1
|
Dhyani A, Kasana S, Uniyal PL. From barcodes to genomes: a new era of molecular exploration in bryophyte research. FRONTIERS IN PLANT SCIENCE 2025; 15:1500607. [PMID: 39872206 PMCID: PMC11770019 DOI: 10.3389/fpls.2024.1500607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025]
Abstract
Bryophytes represent a diverse and species-rich group of plants, characterized by a remarkable array of morphological variations. Due to their significant ecological and economic roles worldwide, accurate identification of bryophyte taxa is crucial. However, the variability in morphological traits often complicates their proper identification and subsequent commercial utilization. DNA barcoding has emerged as a valuable tool for the precise identification of bryophyte taxa, facilitating comparisons at both interspecific and intraspecific levels. Recent research involving plastomes, mitogenomes, and transcriptomes of various bryophyte species has provided insights into molecular changes and gene expression in response to environmental stressors. Advances in molecular phylogenetics have shed light on the origin and evolutionary history of bryophytes, thereby clarifying their phylogenetic relationships. Despite these advancements, a comprehensive understanding of the systematic relationships within bryophytes is still lacking. This review synthesizes current molecular studies that have been instrumental in unraveling the complexity of bryophyte taxonomy and systematics. By highlighting key findings from recent genetic and genomic research, we underscore the importance of integrating molecular data with traditional morphological approaches. Such integration is essential for refining the classification systems of bryophytes and for understanding their adaptive strategies in various ecological niches. Future research should focus on expanding the molecular datasets across underrepresented bryophyte lineages and exploring the functional significance of genetic variations under different environmental conditions. This will not only enhance our knowledge of bryophyte evolution, but also inform conservation strategies and potential applications in biotechnology.
Collapse
Affiliation(s)
| | - Shruti Kasana
- Department of Botany, University of Delhi, Delhi, India
| | | |
Collapse
|
2
|
Zhou Y, Sommer ML, Meyer A, Wang D, Klaus A, Stöcker T, Marcon C, Schoof H, Haberer G, Schön CC, Yu P, Hochholdinger F. Cold mediates maize root hair developmental plasticity via epidermis-specific transcriptomic responses. PLANT PHYSIOLOGY 2024; 196:2105-2120. [PMID: 39190817 DOI: 10.1093/plphys/kiae449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024]
Abstract
Cold stress during early development limits maize (Zea mays L.) production in temperate zones. Low temperatures restrict root growth and reprogram gene expression. Here, we provide a systematic transcriptomic landscape of maize primary roots, their tissues, and cell types in response to cold stress. The epidermis exhibited a unique transcriptomic cold response, and genes involved in root hair formation were dynamically regulated in this cell type by cold. Consequently, activation of genes involved in root hair tip growth contributed to root hair recovery under moderate cold conditions. The maize root hair defective mutants roothair defective 5 (rth5) and roothair defective 6 (rth6) displayed enhanced cold tolerance with respect to primary root elongation. Furthermore, DEHYDRATION RESPONSE ELEMENT-BINDING PROTEIN 2.1 (DREB2.1) was the only member of the dreb subfamily of AP2/EREB transcription factor genes upregulated in primary root tissues and cell types but exclusively downregulated in root hairs upon cold stress. Plants overexpressing dreb2.1 significantly suppressed root hair elongation after moderate cold stress. Finally, the expression of rth3 was regulated by dreb2.1 under cold conditions, while rth6 transcription was regulated by DREB2.1 irrespective of the temperature regime. We demonstrated that dreb2.1 negatively regulates root hair plasticity at low temperatures by coordinating the expression of root hair defective genes in maize.
Collapse
Affiliation(s)
- Yaping Zhou
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - Mauritz Leonard Sommer
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - Annika Meyer
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
- INRES, Emmy Noether Group Root Functional Biology, University of Bonn, Bonn 53113, Germany
| | - Danning Wang
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
- INRES, Emmy Noether Group Root Functional Biology, University of Bonn, Bonn 53113, Germany
| | - Alina Klaus
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - Tyll Stöcker
- INRES, Institute of Crop Science and Resource Conservation, Crop Bioinformatics, University of Bonn, Bonn 53115, Germany
| | - Caroline Marcon
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - Heiko Schoof
- INRES, Institute of Crop Science and Resource Conservation, Crop Bioinformatics, University of Bonn, Bonn 53115, Germany
| | - Georg Haberer
- Plant Genome and System Biology, Helmholtz Center Munich, Neuherberg 85764, Germany
| | - Chris-Carolin Schön
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Peng Yu
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
- INRES, Emmy Noether Group Root Functional Biology, University of Bonn, Bonn 53113, Germany
| | - Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| |
Collapse
|
3
|
Chen M, Feng S, Lv H, Wang Z, Zeng Y, Shao C, Lin W, Zhang Z. OsCIPK2 mediated rice root microorganisms and metabolites to improve plant nitrogen uptake. BMC PLANT BIOLOGY 2024; 24:285. [PMID: 38627617 PMCID: PMC11020999 DOI: 10.1186/s12870-024-04982-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
Crop roots are colonized by large numbers of microorganisms, collectively known as the root-microbiome, which modulate plant growth, development and contribute to elemental nutrient uptake. In conditions of nitrogen limitation, the over-expressed Calcineurin B-like interacting protein kinase 2 (OsCIPK2) gene with root-specific promoter (RC) has been shown to enhance growth and nitrogen uptake in rice. Analysis of root-associated bacteria through high-throughput sequencing revealed that OsCIPK2 has a significant impact on the diversity of the root microbial community under low nitrogen stress. The quantification of nifH gene expression demonstrated a significant enhancement in nitrogen-fixing capabilities in the roots of RC transgenetic rice. Synthetic microbial communities (SynCom) consisting of six nitrogen-fixing bacterial strains were observed to be enriched in the roots of RC, leading to a substantial improvement in rice growth and nitrogen uptake in nitrogen-deficient soils. Forty and twenty-three metabolites exhibiting differential abundance were identified in the roots and rhizosphere soils of RC transgenic rice compared to wild-type (WT) rice. These findings suggest that OSCIPK2 plays a role in restructuring the microbial community in the roots through the regulation of metabolite synthesis and secretion. Further experiments involving the exogenous addition of citric acid revealed that an optimal concentration of this compound facilitated the growth of nitrogen-fixing bacteria and substantially augmented their population in the soil, highlighting the importance of citric acid in promoting nitrogen fixation under conditions of low nitrogen availability. These findings suggest that OsCIPK2 plays a role in enhancing nitrogen uptake by rice plants from the soil by influencing the assembly of root microbial communities, thereby offering valuable insights for enhancing nitrogen utilization in rice cultivation.
Collapse
Affiliation(s)
- Mengying Chen
- College of JunCao Science and Ecology, Fujian Agricultural and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Shizhong Feng
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - He Lv
- College of JunCao Science and Ecology, Fujian Agricultural and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Zewen Wang
- College of JunCao Science and Ecology, Fujian Agricultural and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yuhang Zeng
- College of JunCao Science and Ecology, Fujian Agricultural and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Caihong Shao
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Wenxiong Lin
- College of JunCao Science and Ecology, Fujian Agricultural and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhixing Zhang
- College of JunCao Science and Ecology, Fujian Agricultural and Forestry University, Fuzhou, Fujian, 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
4
|
Ragland CJ, Shih KY, Dinneny JR. Choreographing root architecture and rhizosphere interactions through synthetic biology. Nat Commun 2024; 15:1370. [PMID: 38355570 PMCID: PMC10866969 DOI: 10.1038/s41467-024-45272-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
Climate change is driving extreme changes to the environment, posing substantial threats to global food security and bioenergy. Given the direct role of plant roots in mediating plant-environment interactions, engineering the form and function of root systems and their associated microbiota may mitigate these effects. Synthetic genetic circuits have enabled sophisticated control of gene expression in microbial systems for years and a surge of advances has heralded the extension of this approach to multicellular plant species. Targeting these tools to affect root structure, exudation, and microbe activity on root surfaces provide multiple strategies for the advancement of climate-ready crops.
Collapse
Affiliation(s)
- Carin J Ragland
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Kevin Y Shih
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
5
|
Lindsay P, Swentowsky KW, Jackson D. Cultivating potential: Harnessing plant stem cells for agricultural crop improvement. MOLECULAR PLANT 2024; 17:50-74. [PMID: 38130059 DOI: 10.1016/j.molp.2023.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Meristems are stem cell-containing structures that produce all plant organs and are therefore important targets for crop improvement. Developmental regulators control the balance and rate of cell divisions within the meristem. Altering these regulators impacts meristem architecture and, as a consequence, plant form. In this review, we discuss genes involved in regulating the shoot apical meristem, inflorescence meristem, axillary meristem, root apical meristem, and vascular cambium in plants. We highlight several examples showing how crop breeders have manipulated developmental regulators to modify meristem growth and alter crop traits such as inflorescence size and branching patterns. Plant transformation techniques are another innovation related to plant meristem research because they make crop genome engineering possible. We discuss recent advances on plant transformation made possible by studying genes controlling meristem development. Finally, we conclude with discussions about how meristem research can contribute to crop improvement in the coming decades.
Collapse
Affiliation(s)
- Penelope Lindsay
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
6
|
Zaman Z, Iqbal R, Jabbar A, Zahra N, Saleem B, Kiran A, Maqbool S, Rasheed A, Naeem MK, Khan MR. Genetic Signature Controlling Root System Architecture in Diverse Spring Wheat Germplasm. PHYSIOLOGIA PLANTARUM 2024; 176:e14183. [PMID: 38343301 DOI: 10.1111/ppl.14183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 02/15/2024]
Abstract
Roots are the main sensing organ, initiating multiple signaling pathways in response to abiotic factors, including nutrients, drought, and salt stress. A focus on improving the root system architecture is a key strategy to mitigate these stresses in wheat crop. In the present study, a diversity panel comprising indigenous landraces and historical cultivars from Pakistan was characterized for the root system architecture (RSA) and important loci were identified using a genome-wide association study (GWAS). RSA of the diversity panel was characterized 30 days after sowing in brunch tubes, and root images were taken. A high-throughput root imaging analysis using Rhizovision software was performed by setting the scale to extract the eight RSA traits and four plant biomass-related traits. GWAS identified 323 association signals for 12 root and biomass traits present on all wheat chromosomes, while the most important and reliable genetic loci (based on pleotropic loci and candidate genes) were identified on chromosomes 2A, 2B, 5A, 5D, 6A, 7B, and 7D for RSA. SNP annotation and transcriptome profiling identified nine candidate genes regulating the RSA and plant biomass traits, including ROOTLESS WITH UNDETECTABLE MERISTEM1, MYB TRANSCRIPTION FACTOR4, BRASSINOSTEROID INSENSITIVE1, SLENDER RICE1, AUXIN-RESPONSIVE FACTOR25, SCARECROW, NARROW LEAF2, PIN-FORMED1 AND PHOSPHATE TRANSCRIPTION FACTOR1. This study provided pre-breeding information for deep-rooting genotypes and associated markers that will accelerate the incorporation of such traits in breeding.
Collapse
Affiliation(s)
- Zahra Zaman
- Department of Biotechnology, Mirpur University of Science and Technology (MUST), Pakistan
- National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
| | - Rubab Iqbal
- National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
- Department of Botany, University of Agriculture, Faisalabad
| | - Abdul Jabbar
- Department of Biotechnology, Mirpur University of Science and Technology (MUST), Pakistan
| | - Nageen Zahra
- National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
| | - Bilal Saleem
- National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
| | - Aysha Kiran
- Department of Botany, University of Agriculture, Faisalabad
| | - Saman Maqbool
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Kashif Naeem
- National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
| | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
| |
Collapse
|
7
|
Cowling CL, Dash L, Kelley DR. Roles of auxin pathways in maize biology. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6989-6999. [PMID: 37493143 PMCID: PMC10690729 DOI: 10.1093/jxb/erad297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/24/2023] [Indexed: 07/27/2023]
Abstract
Phytohormones play a central role in plant development and environmental responses. Auxin is a classical hormone that is required for organ formation, tissue patterning, and defense responses. Auxin pathways have been extensively studied across numerous land plant lineages, including bryophytes and eudicots. In contrast, our understanding of the roles of auxin in maize morphogenesis and immune responses is limited. Here, we review evidence for auxin-mediated processes in maize and describe promising areas for future research in the auxin field. Several recent transcriptomic and genetic studies have demonstrated that auxin is a key influencer of both vegetative and reproductive development in maize (namely roots, leaves, and kernels). Auxin signaling has been implicated in both maize shoot architecture and immune responses through genetic and molecular analyses of the conserved co-repressor RAMOSA ENHANCER LOCUS2. Polar auxin transport is linked to maize drought responses, root growth, shoot formation, and leaf morphogenesis. Notably, maize has been a key system for delineating auxin biosynthetic pathways and offers many opportunities for future investigations on auxin metabolism. In addition, crosstalk between auxin and other phytohormones has been uncovered through gene expression studies and is important for leaf and root development in maize. Collectively these studies point to auxin as a cornerstone for maize biology that could be leveraged for improved crop resilience and yield.
