1
|
Zhao J, Wang J, Liu J, Zhang P, Kudoyarova G, Liu CJ, Zhang K. Spatially distributed cytokinins: Metabolism, signaling, and transport. PLANT COMMUNICATIONS 2024; 5:100936. [PMID: 38689499 PMCID: PMC11287186 DOI: 10.1016/j.xplc.2024.100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/02/2024]
Abstract
Cytokinins are mobile phytohormones that regulate plant growth, development, and environmental adaptability. The major cytokinin species include isopentenyl adenine (iP), trans-zeatin (tZ), cis-zeatin (cZ), and dihydrozeatin (DZ). The spatial distributions of different cytokinin species in different organelles, cells, tissues, and organs are primarily shaped by biosynthesis via isopentenyltransferases (IPT), cytochrome P450 monooxygenase, and 5'-ribonucleotide phosphohydrolase and by conjugation or catabolism via glycosyltransferase or cytokinin oxidase/dehydrogenase. Cytokinins bind to histidine receptor kinases in the endoplasmic reticulum or plasma membrane and relay signals to response regulators in the nucleus via shuttle proteins known as histidine phosphotransfer proteins. The movements of cytokinins from sites of biosynthesis to sites of signal perception usually require long-distance, intercellular, and intracellular transport. In the past decade, ATP-binding cassette (ABC) transporters, purine permeases (PUP), AZA-GUANINE RESISTANT (AZG) transporters, equilibrative nucleoside transporters (ENT), and Sugars Will Eventually Be Exported transporters (SWEET) have been characterized as involved in cytokinin transport processes. This review begins by introducing the spatial distributions of various cytokinins and the subcellular localizations of the proteins involved in their metabolism and signaling. Highlights focus on an inventory of the characterized transporters involved in cytokinin compartmentalization, including long-distance, intercellular, and intracellular transport, and the regulation of the spatial distributions of cytokinins by environmental cues. Future directions for cytokinin research are also discussed.
Collapse
Affiliation(s)
- Jiangzhe Zhao
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Jingqi Wang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Jie Liu
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Penghong Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Guzel Kudoyarova
- Ufa Institute of Biology, Ufa Federal Research Center, RAS, Prospekt Oktyabrya 69, Ufa 450054, Russia
| | - Chang-Jun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Kewei Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China.
| |
Collapse
|
2
|
Argueso CT, Kieber JJ. Cytokinin: From autoclaved DNA to two-component signaling. THE PLANT CELL 2024; 36:1429-1450. [PMID: 38163638 PMCID: PMC11062471 DOI: 10.1093/plcell/koad327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 01/03/2024]
Abstract
Since its first identification in the 1950s as a regulator of cell division, cytokinin has been linked to many physiological processes in plants, spanning growth and development and various responses to the environment. Studies from the last two and one-half decades have revealed the pathways underlying the biosynthesis and metabolism of cytokinin and have elucidated the mechanisms of its perception and signaling, which reflects an ancient signaling system evolved from two-component elements in bacteria. Mutants in the genes encoding elements involved in these processes have helped refine our understanding of cytokinin functions in plants. Further, recent advances have provided insight into the mechanisms of intracellular and long-distance cytokinin transport and the identification of several proteins that operate downstream of cytokinin signaling. Here, we review these processes through a historical lens, providing an overview of cytokinin metabolism, transport, signaling, and functions in higher plants.
Collapse
Affiliation(s)
- Cristiana T Argueso
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Jameson PE. Cytokinin Translocation to, and Biosynthesis and Metabolism within, Cereal and Legume Seeds: Looking Back to Inform the Future. Metabolites 2023; 13:1076. [PMID: 37887400 PMCID: PMC10609209 DOI: 10.3390/metabo13101076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Early in the history of cytokinins, it was clear that Zea mays seeds contained not just trans-zeatin, but its nucleosides and nucleotides. Subsequently, both pods and seeds of legumes and cereal grains have been shown to contain a complex of cytokinin forms. Relative to the very high quantities of cytokinin detected in developing seeds, only a limited amount appears to have been translocated from the parent plant. Translocation experiments, and the detection of high levels of endogenous cytokinin in the maternal seed coat tissues of legumes, indicates that cytokinin does not readily cross the maternal/filial boundary, indicating that the filial tissues are autonomous for cytokinin biosynthesis. Within the seed, trans-zeatin plays a key role in sink establishment and it may also contribute to sink strength. The roles, if any, of the other biologically active forms of cytokinin (cis-zeatin, dihydrozeatin and isopentenyladenine) remain to be elucidated. The recent identification of genes coding for the enzyme that leads to the biosynthesis of trans-zeatin in rice (OsCYP735A3 and 4), and the identification of a gene coding for an enzyme (CPN1) that converts trans-zeatin riboside to trans-zeatin in the apoplast, further cements the key role played by trans-zeatin in plants.
Collapse
Affiliation(s)
- Paula E Jameson
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| |
Collapse
|
4
|
Zhao L, Wang Y, Cui R, Cui Y, Lu X, Chen X, Wang J, Wang D, Yin Z, Wang S, Peng F, Guo L, Chen C, Ye W. Analysis of the histidine kinase gene family and the role of GhHK8 in response to drought tolerance in cotton. PHYSIOLOGIA PLANTARUM 2023; 175:e14022. [PMID: 37882310 DOI: 10.1111/ppl.14022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/27/2023] [Accepted: 08/29/2023] [Indexed: 10/27/2023]
Abstract
As an important member of the two-component system (TCS), histidine kinases (HKs) play important roles in various plant developmental processes and signal transduction in response to a wide range of biotic and abiotic stresses. So far, the HK gene family has not been investigated in Gossypium. In this study, a total of 177 HK gene family members were identified in cotton. They were further divided into seven groups, and the protein characteristics, genetic relationship, gene structure, chromosome location, collinearity, and cis-elements identification were comprehensively analyzed. Whole genome duplication (WGD) / segmental duplication may be the reason why the number of HK genes doubled in tetraploid Gossypium species. Expression analysis revealed that most cotton HK genes were mainly expressed in the reproductive organs and the fiber at initial stage. Gene expression analysis revealed that HK family genes are involved in cotton abiotic stress, especially drought stress and salt stress. In addition, gene interaction networks showed that HKs were involved in the regulation of cotton abiotic stress, especially drought stress. VIGS experiments have shown that GhHK8 is a negative regulatory factor in response to drought stress. Our systematic analysis provided insights into the characteristics of the HK genes in cotton and laid a foundation for further exploring their potential in drought stress resistance in cotton.
Collapse
Affiliation(s)
- Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| | - Yongbo Wang
- Hunan Institute of Cotton Science, Changde, China
| | - Ruifeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| | - Yupeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| | - Zujun Yin
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| | - Fanjia Peng
- Hunan Institute of Cotton Science, Changde, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| | - Chao Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| |
Collapse
|
5
|
Liu Z, Li P, Ren W, Chen Z, Olukayode T, Mi G, Yuan L, Chen F, Pan Q. Hybrid performance evaluation and genome-wide association analysis of root system architecture in a maize association population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:194. [PMID: 37606710 DOI: 10.1007/s00122-023-04442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/04/2023] [Indexed: 08/23/2023]
Abstract
KEY MESSAGE The genetic architecture of RSA traits was dissected by GWAS and coexpression networks analysis in a maize association population. Root system architecture (RSA) is a crucial determinant of water and nutrient uptake efficiency in crops. However, the maize genetic architecture of RSA is still poorly understood due to the challenges in quantifying root traits and the lack of dense molecular markers. Here, an association mapping panel including 356 inbred lines were crossed with a common tester, Zheng58, and the test crosses were phenotyped for 12 RSA traits in three locations. We observed a 1.3 ~ sixfold phenotypic variation for measured RSA in the association panel. The association panel consisted of four subpopulations, non-stiff stalk (NSS) lines, stiff stalk (SS), tropical/subtropical (TST), and mixed. Zheng58 × TST has a 2.1% higher crown root number (CRN) and 8.6% less brace root number (BRN) than Zheng58 × NSS and Zheng58 × SS, respectively. Using a genome-wide association study (GWAS) with 1.25 million SNPs and correction for population structure, 191 significant SNPs were identified for root traits. Ninety (47%) of the significant SNPs showed positive allelic effects, and 101 (53%) showed negative effects. Each locus could explain 0.39% to 11.8% of phenotypic variation. By integrating GWAS results and comparing coexpression networks, 26 high-priority candidate genes were identified. Gene GRMZM2G377215, which belongs to the COBRA-like gene family, affected root growth and development. Gene GRMZM2G468657 encodes the aspartic proteinase nepenthesin-1, related to root development and N-deficient response. Collectively, our research provides progress in the genetic dissection of root system architecture. These findings present the further possibility for the genetic improvement of root traits in maize.
Collapse
Affiliation(s)
- Zhigang Liu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, China
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Canada
| | - Pengcheng Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Wei Ren
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, China
| | - Zhe Chen
- College of Resources and Environment, Jilin Agricultural University, Changchun, China
| | - Toluwase Olukayode
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Canada
| | - Guohua Mi
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, China
| | - Lixing Yuan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, China
| | - Fanjun Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Qingchun Pan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, China.
- Sanya Institute of China Agricultural University, Sanya, China.
| |
Collapse
|
6
|
Li L, Zheng Q, Jiang W, Xiao N, Zeng F, Chen G, Mak M, Chen ZH, Deng F. Molecular Regulation and Evolution of Cytokinin Signaling in Plant Abiotic Stresses. PLANT & CELL PHYSIOLOGY 2023; 63:1787-1805. [PMID: 35639886 DOI: 10.1093/pcp/pcac071] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/04/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The sustainable production of crops faces increasing challenges from global climate change and human activities, which leads to increasing instances of many abiotic stressors to plants. Among the abiotic stressors, drought, salinity and excessive levels of toxic metals cause reductions in global agricultural productivity and serious health risks for humans. Cytokinins (CKs) are key phytohormones functioning in both normal development and stress responses in plants. Here, we summarize the molecular mechanisms on the biosynthesis, metabolism, transport and signaling transduction pathways of CKs. CKs act as negative regulators of both root system architecture plasticity and root sodium exclusion in response to salt stress. The functions of CKs in mineral-toxicity tolerance and their detoxification in plants are reviewed. Comparative genomic analyses were performed to trace the origin, evolution and diversification of the critical regulatory networks linking CK signaling and abiotic stress. We found that the production of CKs and their derivatives, pathways of signal transduction and drought-response root growth regulation are evolutionarily conserved in land plants. In addition, the mechanisms of CK-mediated sodium exclusion under salt stress are suggested for further investigations. In summary, we propose that the manipulation of CK levels and their signaling pathways is important for plant abiotic stress and is, therefore, a potential strategy for meeting the increasing demand for global food production under changing climatic conditions.
Collapse
Affiliation(s)
- Lijun Li
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Qingfeng Zheng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Wei Jiang
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Nayun Xiao
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Fanrong Zeng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Michelle Mak
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Fenglin Deng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
7
|
Matušková V, Zatloukal M, Pospíšil T, Voller J, Vylíčilová H, Doležal K, Strnad M. From synthesis to the biological effect of isoprenoid 2'-deoxyriboside and 2',3'-dideoxyriboside cytokinin analogues. PHYTOCHEMISTRY 2023; 205:113481. [PMID: 36283448 DOI: 10.1016/j.phytochem.2022.113481] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Isoprenoid cytokinins are a class of naturally occurring plant signaling molecules. A series of prepared compounds derived from isoprenoid cytokinins (isopentenyladenine, trans-zeatin and cis-zeatin) with attached 2'-deoxy-d-ribose or 2',3'-dideoxy-d-ribose at the N9 position of the purine were prepared and their biological activities were examined. Different synthetic approaches were employed. The final compounds were characterized with variety of physicochemical methods (TLC, HPLC-MS, and NMR) and their cytokinin activity was determined in classical bioassays such as Amaranthus, tobacco callus, detached wheat leaf senescence and Arabidopsis thaliana root elongation inhibition assay. In addition, compounds were screened for activation of the cytokinin signaling pathway (bacterial receptor, competitive ligand binding and ARR5::GUS assay) to provide a detailed assessment of CK structure-activity relationship. The prepared compounds were found to be non-toxic to human cells and the majority of assays exhibited the highest activity of free bases while 2',3'-dideoxyribosides had very weak or no activity. In contrast to the free bases, all 2'-deoxyriboside derivatives were not toxic to tobacco callus even at the highest tested concentration (10-4 moL/l) and compound 1 (iPdR) induced betacyanin synthesis at higher concentration even stronger than iP free base in the Amaranthus bioassay. The general cytokinin activity pattern base > riboside >2'-deoxyriboside > 2',3'-dideoxyriboside was distinguished.
