1
|
Sharma I, Malathi P, Srinivasan R, Bhat SR, Sreenivasulu Y. Embryo sac cellularization defects lead to supernumerary egg cells and twin embryos in Arabidopsis thaliana. iScience 2024; 27:109890. [PMID: 38827396 PMCID: PMC11141147 DOI: 10.1016/j.isci.2024.109890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/26/2024] [Accepted: 04/30/2024] [Indexed: 06/04/2024] Open
Abstract
Arabidopsis lines with loss-of-function mutation in Embryo sac-specific Pectin MethylEsterase Inhibitor (Atepmei) gene showed seed sterility with embryo sac cellularization defects. Examination of tissue-cleared mature ovules revealed irregularly positioned nuclei/embryos within the embryo sacs. Egg cell-specific marker (DD45) expression analysis confirmed the presence of multiple egg cells in the mutant embryo sacs. These supernumerary egg cells were functional as evident from the production of twin embryos when supernumerary sperm cells were provided. The results of ruthenium red and tannic acid-ferric chloride staining of developing Atepmei mutant ovules showed that cell wall formation and maintenance were altered around embryo sac nuclei, which also coincided with change in the gamete specification. This report implicates the role of cell walls in gamete cell fate determination by altering cell-cell communication. Our analysis of the twin-embryo phenotype of epmei mutants also sheds light on the boundary conditions for double fertilization in plant reproduction.
Collapse
Affiliation(s)
- Isha Sharma
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Pinninti Malathi
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | | | | | - Yelam Sreenivasulu
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| |
Collapse
|
2
|
Wang J, Guo X, Chen Y, Liu T, Zhu J, Xu S, Vierling E. Maternal nitric oxide homeostasis impacts female gametophyte development under optimal and stress conditions. THE PLANT CELL 2024; 36:2201-2218. [PMID: 38376990 PMCID: PMC11132896 DOI: 10.1093/plcell/koae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/08/2024] [Accepted: 01/08/2023] [Indexed: 02/22/2024]
Abstract
In adverse environments, the number of fertilizable female gametophytes (FGs) in plants is reduced, leading to increased survival of the remaining offspring. How the maternal plant perceives internal growth cues and external stress conditions to alter FG development remains largely unknown. We report that homeostasis of the stress signaling molecule nitric oxide (NO) plays a key role in controlling FG development under both optimal and stress conditions. NO homeostasis is precisely regulated by S-nitrosoglutathione reductase (GSNOR). Prior to fertilization, GSNOR protein is exclusively accumulated in sporophytic tissues and indirectly controls FG development in Arabidopsis (Arabidopsis thaliana). In GSNOR null mutants, NO species accumulated in the degenerating sporophytic nucellus, and auxin efflux into the developing FG was restricted, which inhibited FG development, resulting in reduced fertility. Importantly, restoring GSNOR expression in maternal, but not gametophytic tissues, or increasing auxin efflux substrate significantly increased the proportion of normal FGs and fertility. Furthermore, GSNOR overexpression or added auxin efflux substrate increased fertility under drought and salt stress. These data indicate that NO homeostasis is critical to normal auxin transport and maternal control of FG development, which in turn determine seed yield. Understanding this aspect of fertility control could contribute to mediating yield loss under adverse conditions.
Collapse
Affiliation(s)
- Junzhe Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
- Hainan Yazhou Bay Seed Laboratory, Yazhou, Sanya 572025, China
| | - Xiaolong Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yijin Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianxiang Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianchu Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shengbao Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Elizabeth Vierling
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
3
|
Singh R, Shankar R, Yadav SK, Kumar V. Transcriptome analysis of ovules offers early developmental clues after fertilization in Cicer arietinum L.. 3 Biotech 2023; 13:177. [PMID: 37188294 PMCID: PMC10175530 DOI: 10.1007/s13205-023-03599-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/29/2023] [Indexed: 05/17/2023] Open
Abstract
Chickpea (Cicer arietinum L.) seeds are valued for their nutritional scores and limited information on the molecular mechanisms of chickpea fertilization and seed development is available. In the current work, comparative transcriptome analysis was performed on two different stages of chickpea ovules (pre- and post-fertilization) to identify key regulatory transcripts. Two-staged transcriptome sequencing was generated and over 208 million reads were mapped to quantify transcript abundance during fertilization events. Mapping to the reference genome showed that the majority (92.88%) of high-quality Illumina reads were aligned to the chickpea genome. Reference-guided genome and transcriptome assembly yielded a total of 28,783 genes. Of these, 3399 genes were differentially expressed after the fertilization event. These involve upregulated genes including a protease-like secreted in CO(2) response (LOC101500970), amino acid permease 4-like (LOC101506539), and downregulated genes MYB-related protein 305-like (LOC101493897), receptor like protein 29 (LOC101491695). WGCNA analysis and pairwise comparison of datasets, successfully constructed four co-expression modules. Transcription factor families including bHLH, MYB, MYB-related, C2H2 zinc finger, ERF, WRKY and NAC transcription factor were also found to be activated after fertilization. Activation of these genes and transcription factors results in the accumulation of carbohydrates and proteins by enhancing their trafficking and biosynthesis. Total 17 differentially expressed genes, were randomly selected for qRT-PCR for validation of transcriptome analysis and showed statistically significant correlations with the transcriptome data. Our findings provide insights into the regulatory mechanisms underlying changes in fertilized chickpea ovules. This work may come closer to a comprehensive understanding of the mechanisms that initiate developmental events in chickpea seeds after fertilization. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03599-8.
Collapse
Affiliation(s)
- Reetu Singh
- Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda, 151001 India
| | - Rama Shankar
- Department of Paediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503 USA
| | | | - Vinay Kumar
- Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda, 151001 India
| |
Collapse
|
4
|
Susaki D, Izumi R, Oi T, Takeuchi H, Shin JM, Sugi N, Kinoshita T, Higashiyama T, Kawashima T, Maruyama D. F-actin regulates the polarized secretion of pollen tube attractants in Arabidopsis synergid cells. THE PLANT CELL 2023; 35:1222-1240. [PMID: 36562145 PMCID: PMC10052382 DOI: 10.1093/plcell/koac371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Pollen tube attraction is a key event of sexual reproduction in flowering plants. In the ovule, two synergid cells neighboring the egg cell control pollen tube arrival via the active secretion of attractant peptides such as AtLURE1 and XIUQIU from the filiform apparatus (FA) facing toward the micropyle. Distinctive cell polarity together with longitudinal F-actin and microtubules are hallmarks of the synergid cell in various species, though the functions of these cellular structures are unclear. In this study, we used genetic and pharmacological approaches to indicate the roles of cytoskeletal components in FA formation and pollen tube guidance in Arabidopsis thaliana. Genetic inhibition of microtubule formation reduced invaginations of the plasma membrane but did not abolish micropylar AtLURE1.2 accumulation. By contrast, the expression of a dominant-negative form of ACTIN8 induced disorganization of the FA and loss of polar AtLURE1.2 distribution toward the FA. Interestingly, after pollen tube reception, F-actin became unclear for a few hours in the persistent synergid cell, which may be involved in pausing and resuming pollen tube attraction during early polytubey block. Our data suggest that F-actin plays a central role in maintaining cell polarity and in mediating male-female communication in the synergid cell.
Collapse
Affiliation(s)
- Daichi Susaki
- Kihara Institute for Biological Research, Yokohama City University, Maioka-cho 641-12, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Rie Izumi
- Kihara Institute for Biological Research, Yokohama City University, Maioka-cho 641-12, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Takao Oi
- Graduate school of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Hidenori Takeuchi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Ji Min Shin
- Department of Plant and Soil Sciences, University of Kentucky, 321 Plant Science Building, Lexington, Kentucky 40546, USA
| | - Naoya Sugi
- Kihara Institute for Biological Research, Yokohama City University, Maioka-cho 641-12, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Tetsu Kinoshita
- Kihara Institute for Biological Research, Yokohama City University, Maioka-cho 641-12, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomokazu Kawashima
- Department of Plant and Soil Sciences, University of Kentucky, 321 Plant Science Building, Lexington, Kentucky 40546, USA
| | - Daisuke Maruyama
- Kihara Institute for Biological Research, Yokohama City University, Maioka-cho 641-12, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| |
Collapse
|
5
|
Zhu M, Tao L, Zhang J, Liu R, Tian H, Hu C, Zhu Y, Li M, Wei Z, Yi J, Li J, Gou X. The type-B response regulators ARR10, ARR12, and ARR18 specify the central cell in Arabidopsis. THE PLANT CELL 2022; 34:4714-4737. [PMID: 36130292 PMCID: PMC9709988 DOI: 10.1093/plcell/koac285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
In Arabidopsis thaliana, the female gametophyte consists of two synergid cells, an egg cell, a diploid central cell, and three antipodal cells. CYTOKININ INDEPENDENT 1 (CKI1), a histidine kinase constitutively activating the cytokinin signaling pathway, specifies the central cell and restricts the egg cell. However, the mechanism regulating CKI1-dependent central cell specification is largely unknown. Here, we showed that the type-B ARABIDOPSIS RESPONSE REGULATORS10, 12, and 18 (ARR10/12/18) localize at the chalazal pole of the female gametophyte. Phenotypic analysis showed that the arr10 12 18 triple mutant is female sterile. We examined the expression patterns of embryo sac marker genes and found that the embryo sac of arr10 12 18 plants had lost central cell identity, a phenotype similar to that of the Arabidopsis cki1 mutant. Genetic analyses demonstrated that ARR10/12/18, CKI1, and ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN2, 3, and 5 (AHP2/3/5) function in a common pathway to regulate female gametophyte development. In addition, constitutively activated ARR10/12/18 in the cki1 embryo sac partially restored the fertility of cki1. Results of transcriptomic analysis supported the conclusion that ARR10/12/18 and CKI1 function together to regulate the identity of the central cell. Our results demonstrated that ARR10/12/18 function downstream of CKI1-AHP2/3/5 as core factors to determine cell fate of the female gametophyte.
Collapse
Affiliation(s)
- Mingsong Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Liang Tao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jinghua Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ruini Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hongai Tian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chong Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yafen Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Meizhen Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhuoyun Wei
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jing Yi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Gupta N, Jain SK, Tomar BS, Anand A, Singh J, Sagar V, Kumar R, Singh V, Chaubey T, Abd-Elsalam KA, Singh AK. Impact of Foliar Application of ZnO and Fe 3O 4 Nanoparticles on Seed Yield and Physio-Biochemical Parameters of Cucumber ( Cucumis sativus L.) Seed under Open Field and Protected Environment vis a vis during Seed Germination. PLANTS (BASEL, SWITZERLAND) 2022; 11:3211. [PMID: 36501251 PMCID: PMC9738616 DOI: 10.3390/plants11233211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Nutritionally rich cucumber seeds remain in demand in the agricultural, health and cosmetic sectors as they are essential for a successful crop stand establishment and seed-based products. However, the production of cucumber seeds is impeded by source limitation and nutrient deficiency. The foliar application of micronutrients can supplement this deficiency and overcome the physiological setback. An experiment was undertaken to compare the impacts of the foliar application of Fe and Zn, as nanoparticles and fertilizers, on the yield and seed quality of cucumber under open and protected environments. A foliar spray of nano-ZnO (ZnNPs) and nano-Fe3O4 (FeNPs) at 100, 200 and 300 mg L-1, as well as ZnSO4 and FeSO4 as fertilizer (0.5%), was conducted at the vegetative stage and pre- and post-flowering stages. The NPs had a greater efficacy in an open field than in the protected (naturally ventilated poly house) environment. The application of both NPs increased seed yield (51.7-52.2%), total chlorophyll content (15.9-17.3%) and concentration of Zn and Fe in the fruit and the seed, by 2.0-58.5% and 5.0-30.5%, respectively. A significant increase in starch, soluble proteins, soluble sugars and oil content was observed in the seeds from the NP treated plants. NP treatment also enhanced the germination-related parameters, such as percent germination (16.8-17.0%), rate of germination (18.0-22.2%) and seedling vigor (59.8-72.6%). The biochemical characterization showed a significant improvement in the seed water uptake and the activity of hydrolytic enzymes (amylase and protease) in the germinating seed. The involvement of reactive oxygen species (superoxide anion and hydrogen peroxide) and antioxidant enzymes (Superoxide dismutase, Catalase and Peroxidase) in the germination process was indicated by an increase in their activities in the seeds from NP treated plants. Hence, the study proposes the potential benefit of the foliar application of 300 mg L-1 ZnNPs and 200 mg L-1 FeNPs at crucial stages of plant growth to improve the yield and seed quality in cucumbers.
