1
|
Chen J, Wang Y. Understanding the salinity resilience and productivity of halophytes in saline environments. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112171. [PMID: 38969140 DOI: 10.1016/j.plantsci.2024.112171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024]
Abstract
The escalating salinity levels in cultivable soil pose a significant threat to agricultural productivity and, consequently, human sustenance. This problem is being exacerbated by natural processes and human activities, coinciding with a period of rapid population growth. Developing halophytic crops is needed to ensure food security is not impaired and land resources can be used sustainably. Evolution has created many close halophyte relatives of our major glycophytic crops, such as Puccinellia tenuiflora (relative of barley and wheat), Oryza coarctata (relative of rice) and Glycine soja (relative of soybean). There are also some halophytes have been subjected to semi-domestication and are considered as minor crops, such as Chenopodium quinoa. In this paper, we examine the prevailing comprehension of robust salinity resilience in halophytes. We summarize the existing strategies and technologies that equip researchers with the means to enhance the salt tolerance capabilities of primary crops and investigate the genetic makeup of halophytes.
Collapse
Affiliation(s)
- Jiahong Chen
- State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Wang
- State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; Dalian Practical Biotechnology Co. LTD., Dalian, Liaoning 116200, China.
| |
Collapse
|
2
|
Sánchez P, Castro-Cegrí A, Sierra S, Garrido D, Llamas I, Sampedro I, Palma F. The synergy of halotolerant PGPB and mauran mitigates salt stress in tomato (Solanum lycopersicum) via osmoprotectants accumulation. PHYSIOLOGIA PLANTARUM 2023; 175:e14111. [PMID: 38148230 DOI: 10.1111/ppl.14111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/28/2023]
Abstract
Salinity stress is one of the major abiotic factors limiting sustainable agriculture. Halotolerant plant growth-promoting bacteria (PGPB) increased salt stress tolerance in plants, but the mechanisms underlying the tolerance are poorly understood. This study investigated the PGP activity of four halotolerant bacteria under salinity stress and the tomato salt-tolerance mechanisms induced by the synergy of these bacteria with the exopolysaccharide (EPS) mauran. All PGPB tested in this study were able to offer a significant improvement of tomato plant biomass under salinity stress; Peribacillus castrilensis N3 being the most efficient one. Tomato plants treated with N3 and the EPS mauran showed greater tolerance to NaCl than the treatment in the absence of EPS and PGPB. The synergy of N3 with mauran confers salt stress tolerance in tomato plants by increasing sodium transporter genes' expression and osmoprotectant content, including soluble sugars, polyols, proline, GABA, phenols and the polyamine putrescine. These osmolytes together with the induction of sodium transporter genes increase the osmotic adjustment capacity to resist water loss and maintain ionic homeostasis. These findings suggest that the synergy of the halotolerant bacterium N3 and the EPS mauran could enhance tomato plant growth by mitigating salt stress and could have great potential as an inductor of salinity tolerance in the agriculture sector.
Collapse
Affiliation(s)
- Patricia Sánchez
- Department of Microbiology, Pharmacy Faculty, University of Granada, Spain
| | | | - Sandra Sierra
- Department of Plant Physiology, Science Faculty, University of Granada, Granada, Spain
| | - Dolores Garrido
- Department of Plant Physiology, Science Faculty, University of Granada, Granada, Spain
| | - Inmaculada Llamas
- Department of Microbiology, Pharmacy Faculty, University of Granada, Spain
- Biomedical Research Center (CIBM), Biotechnology Institute, Granada, Spain
| | - Inmaculada Sampedro
- Department of Microbiology, Pharmacy Faculty, University of Granada, Spain
- Biomedical Research Center (CIBM), Biotechnology Institute, Granada, Spain
| | - Francisco Palma
- Department of Plant Physiology, Science Faculty, University of Granada, Granada, Spain
| |
Collapse
|
3
|
Mann A, Lata C, Kumar N, Kumar A, Kumar A, Sheoran P. Halophytes as new model plant species for salt tolerance strategies. FRONTIERS IN PLANT SCIENCE 2023; 14:1137211. [PMID: 37251767 PMCID: PMC10211249 DOI: 10.3389/fpls.2023.1137211] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/11/2023] [Indexed: 05/31/2023]
Abstract
Soil salinity is becoming a growing issue nowadays, severely affecting the world's most productive agricultural landscapes. With intersecting and competitive challenges of shrinking agricultural lands and increasing demand for food, there is an emerging need to build resilience for adaptation to anticipated climate change and land degradation. This necessitates the deep decoding of a gene pool of crop plant wild relatives which can be accomplished through salt-tolerant species, such as halophytes, in order to reveal the underlying regulatory mechanisms. Halophytes are generally defined as plants able to survive and complete their life cycle in highly saline environments of at least 200-500 mM of salt solution. The primary criterion for identifying salt-tolerant grasses (STGs) includes the presence of salt glands on the leaf surface and the Na+ exclusion mechanism since the interaction and replacement of Na+ and K+ greatly determines the survivability of STGs in saline environments. During the last decades or so, various salt-tolerant grasses/halophytes have been explored for the mining of salt-tolerant genes and testing their efficacy to improve the limit of salt tolerance in crop plants. Still, the utility of halophytes is limited due to the non-availability of any model halophytic plant system as well as the lack of complete genomic information. To date, although Arabidopsis (Arabidopsis thaliana) and salt cress (Thellungiella halophila) are being used as model plants in most salt tolerance studies, these plants are short-lived and can tolerate salinity for a shorter duration only. Thus, identifying the unique genes for salt tolerance pathways in halophytes and their introgression in a related cereal genome for better tolerance to salinity is the need of the hour. Modern technologies including RNA sequencing and genome-wide mapping along with advanced bioinformatics programs have advanced the decoding of the whole genetic information of plants and the development of probable algorithms to correlate stress tolerance limit and yield potential. Hence, this article has been compiled to explore the naturally occurring halophytes as potential model plant species for abiotic stress tolerance and to further breed crop plants to enhance salt tolerance through genomic and molecular tools.
Collapse
Affiliation(s)
- Anita Mann
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
| | - Charu Lata
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
- ICAR-Indian Institute of Wheat and Barley Research, Shimla, Himachal Pardesh, India
| | - Naresh Kumar
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
- Department of Biochemistry, Eternal University, Baru Sahib, Himachal Pardesh, Ludhiana, India
| | - Ashwani Kumar
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
| | - Arvind Kumar
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
| | - Parvender Sheoran
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
- ICAR-Agriculture Technology Application Research Center, Ludhiana, India
| |
Collapse
|
4
|
Shahzad B, Shabala L, Zhou M, Venkataraman G, Solis CA, Page D, Chen ZH, Shabala S. Comparing Essentiality of SOS1-Mediated Na + Exclusion in Salinity Tolerance between Cultivated and Wild Rice Species. Int J Mol Sci 2022; 23:9900. [PMID: 36077294 PMCID: PMC9456175 DOI: 10.3390/ijms23179900] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 01/22/2023] Open
Abstract
Soil salinity is a major constraint that affects plant growth and development. Rice is a staple food for more than half of the human population but is extremely sensitive to salinity. Among the several known mechanisms, the ability of the plant to exclude cytosolic Na+ is strongly correlated with salinity stress tolerance in different plant species. This exclusion is mediated by the plasma membrane (PM) Na+/H+ antiporter encoded by Salt Overly Sensitive (SOS1) gene and driven by a PM H+-ATPase generated proton gradient. However, it is not clear to what extent this mechanism is operational in wild and cultivated rice species, given the unique rice root anatomy and the existence of the bypass flow for Na+. As wild rice species provide a rich source of genetic diversity for possible introgression of abiotic stress tolerance, we investigated physiological and molecular basis of salinity stress tolerance in Oryza species by using two contrasting pairs of cultivated (Oryza sativa) and wild rice species (Oryza alta and Oryza punctata). Accordingly, dose- and age-dependent Na+ and H+ fluxes were measured using a non-invasive ion selective vibrating microelectrode (the MIFE technique) to measure potential activity of SOS1-encoded Na+/H+ antiporter genes. Consistent with GUS staining data reported in the literature, rice accessions had (~4-6-fold) greater net Na+ efflux in the root elongation zone (EZ) compared to the mature root zone (MZ). Pharmacological experiments showed that Na+ efflux in root EZ is suppressed by more than 90% by amiloride, indicating the possible involvement of Na+/H+ exchanger activity in root EZ. Within each group (cultivated vs. wild) the magnitude of amiloride-sensitive Na+ efflux was higher in tolerant genotypes; however, the activity of Na+/H+ exchanger was 2-3-fold higher in the cultivated rice compared with their wild counterparts. Gene expression levels of SOS1, SOS2 and SOS3 were upregulated under 24 h salinity treatment in all the tested genotypes, with the highest level of SOS1 transcript detected in salt-tolerant wild rice genotype O. alta (~5-6-fold increased transcript level) followed by another wild rice, O. punctata. There was no significant difference in SOS1 expression observed for cultivated rice (IR1-tolerant and IR29-sensitive) under both 0 and 24 h salinity exposure. Our findings suggest that salt-tolerant cultivated rice relies on the cytosolic Na+ exclusion mechanism to deal with salt stress to a greater extent than wild rice, but its operation seems to be regulated at a post-translational rather than transcriptional level.
Collapse
Affiliation(s)
- Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University; Foshan 528000, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600113, India
| | - Celymar Angela Solis
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - David Page
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| | - Zhong-Hua Chen
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University; Foshan 528000, China
- School of Biological Science, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
5
|
Li C, Duan C, Zhang H, Zhao Y, Meng Z, Zhao Y, Zhang Q. Adaptative Mechanisms of Halophytic Eutrema salsugineum Encountering Saline Environment. FRONTIERS IN PLANT SCIENCE 2022; 13:909527. [PMID: 35837468 PMCID: PMC9274170 DOI: 10.3389/fpls.2022.909527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Salt cress (Eutrema salsugineum), an Arabidopsis-related halophyte, can naturally adapt to various harsh climates and soil conditions; thus, it is considered a desirable model plant for deciphering mechanisms of salt and other abiotic stresses. Accumulating evidence has revealed that compared with Arabidopsis, salt cress possesses stomata that close more tightly and more succulent leaves during extreme salt stress, a noticeably higher level of proline, inositols, sugars, and organic acids, as well as stress-associated transcripts in unstressed plants, and they are induced rapidly under stress. In this review, we systematically summarize the research on the morphology, physiology, genome, gene expression and regulation, and protein and metabolite profile of salt cress under salt stress. We emphasize the latest advances in research on the genome adaptive evolution encountering saline environments, and epigenetic regulation, and discuss the mechanisms underlying salt tolerance in salt cress. Finally, we discuss the existing questions and opportunities for future research in halophytic Eutrema. Together, the review fosters a better understanding of the mechanism of plant salt tolerance and provides a reference for the research and utilization of Eutrema as a model extremophile in the future. Furthermore, the prospects for salt cress applied to explore the mechanism of salt tolerance provide a theoretical basis to develop new strategies for agricultural biotechnology.
Collapse
Affiliation(s)
- Chuanshun Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Chonghao Duan
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Hengyang Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Yaoyao Zhao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Zhe Meng
- Research Team of Plant Pathogen Microbiology and Immunology, College of Life Science, Shandong Normal University, Jinan, China
| | - Yanxiu Zhao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Quan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
6
|
Jabeen Z, Irshad F, Hussain N, Han Y, Zhang G. NHX-Type Na +/H + Antiporter Gene Expression Under Different Salt Levels and Allelic Diversity of HvNHX in Wild and Cultivated Barleys. Front Genet 2022; 12:809988. [PMID: 35273633 PMCID: PMC8902669 DOI: 10.3389/fgene.2021.809988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Salinity tolerance is a multifaceted trait attributed to various mechanisms. Wild barley is highly specialized to grow under severe environmental conditions of Tibet and is well-known for its diverse germplasm with high tolerance to abiotic stresses. The present study focused on determining the profile of the expression of isoforms of the HvNHX gene in 36 wild and two cultivated barley under salt stress. Our findings revealed that in leaves and roots, expression of HvNHX1 and HvNHX3 in XZ16 and CM72 was upregulated at all times as compared with sensitive ones. The HvNHX2 and HvNHX4 isoforms were also induced by salt stress, although not to the same extent as HvNHX1 and HvNHX3. Gene expression analysis revealed that HvNHX1 and HvNHX3 are the candidate genes that could have the function of regulators of ions by sequestration of Na+ in the vacuole. HvNHX1 and HvNHX3 showed a wide range of sequence variations in an amplicon, identified via single-nucleotide polymorphisms (SNPs). Evaluation of the sequencing data of 38 barley genotypes, including Tibetan wild and cultivated varieties, showed polymorphisms, including SNPs, and small insertion and deletion (INDEL) sites in the targeted genes HvNHX1 and HvNHX3. Comprehensive analysis of the results revealed that Tibetan wild barley has distinctive alleles of HvNHX1 and HvNHX3 which confer tolerance to salinity. Furthermore, less sodium accumulation was observed in the root of XZ16 than the other genotypes as visualized by CoroNa-Green, a sodium-specific fluorophore. XZ16 is the tolerant genotype, showing least reduction of root and leaf dry weight under moderate (150 mM) and severe (300 mM) NaCl stress. Evaluation of genetic variation and identification of salt tolerance mechanism in wild barley could be promoting approaches to unravel the novel alleles involved in salinity tolerance.