Collapse
Affiliation(s)
- Craig L Cowling
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Linkan Dash
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Dior R Kelley
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
8
|
Uddin MS, Akter F, Azam MG, Bagum SA, Hossain N, Billah M, Biswas PL, Hasibuzzaman ASM, Khaldun ABM, Alsuhaibani AM, Gaber A, Hossain A. Evaluation of Inbred Maize ( Zea mays L.) for Tolerance to Low Phosphorus at the Seedling Stage. PLANTS (BASEL, SWITZERLAND) 2023; 12:2520. [PMID: 37447080 DOI: 10.3390/plants12132520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
In underdeveloped nations where low-input agriculture is practiced, low phosphorus (LP) in the soil reduces the production of maize. In the present study, a total of 550 inbred maize lines were assessed for seedling traits under LP (2.5 × 10-6 mol L-1 of KH2PO4) and NP (2.5 × 10-4 mol L-1 of KH2PO4) hydroponic conditions. The purpose of this study was to quantify the amount of variation present in the measured traits, estimate the genetic involvement of these characteristics, examine the phenotypic correlation coefficients between traits, and to integrate this information to prepare a multi-trait selection index for LP tolerance in maize. A great deal of variability in the maize genotype panel was confirmed by descriptive statistics and analysis of variance (ANOVA). Estimated broad-sense heritability (h2) ranged from 0.7 to 0.91, indicating intermediate to high heritability values for the measured traits. A substantial connection between MSL and other root traits suggested that the direct selection of MSL (maximum shoot length) could be beneficial for the enhancement of other traits. The principal component analysis (PCA) of the first two main component axes explained approximately 81.27% of the variation between lines for the eight maize seedling variables. TDM (total dry matter), SDW (shoot dry weight), RDW (root dry weight), SFW (shoot fresh weight), RFW (root fresh weight), MRL (maximum root length), and MSL measurements accounted for the majority of the first principal component (59.35%). The multi-trait indices were calculated based on PCA using all the measured traits, and 30 genotypes were selected. These selected lines might be considered as the potential source for the improvement of LP tolerance in maize.
Collapse
Affiliation(s)
- Md Shalim Uddin
- Institute of Crop Sciences, Graduate School of Chinese Academy of Agricultural Sciences (GSCAAS), Haidian District, Beijing 100081, China
- Department of Genetics and Plant Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Farzana Akter
- Department of Genetics and Plant Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Md Golam Azam
- Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh
| | - Shamim Ara Bagum
- Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh
| | - Neelima Hossain
- Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh
| | - Masum Billah
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Priya Lal Biswas
- Institute of Crop Sciences, Graduate School of Chinese Academy of Agricultural Sciences (GSCAAS), Haidian District, Beijing 100081, China
- Bangladesh Rice Research Institute (BRRI), Gazipur 1701, Bangladesh
| | - Abu Sayeed Md Hasibuzzaman
- Department of Genetics and Plant Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Abul Bashar Mohammad Khaldun
- Planning and Evaluation Division, Bangladesh Agricultural Research Council (BARC), Farmgate, Airport Road, Dhaka 1215, Bangladesh
| | - Amnah Mohammed Alsuhaibani
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ahmed Gaber
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh
| |
Collapse
|
9
|
Liu Q, Cheng L, Nian H, Jin J, Lian T. Linking plant functional genes to rhizosphere microbes: a review. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:902-917. [PMID: 36271765 PMCID: PMC10106864 DOI: 10.1111/pbi.13950] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 05/04/2023]
Abstract
The importance of rhizomicrobiome in plant development, nutrition acquisition and stress tolerance is unquestionable. Relevant plant genes corresponding to the above functions also regulate rhizomicrobiome construction. Deciphering the molecular regulatory network of plant-microbe interactions could substantially contribute to improving crop yield and quality. Here, the plant gene-related nutrient uptake, biotic and abiotic stress resistance, which may influence the composition and function of microbial communities, are discussed in this review. In turn, the influence of microbes on the expression of functional plant genes, and thereby plant growth and immunity, is also reviewed. Moreover, we have specifically paid attention to techniques and methods used to link plant functional genes and rhizomicrobiome. Finally, we propose to further explore the molecular mechanisms and signalling pathways of microbe-host gene interactions, which could potentially be used for managing plant health in agricultural systems.
Collapse
Affiliation(s)
- Qi Liu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Lang Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Jian Jin
- Northeast Institute of Geography and AgroecologyChinese Academy of SciencesHarbinChina
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
10
|
Li Q, Liu N, Wu C. Novel insights into maize (Zea mays) development and organogenesis for agricultural optimization. PLANTA 2023; 257:94. [PMID: 37031436 DOI: 10.1007/s00425-023-04126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
In maize, intrinsic hormone activities and sap fluxes facilitate organogenesis patterning and plant holistic development; these hormone movements should be a primary focus of developmental biology and agricultural optimization strategies. Maize (Zea mays) is an important crop plant with distinctive life history characteristics and structural features. Genetic studies have extended our knowledge of maize developmental processes, genetics, and molecular ecophysiology. In this review, the classical life cycle and life history strategies of maize are analyzed to identify spatiotemporal organogenesis properties and develop a definitive understanding of maize development. The actions of genes and hormones involved in maize organogenesis and sex determination, along with potential molecular mechanisms, are investigated, with findings suggesting central roles of auxin and cytokinins in regulating maize holistic development. Furthermore, investigation of morphological and structural characteristics of maize, particularly node ubiquity and the alternate attachment pattern of lateral organs, yields a novel regulatory model suggesting that maize organ initiation and subsequent development are derived from the stimulation and interaction of auxin and cytokinin fluxes. Propositions that hormone activities and sap flow pathways control organogenesis are thoroughly explored, and initiation and development processes of distinctive maize organs are discussed. Analysis of physiological factors driving hormone and sap movement implicates cues of whole-plant activity for hormone and sap fluxes to stimulate maize inflorescence initiation and organ identity determination. The physiological origins and biogenetic mechanisms underlying maize floral sex determination occurring at the tassel and ear spikelet are thoroughly investigated. The comprehensive outline of maize development and morphogenetic physiology developed in this review will enable farmers to optimize field management and will provide a reference for de novo crop domestication and germplasm improvement using genome editing biotechnologies, promoting agricultural optimization.
Collapse
Affiliation(s)
- Qinglin Li
- Crop Genesis and Novel Agronomy Center, Yangling, 712100, Shaanxi, China.
| | - Ning Liu
- Shandong ZhongnongTiantai Seed Co., Ltd, Pingyi, 273300, Shandong, China
| | - Chenglai Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
11
|
Zheng Z, Guo B, Dutta S, Roy V, Liu H, Schnable PS. The 2020 derecho revealed limited overlap between maize genes associated with root lodging and root system architecture. PLANT PHYSIOLOGY 2023:kiad194. [PMID: 36974884 DOI: 10.1093/plphys/kiad194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/03/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
Roots anchor plants in soil, and the failure of anchorage (i.e., root lodging) is a major cause of crop yield loss. Anchorage is often assumed to be driven by root system architecture. We made use of a natural experiment to measure the overlap between the genetic regulation of root system architecture and anchorage. After one of the most devastating derechos ever recorded in August 2020, we phenotyped root lodging in a maize (Zea mays) diversity panel consisting of 369 genotypes grown in six environments affected by the derecho. Genome-wide association studies and transcriptome-wide association studies identified 118 candidate genes associated with root lodging. Thirty-four percent (40/118) of these were homologs of genes from Arabidopsis (Arabidopsis thaliana) that affect traits such as root morphology and lignin content, expected to affect root lodging. Finally, Gene Ontology enrichment analysis of the candidate genes and their predicted interaction partners at the transcriptional and translational levels revealed the complex regulatory networks of physiological and biochemical pathways underlying root lodging in maize. Limited overlap between genes associated with lodging resistance and root system architecture in this diversity panel suggests that anchorage depends in part on factors other than gross characteristics of root system architecture.
Collapse
Affiliation(s)
- Zihao Zheng
- Department of Agronomy, Iowa State University, Ames, IA 50011-1051, USA
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50011-3650, USA
| | - Bufei Guo
- Department of Statistics, Iowa State University, Ames, IA, 50011-1090, USA
| | - Somak Dutta
- Department of Statistics, Iowa State University, Ames, IA, 50011-1090, USA
| | - Vivekananda Roy
- Department of Statistics, Iowa State University, Ames, IA, 50011-1090, USA
| | - Huyu Liu
- Department of Agronomy, Iowa State University, Ames, IA 50011-1051, USA
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50011-3650, USA
| | - Patrick S Schnable
- Department of Agronomy, Iowa State University, Ames, IA 50011-1051, USA
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50011-3650, USA
| |
Collapse
|
12
|
Zhang M, Chen Y, Xing H, Ke W, Shi Y, Sui Z, Xu R, Gao L, Guo G, Li J, Xing J, Zhang Y. Positional cloning and characterization reveal the role of a miRNA precursor gene ZmLRT in the regulation of lateral root number and drought tolerance in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:772-790. [PMID: 36354146 DOI: 10.1111/jipb.13408] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Lateral roots play essential roles in drought tolerance in maize (Zea mays L.). However, the genetic basis for the variation in the number of lateral roots in maize remains elusive. Here, we identified a major quantitative trait locus (QTL), qLRT5-1, controlling lateral root number using a recombinant inbred population from a cross between the maize lines Zong3 (with many lateral roots) and 87-1 (with few lateral roots). Fine-mapping and functional analysis determined that the candidate gene for qLRT5-1, ZmLRT, expresses the primary transcript for the microRNA miR166a. ZmLRT was highly expressed in root tips and lateral root primordia, and knockout and overexpression of ZmLRT increased and decreased lateral root number, respectively. Compared with 87-1, the ZmLRT gene model of Zong3 lacked the second and third exons and contained a 14 bp deletion at the junction between the first exon and intron, which altered the splicing site. In addition, ZmLRT expression was significantly lower in Zong3 than in 87-1, which might be attributed to the insertions of a transposon and over large DNA fragments in the Zong3 ZmLRT promoter region. These mutations decreased the abundance of mature miR166a in Zong3, resulting in increased lateral roots at the seedling stage. Furthermore, miR166a post-transcriptionally repressed five development-related class-III homeodomain-leucine zipper genes. Moreover, knockout of ZmLRT enhanced drought tolerance of maize seedlings. Our study furthers our understanding of the genetic basis of lateral root number variation in maize and highlights ZmLRT as a target for improving drought tolerance in maize.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yanhong Chen
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Agronomy College of Shandong Agricultural University, Taian, 271018, China
| | - Hongyan Xing
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Crop Germplasm Resources and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wensheng Ke
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yunlu Shi
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhipeng Sui
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Yantai Science and Technology Innovation Promotion Center, Yantai, 264003, China
| | - Ruibin Xu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Lulu Gao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Ganggang Guo
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Crop Germplasm Resources and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiansheng Li
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Jiewen Xing
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yirong Zhang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
13
|
Wang K, Zhang Z, Sha X, Yu P, Li Y, Zhang D, Liu X, He G, Li Y, Wang T, Guo J, Chen J, Li C. Identification of a new QTL underlying seminal root number in a maize-teosinte population. FRONTIERS IN PLANT SCIENCE 2023; 14:1132017. [PMID: 36824192 PMCID: PMC9941338 DOI: 10.3389/fpls.2023.1132017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Seminal roots play an important role in acquisition of water and nutrients by maize seedlings. Compared with its teosinte ancestor, maize underwent a change in seminal root number (SRN). Although several key genes controlling SRN have been cloned, identification and utilization of new genes from teosinte would be useful for improving maize root architecture. In this study, a maize-teosinte BC2F6 population containing 206 individuals genotyped by resequencing was used to conduct high-resolution quantitative trait locus (QTL) mapping of SRN. A new major QTL on chromosome 7 (qSRN7) was identified. Differentially expressed genes (DEGs) based on RNA-Seq were identified between two inbred lines with no SRN and multiple SRN at two periods of seminal roots primordia formation. A total of 116 DEGs detected in at least one period were identified within the qSRN7 interval. Three DEGs (Zm00001d021572, Zm00001d021579 and Zm00001d021861) associated with SRN were identified through regional association mapping. When compared with reported domestication-related selective sweeps, Zm00001d021572 was selected during maize domestication. Our findings provide important insights into the genetic basis of SRN and identify a promising candidate gene for further studies on SRN.