Collapse
Affiliation(s)
- Nakul Gupta
- ICAR—Indian Institute of Vegetable Research, PB-01, Po-Jakhini (Sahanshahpur), Varanasi 221305, India
- ICAR—Indian Agricultural Research Institute, New Delhi 110012, India
| | - Sudhir Kumar Jain
- ICAR—Indian Agricultural Research Institute, New Delhi 110012, India
| | | | - Anjali Anand
- ICAR—Indian Agricultural Research Institute, New Delhi 110012, India
| | - Jogendra Singh
- ICAR—Indian Agricultural Research Institute, New Delhi 110012, India
| | - Vidya Sagar
- ICAR—Indian Institute of Vegetable Research, PB-01, Po-Jakhini (Sahanshahpur), Varanasi 221305, India
| | - Rajesh Kumar
- ICAR—Indian Institute of Vegetable Research, PB-01, Po-Jakhini (Sahanshahpur), Varanasi 221305, India
| | - Vikas Singh
- ICAR—Indian Institute of Vegetable Research, PB-01, Po-Jakhini (Sahanshahpur), Varanasi 221305, India
| | - Tribhuvan Chaubey
- ICAR—Indian Institute of Vegetable Research, PB-01, Po-Jakhini (Sahanshahpur), Varanasi 221305, India
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Awani Kumar Singh
- ICAR—Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
7
|
Fakher B, Jakada BH, Greaves JG, Wang L, Niu X, Cheng Y, Zheng P, Aslam M, Qin Y, Wang X. Identification and expression analysis of pineapple sugar transporters reveal their role in the development and environmental response. FRONTIERS IN PLANT SCIENCE 2022; 13:964897. [PMID: 36352877 PMCID: PMC9638087 DOI: 10.3389/fpls.2022.964897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
In plants, sugars are required for several essential functions, including growth, storage, signaling, defense and reproduction. Sugar transporters carry out the controlled movement of sugars from source (leaves) to sink (fruits and roots) tissues and determine the overall development of the plant. Various types of sugar transporter families have been described in plants, including sucrose transporters (SUC/SUT), monosaccharide transporter (MST) and SWEET (from "Sugar Will Eventually be Exported Transporters"). However, the information about pineapple sugar transporters is minimal. This study systematically identified and classified 45 MST and 4 SUC/SUT genes in the pineapple genome. We found that the expression patterns of sugar transporter genes have a spatiotemporal expression in reproductive and vegetative tissues indicating their pivotal role in reproductive growth and development. Besides, different families of sugar transporters have a diel expression pattern in photosynthetic and non-photosynthetic tissues displaying circadian rhythm associated participation of sugar transporters in the CAM pathway. Moreover, regulation of the stress-related sugar transporters during cold stress indicates their contribution to cold tolerance in pineapple. Heterologous expression (yeast complementation assays) of sugar transporters in a mutant yeast strain suggested that SUT1/2 have the ability to transport sucrose, and STP13, STP26, pGlcT-L2 and TMT4 are able to transport glucose, whereas SWEET11/13 transport both sucrose and fructose. The information provided here would help researchers further explore the underlying molecular mechanism involved in the sugar metabolism of pineapple.
Collapse
Affiliation(s)
- Beenish Fakher
- Guangxi Key Lab of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Bello Hassan Jakada
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Joseph G. Greaves
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lulu Wang
- Guangxi Key Lab of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Xiaoping Niu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Cheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ping Zheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohammad Aslam
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Qin
- Guangxi Key Lab of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaomei Wang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, China
| |
Collapse
|
8
|
Arabinogalactan Proteins: Focus on the Role in Cellulose Synthesis and Deposition during Plant Cell Wall Biogenesis. Int J Mol Sci 2022; 23:ijms23126578. [PMID: 35743022 PMCID: PMC9223364 DOI: 10.3390/ijms23126578] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Arabinogalactan proteins (AGPs) belong to a family of glycoproteins that are widely present in plants. AGPs are mostly composed of a protein backbone decorated with complex carbohydrate side chains and are usually anchored to the plasma membrane or secreted extracellularly. A trickle of compelling biochemical and genetic evidence has demonstrated that AGPs make exciting candidates for a multitude of vital activities related to plant growth and development. However, because of the diversity of AGPs, functional redundancy of AGP family members, and blunt-force research tools, the precise functions of AGPs and their mechanisms of action remain elusive. In this review, we put together the current knowledge about the characteristics, classification, and identification of AGPs and make a summary of the biological functions of AGPs in multiple phases of plant reproduction and developmental processes. In addition, we especially discuss deeply the potential mechanisms for AGP action in different biological processes via their impacts on cellulose synthesis and deposition based on previous studies. Particularly, five hypothetical models that may explain the AGP involvement in cellulose synthesis and deposition during plant cell wall biogenesis are proposed. AGPs open a new avenue for understanding cellulose synthesis and deposition in plants.
Collapse
|
9
|
Tan Z, Xie Z, Dai L, Zhang Y, Zhao H, Tang S, Wan L, Yao X, Guo L, Hong D. Genome- and transcriptome-wide association studies reveal the genetic basis and the breeding history of seed glucosinolate content in Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:211-225. [PMID: 34525252 PMCID: PMC8710833 DOI: 10.1111/pbi.13707] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/25/2021] [Accepted: 09/07/2021] [Indexed: 05/08/2023]
Abstract
A high content of seed glucosinolates and their degradation products imposes anti-nutritional effects on livestock; therefore, persistent efforts are made to reduce the seed GSL content to increase the commercial value of rapeseed meal. Here, we dissected the genetic structure of SGC by genome-wide association studies (GWAS) combined with transcriptome-wide association studies (TWAS). Fifteen reliable quantitative trait loci (QTLs) were identified to be associated with the reduced SGC in modern B. napus cultivars by GWAS. Analysis of the selection strength and haplotypes at these QTLs revealed that low SGC was predominantly generated by the co-selection of qGSL.A02.2, qGSL.C02.1, qGSL.A09.2, and qGSL.C09.1. Integration of the results from TWAS, comprehensive bioinformatics, and POCKET algorithm analyses indicated that BnaC02.GTR2 (BnaC02g42260D) is a candidate gene underlying qGSL.C02.1. Using CRISPR/Cas9-derived Bna.gtr2s knockout mutants, we experimentally verified that both BnaC02.GTR2 and its three paralogs positively regulate seed GSL accumulation but negatively regulated vegetative tissue GSL contents. In addition, we observed smaller seeds with higher seed oil content in these Bna.gtr2 mutants. Furthermore, both RNA-seq and correlation analyses suggested that Bna.GTR2s might play a comprehensive role in seed development, such as amino acid accumulation, GSL synthesis, sugar assimilation, and oil accumulation. This study unravels the breeding selection history of low-SGC improvement and provides new insights into the molecular function of Bna.GTR2s in both seed GSL accumulation and seed development in B. napus.
Collapse
Affiliation(s)
- Zengdong Tan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Zhaoqi Xie
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Lihong Dai
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Yuting Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Hu Zhao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Shan Tang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Lili Wan
- Institute of CropsWuhan Academy of Agricultural SciencesWuhanChina
| | - Xuan Yao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Liang Guo
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| |
Collapse
|
10
|
Xuan C, Lan G, Si F, Zeng Z, Wang C, Yadav V, Wei C, Zhang X. Systematic Genome-Wide Study and Expression Analysis of SWEET Gene Family: Sugar Transporter Family Contributes to Biotic and Abiotic Stimuli in Watermelon. Int J Mol Sci 2021; 22:8407. [PMID: 34445115 PMCID: PMC8395094 DOI: 10.3390/ijms22168407] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
The SWEET (Sugars Will Eventually be Exported Transporter) proteins are a novel family of sugar transporters that play key roles in sugar efflux, signal transduction, plant growth and development, plant-pathogen interactions, and stress tolerance. In this study, 22 ClaSWEET genes were identified in Citrullus lanatus (Thunb.) through homology searches and classified into four groups by phylogenetic analysis. The genes with similar structures, conserved domains, and motifs were clustered into the same groups. Further analysis of the gene promoter regions uncovered various growth, development, and biotic and abiotic stress responsive cis-regulatory elements. Tissue-specific analysis showed most of the genes were highly expressed in male flowers and the roots of cultivated varieties and wild cultivars. In addition, qRT-PCR results further imply that ClaSWEET proteins might be involved in resistance to Fusarium oxysporum infection. Moreover, a significantly higher expression level of these genes under various abiotic stresses suggests its multifaceted role in mediating plant responses to drought, salt, and low-temperature stress. The genome-wide characterization and phylogenetic analysis of ClaSWEET genes, together with the expression patterns in different tissues and stimuli, lays a solid foundation for future research into their molecular function in watermelon developmental processes and responses to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Changqing Xuan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China; (C.X.); (G.L.); (F.S.); (Z.Z.); (C.W.); (V.Y.)
| | - Guangpu Lan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China; (C.X.); (G.L.); (F.S.); (Z.Z.); (C.W.); (V.Y.)
| | - Fengfei Si
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China; (C.X.); (G.L.); (F.S.); (Z.Z.); (C.W.); (V.Y.)
| | - Zhilong Zeng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China; (C.X.); (G.L.); (F.S.); (Z.Z.); (C.W.); (V.Y.)
| | - Chunxia Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China; (C.X.); (G.L.); (F.S.); (Z.Z.); (C.W.); (V.Y.)
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China; (C.X.); (G.L.); (F.S.); (Z.Z.); (C.W.); (V.Y.)
| | - Chunhua Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China; (C.X.); (G.L.); (F.S.); (Z.Z.); (C.W.); (V.Y.)
| | - Xian Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China; (C.X.); (G.L.); (F.S.); (Z.Z.); (C.W.); (V.Y.)
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin 300384, China
| |
Collapse
|
11
|
Plant egg cell fate determination depends on its exact position in female gametophyte. Proc Natl Acad Sci U S A 2021; 118:2017488118. [PMID: 33597298 DOI: 10.1073/pnas.2017488118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Plant fertilization involves both an egg cell, which fuses with a sperm cell, and synergid cells, which guide pollen tubes for sperm cell delivery. Therefore, egg and synergid cell functional specifications are prerequisites for successful fertilization. However, how the egg and synergid cells, referred to as the "egg apparatus," derived from one mother cell develop into distinct cell types remains an unanswered question. In this report, we show that the final position of the nuclei in female gametophyte determines the cell fate of the egg apparatus. We established a live imaging system to visualize the dynamics of nuclear positioning and cell identity establishment in the female gametophyte. We observed that free nuclei should migrate to a specific position before egg apparatus specialization. Artificial changing in the nuclear position on disturbance of the actin cytoskeleton, either in vitro or in vivo, could reset the cell fate of the egg apparatus. We also found that nuclei of the same origin moved to different positions and then showed different cell identities, whereas nuclei of different origins moved to the same position showed the same cell identity, indicating that the final positions of the nuclei, rather than specific nucleus lineage, play critical roles in the egg apparatus specification. Furthermore, the active auxin level was higher in the egg cell than in synergid cells. Auxin transport inhibitor could decrease the auxin level in egg cells and impair egg cell identity, suggesting that directional and accurate auxin distribution likely acts as a positional cue for egg apparatus specialization.
Collapse
|
12
|
Susaki D, Suzuki T, Maruyama D, Ueda M, Higashiyama T, Kurihara D. Dynamics of the cell fate specifications during female gametophyte development in Arabidopsis. PLoS Biol 2021; 19:e3001123. [PMID: 33770073 PMCID: PMC7997040 DOI: 10.1371/journal.pbio.3001123] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/29/2021] [Indexed: 01/10/2023] Open
Abstract
The female gametophytes of angiosperms contain cells with distinct functions, such as those that enable reproduction via pollen tube attraction and fertilization. Although the female gametophyte undergoes unique developmental processes, such as several rounds of nuclear division without cell plate formation and final cellularization, it remains unknown when and how the cell fate is determined during development. Here, we visualized the living dynamics of female gametophyte development and performed transcriptome analysis of individual cell types to assess the cell fate specifications in Arabidopsis thaliana. We recorded time lapses of the nuclear dynamics and cell plate formation from the 1-nucleate stage to the 7-cell stage after cellularization using an in vitro ovule culture system. The movies showed that the nuclear division occurred along the micropylar–chalazal (distal–proximal) axis. During cellularization, the polar nuclei migrated while associating with the forming edge of the cell plate, and then, migrated toward each other to fuse linearly. We also tracked the gene expression dynamics and identified that the expression of MYB98pro::GFP–MYB98, a synergid-specific marker, was initiated just after cellularization in the synergid, egg, and central cells and was then restricted to the synergid cells. This indicated that cell fates are determined immediately after cellularization. Transcriptome analysis of the female gametophyte cells of the wild-type and myb98 mutant revealed that the myb98 synergid cells had egg cell–like gene expression profiles. Although in myb98, egg cell–specific gene expression was properly initiated in the egg cells only after cellularization, but subsequently expressed ectopically in one of the 2 synergid cells. These results, together with the various initiation timings of the egg cell–specific genes, suggest complex regulation of the individual gametophyte cells, such as cellularization-triggered fate initiation, MYB98-dependent fate maintenance, cell morphogenesis, and organelle positioning. Our system of live-cell imaging and cell type–specific gene expression analysis provides insights into the dynamics and mechanisms of cell fate specifications in the development of female gametophytes in plants. The female gametophytes of angiosperms contain cells with distinct functions, such as those that enable reproduction via pollen tube attraction and fertilization. Live-cell imaging and transcriptome analysis of single female gametophyte cell reveal novel insights into the dynamics and mechanisms of cell fate specifications in the model plant Arabidopsis.