Collapse
Affiliation(s)
- Zahra Jabeen
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan.,Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Faiza Irshad
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Nazim Hussain
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yong Han
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Guoping Zhang
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Li C, Qi Y, Zhao C, Wang X, Zhang Q. Transcriptome Profiling of the Salt Stress Response in the Leaves and Roots of Halophytic Eutrema salsugineum. Front Genet 2021; 12:770742. [PMID: 34868259 PMCID: PMC8637539 DOI: 10.3389/fgene.2021.770742] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Eutrema salsugineum can grow in natural harsh environments; however, the underlying mechanisms for salt tolerance of Eutrema need to be further understood. Herein, the transcriptome profiling of Eutrema leaves and roots exposed to 300 mM NaCl is investigated, and the result emphasized the role of genes involved in lignin biosynthesis, autophagy, peroxisome, and sugar metabolism upon salt stress. Furthermore, the expression of the lignin biosynthesis and autophagy-related genes, as well as 16 random selected genes, was validated by qRT-PCR. Notably, the transcript abundance of a large number of lignin biosynthesis genes such as CCoAOMT, C4H, CCR, CAD, POD, and C3′H in leaves was markedly elevated by salt shock. And the examined lignin content in leaves and roots demonstrated salt stress led to lignin accumulation, which indicated the enhanced lignin level could be an important mechanism for Eutrema responding to salt stress. Additionally, the differentially expressed genes (DEGs) assigned in the autophagy pathway including Vac8, Atg8, and Atg4, as well as DEGs enriched in the peroxisome pathway such as EsPEX7, EsCAT, and EsSOD2, were markedly induced in leaves and/or roots. In sugar metabolism pathways, the transcript levels of most DEGs associated with the synthesis of sucrose, trehalose, raffinose, and xylose were significantly enhanced. Furthermore, the expression of various stress-related transcription factor genes including WRKY, AP2/ERF-ERF, NAC, bZIP, MYB, C2H2, and HSF was strikingly improved. Collectively, the increased expression of biosynthesis genes of lignin and soluble sugars, as well as the genes in the autophagy and peroxisome pathways, suggested that Eutrema encountering salt shock possibly possess a higher capacity to adjust osmotically and facilitate water transport and scavenge reactive oxidative species and oxidative proteins to cope with the salt environment. Thus, this study provides a new insight for exploring the salt tolerance mechanism of halophytic Eutrema and discovering new gene targets for the genetic improvement of crops.
Collapse
Affiliation(s)
- Chuanshun Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Yuting Qi
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Chuanzhi Zhao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China.,Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Xingjun Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China.,Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Quan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
8
|
Gupta BK, Sahoo KK, Anwar K, Nongpiur RC, Deshmukh R, Pareek A, Singla-Pareek SL. Silicon nutrition stimulates Salt-Overly Sensitive (SOS) pathway to enhance salinity stress tolerance and yield in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:593-604. [PMID: 34186283 DOI: 10.1016/j.plaphy.2021.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/07/2021] [Indexed: 05/27/2023]
Abstract
In rice (Oryza sativa), Si nutrition is known to improve salinity tolerance; however, limited efforts have been made to elucidate the underlying mechanism. Salt-Overly Sensitive (SOS) pathway contributes to salinity tolerance in plants in a major way which works primarily through Na+ exclusion from the cytosol. SOS1, a vital component of SOS pathway is a Na+/H+ antiporter that maintains ion homeostasis. In this study, we evaluated the effect of overexpression of Oryza sativa SOS1 (OsSOS1) in tobacco (cv. Petit Havana) and rice (cv. IR64) for modulating its response towards salinity further exploring its correlation with Si nutrition. OsSOS1 transgenic tobacco plants showed enhanced tolerance to salinity as evident by its high chlorophyll content and maintaining favorable ion homeostasis under salinity stress. Similarly, transgenic rice overexpressing OsSOS1 also showed improved salinity stress tolerance as shown by higher seed germination percentage, seedling survival and low Na+ accumulation under salinity stress. At their mature stage, compared with the non-transgenic plants, the transgenic rice plants showed better growth and maintained better photosynthetic efficiency with reduced chlorophyll loss under stress. Also, roots of transgenic rice plants showed reduced accumulation of Na+ leading to reduced oxidative damage and cell death under salinity stress which ultimately resulted in improved agronomic traits such as higher number of panicles and fertile spikelets per panicle. Si nutrition was found to improve the growth of salinity stressed OsSOS1 rice by upregulating the expression of Si transporters (Lsi1 and Lsi2) that leads to more uptake and accumulation of Si in the rice shoots. Metabolite profiling showed better stress regulatory machinery in the transgenic rice, since they maintained higher abundance of most of the osmolytes and free amino acids.
Collapse
Affiliation(s)
- Brijesh K Gupta
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067, India.
| | - Khirod K Sahoo
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067, India.
| | - Khalid Anwar
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Ramsong C Nongpiur
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067, India.
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India.
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India; National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India.
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067, India.
| |
Collapse
|
9
|
Ali A, Raddatz N, Pardo JM, Yun D. HKT sodium and potassium transporters in Arabidopsis thaliana and related halophyte species. PHYSIOLOGIA PLANTARUM 2021; 171:546-558. [PMID: 32652584 PMCID: PMC8048799 DOI: 10.1111/ppl.13166] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 05/10/2023]
Abstract
High salinity induces osmotic stress and often leads to sodium ion-specific toxicity, with inhibitory effects on physiological, biochemical and developmental pathways. To cope with increased Na+ in soil water, plants restrict influx, compartmentalize ions into vacuoles, export excess Na+ from the cell, and distribute ions between the aerial and root organs. In this review, we discuss our current understanding of how high-affinity K+ transporters (HKT) contribute to salinity tolerance, focusing on HKT1-like family members primarily involved in long-distance transport, and in the recent research in the model plant Arabidopsis and its halophytic counterparts of the Eutrema genus. Functional characterization of the salt overly sensitive (SOS) pathway and HKT1-type transporters in these species indicate that they utilize similar approaches to deal with salinity, regardless of their tolerance.
Collapse
Affiliation(s)
- Akhtar Ali
- Institute of Glocal Disease ControlKonkuk UniversitySeoul05029South Korea
- Department of Biomedical Science & EngineeringKonkuk UniversitySeoul05029South Korea
| | - Natalia Raddatz
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, CSIC‐Universidad de SevillaAmerico Vespucio 49, Sevilla41092Spain
| | - Jose M. Pardo
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, CSIC‐Universidad de SevillaAmerico Vespucio 49, Sevilla41092Spain
| | - Dae‐Jin Yun
- Department of Biomedical Science & EngineeringKonkuk UniversitySeoul05029South Korea
| |
Collapse
|
10
|
de novo transcriptomic profiling of differentially expressed genes in grass halophyte Urochondra setulosa under high salinity. Sci Rep 2021; 11:5548. [PMID: 33692429 PMCID: PMC7970929 DOI: 10.1038/s41598-021-85220-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/22/2021] [Indexed: 01/31/2023] Open
Abstract
Soil salinity is one of the major limiting factors for crop productivity across the world. Halophytes have recently been a source of attraction for exploring the survival and tolerance mechanisms at extreme saline conditions. Urochondra setulosa is one of the obligate grass halophyte that can survive in up to 1000 mM NaCl. The de novo transcriptome of Urochondra leaves at different salt concentrations of 300-500 mM NaCl was generated on Illumina HiSeq. Approximately 352.78 million high quality reads with an average contig length of 1259 bp were assembled de novo. A total of 120,231 unigenes were identified. On an average, 65% unigenes were functionally annotated to known proteins. Approximately 35% unigenes were specific to Urochondra. Differential expression revealed significant enrichment (P < 0.05) of transcription factors, transporters and metabolites suggesting the transcriptional regulation of ion homeostasis and signalling at high salt concentrations in this grass. Also, about 143 unigenes were biologically related to salt stress responsive genes. Randomly selected genes of important pathways were validated for functional characterization. This study provides useful information to understand the gene regulation at extremely saline levels. The study offers the first comprehensive evaluation of Urochondra setulosa leaf transcriptome. Examining non-model organisms that can survive in harsh environment can provide novel insights into the stress coping mechanisms which can be useful to develop improved agricultural crops.
Collapse
|
11
|
Yadav B, Jogawat A, Lal SK, Lakra N, Mehta S, Shabek N, Narayan OP. Plant mineral transport systems and the potential for crop improvement. PLANTA 2021; 253:45. [PMID: 33483879 DOI: 10.1007/s00425-020-03551-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/22/2020] [Indexed: 05/09/2023]
Abstract
Nutrient transporter genes could be a potential candidate for improving crop plants, with enhanced nutrient uptake leading to increased crop yield by providing tolerance against different biotic and abiotic stresses. The world's food supply is nearing a crisis in meeting the demands of an ever-growing global population, and an increase in both yield and nutrient value of major crops is vitally necessary to meet the increased population demand. Nutrients play an important role in plant metabolism as well as growth and development, and nutrient deficiency results in retarded plant growth and leads to reduced crop yield. A variety of cellular processes govern crop plant nutrient absorption from the soil. Among these, nutrient membrane transporters play an important role in the acquisition of nutrients from soil and transport of these nutrients to their target sites. In addition, as excess nutrient delivery has toxic effects on plant growth, these membrane transporters also play a significant role in the removal of excess nutrients in the crop plant. The key function provided by membrane transporters is the ability to supply the crop plant with an adequate level of tolerance against environmental stresses, such as soil acidity, alkalinity, salinity, drought, and pathogen attack. Membrane transporter genes have been utilized for the improvement of crop plants, with enhanced nutrient uptake leading to increased crop yield by providing tolerance against different biotic and abiotic stresses. Further understanding of the basic mechanisms of nutrient transport in crop plants could facilitate the advanced design of engineered plant crops to achieve increased yield and improve nutrient quality through the use of genetic technologies as well as molecular breeding. This review is focused on nutrient toxicity and tolerance mechanisms in crop plants to aid in understanding and addressing the anticipated global food demand.
Collapse
Affiliation(s)
- Bindu Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abhimanyu Jogawat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Shambhu Krishan Lal
- ICAR- Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Nita Lakra
- Department of Biotechnology, CCS HAU, Hisar, India
| | - Sahil Mehta
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Nitzan Shabek
- Department of Plant Biology, University of California, Davis, CA, USA
| | | |
Collapse
|
12
|
Comprehensive proteomic analysis revealing multifaceted regulatory network of the xero-halophyte Haloxylon salicornicum involved in salt tolerance. J Biotechnol 2020; 324:143-161. [DOI: 10.1016/j.jbiotec.2020.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 01/06/2023]
|
13
|
Cesarino I, Dello Ioio R, Kirschner GK, Ogden MS, Picard KL, Rast-Somssich MI, Somssich M. Plant science's next top models. ANNALS OF BOTANY 2020; 126:1-23. [PMID: 32271862 PMCID: PMC7304477 DOI: 10.1093/aob/mcaa063] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/08/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Model organisms are at the core of life science research. Notable examples include the mouse as a model for humans, baker's yeast for eukaryotic unicellular life and simple genetics, or the enterobacteria phage λ in virology. Plant research was an exception to this rule, with researchers relying on a variety of non-model plants until the eventual adoption of Arabidopsis thaliana as primary plant model in the 1980s. This proved to be an unprecedented success, and several secondary plant models have since been established. Currently, we are experiencing another wave of expansion in the set of plant models. SCOPE Since the 2000s, new model plants have been established to study numerous aspects of plant biology, such as the evolution of land plants, grasses, invasive and parasitic plant life, adaptation to environmental challenges, and the development of morphological diversity. Concurrent with the establishment of new plant models, the advent of the 'omics' era in biology has led to a resurgence of the more complex non-model plants. With this review, we introduce some of the new and fascinating plant models, outline why they are interesting subjects to study, the questions they will help to answer, and the molecular tools that have been established and are available to researchers. CONCLUSIONS Understanding the molecular mechanisms underlying all aspects of plant biology can only be achieved with the adoption of a comprehensive set of models, each of which allows the assessment of at least one aspect of plant life. The model plants described here represent a step forward towards our goal to explore and comprehend the diversity of plant form and function. Still, several questions remain unanswered, but the constant development of novel technologies in molecular biology and bioinformatics is already paving the way for the next generation of plant models.
