1
|
Jin D, Chen J, Kang Y, Yang F, Yu D, Liu X, Yan C, Guo Z, Zhang Y. Genome-wide characterization, transcriptome profiling, and functional analysis of the ALMT gene family in Medicago for aluminum resistance. JOURNAL OF PLANT PHYSIOLOGY 2024; 297:154262. [PMID: 38703548 DOI: 10.1016/j.jplph.2024.154262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Aluminum (Al) is the major limiting factor affecting plant productivity in acidic soils. Al3+ ions exhibit increased solubility at a pH below 5, leading to plant root tip toxicity. Alternatively, plants can perceive very low concentrations of Al3+, and Al triggers downstream signaling even at pH 5.7 without causing Al toxicity. The ALUMINUM-ACTIVATED-MALATE-TRANSPORTER (ALMT) family members act as anion channels, with some regulating the secretion of malate from root apices to chelate Al, which is a crucial mechanism for plant Al resistance. To date, the role of the ALMT gene family within the legume Medicago species has not been fully characterized. In this study, we investigated the ALMT gene family in M. sativa and M. truncatula and identified 68 MsALMTs and 18 MtALMTs, respectively. Phylogenetic analysis classified these genes into five clades, and synteny analysis uncovered genuine paralogs and orthologs. The real-time quantitative reverse transcription PCR (qRT-PCR) analysis revealed that MtALMT8, MtALMT9, and MtALMT15 in clade 2-2b are expressed in both roots and root nodules, and MtALMT8 and MtALMT9 are significantly upregulated by Al in root tips. We also observed that MtALMT8 and MtALMT9 can partially restore the Al sensitivity of Atalmt1 in Arabidopsis. Moreover, transcriptome analysis examined the expression patterns of these genes in M. sativa in response to Al at both pH 5.7 and pH 4.6, as well as to protons, and found that Al and protons can independently induce some Al-resistance genes. Overall, our findings indicate that MtALMT8 and MtALMT9 may play a role in Al resistance, and highlight the resemblance between the ALMT genes in Medicago species and those in Arabidopsis.
Collapse
Affiliation(s)
- Dehui Jin
- College of Grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jinlong Chen
- College of Grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yumeng Kang
- College of Grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Fang Yang
- College of Grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Dongwen Yu
- College of Grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaoqing Liu
- College of Grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chengcheng Yan
- College of Grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Yang Zhang
- College of Grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Lindberg S, Premkumar A. Ion Changes and Signaling under Salt Stress in Wheat and Other Important Crops. PLANTS (BASEL, SWITZERLAND) 2023; 13:46. [PMID: 38202354 PMCID: PMC10780558 DOI: 10.3390/plants13010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024]
Abstract
High concentrations of sodium (Na+), chloride (Cl-), calcium (Ca2+), and sulphate (SO42-) are frequently found in saline soils. Crop plants cannot successfully develop and produce because salt stress impairs the uptake of Ca2+, potassium (K+), and water into plant cells. Different intracellular and extracellular ionic concentrations change with salinity, including those of Ca2+, K+, and protons. These cations serve as stress signaling molecules in addition to being essential for ionic homeostasis and nutrition. Maintaining an appropriate K+:Na+ ratio is one crucial plant mechanism for salt tolerance, which is a complicated trait. Another important mechanism is the ability for fast extrusion of Na+ from the cytosol. Ca2+ is established as a ubiquitous secondary messenger, which transmits various stress signals into metabolic alterations that cause adaptive responses. When plants are under stress, the cytosolic-free Ca2+ concentration can rise to 10 times or more from its resting level of 50-100 nanomolar. Reactive oxygen species (ROS) are linked to the Ca2+ alterations and are produced by stress. Depending on the type, frequency, and intensity of the stress, the cytosolic Ca2+ signals oscillate, are transient, or persist for a longer period and exhibit specific "signatures". Both the influx and efflux of Ca2+ affect the length and amplitude of the signal. According to several reports, under stress Ca2+ alterations can occur not only in the cytoplasm of the cell but also in the cell walls, nucleus, and other cell organelles and the Ca2+ waves propagate through the whole plant. Here, we will focus on how wheat and other important crops absorb Na+, K+, and Cl- when plants are under salt stress, as well as how Ca2+, K+, and pH cause intracellular signaling and homeostasis. Similar mechanisms in the model plant Arabidopsis will also be considered. Knowledge of these processes is important for understanding how plants react to salinity stress and for the development of tolerant crops.
Collapse
Affiliation(s)
- Sylvia Lindberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-114 18 Stockholm, Sweden
| | - Albert Premkumar
- Bharathiyar Group of Institutes, Guduvanchery 603202, Tamilnadu, India;
| |
Collapse
|
3
|
Picrotoxin Delineates Different Transport Configurations for Malate and γ Aminobutyric Acid through TaALMT1. BIOLOGY 2022; 11:biology11081162. [PMID: 36009788 PMCID: PMC9405015 DOI: 10.3390/biology11081162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022]
Abstract
Plant-derived pharmacological agents have been used extensively to dissect the structure–function relationships of mammalian GABA receptors and ion channels. Picrotoxin is a non-competitive antagonist of mammalian GABAA receptors. Here, we report that picrotoxin inhibits the anion (malate) efflux mediated by wheat (Triticum aestivum) ALMT1 but has no effect on GABA transport. The EC50 for inhibition was 0.14 nM and 0.18 nM when the ALMTs were expressed in tobacco BY2 cells and in Xenopus oocytes, respectively. Patch clamping of the oocyte plasma membrane expressing wheat ALMT1 showed that picrotoxin inhibited malate currents from both sides of the membrane. These results demonstrate that picrotoxin inhibits anion efflux effectively and can be used as a new inhibitor to study the ion fluxes mediated by ALMT proteins that allow either GABA or anion transport.
Collapse
|
4
|
Sasaki T, Ariyoshi M, Yamamoto Y, Mori IC. Functional roles of ALMT-type anion channels in malate-induced stomatal closure in tomato and Arabidopsis. PLANT, CELL & ENVIRONMENT 2022; 45:2337-2350. [PMID: 35672880 DOI: 10.1111/pce.14373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/21/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Guard-cell-type aluminium-activated malate transporters (ALMTs) are involved in stomatal closure by exporting anions from guard cells. However, their physiological and electrophysiological functions are yet to be explored. Here, we analysed the physiological and electrophysiological properties of the ALMT channels in Arabidopsis and tomato (Solanum lycopersicum). SlALMT11 was specifically expressed in tomato guard cells. External malate-induced stomatal closure was impaired in ALMT-suppressed lines of tomato and Arabidopsis, although abscisic acid did not influence the stomatal response in SlALMT11-knock-down tomato lines. Electrophysiological analyses in Xenopus oocytes showed that SlALMT11 and AtALMT12/QUAC1 exhibited characteristic bell-shaped current-voltage patterns dependent on extracellular malate, fumarate, and citrate. Both ALMTs could transport malate, fumarate, and succinate, but not citrate, suggesting that the guard-cell-type ALMTs are dicarboxylic anion channels activated by extracellular organic acids. The truncation of acidic amino acids, Asp or Glu, from the C-terminal end of SlALMT11 or AtALMT12/QUAC1 led to the disappearance of the bell-shaped current-voltage patterns. Our findings establish that malate-activated stomatal closure is mediated by guard-cell-type ALMT channels that require an acidic amino acid in the C-terminus as a candidate voltage sensor in both tomato and Arabidopsis.
Collapse
Affiliation(s)
- Takayuki Sasaki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Michiyo Ariyoshi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Yoko Yamamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Izumi C Mori
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| |
Collapse
|
5
|
Chen W, Tang L, Wang J, Zhu H, Jin J, Yang J, Fan W. Research Advances in the Mutual Mechanisms Regulating Response of Plant Roots to Phosphate Deficiency and Aluminum Toxicity. Int J Mol Sci 2022; 23:ijms23031137. [PMID: 35163057 PMCID: PMC8835462 DOI: 10.3390/ijms23031137] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 02/08/2023] Open
Abstract
Low phosphate (Pi) availability and high aluminum (Al) toxicity constitute two major plant mineral nutritional stressors that limit plant productivity on acidic soils. Advances toward the identification of genes and signaling networks that are involved in both stresses in model plants such as Arabidopsis thaliana and rice (Oryza sativa), and in other plants as well have revealed that some factors such as organic acids (OAs), cell wall properties, phytohormones, and iron (Fe) homeostasis are interconnected with each other. Moreover, OAs are involved in recruiting of many plant-growth-promoting bacteria that are able to secrete both OAs and phosphatases to increase Pi availability and decrease Al toxicity. In this review paper, we summarize these mutual mechanisms by which plants deal with both Al toxicity and P starvation, with emphasis on OA secretion regulation, plant-growth-promoting bacteria, transcription factors, transporters, hormones, and cell wall-related kinases in the context of root development and root system architecture remodeling that plays a determinant role in improving P use efficiency and Al resistance on acidic soils.
Collapse
Affiliation(s)
- Weiwei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China;
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (H.Z.); (J.J.)
| | - Li Tang
- College of Resources and Environment, Yunan Agricultural University, Kunming 650201, China;
| | - Jiayi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (H.Z.); (J.J.)
| | - Huihui Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (H.Z.); (J.J.)
| | - Jianfeng Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (H.Z.); (J.J.)
| | - Jianli Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (H.Z.); (J.J.)
- Correspondence: (J.Y.); (W.F.); Tel.: +86-871-6522-7681 (W.F.); Fax: +86-571-8820-6438 (J.Y.)
| | - Wei Fan
- College of Horticulture and Landscape, Yunan Agricultural University, Kunming 650201, China
- Correspondence: (J.Y.); (W.F.); Tel.: +86-871-6522-7681 (W.F.); Fax: +86-571-8820-6438 (J.Y.)
| |
Collapse
|
6
|
Kawasaki A, Dennis PG, Forstner C, Raghavendra AKH, Mathesius U, Richardson AE, Delhaize E, Gilliham M, Watt M, Ryan PR. Manipulating exudate composition from root apices shapes the microbiome throughout the root system. PLANT PHYSIOLOGY 2021; 187:2279-2295. [PMID: 34618027 PMCID: PMC8644255 DOI: 10.1093/plphys/kiab337] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Certain soil microorganisms can improve plant growth, and practices that encourage their proliferation around the roots can boost production and reduce reliance on agrochemicals. The beneficial effects of the microbial inoculants currently used in agriculture are inconsistent or short-lived because their persistence in soil and on roots is often poor. A complementary approach could use root exudates to recruit beneficial microbes directly from the soil and encourage inoculant proliferation. However, it is unclear whether the release of common organic metabolites can alter the root microbiome in a consistent manner and if so, how those changes vary throughout the whole root system. In this study, we altered the expression of transporters from the ALUMINUM-ACTIVATED MALATE TRANSPORTER and the MULTIDRUG AND TOXIC COMPOUND EXTRUSION families in rice (Oryza sativa L.) and wheat (Triticum aestivum L.) and tested how the subsequent release of their substrates (simple organic anions, including malate, citrate, and γ-amino butyric acid) from root apices affected the root microbiomes. We demonstrate that these exudate compounds, separately and in combination, significantly altered microbiome composition throughout the root system. However, the root type (seminal or nodal), position along the roots (apex or base), and soil type had a greater influence on microbiome structure than the exudates. These results reveal that the root microbiomes of important cereal species can be manipulated by altering the composition of root exudates, and support ongoing attempts to improve plant production by manipulating the root microbiome.
Collapse
Affiliation(s)
| | - Paul G Dennis
- Faculty of Sciences, School of Earth and Environmental Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Christian Forstner
- Faculty of Sciences, School of Earth and Environmental Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Anil K H Raghavendra
- Faculty of Sciences, School of Earth and Environmental Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Ulrike Mathesius
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | | | - Emmanuel Delhaize
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Matthew Gilliham
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Michelle Watt
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Peter R Ryan
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| |
Collapse
|
7
|
Deslauriers SD, Spalding EP. Electrophysiological study of Arabidopsis ABCB4 and PIN2 auxin transporters: Evidence of auxin activation and interaction enhancing auxin selectivity. PLANT DIRECT 2021; 5:e361. [PMID: 34816076 PMCID: PMC8595762 DOI: 10.1002/pld3.361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/21/2021] [Indexed: 05/25/2023]
Abstract
Polar auxin transport through plant tissue strictly requires polarly localized PIN proteins and uniformly distributed ABCB proteins. A functional synergy between the two types of membrane protein where their localizations overlap may create the degree of asymmetric auxin efflux required to produce polar auxin transport. We investigated this possibility by expressing ABCB4 and PIN2 in human embryonic kidney cells and measuring whole-cell ionic currents with the patch-clamp technique and CsCl-based electrolytes. ABCB4 activity was 1.81-fold more selective for Cl- over Cs+ and for PIN2 the value was 2.95. We imposed auxin gradients and determined that ABCB4 and PIN2 were 12-fold more permeable to the auxin anion (IAA-) than Cl-. This measure of the intrinsic selectivity of the transport pathway was 21-fold when ABCB4 and PIN2 were co-expressed. If this increase occurs in plants, it could explain why asymmetric PIN localization is not sufficient to create polar auxin flow. Some form of co-action or synergy between ABCB4 and PIN2 that increases IAA- selectivity at the cell face where both occur may be important. We also found that auxin stimulated ABCB4 activity, which may contribute to a self-reinforcement of auxin transport known as canalization.
