1
|
Fritz C, Reimann TM, Adler J, Knab J, Schulmeister S, Kriechbaum C, Müller S, Parmryd I, Kost B. Plasma membrane and cytoplasmic compartmentalization: A dynamic structural framework required for pollen tube tip growth. PLANT PHYSIOLOGY 2024; 197:kiae558. [PMID: 39446406 DOI: 10.1093/plphys/kiae558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/28/2024] [Indexed: 12/24/2024]
Abstract
Rapid, unidirectional pollen tube tip growth is essential for fertilization and widely employed as a model of polar cell expansion, a process crucial for plant morphogenesis. Different proteins and lipids with key functions in the control of polar cell expansion are associated with distinct domains of the plasma membrane (PM) at the pollen tube tip. These domains need to be dynamically maintained during tip growth, which depends on massive secretory and endocytic membrane trafficking. Very little is currently known about the molecular and cellular mechanisms responsible for the compartmentalization of the pollen tube PM. To provide a reliable structural framework for the further characterization of these mechanisms, an integrated quantitative map was compiled of the relative positions in normally growing Nicotiana tabacum (tobacco) pollen tubes of PM domains (i) enriched in key signaling proteins or lipids, (ii) displaying high membrane order, or (iii) in contact with cytoplasmic structures playing important roles in apical membrane trafficking. Previously identified secretory and endocytic PM domains were also included in this map. Internalization of regulatory proteins or lipids associated with PM regions overlapping with the lateral endocytic domain was assessed based on brefeldin A treatment. These analyses revealed remarkable aspects of the structural organization of tobacco pollen tube tips, which (i) enhance our understanding of cellular and regulatory processes underlying tip growth and (ii) highlight important areas of future research.
Collapse
Affiliation(s)
- Carolin Fritz
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Theresa Maria Reimann
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jeremy Adler
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Johanna Knab
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Sylwia Schulmeister
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Choy Kriechbaum
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Sabine Müller
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ingela Parmryd
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Benedikt Kost
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
Moulinier-Anzola J, Schwihla M, Lugsteiner R, Leibrock N, Feraru MI, Tkachenko I, Luschnig C, Arcalis E, Feraru E, Lozano-Juste J, Korbei B. Modulation of abscisic acid signaling via endosomal TOL proteins. THE NEW PHYTOLOGIST 2024; 243:1065-1081. [PMID: 38874374 DOI: 10.1111/nph.19904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
The phytohormone abscisic acid (ABA) functions in the control of plant stress responses, particularly in drought stress. A significant mechanism in attenuating and terminating ABA signals involves regulated protein turnover, with certain ABA receptors, despite their main presence in the cytosol and nucleus, subjected to vacuolar degradation via the Endosomal Sorting Complex Required for Transport (ESCRT) machinery. Collectively our findings show that discrete TOM1-LIKE (TOL) proteins, which are functional ESCRT-0 complex substitutes in plants, affect the trafficking for degradation of core components of the ABA signaling and transport machinery. TOL2,3,5 and 6 modulate ABA signaling where they function additively in degradation of ubiquitinated ABA receptors and transporters. TOLs colocalize with their cargo in different endocytic compartments in the root epidermis and in guard cells of stomata, where they potentially function in ABA-controlled stomatal aperture. Although the tol2/3/5/6 quadruple mutant plant line is significantly more drought-tolerant and has a higher ABA sensitivity than control plant lines, it has no obvious growth or development phenotype under standard conditions, making the TOL genes ideal candidates for engineering to improved plant performance.