Collapse
Affiliation(s)
- Kailiang Wang
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Zhen Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - XiaoQian Sha
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peng Yu
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Yongxiang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dengfeng Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuyang Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guanhua He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianyu Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Guo
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Jiafa Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Chunhui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Baer M, Taramino G, Multani D, Sakai H, Jiao S, Fengler K, Hochholdinger F. Maize lateral rootless 1 encodes a homolog of the DCAF protein subunit of the CUL4-based E3 ubiquitin ligase complex. THE NEW PHYTOLOGIST 2023; 237:1204-1214. [PMID: 36345913 DOI: 10.1111/nph.18599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
In maize (Zea mays L.), lateral roots are formed in the differentiation zone of all root types in a multi-step process. The maize mutant lateral rootless 1 (lrt1) is defective in lateral root formation in primary and seminal roots but not in shoot-borne roots. We cloned the lrt1 gene by mapping in combination with BSA-seq and subsequent validation via CRISPR/Cas9. The lrt1 gene encodes a 209 kDa homolog of the DDB1-CUL4-ASSOCIATED FACTOR (DCAF) subunit of the CUL4-based E3 ubiquitin ligase (CRL4) complex localized in the nucleus. DDB1-CUL4-ASSOCIATED FACTOR proteins are encoded by an evolutionary old gene family already present in nonseed plants. They are adaptors that bind substrate proteins and promote their ubiquitylation, thus typically marking them for subsequent degradation in the 26S proteasome. Gene expression studies demonstrated that lrt1 transcripts are expressed preferentially in the meristematic zone of all root types of maize. Downregulation of the rum1 gene in lrt1 mutants suggests that lrt1 acts upstream of the lateral root regulator rum1. Our results demonstrate that DCAF proteins play a key role in root-type-specific lateral root formation in maize. Together with its role in nitrogen acquisition in nitrogen-poor soil, lrt1 could be a promising target for maize improvement.
Collapse
Affiliation(s)
- Marcel Baer
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113, Bonn, Germany
| | | | | | | | | | | | - Frank Hochholdinger
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113, Bonn, Germany
| |
Collapse
|
15
|
Ren W, Zhao L, Liang J, Wang L, Chen L, Li P, Liu Z, Li X, Zhang Z, Li J, He K, Zhao Z, Ali F, Mi G, Yan J, Zhang F, Chen F, Yuan L, Pan Q. Genome-wide dissection of changes in maize root system architecture during modern breeding. NATURE PLANTS 2022; 8:1408-1422. [PMID: 36396706 DOI: 10.1038/s41477-022-01274-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 10/12/2022] [Indexed: 05/12/2023]
Abstract
Appropriate root system architecture (RSA) can improve maize yields in densely planted fields, but little is known about its genetic basis in maize. Here we performed root phenotyping of 14,301 field-grown plants from an association mapping panel to study the genetic architecture of maize RSA. A genome-wide association study identified 81 high-confidence RSA-associated candidate genes and revealed that 28 (24.3%) of known root-related genes were selected during maize domestication and improvement. We found that modern maize breeding has selected for a steeply angled root system. Favourable alleles related to steep root system angle have continuously accumulated over the course of modern breeding, and our data pinpoint the root-related genes that have been selected in different breeding eras. We confirm that two auxin-related genes, ZmRSA3.1 and ZmRSA3.2, contribute to the regulation of root angle and depth in maize. Our genome-wide identification of RSA-associated genes provides new strategies and genetic resources for breeding maize suitable for high-density planting.
Collapse
Affiliation(s)
- Wei Ren
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Longfei Zhao
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Jiaxing Liang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Lifeng Wang
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Limei Chen
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| | - Pengcheng Li
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Zhigang Liu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaojie Li
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Zhihai Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Jieping Li
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Kunhui He
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Zheng Zhao
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Farhan Ali
- Cereal Crops Research Institute, Pirsabak, Nowshera, Pakistan
| | - Guohua Mi
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Fusuo Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Fanjun Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China.
- Sanya Institute of China Agricultural University, Sanya, China.
| | - Lixing Yuan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China.
| | - Qingchun Pan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China.
- Sanya Institute of China Agricultural University, Sanya, China.
| |
Collapse
|
16
|
Sugimura Y, Kawahara A, Maruyama H, Ezawa T. Plant Foraging Strategies Driven by Distinct Genetic Modules: Cross-Ecosystem Transcriptomics Approach. FRONTIERS IN PLANT SCIENCE 2022; 13:903539. [PMID: 35860530 PMCID: PMC9290524 DOI: 10.3389/fpls.2022.903539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Plants have evolved diverse strategies for foraging, e.g., mycorrhizae, modification of root system architecture, and secretion of phosphatase. Despite extensive molecular/physiological studies on individual strategies under laboratory/greenhouse conditions, there is little information about how plants orchestrate these strategies in the field. We hypothesized that individual strategies are independently driven by corresponding genetic modules in response to deficiency/unbalance in nutrients. Roots colonized by mycorrhizal fungi, leaves, and root-zone soils were collected from 251 maize plants grown across the United States Corn Belt and Japan, which provided a large gradient of soil characteristics/agricultural practice and thus gene expression for foraging. RNA was extracted from the roots, sequenced, and subjected to gene coexpression network analysis. Nineteen genetic modules were defined and functionally characterized, from which three genetic modules, mycorrhiza formation, phosphate starvation response (PSR), and root development, were selected as those directly involved in foraging. The mycorrhizal module consists of genes responsible for mycorrhiza formation and was upregulated by both phosphorus and nitrogen deficiencies. The PSR module that consists of genes encoding phosphate transporter, secreted acid phosphatase, and enzymes involved in internal-phosphate recycling was regulated independent of the mycorrhizal module and strongly upregulated by phosphorus deficiency relative to nitrogen. The root development module that consists of regulatory genes for root development and cellulose biogenesis was upregulated by phosphorus and nitrogen enrichment. The expression of this module was negatively correlated with that of the mycorrhizal module, suggesting that root development is intrinsically an opposite strategy of mycorrhizae. Our approach provides new insights into understanding plant foraging strategies in complex environments at the molecular level.
Collapse
Affiliation(s)
- Yusaku Sugimura
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Ai Kawahara
- Health & Crop Sciences Research Laboratory, Sumitomo Chemical, Co., Ltd., Takarazuka, Japan
| | - Hayato Maruyama
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Tatsuhiro Ezawa
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
17
|
Richardson AE, Hake S. The power of classic maize mutants: Driving forward our fundamental understanding of plants. THE PLANT CELL 2022; 34:2505-2517. [PMID: 35274692 PMCID: PMC9252469 DOI: 10.1093/plcell/koac081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/08/2022] [Indexed: 05/12/2023]
Abstract
Since Mendel, maize has been a powerhouse of fundamental genetics research. From testing the Mendelian laws of inheritance, to the first genetic and cytogenetic maps, to the use of whole-genome sequencing data for crop improvement, maize is at the forefront of genetics advances. Underpinning much of this revolutionary work are the classic morphological mutants; the "freaks" that stood out in the field to even the untrained eye. Here we review some of these classic developmental mutants and their importance in the history of genetics, as well as their key role in our fundamental understanding of plant development.
Collapse
Affiliation(s)
- Annis E Richardson
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Sarah Hake
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| |
Collapse
|
18
|
G. Viana W, Scharwies JD, Dinneny JR. Deconstructing the root system of grasses through an exploration of development, anatomy and function. PLANT, CELL & ENVIRONMENT 2022; 45:602-619. [PMID: 35092025 PMCID: PMC9303260 DOI: 10.1111/pce.14270] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 05/16/2023]
Abstract
Well-adapted root systems allow plants to grow under resource-limiting environmental conditions and are important determinants of yield in agricultural systems. Important staple crops such as rice and maize belong to the family of grasses, which develop a complex root system that consists of an embryonic root system that emerges from the seed, and a postembryonic nodal root system that emerges from basal regions of the shoot after germination. While early seedling establishment is dependent on the embryonic root system, the nodal root system, and its associated branches, gains in importance as the plant matures and will ultimately constitute the bulk of below-ground growth. In this review, we aim to give an overview of the different root types that develop in cereal grass root systems, explore the different physiological roles they play by defining their anatomical features, and outline the genetic networks that control their development. Through this deconstructed view of grass root system function, we provide a parts-list of elements that function together in an integrated root system to promote survival and crop productivity.
Collapse
Affiliation(s)
| | | | - José R. Dinneny
- Department of BiologyStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
19
|
Julius BT, McCubbin TJ, Mertz RA, Baert N, Knoblauch J, Grant DG, Conner K, Bihmidine S, Chomet P, Wagner R, Woessner J, Grote K, Peevers J, Slewinski TL, McCann MC, Carpita NC, Knoblauch M, Braun DM. Maize Brittle Stalk2-Like3, encoding a COBRA protein, functions in cell wall formation and carbohydrate partitioning. THE PLANT CELL 2021; 33:3348-3366. [PMID: 34323976 PMCID: PMC8505866 DOI: 10.1093/plcell/koab193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/16/2021] [Indexed: 05/14/2023]
Abstract
Carbohydrate partitioning from leaves to sink tissues is essential for plant growth and development. The maize (Zea mays) recessive carbohydrate partitioning defective28 (cpd28) and cpd47 mutants exhibit leaf chlorosis and accumulation of starch and soluble sugars. Transport studies with 14C-sucrose (Suc) found drastically decreased export from mature leaves in cpd28 and cpd47 mutants relative to wild-type siblings. Consistent with decreased Suc export, cpd28 mutants exhibited decreased phloem pressure in mature leaves, and altered phloem cell wall ultrastructure in immature and mature leaves. We identified the causative mutations in the Brittle Stalk2-Like3 (Bk2L3) gene, a member of the COBRA family, which is involved in cell wall development across angiosperms. None of the previously characterized COBRA genes are reported to affect carbohydrate export. Consistent with other characterized COBRA members, the BK2L3 protein localized to the plasma membrane, and the mutants condition a dwarf phenotype in dark-grown shoots and primary roots, as well as the loss of anisotropic cell elongation in the root elongation zone. Likewise, both mutants exhibit a significant cellulose deficiency in mature leaves. Therefore, Bk2L3 functions in tissue growth and cell wall development, and this work elucidates a unique connection between cellulose deposition in the phloem and whole-plant carbohydrate partitioning.