Collapse
Affiliation(s)
- Vlasta Matušková
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 241/27, CZ-78371 Olomouc, Czech Republic.
| | - Marek Zatloukal
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 241/27, CZ-78371 Olomouc, Czech Republic
| | - Tomáš Pospíšil
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 241/27, CZ-78371 Olomouc, Czech Republic
| | - Jiří Voller
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 241/27, CZ-78371 Olomouc, Czech Republic
| | - Hana Vylíčilová
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 241/27, CZ-78371 Olomouc, Czech Republic
| | - Karel Doležal
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 241/27, CZ-78371 Olomouc, Czech Republic; Laboratory of Growth Regulators, Faculty of Science, Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University, Šlechtitelů 241/27, CZ-78371 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University, Šlechtitelů 241/27, CZ-78371 Olomouc, Czech Republic
| |
Collapse
|
8
|
Antoniadi I, Mateo-Bonmatí E, Pernisová M, Brunoni F, Antoniadi M, Villalonga MGA, Ament A, Karády M, Turnbull C, Doležal K, Pěnčík A, Ljung K, Novák O. IPT9, a cis-zeatin cytokinin biosynthesis gene, promotes root growth. FRONTIERS IN PLANT SCIENCE 2022; 13:932008. [PMID: 36311087 PMCID: PMC9616112 DOI: 10.3389/fpls.2022.932008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/16/2022] [Indexed: 06/12/2023]
Abstract
Cytokinin and auxin are plant hormones that coordinate many aspects of plant development. Their interactions in plant underground growth are well established, occurring at the levels of metabolism, signaling, and transport. Unlike many plant hormone classes, cytokinins are represented by more than one active molecule. Multiple mutant lines, blocking specific parts of cytokinin biosynthetic pathways, have enabled research in plants with deficiencies in specific cytokinin-types. While most of these mutants have confirmed the impeding effect of cytokinin on root growth, the ipt29 double mutant instead surprisingly exhibits reduced primary root length compared to the wild type. This mutant is impaired in cis-zeatin (cZ) production, a cytokinin-type that had been considered inactive in the past. Here we have further investigated the intriguing ipt29 root phenotype, opposite to known cytokinin functions, and the (bio)activity of cZ. Our data suggest that despite the ipt29 short-root phenotype, cZ application has a negative impact on primary root growth and can activate a cytokinin response in the stele. Grafting experiments revealed that the root phenotype of ipt29 depends mainly on local signaling which does not relate directly to cytokinin levels. Notably, ipt29 displayed increased auxin levels in the root tissue. Moreover, analyses of the differential contributions of ipt2 and ipt9 to the ipt29 short-root phenotype demonstrated that, despite its deficiency on cZ levels, ipt2 does not show any root phenotype or auxin homeostasis variation, while ipt9 mutants were indistinguishable from ipt29. We conclude that IPT9 functions may go beyond cZ biosynthesis, directly or indirectly, implicating effects on auxin homeostasis and therefore influencing plant growth.
Collapse
Affiliation(s)
- Ioanna Antoniadi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Eduardo Mateo-Bonmatí
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Markéta Pernisová
- Plant Sciences Core Facility, Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), and NCBR, Faculty of Science, Masaryk University, Brno, Czechia
| | - Federica Brunoni
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Mariana Antoniadi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | - Anita Ament
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Michal Karády
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Colin Turnbull
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Karel Doležal
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, Olomouc, Czechia
- Department of Chemical Biology, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Ondřej Novák
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, Olomouc, Czechia
| |
Collapse
|
9
|
Wahab A, Abdi G, Saleem MH, Ali B, Ullah S, Shah W, Mumtaz S, Yasin G, Muresan CC, Marc RA. Plants' Physio-Biochemical and Phyto-Hormonal Responses to Alleviate the Adverse Effects of Drought Stress: A Comprehensive Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:1620. [PMID: 35807572 PMCID: PMC9269229 DOI: 10.3390/plants11131620] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 05/19/2023]
Abstract
Water, a necessary component of cell protoplasm, plays an essential role in supporting life on Earth; nevertheless, extreme changes in climatic conditions limit water availability, causing numerous issues, such as the current water-scarce regimes in many regions of the biome. This review aims to collect data from various published studies in the literature to understand and critically analyze plants' morphological, growth, yield, and physio-biochemical responses to drought stress and their potential to modulate and nullify the damaging effects of drought stress via activating natural physiological and biochemical mechanisms. In addition, the review described current breakthroughs in understanding how plant hormones influence drought stress responses and phytohormonal interaction through signaling under water stress regimes. The information for this review was systematically gathered from different global search engines and the scientific literature databases Science Direct, including Google Scholar, Web of Science, related studies, published books, and articles. Drought stress is a significant obstacle to meeting food demand for the world's constantly growing population. Plants cope with stress regimes through changes to cellular osmotic potential, water potential, and activation of natural defense systems in the form of antioxidant enzymes and accumulation of osmolytes including proteins, proline, glycine betaine, phenolic compounds, and soluble sugars. Phytohormones modulate developmental processes and signaling networks, which aid in acclimating plants to biotic and abiotic challenges and, consequently, their survival. Significant progress has been made for jasmonates, salicylic acid, and ethylene in identifying important components and understanding their roles in plant responses to abiotic stress. Other plant hormones, such as abscisic acid, auxin, gibberellic acid, brassinosteroids, and peptide hormones, have been linked to plant defense signaling pathways in various ways.
Collapse
Affiliation(s)
- Abdul Wahab
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr 75169, Iran;
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Saqib Ullah
- Department of Botany, Islamia College, Peshawar 25120, Pakistan;
| | - Wadood Shah
- Department of Botany, University of Peshawar, Peshawar 25120, Pakistan;
| | - Sahar Mumtaz
- Department of Botany, Division of Science and Technology, University of Education, Lahore 54770, Pakistan;
| | - Ghulam Yasin
- Department of Botany, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Crina Carmen Muresan
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur Street, 400372 Cluj-Napoca, Romania;
| | - Romina Alina Marc
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur Street, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
10
|
Klos D, Dušek M, Samol'ová E, Zatloukal M, Nožková V, Nesnas N, Plačková L, Koprna R, Spíšek Z, Vylíčilová H, Plíhal O, Doležal K, Voller J, Kadlecová A, Strnad M, Plíhalová L. New Water-Soluble Cytokinin Derivatives and Their Beneficial Impact on Barley Yield and Photosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7288-7301. [PMID: 35658447 DOI: 10.1021/acs.jafc.2c00981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solubility of growth regulators is essential for their use in agriculture. Four new cytokinin salts─6-benzylaminopurine mesylate (1), 6-(2-hydroxybenzylamino)purine mesylate (2), 6-(3-hydroxybenzylamino)purine mesylate (3), and 6-(3-methoxybenzylamino)purine mesylate (4)─were synthesized, and their crystal structures were determined to clarify structural influence on water solubility. The mesylates were several orders of magnitude more water-soluble than the parent CKs. The new salts significantly reduced chlorophyll degradation and impairment of photosystem II functionality in barley leaf segments undergoing artificial senescence and had pronounced effects on the leaves' endogenous CK pools, maintaining high concentrations of functional metabolites for several days, unlike canonical CKs. A foliar treatment with 1 and 3 increased the harvest yield of spring barley by up to 8% when compared to treatment with the parent CKs while also increasing the number of productive tillers. This effect was attributed to the higher bioavailability of the mesylate salts and the avoidance of dimethyl sulfoxide exposure.
Collapse
Affiliation(s)
- Dardan Klos
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Michal Dušek
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, CZ-182 21 Praha, Czech Republic
| | - Erika Samol'ová
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, CZ-182 21 Praha, Czech Republic
| | - Marek Zatloukal
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Vladimíra Nožková
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Nasri Nesnas
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Lenka Plačková
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Radoslav Koprna
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Zdeněk Spíšek
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Hana Vylíčilová
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Ondřej Plíhal
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Karel Doležal
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Jiří Voller
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine, Palacký University, Hněvotínská 5, CZ-77515 Olomouc, Czech Republic
| | - Alena Kadlecová
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine, Palacký University, Hněvotínská 5, CZ-77515 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Lucie Plíhalová
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| |
Collapse
|
11
|
Cytokinin Perception in Ancient Plants beyond Angiospermae. Int J Mol Sci 2021; 22:ijms222313077. [PMID: 34884882 PMCID: PMC8657898 DOI: 10.3390/ijms222313077] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
Cytokinins (CKs) control many plant developmental processes and responses to environmental cues. Although the CK signaling is well understood, we are only beginning to decipher its evolution. Here, we investigated the CK perception apparatus in early-divergent plant species such as bryophyte Physcomitrium patens, lycophyte Selaginella moellendorffii, and gymnosperm Picea abies. Of the eight CHASE-domain containing histidine kinases (CHKs) examined, two CHKs, PpCHK3 and PpCHK4, did not bind CKs. All other CHK receptors showed high-affinity CK binding (KD of nM range), with a strong preference for isopentenyladenine over other CK nucleobases in the moss and for trans-zeatin over cis-zeatin in the gymnosperm. The pH dependences of CK binding for these six CHKs showed a wide range, which may indicate different subcellular localization of these receptors at either the plasma- or endoplasmic reticulum membrane. Thus, the properties of the whole CK perception apparatuses in early-divergent lineages were demonstrated. Data show that during land plant evolution there was a diversification of the ligand specificity of various CHKs, in particular, the rise in preference for trans-zeatin over cis-zeatin, which indicates a steadily increasing specialization of receptors to various CKs. Finally, this distinct preference of individual receptors to different CK versions culminated in vascular plants, especially angiosperms.
Collapse
|
12
|
Singh D, Singla-Pareek SL, Pareek A. Two-component signaling system in plants: interaction network and specificity in response to stress and hormones. PLANT CELL REPORTS 2021; 40:2037-2046. [PMID: 34109469 DOI: 10.1007/s00299-021-02727-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Plants are exposed to various environmental challenges that can hamper their growth, development, and productivity. Being sedentary, plants cannot escape from these unfavorable environmental conditions and have evolved various signaling cascades to endure them. The two-component signaling (TCS) system is one such essential signaling circuitry present in plants regulating responses against multiple abiotic and biotic stresses. It is among the most ancient and evolutionary conserved signaling pathways in plants, which include membrane-bound histidine kinases (HKs), cytoplasmic histidine phosphotransfer proteins (Hpts), and nuclear or cytoplasmic response regulators (RRs). At the same time, TCS also involved in many signaling circuitries operative in plants in response to diverse hormones. These plant growth hormones play a significant role in diverse physiological and developmental processes, and their contribution to plant stress responses is coming up in a big way. Therefore, it is intriguing to know how TCS and various plant growth regulators, along with the key transcription factors, directly or indirectly control the responses of plants towards diverse stresses. The present review attempts to explore this relationship, hoping that this knowledge will contribute towards developing crop plants with enhanced climate resilience.
Collapse
Affiliation(s)
- Deepti Singh
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, Delhi, India.
- National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| |
Collapse
|
13
|
Nguyen HN, Lai N, Kisiala AB, Emery RJN. Isopentenyltransferases as master regulators of crop performance: their function, manipulation, and genetic potential for stress adaptation and yield improvement. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1297-1313. [PMID: 33934489 PMCID: PMC8313133 DOI: 10.1111/pbi.13603] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 03/23/2021] [Accepted: 04/11/2021] [Indexed: 05/27/2023]
Abstract
Isopentenyltransferase (IPT) in plants regulates a rate-limiting step of cytokinin (CTK) biosynthesis. IPTs are recognized as key regulators of CTK homeostasis and phytohormone crosstalk in both biotic and abiotic stress responses. Recent research has revealed the regulatory function of IPTs in gene expression and metabolite profiles including source-sink modifications, energy metabolism, nutrient allocation and storage, stress defence and signalling pathways, protein synthesis and transport, and membrane transport. This suggests that IPTs play a crucial role in plant growth and adaptation. In planta studies of IPT-driven modifications indicate that, at a physiological level, IPTs improve stay-green characteristics, delay senescence, reduce stress-induced oxidative damage and protect photosynthetic machinery. Subsequently, these improvements often manifest as enhanced or stabilized crop yields and this is especially apparent under environmental stress. These mechanisms merit consideration of the IPTs as 'master regulators' of core cellular metabolic pathways, thus adjusting plant homeostasis/adaptive responses to altered environmental stresses, to maximize yield potential. If their expression can be adequately controlled, both spatially and temporally, IPTs can be a key driver for seed yield. In this review, we give a comprehensive overview of recent findings on how IPTs influence plant stress physiology and yield, and we highlight areas for future research.
Collapse
Affiliation(s)
| | - Nhan Lai
- School of BiotechnologyVietnam National UniversityHo Chi Minh CityVietnam
| | | | | |
Collapse
|
14
|
Chen L, Zhao J, Song J, Jameson PE. Cytokinin glucosyl transferases, key regulators of cytokinin homeostasis, have potential value for wheat improvement. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:878-896. [PMID: 33811433 PMCID: PMC8131048 DOI: 10.1111/pbi.13595] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/28/2021] [Indexed: 05/05/2023]
Abstract
The cytokinins, which are N6 -substituted adenine derivatives, control key aspects of crop productivity. Cytokinin levels are controlled via biosynthesis by isopentenyl transferase (IPT), destruction by cytokinin oxidase/dehydrogenase (CKX), and inactivation via glucosylation by cytokinin glucosyl transferases (CGTs). While both yield components and tolerance to drought and related abiotic stressors have been positively addressed via manipulation of IPT and/or CKX expression, much less attention has been paid to the CGTs. As naming of the CGTs has been unclear, we suggest COGT, CNGT, CONGT and CNOGT to describe the O-, N- and dual function CGTs. As specific CGT mutants of both rice and arabidopsis showed impacts on yield components, we interrogated the wheat genome database, IWGSC RefSeq v1.0 & v2.0, to investigate wheat CGTs. Besides providing unambiguous names for the 53 wheat CGTs, we show their expression patterns in 70 developmental tissues and their response characteristics to various stress conditions by reviewing more than 1000 RNA-seq data sets. These revealed various patterns of responses and showed expression generally being more limited in reproductive tissues than in vegetative tissues. Multiple cis-regulatory elements are present in the 3 kb upstream of the start codons of the 53 CGTs. Elements associated with abscisic acid, light and methyl jasmonate are particularly over-represented, indicative of the responsiveness of CGTs to the environment. These data sets indicate that CGTs have potential value for wheat improvement and that these could be targeted in TILLING or gene editing wheat breeding programmes.