Collapse
Affiliation(s)
- Jeanette Moulinier-Anzola
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, BOKU University, Muthgasse 18, 1190, Vienna, Austria
| | - Maximilian Schwihla
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, BOKU University, Muthgasse 18, 1190, Vienna, Austria
| | - Rebecca Lugsteiner
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, BOKU University, Muthgasse 18, 1190, Vienna, Austria
| | - Nils Leibrock
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, BOKU University, Muthgasse 18, 1190, Vienna, Austria
| | - Mugurel I Feraru
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, BOKU University, Muthgasse 18, 1190, Vienna, Austria
- "Gheorghe Rosca Codreanu" National College, Nicolae Balcescu, Barlad, 731183, Vaslui, Romania
| | - Irma Tkachenko
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, BOKU University, Muthgasse 18, 1190, Vienna, Austria
| | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, BOKU University, Muthgasse 18, 1190, Vienna, Austria
| | - Elsa Arcalis
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, BOKU University, Muthgasse 18, 1190, Vienna, Austria
| | - Elena Feraru
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, BOKU University, Muthgasse 18, 1190, Vienna, Austria
| | - Jorge Lozano-Juste
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, 46022, Valencia, Spain
| | - Barbara Korbei
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, BOKU University, Muthgasse 18, 1190, Vienna, Austria
| |
Collapse
|
3
|
Zhang C, Chen L, Hou S. The emerging roles of clathrin-mediated endocytosis in plant development and stress responses. JOURNAL OF PLANT PHYSIOLOGY 2024; 295:154189. [PMID: 38432037 DOI: 10.1016/j.jplph.2024.154189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
Clathrin-mediated endocytosis (CME) is a highly conserved pathway that plays a crucial role in the endocytosis of plasma membrane proteins in eukaryotic cells. The pathway is initiated when the adaptor protein complex 2 (AP2) and TPLATE complex (TPC) work together to recognize cargo proteins and recruit clathrin. This review provides a concise overview of the functions of each subunit of AP2 and TPC, and highlights the involvement of CME in various biological processes, such as pollen development, root development, nutrient transport, extracellular signal transduction, auxin polar transport, hyperosmotic stress, salinity stress, high ammonium stress, and disease resistance. Additionally, the review explores the regulation of CME by phytohormones, clathrin-mediated exocytosis (CMX), and AP2M phosphorylation. It also suggests potential future research directions for CME.
Collapse
Affiliation(s)
- Chi Zhang
- Key Laboratory of Gene Editing for Breeding, Gansu Province, Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Liang Chen
- Key Laboratory of Gene Editing for Breeding, Gansu Province, Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Suiwen Hou
- Key Laboratory of Gene Editing for Breeding, Gansu Province, Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Yan ZW, Chen FY, Zhang X, Cai WJ, Chen CY, Liu J, Wu MN, Liu NJ, Ma B, Wang MY, Chao DY, Gao CJ, Mao YB. Endocytosis-mediated entry of a caterpillar effector into plants is countered by Jasmonate. Nat Commun 2023; 14:6551. [PMID: 37848424 PMCID: PMC10582130 DOI: 10.1038/s41467-023-42226-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023] Open
Abstract
Insects and pathogens release effectors into plant cells to weaken the host defense or immune response. While the imports of some bacterial and fungal effectors into plants have been previously characterized, the mechanisms of how caterpillar effectors enter plant cells remain a mystery. Using live cell imaging and real-time protein tracking, we show that HARP1, an effector from the oral secretions of cotton bollworm (Helicoverpa armigera), enters plant cells via protein-mediated endocytosis. The entry of HARP1 into a plant cell depends on its interaction with vesicle trafficking components including CTL1, PATL2, and TET8. The plant defense hormone jasmonate (JA) restricts HARP1 import by inhibiting endocytosis and HARP1 loading into endosomes. Combined with the previous report that HARP1 inhibits JA signaling output in host plants, it unveils that the effector and JA establish a defense and counter-defense loop reflecting the robust arms race between plants and insects.