Collapse
Affiliation(s)
- Benjamin T Julius
- Divisions of Plant Science and Technology, Biological Sciences, Interdisciplinary Plant Group, and the Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
- Bayer Crop Science, Chesterfield, Missouri 63017, USA
| | - Tyler J McCubbin
- Divisions of Plant Science and Technology, Biological Sciences, Interdisciplinary Plant Group, and the Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Rachel A Mertz
- Divisions of Plant Science and Technology, Biological Sciences, Interdisciplinary Plant Group, and the Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
- Present address: Inari Agriculture, West Lafayette, Indiana 47906, USA
| | - Nick Baert
- Divisions of Plant Science and Technology, Biological Sciences, Interdisciplinary Plant Group, and the Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Jan Knoblauch
- School of Biological Sciences, Washington State University, Pullman, Washington 99164, USA
| | - DeAna G Grant
- Electron Microscopy Core Facility, University of Missouri, Columbia, Missouri 65211, USA
| | - Kyle Conner
- Divisions of Plant Science and Technology, Biological Sciences, Interdisciplinary Plant Group, and the Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Saadia Bihmidine
- Divisions of Plant Science and Technology, Biological Sciences, Interdisciplinary Plant Group, and the Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Paul Chomet
- NRGene Inc., 8910 University Center Lane, San Diego, California 92122, USA
| | - Ruth Wagner
- Bayer Crop Science, Chesterfield, Missouri 63017, USA
| | - Jeff Woessner
- Bayer Crop Science, Chesterfield, Missouri 63017, USA
| | - Karen Grote
- Bayer Crop Science, Chesterfield, Missouri 63017, USA
| | | | | | - Maureen C McCann
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Nicholas C Carpita
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, Pullman, Washington 99164, USA
| | - David M Braun
- Divisions of Plant Science and Technology, Biological Sciences, Interdisciplinary Plant Group, and the Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
- Author for correspondence:
| |
Collapse
|
20
|
Moussa AA, Mandozai A, Jin Y, Qu J, Zhang Q, Zhao H, Anwari G, Khalifa MAS, Lamboro A, Noman M, Bakasso Y, Zhang M, Guan S, Wang P. Genome-wide association screening and verification of potential genes associated with root architectural traits in maize (Zea mays L.) at multiple seedling stages. BMC Genomics 2021; 22:558. [PMID: 34284723 PMCID: PMC8290564 DOI: 10.1186/s12864-021-07874-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 07/05/2021] [Indexed: 01/26/2023] Open
Abstract
Background Breeding for new maize varieties with propitious root systems has tremendous potential in improving water and nutrients use efficiency and plant adaptation under suboptimal conditions. To date, most of the previously detected root-related trait genes in maize were new without functional verification. In this study, seven seedling root architectural traits were examined at three developmental stages in a recombinant inbred line population (RIL) of 179 RILs and a genome-wide association study (GWAS) panel of 80 elite inbred maize lines through quantitative trait loci (QTL) mapping and genome-wide association study. Results Using inclusive composite interval mapping, 8 QTLs accounting for 6.44–8.83 % of the phenotypic variation in root traits, were detected on chromosomes 1 (qRDWv3-1-1 and qRDW/SDWv3-1-1), 2 (qRBNv1-2-1), 4 (qSUAv1-4-1, qSUAv2-4-1, and qROVv2-4-1), and 10 (qTRLv1-10-1, qRBNv1-10-1). GWAS analysis involved three models (EMMAX, FarmCPU, and MLM) for a set of 1,490,007 high-quality single nucleotide polymorphisms (SNPs) obtained via whole genome next-generation sequencing (NGS). Overall, 53 significant SNPs with a phenotypic contribution rate ranging from 5.10 to 30.2 % and spread all over the ten maize chromosomes exhibited associations with the seven root traits. 17 SNPs were repeatedly detected from at least two growth stages, with several SNPs associated with multiple traits stably identified at all evaluated stages. Within the average linkage disequilibrium (LD) distance of 5.2 kb for the significant SNPs, 46 candidate genes harboring substantial SNPs were identified. Five potential genes viz. Zm00001d038676, Zm00001d015379, Zm00001d018496, Zm00001d050783, and Zm00001d017751 were verified for expression levels using maize accessions with extreme root branching differences from the GWAS panel and the RIL population. The results showed significantly (P < 0.001) different expression levels between the outer materials in both panels and at all considered growth stages. Conclusions This study provides a key reference for uncovering the complex genetic mechanism of root development and genetic enhancement of maize root system architecture, thus supporting the breeding of high-yielding maize varieties with propitious root systems. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07874-x.
Collapse
Affiliation(s)
- Abdourazak Alio Moussa
- College of Agronomy, Plant Biotechnology Center, Jilin Agricultural University, 130118, Changchun, Jilin, China.
| | - Ajmal Mandozai
- College of Agronomy, Plant Biotechnology Center, Jilin Agricultural University, 130118, Changchun, Jilin, China
| | - Yukun Jin
- College of Agronomy, Plant Biotechnology Center, Jilin Agricultural University, 130118, Changchun, Jilin, China
| | - Jing Qu
- College of Agronomy, Plant Biotechnology Center, Jilin Agricultural University, 130118, Changchun, Jilin, China
| | - Qi Zhang
- College of Agronomy, Plant Biotechnology Center, Jilin Agricultural University, 130118, Changchun, Jilin, China
| | - He Zhao
- College of Agronomy, Plant Biotechnology Center, Jilin Agricultural University, 130118, Changchun, Jilin, China
| | - Gulaqa Anwari
- College of Agronomy, Plant Biotechnology Center, Jilin Agricultural University, 130118, Changchun, Jilin, China
| | | | - Abraham Lamboro
- College of Agronomy, Plant Biotechnology Center, Jilin Agricultural University, 130118, Changchun, Jilin, China
| | - Muhammad Noman
- College of Life Sciences, Jilin Agricultural University, Jilin, 130118, Changchun, China
| | - Yacoubou Bakasso
- Biology Department, Faculty of Sciences and Techniques, Abdou Moumouni University of Niamey, 10662, Niamey, Niger
| | - Mo Zhang
- College of Agronomy, Plant Biotechnology Center, Jilin Agricultural University, 130118, Changchun, Jilin, China
| | - Shuyan Guan
- College of Agronomy, Plant Biotechnology Center, Jilin Agricultural University, 130118, Changchun, Jilin, China
| | - Piwu Wang
- College of Agronomy, Plant Biotechnology Center, Jilin Agricultural University, 130118, Changchun, Jilin, China.
| |
Collapse
|
21
|
Pesacreta TC, Acharya A, Hasenstein KH. Endogenous nutrients are concentrated in specific tissues in the Zea mays seedling. PROTOPLASMA 2021; 258:863-878. [PMID: 33582844 DOI: 10.1007/s00709-021-01606-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
K, P, Cl, and Ca are distributed in tissue-specific patterns in Zea mays seedlings. These elements were mapped and analyzed using a relatively simple semi-quantitative technique, i.e., fast freezing, followed by freeze fracturing, then freeze drying, and finally scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS). In the radicle, endogenously derived (i.e., from seed) K and P transition from being homogenous in the apical meristem to tissue-specific in older regions. At 3 mm from the radicle apex, K concentration is approximately 40 mM in mid-cortex and decreases by approximately 50% at 15 mm. From 3 to 55 mm, P concentration in pericycle is approximately twice that found in adjacent regions. Ca is not detectable in younger portions of the radicle by SEM/EDS, but in older regions, it is present at 13 mM in mid-cortex. K concentration values of entire radicles analyzed with inductively coupled plasma optical emission spectrometry (ICP-OES) exceeded the SEM/EDS values. For Ca, the reverse was true. But, SEM/EDS analysis did not include several vascular tissues that contained high concentrations of K and low concentrations of Ca. The inception of lateral root primordia was accompanied by a localized decrease in Ca in cortical regions that were centrifugal to the primordium tip. A region of O-rich cells in endosperm was identified centripetal to the aleurone. These results indicate that (1) outer, mid-, and inner cortical regions, as well as the adjacent tissues, have distinct ion accumulation properties, and (2) ions are concentrated in some radicle tissues prior to development of Casparian strips.
Collapse
Affiliation(s)
- T C Pesacreta
- Microscopy Center, University of Louisiana Lafayette, PO Box 43602-3602, Lafayette, LA, 70504, USA.
| | - A Acharya
- Biology Department, University of Louisiana Lafayette, PO Box 43602-3602, Lafayette, LA, 70504, USA
| | - K H Hasenstein
- Biology Department, University of Louisiana Lafayette, PO Box 43602-3602, Lafayette, LA, 70504, USA
| |
Collapse
|
22
|
Sáenz Rodríguez MN, Cassab GI. Primary Root and Mesocotyl Elongation in Maize Seedlings: Two Organs with Antagonistic Growth below the Soil Surface. PLANTS (BASEL, SWITZERLAND) 2021; 10:1274. [PMID: 34201525 PMCID: PMC8309072 DOI: 10.3390/plants10071274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022]
Abstract
Maize illustrates one of the most complex cases of embryogenesis in higher plants that results in the development of early embryo with distinctive organs such as the mesocotyl, seminal and primary roots, coleoptile, and plumule. After seed germination, the elongation of root and mesocotyl follows opposite directions in response to specific tropisms (positive and negative gravitropism and hydrotropism). Tropisms represent the differential growth of an organ directed toward several stimuli. Although the life cycle of roots and mesocotyl takes place in darkness, their growth and functions are controlled by different mechanisms. Roots ramify through the soil following the direction of the gravity vector, spreading their tips into new territories looking for water; when water availability is low, the root hydrotropic response is triggered toward the zone with higher moisture. Nonetheless, there is a high range of hydrotropic curvatures (angles) in maize. The processes that control root hydrotropism and mesocotyl elongation remain unclear; however, they are influenced by genetic and environmental cues to guide their growth for optimizing early seedling vigor. Roots and mesocotyls are crucial for the establishment, growth, and development of the plant since both help to forage water in the soil. Mesocotyl elongation is associated with an ancient agriculture practice known as deep planting. This tradition takes advantage of residual soil humidity and continues to be used in semiarid regions of Mexico and USA. Due to the genetic diversity of maize, some lines have developed long mesocotyls capable of deep planting while others are unable to do it. Hence, the genetic and phenetic interaction of maize lines with a robust hydrotropic response and higher mesocotyl elongation in response to water scarcity in time of global heating might be used for developing more resilient maize plants.
Collapse
Affiliation(s)
- Mery Nair Sáenz Rodríguez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Av. Universidad 2001, Col. Chamilpa, Morelos, Cuernavaca 62210, Mexico;
| | | |
Collapse
|
23
|
Wang Y, Sun H, Wang H, Yang X, Xu Y, Yang Z, Xu C, Li P. Integrating transcriptome, co-expression and QTL-seq analysis reveals that primary root growth in maize is regulated via flavonoid biosynthesis and auxin signal transduction. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4773-4795. [PMID: 33909071 DOI: 10.1093/jxb/erab177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 04/24/2021] [Indexed: 05/28/2023]
Abstract
The primary root is critical for early seedling growth and survival. To understand the molecular mechanisms governing primary root development, we performed a dynamic transcriptome analysis of two maize (Zea mays) inbred lines with contrasting primary root length at nine time points over a 12-day period. A total of 18 702 genes were differentially expressed between two lines or different time points. Gene enrichment, phytohormone content determination, and metabolomics analysis showed that auxin biosynthesis and signal transduction, as well as the phenylpropanoid and flavonoid biosynthesis pathways, were associated with root development. Co-expression network analysis revealed that eight modules were associated with lines/stages, as well as primary or lateral root length. In root-related modules, flavonoid metabolism accompanied by auxin biosynthesis and signal transduction constituted a complex gene regulatory network during primary root development. Two candidate genes (rootless concerning crown and seminal roots, rtcs and Zm00001d012781) involved in auxin signaling and flavonoid biosynthesis were identified by co-expression network analysis, QTL-seq and functional annotation. These results increase our understanding of the regulatory network controlling the development of primary and lateral root length, and provide a valuable genetic resource for improvement of root performance in maize.
Collapse
Affiliation(s)
- Yunyun Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Hui Sun
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Houmiao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Xiaoyi Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Yang Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, China
| | - Chenwu Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, China
| | - Pengcheng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
24
|
Velada I, Menéndez E, Teixeira RT, Cardoso H, Peixe A. Laser Microdissection of Specific Stem-Base Tissue Types from Olive Microcuttings for Isolation of High-Quality RNA. BIOLOGY 2021; 10:biology10030209. [PMID: 33801829 PMCID: PMC7999021 DOI: 10.3390/biology10030209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/22/2023]
Abstract
Simple Summary Only a small portion of the stem cells participate in the process of adventitious root formation and the cells/tissues types involved in this process is species-dependent. In olive, it is still unclear which type of cells acquire competence for rooting. Regardless, the entire stem nodal segment (containing a mixture of distinct cell types) continues to be used in studies related to the molecular mechanisms underlying this process. Laser microdissection (LM) technology has been applied to isolate specific tissue and cell types. However, it is difficult to find a standard LM protocol suitable for all plant species and cell types and, thus, LM procedures must be developed and optimized for each particular tissue. In this study, we aimed to evaluate the efficiency of a LM protocol in olive microcuttings stem-base samples. This work presents a simple, rapid and efficient LM procedure for harvesting specific tissue types used for further high-quality RNA isolation. This will encourage future cell type-specific transcriptomic studies, contributing at deciphering rooting-competent cells in olive stems and to better understand the molecular mechanisms underlying the process of adventitious root formation. Abstract Higher plants are composed of different tissue and cell types. Distinct cells host different biochemical and physiological processes which is reflected in differences in gene expression profiles, protein and metabolite levels. When omics are to be carried out, the information provided by a specific cell type can be diluted and/or masked when using a mixture of distinct cells. Thus, studies performed at the cell- and tissue-type level are gaining increasing interest. Laser microdissection (LM) technology has been used to isolate specific tissue and cell types. However, this technology faces some challenges depending on the plant species and tissue type under analysis. Here, we show for the first time a LM protocol that proved to be efficient for harvesting specific tissue types (phloem, cortex and epidermis) from olive stem nodal segments and obtaining RNA of high quality. This is important for future transcriptomic studies to identify rooting-competent cells. Here, nodal segments were flash-frozen in liquid nitrogen-cooled isopentane and cryosectioned. Albeit the lack of any fixatives used to preserve samples’ anatomy, cryosectioned sections showed tissues with high morphological integrity which was comparable with that obtained with the paraffin-embedding method. Cells from the phloem, cortex and epidermis could be easily distinguished and efficiently harvested by LM. Total RNA isolated from these tissues exhibited high quality with RNA Quality Numbers (determined by a Fragment Analyzer System) ranging between 8.1 and 9.9. This work presents a simple, rapid and efficient LM procedure for harvesting specific tissue types of olive stems and obtaining high-quality RNA.