Collapse
Affiliation(s)
- Stephen D. Deslauriers
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Present address:
Division of Science and MathUniversity of MinnesotaMorrisMNUSA
| | | |
Collapse
|
8
|
Kaspal M, Kanapaddalagamage MH, Ramesh SA. Emerging Roles of γ Aminobutyric Acid (GABA) Gated Channels in Plant Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10102178. [PMID: 34685991 PMCID: PMC8540008 DOI: 10.3390/plants10102178] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 05/06/2023]
Abstract
The signaling role for γ-Aminobutyric acid (GABA) has been documented in animals for over seven decades. However, a signaling role for GABA in plants is just beginning to emerge with the discovery of putative GABA binding site/s and GABA regulation of anion channels. In this review, we explore the role of GABA in plant growth and development under abiotic stress, its interactions with other signaling molecules and the probability that there are other anion channels with important roles in stress tolerance that are gated by GABA.
Collapse
|
9
|
Aluminium, Iron and Silicon Subcellular Redistribution in Wheat Induced by Manganese Toxicity. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Acidic soils can promote the bioavailability of Al, Mn, and Fe to toxic levels, reducing crop growth and productivity. Symptoms of metal excess/deficit are dependent on the chemical composition of the soil solution and of plant tissues. In the present study, the concentration and subcellular distribution of Al, Mn, Fe, and Si (known to alleviate metal stress) were quantified through inductively coupled plasma mass spectrometry (ICP-MS) in roots and shoots of wheat grown in acidic soils with rising levels of Mn. In control acidic soil, wheat showed high concentrations of Al, Mn, and Fe. After Mn supplementation, bioavailable Al, Fe, and Si levels increased in the soil solution, but plant uptake ratio decreased. Root Mn levels increased, while those of Al, Fe, and Si decreased. Although elements were increasingly translocated to the shoot, root Al and Fe concentrations were 10-fold higher than those in the shoot. At the highest Mn concentration supplied, Al, Fe, and Si proportions increased in the organelles, while Mn proportion increased in the vacuole. High bioavailable Mn levels disrupt metal homeostasis in wheat grown in acidic soils, influencing element subcellular distribution. Symptoms of metal toxicity result from interactions between several elements, and therefore a comprehensive chemical analysis of soil solution and plant tissues contributes to a more accurate understanding of their uptake dynamics and their agronomic implications.
Collapse
|
10
|
Gomez-Zepeda D, Frausto M, Nájera-González HR, Herrera-Estrella L, Ordaz-Ortiz JJ. Mass spectrometry-based quantification and spatial localization of small organic acid exudates in plant roots under phosphorus deficiency and aluminum toxicity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1791-1806. [PMID: 33797826 DOI: 10.1111/tpj.15261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Low-molecular-weight organic acid (OA) extrusion by plant roots is critical for plant nutrition, tolerance to cations toxicity, and plant-microbe interactions. Therefore, methodologies for the rapid and precise quantification of OAs are necessary to be incorporated in the analysis of roots and their exudates. The spatial location of root exudates is also important to understand the molecular mechanisms directing OA production and release into the rhizosphere. Here, we report the development of two complementary methodologies for OA determination, which were employed to evaluate the effect of inorganic ortho-phosphate (Pi) deficiency and aluminum toxicity on OA excretion by Arabidopsis roots. OA exudation by roots is considered a core response to different types of abiotic stress and for the interaction of roots with soil microbes, and for decades has been a target trait to produce plant varieties with increased capacities of Pi uptake and Al tolerance. Using targeted ultra-performance liquid chromatography coupled with high-resolution tandem mass spectrometry (UPLC-HRMS/MS), we achieved the quantification of six OAs in root exudates at sub-micromolar detection limits with an analysis time of less than 5 min per sample. We also employed targeted (MS/MS) matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) to detect the spatial location of citric and malic acid with high specificity in roots and exudates. Using these methods, we studied OA exudation in response to Al toxicity and Pi deficiency in Arabidopsis seedlings overexpressing genes involved in OA excretion. Finally, we show the transferability of the MALDI-MSI method by analyzing OA excretion in Marchantia polymorpha gemmalings subjected to Pi deficiency.
Collapse
Affiliation(s)
- David Gomez-Zepeda
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, 36824, Mexico
| | - Moises Frausto
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, 36824, Mexico
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Héctor-Rogelio Nájera-González
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, 36824, Mexico
| | - Luis Herrera-Estrella
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, 36824, Mexico
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - José-Juan Ordaz-Ortiz
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, 36824, Mexico
| |
Collapse
|
11
|
Kar D, Pradhan AA, Datta S. The role of solute transporters in aluminum toxicity and tolerance. PHYSIOLOGIA PLANTARUM 2021; 171:638-652. [PMID: 32951202 DOI: 10.1111/ppl.13214] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
The prevalence of aluminum ions (Al3+ ) under acidic soil conditions inhibits primary root elongation and hinders plant growth and productivity. Al3+ alters the membrane potential, displaces critical ions in the apoplast and disrupts intracellular ionic concentrations by targeting membrane-localized solute transporters. Here, we provide an overview of how Al3+ affects the activities of several solute transporters especially in the root. High Al3+ level impairs the functions of potassium (K+ ), calcium (Ca2+ ), magnesium (Mg2+ ), nitrate (NO3 - ) and ammonium (NH4 + ) transporters. We further discuss the role of some key transporters in mediating Al tolerance either by exclusion or sequestration. Anion channels responsible for organic acid efflux modulate the sensitivity to Al3+ . The ALUMINUM ACTIVATED MALATE TRANSPORTER (ALMT) and MULTIDRUG AND TOXIC COMPOUND EXTRUSION (MATE) family of transporters exude malate and citrate, respectively, to the rhizosphere to alleviate Al toxicity by Al exclusion. The ABC transporters, aquaporins and H+ -ATPases perform vacuolar sequestration of Al3+ , leading to aluminum tolerance in plants. Targeting these solute transporters in crop plants can help generating aluminum-tolerant crops in future.
Collapse
Affiliation(s)
- Debojyoti Kar
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, 462066, India
| | - Ajar Anupam Pradhan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, 462066, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, 462066, India
| |
Collapse
|
12
|
Wegner LH, Li X, Zhang J, Yu M, Shabala S, Hao Z. Biochemical and biophysical pH clamp controlling Net H + efflux across the plasma membrane of plant cells. THE NEW PHYTOLOGIST 2021; 230:408-415. [PMID: 33423280 DOI: 10.1111/nph.17176] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
P-type H+ ATPases mediate active H+ efflux from plant cells. They generate a proton motive force across the plasma membrane, providing the free energy to drive the transport of other solutes, partly by coupling to H+ influx. Wegner & Shabala (2020) recently suggested that passive H+ influx can exceed pump-driven efflux due to 'active buffering', that is, cytosolic H+ scavenging and apoplastic H+ generation by metabolism ('biochemical pH clamp'). Charge balance is provided by K+ efflux or anion influx. Here, this hypothesis is extended to net H+ efflux: even though H+ pumping is faster than backflow via symporters and antiporters, a progressive increase in the transmembrane pH gradient is avoided. Cytosolic H+ release is associated with bicarbonate formation from CO2 . Bicarbonate serves as substrate for the PEPCase, catalyzing the reaction from phosphoenolpyruvate to oxaloacetate, which is subsequently reduced to malate. Organic anions such as malate and citrate are released across the plasma membrane and are (partly) protonated in the apoplast, thus limiting pump-induced acidification. Moreover, a 'biophysical pH clamp' is introduced, that is, adjustment of apoplastic/cytosolic pH involving net H+ fluxes across the plasma membrane, while the gradient between compartments is maintained. The clamps are not mutually exclusive but are likely to coexist.
Collapse
Affiliation(s)
- Lars H Wegner
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528041, China
| | - Xuewen Li
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528041, China
| | - Jie Zhang
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528041, China
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528041, China
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528041, China
- Tasmanian Institute of Agricultural Research, University of Tasmania, Hobart, 7001, Australia
| | - Zhifeng Hao
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528041, China
| |
Collapse
|
13
|
Isayenkov S, Hilo A, Rizzo P, Tandron Moya YA, Rolletschek H, Borisjuk L, Radchuk V. Adaptation Strategies of Halophytic Barley Hordeum marinum ssp. marinum to High Salinity and Osmotic Stress. Int J Mol Sci 2020; 21:ijms21239019. [PMID: 33260985 PMCID: PMC7730945 DOI: 10.3390/ijms21239019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
The adaptation strategies of halophytic seaside barley Hordeum marinum to high salinity and osmotic stress were investigated by nuclear magnetic resonance imaging, as well as ionomic, metabolomic, and transcriptomic approaches. When compared with cultivated barley, seaside barley exhibited a better plant growth rate, higher relative plant water content, lower osmotic pressure, and sustained photosynthetic activity under high salinity, but not under osmotic stress. As seaside barley is capable of controlling Na+ and Cl− concentrations in leaves at high salinity, the roots appear to play the central role in salinity adaptation, ensured by the development of thinner and likely lignified roots, as well as fine-tuning of membrane transport for effective management of restriction of ion entry and sequestration, accumulation of osmolytes, and minimization of energy costs. By contrast, more resources and energy are required to overcome the consequences of osmotic stress, particularly the severity of reactive oxygen species production and nutritional disbalance which affect plant growth. Our results have identified specific mechanisms for adaptation to salinity in seaside barley which differ from those activated in response to osmotic stress. Increased knowledge around salt tolerance in halophytic wild relatives will provide a basis for improved breeding of salt-tolerant crops.
Collapse
Affiliation(s)
- Stanislav Isayenkov
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany; (A.H.); (P.R.); (Y.A.T.M.); (H.R.); (L.B.)
- Institute of Food Biotechnology and Genomics NAS of Ukraine, Osipovskogo Street, 2a, 04123 Kyiv, Ukraine
- Correspondence: (S.I.); (V.R.)
| | - Alexander Hilo
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany; (A.H.); (P.R.); (Y.A.T.M.); (H.R.); (L.B.)
| | - Paride Rizzo
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany; (A.H.); (P.R.); (Y.A.T.M.); (H.R.); (L.B.)
| | - Yudelsy Antonia Tandron Moya
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany; (A.H.); (P.R.); (Y.A.T.M.); (H.R.); (L.B.)
| | - Hardy Rolletschek
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany; (A.H.); (P.R.); (Y.A.T.M.); (H.R.); (L.B.)
| | - Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany; (A.H.); (P.R.); (Y.A.T.M.); (H.R.); (L.B.)
| | - Volodymyr Radchuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany; (A.H.); (P.R.); (Y.A.T.M.); (H.R.); (L.B.)
- Correspondence: (S.I.); (V.R.)
| |
Collapse
|
14
|
Tanveer M, Shabala S. Neurotransmitters in Signalling and Adaptation to Salinity Stress in Plants. NEUROTRANSMITTERS IN PLANT SIGNALING AND COMMUNICATION 2020. [DOI: 10.1007/978-3-030-54478-2_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Long Y, Tyerman SD, Gilliham M. Cytosolic GABA inhibits anion transport by wheat ALMT1. THE NEW PHYTOLOGIST 2020; 225:671-678. [PMID: 31591723 DOI: 10.1111/nph.16238] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/29/2019] [Indexed: 05/22/2023]
Abstract
Anion transport by aluminium-activated malate transporter (ALMT) proteins is negatively regulated by gamma-aminobutyric acid (GABA), which increases in concentration during stress. Here, the interaction between GABA and wheat (Triticum aestivum, Ta) TaALMT1 heterologously-expressed in Xenopus laevis oocytes was investigated. GABA inhibited anion transport by TaALMT1 in membrane patches from the cytosolic, not extracellular membrane face, via a reduction in open probability (NPopen ), not an inhibition of channel current magnitude. TaALMT1 currents in patches frequently exhibited rundown with complete removal of cytosolic factors, but were partially sustained by protein kinase C dependent phosphorylation. When applied to whole oocytes a GABA-analogue-BODIPY conjugate inhibited TaALMT1 anion currents from the cytoplasmic face only, whereas free GABA inhibited from both the inside and outside consistent with GABA traversing the TaALMT1 pore then acting from the inside. We propose GABA does not competitively inhibit ALMT conductance through the same pore but rather leads to an allosteric effect, reducing anion channel opening frequency. Across plants GABA is a conserved regulator of anion transport via ALMTs - a family with numerous physiological roles beyond Al3+ tolerance. Our data suggests that a GABA-ALMT interaction from the cytosolic face has the potential to form part of a novel plant signalling pathway.
