, Ferme du Moulon, Gif sur Yvette, France
| | - Mathieu Jossier
- Institut de Biologie des Plantes, CNRS UMR 8618, Saclay Plant Sciences, Université Paris-Sud, Orsay, France
| | - Michel Zivy
- Plateforme PAPPSO, UMR de Génétique Végétale, Ferme du Moulon, Gif sur Yvette, France
| | - Michael Hodges
- Institut de Biologie des Plantes, CNRS UMR 8618, Saclay Plant Sciences, Université Paris-Sud, Orsay, France
| | - Guillaume Tcherkez
- Institut de Biologie des Plantes, CNRS UMR 8618, Saclay Plant Sciences, Université Paris-Sud, Orsay, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
43
|
Roy B, von Arnim AG. Translational Regulation of Cytoplasmic mRNAs. THE ARABIDOPSIS BOOK 2013; 11:e0165. [PMID: 23908601 PMCID: PMC3727577 DOI: 10.1199/tab.0165] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Translation of the coding potential of a messenger RNA into a protein molecule is a fundamental process in all living cells and consumes a large fraction of metabolites and energy resources in growing cells. Moreover, translation has emerged as an important control point in the regulation of gene expression. At the level of gene regulation, translational control is utilized to support the specific life histories of plants, in particular their responses to the abiotic environment and to metabolites. This review summarizes the diversity of translational control mechanisms in the plant cytoplasm, focusing on specific cases where mechanisms of translational control have evolved to complement or eclipse other levels of gene regulation. We begin by introducing essential features of the translation apparatus. We summarize early evidence for translational control from the pre-Arabidopsis era. Next, we review evidence for translation control in response to stress, to metabolites, and in development. The following section emphasizes RNA sequence elements and biochemical processes that regulate translation. We close with a chapter on the role of signaling pathways that impinge on translation.
Collapse
Affiliation(s)
- Bijoyita Roy
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996-0840
- Current address: University of Massachussetts Medical School, Worcester, MA 01655-0122, USA
| | - Albrecht G. von Arnim
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996-0840
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996-0840
| |
Collapse
|
44
|
Pal SK, Liput M, Piques M, Ishihara H, Obata T, Martins MC, Sulpice R, van Dongen JT, Fernie AR, Yadav UP, Lunn JE, Usadel B, Stitt M. Diurnal changes of polysome loading track sucrose content in the rosette of wild-type arabidopsis and the starchless pgm mutant. PLANT PHYSIOLOGY 2013; 162:1246-65. [PMID: 23674104 PMCID: PMC3707535 DOI: 10.1104/pp.112.212258] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 04/26/2013] [Indexed: 05/18/2023]
Abstract
Growth is driven by newly fixed carbon in the light, but at night it depends on reserves, like starch, that are laid down in the light. Unless plants coordinate their growth with diurnal changes in the carbon supply, they will experience acute carbon starvation during the night. Protein synthesis represents a major component of cellular growth. Polysome loading was investigated during the diurnal cycle, an extended night, and low CO2 in Arabidopsis (Arabidopsis thaliana) Columbia (Col-0) and in the starchless phosphoglucomutase (pgm) mutant. In Col-0, polysome loading was 60% to 70% in the light, 40% to 45% for much of the night, and less than 20% in an extended night, while in pgm, it fell to less than 25% early in the night. Quantification of ribosomal RNA species using quantitative reverse transcription-polymerase chain reaction revealed that polysome loading remained high for much of the night in the cytosol, was strongly light dependent in the plastid, and was always high in mitochondria. The rosette sucrose content correlated with overall and with cytosolic polysome loading. Ribosome abundance did not show significant diurnal changes. However, compared with Col-0, pgm had decreased and increased abundance of plastidic and mitochondrial ribosomes, respectively. Incorporation of label from (13)CO2 into protein confirmed that protein synthesis continues at a diminished rate in the dark. Modeling revealed that a decrease in polysome loading at night is required to balance protein synthesis with the availability of carbon from starch breakdown. Costs are also reduced by using amino acids that accumulated in the previous light period. These results uncover a tight coordination of protein synthesis with the momentary supply of carbon.