Collapse
Affiliation(s)
- Isabel Velada
- MED—Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (E.M.); (H.C.)
- Correspondence:
| | - Esther Menéndez
- MED—Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (E.M.); (H.C.)
| | - Rita Teresa Teixeira
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Hélia Cardoso
- MED—Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (E.M.); (H.C.)
| | - Augusto Peixe
- MED—Mediterranean Institute for Agriculture, Environment and Development and Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
| |
Collapse
|
25
|
Takehisa H, Sato Y. Transcriptome-based approaches for clarification of nutritional responses and improvement of crop production. BREEDING SCIENCE 2021; 71:76-88. [PMID: 33762878 PMCID: PMC7973498 DOI: 10.1270/jsbbs.20098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
Genome-wide transcriptome profiling is a powerful tool for identifying key genes and pathways involved in plant development and physiological processes. This review summarizes studies that have used transcriptome profiling mainly in rice to focus on responses to macronutrients such as nitrogen, phosphorus and potassium, and spatio-temporal root profiling in relation to the regulation of root system architecture as well as nutrient uptake and transport. We also discuss strategies based on meta- and co-expression analyses with different attributed transcriptome data, which can be used for investigating the regulatory mechanisms and dynamics of nutritional responses and adaptation, and speculate on further advances in transcriptome profiling that could have potential application to crop breeding and cultivation.
Collapse
Affiliation(s)
- Hinako Takehisa
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Yutaka Sato
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| |
Collapse
|
26
|
Zheng Z, Hey S, Jubery T, Liu H, Yang Y, Coffey L, Miao C, Sigmon B, Schnable JC, Hochholdinger F, Ganapathysubramanian B, Schnable PS. Shared Genetic Control of Root System Architecture between Zea mays and Sorghum bicolor. PLANT PHYSIOLOGY 2020; 182:977-991. [PMID: 31740504 PMCID: PMC6997706 DOI: 10.1104/pp.19.00752] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/03/2019] [Indexed: 05/08/2023]
Abstract
Determining the genetic control of root system architecture (RSA) in plants via large-scale genome-wide association study (GWAS) requires high-throughput pipelines for root phenotyping. We developed Core Root Excavation using Compressed-air (CREAMD), a high-throughput pipeline for the cleaning of field-grown roots, and Core Root Feature Extraction (COFE), a semiautomated pipeline for the extraction of RSA traits from images. CREAMD-COFE was applied to diversity panels of maize (Zea mays) and sorghum (Sorghum bicolor), which consisted of 369 and 294 genotypes, respectively. Six RSA-traits were extracted from images collected from >3,300 maize roots and >1,470 sorghum roots. Single nucleotide polymorphism (SNP)-based GWAS identified 87 TAS (trait-associated SNPs) in maize, representing 77 genes and 115 TAS in sorghum. An additional 62 RSA-associated maize genes were identified via expression read depth GWAS. Among the 139 maize RSA-associated genes (or their homologs), 22 (16%) are known to affect RSA in maize or other species. In addition, 26 RSA-associated genes are coregulated with genes previously shown to affect RSA and 51 (37% of RSA-associated genes) are themselves transe-quantitative trait locus for another RSA-associated gene. Finally, the finding that RSA-associated genes from maize and sorghum included seven pairs of syntenic genes demonstrates the conservation of regulation of morphology across taxa.
Collapse
Affiliation(s)
- Zihao Zheng
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, Iowa 50011
| | - Stefan Hey
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - Talukder Jubery
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011
| | - Huyu Liu
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, Iowa 50011
- Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Yu Yang
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
- Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Lisa Coffey
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
| | - Chenyong Miao
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska 68583
| | - Brandi Sigmon
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska 68583
| | - James C Schnable
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska 68583
| | - Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | | | - Patrick S Schnable
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, Iowa 50011
- Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
27
|
Baldauf JA, Vedder L, Schoof H, Hochholdinger F. Robust non-syntenic gene expression patterns in diverse maize hybrids during root development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:865-876. [PMID: 31638701 DOI: 10.1093/jxb/erz452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Distantly related maize (Zea mays L.) inbred lines exhibit an exceptional degree of structural genomic diversity, which is probably unique among plants. This study systematically investigated the developmental and genotype-dependent regulation of the primary root transcriptomes of a genetically diverse panel of maize F1-hybrids and their parental inbred lines. While we observed substantial transcriptomic changes during primary root development, we demonstrated that hybrid-associated gene expression patterns, including differential, non-additive, and allele-specific transcriptome profiles, are particularly robust to these developmental fluctuations. For instance, differentially expressed genes with preferential expression in hybrids were highly conserved during development in comparison to their parental counterparts. Similarly, in hybrids a major proportion of non-additively expressed genes with expression levels between the parental values were particularly conserved during development. Importantly, in these expression patterns non-syntenic genes that evolved after the separation of the maize and sorghum lineages were systemically enriched. Furthermore, non-syntenic genes were substantially linked to the conservation of all surveyed gene expression patterns during primary root development. Among all F1-hybrids, between ~40% of the non-syntenic genes with unexpected allelic expression ratios and ~60% of the non-syntenic differentially and non-additively expressed genes were conserved and therefore robust to developmental changes. Hence, the enrichment of non-syntenic genes during primary root development might be involved in the developmental adaptation of maize roots and thus the superior performance of hybrids.
Collapse
Affiliation(s)
- Jutta A Baldauf
- Institute for Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn, Germany
| | - Lucia Vedder
- Institute for Crop Science and Resource Conservation, Crop Bioinformatics, University of Bonn, Bonn, Germany
| | - Heiko Schoof
- Institute for Crop Science and Resource Conservation, Crop Bioinformatics, University of Bonn, Bonn, Germany
| | - Frank Hochholdinger
- Institute for Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn, Germany
| |
Collapse
|
28
|
Wang X, Feng J, White PJ, Shen J, Cheng L. Heterogeneous phosphate supply influences maize lateral root proliferation by regulating auxin redistribution. ANNALS OF BOTANY 2020; 125:119-130. [PMID: 31560368 PMCID: PMC6948210 DOI: 10.1093/aob/mcz154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/16/2019] [Accepted: 09/20/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS Roots take up phosphorus (P) as inorganic phosphate (Pi). Enhanced root proliferation in Pi-rich patches enables plants to capture the unevenly distributed Pi, but the underlying control of root proliferation remains largely unknown. Here, the role of auxin in this response was investigated in maize (Zea mays). METHODS A split-root, hydroponics system was employed to investigate root responses to Pi supply, with one (heterogeneous) or both (homogeneous) sides receiving 0 or 500 μm Pi. KEY RESULTS Maize roots proliferated in Pi-rich media, particularly with heterogeneous Pi supply. The second-order lateral root number was 3-fold greater in roots of plants receiving a heterogeneous Pi supply than in roots of plants with a homogeneous Pi supply. Root proliferation in a heterogeneous Pi supply was inhibited by the auxin transporter inhibitor 1-N-naphthylphthalamic acid (NPA). The proliferation of lateral roots was accompanied by an enhanced auxin response in the apical meristem and vascular tissues at the root tip, as demonstrated in a DR5::RFP marker line. CONCLUSIONS It is concluded that the response of maize root morphology to a heterogeneous Pi supply is modulated by local signals of Pi availability and systemic signals of plant P nutritional status, and is mediated by auxin redistribution.
Collapse
Affiliation(s)
- Xin Wang
- Department of Plant Nutrition, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Plant Nutrition, Ministry of Agriculture, Beijing , P. R. China
| | - Jingjing Feng
- Department of Plant Nutrition, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Plant Nutrition, Ministry of Agriculture, Beijing , P. R. China
| | - Philip J White
- Ecological Science Group, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Jianbo Shen
- Department of Plant Nutrition, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Plant Nutrition, Ministry of Agriculture, Beijing , P. R. China
| | - Lingyun Cheng
- Department of Plant Nutrition, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Plant Nutrition, Ministry of Agriculture, Beijing , P. R. China
| |
Collapse
|
29
|
Dowd TG, Braun DM, Sharp RE. Maize lateral root developmental plasticity induced by mild water stress. I: Genotypic variation across a high-resolution series of water potentials. PLANT, CELL & ENVIRONMENT 2019; 42:2259-2273. [PMID: 29981147 DOI: 10.1111/pce.13399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
Lateral root developmental plasticity induced by mild water stress was examined across a high-resolution series of growth media water potentials (Ψw ) in two genotypes of maize. The suitability of several media for imposing near-stable Ψw treatments on transpiring plants over prolonged growth periods was assessed. Genotypic differences specific to responses of lateral root growth from the primary root system occurred between cultivars FR697 and B73 over a narrow series of water stress treatments ranging in Ψw from -0.25 to -0.40 MPa. In FR697, both the average length and number of first-order lateral roots were substantially enhanced at a Ψw of -0.25 MPa compared with well-watered controls. These effects were separated spatially, occurring primarily in the upper and lower regions of the axial root, respectively. Furthermore, first-order lateral roots progressively increased in diameter with increasing water stress, resulting in a maximum 2.3-fold increase in root volume at a Ψw of -0.40 MPa. In B73, in contrast, the length, diameter, nor number of lateral roots was increased in any of the water stress treatments. The genotype-specific responses observed over this narrow range of Ψw demonstrate the necessity of high-resolution studies at mild stress levels for characterization of lateral root developmental plasticity.
Collapse
Affiliation(s)
- Tyler G Dowd
- Divisions of Plant Sciences, University of Missouri, Columbia, Missouri, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri
| | - David M Braun
- Biological Sciences, University of Missouri, Columbia, Missouri
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri
| | - Robert E Sharp
- Divisions of Plant Sciences, University of Missouri, Columbia, Missouri, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri
| |
Collapse
|
30
|
Abdel-Ghani AH, Sharma R, Wabila C, Dhanagond S, Owais SJ, Duwayri MA, Al-Dalain SA, Klukas C, Chen D, Lübberstedt T, von Wirén N, Graner A, Kilian B, Neumann K. Genome-wide association mapping in a diverse spring barley collection reveals the presence of QTL hotspots and candidate genes for root and shoot architecture traits at seedling stage. BMC PLANT BIOLOGY 2019; 19:216. [PMID: 31122195 PMCID: PMC6533710 DOI: 10.1186/s12870-019-1828-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/13/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Adaptation to drought-prone environments requires robust root architecture. Genotypes with a more vigorous root system have the potential to better adapt to soils with limited moisture content. However, root architecture is complex at both, phenotypic and genetic level. Customized mapping panels in combination with efficient screenings methods can resolve the underlying genetic factors of root traits. RESULTS A mapping panel of 233 spring barley genotypes was evaluated for root and shoot architecture traits under non-stress and osmotic stress. A genome-wide association study elucidated 65 involved genomic regions. Among them were 34 root-specific loci, eleven hotspots with associations to up to eight traits and twelve stress-specific loci. A list of candidate genes was established based on educated guess. Selected genes were tested for associated polymorphisms. By this, 14 genes were identified as promising candidates, ten remained suggestive and 15 were rejected. The data support the important role of flowering time genes, including HvPpd-H1, HvCry2, HvCO4 and HvPRR73. Moreover, seven root-related genes, HERK2, HvARF04, HvEXPB1, PIN5, PIN7, PME5 and WOX5 are confirmed as promising candidates. For the QTL with the highest allelic effect for root thickness and plant biomass a homologue of the Arabidopsis Trx-m3 was revealed as the most promising candidate. CONCLUSIONS This study provides a catalogue of hotspots for seedling growth, root and stress-specific genomic regions along with candidate genes for future potential incorporation in breeding attempts for enhanced yield potential, particularly in drought-prone environments. Root architecture is under polygenic control. The co-localization of well-known major genes for barley development and flowering time with QTL hotspots highlights their importance for seedling growth. Association analysis revealed the involvement of HvPpd-H1 in the development of the root system. The co-localization of root QTL with HERK2, HvARF04, HvEXPB1, PIN5, PIN7, PME5 and WOX5 represents a starting point to explore the roles of these genes in barley. Accordingly, the genes HvHOX2, HsfA2b, HvHAK2, and Dhn9, known to be involved in abiotic stress response, were located within stress-specific QTL regions and await future validation.