Collapse
Affiliation(s)
- Yu Long
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Stephen D Tyerman
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Matthew Gilliham
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
16
|
David R, Byrt CS, Tyerman SD, Gilliham M, Wege S. Roles of membrane transporters: connecting the dots from sequence to phenotype. ANNALS OF BOTANY 2019; 124:201-208. [PMID: 31162525 PMCID: PMC6758574 DOI: 10.1093/aob/mcz066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 05/06/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Plant membrane transporters are involved in diverse cellular processes underpinning plant physiology, such as nutrient acquisition, hormone movement, resource allocation, exclusion or sequestration of various solutes from cells and tissues, and environmental and developmental signalling. A comprehensive characterization of transporter function is therefore key to understanding and improving plant performance. SCOPE AND CONCLUSIONS In this review, we focus on the complexities involved in characterizing transporter function and the impact that this has on current genomic annotations. Specific examples are provided that demonstrate why sequence homology alone cannot be relied upon to annotate and classify transporter function, and to show how even single amino acid residue variations can influence transporter activity and specificity. Misleading nomenclature of transporters is often a source of confusion in transporter characterization, especially for people new to or outside the field. Here, to aid researchers dealing with interpretation of large data sets that include transporter proteins, we provide examples of transporters that have been assigned names that misrepresent their cellular functions. Finally, we discuss the challenges in connecting transporter function at the molecular level with physiological data, and propose a solution through the creation of new databases. Further fundamental in-depth research on specific transport (and other) proteins is still required; without it, significant deficiencies in large-scale data sets and systems biology approaches will persist. Reliable characterization of transporter function requires integration of data at multiple levels, from amino acid residue sequence annotation to more in-depth biochemical, structural and physiological studies.
Collapse
Affiliation(s)
- Rakesh David
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| | - Caitlin S Byrt
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Stephen D Tyerman
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| | - Matthew Gilliham
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| | - Stefanie Wege
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
- For correspondence. E-mail
| |
Collapse
|
17
|
Molecular Mechanisms for Coping with Al Toxicity in Plants. Int J Mol Sci 2019; 20:ijms20071551. [PMID: 30925682 PMCID: PMC6480313 DOI: 10.3390/ijms20071551] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 01/03/2023] Open
Abstract
Aluminum (Al) toxicity is one of the major constraints to agricultural production in acid soils. Molecular mechanisms of coping with Al toxicity have now been investigated in a range of plant species. Two main mechanisms of Al tolerance in plants are Al exclusion from the roots and the ability to tolerate Al in the roots. This review focuses on the recent discovery of novel genes and mechanisms that confer Al tolerance in plants and summarizes our understanding of the physiological, genetic, and molecular basis for plant Al tolerance. We hope this review will provide a theoretical basis for the genetic improvement of Al tolerance in plants.
Collapse
|
18
|
Wu H, Li Z. The Importance of Cl - Exclusion and Vacuolar Cl - Sequestration: Revisiting the Role of Cl - Transport in Plant Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2019; 10:1418. [PMID: 31781141 PMCID: PMC6857526 DOI: 10.3389/fpls.2019.01418] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/11/2019] [Indexed: 05/20/2023]
Abstract
Salinity threatens agricultural production systems across the globe. While the major focus of plant researchers working in the field of salinity stress tolerance has always been on sodium and potassium, the transport patterns and physiological roles of Cl- in plant salt stress responses are studied much less. In recent years, the role of Cl- in plant salinity stress tolerance has been revisited and has received more attention. This review attempts to address the gap in knowledge of the role of Cl- transport in plant salinity stress tolerance. Cl- transport, Cl- exclusion, vacuolar Cl- sequestration, the specificity of mechanisms employed in different plant species to control shoot Cl- accumulation, and the identity of channels and transporters involved in Cl- transport in salt stressed plants are discussed. The importance of the electrochemical gradient across the tonoplast, for vacuolar Cl- sequestration, is highlighted. The toxicity of Cl- from CaCl2 is briefly reviewed separately to that of Cl- from NaCl.
Collapse
Affiliation(s)
- Honghong Wu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Department of Botany and Plant Sciences, University of California, Riverside, CA, United States
- *Correspondence: Honghong Wu, ; Zhaohu Li,
| | - Zhaohu Li
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- *Correspondence: Honghong Wu, ; Zhaohu Li,
| |
Collapse
|
19
|
Magalhaes JV, Piñeros MA, Maciel LS, Kochian LV. Emerging Pleiotropic Mechanisms Underlying Aluminum Resistance and Phosphorus Acquisition on Acidic Soils. FRONTIERS IN PLANT SCIENCE 2018; 9:1420. [PMID: 30319678 PMCID: PMC6168647 DOI: 10.3389/fpls.2018.01420] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 09/06/2018] [Indexed: 05/25/2023]
Abstract
Aluminum (Al) toxicity on acidic soils significantly damages plant roots and inhibits root growth. Hence, crops intoxicated by Al become more sensitive to drought stress and mineral nutrient deficiencies, particularly phosphorus (P) deficiency, which is highly unavailable on tropical soils. Advances in our understanding of the physiological and genetic mechanisms that govern plant Al resistance have led to the identification of Al resistance genes, both in model systems and in crop species. It has long been known that Al resistance has a beneficial effect on crop adaptation to acidic soils. This positive effect happens because the root systems of Al resistant plants show better development in the presence of soil ionic Al3+ and are, consequently, more efficient in absorbing sub-soil water and mineral nutrients. This effect of Al resistance on crop production, by itself, warrants intensified efforts to develop and implement, on a breeding scale, modern selection strategies to profit from the knowledge of the molecular determinants of plant Al resistance. Recent studies now suggest that Al resistance can exert pleiotropic effects on P acquisition, potentially expanding the role of Al resistance on crop adaptation to acidic soils. This appears to occur via both organic acid (OA)- and non-OA transporters governing a joint, iron-dependent interplay between Al resistance and enhanced P uptake, via changes in root system architecture. Current research suggests this interplay to be part of a P stress response, suggesting that this mechanism could have evolved in crop species to improve adaptation to acidic soils. Should this pleiotropism prove functional in crop species grown on acidic soils, molecular breeding based on Al resistance genes may have a much broader impact on crop performance than previously anticipated. To explore this possibility, here we review the components of this putative effect of Al resistance genes on P stress responses and P nutrition to provide the foundation necessary to discuss the recent evidence suggesting pleiotropy as a genetic linkage between Al resistance and P efficiency. We conclude by exploring what may be needed to enhance the utilization of Al resistance genes to improve crop production on acidic soils.
Collapse
Affiliation(s)
- Jurandir V. Magalhaes
- Embrapa Maize and Sorghum, Sete Lagoas, Brazil
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Miguel A. Piñeros
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, United States
| | - Laiane S. Maciel
- Embrapa Maize and Sorghum, Sete Lagoas, Brazil
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leon V. Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
20
|
Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Ogé L, Hamama L, Atanassova R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int J Mol Sci 2018; 57:2367-2379. [PMID: 30149541 DOI: 10.1093/pcp/pcw157] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/07/2018] [Accepted: 09/05/2016] [Indexed: 05/25/2023] Open
Abstract
Plant growth and development has to be continuously adjusted to the available resources. Their optimization requires the integration of signals conveying the plant metabolic status, its hormonal balance, and its developmental stage. Many investigations have recently been conducted to provide insights into sugar signaling and its interplay with hormones and nitrogen in the fine-tuning of plant growth, development, and survival. The present review emphasizes the diversity of sugar signaling integrators, the main molecular and biochemical mechanisms related to the sugar-signaling dependent regulations, and to the regulatory hubs acting in the interplay of the sugar-hormone and sugar-nitrogen networks. It also contributes to compiling evidence likely to fill a few knowledge gaps, and raises new questions for the future.
Collapse
Affiliation(s)
- Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Fabienne Dédaldéchamp
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Rossitza Atanassova
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|
21
|
Makavitskaya M, Svistunenko D, Navaselsky I, Hryvusevich P, Mackievic V, Rabadanova C, Tyutereva E, Samokhina V, Straltsova D, Sokolik A, Voitsekhovskaja O, Demidchik V. Novel roles of ascorbate in plants: induction of cytosolic Ca2+ signals and efflux from cells via anion channels. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3477-3489. [PMID: 29471538 DOI: 10.1093/jxb/ery056] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/13/2017] [Indexed: 05/22/2023]
Abstract
Ascorbate is not often considered as a signalling molecule in plants. This study demonstrates that, in Arabidopsis roots, exogenous l-ascorbic acid triggers a transient increase of the cytosolic free calcium activity ([Ca2+]cyt.) that is central to plant signalling. Exogenous copper and iron stimulate the ascorbate-induced [Ca2+]cyt. elevation, while cation channel blockers, free radical scavengers, low extracellular [Ca2+], transition metal chelators, and removal of the cell wall inhibit this reaction. These data show that apoplastic redox-active transition metals are involved in the ascorbate-induced [Ca2+]cyt. elevation. Exogenous ascorbate also induces a moderate increase in programmed cell death symptoms in intact roots, but it does not activate Ca2+ influx currents in patch-clamped root protoplasts. Intriguingly, the replacement of gluconate with ascorbate in the patch-clamp pipette reveals a large ascorbate efflux current, which shows sensitivity to the anion channel blocker, anthracene-9-carboxylic acid (A9C), indicative of the ascorbate release via anion channels. EPR spectroscopy measurements demonstrate that salinity (NaCl) triggers the accumulation of root apoplastic ascorbyl radicals in an A9C-dependent manner, confirming that l-ascorbate leaks through anion channels under depolarization. This mechanism may underlie ascorbate release, signalling phenomena, apoplastic redox reactions, iron acquisition, and control the ionic and electrical equilibrium (together with K+ efflux via GORK channels).
Collapse
Affiliation(s)
- M Makavitskaya
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, Independence Square, Minsk, Belarusian
| | - D Svistunenko
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, UK
| | - I Navaselsky
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, Independence Square, Minsk, Belarusian
| | - P Hryvusevich
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, Independence Square, Minsk, Belarusian
| | - V Mackievic
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, Independence Square, Minsk, Belarusian
| | - C Rabadanova
- Russian Academy of Sciences, Komarov Botanical Institute, St Petersburg, Russia
| | - E Tyutereva
- Russian Academy of Sciences, Komarov Botanical Institute, St Petersburg, Russia
| | - V Samokhina
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, Independence Square, Minsk, Belarusian
| | - D Straltsova
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, Independence Square, Minsk, Belarusian
| | - A Sokolik
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, Independence Square, Minsk, Belarusian
| | - O Voitsekhovskaja
- Russian Academy of Sciences, Komarov Botanical Institute, St Petersburg, Russia
| | - V Demidchik
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, Independence Square, Minsk, Belarusian
- Russian Academy of Sciences, Komarov Botanical Institute, St Petersburg, Russia
| |
Collapse
|
22
|
Ramesh SA, Kamran M, Sullivan W, Chirkova L, Okamoto M, Degryse F, McLaughlin M, Gilliham M, Tyerman SD. Aluminum-Activated Malate Transporters Can Facilitate GABA Transport. THE PLANT CELL 2018; 30:1147-1164. [PMID: 29618628 PMCID: PMC6002190 DOI: 10.1105/tpc.17.00864] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/27/2018] [Accepted: 04/02/2018] [Indexed: 05/02/2023]
Abstract
Plant aluminum-activated malate transporters (ALMTs) are currently classified as anion channels; they are also known to be regulated by diverse signals, leading to a range of physiological responses. Gamma-aminobutyric acid (GABA) regulation of anion flux through ALMT proteins requires a specific amino acid motif in ALMTs that shares similarity with a GABA binding site in mammalian GABAA receptors. Here, we explore why TaALMT1 activation leads to a negative correlation between malate efflux and endogenous GABA concentrations ([GABA]i) in both wheat (Triticum aestivum) root tips and in heterologous expression systems. We show that TaALMT1 activation reduces [GABA]i because TaALMT1 facilitates GABA efflux but GABA does not complex Al3+ TaALMT1 also leads to GABA transport into cells, demonstrated by a yeast complementation assay and via 14C-GABA uptake into TaALMT1-expressing Xenopus laevis oocytes; this was found to be a general feature of all ALMTs we examined. Mutation of the GABA motif (TaALMT1F213C) prevented both GABA influx and efflux, and resulted in no correlation between malate efflux and [GABA]i We conclude that ALMTs are likely to act as both GABA and anion transporters in planta. GABA and malate appear to interact with ALMTs in a complex manner to regulate each other's transport, suggestive of a role for ALMTs in communicating metabolic status.