Collapse
Affiliation(s)
| | | | | | - Hirofumi Ishihara
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Toshihiro Obata
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Marina C.M. Martins
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | - Joost T. van Dongen
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Alisdair R. Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | - John E. Lunn
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
45
|
Juntawong P, Sorenson R, Bailey-Serres J. Cold shock protein 1 chaperones mRNAs during translation in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:1016-28. [PMID: 23551487 DOI: 10.1111/tpj.12187] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/20/2013] [Accepted: 03/25/2013] [Indexed: 05/11/2023]
Abstract
RNA binding proteins (RBPs) function post-transcriptionally to fine-tune gene regulation. Arabidopsis thaliana has four Gly-rich, zinc finger-containing RBPs called cold shock proteins 1-4 (CSP1-CSP4), that possess an evolutionary conserved cold shock domain. Here, we determined that CSP1 associates with polyribosomes (polysomes) via an RNA-mediated interaction. Both the abundance and polysomal co-fractionation of CSP1 was enhanced in the cold (4°C), but did not influence global levels of polysomes, which were minimally perturbed by above freezing cold temperatures. Using a polyclonal antiserum, CSP1 was co-immunopurified with several hundred transcripts from rosettes of plants cultivated at 23°C or transferred to 4°C for 12 h. CSP1-associated mRNAs were characterized by G+C-rich 5' untranslated regions and gene ontologies related to cellular respiration, mRNA binding and translation. The majority of the CSP1-associated mRNAs were constitutively expressed and stable in the cold. CSP1 abundance was correlated with improved translation of ribosomal protein mRNAs during cold stress and improved maintenance of homeostasis and translation of mRNAs under water-deficit stress. In summary, CSP1 selectively chaperones mRNAs, providing translational enhancement during stress.
Collapse
Affiliation(s)
- Piyada Juntawong
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | | | | |
Collapse
|
46
|
Hafrén A, Eskelin K, Mäkinen K. Ribosomal protein P0 promotes Potato virus A infection and functions in viral translation together with VPg and eIF(iso)4E. J Virol 2013; 87:4302-12. [PMID: 23365448 PMCID: PMC3624370 DOI: 10.1128/jvi.03198-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/25/2013] [Indexed: 11/20/2022] Open
Abstract
We report here that the acidic ribosomal protein P0 is a component of the membrane-associated Potato virus A (PVA) ribonucleoprotein complex. As a constituent of the ribosomal stalk, P0 functions in translation. Although the ribosomal stalk proteins P0, P1, P2, and P3 are all important for PVA infection, P0 appears to have a distinct role from those of the other stalk proteins in infection. Our results indicate that P0 also regulates viral RNA functions as an extraribosomal protein. We reported previously that PVA RNA can be targeted by VPg to a specific gene expression pathway that protects the viral RNA from degradation and facilitates its translation. Here, we show that P0 is essential for this activity of VPg, similar to eIF4E/eIF(iso)4E. We also demonstrate that VPg, P0, and eIF(iso)4E synergistically enhance viral translation. Interestingly, the positive effects of VPg and P0 on viral translation were negatively correlated with the cell-to-cell spread of infection, suggesting that these processes may compete for viral RNA.