Collapse
Affiliation(s)
- Adel H. Abdel-Ghani
- Department of Plant Production, Faculty of Agriculture, Mutah University, Mutah, Karak, 61710 Jordan
| | - Rajiv Sharma
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
- Division of Plant Science, University of Dundee at JHI, Invergowrie, Dundee, DD2 5DA UK
| | - Celestine Wabila
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
| | - Sidram Dhanagond
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
| | - Saed J. Owais
- Department of Plant Production, Faculty of Agriculture, Mutah University, Mutah, Karak, 61710 Jordan
| | - Mahmud A. Duwayri
- Department of Horticulture and Agronomy, Faculty of Agriculture, University of Jordan, Amman, Jordan
| | - Saddam A. Al-Dalain
- Al-Shoubak University College, Al-Balqa’ Applied University, Al-, Salt, 19117 Jordan
| | - Christian Klukas
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
- Digitalization in Research & Development (ROM), BASF SE, 67056 Ludwigshafen, Germany
| | - Dijun Chen
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt University Berlin, 10115 Berlin, Germany
| | - Thomas Lübberstedt
- Department of Agronomy, Agronomy Hall, Iowa State University, Ames, IA 50011 USA
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
- Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle/Saale, Germany
| | - Benjamin Kilian
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
- Global Crop Diversity Trust, Platz der Vereinten Nationen 7, 53113 Bonn, Germany
| | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
| |
Collapse
|
31
|
Kortz A, Hochholdinger F, Yu P. Cell Type-Specific Transcriptomics of Lateral Root Formation and Plasticity. FRONTIERS IN PLANT SCIENCE 2019; 10:21. [PMID: 30809234 PMCID: PMC6379339 DOI: 10.3389/fpls.2019.00021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/08/2019] [Indexed: 05/25/2023]
Abstract
Lateral roots are a major determinant of root architecture and are instrumental for the efficient uptake of water and nutrients. Lateral roots consist of multiple cell types each expressing a unique transcriptome at a given developmental stage. Therefore, transcriptome analyses of complete lateral roots provide only average gene expression levels integrated over all cell types. Such analyses have the risk to mask genes, pathways and networks specifically expressed in a particular cell type during lateral root formation. Cell type-specific transcriptomics paves the way for a holistic understanding of the programming and re-programming of cells such as pericycle cells, involved in lateral root initiation. Recent discoveries have advanced the molecular understanding of the intrinsic genetic control of lateral root initiation and elongation. Moreover, the impact of nitrate availability on the transcriptional regulation of lateral root formation in Arabidopsis and cereals has been studied. In this review, we will focus on the systemic dissection of lateral root formation and its interaction with environmental nitrate through cell type-specific transcriptome analyses. These novel discoveries provide a better mechanistic understanding of postembryonic lateral root development in plants.
Collapse
Affiliation(s)
| | - Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn, Germany
| | - Peng Yu
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn, Germany
| |
Collapse
|
32
|
Bray AL, Topp CN. The Quantitative Genetic Control of Root Architecture in Maize. PLANT & CELL PHYSIOLOGY 2018; 59:1919-1930. [PMID: 30020530 PMCID: PMC6178961 DOI: 10.1093/pcp/pcy141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/04/2018] [Indexed: 05/07/2023]
Abstract
Roots remain an underexplored frontier in plant genetics despite their well-known influence on plant development, agricultural performance and competition in the wild. Visualizing and measuring root structures and their growth is vastly more difficult than characterizing aboveground parts of the plant and is often simply avoided. The majority of research on maize root systems has focused on their anatomy, physiology, development and soil interaction, but much less is known about the genetics that control quantitative traits. In maize, seven root development genes have been cloned using mutagenesis, but no genes underlying the many root-related quantitative trait loci (QTLs) have been identified. In this review, we discuss whether the maize mutants known to control root development may also influence quantitative aspects of root architecture, including the extent to which they overlap with the most recent maize root trait QTLs. We highlight specific challenges and anticipate the impacts that emerging technologies, especially computational approaches, may have toward the identification of genes controlling root quantitative traits.
Collapse
Affiliation(s)
- Adam L Bray
- Division of Plant Sciences, University of Missouri-Columbia, Columbia, MO, USA
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Christopher N Topp
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- Corresponding author: E-mail, ; Fax, 314 587 1501
| |
Collapse
|
33
|
Sanchez DL, Liu S, Ibrahim R, Blanco M, Lübberstedt T. Genome-wide association studies of doubled haploid exotic introgression lines for root system architecture traits in maize (Zea mays L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 268:30-38. [PMID: 29362081 DOI: 10.1016/j.plantsci.2017.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/08/2017] [Accepted: 12/09/2017] [Indexed: 05/27/2023]
Abstract
Root system architecture (RSA) is becoming recognized as important for water and nutrient acquisition in plants. This study focuses on finding single nucleotide polymorphisms (SNPs) associated with seedling RSA traits from 300 doubled haploid (DH) lines derived from crosses between Germplasm Enhancement of Maize (GEM) accessions and inbred lines PHB47 and PHZ51. These DH lines were genotyped using 62,077 SNP markers, while root and shoot phenotype data were collected from 14-day old seedlings. Genome-wide association studies (GWAS) were conducted using three models to offset false positives/negatives. Multiple SNPs associated with seedling root traits were detected, some of which were within or linked to gene models that showed expression in seedling roots. Significant trait associations involving the SNP S5_152926936 on Chromosome 5 were detected in all three models, particularly the trait network area. The SNP is within the gene model GRMZM2G021110, which is expressed in roots at seedling stage. SNPs that were significantly associated with seedling root traits, and closely linked to gene models that encode proteins associated with root development were also detected. This study shows that the GEM-DH panel may be a source of allelic diversity for genes controlling seedling root development.
Collapse
Affiliation(s)
| | - Sisi Liu
- Department of Agronomy, Iowa State University, Ames, IA, USA; Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, China
| | - Rania Ibrahim
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | - Michael Blanco
- Department of Agronomy, Iowa State University, Ames, IA, USA; U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Ames, IA, USA
| | | |
Collapse
|
34
|
Chandran D, Scanlon MJ, Ohtsu K, Timmermans MC, Schnable PS, Wildermuth MC. Laser Microdissection–Mediated Isolation and In Vitro Transcriptional Amplification of Plant RNA. ACTA ACUST UNITED AC 2018; 112:25A.3.1-25A.3.23. [DOI: 10.1002/0471142727.mb25a03s112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Divya Chandran
- University of California Berkeley California
- Regional Center for Biotechnology Faridabad India
| | | | | | | | | | | |
Collapse
|
35
|
Hochholdinger F, Marcon C, Baldauf JA, Yu P, Frey FP. Proteomics of Maize Root Development. FRONTIERS IN PLANT SCIENCE 2018; 9:143. [PMID: 29556242 PMCID: PMC5844967 DOI: 10.3389/fpls.2018.00143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/25/2018] [Indexed: 05/19/2023]
Abstract
Maize forms a complex root system with structurally and functionally diverse root types that are formed at different developmental stages to extract water and mineral nutrients from soil. In recent years proteomics has been intensively applied to identify proteins involved in shaping the three-dimensional architecture and regulating the function of the maize root system. With the help of developmental mutants, proteomic changes during the initiation and emergence of shoot-borne, lateral and seminal roots have been examined. Furthermore, root hairs were surveyed to understand the proteomic changes during the elongation of these single cell type structures. In addition, primary roots have been used to study developmental changes of the proteome but also to investigate the proteomes of distinct tissues such as the meristematic zone, the elongation zone as well as stele and cortex of the differentiation zone. Moreover, subcellular fractions of the primary root including cell walls, plasma membranes and secreted mucilage have been analyzed. Finally, the superior vigor of hybrid seedling roots compared to their parental inbred lines was studied on the proteome level. In summary, these studies provide novel insights into the complex proteomic interactions of the elaborate maize root system during development.
Collapse
|
36
|
Hochholdinger F, Yu P, Marcon C. Genetic Control of Root System Development in Maize. TRENDS IN PLANT SCIENCE 2018; 23:79-88. [PMID: 29170008 DOI: 10.1016/j.tplants.2017.10.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/21/2017] [Accepted: 10/25/2017] [Indexed: 05/21/2023]
Abstract
The maize root system comprises structurally and functionally different root types. Mutant analyses have revealed that root-type-specific genetic regulators intrinsically determine the maize root system architecture. Molecular cloning of these genes has demonstrated that key elements of auxin signal transduction, such as LOB domain (LBD) and Aux/IAA proteins, are instrumental for seminal, shoot-borne, and lateral root initiation. Moreover, genetic analyses have demonstrated that genes related to exocytotic vesicle docking, cell wall loosening, and cellulose synthesis and organization control root hair elongation. The identification of upstream regulators, protein interaction partners, and downstream targets of these genes together with cell-type-specific transcriptome analyses have provided novel insights into the regulatory networks controlling root development and architecture in maize.
Collapse
Affiliation(s)
- Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany.
| | - Peng Yu
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany
| | - Caroline Marcon
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany
| |
Collapse
|
37
|
Moreno-Ortega B, Fort G, Muller B, Guédon Y. Identifying Developmental Zones in Maize Lateral Root Cell Length Profiles using Multiple Change-Point Models. FRONTIERS IN PLANT SCIENCE 2017; 8:1750. [PMID: 29123533 PMCID: PMC5662930 DOI: 10.3389/fpls.2017.01750] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/25/2017] [Indexed: 05/04/2023]
Abstract
The identification of the limits between the cell division, elongation and mature zones in the root apex is still a matter of controversy when methods based on cellular features, molecular markers or kinematics are compared while methods based on cell length profiles have been comparatively underexplored. Segmentation models were developed to identify developmental zones within a root apex on the basis of epidermal cell length profiles. Heteroscedastic piecewise linear models were estimated for maize lateral roots of various lengths of both wild type and two mutants affected in auxin signaling (rtcs and rum-1). The outputs of these individual root analyses combined with morphological features (first root hair position and root diameter) were then globally analyzed using principal component analysis. Three zones corresponding to the division zone, the elongation zone and the mature zone were identified in most lateral roots while division zone and sometimes elongation zone were missing in arrested roots. Our results are consistent with an auxin-dependent coordination between cell flux, cell elongation and cell differentiation. The proposed segmentation models could extend our knowledge of developmental regulations in longitudinally organized plant organs such as roots, monocot leaves or internodes.
Collapse
Affiliation(s)
- Beatriz Moreno-Ortega
- LEPSE, INRA, Montpellier SupAgro, Montpellier, France
- CIRAD, UMR AGAP, Montpellier, France
- Inria, Virtual Plants, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Guillaume Fort
- LEPSE, INRA, Montpellier SupAgro, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Bertrand Muller
- LEPSE, INRA, Montpellier SupAgro, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Yann Guédon
- CIRAD, UMR AGAP, Montpellier, France
- Inria, Virtual Plants, Montpellier, France
- Université de Montpellier, Montpellier, France
| |
Collapse
|
38
|
Wang J, Pei L, Jin Z, Zhang K, Zhang J. Overexpression of the protein phosphatase 2A regulatory subunit a gene ZmPP2AA1 improves low phosphate tolerance by remodeling the root system architecture of maize. PLoS One 2017; 12:e0176538. [PMID: 28448624 PMCID: PMC5407761 DOI: 10.1371/journal.pone.0176538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/12/2017] [Indexed: 11/21/2022] Open
Abstract
Phosphate (Pi) limitation is a constraint for plant growth and development in many natural and agricultural ecosystems. In this study, a gene encoding Zea mays L. protein phosphatase 2A regulatory subunit A, designated ZmPP2AA1, was induced in roots by low Pi availability. The function of the ZmPP2AA1 gene in maize was analyzed using overexpression and RNA interference. ZmPP2AA1 modulated root gravitropism, negatively regulated primary root (PR) growth, and stimulated the development of lateral roots (LRs). A detailed characterization of the root system architecture (RSA) in response to different Pi concentrations with or without indole-3-acetic acid and 1-N-naphthylphthalamic acid revealed that auxin was involved in the RSA response to low Pi availability. Overexpression of ZmPP2AA1 enhanced tolerance to Pi starvation in transgenic maize in hydroponic and soil pot experiments. An increased dry weight (DW), root-to-shoot ratio, and total P content and concentration, along with a delayed and reduced accumulation of anthocyanin in overexpressing transgenic maize plants coincided with their highly branched root system and increased Pi uptake capability under low Pi conditions. Inflorescence development of the ZmPP2AA1 overexpressing line was less affected by low Pi stress, resulting in higher grain yield per plant under Pi deprivation. These data reveal the biological function of ZmPP2AA1, provide insights into a linkage between auxin and low Pi responses, and drive new strategies for the efficient utilization of Pi by maize.