Collapse
Affiliation(s)
- Sunita A Ramesh
- ARC Centre of Excellence in Plant Energy Biology, Department of Plant Science, School of Agriculture, Food, and Wine, Waite Research Institute, University of Adelaide, Glen Osmond SA 5064, Australia
| | - Muhammad Kamran
- ARC Centre of Excellence in Plant Energy Biology, Department of Plant Science, School of Agriculture, Food, and Wine, Waite Research Institute, University of Adelaide, Glen Osmond SA 5064, Australia
| | - Wendy Sullivan
- ARC Centre of Excellence in Plant Energy Biology, Department of Plant Science, School of Agriculture, Food, and Wine, Waite Research Institute, University of Adelaide, Glen Osmond SA 5064, Australia
| | - Larissa Chirkova
- ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, Department of Plant Science, Waite Research Institute, School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond SA 5064, Australia
| | - Mamoru Okamoto
- ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, Department of Plant Science, Waite Research Institute, School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond SA 5064, Australia
| | - Fien Degryse
- Fertilizer Technology Research Centre, School of Agriculture, Food, and Wine, Waite Research Institute, University of Adelaide, Glen Osmond SA 5064, Australia
| | - Michael McLaughlin
- Fertilizer Technology Research Centre, School of Agriculture, Food, and Wine, Waite Research Institute, University of Adelaide, Glen Osmond SA 5064, Australia
| | - Matthew Gilliham
- ARC Centre of Excellence in Plant Energy Biology, Department of Plant Science, School of Agriculture, Food, and Wine, Waite Research Institute, University of Adelaide, Glen Osmond SA 5064, Australia
| | - Stephen D Tyerman
- ARC Centre of Excellence in Plant Energy Biology, Department of Plant Science, School of Agriculture, Food, and Wine, Waite Research Institute, University of Adelaide, Glen Osmond SA 5064, Australia
| |
Collapse
|
23
|
Liu MY, Lou HQ, Chen WW, Piñeros MA, Xu JM, Fan W, Kochian LV, Zheng SJ, Yang JL. Two citrate transporters coordinately regulate citrate secretion from rice bean root tip under aluminum stress. PLANT, CELL & ENVIRONMENT 2018; 41:809-822. [PMID: 29346835 DOI: 10.1111/pce.13150] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/20/2017] [Accepted: 01/09/2018] [Indexed: 05/25/2023]
Abstract
Aluminum (Al)-induced organic acid secretion from the root apex is an important Al resistance mechanism. However, it remains unclear how plants fine-tune root organic acid secretion which can contribute significantly to the loss of fixed carbon from the plant. Here, we demonstrate that Al-induced citrate secretion from the rice bean root apex is biphasic, consisting of an early phase with low secretion and a later phase of large citrate secretion. We isolated and characterized VuMATE2 as a possible second citrate transporter in rice bean functioning in tandem with VuMATE1, which we previously identified. The time-dependent kinetics of VuMATE2 expression correlates well with the kinetics of early phase root citrate secretion. Ectopic expression of VuMATE2 in Arabidopsis resulted in increased root citrate secretion and Al resistance. Electrophysiological analysis of Xenopus oocytes expressing VuMATE2 indicated VuMATE2 mediates anion efflux. However, the expression regulation of VuMATE2 differs from VuMATE1. While a protein translation inhibitor suppressed Al-induced VuMATE1 expression, it releases VuMATE2 expression. Yeast one-hybrid assays demonstrated that a previously identified transcription factor, VuSTOP1, interacts with the VuMATE2 promoter at a GGGAGG cis-acting motif. Thus, we demonstrate that plants adapt to Al toxicity by fine-tuning root citrate secretion with two separate root citrate transport systems.
Collapse
Affiliation(s)
- Mei Ya Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - He Qiang Lou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei Wei Chen
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Miguel A Piñeros
- Robert Holley Center for Agriculture and Health (USDA-ARS), Department of Plant Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jia Meng Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei Fan
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Leon V Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 4J8, Canada
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian Li Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
24
|
Heng Y, Wu C, Long Y, Luo S, Ma J, Chen J, Liu J, Zhang H, Ren Y, Wang M, Tan J, Zhu S, Wang J, Lei C, Zhang X, Guo X, Wang H, Cheng Z, Wan J. OsALMT7 Maintains Panicle Size and Grain Yield in Rice by Mediating Malate Transport. THE PLANT CELL 2018; 30:889-906. [PMID: 29610210 PMCID: PMC5969278 DOI: 10.1105/tpc.17.00998] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/14/2018] [Accepted: 04/01/2018] [Indexed: 05/18/2023]
Abstract
Panicle size is a critical determinant of grain yield in rice (Oryza sativa) and other grain crops. During rice growth and development, spikelet abortion often occurs at either the top or the basal part of the panicle under unfavorable conditions, causing a reduction in fertile spikelet number and thus grain yield. In this study, we report the isolation and functional characterization of a panicle abortion mutant named panicle apical abortion1-1 (paab1-1). paab1-1 exhibits degeneration of spikelets on the apical portion of panicles during late stage of panicle development. Cellular and physiological analyses revealed that the apical spikelets in the paab1-1 mutant undergo programmed cell death, accompanied by nuclear DNA fragmentation and accumulation of higher levels of H2O2 and malondialdehyde. Molecular cloning revealed that paab1-1 harbors a mutation in OsALMT7, which encodes a putative aluminum-activated malate transporter (OsALMT7) localized to the plasma membrane, and is preferentially expressed in the vascular tissues of developing panicles. Consistent with a function for OsALMT7 as a malate transporter, the panicle of the paab1-1 mutant contained less malate than the wild type, particularly at the apical portions, and injection of malate into the paab1-1 panicle could alleviate the spikelet degeneration phenotype. Together, these results suggest that OsALMT7-mediated transport of malate into the apical portion of panicle is required for normal panicle development, thus highlighting a key role of malate in maintaining the sink size and grain yield in rice and probably other grain crops.
Collapse
Affiliation(s)
- Yueqin Heng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuanyin Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yu Long
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Centre (Beijing), China Agricultural University, Beijing 100193, China
| | - Sheng Luo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jin Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jun Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiafan Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huan Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junjie Tan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
25
|
Association of Proteomics Changes with Al-Sensitive Root Zones in Switchgrass. Proteomes 2018; 6:proteomes6020015. [PMID: 29565292 PMCID: PMC6027131 DOI: 10.3390/proteomes6020015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/13/2018] [Accepted: 03/21/2018] [Indexed: 12/25/2022] Open
Abstract
In this paper, we report on aluminum (Al)-induced root proteomic changes in switchgrass. After growth in a hydroponic culture system supplemented with 400 μM of Al, plants began to show signs of physiological stress such as a reduction in photosynthetic rate. At this time, the basal 2-cm long root tips were harvested and divided into two segments, each of 1-cm in length, for protein extraction. Al-induced changes in proteomes were identified using tandem mass tags mass spectrometry (TMT-MS)-based quantitative proteomics analysis. A total of 216 proteins (approximately 3.6% of total proteins) showed significant differences between non-Al treated control and treated groups with significant fold change (twice the standard deviation; FDR adjusted p-value < 0.05). The apical root tip tissues expressed more dramatic proteome changes (164 significantly changed proteins; 3.9% of total proteins quantified) compared to the elongation/maturation zones (52 significantly changed proteins, 1.1% of total proteins quantified). Significantly changed proteins from the apical 1-cm root apex tissues were clustered into 25 biological pathways; proteins involved in the cell cycle (rotamase FKBP 1 isoforms, and CDC48 protein) were all at a reduced abundance level compared to the non-treated control group. In the root elongation/maturation zone tissues, the identified proteins were placed into 18 pathways, among which proteins involved in secondary metabolism (lignin biosynthesis) were identified. Several STRING protein interaction networks were developed for these Al-induced significantly changed proteins. This study has identified a large number of Al-responsive proteins, including transcription factors, which will be used for exploring new Al tolerance genes and mechanisms. Data are available via ProteomeXchange with identifiers PXD008882 and PXD009125.
Collapse
|
26
|
|
27
|
Doshi R, McGrath AP, Piñeros M, Szewczyk P, Garza DM, Kochian LV, Chang G. Functional characterization and discovery of modulators of SbMATE, the agronomically important aluminium tolerance transporter from Sorghum bicolor. Sci Rep 2017; 7:17996. [PMID: 29269936 PMCID: PMC5740117 DOI: 10.1038/s41598-017-18146-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/01/2017] [Indexed: 12/18/2022] Open
Abstract
About 50% of the world's arable land is strongly acidic (pH ≤ 5). The low pH solubilizes root-toxic ionic aluminium (Al3+) species from clay minerals, driving the evolution of counteractive adaptations in cultivated crops. The food crop Sorghum bicolor upregulates the membrane-embedded transporter protein SbMATE in its roots. SbMATE mediates efflux of the anionic form of the organic acid, citrate, into the soil rhizosphere, chelating Al3+ ions and thereby imparting Al-resistance based on excluding Al+3 from the growing root tip. Here, we use electrophysiological, radiolabeled, and fluorescence-based transport assays in two heterologous expression systems to establish a broad substrate recognition profile of SbMATE, showing the proton and/or sodium-driven transport of 14C-citrate anion, as well as the organic monovalent cation, ethidium, but not its divalent analog, propidium. We further complement our transport assays by measuring substrate binding to detergent-purified SbMATE protein. Finally, we use the purified membrane protein as an antigen to discover native conformation-binding and transport function-altering nanobodies using an animal-free, mRNA/cDNA display technology. Our results demonstrate the utility of using Pichia pastoris as an efficient eukaryotic host to express large quantities of functional plant transporter proteins. The nanobody discovery approach is applicable to other non-immunogenic plant proteins.
Collapse
Affiliation(s)
- Rupak Doshi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California, USA.,InhibRx LLP, 11099 N Torrey Pines Rd., Suite 280, La Jolla, San Diego, CA, 92037, USA.,Department of Electrical Engineering and Computer Science, University of California, Irvine, 2213 Engineering Hall, Irvine, CA, 92697-2625, USA
| | - Aaron P McGrath
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California, USA
| | - Miguel Piñeros
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, NY, USA
| | - Paul Szewczyk
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California, USA.,Cancer Metabolism and Signaling Networks Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, United States
| | - Denisse M Garza
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California, USA
| | - Leon V Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Canada
| | - Geoffrey Chang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California, USA. .,Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla, California, USA.
| |
Collapse
|
28
|
Balzergue C, Dartevelle T, Godon C, Laugier E, Meisrimler C, Teulon JM, Creff A, Bissler M, Brouchoud C, Hagège A, Müller J, Chiarenza S, Javot H, Becuwe-Linka N, David P, Péret B, Delannoy E, Thibaud MC, Armengaud J, Abel S, Pellequer JL, Nussaume L, Desnos T. Low phosphate activates STOP1-ALMT1 to rapidly inhibit root cell elongation. Nat Commun 2017; 8:15300. [PMID: 28504266 PMCID: PMC5440667 DOI: 10.1038/ncomms15300] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/16/2017] [Indexed: 12/12/2022] Open
Abstract
Environmental cues profoundly modulate cell proliferation and cell elongation to inform and direct plant growth and development. External phosphate (Pi) limitation inhibits primary root growth in many plant species. However, the underlying Pi sensory mechanisms are unknown. Here we genetically uncouple two Pi sensing pathways in the root apex of Arabidopsis thaliana. First, the rapid inhibition of cell elongation in the transition zone is controlled by transcription factor STOP1, by its direct target, ALMT1, encoding a malate channel, and by ferroxidase LPR1, which together mediate Fe and peroxidase-dependent cell wall stiffening. Second, during the subsequent slow inhibition of cell proliferation in the apical meristem, which is mediated by LPR1-dependent, but largely STOP1–ALMT1-independent, Fe and callose accumulate in the stem cell niche, leading to meristem reduction. Our work uncovers STOP1 and ALMT1 as a signalling pathway of low Pi availability and exuded malate as an unexpected apoplastic inhibitor of root cell wall expansion. Low Pi availability inhibits primary root growth, but the sensory mechanisms are not known. Here the authors uncover a signalling pathway regulating Pi-mediated root growth inhibition in Arabidopsis, involving the transcription factor STOP1, its direct target ALMT1, a malate channel, and ferroxidase LPR1.