Collapse
Affiliation(s)
- Igor Cesarino
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, Butantã, São Paulo, Brazil
| | - Raffaele Dello Ioio
- Dipartimento di Biologia e Biotecnologie, Università di Roma La Sapienza, Rome, Italy
| | - Gwendolyn K Kirschner
- University of Bonn, Institute of Crop Science and Resource Conservation (INRES), Division of Crop Functional Genomics, Bonn, Germany
| | - Michael S Ogden
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Kelsey L Picard
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Madlen I Rast-Somssich
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, VIC, Australia
| | - Marc Somssich
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
14
|
Sun X, Zheng H, Li J, Liu L, Zhang X, Sui N. Comparative Transcriptome Analysis Reveals New lncRNAs Responding to Salt Stress in Sweet Sorghum. Front Bioeng Biotechnol 2020; 8:331. [PMID: 32351954 PMCID: PMC7174691 DOI: 10.3389/fbioe.2020.00331] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/25/2020] [Indexed: 12/18/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) can enhance plant stress resistance by regulating the expression of functional genes. Sweet sorghum is a salt-tolerant energy crop. However, little is known about how lncRNAs in sweet sorghum respond to salt stress. In this study, we identified 126 and 133 differentially expressed lncRNAs in the salt-tolerant M-81E and the salt-sensitive Roma strains, respectively. Salt stress induced three new lncRNAs in M-81E and inhibited two new lncRNAs in Roma. These lncRNAs included lncRNA13472, lncRNA11310, lncRNA2846, lncRNA26929, and lncRNA14798, which potentially function as competitive endogenous RNAs (ceRNAs) that influence plant responses to salt stress by regulating the expression of target genes related to ion transport, protein modification, transcriptional regulation, and material synthesis and transport. Additionally, M-81E had a more complex ceRNA network than Roma. This study provides new information regarding lncRNAs and the complex regulatory network underlying salt-stress responses in sweet sorghum.
Collapse
Affiliation(s)
- Xi Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hongxiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jinlu Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Luning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.,College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiansheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
15
|
Chakraborty K, Mondal S, Ray S, Samal P, Pradhan B, Chattopadhyay K, Kar MK, Swain P, Sarkar RK. Tissue Tolerance Coupled With Ionic Discrimination Can Potentially Minimize the Energy Cost of Salinity Tolerance in Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:265. [PMID: 32269578 PMCID: PMC7109317 DOI: 10.3389/fpls.2020.00265] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/20/2020] [Indexed: 05/15/2023]
Abstract
Salinity is one of the major constraints in rice production. To date, development of salt-tolerant rice cultivar is primarily focused on salt-exclusion strategies, which incur greater energy cost. The present study aimed to evaluate a balancing strategy of ionic discrimination vis-à-vis tissue tolerance, which could potentially minimize the energy cost of salt tolerance in rice. Four rice genotypes, viz., FL478, IR29, Kamini, and AC847, were grown hydroponically and subjected to salt stress equivalent to 12 dS m-1 at early vegetative stage. Different physiological observations (leaf chlorophyll content, chlorophyll fluorescence traits, and tissue Na+ and K+ content) and visual scoring suggested a superior Na+-partitioning strategy operating in FL478. A very low tissue Na+/K+ ratio in the leaves of FL478 after 7 days of stress hinted the existence of selective ion transport mechanism in this genotype. On the contrary, Kamini, an equally salt-tolerant genotype, was found to possess a higher leaf Na+/K+ ratio than does FL478 under similar stress condition. Salt-induced expression of different Na+ and K+ transporters indicated significant upregulation of SOS, HKT, NHX, and HAK groups of transporters in both leaves and roots of FL478, followed by Kamini. The expression of plasma membrane and vacuolar H+ pumps (OsAHA1, OsAHA7, and OsV-ATPase) were also upregulated in these two genotypes. On the other hand, IR29 and AC847 showed greater salt susceptibility owing to excess upward transport of Na+ and eventually died within a few days of stress imposition. But in the "leaf clip" assay, it was found that both IR29 and Kamini had high tissue-tolerance and chlorophyll-retention abilities. On the contrary, FL478, although having higher ionic-discrimination ability, showed the least degree of tissue tolerance as evident from the LC50 score (amount of Na+ required to reduce the initial chlorophyll content to half) of 336 mmol g-1 as against 459 and 424 mmol g-1 for IR29 and Kamini, respectively. Overall, the present study indicated that two components (ionic selectivity and tissue tolerance) of salt tolerance mechanism are distinct in rice. Unique genotypes like Kamini could effectively balance both of these strategies to achieve considerable salt tolerance, perhaps with lesser energy cost.
Collapse
|
16
|
Tanveer M, Shabala S. Neurotransmitters in Signalling and Adaptation to Salinity Stress in Plants. NEUROTRANSMITTERS IN PLANT SIGNALING AND COMMUNICATION 2020. [DOI: 10.1007/978-3-030-54478-2_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Chakraborty K, Chattaopadhyay K, Nayak L, Ray S, Yeasmin L, Jena P, Gupta S, Mohanty SK, Swain P, Sarkar RK. Ionic selectivity and coordinated transport of Na + and K + in flag leaves render differential salt tolerance in rice at the reproductive stage. PLANTA 2019; 250:1637-1653. [PMID: 31399792 DOI: 10.1007/s00425-019-03253-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/01/2019] [Indexed: 05/27/2023]
Abstract
The present study shows that salt tolerance in the reproductive stage of rice is primarily governed by the selective Na+ and K+ transport from the root to upper plant parts. Ionic discrimination at the flag leaf, governed by differential expression of Na+- and K+-specific transporters/ion pumps, is associated with reduced spikelet sterility and reproductive stage salt tolerance. Reproductive stage salt tolerance is crucial in rice to guarantee yield under saline condition. In the present study, differential ionic selectivity and the coordinated transport (from root to flag leaf) of Na+ and K+ were investigated to assess their impact on reproductive stage salt tolerance. Four rice genotypes having differential salt sensitivity were subjected to reproductive stage salinity stress in pots. The selective Na+ and K+ transport from the root to upper plant parts was observed in tolerant genotypes. We noticed that prolonged salt exposure did not alter flag leaf greenness even up to 6 weeks; however, it had a detrimental effect on panicle development especially in the salt-susceptible genotype Sabita. But more precise chlorophyll fluorescence imaging analysis revealed salinity-induced damages in Sabita. The salt-tolerant genotype Pokkali (AC41585), a potential Na+ excluder, managed to sequester higher Na+ load in the roots with little upward transport as evident from greater expression of HKT1 and HKT2 transporters. In contrast, the moderately salt-tolerant Lunidhan was less selective in Na+ transport, but possessed a higher capacity to Na+ sequestration in leaves. Higher K+ uptake and tissue-specific redistribution mediated by HAK and AKT transporters showed robust control in selective K+ movement from the root to flag leaf and developing panicles. On the contrary, expressions of Na+-specific transporters in developing panicles were either down-regulated or unaffected in tolerant and moderately tolerant genotypes. Yet, in the panicles of the susceptible genotype Sabita, some of the Na+-specific transporter genes (SOS1, HKT1;5, HKT2;4) were upregulated. Apart from the ionic regulation strategy, cellular energy balance mediated by different plasma-membrane and tonoplastic H+-pumps were also associated with the reproductive stage salt tolerance in rice.
Collapse
Affiliation(s)
| | | | - Lopamudra Nayak
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Soham Ray
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Lucina Yeasmin
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Priyanka Jena
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Sunanda Gupta
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Sangram K Mohanty
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Padmini Swain
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Ramani K Sarkar
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| |
Collapse
|
18
|
Effect of salt stress on the genes expression of the vacuolar H + -pyrophosphatase and Na +/H + antiporter in Rubia tinctorum. Mol Biol Rep 2019; 47:235-245. [PMID: 31617029 DOI: 10.1007/s11033-019-05124-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/09/2019] [Indexed: 10/25/2022]
Abstract
Salinity which covers vast areas of the world is increasing every year. But some plants like madder can grow in these areas. Madder (Rubia tinctorum) is a perennial plant species from the Rubiaceae family. In this study, madder plants were first treated by different concentration of NaCl (100, 200, 300, and 400 mM). Then gene expression of salinity stress was studied. For gene study, vacuolar H+-pyrophosphatase pump (AVP) and tonoplast Na+/H+ antiporters (NHX) from madder plant were isolated and sequenced. Analyzing protein sequences of these genes demonstrated that the protein sequences have high similarity with the same genes in other plants. Constructing phylogenetic trees based on the protein sequences of the AVP and NHX genes, we found high similarity with Coffea arabica and Capsicum annuum, respectively. Studying gene expression of the AVP and NHX under the condition of salt stress revealed that the genes were up-regulated, which continues up to 400 mM of salt concentration.
Collapse
|
19
|
Wu H, Shabala L, Zhou M, Su N, Wu Q, Ul-Haq T, Zhu J, Mancuso S, Azzarello E, Shabala S. Root vacuolar Na + sequestration but not exclusion from uptake correlates with barley salt tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:55-67. [PMID: 31148333 DOI: 10.1111/tpj.14424] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 05/24/2023]
Abstract
Soil salinity is a major constraint for the global agricultural production. For many decades, Na+ exclusion from uptake has been the key trait targeted in breeding programs; yet, no major breakthrough in creating salt-tolerant germplasm was achieved. In this work, we have combined the microelectrode ion flux estimation (MIFE) technique for non-invasive ion flux measurements with confocal fluorescence dye imaging technique to screen 45 accessions of barley to reveal the relative contribution of Na+ exclusion from the cytosol to the apoplast and its vacuolar sequestration in the root apex, for the overall salinity stress tolerance. We show that Na+ /H+ antiporter-mediated Na+ extrusion from the root plays a minor role in the overall salt tolerance in barley. At the same time, a strong and positive correlation was found between root vacuolar Na+ sequestration ability and the overall salt tolerance. The inability of salt-sensitive genotypes to sequester Na+ in root vacuoles was in contrast to significantly higher expression levels of both HvNHX1 tonoplast Na+ /H+ antiporters and HvVP1 H+ -pumps compared with tolerant genotypes. These data are interpreted as a failure of sensitive varieties to prevent Na+ back-leak into the cytosol and existence of a futile Na+ cycle at the tonoplast. Taken together, our results demonstrated that root vacuolar Na+ sequestration but not exclusion from uptake played the main role in barley salinity tolerance, and suggested that the focus of the breeding programs should be shifted from targeting genes mediating Na+ exclusion from uptake by roots to more efficient root vacuolar Na+ sequestration.