Collapse
Affiliation(s)
- Zi-Wei Yan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Shanghai, China
| | - Fang-Yan Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CEMPS/SIPPE, CAS, Shanghai, China
| | - Xian Zhang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Shanghai, China
| | - Wen-Juan Cai
- Core Facility Center of CEMPS/SIPPE, CAS, Shanghai, China
| | - Chun-Yu Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Shanghai, China
| | - Jie Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Man-Ni Wu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Shanghai, China
| | - Ning-Jing Liu
- National Key Laboratory of Plant Molecular Genetics, CEMPS/SIPPE, CAS, Shanghai, China
| | - Bin Ma
- National Key Laboratory of Plant Molecular Genetics, CEMPS/SIPPE, CAS, Shanghai, China
| | - Mu-Yang Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, CEMPS/SIPPE, CAS, Shanghai, China
| | - Cai-Ji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China
| | - Ying-Bo Mao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.
| |
Collapse
|
5
|
De Angelis G, Badiali C, Chronopoulou L, Palocci C, Pasqua G. Confocal Microscopy Investigations of Biopolymeric PLGA Nanoparticle Uptake in Arabidopsis thaliana L. Cultured Cells and Plantlet Roots. PLANTS (BASEL, SWITZERLAND) 2023; 12:2397. [PMID: 37446957 DOI: 10.3390/plants12132397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/26/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023]
Abstract
To date, most endocytosis studies in plant cells have focused on clathrin-dependent endocytosis, while limited evidence is available on clathrin-independent pathways. Since dynamin a is a key protein both in clathrin-mediated endocytosis and in clathrin-independent endocytic processes, this study investigated its role in the uptake of poly-(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs). The experiments were performed on cultured cells and roots of Arabidopsis thaliana. Dynasore was used to inhibit the activity of dynamin-like proteins to investigate whether PLGA NPs enter plant cells through a dynamin-like-dependent or dynamin-like-independent endocytic pathway. Observations were performed by confocal microscopy using a fluorescent probe, coumarin 6, loaded in PLGA NPs. The results showed that both cells and roots of A. thaliana rapidly take up PLGA NPs. Dynasore was administered at different concentrations and exposure times in order to identify the effective ones for inhibitory activity. Treatments with dynasore did not prevent the NPs uptake, as revealed by the presence of fluorescence emission detected in the cytoplasm. At the highest concentration and the longest exposure time to dynasore, the fluorescence of NPs was not visible due to cell death. Thus, the results suggest that, because the NPs' uptake is unaffected by dynasore exposure, NPs can enter cells and roots by following a dynamin-like-independent endocytic pathway.
Collapse
Affiliation(s)
- Giulia De Angelis
- Department of Environmental Biology, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Camilla Badiali
- Department of Environmental Biology, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Gabriella Pasqua
- Department of Environmental Biology, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
6
|
Oliveira-Garcia E, Tamang TM, Park J, Dalby M, Martin-Urdiroz M, Rodriguez Herrero C, Vu AH, Park S, Talbot NJ, Valent B. Clathrin-mediated endocytosis facilitates the internalization of Magnaporthe oryzae effectors into rice cells. THE PLANT CELL 2023:koad094. [PMID: 36976907 DOI: 10.1093/plcell/koad094] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Fungi and oomycetes deliver effectors into living plant cells to suppress defenses and control plant processes needed for infection. Little is known about the mechanism by which these pathogens translocate effector proteins across the plasma membrane into the plant cytoplasm. The blast fungus Magnaporthe oryzae secretes cytoplasmic effectors into a specialized biotrophic interfacial complex (BIC) before translocation. Here we show that cytoplasmic effectors within BICs are packaged into punctate membranous effector compartments that are occasionally observed in the host cytoplasm. Live cell imaging with fluorescently labeled proteins in rice (Oryza sativa) showed that these effector puncta colocalize with the plant plasma membrane and with CLATHRIN LIGHT CHAIN 1, a component of clathrin-mediated endocytosis (CME). Inhibiting CME using virus-induced gene silencing and chemical treatments resulted in cytoplasmic effectors in swollen BICs lacking effector puncta. By contrast, fluorescent marker co-localization, gene silencing and chemical inhibitor studies failed to support a major role for clathrin-independent endocytosis in effector translocation. Effector localization patterns indicated that cytoplasmic effector translocation occurs underneath appressoria before invasive hyphal growth. Taken together, this study provides evidence that cytoplasmic effector translocation is mediated by clathrin-mediated endocytosis in BICs and suggests a role for M. oryzae effectors in co-opting plant endocytosis.