Collapse
Affiliation(s)
- Jiemin Wang
- School of Life Sciences, Shandong University, Ministry of Education Key Laboratory of Plant Cell Engineering and Germplasm Enhancement, Jinan, China
| | - Laming Pei
- School of Life Sciences, Shandong University, Ministry of Education Key Laboratory of Plant Cell Engineering and Germplasm Enhancement, Jinan, China
- Department of Biotechnology, School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Zhe Jin
- School of Life Sciences, Shandong University, Ministry of Education Key Laboratory of Plant Cell Engineering and Germplasm Enhancement, Jinan, China
| | - Kewei Zhang
- School of Life Sciences, Shandong University, Ministry of Education Key Laboratory of Plant Cell Engineering and Germplasm Enhancement, Jinan, China
| | - Juren Zhang
- School of Life Sciences, Shandong University, Ministry of Education Key Laboratory of Plant Cell Engineering and Germplasm Enhancement, Jinan, China
| |
Collapse
|
39
|
Hey S, Baldauf J, Opitz N, Lithio A, Pasha A, Provart N, Nettleton D, Hochholdinger F. Complexity and specificity of the maize (Zea mays L.) root hair transcriptome. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2175-2185. [PMID: 28398587 PMCID: PMC5447894 DOI: 10.1093/jxb/erx104] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Root hairs are tubular extensions of epidermis cells. Transcriptome profiling demonstrated that the single cell-type root hair transcriptome was less complex than the transcriptome of multiple cell-type primary roots without root hairs. In total, 831 genes were exclusively and 5585 genes were preferentially expressed in root hairs [false discovery rate (FDR) ≤1%]. Among those, the most significantly enriched Gene Ontology (GO) functional terms were related to energy metabolism, highlighting the high energy demand for the development and function of root hairs. Subsequently, the maize homologs for 138 Arabidopsis genes known to be involved in root hair development were identified and their phylogenetic relationship and expression in root hairs were determined. This study indicated that the genetic regulation of root hair development in Arabidopsis and maize is controlled by common genes, but also shows differences which need to be dissected in future genetic experiments. Finally, a maize root view of the eFP browser was implemented including the root hair transcriptome of the present study and several previously published maize root transcriptome data sets. The eFP browser provides color-coded expression levels for these root types and tissues for any gene of interest, thus providing a novel resource to study gene expression and function in maize roots.
Collapse
Affiliation(s)
- Stefan Hey
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, D-53113 Bonn, Germany
| | - Jutta Baldauf
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, D-53113 Bonn, Germany
| | - Nina Opitz
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, D-53113 Bonn, Germany
| | - Andrew Lithio
- Department of Statistics, Iowa State University, Ames, IA 50011-1210, USA
| | - Asher Pasha
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Nicholas Provart
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, IA 50011-1210, USA
| | - Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, D-53113 Bonn, Germany
| |
Collapse
|
40
|
Tai H, Opitz N, Lithio A, Lu X, Nettleton D, Hochholdinger F. Non-syntenic genes drive RTCS-dependent regulation of the embryo transcriptome during formation of seminal root primordia in maize (Zea mays L.). JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:403-414. [PMID: 28204533 PMCID: PMC5444478 DOI: 10.1093/jxb/erw422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Seminal roots of maize are pivotal for early seedling establishment. The maize mutant rootless concerning crown and seminal roots (rtcs) is defective in seminal root initiation during embryogenesis. In this study, the transcriptomes of wild-type and rtcs embryos were analyzed by RNA-Seq based on histological results at three stages of seminal root primordia formation. Hierarchical clustering highlighted that samples of each genotype grouped together along development. Determination of their gene activity status revealed hundreds of genes specifically transcribed in wild-type or rtcs embryos, while K-mean clustering revealed changes in gene expression dynamics between wild-type and rtcs during embryo development. Pairwise comparisons of rtcs and wild-type embryo transcriptomes identified 131 transcription factors among 3526 differentially expressed genes [false discovery rate (FDR) <5% and |log2Fc|≥1]. Among those, functional annotation highlighted genes involved in cell cycle control and phytohormone action, particularly auxin signaling. Moreover, in silico promoter analyses identified putative RTCS target genes associated with transcription factor action and hormone metabolism and signaling. Significantly, non-syntenic genes that emerged after the separation of maize and sorghum were over-represented among genes displaying RTCS-dependent expression during seminal root primordia formation. This might suggest that these non-syntenic genes came under the transcriptional control of the syntenic gene rtcs during seminal root evolution. Taken together, this study provides first insights into the molecular framework underlying seminal root initiation in maize and provides a starting point for further investigations of the molecular networks underlying RTCS-dependent seminal root initiation.
Collapse
Affiliation(s)
- Huanhuan Tai
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn, Germany
| | - Nina Opitz
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn, Germany
| | - Andrew Lithio
- Department of Statistics, Iowa State University, Ames, IA, USA
| | - Xin Lu
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, IA, USA
| | - Frank Hochholdinger
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn, Germany
| |
Collapse
|
41
|
Yu P, Gutjahr C, Li C, Hochholdinger F. Genetic Control of Lateral Root Formation in Cereals. TRENDS IN PLANT SCIENCE 2016; 21:951-961. [PMID: 27524642 DOI: 10.1016/j.tplants.2016.07.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/19/2016] [Accepted: 07/28/2016] [Indexed: 05/03/2023]
Abstract
Cereals form complex root systems composed of different root types. Lateral root formation is a major determinant of root architecture and is instrumental for the efficient uptake of water and nutrients. Positioning and patterning of lateral roots and cell types involved in their formation are unique in monocot cereals. Recent discoveries advanced the molecular understanding of the intrinsic genetic control of initiation and elongation of lateral roots in cereals by distinct, in part root-type-specific genetic programs. Moreover, molecular networks modulating the plasticity of lateral root formation in response to water and nutrient availability and arbuscular mycorrhizal fungal colonization have been identified. These novel discoveries provide a better mechanistic understanding of postembryonic lateral root development in cereals.
Collapse
Affiliation(s)
- Peng Yu
- China Agricultural University, College of Resources and Environmental Science, Department of Plant Nutrition, 100193 Beijing, China; University of Bonn, Institute of Crop Science and Resource Conservation (INRES), Crop Functional Genomics, 53113 Bonn, Germany
| | | | - Chunjian Li
- China Agricultural University, College of Resources and Environmental Science, Department of Plant Nutrition, 100193 Beijing, China.
| | - Frank Hochholdinger
- University of Bonn, Institute of Crop Science and Resource Conservation (INRES), Crop Functional Genomics, 53113 Bonn, Germany.
| |
Collapse
|
42
|
Characterization of maize roothairless6 which encodes a D-type cellulose synthase and controls the switch from bulge formation to tip growth. Sci Rep 2016; 6:34395. [PMID: 27708345 PMCID: PMC5052636 DOI: 10.1038/srep34395] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/13/2016] [Indexed: 11/08/2022] Open
Abstract
Root hairs are tubular extensions of the epidermis. Root hairs of the monogenic recessive maize mutant roothairless 6 (rth6) are arrested after bulge formation during the transition to tip growth and display a rough cell surface. BSR-Seq in combination with Seq-walking and subsequent analyses of four independently generated mutant alleles established that rth6 encodes CSLD5 a plasma membrane localized 129 kD D-type cellulose synthase with eight transmembrane domains. Cellulose synthases are required for the biosynthesis of cellulose, the most abundant biopolymer of plant cell walls. Phylogenetic analyses revealed that RTH6 is part of a monocot specific clade of D-type cellulose synthases. D-type cellulose synthases are highly conserved in the plant kingdom with five gene family members in maize and homologs even among early land plants such as the moss Physcomitrella patens or the clubmoss Selaginella moellendorffii. Expression profiling demonstrated that rth6 transcripts are highly enriched in root hairs as compared to all other root tissues. Moreover, in addition to the strong knock down of rth6 expression in young primary roots of the mutant rth6, the gene is also significantly down-regulated in rth3 and rth5 mutants, while it is up-regulated in rth2 mutants, suggesting that these genes interact in cell wall biosynthesis.
Collapse
|
43
|
Hochholdinger F. Untapping root system architecture for crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4431-3. [PMID: 27493225 PMCID: PMC4973748 DOI: 10.1093/jxb/erw262] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Frank Hochholdinger
- Institute for Crop Science and Resource Conservation (INRES), Faculty of Agriculture, University of Bonn, 53177 Bonn, Germany
| |
Collapse
|
44
|
Song W, Wang B, Hauck AL, Dong X, Li J, Lai J. Genetic dissection of maize seedling root system architecture traits using an ultra-high density bin-map and a recombinant inbred line population. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:266-79. [PMID: 26593310 PMCID: PMC5066741 DOI: 10.1111/jipb.12452] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/19/2015] [Indexed: 05/18/2023]
Abstract
Maize (Zea mays) root system architecture (RSA) mediates the key functions of plant anchorage and acquisition of nutrients and water. In this study, a set of 204 recombinant inbred lines (RILs) was derived from the widely adapted Chinese hybrid ZD958(Zheng58 × Chang7-2), genotyped by sequencing (GBS) and evaluated as seedlings for 24 RSA related traits divided into primary, seminal and total root classes. Significant differences between the means of the parental phenotypes were detected for 18 traits, and extensive transgressive segregation in the RIL population was observed for all traits. Moderate to strong relationships among the traits were discovered. A total of 62 quantitative trait loci (QTL) were identified that individually explained from 1.6% to 11.6% (total root dry weight/total seedling shoot dry weight) of the phenotypic variation. Eighteen, 24 and 20 QTL were identified for primary, seminal and total root classes of traits, respectively. We found hotspots of 5, 3, 4 and 12 QTL in maize chromosome bins 2.06, 3.02-03, 9.02-04, and 9.05-06, respectively, implicating the presence of root gene clusters or pleiotropic effects. These results characterized the phenotypic variation and genetic architecture of seedling RSA in a population derived from a successful maize hybrid.
Collapse
Affiliation(s)
- Weibin Song
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center of China, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Baobao Wang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center of China, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Andrew L Hauck
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center of China, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Xiaomei Dong
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center of China, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Jieping Li
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center of China, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Jinsheng Lai
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center of China, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
45
|
Yu P, Baldauf JA, Lithio A, Marcon C, Nettleton D, Li C, Hochholdinger F. Root Type-Specific Reprogramming of Maize Pericycle Transcriptomes by Local High Nitrate Results in Disparate Lateral Root Branching Patterns. PLANT PHYSIOLOGY 2016; 170:1783-98. [PMID: 26811190 PMCID: PMC4775145 DOI: 10.1104/pp.15.01885] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/24/2016] [Indexed: 05/18/2023]
Abstract
The adaptability of root system architecture to unevenly distributed mineral nutrients in soil is a key determinant of plant performance. The molecular mechanisms underlying nitrate dependent plasticity of lateral root branching across the different root types of maize are only poorly understood. In this study, detailed morphological and anatomical analyses together with cell type-specific transcriptome profiling experiments combining laser capture microdissection with RNA-seq were performed to unravel the molecular signatures of lateral root formation in primary, seminal, crown, and brace roots of maize (Zea mays) upon local high nitrate stimulation. The four maize root types displayed divergent branching patterns of lateral roots upon local high nitrate stimulation. In particular, brace roots displayed an exceptional architectural plasticity compared to other root types. Transcriptome profiling revealed root type-specific transcriptomic reprogramming of pericycle cells upon local high nitrate stimulation. The alteration of the transcriptomic landscape of brace root pericycle cells in response to local high nitrate stimulation was most significant. Root type-specific transcriptome diversity in response to local high nitrate highlighted differences in the functional adaptability and systemic shoot nitrogen starvation response during development. Integration of morphological, anatomical, and transcriptomic data resulted in a framework underscoring similarity and diversity among root types grown in heterogeneous nitrate environments.