Collapse
Affiliation(s)
- Honghong Wu
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
| | - Nana Su
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
| | - Qi Wu
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
| | - Tanveer Ul-Haq
- Department of Soil and Environmental Sciences, MNS University of Agriculture, Multan, 60000, Pakistan
| | - Juan Zhu
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
| | - Stefano Mancuso
- Department of Horticulture, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Elisa Azzarello
- Department of Horticulture, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
- International Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| |
Collapse
|
20
|
Feng L, Xu W, Sun N, Mandal S, Wang H, Geng Z. Efficient improvement of soil salinization through phytoremediation induced by chemical remediation in extreme arid land northwest China. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 22:334-341. [PMID: 31523977 DOI: 10.1080/15226514.2019.1663483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study investigated the influence of chemical remediation agents (Bc, M, HA, and Bc + HA) on the growth of the halophyte Lycium ruthenicum and the mechanism of restoration of soil salinization using joint halophyte and chemical remediation in arid fields. The results showed that aboveground organ biomass of L. ruthenicum increased significantly with the chemical remediation agents analyze but the effects on the root system were different. Among the root traits, dry weight of the taproot of L. ruthenicum increased significantly (p < 0.05) by 60.57% with HA; however, the lateral roots were inhibited. With the addition of biochar, the content of sodium ions in roots increased significantly. Further analysis showed that endogenous manganese (Mn) promoted K+ absorption concentration increase from 22.09 to 38.28 g/kg. Moreover, Joint L. ruthenicum and chemical remediation with Bc, HA, M and Bc + HA reduced Na+ to 5854.76, 9396.19, 6530.95 and 11164.29 g/(kg DW⋅m2·a), respectively. Tests revealed that for L. ruthenicum, the aboveground biomass and root morphological plasticity, as well as the synergistic effect of K+ on Na+ transport capacity influenced by endogenous Mn in leaves, were the primary causes of the efficient improvement of saline-alkali land.
Collapse
Affiliation(s)
- Lei Feng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- Institute of Soil Fertilizer and Water Conservation of Xinjiang Academy of Agricultural Sciences, Urumchi, China
| | - Wanli Xu
- Institute of Soil Fertilizer and Water Conservation of Xinjiang Academy of Agricultural Sciences, Urumchi, China
| | - Ningchuan Sun
- Institute of Soil Fertilizer and Water Conservation of Xinjiang Academy of Agricultural Sciences, Urumchi, China
| | - Sanchita Mandal
- Future Industries Institute, University of South Australia, Adelaide, Australia
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Hailong Wang
- School of Environmental and Resource Sciences, Zhejiang A&F University, Zhejiang, China
- School of Environmental and Chemical Engineering, Foshan University, Foshan, China
| | - Zengchao Geng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| |
Collapse
|
21
|
Fu C, Hou Y, Ge J, Zhang L, Liu X, Huo P, Liu J. Increased fes1a thermotolerance is induced by BAG6 knockout. PLANT MOLECULAR BIOLOGY 2019; 100:73-82. [PMID: 30796711 DOI: 10.1007/s11103-019-00844-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 02/14/2019] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE: (1) The fes1a bag6 double mutant shows an increased short term thermotolerance compared to fes1a. BAG6 is a suppressor of Fes1A; (2) IQ motif is essential to effective performance of BAG6. (3) Calmodulin was involved in signal transduction. (4) BAG6 is localized in the nucleus. HSP70s play an important role in the heat-induced stress tolerance of plants. However, effective HSP70 function requires the assistance of many co-chaperones. BAG6 and Fes1A are HSP70-binding proteins that are critical for Arabidopsis thaliana thermotolerance. Despite this importance, little is known about how these co-chaperones interact. In this study, we assessed the thermotolerance of a fes1a bag6 double mutant. We found that the fes1a bag6 double mutant shows an increased short-term thermotolerance compared to fes1a. However, calmodulin inhibitors diminished this enhanced thermotolerance in the fes1a bag6 double mutant. In addition, we found the IQ motif to be essential for effective BAG6 performance. Since BAG6 is localized in the nucleus, the signal transduction is likely to involve nuclear calcium signaling.
Collapse
Affiliation(s)
- Can Fu
- College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
- College of Biotechnology, Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Yanfei Hou
- College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Jingjing Ge
- College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Limin Zhang
- College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Xiaxia Liu
- College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Panfei Huo
- College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Jian Liu
- College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China.
| |
Collapse
|
22
|
Nawaz I, Iqbal M, Hakvoort HWJ, de Boer AH, Schat H. Analysis of Arabidopsis thaliana HKT1 and Eutrema salsugineum/botschantzevii HKT1;2 Promoters in Response to Salt Stress in Athkt1:1 Mutant. Mol Biotechnol 2019; 61:442-450. [DOI: 10.1007/s12033-019-00175-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Bazihizina N, Colmer TD, Cuin TA, Mancuso S, Shabala S. Friend or Foe? Chloride Patterning in Halophytes. TRENDS IN PLANT SCIENCE 2019; 24:142-151. [PMID: 30558965 DOI: 10.1016/j.tplants.2018.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/11/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
In this opinion article, we challenge the traditional view that breeding for reduced Cl- uptake would benefit plant salinity tolerance. A negative correlation between shoot Cl- concentration and plant biomass does not hold for halophytes - naturally salt tolerant species. We argue that, under physiologically relevant conditions, Cl- uptake requires plants to invest metabolic energy, and that the poor selectivity of Cl--transporting proteins may explain the reported negative correlation between Cl- accumulation and crop salinity tolerance. We propose a new paradigm: salinity tolerance could be achieved by improving the selectivity of some of the broadly selective anion-transporting proteins (e.g., for NO3->Cl-), alongside tight control of Cl- uptake, rather than targeting traits mediating its efflux from the root.
Collapse
Affiliation(s)
- Nadia Bazihizina
- Department of Agrifood Production and Environmental Sciences, Università degli Studi di Firenze, Viale delle Idee 30, 50019 Sesto Fiorentino, Florence, Italy; Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia.
| | - Timothy D Colmer
- UWA School of Agriculture and Environment, Faculty of Science, University of Western Australia (UWA), 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Tracey Ann Cuin
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| | - Stefano Mancuso
- Department of Agrifood Production and Environmental Sciences, Università degli Studi di Firenze, Viale delle Idee 30, 50019 Sesto Fiorentino, Florence, Italy
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia.
| |
Collapse
|
24
|
Maggio A, Bressan RA, Zhao Y, Park J, Yun DJ. It's Hard to Avoid Avoidance: Uncoupling the Evolutionary Connection between Plant Growth, Productivity and Stress "Tolerance". Int J Mol Sci 2018; 19:E3671. [PMID: 30463352 PMCID: PMC6274854 DOI: 10.3390/ijms19113671] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 12/03/2022] Open
Abstract
In the last 100 years, agricultural developments have favoured selection for highly productive crops, a fact that has been commonly associated with loss of key traits for environmental stress tolerance. We argue here that this is not exactly the case. We reason that high yield under near optimal environments came along with hypersensitization of plant stress perception and consequently early activation of stress avoidance mechanisms, such as slow growth, which were originally needed for survival over long evolutionary time periods. Therefore, mechanisms employed by plants to cope with a stressful environment during evolution were overwhelmingly geared to avoid detrimental effects so as to ensure survival and that plant stress "tolerance" is fundamentally and evolutionarily based on "avoidance" of injury and death which may be referred to as evolutionary avoidance (EVOL-Avoidance). As a consequence, slow growth results from being exposed to stress because genes and genetic programs to adjust growth rates to external circumstances have evolved as a survival but not productivity strategy that has allowed extant plants to avoid extinction. To improve productivity under moderate stressful conditions, the evolution-oriented plant stress response circuits must be changed from a survival mode to a continued productivity mode or to avoid the evolutionary avoidance response, as it were. This may be referred to as Agricultural (AGRI-Avoidance). Clearly, highly productive crops have kept the slow, reduced growth response to stress that they evolved to ensure survival. Breeding programs and genetic engineering have not succeeded to genetically remove these responses because they are polygenic and redundantly programmed. From the beginning of modern plant breeding, we have not fully appreciated that our crop plants react overly-cautiously to stress conditions. They over-reduce growth to be able to survive stresses for a period of time much longer than a cropping season. If we are able to remove this polygenic redundant survival safety net we may improve yield in moderately stressful environments, yet we will face the requirement to replace it with either an emergency slow or no growth (dormancy) response to extreme stress or use resource management to rescue crops under extreme stress (or both).
Collapse
Affiliation(s)
- Albino Maggio
- Department of Agricultural Science, University of Napoli Federico II, 80055 Portici, NA, Italy.
| | - Ray A Bressan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907-2010, USA.
| | - Yang Zhao
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Junghoon Park
- Department of Biomedical Science and Engineering Konkuk University, Seoul 05029, Korea.
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
25
|
Fan Y, Wan S, Jiang Y, Xia Y, Chen X, Gao M, Cao Y, Luo Y, Zhou Y, Jiang X. Over-expression of a plasma membrane H +-ATPase SpAHA1 conferred salt tolerance to transgenic Arabidopsis. PROTOPLASMA 2018; 255:1827-1837. [PMID: 29948367 DOI: 10.1007/s00709-018-1275-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/01/2018] [Indexed: 05/09/2023]
Abstract
The SpAHA1 gene, encoding a plasma membrane (PM) H+-ATPase (AHA) in Sesuvium portulacastrum, was transformed into Arabidopsis plants, and its expression increased salinity tolerance of transgenic Arabidopsis plants: seed germination ratio, root growth, and biomass of transgenic plants were greater compared to wild-type plants under NaCl treatment condition. Upon salinity stress, both Na+ and H+ effluxes in the roots of SpAHA1 expressing plants were faster than those of untransformed plants. Transformed plants with SpAHA1 had lower Na+ and higher K+ contents relative to wild-type plants when treated with NaCl, resulting in greater K+/Na+ ratio in transgenic plants than in wild-type plants under salt stress. Extent of oxidative stress increased in both transgenic and wild-type plants exposed to salinity stress, but overexpression of SpAHA1 could alleviate the accumulation of hydrogen peroxide (H2O2) induced by NaCl treatment in transgenic plants relative to wild-type plants; the content of malondialdehyde (MDA) was lower in transgenic plants than that in wild-type plants under salinity stress. These results suggest that the higher H+-pumping activity generated by SpAHA1 improved the growth of transgenic plants via regulating ion and reactive oxygen species (ROS) homeostasis in plant cells under salinity stress.
Collapse
Affiliation(s)
- Yafei Fan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources /Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Shumin Wan
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Yingshuo Jiang
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Youquan Xia
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Xiaohui Chen
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Mengze Gao
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Yuxin Cao
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Yuehua Luo
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Yang Zhou
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| | - Xingyu Jiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources /Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
26
|
Kazachkova Y, Eshel G, Pantha P, Cheeseman JM, Dassanayake M, Barak S. Halophytism: What Have We Learnt From Arabidopsis thaliana Relative Model Systems? PLANT PHYSIOLOGY 2018; 178:972-988. [PMID: 30237204 PMCID: PMC6236594 DOI: 10.1104/pp.18.00863] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/31/2018] [Indexed: 05/06/2023]
Abstract
Halophytes are able to thrive in salt concentrations that would kill 99% of other plant species, and identifying their salt-adaptive mechanisms has great potential for improving the tolerance of crop plants to salinized soils. Much research has focused on the physiological basis of halophyte salt tolerance, whereas the elucidation of molecular mechanisms has traditionally lagged behind due to the absence of a model halophyte system. However, over the last decade and a half, two Arabidopsis (Arabidopsis thaliana) relatives, Eutrema salsugineum and Schrenkiella parvula, have been established as transformation-competent models with various genetic resources including high-quality genome assemblies. These models have facilitated powerful comparative analyses with salt-sensitive Arabidopsis to unravel the genetic adaptations that enable a halophytic lifestyle. The aim of this review is to explore what has been learned about halophytism using E. salsugineum and S. parvula We consider evidence from physiological and molecular studies suggesting that differences in salt tolerance between related halophytes and salt-sensitive plants are associated with alterations in the regulation of basic physiological, biochemical, and molecular processes. Furthermore, we discuss how salt tolerance mechanisms of the halophytic models are reflected at the level of their genomes, where evolutionary processes such as subfunctionalization and/or neofunctionalization have altered the expression and/or functions of genes to facilitate adaptation to saline conditions. Lastly, we summarize the many areas of research still to be addressed with E. salsugineum and S. parvula as well as obstacles hindering further progress in understanding halophytism.