Collapse
Affiliation(s)
- Lei Chen
- School of Life SciencesYantai UniversityYantaiChina
| | - Jing Zhao
- School of Life SciencesYantai UniversityYantaiChina
| | | | - Paula E. Jameson
- School of Life SciencesYantai UniversityYantaiChina
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| |
Collapse
|
15
|
Nedvěd D, Hošek P, Klíma P, Hoyerová K. Differential Subcellular Distribution of Cytokinins: How Does Membrane Transport Fit into the Big Picture? Int J Mol Sci 2021; 22:3428. [PMID: 33810428 PMCID: PMC8037549 DOI: 10.3390/ijms22073428] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/02/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
Cytokinins are a class of phytohormones, signalling molecules specific to plants. They act as regulators of diverse physiological processes in complex signalling pathways. It is necessary for plants to continuously regulate cytokinin distribution among different organs, tissues, cells, and compartments. Such regulatory mechanisms include cytokinin biosynthesis, metabolic conversions and degradation, as well as cytokinin membrane transport. In our review, we aim to provide a thorough picture of the latter. We begin by summarizing cytokinin structures and physicochemical properties. Then, we revise the elementary thermodynamic and kinetic aspects of cytokinin membrane transport. Next, we review which membrane-bound carrier proteins and protein families recognize cytokinins as their substrates. Namely, we discuss the families of "equilibrative nucleoside transporters" and "purine permeases", which translocate diverse purine-related compounds, and proteins AtPUP14, AtABCG14, AtAZG1, and AtAZG2, which are specific to cytokinins. We also address long-distance cytokinin transport. Putting all these pieces together, we finally discuss cytokinin distribution as a net result of these processes, diverse in their physicochemical nature but acting together to promote plant fitness.
Collapse
Affiliation(s)
- Daniel Nedvěd
- The Czech Academy of Sciences, Institute of Experimental Botany, 165 02 Prague, Czech Republic; (D.N.); (P.H.)
- Department of Biochemistry, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Petr Hošek
- The Czech Academy of Sciences, Institute of Experimental Botany, 165 02 Prague, Czech Republic; (D.N.); (P.H.)
| | - Petr Klíma
- The Czech Academy of Sciences, Institute of Experimental Botany, 165 02 Prague, Czech Republic; (D.N.); (P.H.)
| | - Klára Hoyerová
- The Czech Academy of Sciences, Institute of Experimental Botany, 165 02 Prague, Czech Republic; (D.N.); (P.H.)
| |
Collapse
|
16
|
The Hulks and the Deadpools of the Cytokinin Universe: A Dual Strategy for Cytokinin Production, Translocation, and Signal Transduction. Biomolecules 2021; 11:biom11020209. [PMID: 33546210 PMCID: PMC7913349 DOI: 10.3390/biom11020209] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Cytokinins are plant hormones, derivatives of adenine with a side chain at the N6-position. They are involved in many physiological processes. While the metabolism of trans-zeatin and isopentenyladenine, which are considered to be highly active cytokinins, has been extensively studied, there are others with less obvious functions, such as cis-zeatin, dihydrozeatin, and aromatic cytokinins, which have been comparatively neglected. To help explain this duality, we present a novel hypothesis metaphorically comparing various cytokinin forms, enzymes of CK metabolism, and their signalling and transporter functions to the comics superheroes Hulk and Deadpool. Hulk is a powerful but short-lived creation, whilst Deadpool presents a more subtle and enduring force. With this dual framework in mind, this review compares different cytokinin metabolites, and their biosynthesis, translocation, and sensing to illustrate the different mechanisms behind the two CK strategies. This is put together and applied to a plant developmental scale and, beyond plants, to interactions with organisms of other kingdoms, to highlight where future study can benefit the understanding of plant fitness and productivity.
Collapse
|
17
|
Fagny M, Kuijjer ML, Stam M, Joets J, Turc O, Rozière J, Pateyron S, Venon A, Vitte C. Identification of Key Tissue-Specific, Biological Processes by Integrating Enhancer Information in Maize Gene Regulatory Networks. Front Genet 2021; 11:606285. [PMID: 33505431 PMCID: PMC7834273 DOI: 10.3389/fgene.2020.606285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022] Open
Abstract
Enhancers are key players in the spatio-temporal coordination of gene expression during numerous crucial processes, including tissue differentiation across development. Characterizing the transcription factors (TFs) and genes they connect, and the molecular functions underpinned is important to better characterize developmental processes. In plants, the recent molecular characterization of enhancers revealed their capacity to activate the expression of several target genes. Nevertheless, identifying these target genes at a genome-wide level is challenging, particularly for large-genome species, where enhancers and target genes can be hundreds of kilobases away. Therefore, the contribution of enhancers to plant regulatory networks remains poorly understood. Here, we investigate the enhancer-driven regulatory network of two maize tissues at different stages: leaves at seedling stage (V2-IST) and husks (bracts) at flowering. Using systems biology, we integrate genomic, epigenomic, and transcriptomic data to model the regulatory relationships between TFs and their potential target genes, and identify regulatory modules specific to husk and V2-IST. We show that leaves at the V2-IST stage are characterized by the response to hormones and macromolecules biogenesis and assembly, which are regulated by the BBR/BPC and AP2/ERF TF families, respectively. In contrast, husks are characterized by cell wall modification and response to abiotic stresses, which are, respectively, orchestrated by the C2C2/DOF and AP2/EREB families. Analysis of the corresponding enhancer sequences reveals that two different transposable element families (TIR transposon Mutator and MITE Pif/Harbinger) have shaped part of the regulatory network in each tissue, and that MITEs have provided potential new TF binding sites involved in husk tissue-specificity.
Collapse
Affiliation(s)
- Maud Fagny
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
| | - Marieke Lydia Kuijjer
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | - Maike Stam
- Plant Development and (Epi) Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Johann Joets
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
| | - Olivier Turc
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Julien Rozière
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Stéphanie Pateyron
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Anthony Venon
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
| | - Clémentine Vitte
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
| |
Collapse
|
18
|
Xiao Y, Zhang J, Yu G, Lu X, Mei W, Deng H, Zhang G, Chen G, Chu C, Tong H, Tang W. Endoplasmic Reticulum-Localized PURINE PERMEASE1 Regulates Plant Height and Grain Weight by Modulating Cytokinin Distribution in Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:618560. [PMID: 33414802 PMCID: PMC7783468 DOI: 10.3389/fpls.2020.618560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/03/2020] [Indexed: 05/04/2023]
Abstract
Cytokinins (CKs) are a class of phytohormones playing essential roles in various biological processes. However, the mechanisms underlying CK transport as well as its function in plant growth and development are far from being fully elucidated. Here, we characterize the function of PURINE PERMEASE1 (OsPUP1) in rice (Oryza sativa L.). OsPUP1 was predominantly expressed in the root, particularly in vascular cells, and CK treatment can induce its expression. Subcellular localization analysis showed that OsPUP1 was predominantly localized to the endoplasmic reticulum (ER). Overexpression of OsPUP1 resulted in growth defect of various aerial tissues, including decreased leaf length, plant height, grain weight, panicle length, and grain number. Hormone profiling revealed that the CK content was decreased in the shoot of OsPUP1-overexpressing seedling, but increased in the root, compared with the wild type. The CK content in the panicle was also decreased. Quantitative reverse transcription-PCR (qRT-PCR) analysis using several CK type-A response regulators (OsRRs) as the marker genes suggested that the CK response in the shoot of OsPUP1-overexpressing seedling is decreased compared to the wild type when CKs are applied to the root. Genetic analysis revealed that BG3/OsPUP4, a putative plasma membrane-localized CK transporter, overcomes the function of OsPUP1. We hypothesize that OsPUP1 might be involved in importing CKs into ER to unload CKs from the vascular tissues by cell-to-cell transport.
Collapse
Affiliation(s)
- Yunhua Xiao
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agriculture, Hunan Agricultural University, Changsha, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Junwen Zhang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agriculture, Hunan Agricultural University, Changsha, China
| | - Guiyuan Yu
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agriculture, Hunan Agricultural University, Changsha, China
| | - Xuedan Lu
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agriculture, Hunan Agricultural University, Changsha, China
| | - Wentao Mei
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agriculture, Hunan Agricultural University, Changsha, China
| | - Huabing Deng
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agriculture, Hunan Agricultural University, Changsha, China
| | - Guilian Zhang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agriculture, Hunan Agricultural University, Changsha, China
| | - Guihua Chen
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agriculture, Hunan Agricultural University, Changsha, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Hongning Tong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenbang Tang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agriculture, Hunan Agricultural University, Changsha, China
| |
Collapse
|
19
|
Eisermann I, Motyka V, Kümmel S, Dobrev PI, Hübner K, Deising HB, Wirsel SGR. CgIPT1 is required for synthesis of cis-zeatin cytokinins and contributes to stress tolerance and virulence in Colletotrichum graminicola. Fungal Genet Biol 2020; 143:103436. [PMID: 32693088 DOI: 10.1016/j.fgb.2020.103436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/09/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
We have previously shown that the maize pathogen Colletotrichum graminicola is able to synthesise cytokinins (CKs). However, it remained unsettled whether fungal CK production is essential for virulence in this hemibiotrophic fungus. Here, we identified a candidate gene, CgIPT1, that is homologous to MOD5 of Saccharomyces cerevisiae and genes from other fungi and plants, which encode tRNA-isopentenyltransferases (IPTs). We show that the wild type strain mainly synthesises cis-zeatin-type (cisZ) CKs whereas ΔCgipt1 mutants are severely impeded to do so. The spectrum of CKs produced confirms bioinformatical analyses predicting that CgIpt1 is a tRNA-IPT. The virulence of the ΔCgipt1 mutants is moderately reduced. Furthermore, the mutants exhibit increased sensitivities to osmotic stress imposed by sugar alcohols and salts, as well as cell wall stress imposed by Congo red. Amendment of media with CKs did not reverse this phenotype suggesting that fungal-derived CKs do not explain the role of CgIpt1 in mediating abiotic stress tolerance. Moreover, the mutants still cause green islands on senescing maize leaves indicating that the cisZ-type CKs produced by the fungus do not cause this phenotype.
Collapse
Affiliation(s)
- Iris Eisermann
- Institut für Agrar- und Ernährungswissenschaften, Naturwissenschaftliche Fakultät III, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120 Halle (Saale), Germany
| | - Václav Motyka
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, CZ-165 02 Prague 6, Czech Republic
| | - Stefanie Kümmel
- Institut für Agrar- und Ernährungswissenschaften, Naturwissenschaftliche Fakultät III, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120 Halle (Saale), Germany
| | - Petre I Dobrev
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, CZ-165 02 Prague 6, Czech Republic
| | - Konstantin Hübner
- Institut für Agrar- und Ernährungswissenschaften, Naturwissenschaftliche Fakultät III, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120 Halle (Saale), Germany
| | - Holger B Deising
- Institut für Agrar- und Ernährungswissenschaften, Naturwissenschaftliche Fakultät III, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120 Halle (Saale), Germany
| | - Stefan G R Wirsel
- Institut für Agrar- und Ernährungswissenschaften, Naturwissenschaftliche Fakultät III, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120 Halle (Saale), Germany.
| |
Collapse
|
20
|
Wheeldon CD, Bennett T. There and back again: An evolutionary perspective on long-distance coordination of plant growth and development. Semin Cell Dev Biol 2020; 109:55-67. [PMID: 32576500 DOI: 10.1016/j.semcdb.2020.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022]
Abstract
Vascular plants, unlike bryophytes, have a strong root-shoot dichotomy in which the tissue systems are mutually interdependent; roots are completely dependent on shoots for photosynthetic sugars, and shoots are completely dependent on roots for water and mineral nutrients. Long-distance communication between shoot and root is therefore critical for the growth, development and survival of vascular plants, especially with regard to variable environmental conditions. However, this long-distance signalling does not appear an ancestral feature of land plants, and has likely arisen in vascular plants to service the radical alterations in body-plan seen in this taxon. In this review, we examine the defined hormonal root-to-shoot and shoot-to-root signalling pathways that coordinate the growth of vascular plants, with a particular view to understanding how these pathways may have evolved. We highlight the completely divergent roles of isopentenyl-adenine and trans-zeatin cytokinin species in long-distance signalling, and ask whether cytokinin can really be considered as a single class of hormones in the light of recent research. We also discuss the puzzlingly sparse evidence for auxin as a shoot-to-root signal, the evolutionary re-purposing of strigolactones and gibberellins as hormonal signals, and speculate on the possible role of sugars as long-distance signals. We conclude by discussing the 'design principles' of long-distance signalling in vascular plants.