Collapse
Affiliation(s)
- Daichi Susaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Daisuke Maruyama
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Minako Ueda
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
- * E-mail: (TH); (DK)
| | - Daisuke Kurihara
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- JST, PRESTO, Nagoya, Japan
- * E-mail: (TH); (DK)
| |
Collapse
|
13
|
Susaki D, Suzuki T, Maruyama D, Ueda M, Higashiyama T, Kurihara D. Dynamics of the cell fate specifications during female gametophyte development in Arabidopsis. PLoS Biol 2021; 19:e3001123. [PMID: 33770073 DOI: 10.1101/2020.04.07.023028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/29/2021] [Indexed: 05/22/2023] Open
Abstract
The female gametophytes of angiosperms contain cells with distinct functions, such as those that enable reproduction via pollen tube attraction and fertilization. Although the female gametophyte undergoes unique developmental processes, such as several rounds of nuclear division without cell plate formation and final cellularization, it remains unknown when and how the cell fate is determined during development. Here, we visualized the living dynamics of female gametophyte development and performed transcriptome analysis of individual cell types to assess the cell fate specifications in Arabidopsis thaliana. We recorded time lapses of the nuclear dynamics and cell plate formation from the 1-nucleate stage to the 7-cell stage after cellularization using an in vitro ovule culture system. The movies showed that the nuclear division occurred along the micropylar-chalazal (distal-proximal) axis. During cellularization, the polar nuclei migrated while associating with the forming edge of the cell plate, and then, migrated toward each other to fuse linearly. We also tracked the gene expression dynamics and identified that the expression of MYB98pro::GFP-MYB98, a synergid-specific marker, was initiated just after cellularization in the synergid, egg, and central cells and was then restricted to the synergid cells. This indicated that cell fates are determined immediately after cellularization. Transcriptome analysis of the female gametophyte cells of the wild-type and myb98 mutant revealed that the myb98 synergid cells had egg cell-like gene expression profiles. Although in myb98, egg cell-specific gene expression was properly initiated in the egg cells only after cellularization, but subsequently expressed ectopically in one of the 2 synergid cells. These results, together with the various initiation timings of the egg cell-specific genes, suggest complex regulation of the individual gametophyte cells, such as cellularization-triggered fate initiation, MYB98-dependent fate maintenance, cell morphogenesis, and organelle positioning. Our system of live-cell imaging and cell type-specific gene expression analysis provides insights into the dynamics and mechanisms of cell fate specifications in the development of female gametophytes in plants.
Collapse
Affiliation(s)
- Daichi Susaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Daisuke Maruyama
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Minako Ueda
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Daisuke Kurihara
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- JST, PRESTO, Nagoya, Japan
| |
Collapse
|
14
|
Vergès V, Dutilleul C, Godin B, Collet B, Lecureuil A, Rajjou L, Guimaraes C, Pinault M, Chevalier S, Giglioli-Guivarc’h N, Ducos E. Protein Farnesylation Takes Part in Arabidopsis Seed Development. FRONTIERS IN PLANT SCIENCE 2021; 12:620325. [PMID: 33584774 PMCID: PMC7876099 DOI: 10.3389/fpls.2021.620325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/08/2021] [Indexed: 05/25/2023]
Abstract
Protein farnesylation is a post-translational modification regulated by the ERA1 (Enhanced Response to ABA 1) gene encoding the β-subunit of the protein farnesyltransferase in Arabidopsis. The era1 mutants have been described for over two decades and exhibit severe pleiotropic phenotypes, affecting vegetative and flower development. We further investigated the development and quality of era1 seeds. While the era1 ovary contains numerous ovules, the plant produces fewer seeds but larger and heavier, with higher protein contents and a modified fatty acid distribution. Furthermore, era1 pollen grains show lower germination rates and, at flower opening, the pistils are immature and the ovules require one additional day to complete the embryo sac. Hand pollinated flowers confirmed that pollination is a major obstacle to era1 seed phenotypes, and a near wild-type seed morphology was thus restored. Still, era1 seeds conserved peculiar storage protein contents and altered fatty acid distributions. The multiplicity of era1 phenotypes reflects the diversity of proteins targeted by the farnesyltransferase. Our work highlights the involvement of protein farnesylation in seed development and in the control of traits of agronomic interest.
Collapse
Affiliation(s)
- Valentin Vergès
- Biomolécules et Biotechnologies Végétales, Faculté de Pharmacie, Université de Tours, Tours, France
| | - Christelle Dutilleul
- Biomolécules et Biotechnologies Végétales, Faculté de Pharmacie, Université de Tours, Tours, France
| | - Béatrice Godin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Boris Collet
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Alain Lecureuil
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Loïc Rajjou
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Cyrille Guimaraes
- Nutrition, Croissance et Cancer, INSERM UMR 1069, Université de Tours, Tours, France
| | - Michelle Pinault
- Nutrition, Croissance et Cancer, INSERM UMR 1069, Université de Tours, Tours, France
| | - Stéphane Chevalier
- Nutrition, Croissance et Cancer, INSERM UMR 1069, Université de Tours, Tours, France
| | | | - Eric Ducos
- Biomolécules et Biotechnologies Végétales, Faculté de Pharmacie, Université de Tours, Tours, France
| |
Collapse
|
15
|
Beaudry FE, Rifkin JL, Barrett SC, Wright SI. Evolutionary Genomics of Plant Gametophytic Selection. PLANT COMMUNICATIONS 2020; 1:100115. [PMID: 33367268 PMCID: PMC7748008 DOI: 10.1016/j.xplc.2020.100115] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 05/26/2023]
Abstract
It has long been recognized that natural selection during the haploid gametophytic phase of the plant life cycle may have widespread importance for rates of evolution and the maintenance of genetic variation. Recent theoretical advances have further highlighted the significance of gametophytic selection for diverse evolutionary processes. Genomic approaches offer exciting opportunities to address key questions about the extent and effects of gametophytic selection on plant evolution and adaptation. Here, we review the progress and prospects for integrating functional and evolutionary genomics to test theoretical predictions, and to examine the importance of gametophytic selection on genetic diversity and rates of evolution. There is growing evidence that selection during the gametophyte phase of the plant life cycle has important effects on both gene and genome evolution and is likely to have important pleiotropic effects on the sporophyte. We discuss the opportunities to integrate comparative population genomics, genome-wide association studies, and experimental approaches to further distinguish how differential selection in the two phases of the plant life cycle contributes to genetic diversity and adaptive evolution.
Collapse
Affiliation(s)
- Felix E.G. Beaudry
- Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Joanna L. Rifkin
- Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Spencer C.H. Barrett
- Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Stephen I. Wright
- Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
16
|
Song Q, Ando A, Jiang N, Ikeda Y, Chen ZJ. Single-cell RNA-seq analysis reveals ploidy-dependent and cell-specific transcriptome changes in Arabidopsis female gametophytes. Genome Biol 2020; 21:178. [PMID: 32698836 PMCID: PMC7375004 DOI: 10.1186/s13059-020-02094-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/06/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Polyploidy provides new genetic material that facilitates evolutionary novelty, species adaptation, and crop domestication. Polyploidy often leads to an increase in cell or organism size, which may affect transcript abundance or transcriptome size, but the relationship between polyploidy and transcriptome changes remains poorly understood. Plant cells often undergo endoreduplication, confounding the polyploid effect. RESULTS To mitigate these effects, we select female gametic cells that are developmentally stable and void of endoreduplication. Using single-cell RNA sequencing (scRNA-seq) in Arabidopsis thaliana tetraploid lines and isogenic diploids, we show that transcriptome abundance doubles in the egg cell and increases approximately 1.6-fold in the central cell, consistent with cell size changes. In the central cell of tetraploid plants, DEMETER (DME) is upregulated, which can activate PRC2 family members FIS2 and MEA, and may suppress the expression of other genes. Upregulation of cell size regulators in tetraploids, including TOR and OSR2, may increase the size of reproductive cells. In diploids, the order of transcriptome abundance is central cell, synergid cell, and egg cell, consistent with their cell size variation. Remarkably, we uncover new sets of female gametophytic cell-specific transcripts with predicted biological roles; the most abundant transcripts encode families of cysteine-rich peptides, implying roles in cell-cell recognition during double fertilization. CONCLUSIONS Transcriptome in single cells doubles in tetraploid plants compared to diploid, while the degree of change and relationship to the cell size depends on cell types. These scRNA-seq resources are free of cross-contamination and are uniquely valuable for advancing plant hybridization, reproductive biology, and polyploid genomics.
Collapse
Affiliation(s)
- Qingxin Song
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Atsumi Ando
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA
| | - Ning Jiang
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station C0800, Austin, TX, 78712, USA
| | - Yoko Ikeda
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046, Japan
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA.
| |
Collapse
|
17
|
Hwang D, Wada S, Takahashi A, Urawa H, Kamei Y, Nishikawa SI. Development of a Heat-Inducible Gene Expression System Using Female Gametophytes of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2019; 60:2564-2572. [PMID: 31359050 DOI: 10.1093/pcp/pcz148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/22/2019] [Indexed: 05/13/2023]
Abstract
Female gametophyte (FG) is crucial for reproduction in flowering plants. Arabidopsis thaliana produces Polygonum-type FGs, which consist of an egg cell, two synergid cells, three antipodal cells and a central cell. Egg cell and central cell are the two female gametes that give rise to the embryo and surrounding endosperm, respectively, after fertilization. During the development of a FG, a single megaspore produced by meiosis undergoes three rounds of mitosis to produce an eight-nucleate cell. A seven-celled FG is formed after cellularization. The central cell initially contains two polar nuclei that fuse during female gametogenesis to form the secondary nucleus. In this study, we developed a gene induction system for analyzing the functions of various genes in developing Arabidopsis FGs. This system allows transgene expression in developing FGs using the heat-inducible Cre-loxP recombination system and FG-specific embryo sac 2 (ES2) promoter. Efficient gene induction was achieved in FGs by incubating flower buds and isolated pistils at 35�C for short periods of time (1-5 min). Gene induction was also induced in developing FGs by heat treatment of isolated ovules using the infrared laser-evoked gene operator (IR-LEGO) system. Expression of a dominant-negative mutant of Sad1/UNC84 (SUN) proteins in developing FGs using the gene induction system developed in this study caused defects in polar nuclear fusion, indicating the roles of SUN proteins in this process. This strategy represents a new tool for analyzing the functions of genes in FG development and FG functions.
Collapse
Affiliation(s)
- Dukhyun Hwang
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
- Department of Microbiology, College of Natural Sciences, Pukyoung National University, Busan, South Korea
| | - Satomi Wada
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Azusa Takahashi
- Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, Japan
| | - Hiroko Urawa
- Department of Education, Gifu Shotokugakuen University, Gifu, Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Shuh-Ichi Nishikawa
- Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, Japan
| |
Collapse
|
18
|
Joly V, Tebbji F, Nantel A, Matton DP. Pollination Type Recognition from a Distance by the Ovary Is Revealed Through a Global Transcriptomic Analysis. PLANTS (BASEL, SWITZERLAND) 2019; 8:E185. [PMID: 31238522 PMCID: PMC6630372 DOI: 10.3390/plants8060185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/09/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
Abstract
Sexual reproduction in flowering plants involves intimate contact and continuous interactions between the growing pollen tube and the female reproductive structures. These interactions can trigger responses in distal regions of the flower well ahead of fertilization. While pollination-induced petal senescence has been studied extensively, less is known about how pollination is perceived at a distance in the ovary, and how specific this response is to various pollen genotypes. To address this question, we performed a global transcriptomic analysis in the ovary of a wild potato species, Solanum chacoense, at various time points following compatible, incompatible, and heterospecific pollinations. In all cases, pollen tube penetration in the stigma was initially perceived as a wounding aggression. Then, as the pollen tubes grew in the style, a growing number of genes became specific to each pollen genotype. Functional classification analyses revealed sharp differences in the response to compatible and heterospecific pollinations. For instance, the former induced reactive oxygen species (ROS)-related genes while the latter affected genes associated to ethylene signaling. In contrast, incompatible pollination remained more akin to a wound response. Our analysis reveals that every pollination type produces a specific molecular signature generating diversified and specific responses at a distance in the ovary in preparation for fertilization.