Collapse
Affiliation(s)
- Yana Kazachkova
- French Associates' Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Gil Eshel
- French Associates' Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Pramod Pantha
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - John M Cheeseman
- Department of Plant Biology, University of Illinois, Urbana, Illinois 61801
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Simon Barak
- French Associates' Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| |
Collapse
|
27
|
Nikalje GC, Variyar PS, Joshi MV, Nikam TD, Suprasanna P. Temporal and spatial changes in ion homeostasis, antioxidant defense and accumulation of flavonoids and glycolipid in a halophyte Sesuvium portulacastrum (L.) L. PLoS One 2018; 13:e0193394. [PMID: 29641593 PMCID: PMC5894978 DOI: 10.1371/journal.pone.0193394] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 02/10/2018] [Indexed: 11/18/2022] Open
Abstract
Salinity is an important environmental constraint limiting plant productivity. Understanding adaptive responses of halophytes to high saline environments may offer clues to manage and improve salt stress in crop plants. We have studied physiological, biochemical and metabolic changes in a perennial, fast growing halophyte, Sesuvium portulacastrum under 0 mM (control), 150 mM (low salt, LS) and 500 mM (high salt, HS) NaCl treatments. The changes in growth, relative water content, cation, osmolyte accumulation, H2O2 and antioxidant enzyme activity (SOD, CAT and APX) were observed under different treatment conditions. A positive correlation was revealed for sodium ion accumulation with malondialdehyde (r2 = 0.77), proline (r2 = 0.88) and chlorophyll content (r2 = 0.82) under salt treatment while a negative correlation was observed with relative tissue water content (r2 = -0.73). The roots and leaves showed contrasting accumulation of potassium and sodium ions under LS treatment. Temporal and spatial study of sodium and potassium ion content indicated differential accumulation pattern in roots and leaves, and, high potassium levels in root. Higher H2O2 content was recorded in roots than leaves and the antioxidant enzyme activities also showed significant induction under salt treatment conditions. Gene expression profiling of sodium transporters, Sodium proton exchanger (NHX3), Vacuolar ATPase (vATPase) and Salt overly sensitive1 (SOS1) showed up regulation under salt stress after 6-24 hr of NaCl treatment. Metabolite changes in the salt stressed leaves showed increased accumulation of flavonoids (3,5-dihydroxy-6,4'-dimethoxy-flavone-7-O-[α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside], and3,5-dihydroxy-6,3',4'-trimethoxy-flavone-7-O-[α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside] in both LS and HS treatments, while a glycolipid, 1-O-linolenyl-2-O-(palmitoyl)-3-O-galactopyranosyl glycerol, accumulated more in LS over HS treatments and control. The results suggest that differential spatial and temporal cation levels in roots and leaves, and accumulation of flavanoid and glycolipid could be responsible for salt adaptation of S. portulacastrum.
Collapse
Affiliation(s)
- Ganesh C. Nikalje
- Department of Botany, Savitribai Phule Pune University, Pune, India
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Department of Botany, R.K. Talreja College of Arts, Science and Commerce, Ulhasnagar, Thane, India
| | - P. S. Variyar
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - M. V. Joshi
- National Facility for High-field NMR, Tata Institute of Fundamental Research, Mumbai, India
| | - T. D. Nikam
- Department of Botany, Savitribai Phule Pune University, Pune, India
| | - P. Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| |
Collapse
|
28
|
Meng L, Li S, Guo J, Guo Q, Mao P, Tian X. Molecular cloning and functional characterisation of an H +-pyrophosphatase from Iris lactea. Sci Rep 2017; 7:17779. [PMID: 29259318 PMCID: PMC5736642 DOI: 10.1038/s41598-017-18032-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/05/2017] [Indexed: 11/18/2022] Open
Abstract
Tonoplast H+-pyrophosphatases (VPs) mediate vacuolar Na+ sequestration, a process important for salt tolerance of plants. The function of VP in the highly drought- and salt-tolerant perennial Iris lactea under salt stress is unclear. Here, we isolated IlVP from I. lactea and investigated its function in transgenic tobacco. IlVP was found to comprise 771 amino acid residues and showed 88% similarity with Arabidopsis AtVP1. IlVP was mainly expressed in shoots and was up-regulated by salt stress. Overexpression of IlVP enhanced growth of transgenic tobacco plants compared with wild-type (WT) plants exposed to salt stress. Transgenic plants accumulated higher quantities of Na+ and K+ in leaves, stems, and roots under salt stress, which caused higher leaf relative water content and decreased cell membrane damage compared with WT plants. Overall, IlVP encoding a tonoplast H+-pyrophosphatase can reduce Na+ toxicity in plant cells through increased sequestration of ions into vacuoles by enhanced H+-pyrophosphatase activity.
Collapse
Affiliation(s)
- Lin Meng
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, P. R. China.
| | - Shanshan Li
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, P. R. China
| | - Jingya Guo
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, P. R. China
| | - Qiang Guo
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, P. R. China
| | - Peichun Mao
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, P. R. China
| | - Xiaoxia Tian
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, P. R. China
| |
Collapse
|
29
|
Adem GD, Roy SJ, Huang Y, Chen ZH, Wang F, Zhou M, Bowman JP, Holford P, Shabala S. Expressing Arabidopsis thaliana V-ATPase subunit C in barley (Hordeum vulgare) improves plant performance under saline condition by enabling better osmotic adjustment. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:1147-1159. [PMID: 32480640 DOI: 10.1071/fp17133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/28/2017] [Indexed: 06/11/2023]
Abstract
Salinity is a global problem affecting agriculture that results in an estimated US$27 billion loss in revenue per year. Overexpression of vacuolar ATPase subunits has been shown to be beneficial in improving plant performance under saline conditions. Most studies, however, have not shown whether overexpression of genes encoding ATPase subunits results in improvements in grain yield, and have not investigated the physiological mechanisms behind the improvement in plant growth. In this study, we constitutively expressed Arabidopsis Vacuolar ATPase subunit C (AtVHA-C) in barley. Transgenic plants were assessed for agronomical and physiological characteristics, such as fresh and dry biomass, leaf pigment content, stomatal conductance, grain yield, and leaf Na+ and K+ concentration, when grown in either 0 or 300mM NaCl. When compared with non-transformed barley, AtVHA-C expressing barley lines had a smaller reduction in both biomass and grain yield under salinity stress. The transgenic lines accumulated Na+ and K+ in leaves for osmotic adjustment. This in turn saves energy consumed in the synthesis of organic osmolytes that otherwise would be needed for osmotic adjustment.
Collapse
Affiliation(s)
- Getnet D Adem
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | - Stuart J Roy
- Australian Centre for Plant Functional Genomics, Private Mail Bag 1, Glen Osmond, SA 5064, Australia
| | - Yuqing Huang
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Zhong-Hua Chen
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Feifei Wang
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | - Meixue Zhou
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | - John P Bowman
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | - Paul Holford
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| |
Collapse
|
30
|
A proteomic analysis of salt stress response in seedlings of two African rice cultivars. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1570-8. [DOI: 10.1016/j.bbapap.2016.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/08/2016] [Accepted: 08/15/2016] [Indexed: 11/20/2022]
|
31
|
Lee YP, Funk C, Erban A, Kopka J, Köhl KI, Zuther E, Hincha DK. Salt stress responses in a geographically diverse collection of Eutrema/Thellungiella spp. accessions. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:590-606. [PMID: 32480489 DOI: 10.1071/fp15285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 12/10/2015] [Indexed: 05/13/2023]
Abstract
Salinity strongly impairs plant growth and development. Natural genetic variation can be used to dissect complex traits such as plant salt tolerance. We used 16 accessions of the halophytic species Eutrema salsugineum (previously called Thellungiella salsuginea (Pallas) O.E.Schulz, Thellungiella halophila (C.A.Meyer) O.E. Schulz and Thellungiella botschantzevii D.A.German to investigate their natural variation in salinity tolerance. Although all accessions showed survival and growth up to 700mM NaCl in hydroponic culture, their relative salt tolerance varied considerably. All accessions accumulated the compatible solutes proline, sucrose, glucose and fructose and the polyamines putrescine and spermine. Relative salt tolerance was not correlated with the content of any of the investigated solutes. We compared the metabolomes and transcriptomes of Arabidopsis thaliana (L. Heynh.) Col-0 and E. salsugineum Yukon under control and salt stress conditions. Higher content of several metabolites in Yukon compared with Col-0 under control conditions indicated metabolic pre-adaptation to salinity in the halophyte. Most metabolic salt responses in Yukon took place at 200mM NaCl, whereas few additional changes were observed between 200 and 500mM. The opposite trend was observed for the transcriptome, with only little overlap between salt-regulated genes in the two species. In addition, only about half of the salt-regulated Yukon unigenes had orthologues in Col-0.
Collapse
Affiliation(s)
- Yang Ping Lee
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Christian Funk
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Alexander Erban
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Joachim Kopka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Karin I Köhl
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Ellen Zuther
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Dirk K Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany
| |
Collapse
|
32
|
Ben Hamed-Laouti I, Arbelet-Bonnin D, De Bont L, Biligui B, Gakière B, Abdelly C, Ben Hamed K, Bouteau F. Comparison of NaCl-induced programmed cell death in the obligate halophyte Cakile maritima and the glycophyte Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 247:49-59. [PMID: 27095399 DOI: 10.1016/j.plantsci.2016.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
Salinity represents one of the most important constraints that adversely affect plants growth and productivity. In this study, we aimed at determining possible differences between salt tolerant and salt sensitive species in early salt stress response. To this purpose, we subjected suspension-cultured cells from the halophyte Cakile maritima and the glycophyte Arabidopsis thaliana, two Brassicaceae, to salt stress and compared their behavior. In both species we could observe a time and dose dependent programmed cell death requiring an active metabolism, a dysfunction of mitochondria and caspase-like activation although C. maritima cells appeared less sensitive than A. thaliana cells. This capacity to mitigate salt stress could be due to a higher ascorbate pool that could allow C. maritima reducing the oxidative stress generated in response to NaCl. It further appeared that a higher number of C. maritima cultured cells when compared to A. thaliana could efficiently manage the Na(+) accumulation into the cytoplasm through non selective cation channels allowing also reducing the ROS generation and the subsequent cell death.
Collapse
Affiliation(s)
- Ibtissem Ben Hamed-Laouti
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France; Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, University of Carthage-Tunis, BP 901, 2050 Hammam Lif, Tunisia
| | - Delphine Arbelet-Bonnin
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
| | - Linda De Bont
- Institute of Plant Sciences-Paris-Saclay (UMR 9213) Bât. 630, 91405 Orsay, France
| | - Bernadette Biligui
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
| | - Bertrand Gakière
- Institute of Plant Sciences-Paris-Saclay (UMR 9213) Bât. 630, 91405 Orsay, France
| | - Chedly Abdelly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, University of Carthage-Tunis, BP 901, 2050 Hammam Lif, Tunisia
| | - Karim Ben Hamed
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, University of Carthage-Tunis, BP 901, 2050 Hammam Lif, Tunisia
| | - François Bouteau
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France.
| |
Collapse
|
33
|
Barkla BJ, Vera-Estrella R, Raymond C. Single-cell-type quantitative proteomic and ionomic analysis of epidermal bladder cells from the halophyte model plant Mesembryanthemum crystallinum to identify salt-responsive proteins. BMC PLANT BIOLOGY 2016; 16:110. [PMID: 27160145 PMCID: PMC4862212 DOI: 10.1186/s12870-016-0797-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 05/02/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Epidermal bladder cells (EBC) are large single-celled, specialized, and modified trichomes found on the aerial parts of the halophyte Mesembryanthemum crystallinum. Recent development of a simple but high throughput technique to extract the contents from these cells has provided an opportunity to conduct detailed single-cell-type analyses of their molecular characteristics at high resolution to gain insight into the role of these cells in the salt tolerance of the plant. RESULTS In this study, we carry out large-scale complementary quantitative proteomic studies using both a label (DIGE) and label-free (GeLC-MS) approach to identify salt-responsive proteins in the EBC extract. Additionally we perform an ionomics analysis (ICP-MS) to follow changes in the amounts of 27 different elements. Using these methods, we were able to identify 54 proteins and nine elements that showed statistically significant changes in the EBC from salt-treated plants. GO enrichment analysis identified a large number of transport proteins but also proteins involved in photosynthesis, primary metabolism and Crassulacean acid metabolism (CAM). Validation of results by western blot, confocal microscopy and enzyme analysis helped to strengthen findings and further our understanding into the role of these specialized cells. As expected EBC accumulated large quantities of sodium, however, the most abundant element was chloride suggesting the sequestration of this ion into the EBC vacuole is just as important for salt tolerance. CONCLUSIONS This single-cell type omics approach shows that epidermal bladder cells of M. crystallinum are metabolically active modified trichomes, with primary metabolism supporting cell growth, ion accumulation, compatible solute synthesis and CAM. Data are available via ProteomeXchange with identifier PXD004045.