Collapse
Affiliation(s)
- Cara D Wheeldon
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
21
|
Vylíčilová H, Bryksová M, Matušková V, Doležal K, Plíhalová L, Strnad M. Naturally Occurring and Artificial N9-Cytokinin Conjugates: From Synthesis to Biological Activity and Back. Biomolecules 2020; 10:biom10060832. [PMID: 32485963 PMCID: PMC7356397 DOI: 10.3390/biom10060832] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 01/18/2023] Open
Abstract
Cytokinins and their sugar or non-sugar conjugates are very active growth-promoting factors in plants, although they occur at very low concentrations. These compounds have been identified in numerous plant species. This review predominantly focuses on 9-substituted adenine-based cytokinin conjugates, both artificial and endogenous, sugar and non-sugar, and their roles in plants. Acquired information about their biological activities, interconversions, and metabolism improves understanding of their mechanisms of action and functions in planta. Although a number of 9-substituted cytokinins occur endogenously, many have also been prepared in laboratories to facilitate the clarification of their physiological roles and the determination of their biological properties. Here, we chart advances in knowledge of 9-substituted cytokinin conjugates from their discovery to current understanding and reciprocal interactions between biological properties and associated structural motifs. Current organic chemistry enables preparation of derivatives with better biological properties, such as improved anti-senescence, strong cell division stimulation, shoot forming, or more persistent stress tolerance compared to endogenous or canonical cytokinins. Many artificial cytokinin conjugates stimulate higher mass production than naturally occurring cytokinins, improve rooting, or simply have high stability or bioavailability. Thus, knowledge of the biosynthesis, metabolism, and activity of 9-substituted cytokinins in various plant species extends the scope for exploiting both natural and artificially prepared cytokinins in plant biotechnology, tissue culture, and agriculture.
Collapse
Affiliation(s)
- Hana Vylíčilová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (H.V.); (M.B.); (V.M.); (K.D.)
| | - Magdaléna Bryksová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (H.V.); (M.B.); (V.M.); (K.D.)
| | - Vlasta Matušková
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (H.V.); (M.B.); (V.M.); (K.D.)
| | - Karel Doležal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (H.V.); (M.B.); (V.M.); (K.D.)
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic;
| | - Lucie Plíhalová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (H.V.); (M.B.); (V.M.); (K.D.)
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic;
- Correspondence:
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic;
| |
Collapse
|
22
|
Muszynski MG, Moss-Taylor L, Chudalayandi S, Cahill J, Del Valle-Echevarria AR, Alvarez-Castro I, Petefish A, Sakakibara H, Krivosheev DM, Lomin SN, Romanov GA, Thamotharan S, Dam T, Li B, Brugière N. The Maize Hairy Sheath Frayed1 ( Hsf1) Mutation Alters Leaf Patterning through Increased Cytokinin Signaling. THE PLANT CELL 2020; 32:1501-1518. [PMID: 32205456 PMCID: PMC7203929 DOI: 10.1105/tpc.19.00677] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/24/2020] [Accepted: 03/13/2020] [Indexed: 05/24/2023]
Abstract
Leaf morphogenesis requires growth polarized along three axes-proximal-distal (P-D) axis, medial-lateral axis, and abaxial-adaxial axis. Grass leaves display a prominent P-D polarity consisting of a proximal sheath separated from the distal blade by the auricle and ligule. Although proper specification of the four segments is essential for normal morphology, our knowledge is incomplete regarding the mechanisms that influence P-D specification in monocots such as maize (Zea mays). Here, we report the identification of the gene underlying the semidominant, leaf patterning maize mutant Hairy Sheath Frayed1 (Hsf1). Hsf1 plants produce leaves with outgrowths consisting of proximal segments-sheath, auricle, and ligule-emanating from the distal blade margin. Analysis of three independent Hsf1 alleles revealed gain-of-function missense mutations in the ligand binding domain of the maize cytokinin (CK) receptor Z. mays Histidine Kinase1 (ZmHK1) gene. Biochemical analysis and structural modeling suggest the mutated residues near the CK binding pocket affect CK binding affinity. Treatment of the wild-type seedlings with exogenous CK phenocopied the Hsf1 leaf phenotypes. Results from expression and epistatic analyses indicated the Hsf1 mutant receptor appears to be hypersignaling. Our results demonstrate that hypersignaling of CK in incipient leaf primordia can reprogram developmental patterns in maize.
Collapse
Affiliation(s)
- Michael G Muszynski
- Department of Tropical Plant and Soil Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii 96822
| | - Lindsay Moss-Taylor
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Sivanandan Chudalayandi
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - James Cahill
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | | | | | - Abby Petefish
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Dmitry M Krivosheev
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - Sergey N Lomin
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - Georgy A Romanov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - Subbiah Thamotharan
- School of Chemical and Biotechnology, SASTRA University; Thanjavur, 613401, India
| | - Thao Dam
- Corteva Agriscience, Johnston, Iowa 50131
| | - Bailin Li
- Corteva Agriscience, Johnston, Iowa 50131
| | | |
Collapse
|
23
|
Ahmad B, Azeem F, Ali MA, Nawaz MA, Nadeem H, Abbas A, Batool R, Atif RM, Ijaz U, Nieves-Cordones M, Chung G. Genome-wide identification and expression analysis of two component system genes in Cicer arietinum. Genomics 2020; 112:1371-1383. [DOI: 10.1016/j.ygeno.2019.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/19/2019] [Accepted: 08/11/2019] [Indexed: 10/26/2022]
|
24
|
Khew CY, Mori IC, Matsuura T, Hirayama T, Harikrishna JA, Lau ET, Augustine Mercer ZJ, Hwang SS. Hormonal and transcriptional analyses of fruit development and ripening in different varieties of black pepper (Piper nigrum). JOURNAL OF PLANT RESEARCH 2020; 133:73-94. [PMID: 31853665 DOI: 10.1007/s10265-019-01156-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Black pepper (Piper nigrum L.) is one of the most popular and oldest spices in the world with culinary uses and various pharmacological properties. In order to satisfy the growing worldwide demand for black pepper, improved productivity of pepper is highly desirable. A primary constraint in black pepper production is the non-synchronous nature of flower development and non-uniform fruit ripening within a spike. The uneven ripening of pepper berries results in a high labour requirement for selective harvesting contributes to low productivity and affects the quality of the pepper products. In Malaysia, there are a few recommended varieties for black pepper planting, each having some limitations in addition to the useful characteristics. Therefore, a comparative study of different black pepper varieties will provide a better understanding of the mechanisms regulates fruit development and ripening. Plant hormones are known to influence the fruit development process and their roles in black pepper flower and fruit development were inferred based on the probe-based gene expression analysis and the quantification of the multiple plant hormones using high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). In this study, jasmonic acid and salicylic acid were found to play roles in flowering and fruit setting, whereas auxin, gibberellin and cytokinins are important for fruit growth. Abscisic acid has positive role in fruit maturation and ripening in the development process. Distinct pattern of plant hormones related gene expression profiles with the hormones accumulation profiles suggested a complex network of regulation is involved in the signaling process and crosstalk between plant hormones was another layer of regulation in the black pepper fruit development mechanisms. The current study provides clues to help in elucidating the timing of the action of each specific plant hormone during fruit development and ripening which could be applied to enhance our ability to control the ripening process, leading to improving procedures for the production and post-harvest handling of pepper fruits.
Collapse
Affiliation(s)
- Choy-Yuen Khew
- Department of Research and Quality Development, Malaysian Pepper Board, Lot 1115, Jalan Utama, Pending Industrial Area, 93450, Kuching, Sarawak, Malaysia.
- Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350, Kuching, Sarawak, Malaysia.
| | - Izumi C Mori
- Group of Environmental Response Systems, Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046, Japan
| | - Takakazu Matsuura
- Group of Environmental Response Systems, Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046, Japan
| | - Takashi Hirayama
- Group of Environmental Response Systems, Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046, Japan
| | - Jennifer Ann Harikrishna
- Institute of Biological Sciences, Faculty of Science and Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| | - Ee-Tiing Lau
- Department of Research and Quality Development, Malaysian Pepper Board, Lot 1115, Jalan Utama, Pending Industrial Area, 93450, Kuching, Sarawak, Malaysia
- Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350, Kuching, Sarawak, Malaysia
| | - Zehnder Jarroop Augustine Mercer
- Department of Research and Quality Development, Malaysian Pepper Board, Lot 1115, Jalan Utama, Pending Industrial Area, 93450, Kuching, Sarawak, Malaysia
| | - Siaw-San Hwang
- Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350, Kuching, Sarawak, Malaysia
| |
Collapse
|
25
|
Jaworek P, Tarkowski P, Hluska T, Kouřil Š, Vrobel O, Nisler J, Kopečný D. Characterization of five CHASE-containing histidine kinase receptors from Populus × canadensis cv. Robusta sensing isoprenoid and aromatic cytokinins. PLANTA 2019; 251:1. [PMID: 31776777 DOI: 10.1007/s00425-019-03297-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Five poplar CHASE-containing histidine kinase receptors bind cytokinins and display kinase activities. Both endogenous isoprenoid and aromatic cytokinins bind to the receptors in live cell assays. Cytokinins are phytohormones that play key roles in various developmental processes in plants. The poplar species Populus × canadensis, cv. Robusta, is the first organism found to contain aromatic cytokinins. Here, we report the functional characterization of five CHASE-containing histidine kinases from P. × canadensis: PcHK2, PcHK3a, PcHK3b, PcHK4a and PcHK4b. A qPCR analysis revealed high transcript levels of all PcHKs other than PcHK4b across multiple poplar organs. The ligand specificity was determined using a live cell Escherichia coli assay and we provide evidence based on UHPLC-MS/MS data that ribosides can be true ligands. PcHK2 exhibited higher sensitivity to iP-type cytokinins than the other receptors, while PcHK3a and PcHK3b bound these cytokinins much more weakly, because they possess two isoleucine residues that clash with the cytokinin base and destabilize its binding. All receptors display kinase activity but their activation ratios in the presence/absence of cytokinin differ significantly. PcHK4a displays over 400-fold higher kinase activity in the presence of cytokinin, suggesting involvement in strong responses to changes in cytokinin levels. trans-Zeatin was both the most abundant cytokinin in poplar and that with the highest variation in abundance, which is consistent with its strong binding to all five HKs and activation of cytokinin signaling via A-type response regulators. The aromatic cytokinins' biological significance remains unclear, their levels vary diurnally, seasonally, and annually. PcHK3 and PcHK4 display the strongest binding at pH 7.5 and 5.5, respectively, in line with their putative membrane localization in the endoplasmic reticulum and plasma membrane.
Collapse
Affiliation(s)
- Pavel Jaworek
- Department of Phytochemistry, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
- Department of Protein Biochemistry and Proteomics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Petr Tarkowski
- Department of Phytochemistry, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Centre of the Region Haná for Biotechnological and Agricultural Research, Crop Research Institute, Šlechtitelů 29, 783 71, Olomouc, Czech Republic
| | - Tomáš Hluska
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Centre of the Region Haná for Biotechnological and Agricultural Research, Crop Research Institute, Šlechtitelů 29, 783 71, Olomouc, Czech Republic
| | - Štěpán Kouřil
- Department of Phytochemistry, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Ondřej Vrobel
- Department of Phytochemistry, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Centre of the Region Haná for Biotechnological and Agricultural Research, Crop Research Institute, Šlechtitelů 29, 783 71, Olomouc, Czech Republic
| | - Jaroslav Nisler
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, AS CR & Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - David Kopečný
- Department of Protein Biochemistry and Proteomics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
26
|
Xiao Y, Liu D, Zhang G, Gao S, Liu L, Xu F, Che R, Wang Y, Tong H, Chu C. Big Grain3, encoding a purine permease, regulates grain size via modulating cytokinin transport in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:581-597. [PMID: 30267474 DOI: 10.1111/jipb.12727] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/21/2018] [Indexed: 05/20/2023]
Abstract
Grain size is an important agronomic trait affecting grain yield, but the underlying molecular mechanisms remain to be elucidated. Here, we isolated a dominant mutant, big grain3 (bg3-D), which exhibits a remarkable increase of grain size caused by activation of the PURINE PERMEASE gene, OsPUP4. BG3/OsPUP4 is predominantly expressed in vascular tissues and is specifically suppressed by exogenous cytokinin application. Hormone profiling revealed that the distribution of different cytokinin forms, in roots and shoots of the bg3-D mutant, is altered. Quantitative reverse transcription-PCR (qRT-PCR) analysis indicated that expression of rice cytokinin type-A RESPONSE REGULATOR (OsRR) genes is enhanced in the roots of the bg3-D mutant. These results suggest that OsPUP4 might contribute to the long-distance transport of cytokinin, by reinforcing cytokinin loading into vascular bundle cells. Furthermore, plants overexpressing OsPUP7, the closest homolog of OsPUP4, also exhibited a similar phenotype to the bg3-D mutant. Interestingly, subcellular localization demonstrated that OsPUP4 was localized on the plasma membrane, whereas OsPUP7 was localized to the endoplasmic reticulum. Based on these findings, we propose that OsPUP4 and OsPUP7 function in a linear pathway to direct cytokinin cell-to-cell transport, affecting both its long-distance movement and local allocation.