Collapse
Affiliation(s)
- Valentin Joly
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC H1X 2B2, Canada.
| | - Faïza Tebbji
- CRCHU de Québec, Université Laval, Québec, QC G1V 4G2, Canada.
| | - André Nantel
- National Research Council Canada, Montréal, QC H4P 2R2, Canada.
| | - Daniel P Matton
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC H1X 2B2, Canada.
| |
Collapse
|
19
|
Hisanaga T, Okahashi K, Yamaoka S, Kajiwara T, Nishihama R, Shimamura M, Yamato KT, Bowman JL, Kohchi T, Nakajima K. A cis-acting bidirectional transcription switch controls sexual dimorphism in the liverwort. EMBO J 2019; 38:embj.2018100240. [PMID: 30609993 PMCID: PMC6418429 DOI: 10.15252/embj.2018100240] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/17/2018] [Accepted: 11/27/2018] [Indexed: 01/19/2023] Open
Abstract
Plant life cycles alternate between haploid gametophytes and diploid sporophytes. While regulatory factors determining male and female sexual morphologies have been identified for sporophytic reproductive organs, such as stamens and pistils of angiosperms, those regulating sex‐specific traits in the haploid gametophytes that produce male and female gametes and hence are central to plant sexual reproduction are poorly understood. Here, we identified a MYB‐type transcription factor, MpFGMYB, as a key regulator of female sexual differentiation in the haploid‐dominant dioicous liverwort, Marchantia polymorpha. MpFGMYB is specifically expressed in females and its loss resulted in female‐to‐male sex conversion. Strikingly, MpFGMYB expression is suppressed in males by a cis‐acting antisense gene SUF at the same locus, and loss‐of‐function suf mutations resulted in male‐to‐female sex conversion. Thus, the bidirectional transcription module at the MpFGMYB/SUF locus acts as a toggle between female and male sexual differentiation in M. polymorpha gametophytes. Arabidopsis thaliana MpFGMYB orthologs are known to be expressed in embryo sacs and promote their development. Thus, phylogenetically related MYB transcription factors regulate female gametophyte development across land plants.
Collapse
Affiliation(s)
- Tetsuya Hisanaga
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | | | - Masaki Shimamura
- Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, Japan
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Vic., Australia
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Keiji Nakajima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| |
Collapse
|
20
|
Unnikrishnan BV, Shankaranarayana GD. Functional characterization of a reproductive tissue specific promoter from Eucalyptus camaldulensis. Genome 2018; 61:777-786. [PMID: 30354691 DOI: 10.1139/gen-2018-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SWEET proteins are essential for the maintenance of nectar production, as well as seed and pollen development, in plants. A search within the Eucalyptus genome identified 52 putative genes belonging to the SWEET gene family based on sequence similarity. The expression of two of these genes, EcSWEET2 and EcSWEET5, was analyzed in vegetative and reproductive tissues of Eucalyptus camaldulensis. The expression of EcSWEET5 was specific to male reproductive tissues, and transcripts were detected only at certain stages of flower development. Tobacco Rattle Virus (TRV)-mediated suppression of EcSWEET5 resulted in a significant reduction in pollen germination percentage in Nicotiana benthamiana without adverse effect on vegetative growth. A promoter sequence 1 kb upstream of the start codon of EcSWEET5 contained many elements suggestive of pollen specificity of the promoter. This specificity was confirmed in transgenic tobacco lines harboring a GUS gene whose expression was controlled by the EcSWEET5 gene promoter. GUS expression was limited to pollen alone in transgenic tobacco as evidenced by histochemical staining. The expression of a cytotoxic gene, barnase under the control of the EcSWEET5 gene promoter, showed pollen ablation in transgenic tobacco with normal vegetative growth.
Collapse
Affiliation(s)
- Boby Vattekkattu Unnikrishnan
- ITC Life Sciences and Technology Centre, No. 3, 1st Main, Peenya Industrial Area, Phase 1, Bangalore, 560058, India
- ITC Life Sciences and Technology Centre, No. 3, 1st Main, Peenya Industrial Area, Phase 1, Bangalore, 560058, India
| | - Gurumurthy Demlapura Shankaranarayana
- ITC Life Sciences and Technology Centre, No. 3, 1st Main, Peenya Industrial Area, Phase 1, Bangalore, 560058, India
- ITC Life Sciences and Technology Centre, No. 3, 1st Main, Peenya Industrial Area, Phase 1, Bangalore, 560058, India
| |
Collapse
|
21
|
Yuan L, Liu Z, Song X, Jernstedt J, Sundaresan V. The gymnosperm ortholog of the angiosperm central cell-specification gene CKI1 provides an essential clue to endosperm origin. THE NEW PHYTOLOGIST 2018; 218:1685-1696. [PMID: 29603241 DOI: 10.1111/nph.15115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/09/2018] [Indexed: 05/22/2023]
Abstract
A defining feature of angiosperms is double fertilization involving the female gametophyte central cell and formation of a nutrient-storing tissue called endosperm. The route for the evolutionary origin of endosperm from a gymnosperm ancestor, particularly the molecular steps involved, has remained elusive. Recently, the histidine kinase gene Cytokinin-Independent 1 (CKI1), an activator of cytokinin signaling, was described as a key to specification of the endosperm precursor central cell in Arabidopsis. Here, we have investigated the function and expression of a putative ortholog of CKI1 in the gymnosperm Ginkgo biloba. We demonstrate that Ginkgo CKI1 can partially rescue an Arabidopsis cki1 mutant and promote weak activation of the cytokinin signaling pathway in the Arabidopsis embryo sac, but does not confer central cell specification. Ginkgo CKI1 is expressed in both male and female gametophytes of Ginkgo. In the latter, it is expressed in the ventral canal cell, which is sister to the egg cell in the archegonium. As in Arabidopsis, Ginkgo CKI1 is not expressed in the egg cell. The similarities in expression patterns of CKI1 in Ginkgo and Arabidopsis female gametophytes suggest that extant gymnosperms possess an essential component of the molecular machinery required for angiosperm endosperm development, and provide new insights into endosperm origin from a gymnospermous ancestor.
Collapse
Affiliation(s)
- Li Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhenning Liu
- College of Agriculture and Forestry Science, Linyi University, Linyi, Shandong, 276000, China
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoya Song
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Judy Jernstedt
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Venkatesan Sundaresan
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| |
Collapse
|
22
|
Cheng P, Li H, Yuan L, Li H, Xi L, Zhang J, Liu J, Wang Y, Zhao H, Zhao H, Han S. The ERA-Related GTPase AtERG2 Associated with Mitochondria 18S RNA Is Essential for Early Embryo Development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:182. [PMID: 29497438 PMCID: PMC5818394 DOI: 10.3389/fpls.2018.00182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/31/2018] [Indexed: 05/03/2023]
Abstract
The ERA (E. coli RAS-like protein)-related GTPase (ERG) is a nuclear-encoded GTPase with two conserved domains: a GTPase domain and a K Homology (KH) domain. ERG plays a vital role in early seed development in Antirrhinum majus. However, the mechanism that regulates seed development remains unclear. Blasting the genome sequence revealed two homologies of ERG, AtERG1, and AtERG2 in Arabidopsis. In this study, we found that AtERG2 is localized in the mitochondria and binds mitochondrial 18S RNA. Promoter and transcript analyses indicated that AtERG2 was mainly expressed in the leaf vein, trichome, and ovule. The T-DNA insertion lines of AtERG2 showed silique shortage, early seed abortion, and sporophytic maternal effects (SME), in which some seeds arrested in the zygotic stage at 1.5 days after pollination (DAP) and aborted at 2.0 DAP in aterg2-1 +/-. We further showed that the ovules of these arrested seeds presented unusual tissue degradation inside the embryo sacs. Reactive oxygen species (ROS) accumulated at 1.0 and 1.5 DAP in the arrested seeds, and the transcription of several ROS-responsive genes, WRKY40, ANAC017, and AOX1a, was up-regulated in the aterg2-1 +/- arrested seeds at 1.5 and 2.0 DAP, but not in wild-type (WT) and aterg2-1 +/- developed seeds. The cell death-related gene BAG6 was also transcriptionally activated in aterg2-1 +/- seeds arrested at 2.0 DAP. Additionally, the protein level of mitochondria protein ATPase Subunit 6 was lower in 2-DAP siliques of aterg2-1 +/- than it was in those of WT. These results suggested that AtERG2 promotes early seed development by affecting the maturation of the mitochondria ribosome small subunit and mitochondrial protein translation in Arabidopsis.
Collapse
Affiliation(s)
- Pengyu Cheng
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Hongjuan Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Linlin Yuan
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Huiyong Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Lele Xi
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Junjie Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jin Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
- *Correspondence: Heping Zhao
| | - Huixin Zhao
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
- Huixin Zhao
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
- Shengcheng Han
| |
Collapse
|
23
|
Liu Z, Miao L, Huo R, Song X, Johnson C, Kong L, Sundaresan V, Yu X. ARF2-ARF4 and ARF5 are Essential for Female and Male Gametophyte Development in Arabidopsis. PLANT & CELL PHYSIOLOGY 2018; 59:179-189. [PMID: 29145642 DOI: 10.1093/pcp/pcx174] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/07/2017] [Indexed: 05/14/2023]
Abstract
The plant hormone auxin plays critical roles in plant growth and development. Auxin response factors (ARFs) are a class of transcription factors which regulate auxin-mediated gene expression. While the functions of ARFs in sporophytic development have been well characterized, their functions specific to gametophytic development have not been studied extensively. In this study, Arabidopsis ARF genes were selectively down-regulated in gametophytes by misexpression of targeted microRNAs (amiRARF234, amiRARFMP and MIR167a) to silence AtARF2-AtAEF4, AtARF5, AtARF6 and AtARF8. Embryo sacs in amiRARF234- and amiRARFMP-expressing plants exhibited identity defects in cells at the micropylar pole, such as formation of two cells with egg cell-like morphology, concomitant with loss of synergid marker expression and seed abortion. The pollen grains of the transgenic plants were morphologically aberrant and unviable, and the inclusions and nuclei were lost in the abnormal pollen grains. However, plants misexpressing MIR167a showed no obvious abnormal phenotypes in the embryo sacs and pollen grains. Overall, these results provide evidence that AtARF2-AtARF4 and AtARF5 play significant roles in regulating both female and male gametophyte development in Arabidopsis.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis Proteins/genetics
- Base Sequence
- DNA-Binding Proteins/genetics
- Down-Regulation
- Gametogenesis, Plant/genetics
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Germ Cells, Plant/growth & development
- Germ Cells, Plant/metabolism
- Germ Cells, Plant/ultrastructure
- Microscopy, Electron, Transmission
- Nuclear Proteins/genetics
- Plants, Genetically Modified
- Repressor Proteins/genetics
- Seeds/genetics
- Seeds/growth & development
- Sequence Homology, Nucleic Acid
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Zhenning Liu
- Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, Shandong 276000, China
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Liming Miao
- Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Ruxue Huo
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, Shandong 276000, China
| | - Xiaoya Song
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Cameron Johnson
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Lijun Kong
- Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | | | - Xiaolin Yu
- Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
24
|
Leydon AR, Weinreb C, Venable E, Reinders A, Ward JM, Johnson MA. The Molecular Dialog between Flowering Plant Reproductive Partners Defined by SNP-Informed RNA-Sequencing. THE PLANT CELL 2017; 29:984-1006. [PMID: 28400492 PMCID: PMC5466024 DOI: 10.1105/tpc.16.00816] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/30/2017] [Accepted: 04/10/2017] [Indexed: 05/25/2023]
Abstract
The molecular interactions between reproductive cells are critical for determining whether sexual reproduction between individuals results in fertilization and can result in barriers to interspecific hybridization. However, it is a challenge to define the complete molecular exchange between reproductive partners because parents contribute to a complex mixture of cells during reproduction. We unambiguously defined male- and female-specific patterns of gene expression during Arabidopsis thaliana reproduction using single nucleotide polymorphism-informed RNA-sequencing analysis. Importantly, we defined the repertoire of pollen tube-secreted proteins controlled by a group of MYB transcription factors that are required for sperm release from the pollen tube to the female gametes, a critical barrier to interspecific hybridization. Our work defines the pollen tube gene products that respond to the pistil and are required for reproductive success; moreover, we find that these genes are highly evolutionarily plastic both at the level of coding sequence and expression across A. thaliana accessions.
Collapse
Affiliation(s)
- Alexander R Leydon
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Caleb Weinreb
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Elena Venable
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Anke Reinders
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108-6106
| | - John M Ward
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108-6106
| | - Mark A Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
25
|
Tedeschi F, Rizzo P, Rutten T, Altschmied L, Bäumlein H. RWP-RK domain-containing transcription factors control cell differentiation during female gametophyte development in Arabidopsis. THE NEW PHYTOLOGIST 2017; 213:1909-1924. [PMID: 27870062 DOI: 10.1111/nph.14293] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/17/2016] [Indexed: 05/02/2023]
Abstract
The formation of gametes is a prerequisite for any sexually reproducing organism in order to complete its life cycle. In plants, female gametes are formed in a multicellular tissue, the female gametophyte or embryo sac. Although the events leading to the formation of the female gametophyte have been morphologically characterized, the molecular control of embryo sac development remains elusive. We used single and double mutants as well as cell-specific marker lines to characterize a novel class of gene regulators in Arabidopsis thaliana, the RWP-RK domain-containing (RKD) transcription factors. Morphological and histological analyses were conducted using confocal laser scanning and differential interference contrast microscopy. Gene expression and transcriptome analyses were performed using quantitative reverse transcription-PCR and RNA sequencing, respectively. Our results showed that RKD genes are expressed during distinct stages of embryo sac development. Morphological analysis of the mutants revealed severe distortions in gametophyte polarity and cell differentiation. Transcriptome analysis revealed changes in the expression of several gametophyte-specific gene families (RKD2 and RKD3) and ovule development-specific genes (RKD3), and identified pleiotropic effects on phytohormone pathways (RKD5). Our data provide novel insight into the regulatory control of female gametophyte development. RKDs are involved in the control of cell differentiation and are required for normal gametophytic development.