Collapse
Affiliation(s)
- Bronwyn J Barkla
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia.
| | - Rosario Vera-Estrella
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, MOR, México
| | - Carolyn Raymond
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| |
Collapse
|
34
|
Gupta DB, Rai Y, Gayali S, Chakraborty S, Chakraborty N. Plant Organellar Proteomics in Response to Dehydration: Turning Protein Repertoire into Insights. FRONTIERS IN PLANT SCIENCE 2016; 7:460. [PMID: 27148291 PMCID: PMC4829595 DOI: 10.3389/fpls.2016.00460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/24/2016] [Indexed: 05/29/2023]
Abstract
Stress adaptation or tolerance in plants is a complex phenomenon involving changes in physiological and metabolic processes. Plants must develop elaborate networks of defense mechanisms, and adapt to and survive for sustainable agriculture. Water-deficit or dehydration is the most critical environmental factor that plants are exposed to during their life cycle, which influences geographical distribution and productivity of many crop species. The cellular responses to dehydration are orchestrated by a series of multidirectional relays of biochemical events at organelle level. The new challenge is to dissect the underlying mechanisms controlling the perception of stress signals and their transmission to cellular machinery for activation of adaptive responses. The completeness of current descriptions of spatial distribution of proteins, the relevance of subcellular locations in diverse functional processes, and the changes of protein abundance in response to dehydration hold the key to understanding how plants cope with such stress conditions. During past decades, organellar proteomics has proved to be useful not only for deciphering reprograming of plant responses to dehydration, but also to dissect stress-responsive pathways. This review summarizes a range of organellar proteomics investigations under dehydration to gain a holistic view of plant responses to water-deficit conditions, which may facilitate future efforts to develop genetically engineered crops for better adaptation.
Collapse
Affiliation(s)
- Deepti B. Gupta
- Department of Biotechnology, TERI UniversityNew Delhi, India
| | - Yogita Rai
- Department of Biotechnology, TERI UniversityNew Delhi, India
| | - Saurabh Gayali
- National Institute of Plant Genome Research, Jawaharlal Nehru University CampusNew Delhi, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University CampusNew Delhi, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University CampusNew Delhi, India
| |
Collapse
|
35
|
Shabala S, Bose J, Fuglsang AT, Pottosin I. On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1015-31. [PMID: 26507891 DOI: 10.1093/jxb/erv465] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Abiotic stresses such as salinity, drought, and flooding severely limit food and fibre production and result in penalties of in excess of US$100 billion per annum to the agricultural sector. Improved abiotic stress tolerance to these environmental constraints via traditional or molecular breeding practices requires a good understanding of the physiological and molecular mechanisms behind roots sensing of hostile soils, as well as downstream signalling cascades to effectors mediating plant adaptive responses to the environment. In this review, we discuss some common mechanisms conferring plant tolerance to these three major abiotic stresses. Central to our discussion are: (i) the essentiality of membrane potential maintenance and ATP production/availability and its use for metabolic versus adaptive responses; (ii) reactive oxygen species and Ca(2+) 'signatures' mediating stress signalling; and (iii) cytosolic K(+) as the common denominator of plant adaptive responses. We discuss in detail how key plasma membrane and tonoplast transporters are regulated by various signalling molecules and processes observed in plants under stress conditions (e.g. changes in membrane potential; cytosolic pH and Ca(2+); reactive oxygen species; polyamines; abscisic acid) and how these stress-induced changes are related to expression and activity of specific ion transporters. The reported results are then discussed in the context of strategies for breeding crops with improved abiotic stress tolerance. We also discuss a classical trade-off between tolerance and yield, and possible avenues for resolving this dilemma.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia
| | - Jayakumar Bose
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Anja Thoe Fuglsang
- Department of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Igor Pottosin
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 28045 Colima, México
| |
Collapse
|
36
|
Kazachkova Y, Khan A, Acuña T, López-Díaz I, Carrera E, Khozin-Goldberg I, Fait A, Barak S. Salt Induces Features of a Dormancy-Like State in Seeds of Eutrema (Thellungiella) salsugineum, a Halophytic Relative of Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:1071. [PMID: 27536302 PMCID: PMC4971027 DOI: 10.3389/fpls.2016.01071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/07/2016] [Indexed: 05/08/2023]
Abstract
The salinization of land is a major factor limiting crop production worldwide. Halophytes adapted to high levels of salinity are likely to possess useful genes for improving crop tolerance to salt stress. In addition, halophytes could provide a food source on marginal lands. However, despite halophytes being salt-tolerant plants, the seeds of several halophytic species will not germinate on saline soils. Yet, little is understood regarding biochemical and gene expression changes underlying salt-mediated inhibition of halophyte seed germination. We have used the halophytic Arabidopsis relative model system, Eutrema (Thellungiella) salsugineum to explore salt-mediated inhibition of germination. We show that E. salsugineum seed germination is inhibited by salt to a far greater extent than in Arabidopsis, and that this inhibition is in response to the osmotic component of salt exposure. E. salsugineum seeds remain viable even when germination is completely inhibited, and germination resumes once seeds are transferred to non-saline conditions. Moreover, removal of the seed coat from salt-treated seeds allows embryos to germinate on salt-containing medium. Mobilization of seed storage reserves is restricted in salt-treated seeds, while many germination-associated metabolic changes are arrested or progress to a lower extent. Salt-exposed seeds are further characterized by a reduced GA/ABA ratio and increased expression of the germination repressor genes, RGL2, ABI5, and DOG1. Furthermore, a salt-mediated increase in expression of a LATE EMBRYOGENESIS ABUNDANT gene and accretion of metabolites involved in osmoprotection indicates induction of processes associated with stress tolerance, and accumulation of easily mobilized carbon reserves. Overall, our results suggest that salt inhibits E. salsugineum seed germination by inducing a seed state with molecular features of dormancy while a physical constraint to radicle emergence is provided by the seed coat layers. This seed state could facilitate survival on saline soils until a rain event(s) increases soil water potential indicating favorable conditions for seed germination and establishment of salt-tolerant E. salsugineum seedlings.
Collapse
Affiliation(s)
- Yana Kazachkova
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Sde BokerIsrael
| | - Asif Khan
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Sde BokerIsrael
| | - Tania Acuña
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Sde BokerIsrael
| | - Isabel López-Díaz
- Instituto de Biología Molecular y Celular de Plantas, CSIC–UPV, ValenciaSpain
| | - Esther Carrera
- Instituto de Biología Molecular y Celular de Plantas, CSIC–UPV, ValenciaSpain
| | - Inna Khozin-Goldberg
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Sde BokerIsrael
| | - Aaron Fait
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Sde BokerIsrael
- *Correspondence: Simon Barak, Aaron Fait,
| | - Simon Barak
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Sde BokerIsrael
- *Correspondence: Simon Barak, Aaron Fait,
| |
Collapse
|
37
|
Houmani H, J Corpas F. Differential responses to salt-induced oxidative stress in three phylogenetically related plant species: Arabidopsis thaliana (glycophyte), Thellungiella salsuginea and Cakile maritima (halophytes). Involvement of ROS and NO in the control of K+/Na+ homeostasis. AIMS BIOPHYSICS 2016. [DOI: 10.3934/biophy.2016.3.380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
38
|
Theerawitaya C, Tisarum R, Samphumphuang T, Singh HP, Suriyan Cha-Um, Kirdmanee C, Takabe T. Physio-biochemical and morphological characters of halophyte legume shrub, Acacia ampliceps seedlings in response to salt stress under greenhouse. FRONTIERS IN PLANT SCIENCE 2015; 6:630. [PMID: 26379678 PMCID: PMC4553901 DOI: 10.3389/fpls.2015.00630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 07/30/2015] [Indexed: 05/06/2023]
Abstract
Acacia ampliceps (salt wattle), a leguminous shrub, has been introduced in salt-affected areas in the northeast of Thailand for the remediation of saline soils. However, the defense mechanisms underlying salt tolerance A. ampliceps are unknown. We investigated various physio-biochemical and morphological attributes of A. ampliceps in response to varying levels of salt treatment (200-600 mM NaCl). Seedlings of A. ampliceps (25 ± 2 cm in plant height) raised from seeds were treated with 200 mM (mild stress), 400 and 600 mM (extreme stress) of salt treatment (NaCl) under greenhouse conditions. Na(+) and Ca(2+) contents in the leaf tissues increased significantly under salt treatment, whereas K(+) content declined in salt-stressed plants. Free proline and soluble sugar contents in plants grown under extreme salt stress (600 mM NaCl) for 9 days significantly increased by 28.7 (53.33 μmol g(-1) FW) and 3.2 (42.11 mg g(-1) DW) folds, respectively over the control, thereby playing a major role as osmotic adjustment. Na(+) enrichment in the phyllode tissues of salt-stressed seedlings positively related to total chlorophyll (TC) degradation (R (2) = 0.72). Photosynthetic pigments and chlorophyll fluorescence in salt-stressed plants increased under mild salt stress (200 mM NaCl). However, these declined under high levels of salinity (400-600 mM NaCl), consequently resulting in a reduced net photosynthetic rate (R (2) = 0.81) and plant dry weight (R (2) = 0.91). The study concludes that A. ampliceps has an osmotic adjustment and Na(+) compartmentation as effective salt defense mechanisms, and thus it could be an excellent species to grow in salt-affected soils.
Collapse
Affiliation(s)
- Cattarin Theerawitaya
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Thapanee Samphumphuang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | | | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Chalermpol Kirdmanee
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | | |
Collapse
|
39
|
Alvarez-Gerding X, Espinoza C, Inostroza-Blancheteau C, Arce-Johnson P. Molecular and physiological changes in response to salt stress in Citrus macrophylla W plants overexpressing Arabidopsis CBF3/DREB1A. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 92:71-80. [PMID: 25914135 DOI: 10.1016/j.plaphy.2015.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 05/23/2023]
Abstract
Plant stress induced by high salinity has leading to an important reduction in crop yields. Due to their tropical origin, citrus fruits are highly sensitive to salts. Rootstocks are the root system of fruit trees, regulating ion uptake and transport to the canopy. Therefore, increasing their salt tolerance could improve the salt tolerance of the fruit tree. For this, we genetically-transformed an important rootstock for lemon, Citrus macrophylla W, to constitutively express the CBF3/DREB1A gene from Arabidopsis, a well-studied salinity tolerance transcription factor. Transgenic lines showed normal size, with no dwarfism. Under salt stress, some transgenic lines showed greater growth, similar accumulation of chloride and sodium in the leaves and better stomatal conductance, in comparison to wild-type plants. Quantitative real-time analyses showed a similar expression of several CBF3/DREB1A target genes, such as COR15A, LEA 4/5, INV, SIP1, P5CS, GOLS, ADC2 and LKR/SDH, in transgenic lines and wild type plants, with the exception of INV that shows increased expression in line 4C15. Under salt stress, all measured transcript increased in both wild type and transgenics lines, with the exception of INV. Altogether, these results suggest a higher salt tolerance of transgenic C. macrophylla plants induced by the overexpression of AtCBF3/DREB1A.