Collapse
Affiliation(s)
- Coline Balzergue
- Laboratoire de Biologie du Développement des Plantes, Institut de Biosciences et Biotechnology Aix-Marseille, Commissariat à l'Energie Atomique et aux énergies alternatives, Saint-Paul-Lez-Durance 13108, France.,Centre National de la Recherche Scientifique, UMR 7265 Biol. Végét. &Microbiol. Environ., Saint-Paul-Lez-Durance, France.,Aix-Marseille Université, UMR 7265, Marseille, France
| | - Thibault Dartevelle
- Laboratoire de Biologie du Développement des Plantes, Institut de Biosciences et Biotechnology Aix-Marseille, Commissariat à l'Energie Atomique et aux énergies alternatives, Saint-Paul-Lez-Durance 13108, France.,Centre National de la Recherche Scientifique, UMR 7265 Biol. Végét. &Microbiol. Environ., Saint-Paul-Lez-Durance, France.,Aix-Marseille Université, UMR 7265, Marseille, France
| | - Christian Godon
- Laboratoire de Biologie du Développement des Plantes, Institut de Biosciences et Biotechnology Aix-Marseille, Commissariat à l'Energie Atomique et aux énergies alternatives, Saint-Paul-Lez-Durance 13108, France.,Centre National de la Recherche Scientifique, UMR 7265 Biol. Végét. &Microbiol. Environ., Saint-Paul-Lez-Durance, France.,Aix-Marseille Université, UMR 7265, Marseille, France
| | - Edith Laugier
- Laboratoire de Biologie du Développement des Plantes, Institut de Biosciences et Biotechnology Aix-Marseille, Commissariat à l'Energie Atomique et aux énergies alternatives, Saint-Paul-Lez-Durance 13108, France.,Centre National de la Recherche Scientifique, UMR 7265 Biol. Végét. &Microbiol. Environ., Saint-Paul-Lez-Durance, France.,Aix-Marseille Université, UMR 7265, Marseille, France
| | - Claudia Meisrimler
- Laboratoire de Biologie du Développement des Plantes, Institut de Biosciences et Biotechnology Aix-Marseille, Commissariat à l'Energie Atomique et aux énergies alternatives, Saint-Paul-Lez-Durance 13108, France.,Centre National de la Recherche Scientifique, UMR 7265 Biol. Végét. &Microbiol. Environ., Saint-Paul-Lez-Durance, France.,Aix-Marseille Université, UMR 7265, Marseille, France
| | - Jean-Marie Teulon
- CNRS, IBS, Grenoble F-38044, France.,CEA, IBS, Grenoble F-38044, France.,Université Grenoble Alpes, IBS, Grenoble F-38044, France
| | - Audrey Creff
- Laboratoire de Biologie du Développement des Plantes, Institut de Biosciences et Biotechnology Aix-Marseille, Commissariat à l'Energie Atomique et aux énergies alternatives, Saint-Paul-Lez-Durance 13108, France.,Centre National de la Recherche Scientifique, UMR 7265 Biol. Végét. &Microbiol. Environ., Saint-Paul-Lez-Durance, France.,Aix-Marseille Université, UMR 7265, Marseille, France
| | - Marie Bissler
- Laboratoire de Biologie du Développement des Plantes, Institut de Biosciences et Biotechnology Aix-Marseille, Commissariat à l'Energie Atomique et aux énergies alternatives, Saint-Paul-Lez-Durance 13108, France.,Centre National de la Recherche Scientifique, UMR 7265 Biol. Végét. &Microbiol. Environ., Saint-Paul-Lez-Durance, France.,Aix-Marseille Université, UMR 7265, Marseille, France
| | - Corinne Brouchoud
- Laboratoire de Biologie du Développement des Plantes, Institut de Biosciences et Biotechnology Aix-Marseille, Commissariat à l'Energie Atomique et aux énergies alternatives, Saint-Paul-Lez-Durance 13108, France.,Centre National de la Recherche Scientifique, UMR 7265 Biol. Végét. &Microbiol. Environ., Saint-Paul-Lez-Durance, France.,Aix-Marseille Université, UMR 7265, Marseille, France
| | - Agnès Hagège
- Commissariat à l'Energie Atomique et aux énergies alternatives, Service de Biologie et de Toxicologie Nucléaire, Laboratoire d'Etude des Protéines Cibles, 30200 Bagnols sur Cèze, France
| | - Jens Müller
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Serge Chiarenza
- Laboratoire de Biologie du Développement des Plantes, Institut de Biosciences et Biotechnology Aix-Marseille, Commissariat à l'Energie Atomique et aux énergies alternatives, Saint-Paul-Lez-Durance 13108, France.,Centre National de la Recherche Scientifique, UMR 7265 Biol. Végét. &Microbiol. Environ., Saint-Paul-Lez-Durance, France.,Aix-Marseille Université, UMR 7265, Marseille, France
| | - Hélène Javot
- Laboratoire de Biologie du Développement des Plantes, Institut de Biosciences et Biotechnology Aix-Marseille, Commissariat à l'Energie Atomique et aux énergies alternatives, Saint-Paul-Lez-Durance 13108, France.,Centre National de la Recherche Scientifique, UMR 7265 Biol. Végét. &Microbiol. Environ., Saint-Paul-Lez-Durance, France.,Aix-Marseille Université, UMR 7265, Marseille, France
| | - Noëlle Becuwe-Linka
- Laboratoire de Biologie du Développement des Plantes, Institut de Biosciences et Biotechnology Aix-Marseille, Commissariat à l'Energie Atomique et aux énergies alternatives, Saint-Paul-Lez-Durance 13108, France.,Centre National de la Recherche Scientifique, UMR 7265 Biol. Végét. &Microbiol. Environ., Saint-Paul-Lez-Durance, France.,Aix-Marseille Université, UMR 7265, Marseille, France
| | - Pascale David
- Laboratoire de Biologie du Développement des Plantes, Institut de Biosciences et Biotechnology Aix-Marseille, Commissariat à l'Energie Atomique et aux énergies alternatives, Saint-Paul-Lez-Durance 13108, France.,Centre National de la Recherche Scientifique, UMR 7265 Biol. Végét. &Microbiol. Environ., Saint-Paul-Lez-Durance, France.,Aix-Marseille Université, UMR 7265, Marseille, France
| | - Benjamin Péret
- Laboratoire de Biologie du Développement des Plantes, Institut de Biosciences et Biotechnology Aix-Marseille, Commissariat à l'Energie Atomique et aux énergies alternatives, Saint-Paul-Lez-Durance 13108, France.,Centre National de la Recherche Scientifique, UMR 7265 Biol. Végét. &Microbiol. Environ., Saint-Paul-Lez-Durance, France.,Aix-Marseille Université, UMR 7265, Marseille, France
| | - Etienne Delannoy
- Laboratoire de Biologie du Développement des Plantes, Institut de Biosciences et Biotechnology Aix-Marseille, Commissariat à l'Energie Atomique et aux énergies alternatives, Saint-Paul-Lez-Durance 13108, France.,Centre National de la Recherche Scientifique, UMR 7265 Biol. Végét. &Microbiol. Environ., Saint-Paul-Lez-Durance, France.,Aix-Marseille Université, UMR 7265, Marseille, France
| | - Marie-Christine Thibaud
- Laboratoire de Biologie du Développement des Plantes, Institut de Biosciences et Biotechnology Aix-Marseille, Commissariat à l'Energie Atomique et aux énergies alternatives, Saint-Paul-Lez-Durance 13108, France.,Centre National de la Recherche Scientifique, UMR 7265 Biol. Végét. &Microbiol. Environ., Saint-Paul-Lez-Durance, France.,Aix-Marseille Université, UMR 7265, Marseille, France
| | - Jean Armengaud
- CEA, DRF, JOLIOT/DMTS/SPI/Li2D, Laboratory 'Innovative Technologies for Detection and Diagnostics', Bagnols-sur-Cèze F-30200, France
| | - Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Jean-Luc Pellequer
- CNRS, IBS, Grenoble F-38044, France.,CEA, IBS, Grenoble F-38044, France.,Université Grenoble Alpes, IBS, Grenoble F-38044, France
| | - Laurent Nussaume
- Laboratoire de Biologie du Développement des Plantes, Institut de Biosciences et Biotechnology Aix-Marseille, Commissariat à l'Energie Atomique et aux énergies alternatives, Saint-Paul-Lez-Durance 13108, France.,Centre National de la Recherche Scientifique, UMR 7265 Biol. Végét. &Microbiol. Environ., Saint-Paul-Lez-Durance, France.,Aix-Marseille Université, UMR 7265, Marseille, France
| | - Thierry Desnos
- Laboratoire de Biologie du Développement des Plantes, Institut de Biosciences et Biotechnology Aix-Marseille, Commissariat à l'Energie Atomique et aux énergies alternatives, Saint-Paul-Lez-Durance 13108, France.,Centre National de la Recherche Scientifique, UMR 7265 Biol. Végét. &Microbiol. Environ., Saint-Paul-Lez-Durance, France.,Aix-Marseille Université, UMR 7265, Marseille, France
| |
Collapse
|
29
|
Ramesh SA, Tyerman SD, Gilliham M, Xu B. γ-Aminobutyric acid (GABA) signalling in plants. Cell Mol Life Sci 2017; 74:1577-1603. [PMID: 27838745 PMCID: PMC11107511 DOI: 10.1007/s00018-016-2415-7] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/06/2016] [Accepted: 11/08/2016] [Indexed: 01/11/2023]
Abstract
The role of γ-aminobutyric acid (GABA) as a signal in animals has been documented for over 60 years. In contrast, evidence that GABA is a signal in plants has only emerged in the last 15 years, and it was not until last year that a mechanism by which this could occur was identified-a plant 'GABA receptor' that inhibits anion passage through the aluminium-activated malate transporter family of proteins (ALMTs). ALMTs are multigenic, expressed in different organs and present on different membranes. We propose GABA regulation of ALMT activity could function as a signal that modulates plant growth, development, and stress response. In this review, we compare and contrast the plant 'GABA receptor' with mammalian GABAA receptors in terms of their molecular identity, predicted topology, mode of action, and signalling roles. We also explore the implications of the discovery that GABA modulates anion flux in plants, its role in signal transduction for the regulation of plant physiology, and predict the possibility that there are other GABA interaction sites in the N termini of ALMT proteins through in silico evolutionary coupling analysis; we also explore the potential interactions between GABA and other signalling molecules.
Collapse
Affiliation(s)
- Sunita A Ramesh
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Stephen D Tyerman
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Matthew Gilliham
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Bo Xu
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia.
| |
Collapse
|
30
|
Ligaba-Osena A, Fei Z, Liu J, Xu Y, Shaff J, Lee SC, Luan S, Kudla J, Kochian L, Piñeros M. Loss-of-function mutation of the calcium sensor CBL1 increases aluminum sensitivity in Arabidopsis. THE NEW PHYTOLOGIST 2017; 214:830-841. [PMID: 28150888 DOI: 10.1111/nph.14420] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/01/2016] [Indexed: 05/11/2023]
Abstract
Despite the physiological importance of aluminum (Al) phytotoxicity for plants, it remained unknown if, and how, calcineurin B-like calcium sensors (CBLs) and CBL-interacting protein kinases (CIPKs) are involved in Al resistance. We performed a comparative physiological and whole transcriptome investigation of an Arabidopsis CBL1 mutant (cbl1) and the wild-type (WT). cbl1 plants exudated less Al-chelating malate, accumulated more Al, and displayed a severe root growth reduction in response to Al. Genes involved in metabolism, transport, cell wall modification, transcription and oxidative stress were differentially regulated between the two lines, under both control and Al stress treatments. Exposure to Al resulted in up-regulation of a large set of genes only in WT and not cbl1 shoots, while a different set of genes were down-regulated in cbl1 but not in WT roots. These differences allowed us, for the first time, to define a calcium-regulated/dependent transcriptomic network for Al stress responses. Our analyses reveal not only the fundamental role of CBL1 in the adjustment of central transcriptomic networks involved in maintaining adequate physiological homeostasis processes, but also that a high shoot-root dynamics is required for the proper deployment of Al resistance responses in the root.
Collapse
Affiliation(s)
- Ayalew Ligaba-Osena
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA
| | - Jiping Liu
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
| | - Yimin Xu
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA
| | - Jon Shaff
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
| | - Sung-Chul Lee
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Jörg Kudla
- Westfälische Wilhelms-Universität Münster, Institut für Biologie und Biotechnologie der Pflanzen, Schlossplatz 7, 48149, Münster, Germany
| | - Leon Kochian
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
| | - Miguel Piñeros
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
31
|
Li B, Tester M, Gilliham M. Chloride on the Move. TRENDS IN PLANT SCIENCE 2017; 22:236-248. [PMID: 28081935 DOI: 10.1016/j.tplants.2016.12.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/21/2016] [Accepted: 12/11/2016] [Indexed: 05/20/2023]
Abstract
Chloride (Cl-) is an essential plant nutrient but under saline conditions it can accumulate to toxic levels in leaves; limiting this accumulation improves the salt tolerance of some crops. The rate-limiting step for this process - the transfer of Cl- from root symplast to xylem apoplast, which can antagonize delivery of the macronutrient nitrate (NO3-) to shoots - is regulated by abscisic acid (ABA) and is multigenic. Until recently the molecular mechanisms underpinning this salt-tolerance trait were poorly defined. We discuss here how recent advances highlight the role of newly identified transport proteins, some that directly transfer Cl- into the xylem, and others that act on endomembranes in 'gatekeeper' cell types in the root stele to control root-to-shoot delivery of Cl-.
Collapse
Affiliation(s)
- Bo Li
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mark Tester
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Matthew Gilliham
- Plant Transport and Signalling Group, Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia.
| |
Collapse
|
32
|
Dong J, Piñeros MA, Li X, Yang H, Liu Y, Murphy AS, Kochian LV, Liu D. An Arabidopsis ABC Transporter Mediates Phosphate Deficiency-Induced Remodeling of Root Architecture by Modulating Iron Homeostasis in Roots. MOLECULAR PLANT 2017; 10:244-259. [PMID: 27847325 DOI: 10.1016/j.molp.2016.11.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/24/2016] [Accepted: 11/05/2016] [Indexed: 05/21/2023]
Abstract
The remodeling of root architecture is a major developmental response of plants to phosphate (Pi) deficiency and is thought to enhance a plant's ability to forage for the available Pi in topsoil. The underlying mechanism controlling this response, however, is poorly understood. In this study, we identified an Arabidopsis mutant, hps10 (hypersensitive to Pi starvation 10), which is morphologically normal under Pi sufficient condition but shows increased inhibition of primary root growth and enhanced production of lateral roots under Pi deficiency. hps10 is a previously identified allele (als3-3) of the ALUMINUM SENSITIVE3 (ALS3) gene, which is involved in plant tolerance to aluminum toxicity. Our results show that ALS3 and its interacting protein AtSTAR1 form an ABC transporter complex in the tonoplast. This protein complex mediates a highly electrogenic transport in Xenopus oocytes. Under Pi deficiency, als3 accumulates higher levels of Fe3+ in its roots than the wild type does. In Arabidopsis, LPR1 (LOW PHOSPHATE ROOT1) and LPR2 encode ferroxidases, which when mutated, reduce Fe3+ accumulation in roots and cause root growth to be insensitive to Pi deficiency. Here, we provide compelling evidence showing that ALS3 cooperates with LPR1/2 to regulate Pi deficiency-induced remodeling of root architecture by modulating Fe homeostasis in roots.