Collapse
Affiliation(s)
- Yunhua Xiao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing 100101, China
| | - Dapu Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing 100101, China
| | - Guoxia Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing 100101, China
| | - Shaopei Gao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing 100101, China
| | - Linchuan Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing 100101, China
| | - Fan Xu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing 100101, China
| | - Ronghui Che
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing 100101, China
| | - Yiqin Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing 100101, China
| | - Hongning Tong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, the Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
27
|
Effect of microelements on the cytokinins content in mycelial biomass of medicinal mushroom Trametes versicolor (Polyporaceae, Basidiomycota). UKRAINIAN BOTANICAL JOURNAL 2019. [DOI: 10.15407/ukrbotj76.01.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
28
|
Wu J, Jin Y, Liu C, Vonapartis E, Liang J, Wu W, Gazzarrini S, He J, Yi M. GhNAC83 inhibits corm dormancy release by regulating ABA signaling and cytokinin biosynthesis in Gladiolus hybridus. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1221-1237. [PMID: 30517656 PMCID: PMC6382327 DOI: 10.1093/jxb/ery428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/27/2018] [Indexed: 05/18/2023]
Abstract
Corm dormancy is an important trait for breeding in many bulb flowers, including the most cultivated Gladiolus hybridus. Gladiolus corms are modified underground stems that function as storage organs and remain dormant to survive adverse environmental conditions. Unlike seed dormancy, not much is known about corm dormancy. Here, we characterize the mechanism of corm dormancy release (CDR) in Gladiolus. We identified an important ABA (abscisic acid) signaling regulator, GhPP2C1 (protein phosphatase 2C1), by transcriptome analysis of CDR. GhPP2C1 expression increased during CDR, and silencing of GhPP2C1 expression in dormant cormels delayed CDR. Furthermore, we show that GhPP2C1 expression is directly regulated by GhNAC83, which was identified by yeast one-hybrid library screening. In planta assays show that GhNAC83 is a negative regulator of GhPP2C1, and silencing of GhNAC83 promoted CDR. As expected, silencing of GhNAC83 decreased the ABA level, but also dramatically increased cytokinin (CK; zeatin) content in cormels. Binding assays demonstrate that GhNAC83 associates with the GhIPT (ISOPENTENYLTRANSFERASE) promoter and negatively regulates zeatin biosynthesis. Taken together, our results reveal that GhNAC83 promotes ABA signaling and synthesis, and inhibits CK biosynthesis pathways, thereby inhibiting CDR. These findings demonstrate that GhNAC83 regulates the ABA and CK pathways, and therefore controls corm dormancy.
Collapse
Affiliation(s)
- Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
- Department of Biological Sciences, University of Toronto Scarborough, ON, Canada
| | - Yujie Jin
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Chen Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Eliana Vonapartis
- Department of Cell and Systems Biology, University of Toronto, ON, Canada
- Department of Biological Sciences, University of Toronto Scarborough, ON, Canada
| | - Jiahui Liang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Wenjing Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Sonia Gazzarrini
- Department of Cell and Systems Biology, University of Toronto, ON, Canada
- Department of Biological Sciences, University of Toronto Scarborough, ON, Canada
| | - Junna He
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
- Correspondence: or
| | - Mingfang Yi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
- Correspondence: or
| |
Collapse
|
29
|
Jiang K, Asami T. Chemical regulators of plant hormones and their applications in basic research and agriculture*. Biosci Biotechnol Biochem 2018; 82:1265-1300. [DOI: 10.1080/09168451.2018.1462693] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ABSTRACT
Plant hormones are small molecules that play versatile roles in regulating plant growth, development, and responses to the environment. Classic methodologies, including genetics, analytic chemistry, biochemistry, and molecular biology, have contributed to the progress in plant hormone studies. In addition, chemical regulators of plant hormone functions have been important in such studies. Today, synthetic chemicals, including plant growth regulators, are used to study and manipulate biological systems, collectively referred to as chemical biology. Here, we summarize the available chemical regulators and their contributions to plant hormone studies. We also pose questions that remain to be addressed in plant hormone studies and that might be solved with the help of chemical regulators.
Collapse
Affiliation(s)
- Kai Jiang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
30
|
Lomin SN, Myakushina YA, Kolachevskaya OO, Getman IA, Arkhipov DV, Savelieva EM, Osolodkin DI, Romanov GA. Cytokinin perception in potato: new features of canonical players. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3839-3853. [PMID: 29800344 PMCID: PMC6054150 DOI: 10.1093/jxb/ery199] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/15/2018] [Indexed: 05/11/2023]
Abstract
Potato is the most economically important non-cereal food crop. Tuber formation in potato is regulated by phytohormones, cytokinins (CKs) in particular. The present work studied CK signal perception in potato. The sequenced potato genome of doubled monoploid Phureja was used for bioinformatic analysis and as a tool for identification of putative CK receptors from autotetraploid potato cv. Désirée. All basic elements of multistep phosphorelay required for CK signal transduction were identified in the Phureja genome, including three genes orthologous to three CK receptor genes (AHK 2-4) of Arabidopsis. As distinct from Phureja, autotetraploid potato contains at least two allelic isoforms of each receptor type. Putative receptor genes from Désirée plants were cloned, sequenced and expressed, and the main characteristics of encoded proteins were determined, in particular their consensus motifs, modelled structure, ligand-binding properties, and ability to transmit CK signals. In all studied aspects the predicted sensor histidine kinases met the requirements for genuine CK receptors. Expression of potato CK receptors was found to be organ-specific and sensitive to growth conditions, particularly to sucrose content. Our results provide a solid basis for further in-depth study of CK signaling system and biotechnological improvement of potato.
Collapse
Affiliation(s)
- Sergey N Lomin
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Yulia A Myakushina
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | | | - Irina A Getman
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V Arkhipov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina M Savelieva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry I Osolodkin
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
- Institute of Poliomyelitis and Viral Encephalitides, FSBSI Chumakov FSC R&D IBP RAS, Poselok Instituta Poliomelita 8 bd 1, Poselenie Moskovsky, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Georgy A Romanov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russia
| |
Collapse
|
31
|
Anderson SL, Mahan AL, Murray SC, Klein PE. Four Parent Maize (FPM) Population: Effects of Mating Designs on Linkage Disequilibrium and Mapping Quantitative Traits. THE PLANT GENOME 2018; 11:170102. [PMID: 30025026 DOI: 10.3835/plantgenome2017.11.0102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Multiparent advanced generation inter-cross (MAGIC) populations can provide improved genetic mapping resolution by increasing allelic diversity and effective recombination. The Four Parent Maize (FPM; L.) population implemented five different mating designs used in MAGIC and bi-parental populations to compare empirical effects on genetic resolution and power of quantitative trait locus (QTL) detection; the combined population here comprised of 1149 individuals with 118,509 genetic markers. Measurements were recorded for plant height (PH), ear height (EH), days to anthesis (DTA) and silking (DTS) in seven environments, spanning three years. Linkage disequilibrium (LD) analysis of subpopulations indicated MAGIC population designs should incorporate generations of intermating to overcome initial LD increase caused by population admixture in a non-intermated four parent population (4way0sib). A 3- to 4-fold increase in genetic resolution (<0.8) and a 2.5-fold decrease in the extent of LD decay (<0.2) compared to the biparental populations was found for the four parent cross at the third generation of intermating (4way3sib). Power of QTL detection was affected to a greater extent by sample size rather than by mating designs. The FPM power simulations indicated that MAGIC populations have the ability to meet or exceed the mapping power of nested association panels with fewer individuals and diversity inputs. Using association mapping software we identified 2, 5, 7, and 6 QTL for PH, EH, DTA, and DTS, respectively. The FPM population is a valuable resource for quantifying empirical improvements of parent number, intermating, and the number of progeny for QTL linkage mapping.
Collapse
|
32
|
Zhang H, Guiguet A, Dubreuil G, Kisiala A, Andreas P, Emery RJN, Huguet E, Body M, Giron D. Dynamics and origin of cytokinins involved in plant manipulation by a leaf-mining insect. INSECT SCIENCE 2017; 24:1065-1078. [PMID: 28636152 DOI: 10.1111/1744-7917.12500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/03/2017] [Accepted: 06/08/2017] [Indexed: 05/22/2023]
Abstract
Several herbivorous insects and plant-associated microorganisms control the phytohormonal balance, thus enabling them to successfully exploit the plant by inhibiting plant defenses and withdrawing plant resources for their own benefit. The leaf-mining moth Phyllonorycter blancardella modifies the cytokinin (CK) profile of mined leaf-tissues, and the insect symbiotic bacteria Wolbachia is involved in the plant manipulation to the benefit of the insect host. To gain a deeper understanding into the possible origin and dynamics of CKs, we conducted an extensive characterization of CKs in larvae and in infected apple leaves. Our results show the enhanced CK levels in mines, both on green and yellow leaves, allowing insects to control their nutritional supply under fluctuating environmental conditions. The spatial distribution of CKs within the mined leaves shows that hormone manipulation is strictly limited to the mine suggesting the absence of CK translocation from distant leaf areas toward the insect feeding site. Mass spectrometry analyses reveal that major CK types accumulating in mines and larvae are similar to what is observed for most gall-inducers, suggesting that strategies underlying the plant manipulation may be shared between herbivorous insects with distinct life histories. Results further show that CKs are detected in the highest levels in larvae, reinforcing our hypothesis that CKs accumulating in the mines originate from the insect itself. Presence of bacteria-specific methylthio-CKs is consistent with previous results suggesting that insect bacterial symbionts contribute to the observed phenotype. Our study provides key findings toward the understanding of molecular mechanisms underlying this intricate plant-insect-microbe interaction.
Collapse
Affiliation(s)
- Hui Zhang
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS/Université François-Rabelais de Tours, Tours, France
| | - Antoine Guiguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS/Université François-Rabelais de Tours, Tours, France
- Département de Biologie, École Normale Supérieure de Lyon, Lyon, France
- Department of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Géraldine Dubreuil
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS/Université François-Rabelais de Tours, Tours, France
| | - Anna Kisiala
- Department of Biology, Trent University, Peterborough, Canada
| | - Peter Andreas
- Department of Biology, Trent University, Peterborough, Canada
| | - R J Neil Emery
- Department of Biology, Trent University, Peterborough, Canada
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS/Université François-Rabelais de Tours, Tours, France
| | - Mélanie Body
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, USA
| | - David Giron
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS/Université François-Rabelais de Tours, Tours, France
| |
Collapse
|
33
|
Daudu D, Allion E, Liesecke F, Papon N, Courdavault V, Dugé de Bernonville T, Mélin C, Oudin A, Clastre M, Lanoue A, Courtois M, Pichon O, Giron D, Carpin S, Giglioli-Guivarc’h N, Crèche J, Besseau S, Glévarec G. CHASE-Containing Histidine Kinase Receptors in Apple Tree: From a Common Receptor Structure to Divergent Cytokinin Binding Properties and Specific Functions. FRONTIERS IN PLANT SCIENCE 2017; 8:1614. [PMID: 28979279 PMCID: PMC5611679 DOI: 10.3389/fpls.2017.01614] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/04/2017] [Indexed: 05/07/2023]
Abstract
Cytokinin signaling is a key regulatory pathway of many aspects in plant development and environmental stresses. Herein, we initiated the identification and functional characterization of the five CHASE-containing histidine kinases (CHK) in the economically important Malus domestica species. These cytokinin receptors named MdCHK2, MdCHK3a/MdCHK3b, and MdCHK4a/MdCHK4b by homology with Arabidopsis AHK clearly displayed three distinct profiles. The three groups exhibited architectural variations, especially in the N-terminal part including the cytokinin sensing domain. Using a yeast complementation assay, we showed that MdCHK2 perceives a broad spectrum of cytokinins with a substantial sensitivity whereas both MdCHK4 homologs exhibit a narrow spectrum. Both MdCHK3 homologs perceived some cytokinins but surprisingly they exhibited a basal constitutive activity. Interaction studies revealed that MdCHK2, MdCHK4a, and MdCHK4b homodimerized whereas MdCHK3a and MdCHK3b did not. Finally, qPCR analysis and bioinformatics approach pointed out contrasted expression patterns among the three MdCHK groups as well as distinct sets of co-expressed genes. Our study characterized for the first time the five cytokinin receptors in apple tree and provided a framework for their further functional studies.