Collapse
Affiliation(s)
- Ely Oliveira-Garcia
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Tej Man Tamang
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, KS 66506, USA
| | - Jungeun Park
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, KS 66506, USA
| | - Melinda Dalby
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | | | - Clara Rodriguez Herrero
- School of Biosciences, University of Exeter, Exeter, EX4 4QD, UK
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - An Hong Vu
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Sunghun Park
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, KS 66506, USA
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
7
|
Shi J, Jiang M, Wang H, Luo Z, Guo Y, Chen Y, Zhao X, Qiang S, Strasser RJ, Kalaji HM, Chen S. Effects of Mycotoxin Fumagillin, Mevastatin, Radicicol, and Wortmannin on Photosynthesis of Chlamydomonas reinhardtii. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030665. [PMID: 36771749 PMCID: PMC9920790 DOI: 10.3390/plants12030665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 05/12/2023]
Abstract
Mycotoxins are one of the most important sources for the discovery of new pesticides and drugs because of their chemical structural diversity and fascinating bioactivity as well as unique novel targets. Here, the effects of four mycotoxins, fumagillin, mevastatin, radicicol, and wortmannin, on photosynthesis were investigated to identify their precise sites of action on the photosynthetic apparatus of Chlamydomonas reinhardtii. Our results showed that these four mycotoxins have multiple targets, acting mainly on photosystem II (PSII). Their mode of action is similar to that of diuron, inhibiting electron flow beyond the primary quinone electron acceptor (QA) by binding to the secondary quinone electron acceptor (QB) site of the D1 protein, thereby affecting photosynthesis. The results of PSII oxygen evolution rate and chlorophyll (Chl) a fluorescence imaging suggested that fumagillin strongly inhibited overall PSII activity; the other three toxins also exhibited a negative influence at the high concentration. Chl a fluorescence kinetics and the JIP test showed that the inhibition of electron transport beyond QA was the most significant feature of the four mycotoxins. Fumagillin decreased the rate of O2 evolution by interrupting electron transfer on the PSII acceptor side, and had multiple negative effects on the primary photochemical reaction and PSII antenna size. Mevastatin caused a decrease in photosynthetic activity, mainly due to the inhibition of electron transport. Both radicicol and wortmannin decreased photosynthetic efficiency, mainly by inhibiting the electron transport efficiency of the PSII acceptor side and the activity of the PSII reaction centers. In addition, radicicol reduced the primary photochemical reaction efficiency and antenna size. The simulated molecular model of the four mycotoxins' binding to C. reinhardtii D1 protein indicated that the residue D1-Phe265 is their common site at the QB site. This is a novel target site different from those of commercial PSII herbicides. Thus, the interesting effects of the four mycotoxins on PSII suggested that they provide new ideas for the design of novel and efficient herbicide molecules.