Collapse
Affiliation(s)
- Francesca Tedeschi
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Seeland, OT Gatersleben, Germany
| | - Paride Rizzo
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Seeland, OT Gatersleben, Germany
| | - Twan Rutten
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Seeland, OT Gatersleben, Germany
| | - Lothar Altschmied
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Seeland, OT Gatersleben, Germany
| | - Helmut Bäumlein
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Seeland, OT Gatersleben, Germany
| |
Collapse
|
26
|
Resentini F, Cyprys P, Steffen JG, Alter S, Morandini P, Mizzotti C, Lloyd A, Drews GN, Dresselhaus T, Colombo L, Sprunck S, Masiero S. SUPPRESSOR OF FRIGIDA (SUF4) Supports Gamete Fusion via Regulating Arabidopsis EC1 Gene Expression. PLANT PHYSIOLOGY 2017; 173:155-166. [PMID: 27920160 PMCID: PMC5210714 DOI: 10.1104/pp.16.01024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 12/05/2016] [Indexed: 05/03/2023]
Abstract
The EGG CELL1 (EC1) gene family of Arabidopsis (Arabidopsis thaliana) comprises five members that are specifically expressed in the egg cell and redundantly control gamete fusion during double fertilization. We investigated the activity of all five EC1 promoters in promoter-deletion studies and identified SUF4 (SUPPRESSOR OF FRIGIDA4), a C2H2 transcription factor, as a direct regulator of the EC1 gene expression. In particular, we demonstrated that SUF4 binds to all five Arabidopsis EC1 promoters, thus regulating their expression. The down-regulation of SUF4 in homozygous suf4-1 ovules results in reduced EC1 expression and delayed sperm fusion, which can be rescued by expressing SUF4-β-glucuronidase under the control of the SUF4 promoter. To identify more gene products able to regulate EC1 expression together with SUF4, we performed coexpression studies that led to the identification of MOM1 (MORPHEUS' MOLECULE1), a component of a silencing mechanism that is independent of DNA methylation marks. In mom1-3 ovules, both SUF4 and EC1 genes are down-regulated, and EC1 genes show higher levels of histone 3 lysine-9 acetylation, suggesting that MOM1 contributes to the regulation of SUF4 and EC1 gene expression.
Collapse
Affiliation(s)
- Francesca Resentini
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy (F.R., P.M., C.M., L.C., S.M.)
- Lehrstuhl Zellbiologie und Pflanzenbiochemie, Biochemie-Zentrum Regensburg, Universität Regensburg, D-93053 Regensburg, Germany (P.C., S.A., T.D., S.S.)
- Department of Biology, University of Utah, Salt Lake City, Utah 84112 (J.G.S., A.L., G.N.D.); and
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Università di Milano, 20133 Milan, Italy (P.M., L.C.)
| | - Philipp Cyprys
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy (F.R., P.M., C.M., L.C., S.M.)
- Lehrstuhl Zellbiologie und Pflanzenbiochemie, Biochemie-Zentrum Regensburg, Universität Regensburg, D-93053 Regensburg, Germany (P.C., S.A., T.D., S.S.)
- Department of Biology, University of Utah, Salt Lake City, Utah 84112 (J.G.S., A.L., G.N.D.); and
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Università di Milano, 20133 Milan, Italy (P.M., L.C.)
| | - Joshua G Steffen
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy (F.R., P.M., C.M., L.C., S.M.)
- Lehrstuhl Zellbiologie und Pflanzenbiochemie, Biochemie-Zentrum Regensburg, Universität Regensburg, D-93053 Regensburg, Germany (P.C., S.A., T.D., S.S.)
- Department of Biology, University of Utah, Salt Lake City, Utah 84112 (J.G.S., A.L., G.N.D.); and
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Università di Milano, 20133 Milan, Italy (P.M., L.C.)
| | - Svenja Alter
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy (F.R., P.M., C.M., L.C., S.M.)
- Lehrstuhl Zellbiologie und Pflanzenbiochemie, Biochemie-Zentrum Regensburg, Universität Regensburg, D-93053 Regensburg, Germany (P.C., S.A., T.D., S.S.)
- Department of Biology, University of Utah, Salt Lake City, Utah 84112 (J.G.S., A.L., G.N.D.); and
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Università di Milano, 20133 Milan, Italy (P.M., L.C.)
| | - Piero Morandini
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy (F.R., P.M., C.M., L.C., S.M.)
- Lehrstuhl Zellbiologie und Pflanzenbiochemie, Biochemie-Zentrum Regensburg, Universität Regensburg, D-93053 Regensburg, Germany (P.C., S.A., T.D., S.S.)
- Department of Biology, University of Utah, Salt Lake City, Utah 84112 (J.G.S., A.L., G.N.D.); and
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Università di Milano, 20133 Milan, Italy (P.M., L.C.)
| | - Chiara Mizzotti
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy (F.R., P.M., C.M., L.C., S.M.)
- Lehrstuhl Zellbiologie und Pflanzenbiochemie, Biochemie-Zentrum Regensburg, Universität Regensburg, D-93053 Regensburg, Germany (P.C., S.A., T.D., S.S.)
- Department of Biology, University of Utah, Salt Lake City, Utah 84112 (J.G.S., A.L., G.N.D.); and
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Università di Milano, 20133 Milan, Italy (P.M., L.C.)
| | - Alan Lloyd
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy (F.R., P.M., C.M., L.C., S.M.)
- Lehrstuhl Zellbiologie und Pflanzenbiochemie, Biochemie-Zentrum Regensburg, Universität Regensburg, D-93053 Regensburg, Germany (P.C., S.A., T.D., S.S.)
- Department of Biology, University of Utah, Salt Lake City, Utah 84112 (J.G.S., A.L., G.N.D.); and
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Università di Milano, 20133 Milan, Italy (P.M., L.C.)
| | - Gary N Drews
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy (F.R., P.M., C.M., L.C., S.M.)
- Lehrstuhl Zellbiologie und Pflanzenbiochemie, Biochemie-Zentrum Regensburg, Universität Regensburg, D-93053 Regensburg, Germany (P.C., S.A., T.D., S.S.)
- Department of Biology, University of Utah, Salt Lake City, Utah 84112 (J.G.S., A.L., G.N.D.); and
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Università di Milano, 20133 Milan, Italy (P.M., L.C.)
| | - Thomas Dresselhaus
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy (F.R., P.M., C.M., L.C., S.M.)
- Lehrstuhl Zellbiologie und Pflanzenbiochemie, Biochemie-Zentrum Regensburg, Universität Regensburg, D-93053 Regensburg, Germany (P.C., S.A., T.D., S.S.)
- Department of Biology, University of Utah, Salt Lake City, Utah 84112 (J.G.S., A.L., G.N.D.); and
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Università di Milano, 20133 Milan, Italy (P.M., L.C.)
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy (F.R., P.M., C.M., L.C., S.M.)
- Lehrstuhl Zellbiologie und Pflanzenbiochemie, Biochemie-Zentrum Regensburg, Universität Regensburg, D-93053 Regensburg, Germany (P.C., S.A., T.D., S.S.)
- Department of Biology, University of Utah, Salt Lake City, Utah 84112 (J.G.S., A.L., G.N.D.); and
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Università di Milano, 20133 Milan, Italy (P.M., L.C.)
| | - Stefanie Sprunck
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy (F.R., P.M., C.M., L.C., S.M.);
- Lehrstuhl Zellbiologie und Pflanzenbiochemie, Biochemie-Zentrum Regensburg, Universität Regensburg, D-93053 Regensburg, Germany (P.C., S.A., T.D., S.S.);
- Department of Biology, University of Utah, Salt Lake City, Utah 84112 (J.G.S., A.L., G.N.D.); and
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Università di Milano, 20133 Milan, Italy (P.M., L.C.)
| | - Simona Masiero
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy (F.R., P.M., C.M., L.C., S.M.);
- Lehrstuhl Zellbiologie und Pflanzenbiochemie, Biochemie-Zentrum Regensburg, Universität Regensburg, D-93053 Regensburg, Germany (P.C., S.A., T.D., S.S.);
- Department of Biology, University of Utah, Salt Lake City, Utah 84112 (J.G.S., A.L., G.N.D.); and
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Università di Milano, 20133 Milan, Italy (P.M., L.C.)
| |
Collapse
|
27
|
Abstract
Visualization of the intact embryo sac within the ovular/gynoecial tissues and clear identification of cell types can be logistically difficult and subject to interpretation. Cellular marker technologies have been available for the embryo sac, but have typically labeled only one cell type in a particular line. Here, we describe techniques for simultaneous labeling each cell type in the embryo sac and visualization methods for such in Arabidopsis, soybean, maize, and sorghum.
Collapse
|
28
|
Hedhly A, Vogler H, Schmid MW, Pazmino D, Gagliardini V, Santelia D, Grossniklaus U. Starch Turnover and Metabolism during Flower and Early Embryo Development. PLANT PHYSIOLOGY 2016; 172:2388-2402. [PMID: 27794100 PMCID: PMC5129708 DOI: 10.1104/pp.16.00916] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/25/2016] [Indexed: 05/06/2023]
Abstract
The accumulation of starch within photosynthetic tissues and within dedicated storage organs has been characterized extensively in many species, and a function in buffering carbon availability or in fueling later growth phases, respectively, has been proposed. However, developmentally regulated starch turnover within heterotrophic tissues other than dedicated storage organs is poorly characterized, and its function is not well understood. Here, we report on the characterization of starch turnover during flower, early embryo, and silique development in Arabidopsis (Arabidopsis thaliana) using a combined clearing-staining technique on whole-mount tissue. Besides the two previously documented waves of transient starch accumulation in the stamen envelope, occurring during meiosis and pollen mitosis I, we identified a novel, third wave of starch amylogenesis/amylolysis during the last stages of stamen development. To gain insights into the underlying molecular mechanisms, we analyzed publicly available microarray data, which revealed a developmentally coordinated expression of carbohydrate transport and metabolism genes during these waves of transient starch accumulation. Based on this analysis, we characterized starch dynamics in mutants affecting hexose phosphate metabolism and translocation, and identified the Glc-6-phosphate/phosphate antiporter GPT1 as the putative translocator of Glc-6-phosphate for starch biosynthesis in reproductive tissues. Based on these results, we propose a model of starch synthesis within the pollen grain and discuss the nutrient transport route feeding the embryo within the developing seed.
Collapse
Affiliation(s)
- Afif Hedhly
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Hannes Vogler
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Marc W Schmid
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Diana Pazmino
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Valeria Gagliardini
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Diana Santelia
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| |
Collapse
|
29
|
The CKI1 Histidine Kinase Specifies the Female Gametic Precursor of the Endosperm. Dev Cell 2016; 37:34-46. [PMID: 27046830 DOI: 10.1016/j.devcel.2016.03.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/20/2016] [Accepted: 03/08/2016] [Indexed: 12/20/2022]
Abstract
Since the discovery of double fertilization, it has been recognized that flowering plants produce two highly dimorphic female gametes, the egg cell and central cell. These give rise, respectively, to the embryo and the endosperm, a nourishing tissue unique to flowering plants. Here we show that in Arabidopsis, endosperm formation requires the CYTOKININ INDEPENDENT 1 (CKI1) histidine kinase, an activator of the cytokinin signaling pathway, which specifies central cells and restricts egg cell fate. Dimorphism of the two adjacent gametes is mechanistically established in the syncytial embryo sac by spatially restricted CKI1 expression, followed by translocation of ER-localized CKI1 protein via nuclear migration. Cell specification by CKI1 likely involves activation of the cytokinin signaling pathway mediated by histidine phosphotransferases. Ectopic CKI1 expression generates non-propagating seeds with dual fertilized endosperms and no embryos. We conclude that CKI1-directed specification of the endosperm precursor central cell results in seeds containing an embryo and an endosperm.
Collapse
|
30
|
Imadi SR, Kazi AG, Ahanger MA, Gucel S, Ahmad P. Plant transcriptomics and responses to environmental stress: an overview. J Genet 2016; 94:525-37. [PMID: 26440096 DOI: 10.1007/s12041-015-0545-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Different stresses include nutrient deficiency, pathogen attack, exposure to toxic chemicals etc. Transcriptomic studies have been mainly applied to only a few plant species including the model plant, Arabidopsis thaliana. These studies have provided valuable insights into the genetic networks of plant stress responses. Transcriptomics applied to cash crops including barley, rice, sugarcane, wheat and maize have further helped in understanding physiological and molecular responses in terms of genome sequence, gene regulation, gene differentiation, posttranscriptional modifications and gene splicing. On the other hand, comparative transcriptomics has provided more information about plant's response to diverse stresses. Thus, transcriptomics, together with other biotechnological approaches helps in development of stress tolerance in crops against the climate change.