Collapse
Affiliation(s)
- Ximena Alvarez-Gerding
- Facultad de Agronomía e Ingeniería Forestal, Pontifica Universidad Católica de Chile, Av. Vicuña Mackenna 4560, Santiago, Chile; Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Av. Alameda 340, P.O. Box 114-D, Santiago, Chile
| | - Carmen Espinoza
- Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Av. Alameda 340, P.O. Box 114-D, Santiago, Chile
| | - Claudio Inostroza-Blancheteau
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Escuela de Agronomía, Universidad Católica de Temuco, P.O. Box 56-D, Temuco, Chile
| | - Patricio Arce-Johnson
- Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Av. Alameda 340, P.O. Box 114-D, Santiago, Chile.
| |
Collapse
|
40
|
Chang L, Guo A, Jin X, Yang Q, Wang D, Sun Y, Huang Q, Wang L, Peng C, Wang X. The beta subunit of glyceraldehyde 3-phosphate dehydrogenase is an important factor for maintaining photosynthesis and plant development under salt stress-Based on an integrative analysis of the structural, physiological and proteomic changes in chloroplasts in Thellungiella halophila. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:223-38. [PMID: 26025536 DOI: 10.1016/j.plantsci.2015.04.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 05/11/2023]
Abstract
Thellungiella halophila, a new model halophyte, can survive under highly saline conditions. We performed comparative proteomics of chloroplasts from plants grown under different saline conditions. Seventy-five salt-responsive proteins were positively identified by mass spectrometry, which represented 43 unique ones. These proteins were categorized into 7 main pathways: light reaction, carbon fixation, energy metabolism, antenna proteins, cell structure, and protein degradation and folding. Saline conditions increased the abundance of proteins involved in photosynthesis, energy metabolism and cell structure. The results indicated that Thellungiella could withstand high salinity by maintaining normal or high photosynthetic capacity, reducing ROS production, as well as enhancing energy usage. Meanwhile, the ultrastructural and physiological data also agree with chloroplast proteomics results. Subsequently, the glyceraldehydes 3-phosphate dehydrogenase beta subunit (GAPB) involved in carbon fixation was selected and its role in salt tolerance was clarified by over-expressing it in Arabidopsis. ThGAPB-overexpressing plants had higher total chlorophyll contents, dry weights, water contents and survival rates than that of wild type plants. These results indicated that ThGAPB might improve plant salt tolerance by maintaining higher recycling rates of ADP and NADP(+) to decrease ROS production, helping to maintain photosynthetic efficiency and plant development under saline conditions.
Collapse
Affiliation(s)
- Lili Chang
- College of Agriculture, Hainan University, Haikou city 570228, Hainan, China; Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou city 571101, Hainan, China
| | - Anping Guo
- College of Agriculture, Hainan University, Haikou city 570228, Hainan, China; Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou city 571101, Hainan, China
| | - Xiang Jin
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou city 571101, Hainan, China
| | - Qian Yang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou city 571101, Hainan, China
| | - Dan Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou city 571101, Hainan, China
| | - Yong Sun
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou city 571101, Hainan, China
| | - Qixing Huang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou city 571101, Hainan, China
| | - Limin Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou city 571101, Hainan, China
| | - Cunzhi Peng
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou city 571101, Hainan, China
| | - Xuchu Wang
- College of Agriculture, Hainan University, Haikou city 570228, Hainan, China; Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou city 571101, Hainan, China.
| |
Collapse
|
41
|
Ariga H, Tanaka T, Ono H, Sakata Y, Hayashi T, Taji T. CSP41b, a protein identified via FOX hunting using Eutrema salsugineum cDNAs, improves heat and salinity stress tolerance in transgenic Arabidopsis thaliana. Biochem Biophys Res Commun 2015; 464:318-23. [PMID: 26123393 DOI: 10.1016/j.bbrc.2015.06.151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 06/24/2015] [Indexed: 12/29/2022]
Abstract
Eutrema salsugineum (also known as Thellungiella salsuginea and formerly Thellungiella halophila), a species closely related to Arabidopsis thaliana, shows tolerance not only to salt stress, but also to chilling, freezing, and high temperatures. To identify genes responsible for stress tolerance, we conducted Full-length cDNA Over-eXpressing gene (FOX) hunting among a collection of E. salsugineum cDNAs that were stress-induced according to gene ontology analysis or over-expressed in E. salsugineum compared with A. thaliana. We identified E. salsugineum CSP41b (chloroplast stem-loop-binding protein of 41 kDa; also known as CRB, chloroplast RNA binding; named here as EsCSP41b) as a gene that can confer heat and salinity stress tolerance on A. thaliana. A. thaliana CSP41b is reported to play an important role in the proper functioning of the chloroplast: the atcsp41b mutant is smaller and paler than wild-type plants and shows altered chloroplast morphology and photosynthetic performance. We observed that AtCSP41b-overexpressing transgenic A. thaliana lines also exhibited marked heat tolerance and significant salinity stress tolerance. The EsCSP41b-overexpressing transgenic A. thaliana lines showed significantly higher photosynthesis activity than wild-type plants not only under normal growth conditions but also under heat stress. In wild-type plants, the expression levels of both EsCSP41b and AtCSP41b were significantly reduced under heat or salinity stress. We conclude that maintenance of CSP41b expression under abiotic stresses may alleviate photoinhibition and improve survival under such stresses.
Collapse
Affiliation(s)
- Hirotaka Ariga
- Department of Bio-Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Tomoko Tanaka
- Department of Bio-Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Hirokazu Ono
- Department of Bio-Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Yoichi Sakata
- Department of Bio-Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Takahisa Hayashi
- Department of Bio-Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Teruaki Taji
- Department of Bio-Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan.
| |
Collapse
|
42
|
Sanadhya P, Agarwal P, Agarwal PK. Ion homeostasis in a salt-secreting halophytic grass. AOB PLANTS 2015; 7:plv055. [PMID: 25990364 PMCID: PMC4512041 DOI: 10.1093/aobpla/plv055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/11/2015] [Indexed: 05/05/2023]
Abstract
Salinity adversely affects plant growth and development, and disturbs intracellular ion homeostasis, resulting in cellular toxicity. Plants that tolerate salinity, halophytes, do so by manifesting numerous physiological and biochemical processes in coordination to alleviate cellular ionic imbalance. The present study was undertaken to analyse the salt tolerance mechanism in Aeluropus lagopoides (L.) trin. Ex Thw. (Poaceae) at both physiological and molecular levels. Plants secreted salt from glands, which eventually produced pristine salt crystals on leaves and leaf sheaths. The rate of salt secretion increased with increasing salt concentration in the growth medium. Osmotic adjustment was mainly achieved by inorganic osmolytes (Na(+)) and at 100 mM NaCl no change was observed in organic osmolytes in comparison to control plants. At 300 mM NaCl and with 150 mM NaCl + 150 mM KCl, the concentration of proline, soluble sugars and amino acids was significantly increased. Transcript profiling of transporter genes revealed differential spatial and temporal expressions in both shoot and root tissues in a manner synchronized towards maintaining ion homeostasis. In shoots, AlHKT2;1 transcript up-regulation was observed at 12 and 24 h in all the treatments, whereas in roots, maximum induction was observed at 48 h with K(+) starvation. The HAK transcript was relatively abundant in shoot tissue with all the treatments. The plasma membrane Na(+)/H(+) antiporter, SOS1, and tonoplast Na(+)/H(+) antiporter, NHX1, were found to be significantly up-regulated in shoot tissue. Our data demonstrate that AlHKT2;1, HAK, SOS1, NHX1 and V-ATPase genes play a pivotal role in regulating the ion homeostasis in A. lagopoides.
Collapse
Affiliation(s)
- Payal Sanadhya
- Wasteland Research Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India
| | - Parinita Agarwal
- Wasteland Research Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India
| | - Pradeep K Agarwal
- Wasteland Research Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India
| |
Collapse
|
43
|
Uzilday B, Ozgur R, Sekmen AH, Yildiztugay E, Turkan I. Changes in the alternative electron sinks and antioxidant defence in chloroplasts of the extreme halophyte Eutrema parvulum (Thellungiella parvula) under salinity. ANNALS OF BOTANY 2015; 115:449-63. [PMID: 25231894 PMCID: PMC4332603 DOI: 10.1093/aob/mcu184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 07/28/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS Eutrema parvulum (synonym, Thellungiella parvula) is an extreme halophyte that thrives in high salt concentrations (100-150 mm) and is closely related to Arabidopsis thaliana. The main aim of this study was to determine how E. parvulum uses reactive oxygen species (ROS) production, antioxidant systems and redox regulation of the electron transport system in chloroplasts to tolerate salinity. METHODS Plants of E. parvulum were grown for 30 d and then treated with either 50, 200 or 300 mm NaCl. Physiological parameters including growth and water relationships were measured. Activities of antioxidant enzymes were determined in whole leaves and chloroplasts. In addition, expressions of chloroplastic redox components such as ferrodoxin thioredoxin reductases (FTR), NADPH thioredoxin reductases (NTRC), thioredoxins (TRXs) and peroxiredoxins (PRXs), as well as genes encoding enzymes of the water-water cycle and proline biosynthesis were measured. KEY RESULTS Salt treatment affected water relationships negatively and the accumulation of proline was increased by salinity. E. parvulum was able to tolerate 300 mm NaCl over long periods, as evidenced by H2O2 content and lipid peroxidation. While Ca(2+) and K(+) concentrations were decreased by salinity, Na(+) and Cl(-) concentrations increased. Efficient induction of activities and expressions of water-water cycle enzymes might prevent accumulation of excess ROS in chloroplasts and therefore protect the photosynthetic machinery in E. parvulum. The redox homeostasis in chloroplasts might be achieved by efficient induction of expressions of redox regulatory enzymes such as FTR, NTRC, TRXs and PRXs under salinity. CONCLUSIONS E. parvulum was able to adapt to osmotic stress by an efficient osmotic adjustment mechanism involving proline and was able to regulate its ion homeostasis. In addition, efficient induction of water-water cycle enzymes and other redox regulatory components such as TRXs and PRXs in chloroplasts were able to protect the chloroplasts from salinity-induced oxidative stress.
Collapse
Affiliation(s)
- Baris Uzilday
- Department of Biology, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey and Department of Biology, Faculty of Science, Selcuk University, Selcuklu, Konya, 42250, Turkey
| | - Rengin Ozgur
- Department of Biology, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey and Department of Biology, Faculty of Science, Selcuk University, Selcuklu, Konya, 42250, Turkey
| | - A Hediye Sekmen
- Department of Biology, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey and Department of Biology, Faculty of Science, Selcuk University, Selcuklu, Konya, 42250, Turkey
| | - Evren Yildiztugay
- Department of Biology, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey and Department of Biology, Faculty of Science, Selcuk University, Selcuklu, Konya, 42250, Turkey
| | - Ismail Turkan
- Department of Biology, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey and Department of Biology, Faculty of Science, Selcuk University, Selcuklu, Konya, 42250, Turkey
| |
Collapse
|
44
|
Wang L, Pan D, Li J, Tan F, Hoffmann-Benning S, Liang W, Chen W. Proteomic analysis of changes in the Kandelia candel chloroplast proteins reveals pathways associated with salt tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 231:159-72. [PMID: 25576001 DOI: 10.1016/j.plantsci.2014.11.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/21/2014] [Accepted: 11/26/2014] [Indexed: 05/07/2023]
Abstract
The plant chloroplast is one of the most sensitive organelles in response to salt stress. Chloroplast proteins extracted from seedling leaves were separated by two-dimensional gel electrophoresis (2-DE). More than 600 protein spots could be distinguished on each gel. Fifty-eight differentially expressed protein spots were detected, of which 46 could be identified through matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF-MS). These proteins were found to be involved in multiple aspects of chloroplast metabolism pathways such as photosynthesis, ATP synthesis, detoxification and antioxidation processes, nitrogen assimilation and fixation, protein metabolism, and tetrapyrrole biosynthesis. The results indicated that K. candel could withstand up to 500 mM NaCl stress for a measured period of 3 days, by maintaining normal or high photosynthetic electron transfer efficiency and an only slightly stimulated Calvin cycle. Meanwhile, we found that ROS scavenging, nitrogen assimilation, protein degradation and chaperone function in chloroplasts were also of importance for salt tolerance of K. candel. The ultrastructural and physiological data agree with chloroplast proteome results. These findings allow further exploration of our knowledge on salt adaptation in woody halophytes and may contribute to the development of more salt-tolerant plants in the future.