Collapse
Affiliation(s)
- Dimitri Daudu
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Elsa Allion
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Franziska Liesecke
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Nicolas Papon
- EA 3142 Groupe d’Etude des Interactions Hôte-Pathogène, Université AngersAngers, France
| | - Vincent Courdavault
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | | | - Céline Mélin
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Audrey Oudin
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Marc Clastre
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Arnaud Lanoue
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Martine Courtois
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Olivier Pichon
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - David Giron
- UMR 7261 Institut de Recherche sur la Biologie de l’Insecte, Centre National de la Recherche Scientifique (CNRS), Université François-RabelaisTours, France
| | - Sabine Carpin
- EA 1207 Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’OrléansOrléans, France
| | | | - Joël Crèche
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Sébastien Besseau
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Gaëlle Glévarec
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| |
Collapse
|
34
|
Mrzic A, Lermyte F, Vu TN, Valkenborg D, Laukens K. InSourcerer: a high-throughput method to search for unknown metabolite modifications by mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:1396-1404. [PMID: 28569011 DOI: 10.1002/rcm.7910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/15/2017] [Accepted: 05/22/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE Using mass spectrometry, the analysis of known metabolite structures has become feasible in a systematic high-throughput fashion. Nevertheless, the identification of previously unknown structures remains challenging, partially because many unidentified variants originate from known molecules that underwent unexpected modifications. Here, we present a method for the discovery of unknown metabolite modifications and conjugate metabolite isoforms in a high-throughput fashion. METHODS The method is based on user-controlled in-source fragmentation which is used to induce loss of weakly bound modifications. This is followed by the comparison of product ions from in-source fragmentation and collision-induced dissociation (CID). Diagonal MS2 -MS3 matching allows the detection of unknown metabolite modifications, as well as substructure similarities. As the method relies heavily on the advantages of in-source fragmentation and its ability to 'magically' elucidate unknown modification, we have named it inSourcerer as a portmanteau of in-source and sorcerer. RESULTS The method was evaluated using a set of 15 different cytokinin standards. Product ions from in-source fragmentation and CID were compared. Hierarchical clustering revealed that good matches are due to the presence of common substructures. Plant leaf extract, spiked with a mix of all 15 standards, was used to demonstrate the method's ability to detect these standards in a complex mixture, as well as confidently identify compounds already present in the plant material. CONCLUSIONS Here we present a method that incorporates a classic liquid chromatography/mass spectrometry (LC/MS) workflow with fragmentation models and computational algorithms. The assumptions upon which the concept of the method was built were shown to be valid and the method showed that in-source fragmentation can be used to pinpoint structural similarities and indicate the occurrence of a modification.
Collapse
Affiliation(s)
- Aida Mrzic
- Department of Mathematics and Computer Science, University of Antwerp, Antwerpen, Belgium
- Biomedical Informatics Research Network Antwerpen (biomina), University of Antwerp / Antwerp University Hospital, Antwerpen, Belgium
| | - Frederik Lermyte
- Applied Bio & Molecular Systems, Flemish Institute for Technological Research (VITO), Mol, Belgium
- UA-VITO Center for Proteomics, University of Antwerp, Antwerpen, Belgium
- Department of Chemistry, University of Antwerp, Antwerpen, Belgium
| | - Trung Nghia Vu
- Department of Mathematics and Computer Science, University of Antwerp, Antwerpen, Belgium
- Biomedical Informatics Research Network Antwerpen (biomina), University of Antwerp / Antwerp University Hospital, Antwerpen, Belgium
| | - Dirk Valkenborg
- Applied Bio & Molecular Systems, Flemish Institute for Technological Research (VITO), Mol, Belgium
- UA-VITO Center for Proteomics, University of Antwerp, Antwerpen, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Hasselt, Belgium
| | - Kris Laukens
- Department of Mathematics and Computer Science, University of Antwerp, Antwerpen, Belgium
- Biomedical Informatics Research Network Antwerpen (biomina), University of Antwerp / Antwerp University Hospital, Antwerpen, Belgium
| |
Collapse
|
35
|
Sharan A, Soni P, Nongpiur RC, Singla-Pareek SL, Pareek A. Mapping the 'Two-component system' network in rice. Sci Rep 2017; 7:9287. [PMID: 28839155 PMCID: PMC5571105 DOI: 10.1038/s41598-017-08076-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/06/2017] [Indexed: 01/20/2023] Open
Abstract
Two-component system (TCS) in plants is a histidine to aspartate phosphorelay based signaling system. Rice genome has multifarious TCS signaling machinery comprising of 11 histidine kinases (OsHKs), 5 histidine phosphotransferases (OsHPTs) and 36 response regulators (OsRRs). However, how these TCS members interact with each other and comprehend diverse signaling cascades remains unmapped. Using a highly stringent yeast two-hybrid (Y2H) platform and extensive in planta bimolecular fluorescence complementation (BiFC) assays, distinct arrays of interaction between various TCS proteins have been identified in the present study. Based on these results, an interactome map of TCS proteins has been assembled. This map clearly shows a cross talk in signaling, mediated by different sensory OsHKs. It also highlights OsHPTs as the interaction hubs, which interact with OsRRs, mostly in a redundant fashion. Remarkably, interactions between type-A and type-B OsRRs have also been revealed for the first time. These observations suggest that feedback regulation by type-A OsRRs may also be mediated by interference in signaling at the level of type-B OsRRs, in addition to OsHPTs, as known previously. The interactome map presented here provides a starting point for in-depth molecular investigations for signal(s) transmitted by various TCS modules into diverse biological processes.
Collapse
Affiliation(s)
- Ashutosh Sharan
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Praveen Soni
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ramsong Chantre Nongpiur
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
36
|
Trdá L, Barešová M, Šašek V, Nováková M, Zahajská L, Dobrev PI, Motyka V, Burketová L. Cytokinin Metabolism of Pathogenic Fungus Leptosphaeria maculans Involves Isopentenyltransferase, Adenosine Kinase and Cytokinin Oxidase/Dehydrogenase. Front Microbiol 2017; 8:1374. [PMID: 28785249 PMCID: PMC5521058 DOI: 10.3389/fmicb.2017.01374] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/06/2017] [Indexed: 12/23/2022] Open
Abstract
Among phytohormones, cytokinins (CKs) play an important role in controlling crucial aspects of plant development. Not only plants but also diverse microorganisms are able to produce phytohormones, including CKs, though knowledge concerning their biosynthesis and metabolism is still limited. In this work we demonstrate that the fungus Leptosphaeria maculans, a hemi-biotrophic pathogen of oilseed rape (Brassica napus), causing one of the most damaging diseases of this crop, is able to modify the CK profile in infected B. napus tissues, as well as produce a wide range of CKs in vitro, with the cis-zeatin derivatives predominating. The endogenous CK spectrum of L. maculans in vitro consists mainly of free CK bases, as opposed to plants, where other CK forms are mostly more abundant. Using functional genomics, enzymatic and feeding assays with CK bases supplied to culture media, we show that L. maculans contains a functional: (i) isopentenyltransferase (IPT) involved in cZ production; (ii) adenosine kinase (AK) involved in phosphorylation of CK ribosides to nucleotides; and (iii) CK-degradation enzyme cytokinin oxidase/dehydrogenase (CKX). Our data further indicate the presence of cis-trans isomerase, zeatin O-glucosyltransferase(s) and N6-(Δ2-isopentenyl)adenine hydroxylating enzyme. Besides, we report on a crucial role of LmAK for L. maculans fitness and virulence. Altogether, in this study we characterize in detail the CK metabolism of the filamentous fungi L. maculans and report its two novel components, the CKX and CK-related AK activities, according to our knowledge for the first time in the fungal kingdom. Based on these findings, we propose a model illustrating CK metabolism pathways in L. maculans.
Collapse
Affiliation(s)
- Lucie Trdá
- Institute of Experimental Botany, The Czech Academy of SciencesPrague, Czechia
| | - Monika Barešová
- Institute of Experimental Botany, The Czech Academy of SciencesPrague, Czechia
- Department of Biochemistry and Microbiology, Institute of Chemical TechnologyPrague, Czechia
| | - Vladimír Šašek
- Institute of Experimental Botany, The Czech Academy of SciencesPrague, Czechia
| | - Miroslava Nováková
- Institute of Experimental Botany, The Czech Academy of SciencesPrague, Czechia
| | - Lenka Zahajská
- Institute of Experimental Botany, The Czech Academy of SciencesPrague, Czechia
| | - Petre I. Dobrev
- Institute of Experimental Botany, The Czech Academy of SciencesPrague, Czechia
| | - Václav Motyka
- Institute of Experimental Botany, The Czech Academy of SciencesPrague, Czechia
| | - Lenka Burketová
- Institute of Experimental Botany, The Czech Academy of SciencesPrague, Czechia
| |
Collapse
|
37
|
Guo Q, Turnbull MH, Song J, Roche J, Novak O, Späth J, Jameson PE, Love J. Depletion of carbohydrate reserves limits nitrate uptake during early regrowth in Lolium perenne L. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1569-1583. [PMID: 28379423 PMCID: PMC5444434 DOI: 10.1093/jxb/erx056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The mechanisms linking C/N balance to N uptake and assimilation are central to plant responses to changing soil nutrient levels. Defoliation and subsequent regrowth of grasses both impact C partitioning, thereby creating a significant point of interaction with soil N availability. Using defoliation as an experimental treatment, we investigated the dynamic relationships between plant carbohydrate status and NO3--responsive uptake systems, transporter gene expression, and nitrate assimilation in Lolium perenne L. High- and low-affinity NO3- uptake was reduced in an N-dependent manner in response to a rapid and large shift in carbohydrate remobilization triggered by defoliation. This reduction in NO3- uptake was rescued by an exogenous glucose supplement, confirming the carbohydrate dependence of NO3- uptake. The regulation of NO3- uptake in response to the perturbation of the plant C/N ratio was associated with changes in expression of putative high- and low-affinity NO3- transporters. Furthermore, NO3- assimilation appears to be regulated by the C-N status of the plant, implying a mechanism that signals the availability of C metabolites for NO3- uptake and assimilation at the whole-plant level. We also show that cytokinins may be involved in the regulation of N acquisition and assimilation in response to the changing plant C/N ratio.
Collapse
Affiliation(s)
- Qianqian Guo
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Matthew Hamish Turnbull
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Jiancheng Song
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
- School of Life Sciences, Yantai University, Yantai 264005, China
| | - Jessica Roche
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Ondrej Novak
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS & Faculty of Science of Palacký University, Šlechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Jana Späth
- Swedish Metabolomics Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences KBC, Umeå University, Linnéus väg 6, SE-90183 Umeå, Sweden
| | - Paula Elizabeth Jameson
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Jonathan Love
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| |
Collapse
|
38
|
Brütting C, Schäfer M, Vanková R, Gase K, Baldwin IT, Meldau S. Changes in cytokinins are sufficient to alter developmental patterns of defense metabolites in Nicotiana attenuata. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:15-30. [PMID: 27557345 PMCID: PMC5245775 DOI: 10.1111/tpj.13316] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 05/05/2023]
Abstract
Plant defense metabolites are well known to be regulated developmentally. The optimal defense (OD) theory posits that a tssue's fitness values and probability of attack should determine defense metabolite allocations. Young leaves are expected to provide a larger fitness value to the plant, and therefore their defense allocations should be higher when compared with older leaves. The mechanisms that coordinate development with defense remain unknown and frequently confound tests of the OD theory predictions. Here we demonstrate that cytokinins (CKs) modulate ontogeny-dependent defenses in Nicotiana attenuata. We found that leaf CK levels highly correlate with inducible defense expressions with high levels in young and low levels in older leaves. We genetically manipulated the developmental patterns of two different CK classes by using senescence- and chemically inducible expression of CK biosynthesis genes. Genetically modifying the levels of different CKs in leaves was sufficient to alter ontogenic patterns of defense metabolites. We conclude that the developmental regulation of growth hormones that include CKs plays central roles in connecting development with defense and therefore in establishing optimal patterns of defense allocation in plants.
Collapse
Affiliation(s)
- Christoph Brütting
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, Jena 07745, Germany
| | - Martin Schäfer
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, Jena 07745, Germany
| | - Radomira Vanková
- Institute of Experimental Botany AS CR, Laboratory of Hormonal Regulations in Plants, Rozvojová 263, 165 02 Prague 6 - Lysolaje, Czech Republic
| | - Klaus Gase
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, Jena 07745, Germany
| | - Ian T. Baldwin
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, Jena 07745, Germany
| | - Stefan Meldau
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, Jena 07745, Germany
- German Centre for integrative Biodiversity Research (iDiv), Deutscher Platz 5, Leipzig 04107, Germany
| |
Collapse
|
39
|
Hluska T, Šebela M, Lenobel R, Frébort I, Galuszka P. Purification of Maize Nucleotide Pyrophosphatase/Phosphodiesterase Casts Doubt on the Existence of Zeatin Cis- Trans Isomerase in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1473. [PMID: 28878803 PMCID: PMC5572937 DOI: 10.3389/fpls.2017.01473] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/08/2017] [Indexed: 05/14/2023]
Abstract
Almost 25 years ago, an enzyme named zeatin cis-trans isomerase from common bean has been described by Bassil et al. (1993). The partially purified enzyme required an external addition of FAD and dithiothreitol for the conversion of cis-zeatin to its trans- isomer that occurred only under light. Although an existence of this important enzyme involved in the metabolism of plant hormones cytokinins was generally accepted by plant biologists, the corresponding protein and encoding gene have not been identified to date. Based on the original paper, we purified and identified an enzyme from maize, which shows the described zeatin cis-trans isomerase activity. The enzyme belongs to nucleotide pyrophosphatase/phosphodiesterase family, which is well characterized in mammals, but less known in plants. Further experiments with the recombinant maize enzyme obtained from yeast expression system showed that rather than the catalytic activity of the enzyme itself, a non-enzymatic flavin induced photoisomerization is responsible for the observed zeatin cis-trans interconversion in vitro. An overexpression of the maize nucleotide pyrophosphatase/phosphodiesterase gene led to decreased FAD and increased FMN and riboflavin contents in transgenic Arabidopsis plants. However, neither contents nor the ratio of zeatin isomers was altered suggesting that the enzyme is unlikely to catalyze the interconversion of zeatin isomers in vivo. Using enhanced expression of a homologous gene, functional nucleotide pyrophosphatase/phosphodiesterase was also identified in rice.