Collapse
Affiliation(s)
- Sameen Ruqia Imadi
- Atta-ur-Rehman School of Applied Biosciences, National University of Sciences and Technology, H-12 Campus, Islamabad 25000,
| | | | | | | | | |
Collapse
|
31
|
Mendes MA, Guerra RF, Castelnovo B, Velazquez YS, Morandini P, Manrique S, Baumann N, Groß-Hardt R, Dickinson H, Colombo L. Live and let die: a REM complex promotes fertilization through synergid cell death in Arabidopsis. Development 2016; 143:2780-90. [DOI: 10.1242/dev.134916] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/02/2016] [Indexed: 11/20/2022]
Abstract
Fertilization in flowering plants requires a complex series of coordinated events involving interaction between the male and female gametophyte. We report here molecular data on one of the key events underpinning this process – the death of the receptive synergid cell and the coincident bursting of the pollen tube inside the ovule to release the sperms.
We show that two REM transcription factors, VALKYRIE (VAL) and VERDANDI (VDD), both targets of the ovule identity MADS-box complex SEEDSTICK-SEPALLATA3, interact to control the death of the receptive synergid cell. In vdd_1/+ mutants and VAL_RNAi lines we find that GAMETOPHYTIC FACTOR 2 (GFA2), required for synergid degeneration, is down regulated, while FERONIA (FER) and MYB98 expression, necessary for pollen tube attraction and perception remain unaffected. We also demonstrate that the vdd_1/+ phenotype can be rescued by expressing VDD or GFA2 in the synergid cells. Taken together, our findings reveal that the death of the receptive synergid cell is essential for the maintenance of the following generations, and that a complex formed of VDD and VAL regulate this event.
Collapse
Affiliation(s)
- Marta Adelina Mendes
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milan, Italy
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Portugal
| | | | - Beatrice Castelnovo
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milan, Italy
| | | | - Piero Morandini
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Silvia Manrique
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Nadine Baumann
- Center for Plant Molecular Biology, University of Tübingen, Germany
| | - Rita Groß-Hardt
- Center for Biomolecular Interactions Bremen, University of Bremen, Germany
- Center for Plant Molecular Biology, University of Tübingen, Germany
| | - Hugh Dickinson
- Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, UK
| | - Lucia Colombo
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
32
|
Shah JN, Kirioukhova O, Pawar P, Tayyab M, Mateo JL, Johnston AJ. Depletion of Key Meiotic Genes and Transcriptome-Wide Abiotic Stress Reprogramming Mark Early Preparatory Events Ahead of Apomeiotic Transition. FRONTIERS IN PLANT SCIENCE 2016; 7:1539. [PMID: 27833618 PMCID: PMC5080521 DOI: 10.3389/fpls.2016.01539] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/30/2016] [Indexed: 05/19/2023]
Abstract
Molecular dissection of apomixis - an asexual reproductive mode - is anticipated to solve the enigma of loss of meiotic sex, and to help fixing elite agronomic traits. The Brassicaceae genus Boechera comprises of both sexual and apomictic species, permitting comparative analyses of meiotic circumvention (apomeiosis) and parthenogenesis. Whereas previous studies reported local transcriptome changes during these events, it remained unclear whether global changes associated with hybridization, polyploidy and environmental adaptation that arose during evolution of Boechera might serve as (epi)genetic regulators of early development prior apomictic initiation. To identify these signatures during vegetative stages, we compared seedling RNA-seq transcriptomes of an obligate triploid apomict and a diploid sexual, both isolated from a drought-prone habitat. Uncovered were several genes differentially expressed between sexual and apomictic seedlings, including homologs of meiotic genes ASYNAPTIC 1 (ASY1) and MULTIPOLAR SPINDLE 1 (MPS1) that were down-regulated in apomicts. An intriguing class of apomict-specific deregulated genes included several NAC transcription factors, homologs of which are known to be transcriptionally reprogrammed during abiotic stress in other plants. Deregulation of both meiotic and stress-response genes during seedling stages might possibly be important in preparation for meiotic circumvention, as similar transcriptional alteration was discernible in apomeiotic floral buds too. Furthermore, we noted that the apomict showed better tolerance to osmotic stress in vitro than the sexual, in conjunction with significant upregulation of a subset of NAC genes. In support of the current model that DNA methylation epigenetically regulates stress, ploidy, hybridization and apomixis, we noted that ASY1, MPS1 and NAC019 homologs were deregulated in Boechera seedlings upon DNA demethylation, and ASY1 in particular seems to be repressed by global DNA methylation exclusively in the apomicts. Variability in stress and transcriptional response in a diploid apomict, which is geographically distinct from the triploid apomict, pinpoints both common and independent features of apomixis evolution. Our study provides a molecular frame-work to investigate how the adaptive traits associated with the evolutionary history of apomicts co-adapted with meiotic gene deregulation at early developmental stage, in order to predate meiotic recombination, which otherwise is thought to be favorable in stress and low-fitness conditions.
Collapse
Affiliation(s)
- Jubin N. Shah
- Laboratory of Germline Genetics & Evo-Devo, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Olga Kirioukhova
- Laboratory of Germline Genetics & Evo-Devo, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Pallavi Pawar
- Laboratory of Germline Genetics & Evo-Devo, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Muhammad Tayyab
- Laboratory of Germline Genetics & Evo-Devo, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Juan L. Mateo
- Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
- *Correspondence: Amal J. Johnston, ; Juan L. Mateo,
| | - Amal J. Johnston
- Laboratory of Germline Genetics & Evo-Devo, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
- *Correspondence: Amal J. Johnston, ; Juan L. Mateo,
| |
Collapse
|
33
|
Baroux C, Autran D. Chromatin dynamics during cellular differentiation in the female reproductive lineage of flowering plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:160-76. [PMID: 26031902 PMCID: PMC4502977 DOI: 10.1111/tpj.12890] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/12/2015] [Accepted: 05/22/2015] [Indexed: 05/05/2023]
Abstract
Sexual reproduction in flowering plants offers a number of remarkable aspects to developmental biologists. First, the spore mother cells - precursors of the plant reproductive lineage - are specified late in development, as opposed to precocious germline isolation during embryogenesis in most animals. Second, unlike in most animals where meiosis directly produces gametes, plant meiosis entails the differentiation of a multicellular, haploid gametophyte, within which gametic as well as non-gametic accessory cells are formed. These observations raise the question of the factors inducing and modus operandi of cell fate transitions that originate in floral tissues and gametophytes, respectively. Cell fate transitions in the reproductive lineage imply cellular reprogramming operating at the physiological, cytological and transcriptome level, but also at the chromatin level. A number of observations point to large-scale chromatin reorganization events associated with cellular differentiation of the female spore mother cells and of the female gametes. These include a reorganization of the heterochromatin compartment, the genome-wide alteration of the histone modification landscape, and the remodeling of nucleosome composition. The dynamic expression of DNA methyltransferases and actors of small RNA pathways also suggest additional, global epigenetic alterations that remain to be characterized. Are these events a cause or a consequence of cellular differentiation, and how do they contribute to cell fate transition? Does chromatin dynamics induce competence for immediate cellular functions (meiosis, fertilization), or does it also contribute long-term effects in cellular identity and developmental competence of the reproductive lineage? This review attempts to review these fascinating questions.
Collapse
Affiliation(s)
- Célia Baroux
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of ZürichZollikerstrasse 107, 8008, Zürich, Switzerland
- *For correspondence (e-mail )
| | - Daphné Autran
- Institut de Recherche pour le Développement (UMR DIADE 232), Centre National de la Recherche Scientifique (URL 5300), Université de Montpellier911 avenue Agropolis, 34000, Montpellier, France
| |
Collapse
|
34
|
Patterning of the angiosperm female gametophyte through the prism of theoretical paradigms. Biochem Soc Trans 2015; 42:332-9. [PMID: 24646240 DOI: 10.1042/bst20140036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The FG (female gametophyte) of flowering plants (angiosperms) is a simple highly polar structure composed of only a few cell types. The FG develops from a single cell through mitotic divisions to generate, depending on the species, four to 16 nuclei in a syncytium. These nuclei are then partitioned into three or four distinct cell types. The mechanisms underlying the specification of the nuclei in the FG has been a focus of research over the last decade. Nevertheless, we are far from understanding the patterning mechanisms that govern cell specification. Although some results were previously interpreted in terms of static positional information, several lines of evidence now show that local interactions are important. In the present article, we revisit the available data on developmental mutants and cell fate markers in the light of theoretical frameworks for biological patterning. We argue that a further dissection of the mechanisms may be impeded by the combinatorial and dynamical nature of developmental cues. However, accounting for these properties of developing systems is necessary to disentangle the diversity of the phenotypic manifestations of the underlying molecular interactions.
Collapse
|
35
|
Takatsuka H, Umeda-Hara C, Umeda M. Cyclin-dependent kinase-activating kinases CDKD;1 and CDKD;3 are essential for preserving mitotic activity in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:1004-1017. [PMID: 25942995 DOI: 10.1111/tpj.12872] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 04/14/2015] [Accepted: 04/24/2015] [Indexed: 05/23/2023]
Abstract
For the full activation of cyclin-dependent kinases (CDKs), not only cyclin binding but also CDK phosphorylation is required. This activating phosphorylation is mediated by CDK-activating kinases (CAKs). Arabidopsis has four genes showing similarity to vertebrate-type CAKs, three CDKDs (CDKD;1-CDKD;3) and one CDKF (CDKF;1). We previously found that the cdkf;1 mutant is defective in post-embryonic development, even though the kinase activities of core CDKs remain unchanged relative to the wild type. This raised a question about the involvement of CDKDs in CDK activation in planta. Here we report that the cdkd;1 cdkd;3 double mutant showed gametophytic lethality. Most cdkd;1-1 cdkd;3-1 pollen grains were defective in pollen mitosis I and II, producing one-cell or two-cell pollen grains that lacked fertilization ability. We also found that the double knock-out of CDKD;1 and CDKD;3 caused arrest and/or delay in the progression of female gametogenesis at multiple steps. Our genetic analyses revealed that the functions of CDKF;1 and CDKD;1 or CDKD;3 do not overlap, either during gametophyte and embryo development or in post-embryonic development. Consistent with these analyses, CDKF;1 expression in the cdkd;1-1 cdkd;3-1 mutant could not rescue the gametophytic lethality. These results suggest that, in Arabidopsis, CDKD;1 and CDKD;3 function as CAKs controlling mitosis, whereas CDKF;1 plays a distinct role, mainly in post-embryonic development. We propose that CDKD;1 and CDKD;3 phosphorylate and activate all core CDKs, CDKA, CDKB1 and CDKB2, thereby governing cell cycle progression throughout plant development.
Collapse
Affiliation(s)
- Hirotomo Takatsuka
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Chikage Umeda-Hara
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Masaaki Umeda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
- JST, CREST, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
36
|
Panoli A, Martin MV, Alandete-Saez M, Simon M, Neff C, Swarup R, Bellido A, Yuan L, Pagnussat GC, Sundaresan V. Auxin Import and Local Auxin Biosynthesis Are Required for Mitotic Divisions, Cell Expansion and Cell Specification during Female Gametophyte Development in Arabidopsis thaliana. PLoS One 2015; 10:e0126164. [PMID: 25970627 PMCID: PMC4430233 DOI: 10.1371/journal.pone.0126164] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/29/2015] [Indexed: 11/18/2022] Open
Abstract
The female gametophyte of flowering plants, called the embryo sac, develops from a haploid cell named the functional megaspore, which is specified after meiosis by the diploid sporophyte. In Arabidopsis, the functional megaspore undergoes three syncitial mitotic divisions followed by cellularization to form seven cells of four cell types including two female gametes. The plant hormone auxin is important for sporophytic developmental processes, and auxin levels are known to be regulated by biosynthesis and transport. Here, we investigated the role of auxin biosynthetic genes and auxin influx carriers in embryo sac development. We find that genes from the YUCCA/TAA pathway (YUC1, YUC2, YUC8, TAA1, TAR2) are expressed asymmetrically in the developing ovule and embryo sac from the two-nuclear syncitial stage until cellularization. Mutants for YUC1 and YUC2 exhibited defects in cell specification, whereas mutations in YUC8, as well as mutations in TAA1 and TAR2, caused defects in nuclear proliferation, vacuole formation and anisotropic growth of the embryo sac. Additionally, expression of the auxin influx carriers AUX1 and LAX1 were observed at the micropylar pole of the embryo sac and in the adjacent cells of the ovule, and the aux1 lax1 lax2 triple mutant shows multiple gametophyte defects. These results indicate that both localized auxin biosynthesis and auxin import, are required for mitotic divisions, cell expansion and patterning during embryo sac development.