Collapse
Affiliation(s)
- Jinsong Dong
- Ministry of Education Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Miguel A Piñeros
- USDA-ARS, Robert Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14580, USA
| | - Xiaoxuan Li
- Ministry of Education Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haibing Yang
- Department of Horticulture, Purdue University, West Lafayette, IN 47907-2010, USA
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Angus S Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Leon V Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon S7N 4J8, Canada
| | - Dong Liu
- Ministry of Education Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
33
|
Sharma T, Dreyer I, Kochian L, Piñeros MA. The ALMT Family of Organic Acid Transporters in Plants and Their Involvement in Detoxification and Nutrient Security. FRONTIERS IN PLANT SCIENCE 2016; 7:1488. [PMID: 27757118 PMCID: PMC5047901 DOI: 10.3389/fpls.2016.01488] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/20/2016] [Indexed: 05/02/2023]
Abstract
About a decade ago, members of a new protein family of anion channels were discovered on the basis of their ability to confer on plants the tolerance toward toxic aluminum ions in the soil. The efflux of Al3+-chelating malate anions through these channels is stimulated by external Al3+ ions. This feature of a few proteins determined the name of the entire protein family as Aluminum-activated Malate Transporters (ALMT). Meanwhile, after several years of research, it is known that the physiological roles of ALMTs go far beyond Al-detoxification. In this review article we summarize the current knowledge on this transporter family and assess their involvement in diverse physiological processes.
Collapse
Affiliation(s)
- Tripti Sharma
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, TalcaChile
| | - Ingo Dreyer
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, TalcaChile
| | - Leon Kochian
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture–Agricultural Research Service, Cornell University, Ithaca, NYUSA
| | - Miguel A. Piñeros
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture–Agricultural Research Service, Cornell University, Ithaca, NYUSA
| |
Collapse
|
34
|
Takanashi K, Sasaki T, Kan T, Saida Y, Sugiyama A, Yamamoto Y, Yazaki K. A Dicarboxylate Transporter, LjALMT4, Mainly Expressed in Nodules of Lotus japonicus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:584-92. [PMID: 27183039 DOI: 10.1094/mpmi-04-16-0071-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Legume plants can establish symbiosis with soil bacteria called rhizobia to obtain nitrogen as a nutrient directly from atmospheric N2 via symbiotic nitrogen fixation. Legumes and rhizobia form nodules, symbiotic organs in which fixed-nitrogen and photosynthetic products are exchanged between rhizobia and plant cells. The photosynthetic products supplied to rhizobia are thought to be dicarboxylates but little is known about the movement of dicarboxylates in the nodules. In terms of dicarboxylate transporters, an aluminum-activated malate transporter (ALMT) family is a strong candidate responsible for the membrane transport of carboxylates in nodules. Among the seven ALMT genes in the Lotus japonicus genome, only one, LjALMT4, shows a high expression in the nodules. LjALMT4 showed transport activity in a Xenopus oocyte system, with LjALMT4 mediating the efflux of dicarboxylates including malate, succinate, and fumarate, but not tricarboxylates such as citrate. LjALMT4 also mediated the influx of several inorganic anions. Organ-specific gene expression analysis showed LjALMT4 mRNA mainly in the parenchyma cells of nodule vascular bundles. These results suggest that LjALMT4 may not be involved in the direct supply of dicarboxylates to rhizobia in infected cells but is responsible for supplying malate as well as several anions necessary for symbiotic nitrogen fixation, via nodule vasculatures.
Collapse
Affiliation(s)
- Kojiro Takanashi
- 1 Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
- 2 Institute of Mountain Science, Shinshu University, Matsumoto 390-8621, Japan; and
| | - Takayuki Sasaki
- 3 Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Tomohiro Kan
- 1 Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| | - Yuka Saida
- 1 Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| | - Akifumi Sugiyama
- 1 Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| | - Yoko Yamamoto
- 3 Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Kazufumi Yazaki
- 1 Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| |
Collapse
|
35
|
Sasaki T, Tsuchiya Y, Ariyoshi M, Ryan PR, Yamamoto Y. A chimeric protein of aluminum-activated malate transporter generated from wheat and Arabidopsis shows enhanced response to trivalent cations. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1858:1427-35. [PMID: 27039280 DOI: 10.1016/j.bbamem.2016.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 03/16/2016] [Accepted: 03/29/2016] [Indexed: 11/19/2022]
Abstract
TaALMT1 from wheat (Triticum aestivum) and AtALMT1 from Arabidopsis thaliana encode aluminum (Al)-activated malate transporters, which confer acid-soil tolerance by releasing malate from roots. Chimeric proteins from TaALMT1 and AtALMT1 (Ta::At, At::Ta) were previously analyzed in Xenopus laevis oocytes. Those studies showed that Al could activate malate efflux from the Ta::At chimera but not from At::Ta. Here, functions of TaALMT1, AtALMT1 and the chimeric protein Ta::At were compared in cultured tobacco BY-2 cells. We focused on the sensitivity and specificity of their activation by trivalent cations. The activation of malate efflux by Al was at least two-fold greater in the chimera than the native proteins. All proteins were also activated by lanthanides (erbium, ytterbium, gadolinium, and lanthanum), but the chimera again released more malate than TaALMT1 or AtALMT1. In Xenopus oocytes, Al, ytterbium, and erbium activated inward currents from the native TaALMT1 and the chimeric protein, but gadolinium only activated currents from the chimera. Lanthanum inhibited currents from both proteins. These results demonstrated that function of the chimera protein was altered compared to the native proteins and was more responsive to a range of trivalent cations when expressed in plant cells.
Collapse
Affiliation(s)
- Takayuki Sasaki
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama 710-0046, Japan.
| | - Yoshiyuki Tsuchiya
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama 710-0046, Japan
| | - Michiyo Ariyoshi
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama 710-0046, Japan
| | - Peter R Ryan
- CSIRO Agriculture, GPO Box 1600, Canberra, ACT, 2601, Australia
| | - Yoko Yamamoto
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
36
|
Xu M, Gruber BD, Delhaize E, White RG, James RA, You J, Yang Z, Ryan PR. The barley anion channel, HvALMT1, has multiple roles in guard cell physiology and grain metabolism. PHYSIOLOGIA PLANTARUM 2015; 153:183-93. [PMID: 24853664 DOI: 10.1111/ppl.12234] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/04/2014] [Accepted: 05/07/2014] [Indexed: 05/08/2023]
Abstract
The barley (Hordeum vulgare) gene HvALMT1 encodes an anion channel in guard cells and in certain root tissues indicating that it may perform multiple roles. The protein localizes to the plasma membrane and facilitates malate efflux from cells when constitutively expressed in barley plants and Xenopus oocytes. This study investigated the function of HvALMT1 further by identifying its tissue-specific expression and by generating and characterizing RNAi lines with reduced HvALMT1 expression. We show that transgenic plants with 18-30% of wild-type HvALMT1 expression had impaired guard cell function. They maintained higher stomatal conductance in low light intensity and lost water more rapidly from excised leaves than the null segregant control plants. Tissue-specific expression of HvALMT1 was investigated in developing grain and during germination using transgenic barley lines expressing the green fluorescent protein (GFP) with the HvALMT1 promoter. We found that HvALMT1 is expressed in the nucellar projection, the aleurone layer and the scutellum of developing barley grain. Malate release measured from isolated aleurone layers prepared from imbibed grain was significantly lower in the RNAi barley plants compared with control plants. These data provide molecular and physiological evidence that HvALMT1 functions in guard cells, in grain development and during germination. We propose that HvALMT1 releases malate and perhaps other anions from guard cells to promote stomatal closure. The likely roles of HvALMT1 during seed development and grain germination are also discussed.
Collapse
Affiliation(s)
- Muyun Xu
- CSIRO Plant Industry, Canberra, ACT 2601, Australia; College of Plant Science, Jilin University, Changchun, Jilin Province, 130062, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kochian LV, Piñeros MA, Liu J, Magalhaes JV. Plant Adaptation to Acid Soils: The Molecular Basis for Crop Aluminum Resistance. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:571-98. [PMID: 25621514 DOI: 10.1146/annurev-arplant-043014-114822] [Citation(s) in RCA: 453] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Aluminum (Al) toxicity in acid soils is a significant limitation to crop production worldwide, as approximately 50% of the world's potentially arable soil is acidic. Because acid soils are such an important constraint to agriculture, understanding the mechanisms and genes conferring resistance to Al toxicity has been a focus of intense research interest in the decade since the last article on crop acid soil tolerance was published in this journal. An impressive amount of progress has been made during that time that has greatly increased our understanding of the diversity of Al resistance genes and mechanisms, how resistance gene expression is regulated and triggered by Al and Al-induced signals, and how the proteins encoded by these genes function and are regulated. This review examines the state of our understanding of the physiological, genetic, and molecular bases for crop Al tolerance, looking at the novel Al resistance genes and mechanisms that have been identified over the past ten years. Additionally, it examines how the integration of molecular and genetic analyses of crop Al resistance is starting to be exploited for the improvement of crop plants grown on acid soils via both molecular-assisted breeding and biotechnology approaches.
Collapse
Affiliation(s)
- Leon V Kochian
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, New York 14853; , ,
| | | | | | | |
Collapse
|
38
|
Sasaki T, Tsuchiya Y, Ariyoshi M, Ryan PR, Furuichi T, Yamamoto Y. A domain-based approach for analyzing the function of aluminum-activated malate transporters from wheat (Triticum aestivum) and Arabidopsis thaliana in Xenopus oocytes. PLANT & CELL PHYSIOLOGY 2014; 55:2126-38. [PMID: 25311199 DOI: 10.1093/pcp/pcu143] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Wheat and Arabidopsis plants respond to aluminum (Al) ions by releasing malate from their root apices via Al-activated malate transporter. Malate anions bind with the toxic Al ions and contribute to the Al tolerance of these species. The genes encoding the transporters in wheat and Arabidopsis, TaALMT1 and AtALMT1, respectively, were expressed in Xenopus laevis oocytes and characterized electrophysiologically using the two-electrode voltage clamp system. The Al-activated currents generated by malate efflux were detected for TaALMT1 but not for AtALMT1. Chimeric proteins were generated by swapping the N- and C-terminal halves of TaALMT1 and AtALMT1 (Ta::At and At::Ta). When these chimeras were characterized in oocytes, Al-activated malate efflux was detected for the Ta::At chimera but not for At::Ta, suggesting that the N-terminal half of TaALMT1 is necessary for function in oocytes. An additional chimera, Ta(48)::At, generated by swapping 17 residues from the N-terminus of AtALMT1 with the equivalent 48 residues from TaALMT1, was sufficient to support transport activity. This 48 residue region includes a helical region with a putative transmembrane domain which is absent in AtALMT1. The deletion of this domain from Ta(48)::At led to the complete loss of transport activity. Furthermore, truncations and a deletion at the C-terminal end of TaALMT1 indicated that a putative helical structure in this region was also required for transport function. This study provides insights into the structure-function relationships of Al-activated ALMT proteins by identifying specific domains on the N- and C-termini of TaALMT1 that are critical for basal transport function and Al responsiveness in oocytes.
Collapse
Affiliation(s)
- Takayuki Sasaki
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046 Japan
| | - Yoshiyuki Tsuchiya
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046 Japan
| | - Michiyo Ariyoshi
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046 Japan
| | - Peter R Ryan
- CSIRO Agriculture, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Takuya Furuichi
- Department of Health and Nutrition, Faculty of Home Economics, Gifu Women's University, Taromaru 80, Gifu, 501-2592 Japan
| | - Yoko Yamamoto
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|
39
|
Tian Q, Zhang X, Ramesh S, Gilliham M, Tyerman SD, Zhang WH. Ethylene negatively regulates aluminium-induced malate efflux from wheat roots and tobacco cells transformed with TaALMT1. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2415-26. [PMID: 24668874 PMCID: PMC4036508 DOI: 10.1093/jxb/eru123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
An important mechanism for Al(3+) tolerance in wheat is exudation of malate anions from the root apex through activation of malate-permeable TaALMT1 channels. Here, the effect of ethylene on Al(3+)-activated efflux of malate was investigated using Al(3+)-tolerant wheat genotype ET8, which has high expression of TaALMT1. Exposure of ET8 plants to Al(3+) enhanced ethylene evolution in root apices. Treatment with the ethylene synthesis precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and ethylene gas suppressed Al(3+)-induced malate efflux from root apices, whereas the intracellular malate concentrations in roots were not affected. Malate efflux from root apices was enhanced in the presence of Al(3+) by two antagonists of ethylene biosynthesis, aminoethoxyvinylglycine (AVG) and 2-aminoisobutyric acid (AIB). An increase in Al accumulation in root apices was observed when treated with ACC, whereas AVG and AIB suppressed Al accumulation in root apices. Al(3+)-induced inhibition of root elongation was ameliorated by pretreatment with AIB. In addition, ethylene donor (Ethrel) also inhibited Al(3+)-induced malate efflux from tobacco cells transformed with TaALMT1. ACC and the anion-channel blocker niflumate had a similar and non-additive effect on Al-induced malate efflux from root apices. Treatment of ET8 plants with ACC enhanced expression of TaALMT1, suggesting that the inhibitory effect of ethylene on Al-induced malate efflux is unlikely to occur at the transcriptional level. These findings indicate that ethylene may behave as a negative regulator of Al(3+)-induced malate efflux by targeting TaALMT1-mediated malate efflux by an unknown mechanism.