Collapse
Affiliation(s)
- Jiale Shi
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengyun Jiang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - He Wang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi Luo
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanjing Guo
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Chen
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxi Zhao
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Sheng Qiang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Reto Jörg Strasser
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
- Bioenergetics Laboratory, University of Geneva, CH-1254 Jussy, Geneva, Switzerland
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Shiguo Chen
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
8
|
SUMO/deSUMOylation of the BRI1 brassinosteroid receptor modulates plant growth responses to temperature. Proc Natl Acad Sci U S A 2023; 120:e2217255120. [PMID: 36652487 PMCID: PMC9942830 DOI: 10.1073/pnas.2217255120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Brassinosteroids (BRs) are a class of steroid molecules perceived at the cell surface that act as plant hormones. The BR receptor BRASSINOSTEROID INSENSITIVE1 (BRI1) offers a model to understand receptor-mediated signaling in plants and the role of post-translational modifications. Here we identify SUMOylation as a new modification targeting BRI1 to regulate its activity. BRI1 is SUMOylated in planta on two lysine residues, and the levels of BRI1 SUMO conjugates are controlled by the Desi3a SUMO protease. Loss of Desi3a leads to hypersensitivity to BRs, indicating that Desi3a acts as a negative regulator of BR signaling. Besides, we demonstrate that BRI1 is deSUMOylated at elevated temperature by Desi3a, leading to increased BRI1 interaction with the negative regulator of BR signaling BIK1 and to enhanced BRI1 endocytosis. Loss of Desi3a or BIK1 results in increased response to temperature elevation, indicating that BRI1 deSUMOylation acts as a safety mechanism necessary to keep temperature responses in check. Altogether, our work establishes BRI1 deSUMOylation as a molecular crosstalk mechanism between temperature and BR signaling, allowing plants to translate environmental inputs into growth response.
Collapse
|
9
|
Hasegawa Y, Huarancca Reyes T, Uemura T, Baral A, Fujimaki A, Luo Y, Morita Y, Saeki Y, Maekawa S, Yasuda S, Mukuta K, Fukao Y, Tanaka K, Nakano A, Takagi J, Bhalerao RP, Yamaguchi J, Sato T. The TGN/EE SNARE protein SYP61 and the ubiquitin ligase ATL31 cooperatively regulate plant responses to carbon/nitrogen conditions in Arabidopsis. THE PLANT CELL 2022; 34:1354-1374. [PMID: 35089338 PMCID: PMC8972251 DOI: 10.1093/plcell/koac014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/30/2021] [Indexed: 05/23/2023]
Abstract
Ubiquitination is a post-translational modification involving the reversible attachment of the small protein ubiquitin to a target protein. Ubiquitination is involved in numerous cellular processes, including the membrane trafficking of cargo proteins. However, the ubiquitination of the trafficking machinery components and their involvement in environmental responses are not well understood. Here, we report that the Arabidopsis thaliana trans-Golgi network/early endosome localized SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein SYP61 interacts with the transmembrane ubiquitin ligase ATL31, a key regulator of resistance to disrupted carbon (C)/nitrogen/(N)-nutrient conditions. SYP61 is a key component of membrane trafficking in Arabidopsis. The subcellular localization of ATL31 was disrupted in knockdown mutants of SYP61, and the insensitivity of ATL31-overexpressing plants to high C/low N-stress was repressed in these mutants, suggesting that SYP61 and ATL31 cooperatively function in plant responses to nutrient stress. SYP61 is ubiquitinated in plants, and its ubiquitination level is upregulated under low C/high N-nutrient conditions. These findings provide important insights into the ubiquitin signaling and membrane trafficking machinery in plants.