Collapse
Affiliation(s)
- Peng Yu
- Department of Plant Nutrition, China Agricultural University, 100193 Beijing, China (P.Y., C.L.);Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany (P.Y., J.A.B., C.M., F.H.); andDepartment of Statistics, Iowa State University, Ames, Iowa 50011-1210 (A.L., D.N.)
| | - Jutta A Baldauf
- Department of Plant Nutrition, China Agricultural University, 100193 Beijing, China (P.Y., C.L.);Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany (P.Y., J.A.B., C.M., F.H.); andDepartment of Statistics, Iowa State University, Ames, Iowa 50011-1210 (A.L., D.N.)
| | - Andrew Lithio
- Department of Plant Nutrition, China Agricultural University, 100193 Beijing, China (P.Y., C.L.);Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany (P.Y., J.A.B., C.M., F.H.); andDepartment of Statistics, Iowa State University, Ames, Iowa 50011-1210 (A.L., D.N.)
| | - Caroline Marcon
- Department of Plant Nutrition, China Agricultural University, 100193 Beijing, China (P.Y., C.L.);Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany (P.Y., J.A.B., C.M., F.H.); andDepartment of Statistics, Iowa State University, Ames, Iowa 50011-1210 (A.L., D.N.)
| | - Dan Nettleton
- Department of Plant Nutrition, China Agricultural University, 100193 Beijing, China (P.Y., C.L.);Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany (P.Y., J.A.B., C.M., F.H.); andDepartment of Statistics, Iowa State University, Ames, Iowa 50011-1210 (A.L., D.N.)
| | - Chunjian Li
- Department of Plant Nutrition, China Agricultural University, 100193 Beijing, China (P.Y., C.L.);Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany (P.Y., J.A.B., C.M., F.H.); andDepartment of Statistics, Iowa State University, Ames, Iowa 50011-1210 (A.L., D.N.)
| | - Frank Hochholdinger
- Department of Plant Nutrition, China Agricultural University, 100193 Beijing, China (P.Y., C.L.);Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany (P.Y., J.A.B., C.M., F.H.); andDepartment of Statistics, Iowa State University, Ames, Iowa 50011-1210 (A.L., D.N.)
| |
Collapse
|
46
|
Salvi S, Giuliani S, Ricciolini C, Carraro N, Maccaferri M, Presterl T, Ouzunova M, Tuberosa R. Two major quantitative trait loci controlling the number of seminal roots in maize co-map with the root developmental genes rtcs and rum1. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1149-59. [PMID: 26880748 PMCID: PMC4753855 DOI: 10.1093/jxb/erw011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The genetic dissection of root architecture and functions allows for a more effective and informed design of novel root ideotypes and paves the way to evaluate their effects on crop resilience to a number of abiotic stresses. In maize, limited attention has been devoted to the genetic analysis of root architecture diversity at the early stage. The difference in embryonic (including seminal and primary) root architecture between the maize reference line B73 (which mostly develops three seminal roots) and the landrace Gaspé Flint (with virtually no seminal roots) was genetically dissected using a collection of introgression lines grown in paper rolls and pots. Quantitative trait locus (QTL) analysis identified three QTLs controlling seminal root number (SRN) on chromosome bins 1.02, 3.07, and 8.04-8.05, which collectively explained 66% of the phenotypic variation. In all three cases, Gaspé Flint contributed the allele for lower SRN. Primary root dry weight was negatively correlated with SRN (r= -0.52), and QTLs for primary root size co-mapped with SRN QTLs, suggesting a pleiotropic effect of SRN QTLs on the primary root, most probably caused by competition for seed resources. Interestingly, two out of three SRN QTLs co-mapped with the only two known maize genes (rtcs and rum1) affecting the number of seminal roots. The strong additive effect of the three QTLs and the development of near isogenic lines for each QTL in the elite B73 background provide unique opportunities to characterize functionally the genes involved in root development and to evaluate how root architecture affects seedling establishment, early development, and eventually yield in maize.
Collapse
Affiliation(s)
- Silvio Salvi
- DipSA University of Bologna, viale Fanin 44, 40127 Bologna, Italy
| | - Silvia Giuliani
- DipSA University of Bologna, viale Fanin 44, 40127 Bologna, Italy
| | | | - Nicola Carraro
- DipSA University of Bologna, viale Fanin 44, 40127 Bologna, Italy
| | - Marco Maccaferri
- DipSA University of Bologna, viale Fanin 44, 40127 Bologna, Italy
| | | | | | - Roberto Tuberosa
- DipSA University of Bologna, viale Fanin 44, 40127 Bologna, Italy
| |
Collapse
|
47
|
Tai H, Lu X, Opitz N, Marcon C, Paschold A, Lithio A, Nettleton D, Hochholdinger F. Transcriptomic and anatomical complexity of primary, seminal, and crown roots highlight root type-specific functional diversity in maize (Zea mays L.). JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1123-35. [PMID: 26628518 PMCID: PMC4753849 DOI: 10.1093/jxb/erv513] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Maize develops a complex root system composed of embryonic and post-embryonic roots. Spatio-temporal differences in the formation of these root types imply specific functions during maize development. A comparative transcriptomic study of embryonic primary and seminal, and post-embryonic crown roots of the maize inbred line B73 by RNA sequencing along with anatomical studies were conducted early in development. Seminal roots displayed unique anatomical features, whereas the organization of primary and crown roots was similar. For instance, seminal roots displayed fewer cortical cell files and their stele contained more meta-xylem vessels. Global expression profiling revealed diverse patterns of gene activity across all root types and highlighted the unique transcriptome of seminal roots. While functions in cell remodeling and cell wall formation were prominent in primary and crown roots, stress-related genes and transcriptional regulators were over-represented in seminal roots, suggesting functional specialization of the different root types. Dynamic expression of lignin biosynthesis genes and histochemical staining suggested diversification of cell wall lignification among the three root types. Our findings highlight a cost-efficient anatomical structure and a unique expression profile of seminal roots of the maize inbred line B73 different from primary and crown roots.
Collapse
Affiliation(s)
- Huanhuan Tai
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, D-53113 Bonn, Germany
| | - Xin Lu
- Experimental Medicine and Therapy Research, University of Regensburg, D-93053 Regensburg, Germany
| | - Nina Opitz
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, D-53113 Bonn, Germany
| | - Caroline Marcon
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, D-53113 Bonn, Germany
| | - Anja Paschold
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, D-53113 Bonn, Germany
| | - Andrew Lithio
- Department of Statistics, Iowa State University, Ames, IA 50011-1210, USA
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, IA 50011-1210, USA
| | - Frank Hochholdinger
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, D-53113 Bonn, Germany
| |
Collapse
|
48
|
Zhang Y, Marcon C, Tai H, von Behrens I, Ludwig Y, Hey S, Berendzen KW, Hochholdinger F. Conserved and unique features of the homeologous maize Aux/IAA proteins ROOTLESS WITH UNDETECTABLE MERISTEM 1 and RUM1-like 1. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1137-47. [PMID: 26672614 PMCID: PMC4753850 DOI: 10.1093/jxb/erv519] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The maize (Zea mays L.) Aux/IAA protein RUM1 (ROOTLESS WITH UNDETECTABLE MERISTEM 1) is a key regulator of lateral and seminal root formation. An ancient maize genome duplication resulted in the emergence of its homeolog rum1-like1 (rul1), which displays 92% amino acid sequence identity with RUM1. Both, RUL1 and RUM1 exhibit the canonical four domain structure of Aux/IAA proteins. Moreover, both are localized to the nucleus, are instable and have similar short half-lives of ~23min. Moreover, RUL1 and RUM1 can be stabilized by specific mutations in the five amino acid degron sequence of domain II. In addition, proteins encoded by both genes interact in vivo with auxin response factors (ARFs) such as ZmARF25 and ZmARF34 in protoplasts. Although it was demonstrated that RUL1 and RUM1 can homo and heterodimerize in vivo, rul1 expression is independent of rum1. Moreover, on average rul1 expression is ~84-fold higher than rum1 in the 12 tested tissues and developmental stages, although the relative expression levels in different root tissues are very similar. While RUM1 and RUL1 display conserved biochemical properties, yeast-two-hybrid in combination with BiFC experiments identified a RUM1-associated protein 1 (RAP1) that specifically interacts with RUM1 but not with RUL1. This suggests that RUM1 and RUL1 are at least in part interwoven into different molecular networks.
Collapse
Affiliation(s)
- Yanxiang Zhang
- Center for Molecular Cell and Systems Biology, College of Life Science, Fujian Agriculture & Forestry University, 350002 Fuzhou, China Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany
| | - Caroline Marcon
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany
| | - Huanhuan Tai
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany
| | - Inga von Behrens
- ZMBP, Center for Plant Molecular Biology, General Genetics, University of Tuebingen, 72076 Tuebingen, Germany
| | - Yvonne Ludwig
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany
| | - Stefan Hey
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany
| | - Kenneth W Berendzen
- ZMBP, Center for Plant Molecular Biology, Central Facilities, University of Tuebingen, 72076 Tuebingen, Germany
| | - Frank Hochholdinger
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany
| |
Collapse
|
49
|
Quantitative Proteomic Analysis of the Response to Zinc, Magnesium, and Calcium Deficiency in Specific Cell Types of Arabidopsis Roots. Proteomes 2016; 4:proteomes4010001. [PMID: 28248212 PMCID: PMC5217369 DOI: 10.3390/proteomes4010001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/14/2015] [Accepted: 12/23/2015] [Indexed: 12/13/2022] Open
Abstract
The proteome profiles of specific cell types have recently been investigated using techniques such as fluorescence activated cell sorting and laser capture microdissection. However, quantitative proteomic analysis of specific cell types has not yet been performed. In this study, to investigate the response of the proteome to zinc, magnesium, and calcium deficiency in specific cell types of Arabidopsis thaliana roots, we performed isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomics using GFP-expressing protoplasts collected by fluorescence-activated cell sorting. Protoplasts were collected from the pGL2-GFPer and pMGP-GFPer marker lines for epidermis or inner cell lines (pericycle, endodermis, and cortex), respectively. To increase the number of proteins identified, iTRAQ-labeled peptides were separated into 24 fractions by OFFGFEL electrophoresis prior to high-performance liquid chromatography coupled with mass spectrometry analysis. Overall, 1039 and 737 proteins were identified and quantified in the epidermal and inner cell lines, respectively. Interestingly, the expression of many proteins was decreased in the epidermis by mineral deficiency, although a weaker effect was observed in inner cell lines such as the pericycle, endodermis, and cortex. Here, we report for the first time the quantitative proteomics of specific cell types in Arabidopsis roots.
Collapse
|
50
|
Yu P, Eggert K, von Wirén N, Li C, Hochholdinger F. Cell Type-Specific Gene Expression Analyses by RNA Sequencing Reveal Local High Nitrate-Triggered Lateral Root Initiation in Shoot-Borne Roots of Maize by Modulating Auxin-Related Cell Cycle Regulation. PLANT PHYSIOLOGY 2015; 169:690-704. [PMID: 26198256 PMCID: PMC4577424 DOI: 10.1104/pp.15.00888] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/20/2015] [Indexed: 05/18/2023]
Abstract
Plants have evolved a unique plasticity of their root system architecture to flexibly exploit heterogeneously distributed mineral elements from soil. Local high concentrations of nitrate trigger lateral root initiation in adult shoot-borne roots of maize (Zea mays) by increasing the frequency of early divisions of phloem pole pericycle cells. Gene expression profiling revealed that, within 12 h of local high nitrate induction, cell cycle activators (cyclin-dependent kinases and cyclin B) were up-regulated, whereas repressors (Kip-related proteins) were down-regulated in the pericycle of shoot-borne roots. In parallel, a ubiquitin protein ligase S-Phase Kinase-Associated Protein1-cullin-F-box protein(S-Phase Kinase-Associated Protein 2B)-related proteasome pathway participated in cell cycle control. The division of pericycle cells was preceded by increased levels of free indole-3-acetic acid in the stele, resulting in DR5-red fluorescent protein-marked auxin response maxima at the phloem poles. Moreover, laser-capture microdissection-based gene expression analyses indicated that, at the same time, a significant local high nitrate induction of the monocot-specific PIN-FORMED9 gene in phloem pole cells modulated auxin efflux to pericycle cells. Time-dependent gene expression analysis further indicated that local high nitrate availability resulted in PIN-FORMED9-mediated auxin efflux and subsequent cell cycle activation, which culminated in the initiation of lateral root primordia. This study provides unique insights into how adult maize roots translate information on heterogeneous nutrient availability into targeted root developmental responses.
Collapse
Affiliation(s)
- Peng Yu
- Department of Plant Nutrition, China Agricultural University, Beijing 100193, China (P.Y., C.L.);Division of Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany (P.Y., F.H.); andMolecular Plant Nutrition, Leibniz Institute for Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany (K.E., N.v.W.)
| | - Kai Eggert
- Department of Plant Nutrition, China Agricultural University, Beijing 100193, China (P.Y., C.L.);Division of Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany (P.Y., F.H.); andMolecular Plant Nutrition, Leibniz Institute for Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany (K.E., N.v.W.)
| | - Nicolaus von Wirén
- Department of Plant Nutrition, China Agricultural University, Beijing 100193, China (P.Y., C.L.);Division of Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany (P.Y., F.H.); andMolecular Plant Nutrition, Leibniz Institute for Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany (K.E., N.v.W.)
| | - Chunjian Li
- Department of Plant Nutrition, China Agricultural University, Beijing 100193, China (P.Y., C.L.);Division of Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany (P.Y., F.H.); andMolecular Plant Nutrition, Leibniz Institute for Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany (K.E., N.v.W.)
| | - Frank Hochholdinger
- Department of Plant Nutrition, China Agricultural University, Beijing 100193, China (P.Y., C.L.);Division of Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany (P.Y., F.H.); andMolecular Plant Nutrition, Leibniz Institute for Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany (K.E., N.v.W.)
| |
Collapse
|