Collapse
Affiliation(s)
- Qiuying Tian
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xinxin Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Sunita Ramesh
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Matthew Gilliham
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Stephen D Tyerman
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Wen-Hao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China Research Network of Global Change Biology, Beijing Institutes of Life Science, The Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
40
|
Zhou G, Pereira JF, Delhaize E, Zhou M, Magalhaes JV, Ryan PR. Enhancing the aluminium tolerance of barley by expressing the citrate transporter genes SbMATE and FRD3. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2381-90. [PMID: 24692647 PMCID: PMC4036506 DOI: 10.1093/jxb/eru121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Malate and citrate efflux from root apices is a mechanism of Al(3+) tolerance in many plant species. Citrate efflux is facilitated by members of the MATE (multidrug and toxic compound exudation) family localized to the plasma membrane of root cells. Barley (Hordeum vulgare) is among the most Al(3+)-sensitive cereal species but the small genotypic variation in tolerance that is present is correlated with citrate efflux via a MATE transporter named HvAACT1. This study used a biotechnological approach to increase the Al(3+) tolerance of barley by transforming it with two MATE genes that encode citrate transporters: SbMATE is the major Al(3+)-tolerance gene from sorghum whereas FRD3 is involved with Fe nutrition in Arabidopsis. Independent transgenic and null T3 lines were generated for both transgenes. Lines expressing SbMATE showed Al(3+)-activated citrate efflux from root apices and greater tolerance to Al(3+) toxicity than nulls in hydroponic and short-term soil trials. Transgenic lines expressing FRD3 exhibited similar phenotypes except citrate release from roots occurred constitutively. The Al(3+) tolerance of these lines was compared with previously generated transgenic barley lines overexpressing the endogenous HvAACT1 gene and the TaALMT1 gene from wheat. Barley lines expressing TaALMT1 showed significantly greater Al(3+) tolerance than all lines expressing MATE genes. This study highlights the relative efficacy of different organic anion transport proteins for increasing the Al(3+) tolerance of an important crop species.
Collapse
Affiliation(s)
- Gaofeng Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, PO Box 46, Kings Meadows, TAS 7249, Australia CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Jorge F Pereira
- Embrapa Wheat, Rodovia BR 285 km 294, CEP 99001-970, Passo Fundo, RS, Brazil
| | | | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, PO Box 46, Kings Meadows, TAS 7249, Australia
| | - Jurandir V Magalhaes
- Embrapa Maize and Sorghum, Rod. MG 424, Km 65, 35701-970, Sete Lagoas, Minas Gerais, Brazil
| | - Peter R Ryan
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| |
Collapse
|
41
|
Zhai Z, Gayomba SR, Jung HI, Vimalakumari NK, Piñeros M, Craft E, Rutzke MA, Danku J, Lahner B, Punshon T, Guerinot ML, Salt DE, Kochian LV, Vatamaniuk OK. OPT3 Is a Phloem-Specific Iron Transporter That Is Essential for Systemic Iron Signaling and Redistribution of Iron and Cadmium in Arabidopsis. THE PLANT CELL 2014; 26:2249-2264. [PMID: 24867923 PMCID: PMC4079381 DOI: 10.1105/tpc.114.123737] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/31/2014] [Accepted: 04/22/2014] [Indexed: 05/18/2023]
Abstract
Iron is essential for both plant growth and human health and nutrition. Knowledge of the signaling mechanisms that communicate iron demand from shoots to roots to regulate iron uptake as well as the transport systems mediating iron partitioning into edible plant tissues is critical for the development of crop biofortification strategies. Here, we report that OPT3, previously classified as an oligopeptide transporter, is a plasma membrane transporter capable of transporting transition ions in vitro. Studies in Arabidopsis thaliana show that OPT3 loads iron into the phloem, facilitates iron recirculation from the xylem to the phloem, and regulates both shoot-to-root iron signaling and iron redistribution from mature to developing tissues. We also uncovered an aspect of crosstalk between iron homeostasis and cadmium partitioning that is mediated by OPT3. Together, these discoveries provide promising avenues for targeted strategies directed at increasing iron while decreasing cadmium density in the edible portions of crops and improving agricultural productivity in iron deficient soils.
Collapse
Affiliation(s)
- Zhiyang Zhai
- Department of Crop and Soil Sciences, Cornell University, Ithaca, New York 14853
| | - Sheena R Gayomba
- Department of Crop and Soil Sciences, Cornell University, Ithaca, New York 14853
| | - Ha-Il Jung
- Department of Crop and Soil Sciences, Cornell University, Ithaca, New York 14853
| | | | - Miguel Piñeros
- Robert W. Holley Center for Agriculture and Health, U.S. Department of Agriculture-Agricultural Research Service, Ithaca, New York 14853
| | - Eric Craft
- Robert W. Holley Center for Agriculture and Health, U.S. Department of Agriculture-Agricultural Research Service, Ithaca, New York 14853
| | - Michael A Rutzke
- Department of Crop and Soil Sciences, Cornell University, Ithaca, New York 14853 Robert W. Holley Center for Agriculture and Health, U.S. Department of Agriculture-Agricultural Research Service, Ithaca, New York 14853
| | - John Danku
- Institute of Biological and Environmental Sciences, University of Aberdeen, AS24 3UU Scotland, United Kingdom
| | - Brett Lahner
- Center for Plant Environmental Stress Physiology, Purdue University, West Lafayette, Indiana 47907
| | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Mary Lou Guerinot
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - David E Salt
- Institute of Biological and Environmental Sciences, University of Aberdeen, AS24 3UU Scotland, United Kingdom
| | - Leon V Kochian
- Robert W. Holley Center for Agriculture and Health, U.S. Department of Agriculture-Agricultural Research Service, Ithaca, New York 14853
| | - Olena K Vatamaniuk
- Department of Crop and Soil Sciences, Cornell University, Ithaca, New York 14853
| |
Collapse
|
42
|
Liu J, Piñeros MA, Kochian LV. The role of aluminum sensing and signaling in plant aluminum resistance. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:221-30. [PMID: 24417891 DOI: 10.1111/jipb.12162] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/10/2014] [Indexed: 05/18/2023]
Abstract
As researchers have gained a better understanding in recent years into the physiological, molecular, and genetic basis of how plants deal with aluminum (Al) toxicity in acid soils prevalent in the tropics and sub-tropics, it has become clear that an important component of these responses is the triggering and regulation of cellular pathways and processes by Al. In this review of plant Al signaling, we begin by summarizing the understanding of physiological mechanisms of Al resistance, which first led researchers to realize that Al stress induces gene expression and modifies protein function during the activation of Al resistance responses. Subsequently, an overview of Al resistance genes and their function provides verification that Al induction of gene expression plays a major role in Al resistance in many plant species. More recent research into the mechanistic basis for Al-induced transcriptional activation of resistance genes has led to the identification of several transcription factors as well as cis-elements in the promoters of Al resistance genes that play a role in greater Al-induced gene expression as well as higher constitutive expression of resistance genes in some plant species. Finally, the post-transcriptional and translational regulation of Al resistance proteins is addressed, where recent research has shown that Al can both directly bind to and alter activity of certain organic acid transporters, and also influence Al resistance proteins indirectly, via protein phosphorylation.
Collapse
Affiliation(s)
- Jiping Liu
- USDA-ARS Robert W. Holley Center for Agriculture and Health, Tower Road, Cornell University, Ithaca, NY, 14853, USA
| | | | | |
Collapse
|
43
|
|
44
|
Ligaba A, Dreyer I, Margaryan A, Schneider DJ, Kochian L, Piñeros M. Functional, structural and phylogenetic analysis of domains underlying the Al sensitivity of the aluminum-activated malate/anion transporter, TaALMT1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:766-80. [PMID: 24188189 DOI: 10.1111/tpj.12332] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/05/2013] [Accepted: 09/09/2013] [Indexed: 05/08/2023]
Abstract
Triticum aestivum aluminum-activated malate transporter (TaALMT1) is the founding member of a unique gene family of anion transporters (ALMTs) that mediate the efflux of organic acids. A small sub-group of root-localized ALMTs, including TaALMT1, is physiologically associated with in planta aluminum (Al) resistance. TaALMT1 exhibits significant enhancement of transport activity in response to extracellular Al. In this study, we integrated structure-function analyses of structurally altered TaALMT1 proteins expressed in Xenopus oocytes with phylogenic analyses of the ALMT family. Our aim is to re-examine the role of protein domains in terms of their potential involvement in the Al-dependent enhancement (i.e. Al-responsiveness) of TaALMT1 transport activity, as well as the roles of all its 43 negatively charged amino acid residues. Our results indicate that the N-domain, which is predicted to form the conductive pathway, mediates ion transport even in the absence of the C-domain. However, segments in both domains are involved in Al(3+) sensing. We identified two regions, one at the N-terminus and a hydrophobic region at the C-terminus, that jointly contribute to the Al-response phenotype. Interestingly, the characteristic motif at the N-terminus appears to be specific for Al-responsive ALMTs. Our study highlights the need to include a comprehensive phylogenetic analysis when drawing inferences from structure-function analyses, as a significant proportion of the functional changes observed for TaALMT1 are most likely the result of alterations in the overall structural integrity of ALMT family proteins rather than modifications of specific sites involved in Al(3+) sensing.
Collapse
Affiliation(s)
- Ayalew Ligaba
- Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Tower Road, Ithaca, NY, 14853, USA
| | | | | | | | | | | |
Collapse
|
45
|
Zhang J, Baetz U, Krügel U, Martinoia E, De Angeli A. Identification of a probable pore-forming domain in the multimeric vacuolar anion channel AtALMT9. PLANT PHYSIOLOGY 2013; 163:830-43. [PMID: 23918900 PMCID: PMC3793061 DOI: 10.1104/pp.113.219832] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/05/2013] [Indexed: 05/18/2023]
Abstract
Aluminum-activated malate transporters (ALMTs) form an important family of anion channels involved in fundamental physiological processes in plants. Because of their importance, the role of ALMTs in plant physiology is studied extensively. In contrast, the structural basis of their functional properties is largely unknown. This lack of information limits the understanding of the functional and physiological differences between ALMTs and their impact on anion transport in plants. This study aimed at investigating the structural organization of the transmembrane domain of the Arabidopsis (Arabidopsis thaliana) vacuolar channel AtALMT9. For that purpose, we performed a large-scale mutagenesis analysis and found two residues that form a salt bridge between the first and second putative transmembrane α-helices (TMα1 and TMα2). Furthermore, using a combination of pharmacological and mutagenesis approaches, we identified citrate as an "open channel blocker" of AtALMT9 and used this tool to examine the inhibition sensitivity of different point mutants of highly conserved amino acid residues. By this means, we found a stretch within the cytosolic moiety of the TMα5 that is a probable pore-forming domain. Moreover, using a citrate-insensitive AtALMT9 mutant and biochemical approaches, we could demonstrate that AtALMT9 forms a multimeric complex that is supposedly composed of four subunits. In summary, our data provide, to our knowledge, the first evidence about the structural organization of an ion channel of the ALMT family. We suggest that AtALMT9 is a tetramer and that the TMα5 domains of the subunits contribute to form the pore of this anion channel.
Collapse
Affiliation(s)
| | | | - Undine Krügel
- Institute of Plant Biology, University of Zürich, CH–8008 Zurich, Switzerland
| | - Enrico Martinoia
- Institute of Plant Biology, University of Zürich, CH–8008 Zurich, Switzerland
| | - Alexis De Angeli
- Institute of Plant Biology, University of Zürich, CH–8008 Zurich, Switzerland
| |
Collapse
|
46
|
Panda SK, Sahoo L, Katsuhara M, Matsumoto H. Overexpression of alternative oxidase gene confers aluminum tolerance by altering the respiratory capacity and the response to oxidative stress in tobacco cells. Mol Biotechnol 2013; 54:551-63. [PMID: 22965419 DOI: 10.1007/s12033-012-9595-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aluminum (Al) stress represses mitochondrial respiration and produces reactive oxygen species (ROS) in plants. Mitochondrial alternative oxidase (AOX) uncouples respiration from mitochondrial ATP production and may improve plant performance under Al stress by preventing excess accumulation of ROS. We tested respiratory changes and ROS production in isolated mitochondria and whole cell of tobacco (SL, ALT 301) under Al stress. Higher capacities of AOX pathways relative to cytochrome pathways were observed in both isolated mitochondria and whole cells of ALT301 under Al stress. AOX1 when studied showed higher AOX1 expression in ALT 301 than SL cells under stress. In order to study the function of tobacco AOX gene under Al stress, we produced transformed tobacco cell lines by introducing NtAOX1 expressed under the control of the cauliflower mosaic virus (CaMV) 35 S promoter in sensitive (SL) Nicotiana tabacum L. cell lines. The enhancement of endogenous AOX1 expression and AOX protein with or without Al stress was in the order of transformed tobacco cell lines > ALT301 > wild type (SL). A decreased respiratory inhibition and reduced ROS production with a better growth capability were the significant features that characterized AOX1 transformed cell lines under Al stress. These results demonstrated that AOX plays a critical role in Al stress tolerance with an enhanced respiratory capacity, reducing mitochondrial oxidative stress burden and improving the growth capability in tobacco cells.