Collapse
Affiliation(s)
- Lingxia Wang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Dezhuo Pan
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Jian Li
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Fanglin Tan
- Fujian Academy of Forestry, Fuzhou 350012, PR China
| | - Susanne Hoffmann-Benning
- The Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Wenyu Liang
- School of Life Sciences, Ningxia University, Yinchuan 750000, PR China
| | - Wei Chen
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Corps, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
45
|
Bose J, Rodrigo-Moreno A, Lai D, Xie Y, Shen W, Shabala S. Rapid regulation of the plasma membrane H⁺-ATPase activity is essential to salinity tolerance in two halophyte species, Atriplex lentiformis and Chenopodium quinoa. ANNALS OF BOTANY 2015; 115:481-94. [PMID: 25471095 PMCID: PMC4332608 DOI: 10.1093/aob/mcu219] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS The activity of H(+)-ATPase is essential for energizing the plasma membrane. It provides the driving force for potassium retention and uptake through voltage-gated channels and for Na(+) exclusion via Na(+)/H(+) exchangers. Both of these traits are central to plant salinity tolerance; however, whether the increased activity of H(+)-ATPase is a constitutive trait in halophyte species and whether this activity is upregulated at either the transcriptional or post-translation level remain disputed. METHODS The kinetics of salt-induced net H(+), Na(+) and K(+) fluxes, membrane potential and AHA1/2/3 expression changes in the roots of two halophyte species, Atriplex lentiformis (saltbush) and Chenopodium quinoa (quinoa), were compared with data obtained from Arabidopsis thaliana roots. KEY RESULTS Intrinsic (steady-state) membrane potential values were more negative in A. lentiformis and C. quinoa compared with arabidopsis (-144 ± 3·3, -138 ± 5·4 and -128 ± 3·3 mV, respectively). Treatment with 100 mm NaCl depolarized the root plasma membrane, an effect that was much stronger in arabidopsis. The extent of plasma membrane depolarization positively correlated with NaCl-induced stimulation of vanadate-sensitive H(+) efflux, Na(+) efflux and K(+) retention in roots (quinoa > saltbush > arabidopsis). NaCl-induced stimulation of H(+) efflux was most pronounced in the root elongation zone. In contrast, H(+)-ATPase AHA transcript levels were much higher in arabidopsis compared with quinoa plants, and 100 mm NaCl treatment led to a further 3-fold increase in AHA1 and AHA2 transcripts in arabidopsis but not in quinoa. CONCLUSIONS Enhanced salinity tolerance in the halophyte species studied here is not related to the constitutively higher AHA transcript levels in the root epidermis, but to the plant's ability to rapidly upregulate plasma membrane H(+)-ATPase upon salinity treatment. This is necessary for assisting plants to maintain highly negative membrane potential values and to exclude Na(+), or enable better K(+) retention in the cytosol under saline conditions.
Collapse
Affiliation(s)
- Jayakumar Bose
- School of Land and Food, University of Tasmania, Hobart, TAS 7001, Australia, LINV, University of Firenze, Viale delle idee, 30, 50019 Sesto Fiorentino, Italy and College of Life Sciences, Laboratory Centre of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ana Rodrigo-Moreno
- School of Land and Food, University of Tasmania, Hobart, TAS 7001, Australia, LINV, University of Firenze, Viale delle idee, 30, 50019 Sesto Fiorentino, Italy and College of Life Sciences, Laboratory Centre of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China School of Land and Food, University of Tasmania, Hobart, TAS 7001, Australia, LINV, University of Firenze, Viale delle idee, 30, 50019 Sesto Fiorentino, Italy and College of Life Sciences, Laboratory Centre of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Diwen Lai
- School of Land and Food, University of Tasmania, Hobart, TAS 7001, Australia, LINV, University of Firenze, Viale delle idee, 30, 50019 Sesto Fiorentino, Italy and College of Life Sciences, Laboratory Centre of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanjie Xie
- School of Land and Food, University of Tasmania, Hobart, TAS 7001, Australia, LINV, University of Firenze, Viale delle idee, 30, 50019 Sesto Fiorentino, Italy and College of Life Sciences, Laboratory Centre of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbiao Shen
- School of Land and Food, University of Tasmania, Hobart, TAS 7001, Australia, LINV, University of Firenze, Viale delle idee, 30, 50019 Sesto Fiorentino, Italy and College of Life Sciences, Laboratory Centre of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Hobart, TAS 7001, Australia, LINV, University of Firenze, Viale delle idee, 30, 50019 Sesto Fiorentino, Italy and College of Life Sciences, Laboratory Centre of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
46
|
Roy S, Chakraborty U. Salt tolerance mechanisms in Salt Tolerant Grasses (STGs) and their prospects in cereal crop improvement. BOTANICAL STUDIES 2014; 55:31. [PMID: 28510965 PMCID: PMC5432819 DOI: 10.1186/1999-3110-55-31] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/10/2014] [Indexed: 05/08/2023]
Abstract
Increasing soil salinity in the agricultural fields all over the world is a matter of concern. Salinity poses a serious threat to the normal growth and development of crop plants. What adds to the concern is that all the cereal crops are sensitive to increasing soil salinity. So it is implacable to either search for salinity resistant varieties of crop plants or transform them genetically to sustain growth and reproducibility at increasing salinity stress. For the second perspective, mining the salt tolerant genes in the close relatives of cereal crops apparently becomes important, and most specifically in the salt tolerant grasses (STGs). STGs include the halophytes, facultative halophytes and salt-tolerant glycophytes of the family Poaceae. In this review the potentiality of STGs has been evaluated for increasing the salinity tolerance of cereal crops. STGs are capable of surviving at increasing salt stress by utilizing different mechanisms that include vacuolization of toxic Na+ and Cl- in mature or senescing leaves, secretion of excess salts by salt glands, accumulation of osmolytes like proline and glycine betaine, and scavenging of ROS by antioxidative enzymes. The STGs are a therefore a potent source of salt tolerant genes.
Collapse
Affiliation(s)
- Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Siliguri, 734013 West Bengal India
| | - Usha Chakraborty
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Siliguri, 734013 West Bengal India
| |
Collapse
|
47
|
Vera-Estrella R, Barkla BJ, Pantoja O. Comparative 2D-DIGE analysis of salinity responsive microsomal proteins from leaves of salt-sensitive Arabidopsis thaliana and salt-tolerant Thellungiella salsuginea. J Proteomics 2014; 111:113-27. [PMID: 24892798 DOI: 10.1016/j.jprot.2014.05.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 05/19/2014] [Accepted: 05/22/2014] [Indexed: 12/18/2022]
Abstract
UNLABELLED Halophytes have evolved unique molecular strategies to overcome high soil salinity but we still know very little about the main mechanisms that these plants use to complete their lifecycle under salinity stress. One useful approach to further our understanding in this area is to directly compare the response to salinity of two closely related species which show diverse levels of salt tolerance. Here we present a comparative proteomic study using DIGE of leaf microsomal proteins to identify salt-responsive membrane associated proteins in Arabidopsis thaliana (a glycophyte) and Thellungiella salsuginea (a halophyte). While a small number of distinct protein abundance changes were observed upon salt stress in both species, the most notable differences were observed between species and specifically, in untreated plants with a total of 36 proteins displaying significant abundance changes. Gene ontology (GO) term enrichment analysis showed that the majority of these proteins were distributed into two functional categories; transport (31%) and carbohydrate metabolism (17%). Results identify several novel salt responsive proteins in this system and support the theory that T. salsuginea shows a high degree of salt-tolerance because molecular mechanisms are primed to deal with the stress. This intrinsic ability to anticipate salinity stress distinguishes it from the glycophyte A. thaliana. BIOLOGICAL SIGNIFICANCE There is significant interest in understanding the molecular mechanisms that plants use to tolerate salinity as soil salinization is becoming an increasing concern for agriculture with high soil Na(+) levels leading to reduced yields and economic loss. Much of our knowledge on the molecular mechanisms employed by plants to combat salinity stress has come from work on salt-sensitive plants, but studies on naturally occurring highly salt-resistant plants, halophytes, and direct comparisons between closely related glycophytes and halophytes, could help to further our understanding of salinity tolerance mechanisms. In this study, employing two closely related species which differ markedly in their salt-tolerance, we carried out a quantitative proteomic approach using 2D-DIGE to identify salt-responsive proteins and compare and contrast the differences between the two plant species. Our work complements a previous study using iTRAQ technology (34) and highlights the benefits of using alternative technologies and approaches to gain a broader representation of the salt-responsive proteome in these species.
Collapse
Affiliation(s)
- Rosario Vera-Estrella
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP 62210, Mexico.
| | - Bronwyn J Barkla
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP 62210, Mexico
| | - Omar Pantoja
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP 62210, Mexico
| |
Collapse
|
48
|
Transcriptome Profiling of the Mangrove PlantBruguiera gymnorhizaand Identification of Salt Tolerance Genes byAgrobacteriumFunctional Screening. Biosci Biotechnol Biochem 2014; 73:304-10. [DOI: 10.1271/bbb.80513] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Katschnig D, Jaarsma R, Almeida P, Rozema J, Schat H. Differences in proton pumping and Na/H exchange at the leaf cell tonoplast between a halophyte and a glycophyte. AOB PLANTS 2014; 6:plu023. [PMID: 24887002 PMCID: PMC4064249 DOI: 10.1093/aobpla/plu023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/08/2014] [Indexed: 05/27/2023]
Abstract
The tonoplast Na(+)/H(+) antiporter and tonoplast H(+) pumps are essential components of salt tolerance in plants. The objective of this study was to investigate the transport activity of the tonoplast Na(+)/H(+) antiporter and the tonoplast V-H(+)-ATPase and V-H(+)-PPase in a highly tolerant salt-accumulating halophyte, Salicornia dolichostachya, and to compare these transport activities with activities in the related glycophyte Spinacia oleracea. Vacuolar membrane vesicles were isolated by density gradient centrifugation, and the proton transport and hydrolytic activity of both H(+) pumps were studied. Furthermore, the Na(+)/H(+)-exchange capacity of the vesicles was investigated by 9-amino-6-chloro-2-methoxyacridine fluorescence. Salt treatment induced V-H(+)-ATPase and V-H(+)-PPase activity in vesicles derived from S. oleracea, whereas V-H(+)-ATPase and V-H(+)-PPase activity in S. dolichostachya was not affected by salt treatment. Na(+)/H(+)-exchange capacity followed the same pattern, i.e. induced in response to salt treatment (0 and 200 mM NaCl) in S. oleracea and not influenced by salt treatment (10 and 200 mM NaCl) in S. dolichostachya. Our results suggest that S. dolichostachya already generates a high tonoplast H(+) gradient at low external salinities, which is likely to contribute to the high cellular salt accumulation of this species at low external salinities. At high external salinities, S. dolichostachya showed improved growth compared with S. oleracea, but V-H(+)-ATPase, V-H(+)-PPase and Na(+)/H(+)-exchange activities were comparable between the species, which might imply that S. dolichostachya more efficiently retains Na(+) in the vacuole.
Collapse
Affiliation(s)
- Diana Katschnig
- Systems Ecology, Department of Ecological Science, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Rinse Jaarsma
- Department of Structural Biology, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Pedro Almeida
- Department of Structural Biology, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Jelte Rozema
- Systems Ecology, Department of Ecological Science, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Henk Schat
- Department of Genetics, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
50
|
Global analysis of gene expression profiles in physic nut (Jatropha curcas L.) seedlings exposed to salt stress. PLoS One 2014; 9:e97878. [PMID: 24837971 PMCID: PMC4023963 DOI: 10.1371/journal.pone.0097878] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/24/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Salt stress interferes with plant growth and production. Plants have evolved a series of molecular and morphological adaptations to cope with this abiotic stress, and overexpression of salt response genes reportedly enhances the productivity of various crops. However, little is known about the salt responsive genes in the energy plant physic nut (Jatropha curcas L.). Thus, excavate salt responsive genes in this plant are informative in uncovering the molecular mechanisms for the salt response in physic nut. METHODOLOGY/PRINCIPAL FINDINGS We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of physic nut plants (roots and leaves) 2 hours, 2 days and 7 days after the onset of salt stress. A total of 1,504 and 1,115 genes were significantly up and down-regulated in roots and leaves, respectively, under salt stress condition. Gene ontology (GO) analysis of physiological process revealed that, in the physic nut, many "biological processes" were affected by salt stress, particular those categories belong to "metabolic process", such as "primary metabolism process", "cellular metabolism process" and "macromolecule metabolism process". The gene expression profiles indicated that the associated genes were responsible for ABA and ethylene signaling, osmotic regulation, the reactive oxygen species scavenging system and the cell structure in physic nut. CONCLUSIONS/SIGNIFICANCE The major regulated genes detected in this transcriptomic data were related to trehalose synthesis and cell wall structure modification in roots, while related to raffinose synthesis and reactive oxygen scavenger in leaves. The current study shows a comprehensive gene expression profile of physic nut under salt stress. The differential expression genes detected in this study allows the underling the salt responsive mechanism in physic nut with the aim of improving its salt resistance in the future.
Collapse
|