Collapse
Affiliation(s)
- Anders Hafrén
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
47
|
Um JH, Kim S, Kim YK, Song SB, Lee SH, Verma DPS, Cheon CI. RNA interference-mediated repression of S6 kinase 1 impairs root nodule development in soybean. Mol Cells 2013; 35:243-8. [PMID: 23475423 PMCID: PMC3887909 DOI: 10.1007/s10059-013-2315-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/04/2013] [Accepted: 02/19/2013] [Indexed: 12/31/2022] Open
Abstract
Symbiotic nodule formation on legume roots is characterized with a series of developmental reprograming in root tissues, including extensive proliferation of cortical cells. We examined a possible involvement of the target of rapamycin (TOR) pathway, a central regulator of cell growth and proliferation in animals and yeasts, during soybean nodule development. Our results show that transcription of both GmTOR and its key downstream effector, GmS6K1, are activated during nodulation, which is paralleled with higher kinase activities of these gene products as well. RNAi-mediated knockdown of GmS6K1 impaired the nodule development with severely reduced nodule weight and numbers. In addition, expression of a few nodulins including leghemoglobin was also decreased, and consequently nitrogen fixation was found to be reduced by half. Proteomic analysis of the GmS6K1-RNAi nodules identified glutamine synthetase (GS), an essential enzyme for nitrogen assimilation in nodules, as one of the proteins that are significantly down regulated. These results appear to provide solid evidence for a functional link between GmS6K1 and nodule development.
Collapse
Affiliation(s)
- Ji-Hyun Um
- Department of Biological Science, Sookmyung Women’s University, Seoul 140–742,
Korea
| | - Sunghan Kim
- Department of Biological Science, Sookmyung Women’s University, Seoul 140–742,
Korea
| | - Yun-Kyoung Kim
- Department of Biological Science, Sookmyung Women’s University, Seoul 140–742,
Korea
| | - Seok-Bo Song
- Department of Functional Crop, National Institute of Crop Science, Milyang 627-130,
Korea
| | - Suk-Ha Lee
- Department of Plant Science, Seoul National University, Seoul 151–742,
Korea
| | - Desh Pal S. Verma
- Department of Molecular Genetics and Plant Biotechnology Center, The Ohio State University, Columbus, Ohio 43210,
USA
| | - Choong-Ill Cheon
- Department of Biological Science, Sookmyung Women’s University, Seoul 140–742,
Korea
| |
Collapse
|
48
|
Reynoso MA, Blanco FA, Bailey-Serres J, Crespi M, Zanetti ME. Selective recruitment of mRNAs and miRNAs to polyribosomes in response to rhizobia infection in Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:289-301. [PMID: 23050939 DOI: 10.1111/tpj.12033] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/14/2012] [Accepted: 09/19/2012] [Indexed: 05/23/2023]
Abstract
Translation of mRNAs is a key regulatory step that contributes to the coordination and modulation of eukaryotic gene expression during development or adaptation to the environment. mRNA stability or translatability can be regulated by the action of small regulatory RNAs (sRNAs), which control diverse biological processes. Under low nitrogen conditions, leguminous plants associate with soil bacteria and develop a new organ specialized in nitrogen fixation: the nodule. To gain insight into the translational regulation of mRNAs during nodule formation, the association of mRNAs and sRNAs to polysomes was characterized in roots of the model legume Medicago truncatula during the symbiotic interaction with Sinorhizobium meliloti. Quantitative comparison of steady-state and polysomal mRNAs for 15 genes involved in nodulation identified a group of transcripts with slight or no change in total cellular abundance that were significantly upregulated at the level of association with polysomes in response to rhizobia. This group included mRNAs encoding receptors like kinases required either for nodule organogenesis, bacterial infection or both, and transcripts encoding GRAS and NF-Y transcription factors (TFs). Quantitative analysis of sRNAs in total and polysomal RNA samples revealed that mature microRNAs (miRNAs) were associated with the translational machinery, notably, miR169 and miR172, which target the NF-YA/HAP2 and AP2 TFs, respectively. Upon inoculation, levels of miR169 pronouncedly decreased in polysomal complexes, concomitant with the increased accumulation of the NF-YA/HAP2 protein. These results indicate that both mRNAs and miRNAs are subject to differential recruitment to polysomes, and expose the importance of selective mRNA translation during root nodule symbiosis.