Collapse
Affiliation(s)
- Tomáš Hluska
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University OlomoucOlomouc, Czechia
| | - Marek Šebela
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University OlomoucOlomouc, Czechia
| | - René Lenobel
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University OlomoucOlomouc, Czechia
| | - Ivo Frébort
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University OlomoucOlomouc, Czechia
| | - Petr Galuszka
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University OlomoucOlomouc, Czechia
- *Correspondence: Petr Galuszka,
| |
Collapse
|
40
|
Steiner E, Livne S, Kobinson-Katz T, Tal L, Pri-Tal O, Mosquna A, Tarkowská D, Mueller B, Tarkowski P, Weiss D. The Putative O-Linked N-Acetylglucosamine Transferase SPINDLY Inhibits Class I TCP Proteolysis to Promote Sensitivity to Cytokinin. PLANT PHYSIOLOGY 2016; 171:1485-94. [PMID: 27208284 PMCID: PMC4902619 DOI: 10.1104/pp.16.00343] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/03/2016] [Indexed: 05/08/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) SPINDLY (SPY) is a putative serine and threonine O-linked N-acetylglucosamine transferase (OGT). While SPY has been shown to suppress gibberellin signaling and to promote cytokinin (CK) responses, its catalytic OGT activity was never demonstrated and its effect on protein fate is not known. We previously showed that SPY interacts physically and functionally with TCP14 and TCP15 to promote CK responses. Here, we aimed to identify how SPY regulates TCP14/15 activities and how these TCPs promote CK responses. We show that SPY activity is required for TCP14 stability. Mutation in the putative OGT domain of SPY (spy-3) stimulated TCP14 proteolysis by the 26S proteasome, which was reversed by mutation in CULLIN1 (CUL1), suggesting a role for SKP, CUL1, F-box E3 ubiquitin ligase in TCP14 proteolysis. TCP14 proteolysis in spy-3 suppressed all TCP14 misexpression phenotypes, including the enhanced CK responses. The increased CK activity in TCP14/15-overexpressing flowers resulted from increased sensitivity to the hormone and not from higher CK levels. TCP15 overexpression enhanced the response of the CK-induced synthetic promoter pTCS to CK, suggesting that TCP14/15 affect early steps in CK signaling. We propose that posttranslational modification of TCP14/15 by SPY inhibits their proteolysis and that the accumulated proteins promote the activity of the CK phosphorelay cascade in developing Arabidopsis leaves and flowers.
Collapse
Affiliation(s)
- Evyatar Steiner
- Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (E.S., S.L., T.K.-K., O.P.-T., A.M., D.W.);Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (L.T.);Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Metabolomics, Institute of Experimental Botany, CZ-78371 Olomouc, Czech Republic (D.T.);Department of Plant and Microbial Biology, University of Zurich, Zurich-Basel Plant Science Center, 8008 Zurich, Switzerland (B.M.); andCentre of the Region Haná for Biotechnological and Agricultural Research, Central Laboratories and Research Support, Faculty of Science, Palacky University, and Department of Genetic Resources for Vegetables, Medicinal, and Special Plants, Crop Research Institute, CZ-78371 Olomouc, Czech Republic (P.T.)
| | - Sivan Livne
- Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (E.S., S.L., T.K.-K., O.P.-T., A.M., D.W.);Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (L.T.);Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Metabolomics, Institute of Experimental Botany, CZ-78371 Olomouc, Czech Republic (D.T.);Department of Plant and Microbial Biology, University of Zurich, Zurich-Basel Plant Science Center, 8008 Zurich, Switzerland (B.M.); andCentre of the Region Haná for Biotechnological and Agricultural Research, Central Laboratories and Research Support, Faculty of Science, Palacky University, and Department of Genetic Resources for Vegetables, Medicinal, and Special Plants, Crop Research Institute, CZ-78371 Olomouc, Czech Republic (P.T.)
| | - Tammy Kobinson-Katz
- Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (E.S., S.L., T.K.-K., O.P.-T., A.M., D.W.);Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (L.T.);Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Metabolomics, Institute of Experimental Botany, CZ-78371 Olomouc, Czech Republic (D.T.);Department of Plant and Microbial Biology, University of Zurich, Zurich-Basel Plant Science Center, 8008 Zurich, Switzerland (B.M.); andCentre of the Region Haná for Biotechnological and Agricultural Research, Central Laboratories and Research Support, Faculty of Science, Palacky University, and Department of Genetic Resources for Vegetables, Medicinal, and Special Plants, Crop Research Institute, CZ-78371 Olomouc, Czech Republic (P.T.)
| | - Lior Tal
- Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (E.S., S.L., T.K.-K., O.P.-T., A.M., D.W.);Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (L.T.);Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Metabolomics, Institute of Experimental Botany, CZ-78371 Olomouc, Czech Republic (D.T.);Department of Plant and Microbial Biology, University of Zurich, Zurich-Basel Plant Science Center, 8008 Zurich, Switzerland (B.M.); andCentre of the Region Haná for Biotechnological and Agricultural Research, Central Laboratories and Research Support, Faculty of Science, Palacky University, and Department of Genetic Resources for Vegetables, Medicinal, and Special Plants, Crop Research Institute, CZ-78371 Olomouc, Czech Republic (P.T.)
| | - Oded Pri-Tal
- Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (E.S., S.L., T.K.-K., O.P.-T., A.M., D.W.);Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (L.T.);Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Metabolomics, Institute of Experimental Botany, CZ-78371 Olomouc, Czech Republic (D.T.);Department of Plant and Microbial Biology, University of Zurich, Zurich-Basel Plant Science Center, 8008 Zurich, Switzerland (B.M.); andCentre of the Region Haná for Biotechnological and Agricultural Research, Central Laboratories and Research Support, Faculty of Science, Palacky University, and Department of Genetic Resources for Vegetables, Medicinal, and Special Plants, Crop Research Institute, CZ-78371 Olomouc, Czech Republic (P.T.)
| | - Assaf Mosquna
- Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (E.S., S.L., T.K.-K., O.P.-T., A.M., D.W.);Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (L.T.);Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Metabolomics, Institute of Experimental Botany, CZ-78371 Olomouc, Czech Republic (D.T.);Department of Plant and Microbial Biology, University of Zurich, Zurich-Basel Plant Science Center, 8008 Zurich, Switzerland (B.M.); andCentre of the Region Haná for Biotechnological and Agricultural Research, Central Laboratories and Research Support, Faculty of Science, Palacky University, and Department of Genetic Resources for Vegetables, Medicinal, and Special Plants, Crop Research Institute, CZ-78371 Olomouc, Czech Republic (P.T.)
| | - Danuše Tarkowská
- Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (E.S., S.L., T.K.-K., O.P.-T., A.M., D.W.);Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (L.T.);Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Metabolomics, Institute of Experimental Botany, CZ-78371 Olomouc, Czech Republic (D.T.);Department of Plant and Microbial Biology, University of Zurich, Zurich-Basel Plant Science Center, 8008 Zurich, Switzerland (B.M.); andCentre of the Region Haná for Biotechnological and Agricultural Research, Central Laboratories and Research Support, Faculty of Science, Palacky University, and Department of Genetic Resources for Vegetables, Medicinal, and Special Plants, Crop Research Institute, CZ-78371 Olomouc, Czech Republic (P.T.)
| | - Bruno Mueller
- Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (E.S., S.L., T.K.-K., O.P.-T., A.M., D.W.);Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (L.T.);Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Metabolomics, Institute of Experimental Botany, CZ-78371 Olomouc, Czech Republic (D.T.);Department of Plant and Microbial Biology, University of Zurich, Zurich-Basel Plant Science Center, 8008 Zurich, Switzerland (B.M.); andCentre of the Region Haná for Biotechnological and Agricultural Research, Central Laboratories and Research Support, Faculty of Science, Palacky University, and Department of Genetic Resources for Vegetables, Medicinal, and Special Plants, Crop Research Institute, CZ-78371 Olomouc, Czech Republic (P.T.)
| | - Petr Tarkowski
- Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (E.S., S.L., T.K.-K., O.P.-T., A.M., D.W.);Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (L.T.);Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Metabolomics, Institute of Experimental Botany, CZ-78371 Olomouc, Czech Republic (D.T.);Department of Plant and Microbial Biology, University of Zurich, Zurich-Basel Plant Science Center, 8008 Zurich, Switzerland (B.M.); andCentre of the Region Haná for Biotechnological and Agricultural Research, Central Laboratories and Research Support, Faculty of Science, Palacky University, and Department of Genetic Resources for Vegetables, Medicinal, and Special Plants, Crop Research Institute, CZ-78371 Olomouc, Czech Republic (P.T.)
| | - David Weiss
- Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (E.S., S.L., T.K.-K., O.P.-T., A.M., D.W.);Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (L.T.);Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Metabolomics, Institute of Experimental Botany, CZ-78371 Olomouc, Czech Republic (D.T.);Department of Plant and Microbial Biology, University of Zurich, Zurich-Basel Plant Science Center, 8008 Zurich, Switzerland (B.M.); andCentre of the Region Haná for Biotechnological and Agricultural Research, Central Laboratories and Research Support, Faculty of Science, Palacky University, and Department of Genetic Resources for Vegetables, Medicinal, and Special Plants, Crop Research Institute, CZ-78371 Olomouc, Czech Republic (P.T.)
| |
Collapse
|
41
|
Hluska T, Dobrev PI, Tarkowská D, Frébortová J, Zalabák D, Kopečný D, Plíhal O, Kokáš F, Briozzo P, Zatloukal M, Motyka V, Galuszka P. Cytokinin metabolism in maize: Novel evidence of cytokinin abundance, interconversions and formation of a new trans-zeatin metabolic product with a weak anticytokinin activity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 247:127-37. [PMID: 27095406 DOI: 10.1016/j.plantsci.2016.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 05/10/2023]
Abstract
Cytokinins (CKs) are an important group of phytohormones. Their tightly regulated and balanced levels are essential for proper cell division and plant organ development. Here we report precise quantification of CK metabolites and other phytohormones in maize reproductive organs in the course of pollination and kernel maturation. A novel enzymatic activity dependent on NADP(+) converting trans-zeatin (tZ) to 6-(3-methylpyrrol-1-yl)purine (MPP) was detected. MPP shows weak anticytokinin properties and inhibition of CK dehydrogenases due to their ability to bind to an active site in the opposite orientation than substrates. Although the physiological significance of tZ side-chain cyclization is not anticipated as the MPP occurrence in maize tissue is very low, properties of the novel CK metabolite indicate its potential for utilization in plant in vitro tissue culture. Furthermore, feeding experiments with different isoprenoid CKs revealed distinct preferences in glycosylation of tZ and cis-zeatin (cZ). While tZ is preferentially glucosylated at the N9 position, cZ forms mainly O-glucosides. Since O-glucosides, in contrast to N9-glucosides, are resistant to irreversible cleavage catalyzed by CK dehydrogenases, the observed preference of maize CK glycosyltransferases to O-glycosylate zeatin in the cis-position might be a reason why cZ derivatives are over-accumulated in different maize tissues and organs.
Collapse
Affiliation(s)
- Tomáš Hluska
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Petre I Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague, Czech Republic
| | - Dana Tarkowská
- Department of Metabolomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jitka Frébortová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - David Zalabák
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - David Kopečný
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Ondřej Plíhal
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Filip Kokáš
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Pierre Briozzo
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Route de Saint-Cyr, F-78026, Versailles, France
| | - Marek Zatloukal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Václav Motyka
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague, Czech Republic
| | - Petr Galuszka
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
42
|
Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits. Nat Genet 2016; 48:785-91. [PMID: 27182966 DOI: 10.1038/ng.3567] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/13/2016] [Indexed: 12/22/2022]
Abstract
Shoot apical meristems are stem cell niches that balance proliferation with the incorporation of daughter cells into organ primordia. This balance is maintained by CLAVATA-WUSCHEL feedback signaling between the stem cells at the tip of the meristem and the underlying organizing center. Signals that provide feedback from organ primordia to control the stem cell niche in plants have also been hypothesized, but their identities are unknown. Here we report FASCIATED EAR3 (FEA3), a leucine-rich-repeat receptor that functions in stem cell control and responds to a CLAVATA3/ESR-related (CLE) peptide expressed in organ primordia. We modeled our results to propose a regulatory system that transmits signals from differentiating cells in organ primordia back to the stem cell niche and that appears to function broadly in the plant kingdom. Furthermore, we demonstrate an application of this new signaling feedback, by showing that weak alleles of fea3 enhance hybrid maize yield traits.