Collapse
Affiliation(s)
- Aneesh Panoli
- Department of Plant Biology, University of California Davis, Davis, California, 95616, United States of America
| | - Maria Victoria Martin
- Institute of Biological Research IIB-CONICET, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina
| | - Monica Alandete-Saez
- Department of Plant Biology, University of California Davis, Davis, California, 95616, United States of America
- PIPRA, University of California Davis, Davis, California, 95616, United States of America
| | - Marissa Simon
- Department of Plant Biology, University of California Davis, Davis, California, 95616, United States of America
| | - Christina Neff
- Department of Plant Biology, University of California Davis, Davis, California, 95616, United States of America
| | - Ranjan Swarup
- University of Nottingham, Nottingham, United Kingdom
| | - Andrés Bellido
- Institute of Biological Research IIB-CONICET, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina
| | - Li Yuan
- Department of Plant Biology, University of California Davis, Davis, California, 95616, United States of America
| | - Gabriela C. Pagnussat
- Institute of Biological Research IIB-CONICET, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina
- * E-mail: (GCP); (VS)
| | - Venkatesan Sundaresan
- Department of Plant Biology, University of California Davis, Davis, California, 95616, United States of America
- Department of Plant Sciences, University of California Davis, Davis, California, 95616, United States of America
- * E-mail: (GCP); (VS)
| |
Collapse
|
37
|
Chettoor AM, Evans MMS. Correlation between a loss of auxin signaling and a loss of proliferation in maize antipodal cells. FRONTIERS IN PLANT SCIENCE 2015; 6:187. [PMID: 25859254 PMCID: PMC4374392 DOI: 10.3389/fpls.2015.00187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/08/2015] [Indexed: 05/03/2023]
Abstract
The plant life cycle alternates between two genetically active generations: the diploid sporophyte and the haploid gametophyte. In angiosperms the gametophytes are sexually dimorphic and consist of only a few cells. The female gametophyte, or embryo sac, is comprised of four cell types: two synergids, an egg cell, a central cell, and a variable number of antipodal cells. In some species the antipodal cells are indistinct and fail to proliferate, so many aspects of antipodal cell function and development have been unclear. In maize and many other grasses, the antipodal cells proliferate to produce a highly distinct cluster at the chalazal end of the embryo sac that persists at the apex of the endosperm after fertilization. The antipodal cells are a site of auxin accumulation in the maize embryo sac. Analysis of different families of genes involved in auxin biosynthesis, distribution, and signaling for expression in the embryo sac demonstrates that all steps are expressed within the embryo sac. In contrast to auxin signaling, cytokinin signaling is absent in the embryo sac and instead occurs adjacent to but outside of the antipodal cells. Mutant analysis shows a correlation between a loss of auxin signaling and a loss of proliferation of the antipodal cells. The leaf polarity mutant Laxmidrib1 causes a lack of antipodal cell proliferation coupled with a loss of DR5 and PIN1a expression in the antipodal cells.
Collapse
Affiliation(s)
| | - Matthew M. S. Evans
- *Correspondence: Matthew M. S. Evans, Department of Plant Biology, Carnegie Institution for Science, 260 Panama St. Stanford, CA, 94305, USA
| |
Collapse
|
38
|
Cao J, Li X, Lv Y, Ding L. Comparative analysis of the phytocyanin gene family in 10 plant species: a focus on Zea mays. FRONTIERS IN PLANT SCIENCE 2015; 6:515. [PMID: 26217366 PMCID: PMC4499708 DOI: 10.3389/fpls.2015.00515] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/26/2015] [Indexed: 05/18/2023]
Abstract
Phytocyanins (PCs) are plant-specific blue copper proteins, which play essential roles in electron transport. While the origin and expansion of this gene family is not well-investigated in plants. Here, we investigated their evolution by undertaking a genome-wide identification and comparison in 10 plants: Arabidopsis, rice, poplar, tomato, soybean, grape, maize, Selaginella moellendorffii, Physcomitrella patens, and Chlamydomonas reinhardtii. We found an expansion process of this gene family in evolution. Except PCs in Arabidopsis and rice, which have described in previous researches, a structural analysis of PCs in other eight plants indicated that 292 PCs contained N-terminal secretion signals and 217 PCs were expected to have glycosylphosphatidylinositol-anchor signals. Moreover, 281 PCs had putative arabinogalactan glycomodules and might be AGPs. Chromosomal distribution and duplication patterns indicated that tandem and segmental duplication played dominant roles for the expansion of PC genes. In addition, gene organization and motif compositions are highly conserved in each clade. Furthermore, expression profiles of maize PC genes revealed diversity in various stages of development. Moreover, all nine detected maize PC genes (ZmUC10, ZmUC16, ZmUC19, ZmSC2, ZmUC21, ZmENODL10, ZmUC22, ZmENODL13, and ZmENODL15) were down-regulated under salt treatment, and five PCs (ZmUC19, ZmSC2, ZmENODL10, ZmUC22, and ZmENODL13) were down-regulated under drought treatment. ZmUC16 was strongly expressed after drought treatment. This study will provide a basis for future understanding the characterization of this family.
Collapse
Affiliation(s)
- Jun Cao
- *Correspondence: Jun Cao, Institute of Life Sciences, Jiangsu University, Xuefu Road 301, Jiangsu, Zhenjiang 212013, China,
| | | | | | | |
Collapse
|
39
|
Zhao L, He J, Cai H, Lin H, Li Y, Liu R, Yang Z, Qin Y. Comparative expression profiling reveals gene functions in female meiosis and gametophyte development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:615-28. [PMID: 25182975 PMCID: PMC7494246 DOI: 10.1111/tpj.12657] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/19/2014] [Accepted: 08/22/2014] [Indexed: 05/03/2023]
Abstract
Megasporogenesis is essential for female fertility, and requires the accomplishment of meiosis and the formation of functional megaspores. The inaccessibility and low abundance of female meiocytes make it particularly difficult to elucidate the molecular basis underlying megasporogenesis. We used high-throughput tag-sequencing analysis to identify genes expressed in female meiocytes (FMs) by comparing gene expression profiles from wild-type ovules undergoing megasporogenesis with those from the spl mutant ovules, which lack megasporogenesis. A total of 862 genes were identified as FMs, with levels that are consistently reduced in spl ovules in two biological replicates. Fluorescence-assisted cell sorting followed by RNA-seq analysis of DMC1:GFP-labeled female meiocytes confirmed that 90% of the FMs are indeed detected in the female meiocyte protoplast profiling. We performed reverse genetic analysis of 120 candidate genes and identified four FM genes with a function in female meiosis progression in Arabidopsis. We further revealed that KLU, a putative cytochrome P450 monooxygenase, is involved in chromosome pairing during female meiosis, most likely by affecting the normal expression pattern of DMC1 in ovules during female meiosis. Our studies provide valuable information for functional genomic analyses of plant germline development as well as insights into meiosis.
Collapse
Affiliation(s)
- Lihua Zhao
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiangman He
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Hanyang Cai
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Haiyan Lin
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yanqiang Li
- University of Chinese Academy of Sciences, Shanghai 200032, China
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Renyi Liu
- Department of Botany and Plant Science, University of California, Riverside, CA 92521, USA
| | - Zhenbiao Yang
- Department of Botany and Plant Science, University of California, Riverside, CA 92521, USA
| | - Yuan Qin
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- For correspondence ()
| |
Collapse
|
40
|
Chettoor AM, Givan SA, Cole RA, Coker CT, Unger-Wallace E, Vejlupkova Z, Vollbrecht E, Fowler JE, Evans MM. Discovery of novel transcripts and gametophytic functions via RNA-seq analysis of maize gametophytic transcriptomes. Genome Biol 2014; 15:414. [PMID: 25084966 PMCID: PMC4309534 DOI: 10.1186/s13059-014-0414-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 07/15/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Plant gametophytes play central roles in sexual reproduction. A hallmark of the plant life cycle is that gene expression is required in the haploid gametophytes. Consequently, many mutant phenotypes are expressed in this phase. RESULTS We perform a quantitative RNA-seq analysis of embryo sacs, comparator ovules with the embryo sacs removed, mature pollen, and seedlings to assist the identification of gametophyte functions in maize. Expression levels were determined for annotated genes in both gametophytes, and novel transcripts were identified from de novo assembly of RNA-seq reads. Transposon-related transcripts are present in high levels in both gametophytes, suggesting a connection between gamete production and transposon expression in maize not previously identified in any female gametophytes. Two classes of small signaling proteins and several transcription factor gene families are enriched in gametophyte transcriptomes. Expression patterns of maize genes with duplicates in subgenome 1 and subgenome 2 indicate that pollen-expressed genes in subgenome 2 are retained at a higher rate than subgenome 2 genes with other expression patterns. Analysis of available insertion mutant collections shows a statistically significant deficit in insertions in gametophyte-expressed genes. CONCLUSIONS This analysis, the first RNA-seq study to compare both gametophytes in a monocot, identifies maize gametophyte functions, gametophyte expression of transposon-related sequences, and unannotated, novel transcripts. Reduced recovery of mutations in gametophyte-expressed genes is supporting evidence for their function in the gametophytes. Expression patterns of extant, duplicated maize genes reveals that selective pressures based on male gametophytic function have likely had a disproportionate effect on plant genomes.
Collapse
|
41
|
Guo A, Zheng CX, Yang YY. Differential expression of SLOW WALKER2 homologue in ovules of female sterile mutant and fertile clone of Pinus tabulaeformis. Russ J Dev Biol 2014. [DOI: 10.1134/s1062360414020052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Fu WQ, Zhao ZG, Ge XH, Ding L, Li ZY. Anatomy and transcript profiling of gynoecium development in female sterile Brassica napus mediated by one alien chromosome from Orychophragmus violaceus. BMC Genomics 2014; 15:61. [PMID: 24456102 PMCID: PMC3930543 DOI: 10.1186/1471-2164-15-61] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 01/21/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The gynoecium is one of the most complex organs of angiosperms specialized for seed production and dispersal, but only several genes important for ovule or embryo sac development were identified by using female sterile mutants. The female sterility in oilseed rape (Brassica napus) was before found to be related with one alien chromosome from another crucifer Orychophragmus violaceus. Herein, the developmental anatomy and comparative transcript profiling (RNA-seq) for the female sterility were performed to reveal the genes and possible metabolic pathways behind the formation of the damaged gynoecium. RESULTS The ovules in the female sterile Brassica napus with two copies of the alien chromosomes (S1) initiated only one short integument primordium which underwent no further development and the female gametophyte development was blocked after the tetrad stage but before megagametogenesis initiation. Using Brassica_ 95k_ unigene as the reference genome, a total of 28,065 and 27,653 unigenes were identified to be transcribed in S1 and donor B. napus (H3), respectively. Further comparison of the transcript abundance between S1 and H3 revealed that 4540 unigenes showed more than two fold expression differences. Gene ontology and pathway enrichment analysis of the Differentially Expressed Genes (DEGs) showed that a number of important genes and metabolism pathways were involved in the development of gynoecium, embryo sac, ovule, integuments as well as the interactions between pollen and pistil. CONCLUSIONS DEGs for the ovule development were detected to function in the metabolism pathways regulating brassinosteroid (BR) biosynthesis, adaxial/abaxial axis specification, auxin transport and signaling. A model was proposed to show the possible roles and interactions of these pathways for the sterile gynoecium development. The results provided new information for the molecular mechanisms behind the gynoecium development at early stage in B. napus.
Collapse
Affiliation(s)
| | | | | | | | - Zai-yun Li
- National Key Lab of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P, R, China.
| |
Collapse
|
43
|
Tamaoki D, Karahara I, Nishiuchi T, Wakasugi T, Yamada K, Kamisaka S. Effects of hypergravity stimulus on global gene expression during reproductive growth in Arabidopsis. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16 Suppl 1:179-186. [PMID: 24373015 DOI: 10.1111/plb.12124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 09/27/2013] [Indexed: 06/03/2023]
Abstract
The life cycle of higher plants consists of successive vegetative and reproductive growth phases. Understanding effects of altered gravity conditions on the reproductive growth is essential, not only to elucidate how higher plants evolved under gravitational condition on Earth but also to approach toward realization of agriculture in space. In the present study, a comprehensive analysis of global gene expression of floral buds under hypergravity was carried out to understand effects of altered gravity on reproductive growth at molecular level. Arabidopsis plants grown for 20-26 days were exposed to hypergravity of 300 g for 24 h. Total RNA was extracted from flower buds and microarray (44 K) analysis performed. As a result, hypergravity up-regulated expression of a gene related to β-1,3-glucanase involved in pectin modification, and down-regulated β-galactosidase and amino acid transport, which supports a previous study reporting inhibition of pollen development and germination under hypergravity. With regard to genes related to seed storage accumulation, hypergravity up-regulated expression of genes of aspartate aminotransferase, and down-regulated those related to cell wall invertase and sugar transporter, supporting a previous study reporting promotion of protein body development and inhibition of starch accumulation under hypergravity, respectively. In addition, hypergravity up-regulated expression of G6PDH and GPGDH, which supports a previous study reporting promotion of lipid deposition under hypergravity. In addition, analysis of the metabolic pathway revealed that hypergravity substantially changed expression of genes involved in the biosynthesis of phytohormones such as abscisic acid and auxin.