Collapse
Affiliation(s)
- Sanjib Kumar Panda
- Department of Life Science & Bioinformatics, Assam University, Silchar, India.
| | | | | | | |
Collapse
|
47
|
Liang C, Piñeros MA, Tian J, Yao Z, Sun L, Liu J, Shaff J, Coluccio A, Kochian LV, Liao H. Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils. PLANT PHYSIOLOGY 2013; 161:1347-61. [PMID: 23341359 PMCID: PMC3585601 DOI: 10.1104/pp.112.208934] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/18/2013] [Indexed: 05/18/2023]
Abstract
Low pH, aluminum (Al) toxicity, and low phosphorus (P) often coexist and are heterogeneously distributed in acid soils. To date, the underlying mechanisms of crop adaptation to these multiple factors on acid soils remain poorly understood. In this study, we found that P addition to acid soils could stimulate Al tolerance, especially for the P-efficient genotype HN89. Subsequent hydroponic studies demonstrated that solution pH, Al, and P levels coordinately altered soybean (Glycine max) root growth and malate exudation. Interestingly, HN89 released more malate under conditions mimicking acid soils (low pH, +P, and +Al), suggesting that root malate exudation might be critical for soybean adaptation to both Al toxicity and P deficiency on acid soils. GmALMT1, a soybean malate transporter gene, was cloned from the Al-treated root tips of HN89. Like root malate exudation, GmALMT1 expression was also pH dependent, being suppressed by low pH but enhanced by Al plus P addition in roots of HN89. Quantitative real-time PCR, transient expression of a GmALMT1-yellow fluorescent protein chimera in Arabidopsis protoplasts, and electrophysiological analysis of Xenopus laevis oocytes expressing GmALMT1 demonstrated that GmALMT1 encodes a root cell plasma membrane transporter that mediates malate efflux in an extracellular pH-dependent and Al-independent manner. Overexpression of GmALMT1 in transgenic Arabidopsis, as well as overexpression and knockdown of GmALMT1 in transgenic soybean hairy roots, indicated that GmALMT1-mediated root malate efflux does underlie soybean Al tolerance. Taken together, our results suggest that malate exudation is an important component of soybean adaptation to acid soils and is coordinately regulated by three factors, pH, Al, and P, through the regulation of GmALMT1 expression and GmALMT1 function.
Collapse
Affiliation(s)
- Cuiyue Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, People’s Republic of China (C.L., J.T., Z.Y., L.S., H.L.); Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14853 (C.L., M.A.P., J.L., J.S., A.C., L.V.K.); and Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Danzhou 571737, People’s Republic of China (L.S.)
| | - Miguel A. Piñeros
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, People’s Republic of China (C.L., J.T., Z.Y., L.S., H.L.); Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14853 (C.L., M.A.P., J.L., J.S., A.C., L.V.K.); and Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Danzhou 571737, People’s Republic of China (L.S.)
| | - Jiang Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, People’s Republic of China (C.L., J.T., Z.Y., L.S., H.L.); Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14853 (C.L., M.A.P., J.L., J.S., A.C., L.V.K.); and Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Danzhou 571737, People’s Republic of China (L.S.)
| | - Zhufang Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, People’s Republic of China (C.L., J.T., Z.Y., L.S., H.L.); Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14853 (C.L., M.A.P., J.L., J.S., A.C., L.V.K.); and Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Danzhou 571737, People’s Republic of China (L.S.)
| | - Lili Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, People’s Republic of China (C.L., J.T., Z.Y., L.S., H.L.); Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14853 (C.L., M.A.P., J.L., J.S., A.C., L.V.K.); and Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Danzhou 571737, People’s Republic of China (L.S.)
| | - Jiping Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, People’s Republic of China (C.L., J.T., Z.Y., L.S., H.L.); Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14853 (C.L., M.A.P., J.L., J.S., A.C., L.V.K.); and Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Danzhou 571737, People’s Republic of China (L.S.)
| | - Jon Shaff
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, People’s Republic of China (C.L., J.T., Z.Y., L.S., H.L.); Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14853 (C.L., M.A.P., J.L., J.S., A.C., L.V.K.); and Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Danzhou 571737, People’s Republic of China (L.S.)
| | - Alison Coluccio
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, People’s Republic of China (C.L., J.T., Z.Y., L.S., H.L.); Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14853 (C.L., M.A.P., J.L., J.S., A.C., L.V.K.); and Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Danzhou 571737, People’s Republic of China (L.S.)
| | - Leon V. Kochian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, People’s Republic of China (C.L., J.T., Z.Y., L.S., H.L.); Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14853 (C.L., M.A.P., J.L., J.S., A.C., L.V.K.); and Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Danzhou 571737, People’s Republic of China (L.S.)
| | - Hong Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, People’s Republic of China (C.L., J.T., Z.Y., L.S., H.L.); Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14853 (C.L., M.A.P., J.L., J.S., A.C., L.V.K.); and Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Danzhou 571737, People’s Republic of China (L.S.)
| |
Collapse
|
48
|
Tovkach A, Ryan PR, Richardson AE, Lewis DC, Rathjen TM, Ramesh S, Tyerman SD, Delhaize E. Transposon-mediated alteration of TaMATE1B expression in wheat confers constitutive citrate efflux from root apices. PLANT PHYSIOLOGY 2013; 161:880-92. [PMID: 23204428 PMCID: PMC3561026 DOI: 10.1104/pp.112.207142] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/27/2012] [Indexed: 05/02/2023]
Abstract
The TaMATE1B gene (for multidrug and toxic compound extrusion) from wheat (Triticum aestivum) was isolated and shown to encode a citrate transporter that is located on the plasma membrane. TaMATE1B expression in roots was induced by iron deficiency but not by phosphorus deficiency or aluminum treatment. The coding region of TaMATE1B was identical in a genotype showing citrate efflux from root apices (cv Carazinho) to one that lacked citrate efflux (cv Egret). However, sequence upstream of the coding region differed between these two genotypes in two ways. The first difference was a single-nucleotide polymorphism located approximately 2 kb upstream from the start codon in cv Egret. The second difference was an 11.1-kb transposon-like element located 25 bp upstream of the start codon in cv Carazinho that was absent from cv Egret. The influence of these polymorphisms on TaMATE1B expression was investigated using fusions to green fluorescent protein expressed in transgenic lines of rice (Oryza sativa). Fluorescence measurements in roots of rice indicated that 1.5- and 2.3-kb regions upstream of TaMATE1B in cv Carazinho (which incorporated 3' regions of the transposon-like element) generated 20-fold greater expression in the apical 1 mm of root compared with the native promoter in cv Egret. By contrast, fluorescence in more mature tissues was similar in both cultivars. The presence of the single-nucleotide polymorphism alone consistently generated 2-fold greater fluorescence than the cv Egret promoter. We conclude that the transposon-like element in cv Carazinho extends TaMATE1B expression to the root apex, where it confers citrate efflux and enhanced aluminum tolerance.
Collapse
Affiliation(s)
- Andriy Tovkach
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australian Capital Territory 2601, Australia (A.T., P.R.R., A.E.R., D.C.L., T.M.R., E.D.); and School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia (S.R., S.D.T.)
| | - Peter R. Ryan
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australian Capital Territory 2601, Australia (A.T., P.R.R., A.E.R., D.C.L., T.M.R., E.D.); and School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia (S.R., S.D.T.)
| | - Alan E. Richardson
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australian Capital Territory 2601, Australia (A.T., P.R.R., A.E.R., D.C.L., T.M.R., E.D.); and School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia (S.R., S.D.T.)
| | - David C. Lewis
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australian Capital Territory 2601, Australia (A.T., P.R.R., A.E.R., D.C.L., T.M.R., E.D.); and School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia (S.R., S.D.T.)
| | - Tina M. Rathjen
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australian Capital Territory 2601, Australia (A.T., P.R.R., A.E.R., D.C.L., T.M.R., E.D.); and School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia (S.R., S.D.T.)
| | - Sunita Ramesh
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australian Capital Territory 2601, Australia (A.T., P.R.R., A.E.R., D.C.L., T.M.R., E.D.); and School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia (S.R., S.D.T.)
| | - Stephen D. Tyerman
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australian Capital Territory 2601, Australia (A.T., P.R.R., A.E.R., D.C.L., T.M.R., E.D.); and School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia (S.R., S.D.T.)
| | - Emmanuel Delhaize
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australian Capital Territory 2601, Australia (A.T., P.R.R., A.E.R., D.C.L., T.M.R., E.D.); and School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia (S.R., S.D.T.)
| |
Collapse
|
49
|
Melo JO, Lana UGP, Piñeros MA, Alves VMC, Guimarães CT, Liu J, Zheng Y, Zhong S, Fei Z, Maron LG, Schaffert RE, Kochian LV, Magalhaes JV. Incomplete transfer of accessory loci influencing SbMATE expression underlies genetic background effects for aluminum tolerance in sorghum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:276-88. [PMID: 22989115 DOI: 10.1111/tpj.12029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 09/10/2012] [Accepted: 09/13/2012] [Indexed: 05/08/2023]
Abstract
Impaired root development caused by aluminum (Al) toxicity is a major cause of grain yield reduction in crops cultivated on acid soils, which are widespread worldwide. In sorghum, the major Al-tolerance locus, AltSB , is due to the function of SbMATE, which is an Al-activated root citrate transporter. Here we performed a molecular and physiological characterization of various AltSB donors and near-isogenic lines harboring various AltSB alleles. We observed a partial transfer of Al tolerance from the parents to the near-isogenic lines that was consistent across donor alleles, emphasizing the occurrence of strong genetic background effects related to AltSB . This reduction in tolerance was variable, with a 20% reduction being observed when highly Al-tolerant lines were the AltSB donors, and a reduction as great as 70% when other AltSB alleles were introgressed. This reduction in Al tolerance was closely correlated with a reduction in SbMATE expression in near-isogenic lines, suggesting incomplete transfer of loci acting in trans on SbMATE. Nevertheless, AltSB alleles from the highly Al-tolerant sources SC283 and SC566 were found to retain high SbMATE expression, presumably via elements present within or near the AltSB locus, resulting in significant transfer of the Al-tolerance phenotype to the derived near-isogenic lines. Allelic effects could not be explained by coding region polymorphisms, although occasional mutations may affect Al tolerance. Finally, we report on the extensive occurrence of alternative splicing for SbMATE, which may be an important component regulating SbMATE expression in sorghum by means of the nonsense-mediated RNA decay pathway.
Collapse
Affiliation(s)
- Janaina O Melo
- Embrapa Maize and Sorghum, Road. MG 424, km 65, 35701-970, Sete Lagoas, Minas Gerais, Brazil
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Ubiraci G P Lana
- Embrapa Maize and Sorghum, Road. MG 424, km 65, 35701-970, Sete Lagoas, Minas Gerais, Brazil
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Miguel A Piñeros
- US Department of Agriculture - Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY, 14853, USA
| | - Vera M C Alves
- Embrapa Maize and Sorghum, Road. MG 424, km 65, 35701-970, Sete Lagoas, Minas Gerais, Brazil
| | - Claudia T Guimarães
- Embrapa Maize and Sorghum, Road. MG 424, km 65, 35701-970, Sete Lagoas, Minas Gerais, Brazil
| | - Jiping Liu
- US Department of Agriculture - Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY, 14853, USA
| | - Yi Zheng
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA
| | - Silin Zhong
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA
| | - Zhangjun Fei
- US Department of Agriculture - Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY, 14853, USA
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA
| | - Lyza G Maron
- US Department of Agriculture - Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY, 14853, USA
| | - Robert E Schaffert
- Embrapa Maize and Sorghum, Road. MG 424, km 65, 35701-970, Sete Lagoas, Minas Gerais, Brazil
| | - Leon V Kochian
- US Department of Agriculture - Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY, 14853, USA
| | - Jurandir V Magalhaes
- Embrapa Maize and Sorghum, Road. MG 424, km 65, 35701-970, Sete Lagoas, Minas Gerais, Brazil
| |
Collapse
|
50
|
Yang LT, Qi YP, Jiang HX, Chen LS. Roles of organic acid anion secretion in aluminium tolerance of higher plants. BIOMED RESEARCH INTERNATIONAL 2012; 2013:173682. [PMID: 23509687 PMCID: PMC3591170 DOI: 10.1155/2013/173682] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 10/04/2012] [Accepted: 10/30/2012] [Indexed: 01/28/2023]
Abstract
Approximately 30% of the world's total land area and over 50% of the world's potential arable lands are acidic. Furthermore, the acidity of the soils is gradually increasing as a result of the environmental problems including some farming practices and acid rain. At mildly acidic or neutral soils, aluminium (Al) occurs primarily as insoluble deposits and is essentially biologically inactive. However, in many acidic soils throughout the tropics and subtropics, Al toxicity is a major factor limiting crop productivity. The Al-induced secretion of organic acid (OA) anions, mainly citrate, oxalate, and malate, from roots is the best documented mechanism of Al tolerance in higher plants. Increasing evidence shows that the Al-induced secretion of OA anions may be related to the following several factors, including (a) anion channels or transporters, (b) internal concentrations of OA anions in plant tissues, (d) temperature, (e) root plasma membrane (PM) H(+)-ATPase, (f) magnesium (Mg), and (e) phosphorus (P). Genetically modified plants and cells with higher Al tolerance by overexpressing genes for the secretion and the biosynthesis of OA anions have been obtained. In addition, some aspects needed to be further studied are also discussed.
Collapse
Affiliation(s)
- Lin-Tong Yang
- Department of Agricultural Resources and Environmental Sciences, College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Huan-Xin Jiang
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Life Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li-Song Chen
- Department of Agricultural Resources and Environmental Sciences, College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Horticulture, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|