Collapse
|
43
|
Vylíčilová H, Husičková A, Spíchal L, Srovnal J, Doležal K, Plíhal O, Plíhalová L. C2-substituted aromatic cytokinin sugar conjugates delay the onset of senescence by maintaining the activity of the photosynthetic apparatus. PHYTOCHEMISTRY 2016; 122:22-33. [PMID: 26706318 DOI: 10.1016/j.phytochem.2015.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/29/2015] [Accepted: 12/02/2015] [Indexed: 05/04/2023]
Abstract
Cytokinins are plant hormones with biological functions ranging from coordination of plant growth and development to the regulation of senescence. A series of 2-chloro-N(6)-(halogenobenzylamino)purine ribosides was prepared and tested for cytokinin activity in detached wheat leaf senescence, tobacco callus and Amaranthus bioassays. The synthetic compounds showed significant activity, especially in delaying senescence in detached wheat leaves. They were also tested in bacterial receptor bioassays using both monocot and dicot members of the cytokinin receptor family. Most of the derivatives did not trigger cytokinin signaling via the AHK3 and AHK4 receptors from Arabidopsis thaliana in the bacterial assay, but some of them specifically activated the ZmHK1 receptor from Zea mays and were also more active than the aromatic cytokinin BAP in an ARR5::GUS cytokinin bioassay using transgenic Arabidopsis plants. Whole transcript expression analysis was performed using an Arabidopsis model to gather information about the reprogramming of gene transcription when senescent leaves were treated with selected C2-substituted aromatic cytokinin ribosides. Genome-wide expression profiling revealed that the synthetic halogenated derivatives induced the expression of genes related to cytokinin signaling and metabolism. They also prompted both up- and down-regulation of a unique combination of genes coding for components of the photosystem II (PSII) reaction center, light-harvesting complex II (LHCII), and the oxygen-evolving complex, as well as several stress factors responsible for regulating photosynthesis and chlorophyll degradation. Chlorophyll content and fluorescence analyses demonstrated that treatment with the halogenated derivatives increased the efficiency of PSII photochemistry and the abundance of LHCII relative to DMSO- and BAP-treated controls. These findings demonstrate that it is possible to manipulate and fine-tune leaf longevity using synthetic aromatic cytokinin analogs.
Collapse
Affiliation(s)
- Hana Vylíčilová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Chemical Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Alexandra Husičková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Lukáš Spíchal
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Chemical Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Josef Srovnal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, Hněvotínská 5, CZ-77900 Olomouc, Czech Republic
| | - Karel Doležal
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Chemical Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Ondřej Plíhal
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Molecular Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic.
| | - Lucie Plíhalová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Chemical Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| |
Collapse
|
44
|
Schäfer M, Brütting C, Canales IM, Großkinsky DK, Vankova R, Baldwin IT, Meldau S. The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4873-84. [PMID: 25998904 PMCID: PMC5147713 DOI: 10.1093/jxb/erv214] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cytokinins (CKs) are well-established as important phytohormonal regulators of plant growth and development. An increasing number of studies have also revealed the function of these hormones in plant responses to biotic and abiotic stresses. While the function of certain CK classes, including trans-zeatin and isopentenyladenine-type CKs, have been studied in detail, the role of cis-zeatin-type CKs (cZs) in plant development and in mediating environmental interactions is less well defined. Here we provide a comprehensive summary of the current knowledge about abundance, metabolism and activities of cZs in plants. We outline the history of their analysis and the metabolic routes comprising cZ biosynthesis and degradation. Further we provide an overview of changes in the pools of cZs during plant development and environmental interactions. We summarize studies that investigate the role of cZs in regulating plant development and defence responses to pathogen and herbivore attack and highlight their potential role as 'novel' stress-response markers. Since the functional roles of cZs remain largely based on correlative data and genetic manipulations of their biosynthesis, inactivation and degradation are few, we suggest experimental approaches using transgenic plants altered in cZ levels to further uncover their roles in plant growth and environmental interactions and their potential for crop improvement.
Collapse
Affiliation(s)
- Martin Schäfer
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745 Jena, Germany
| | - Christoph Brütting
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745 Jena, Germany
| | - Ivan Meza Canales
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745 Jena, Germany
| | - Dominik K. Großkinsky
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé 13, 2630 Taastrup, Denmark
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, v. v. i., Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745 Jena, Germany
| | - Stefan Meldau
- KWS SAAT AG, Molecular Physiology (RD-ME-MP), Grimsehlstrasse 31, 37555 Einbeck, Germany, Phone: +49 (0) 5561-311-1391, Fax: +49 (0) 5561-311-1090
| |
Collapse
|
45
|
Hrtyan M, Šliková E, Hejátko J, Růžička K. RNA processing in auxin and cytokinin pathways. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4897-912. [PMID: 25922481 DOI: 10.1093/jxb/erv189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Auxin and cytokinin belong to the 'magnificent seven' plant hormones, having tightly interconnected pathways leading to common as well as opposing effects on plant morphogenesis. Tremendous progress in the past years has yielded a broad understanding of their signalling, metabolism, regulatory pathways, transcriptional networks, and signalling cross-talk. One of the rapidly expanding areas of auxin and cytokinin research concerns their RNA regulatory networks. This review summarizes current knowledge about post-transcriptional gene silencing, the role of non-coding RNAs, the regulation of translation, and alternative splicing of auxin- and cytokinin-related genes. In addition, the role of tRNA-bound cytokinins is also discussed. We highlight the most recent publications dealing with this topic and underline the role of RNA processing in auxin- and cytokinin-mediated growth and development.
Collapse
Affiliation(s)
- Mónika Hrtyan
- Department of Functional Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic
| | - Eva Šliková
- Department of Functional Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic
| | - Jan Hejátko
- Department of Functional Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic
| | - Kamil Růžička
- Department of Functional Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic
| |
Collapse
|
46
|
Antoniadi I, Plačková L, Simonovik B, Doležal K, Turnbull C, Ljung K, Novák O. Cell-Type-Specific Cytokinin Distribution within the Arabidopsis Primary Root Apex. THE PLANT CELL 2015; 27:1955-67. [PMID: 26152699 PMCID: PMC4531351 DOI: 10.1105/tpc.15.00176] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 06/10/2015] [Accepted: 06/18/2015] [Indexed: 05/18/2023]
Abstract
Cytokinins (CKs) play a crucial role in many physiological and developmental processes at the levels of individual plant components (cells, tissues, and organs) and by coordinating activities across these parts. High-resolution measurements of intracellular CKs in different plant tissues can therefore provide insights into their metabolism and mode of action. Here, we applied fluorescence-activated cell sorting of green fluorescent protein (GFP)-marked cell types, combined with solid-phase microextraction and an ultra-high-sensitivity mass spectrometry (MS) method for analysis of CK biosynthesis and homeostasis at cellular resolution. This method was validated by series of control experiments, establishing that protoplast isolation and cell sorting procedures did not greatly alter endogenous CK levels. The MS-based method facilitated the quantification of all the well known CK isoprenoid metabolites in four different transgenic Arabidopsis thaliana lines expressing GFP in specific cell populations within the primary root apex. Our results revealed the presence of a CK gradient within the Arabidopsis root tip, with a concentration maximum in the lateral root cap, columella, columella initials, and quiescent center cells. This distribution, when compared with previously published auxin gradients, implies that the well known antagonistic interactions between the two hormone groups are cell type specific.
Collapse
Affiliation(s)
- Ioanna Antoniadi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Lenka Plačková
- Laboratory of Growth Regulators and Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Biljana Simonovik
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Karel Doležal
- Laboratory of Growth Regulators and Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Colin Turnbull
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Ondřej Novák
- Laboratory of Growth Regulators and Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| |
Collapse
|
47
|
Morrison EN, Emery RJN, Saville BJ. Phytohormone Involvement in the Ustilago maydis- Zea mays Pathosystem: Relationships between Abscisic Acid and Cytokinin Levels and Strain Virulence in Infected Cob Tissue. PLoS One 2015; 10:e0130945. [PMID: 26107181 PMCID: PMC4479884 DOI: 10.1371/journal.pone.0130945] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/27/2015] [Indexed: 02/02/2023] Open
Abstract
Ustilago maydis is the causative agent of common smut of corn. Early studies noted its ability to synthesize phytohormones and, more recently these growth promoting substances were confirmed as cytokinins (CKs). Cytokinins comprise a group of phytohormones commonly associated with actively dividing tissues. Lab analyses identified variation in virulence between U. maydis dikaryon and solopathogen infections of corn cob tissue. Samples from infected cob tissue were taken at sequential time points post infection and biochemical profiling was performed using high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI MS/MS). This hormone profiling revealed that there were altered levels of ABA and major CKs, with a marked reduction in CK glucosides, increases in methylthiol CKs and a particularly dramatic increase in cisZ CK forms, in U. maydis infected tissue. These changes were more pronounced in the more virulent dikaryon relative to the solopathogenic strain suggesting a role for cytokinins in moderating virulence during biotrophic infection. These findings highlight the fact that U. maydis does not simply mimic a fertilized seed but instead reprograms the host tissue. Results underscore the suitability of the Ustilago maydis- Zea mays model as a basis for investigating the control of phytohormone dynamics during biotrophic infection of plants.
Collapse
Affiliation(s)
- Erin N. Morrison
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - R. J. Neil Emery
- Biology Department, Trent University, Peterborough, Ontario, Canada
| | - Barry J. Saville
- Forensic Science Program, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
48
|
Lomin SN, Krivosheev DM, Steklov MY, Arkhipov DV, Osolodkin DI, Schmülling T, Romanov GA. Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1851-63. [PMID: 25609827 PMCID: PMC4378623 DOI: 10.1093/jxb/eru522] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/05/2014] [Accepted: 12/19/2014] [Indexed: 05/18/2023]
Abstract
Cytokinin receptors play a key role in cytokinin-dependent processes regulating plant growth, development, and adaptation; therefore, the functional properties of these receptors are of great importance. Previously the properties of cytokinin receptors were investigated in heterologous assay systems using unicellular microorganisms, mainly bacteria, expressing receptor proteins. However, within microorganisms receptors reside in an alien environment that might distort the receptor properties. Therefore, a new assay system has been developed allowing studies of individual receptors within plant membranes (i.e. closer to their natural environment). The main ligand-binding characteristics of receptors from Arabidopsis [AHK2, AHK3, and AHK4] and maize (ZmHK1) were refined in this new system, and the properties of full-length Arabidopsis receptor AHK2 were characterized for the first time. Ligand specificity profiles of receptors towards cytokinin bases were comparable with the profiles retrieved in bacterial assay systems. In contrast, cytokinin-9-ribosides displayed a strongly reduced affinity for receptors in the plant assay system, indicating that ribosides as the common transport form of cytokinins have no or very weak cytokinin activity. This underpins the central role of free bases as the sole biologically active cytokinin compounds. According to molecular modelling and docking studies, N (9)-ribosylation alters the bonding pattern in cytokinin-receptor interaction and prevents β6-β7 loop movement important for tight hormone binding. A common feature of all receptors was a greatly reduced ligand binding at low (5.0-5.5) pH. The particularly high sensitivity of ZmHK1 to pH changes leads to the suggestion that some cytokinin receptors may play an additional role as pH sensors in the lumen of the endoplasmic reticulum.
Collapse
Affiliation(s)
- Sergey N Lomin
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Dmitry M Krivosheev
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Mikhail Yu Steklov
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Dmitry V Arkhipov
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Dmitry I Osolodkin
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany
| | - Georgy A Romanov
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119992 Moscow, Russia
| |
Collapse
|
49
|
Azizi P, Rafii M, Maziah M, Abdullah S, Hanafi M, Latif M, Rashid A, Sahebi M. Understanding the shoot apical meristem regulation: A study of the phytohormones, auxin and cytokinin, in rice. Mech Dev 2015; 135:1-15. [DOI: 10.1016/j.mod.2014.11.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 11/05/2014] [Accepted: 11/14/2014] [Indexed: 11/30/2022]
|
50
|
Wen F, Qin T, Wang Y, Dong W, Zhang A, Tan M, Jiang M. OsHK3 is a crucial regulator of abscisic acid signaling involved in antioxidant defense in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:213-28. [PMID: 24912543 DOI: 10.1111/jipb.12222] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 06/07/2014] [Indexed: 05/21/2023]
Abstract
In this study, the role of the rice (Oryza sativa L.) histidine kinase OsHK3 in abscisic acid (ABA)-induced antioxidant defense was investigated. Treatments with ABA, H2 O2 , and polyethylene glycol (PEG) induced the expression of OsHK3 in rice leaves, and H2 O2 is required for ABA-induced increase in the expression of OsHK3 under water stress. Subcellular localization analysis showed that OsHK3 is located in the cytoplasm and the plasma membrane. The transient expression analysis and the transient RNA interference test in rice protoplasts showed that OsHK3 is required for ABA-induced upregulation in the expression of antioxidant enzymes genes and the activities of antioxidant enzymes. Further analysis showed that OsHK3 functions upstream of the calcium/calmodulin-dependent protein kinase OsDMI3 and the mitogen-activated protein kinase OsMPK1 to regulate the activities of antioxidant enzymes in ABA signaling. Moreover, OsHK3 was also shown to regulate the expression of nicotinamide adenine dinucleotide phosphate oxidase genes, OsrbohB and OsrbohE, and the production of H2 O2 in ABA signaling. Our data indicate that OsHK3 play an important role in the regulation of ABA-induced antioxidant defense and in the feedback regulation of H2 O2 production in ABA signaling.
Collapse
Affiliation(s)
- Feng Wen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | | | |
Collapse
|