Collapse
Affiliation(s)
- D Tamaoki
- Department of Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Wang SS, Wang F, Tan SJ, Wang MX, Sui N, Zhang XS. Transcript profiles of maize embryo sacs and preliminary identification of genes involved in the embryo sac-pollen tube interaction. FRONTIERS IN PLANT SCIENCE 2014; 5:702. [PMID: 25566277 PMCID: PMC4269116 DOI: 10.3389/fpls.2014.00702] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/25/2014] [Indexed: 05/05/2023]
Abstract
The embryo sac, the female gametophyte of flowering plants, plays important roles in the pollination and fertilization process. Maize (Zea mays L.) is a model monocot, but little is known about the interactions between its embryo sac and the pollen tube. In this study, we compared the transcript profiles of mature embryo sacs, mature embryo sacs 14-16 h after pollination, and mature nucelli. Comparing the transcript profiles of the embryo sacs before and after the entry of the pollen tube, we identified 3467 differentially expressed transcripts (3382 differentially expressed genes; DEGs). The DEGs were grouped into 22 functional categories. Among the DEGs, 221 genes were induced upon the entry of the pollen tube, and many of them encoded proteins involved in RNA binding, processing, and transcription, signaling, miscellaneous enzyme family processes, and lipid metabolism processes. Genes in the DEG dataset were grouped into 17 classes in a gene ontology enrichment analysis. The DEGs included many genes encoding proteins involved in protein amino acid phosphorylation and protein ubiquitination, implying that these processes might play important roles in the embryo sac-pollen tube interaction. Additionally, our analyses indicate that the expression of 112 genes encoding cysteine-rich proteins (CRPs) is induced during pollination and fertilization. The CRPs likely regulate pollen tube guidance and embryo sac development. These results provide important information on the genes involved in the embryo sac-pollen tube interaction in maize.
Collapse
Affiliation(s)
- Shuai Shuai Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural UniversityTai'an, China
| | - Fang Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTai'an, China
| | - Su Jian Tan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTai'an, China
| | - Ming Xiu Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTai'an, China
| | - Na Sui
- College of Life Sciences, Shandong Normal UniversityJi'nan, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTai'an, China
- *Correspondence: Xian Sheng Zhang, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong Province, 271018 Shandong, China e-mail:
| |
Collapse
|
45
|
Armenta-Medina A, Huanca-Mamani W, Sanchez-León N, Rodríguez-Arévalo I, Vielle-Calzada JP. Functional analysis of sporophytic transcripts repressed by the female gametophyte in the ovule of Arabidopsis thaliana. PLoS One 2013; 8:e76977. [PMID: 24194852 PMCID: PMC3806734 DOI: 10.1371/journal.pone.0076977] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/28/2013] [Indexed: 01/07/2023] Open
Abstract
To investigate the genetic and molecular regulation that the female gametophyte could exert over neighboring sporophytic regions of the ovule, we performed a quantitative comparison of global expression in wild-type and nozzle/sporocyteless (spl) ovules of Arabidopsis thaliana (Arabidopsis), using Massively Parallel Signature Sequencing (MPSS). This comparison resulted in 1517 genes showing at least 3-fold increased expression in ovules lacking a female gametophyte, including those encoding 89 transcription factors, 50 kinases, 25 proteins containing a RNA-recognition motif (RRM), and 20 WD40 repeat proteins. We confirmed that eleven of these genes are either preferentially expressed or exclusive of spl ovules lacking a female gametophyte as compared to wild-type, and showed that six are also upregulated in determinant infertile1 (dif1), a meiotic mutant affected in a REC8-like cohesin that is also devoided of female gametophytes. The sporophytic misexpression of IOREMPTE, a WD40/transducin repeat gene that is preferentially expressed in the L1 layer of spl ovules, caused the arrest of female gametogenesis after differentiation of a functional megaspore. Our results show that in Arabidopsis, the sporophytic-gametophytic cross talk includes a negative regulation of the female gametophyte over specific genes that are detrimental for its growth and development, demonstrating its potential to exert a repressive control over neighboring regions in the ovule.
Collapse
Affiliation(s)
- Alma Armenta-Medina
- Grupo de Desarrollo Reproductivo y Apomixis, Laboratorio Nacional de Genómica para la Biodiversidad y Departamento de Ingeniería Genética de Plantas, CINVESTAV Irapuato, Irapuato, Mexico
| | | | | | | | | |
Collapse
|
46
|
Ortiz JPA, Quarin CL, Pessino SC, Acuña C, Martínez EJ, Espinoza F, Hojsgaard DH, Sartor ME, Cáceres ME, Pupilli F. Harnessing apomictic reproduction in grasses: what we have learned from Paspalum. ANNALS OF BOTANY 2013; 112:767-87. [PMID: 23864004 PMCID: PMC3747805 DOI: 10.1093/aob/mct152] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 05/13/2013] [Indexed: 05/19/2023]
Abstract
BACKGROUND Apomixis is an alternative route of plant reproduction that produces individuals genetically identical to the mother plant through seeds. Apomixis is desirable in agriculture, because it guarantees the perpetuation of superior genotypes (i.e. heterotic hybrid seeds) by self-seeding without loss of hybrid vigour. The Paspalum genus, an archetypal model system for mining apomixis gene(s), is composed of about 370 species that have extremely diverse reproductive systems, including self-incompatibility, self-fertility, full sexual reproduction, and facultative or obligate apomixis. Barriers to interspecific hybridization are relaxed in this genus, allowing the production of new hybrids from many different parental combinations. Paspalum is also tolerant to various parental genome contributions to the endosperm, allowing analyses of how sexually reproducing crop species might escape from dosage effects in the endosperm. SCOPE In this article, the available literature characterizing apomixis in Paspalum spp. and its use in breeding is critically reviewed. In particular, a comparison is made across species of the structure and function of the genomic region controlling apomixis in order to identify a common core region shared by all apomictic Paspalum species and where apomixis genes are likely to be localized. Candidate genes are discussed, either as possible genetic determinants (including homologs to signal transduction and RNA methylation genes) or as downstream factors (such as cell-to-cell signalling and auxin response genes) depending, respectively, on their co-segregation with apomixis or less. Strategies to validate the role of candidate genes in apomictic process are also discussed, with special emphasis on plant transformation in natural apomictic species.
Collapse
Affiliation(s)
- Juan Pablo A. Ortiz
- Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Camilo L. Quarin
- Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Silvina C. Pessino
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Carlos Acuña
- Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Eric J. Martínez
- Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Francisco Espinoza
- Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Diego H. Hojsgaard
- Albrecht-von-Haller Institute for Plant Sciences, Department of Systematic Botany, Georg-August-University of Göttingen, Göttingen, Germany
| | - Maria E. Sartor
- Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Maria E. Cáceres
- CNR-Istituto di Genetica Vegetale, Research Division: Perugia, Via della Madonna alta 130, I-06128 Perugia, Italy
| | - Fulvio Pupilli
- CNR-Istituto di Genetica Vegetale, Research Division: Perugia, Via della Madonna alta 130, I-06128 Perugia, Italy
- For correspondence. E-mail
| |
Collapse
|
47
|
Ó’Maoiléidigh DS, Wuest SE, Rae L, Raganelli A, Ryan PT, Kwaśniewska K, Das P, Lohan AJ, Loftus B, Graciet E, Wellmer F. Control of reproductive floral organ identity specification in Arabidopsis by the C function regulator AGAMOUS. THE PLANT CELL 2013; 25:2482-503. [PMID: 23821642 PMCID: PMC3753378 DOI: 10.1105/tpc.113.113209] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/05/2013] [Accepted: 06/17/2013] [Indexed: 05/18/2023]
Abstract
The floral organ identity factor AGAMOUS (AG) is a key regulator of Arabidopsis thaliana flower development, where it is involved in the formation of the reproductive floral organs as well as in the control of meristem determinacy. To obtain insights into how AG specifies organ fate, we determined the genes and processes acting downstream of this C function regulator during early flower development and distinguished between direct and indirect effects. To this end, we combined genome-wide localization studies, gene perturbation experiments, and computational analyses. Our results demonstrate that AG controls flower development to a large extent by controlling the expression of other genes with regulatory functions, which are involved in mediating a plethora of different developmental processes. One aspect of this function is the suppression of the leaf development program in emerging floral primordia. Using trichome initiation as an example, we demonstrate that AG inhibits an important aspect of leaf development through the direct control of key regulatory genes. A comparison of the gene expression programs controlled by AG and the B function regulators APETALA3 and PISTILLATA, respectively, showed that while they control many developmental processes in conjunction, they also have marked antagonistic, as well as independent activities.
Collapse
Affiliation(s)
| | - Samuel E. Wuest
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Liina Rae
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Andrea Raganelli
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Patrick T. Ryan
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Kamila Kwaśniewska
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Pradeep Das
- École Normale Supérieure, 69364 Lyon, cedex 07, France
| | - Amanda J. Lohan
- Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Brendan Loftus
- Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Emmanuelle Graciet
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
- Address correspondence to
| | - Frank Wellmer
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
48
|
Lawit SJ, Chamberlin MA, Agee A, Caswell ES, Albertsen MC. Transgenic manipulation of plant embryo sacs tracked through cell-type-specific fluorescent markers: cell labeling, cell ablation, and adventitious embryos. PLANT REPRODUCTION 2013; 26:125-137. [PMID: 23539301 DOI: 10.1007/s00497-013-0215-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/13/2013] [Indexed: 06/02/2023]
Abstract
Expression datasets relating to the Arabidopsis female gametophyte have enabled the creation of a tool set which allows simultaneous visual tracking of each specific cell type (egg, synergids, central cell, and antipodals). This cell-specific, fluorescent labeling tool-set functions from gametophyte cellularization through fertilization and early embryo development. Using this system, cell fates were tracked within Arabidopsis ovules following molecular manipulations, such as the ablation of the egg and/or synergids. Upon egg cell ablation, it was observed that a synergid can switch its developmental fate to become egg/embryo-like upon loss of the native egg. Also, manipulated was the fate of the somatic ovular cells, which can become egg- and embryo-like, reminiscent of adventitious embryony. These advances represent initial steps toward engineering synthetic apomixis resulting in seed derived wholly from the maternal plant. The end goal of applied apomixis research, fixing important agronomic traits such as hybrid vigor, would be a key benefit to agricultural productivity.
Collapse
Affiliation(s)
- Shai J Lawit
- Agricultural Biotechnology, DuPont Pioneer, Johnston, IA 50131-1004, USA.
| | | | | | | | | |
Collapse
|
49
|
Yuan M, Wang S. Rice MtN3/saliva/SWEET family genes and their homologs in cellular organisms. MOLECULAR PLANT 2013; 6:665-74. [PMID: 23430047 DOI: 10.1093/mp/sst035] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The MtN3/saliva/SWEET-type genes, existing either alone or in a family group, are found in diverse organisms, from monocellular protozoa to higher eukaryotes, indicating their importance in cellular organisms. These genes encode polytopic membrane proteins that feature an MtN3/saliva domain, also known as a PQ loop repeat. The rice MtN3/saliva/SWEET gene family consists of 21 members and is among the largest families in sequenced organisms. Accumulating data suggest that these genes are involved in multiple physiological processes, including reproductive development, senescence, environmental adaptation, and host-pathogen interaction, in different species. In rice, some members of the family, including Xa13/Os8N3/OsSWEET11, which is essential for reproductive development, are used by the pathogenic bacterium Xanthomonas oryzae pv. oryzae to invade its host. Emerging data have also revealed that at least some MtN3/saliva/SWEET-type proteins may regulate different physiological processes by facilitating ion transport via interaction with ion transporters or as sugar transporters. The accumulating knowledge about MtN3/saliva/SWEET-type genes will help to elucidate the molecular bases of their function in different organisms.
Collapse
Affiliation(s)
- Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|
50
|
Martin MV, Fiol DF, Sundaresan V, Zabaleta EJ, Pagnussat GC. oiwa, a female gametophytic mutant impaired in a mitochondrial manganese-superoxide dismutase, reveals crucial roles for reactive oxygen species during embryo sac development and fertilization in Arabidopsis. THE PLANT CELL 2013; 25:1573-91. [PMID: 23653473 PMCID: PMC3694693 DOI: 10.1105/tpc.113.109306] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Reactive oxygen species (ROS) can function as signaling molecules, regulating key aspects of plant development, or as toxic compounds leading to oxidative damage. In this article, we show that the regulation of ROS production during megagametogenesis is largely dependent on MSD1, a mitochondrial Mn-superoxide dismutase. Wild-type mature embryo sacs show ROS exclusively in the central cell, which appears to be the main source of ROS before pollination. Accordingly, MSD1 shows a complementary expression pattern. MSD1 expression is elevated in the egg apparatus at maturity but is downregulated in the central cell. The oiwa mutants are characterized by high levels of ROS detectable in both the central cell and the micropylar cells. Remarkably, egg apparatus cells in oiwa show central cell features, indicating that high levels of ROS result in the expression of central cell characteristic genes. Notably, ROS are detected in synergid cells after pollination. This ROS burst depends on stigma pollination but precedes fertilization, suggesting that embryo sacs sense the imminent arrival of pollen tubes and respond by generating an oxidative environment. Altogether, we show that ROS play a crucial role during female gametogenesis and fertilization. MSD1 activity seems critical for maintaining ROS localization and important for embryo sac patterning.
Collapse
Affiliation(s)
- María Victoria Martin
- Instituto de Investigaciones Biológicas IIB-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Diego Fernando Fiol
- Instituto de Investigaciones Biológicas IIB-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Venkatesan Sundaresan
- Department of Plant Biology, University of California, Davis, California 95616
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Eduardo Julián Zabaleta
- Instituto de Investigaciones Biológicas IIB-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Gabriela Carolina Pagnussat
- Instituto de Investigaciones Biológicas IIB-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
- Address correspondence to
| |
Collapse
|