Collapse
Affiliation(s)
- Mauricio Alberto Reynoso
- Instituto de Biotecnología y Biología Molecular, FCE-UNLP CCT-CONICET Calle 115 y 49, C.P. 1900, La Plata, Argentina
| | - Flavio Antonio Blanco
- Instituto de Biotecnología y Biología Molecular, FCE-UNLP CCT-CONICET Calle 115 y 49, C.P. 1900, La Plata, Argentina
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA 92521-0124, USA
| | - Martín Crespi
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette Cedex, France
| | - María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, FCE-UNLP CCT-CONICET Calle 115 y 49, C.P. 1900, La Plata, Argentina
| |
Collapse
|
49
|
Carroll AJ. The Arabidopsis Cytosolic Ribosomal Proteome: From form to Function. FRONTIERS IN PLANT SCIENCE 2013; 4:32. [PMID: 23459595 PMCID: PMC3585428 DOI: 10.3389/fpls.2013.00032] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/10/2013] [Indexed: 05/20/2023]
Abstract
The cytosolic ribosomal proteome of Arabidopsis thaliana has been studied intensively by a range of proteomics approaches and is now one of the most well characterized eukaryotic ribosomal proteomes. Plant cytosolic ribosomes are distinguished from other eukaryotic ribosomes by unique proteins, unique post-translational modifications and an abundance of ribosomal proteins for which multiple divergent paralogs are expressed and incorporated. Study of the A. thaliana ribosome has now progressed well beyond a simple cataloging of protein parts and is focused strongly on elucidating the functions of specific ribosomal proteins, their paralogous isoforms and covalent modifications. This review summarises current knowledge concerning the Arabidopsis cytosolic ribosomal proteome and highlights potentially fruitful areas of future research in this fast moving and important area.
Collapse
Affiliation(s)
- Adam J. Carroll
- Australian Research Council Centre of Excellence in Plant Energy Biology, Australian National UniversityCanberra, ACT, Australia
- *Correspondence: Adam J. Carroll, Australian Research Council Centre of Excellence in Plant Energy Biology, Australian National University, ACT 0200, Canberra, Australia. e-mail:
| |
Collapse
|
50
|
Hummel M, Cordewener JHG, de Groot JCM, Smeekens S, America AHP, Hanson J. Dynamic protein composition of Arabidopsis thaliana cytosolic ribosomes in response to sucrose feeding as revealed by label free MSE proteomics. Proteomics 2012; 12:1024-38. [PMID: 22522809 DOI: 10.1002/pmic.201100413] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cytosolic ribosomes are among the largest multisubunit cellular complexes. Arabidopsis thaliana ribosomes consist of 79 different ribosomal proteins (r-proteins) that each are encoded by two to six (paralogous) genes. It is unknown whether the paralogs are incorporated into the ribosome and whether the relative incorporation of r-protein paralogs varies in response to environmental cues. Immunopurified ribosomes were isolated from A. thaliana rosette leaves fed with sucrose. Trypsin digested samples were analyzed by qTOF-LC-MS using both MS(E) and classical MS/MS. Peptide features obtained by using these two methods were identified using MASCOT and Proteinlynx Global Server searching the theoretical sequences of A. thaliana proteins. The A. thaliana genome encodes 237 r-proteins and 69% of these were identified with proteotypic peptides for most of the identified proteins. These r-proteins were identified with average protein sequence coverage of 32% observed by MS(E) . Interestingly, the analysis shows that the abundance of r-protein paralogs in the ribosome changes in response to sucrose feeding. This is particularly evident for paralogous RPS3aA, RPS5A, RPL8B, and RACK1 proteins. These results show that protein synthesis in the A. thaliana cytosol involves a heterogeneous ribosomal population. The implications of these findings in the regulation of translation are discussed.
Collapse
Affiliation(s)
- Maureen Hummel
- Molecular Plant Physiology, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|