Collapse
Affiliation(s)
- Yoko Hasegawa
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| | - Thais Huarancca Reyes
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| | - Tomohiro Uemura
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Anirban Baral
- Umeå Plant Science Centre, Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå S-901 83, Sweden
| | - Akari Fujimaki
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| | - Yongming Luo
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| | - Yoshie Morita
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| | - Yasushi Saeki
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Shugo Maekawa
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| | - Shigetaka Yasuda
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| | - Koki Mukuta
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| | - Yoichiro Fukao
- Department of Bioinformatics, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Junpei Takagi
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå S-901 83, Sweden
| | - Junji Yamaguchi
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| | - Takeo Sato
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| |
Collapse
|
10
|
Belda-Palazón B, Rodriguez PL. Microscopic Imaging of Endosomal Trafficking of ABA Receptors. Methods Mol Biol 2022; 2462:59-69. [PMID: 35152380 DOI: 10.1007/978-1-0716-2156-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The abscisic acid (ABA) is a key hormone for stress tolerance. The balance between growth/development and stress responses is crucial for the optimal course of plant life meaning that plants need to control the timing and extent of ABA pathway activation. In this regard, protein turnover regulation by means of both the ubiquitin-proteasome system (UPS) and non-26S proteasome endomembrane trafficking pathways, plays a critical role in the regulation of ABA signaling activation and deactivation. Over the last few years, the ubiquitination of ABA receptors PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR) at the plasma membrane by the RING between RING fingers (RBR)-type E3 ligase RING FINGER OF SEED LONGEVITY1 (RSL1) triggering their internalization through the clathrin-mediated endocytosis (CME) pathway, followed by their endosomal trafficking and delivery to the vacuole for degradation, was reported. For this process, the direct role of some components of the endosomal sorting complex required for transport (ESCRT) machinery, that is, FYVE DOMAIN-CONTAINING PROTEIN 1 (FYVE1)/FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING 1 (FREE1) and VACUOLAR PROTEIN SORTING23A (VPS23A) members of ESCRT-I complex, and ALG-2 INTERACTING PROTEIN-X (ALIX) associated protein of ESCRT-III, was reported. In this chapter, we will detail two methods for imaging endosomal trafficking of ABA receptor proteins by confocal microscopy: (a) colocalization of GFP-PYL4 (also known as RCAR10) and CLATHRIN LIGHT CHAIN 2 (CLC2)-mOrange in clathrin-coated vesicles in Nicotiana benthamiana leaf cells and (b) localization of GFP-PYL4 into Wortmannin (WM)-enlarged late endosomes in Arabidopsis thaliana root cells.
Collapse
Affiliation(s)
- Borja Belda-Palazón
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal.
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
11
|
Yang W, Wu K, Wang B, Liu H, Guo S, Guo X, Luo W, Sun S, Ouyang Y, Fu X, Chong K, Zhang Q, Xu Y. The RING E3 ligase CLG1 targets GS3 for degradation via the endosome pathway to determine grain size in rice. MOLECULAR PLANT 2021; 14:1699-1713. [PMID: 34216830 DOI: 10.1016/j.molp.2021.06.027] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 05/02/2023]
Abstract
G-protein signaling and ubiquitin-dependent degradation are both involved in grain development in rice, but how these pathways are coordinated in regulating this process is unknown. Here, we show that Chang Li Geng 1 (CLG1), which encodes an E3 ligase, regulates grain size by targeting the Gγ protein GS3, a negative regulator of grain length, for degradation. Overexpression of CLG1 led to increased grain length, while overexpression of mutated CLG1 with changes in three conserved amino acids decreased grain length. We found that CLG1 physically interacts with and ubiquitinats GS3which is subsequently degraded through the endosome degradation pathway, leading to increased grain size. Furthermore, we identified a critical SNP in the exon 3 of CLG1 that is significantly associated with grain size variation in a core collection of cultivated rice. This SNP results in an amino acid substitution from Arg to Ser at position 163 of CLG1 that enhances the E3 ligase activity of CLG1 and thus increases rice grain size. Both the expression level of CLG1 and the SNP CLG1163S may be useful variations for manipulating grain size in rice.
Collapse
Affiliation(s)
- Wensi Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Wu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huanhuan Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyi Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Luo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shengyuan Sun
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangdong Fu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; Innovation Academy for Seed Design, CAS, Beijing 100101, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; Innovation Academy for Seed Design, CAS, Beijing 100101, China.
| |
Collapse
|
12
|
Chao ZF, Wang YL, Chen YY, Zhang CY, Wang PY, Song T, Liu CB, Lv QY, Han ML, Wang SS, Yan J, Lei MG, Chao DY. NPF transporters in synaptic-like vesicles control delivery of iron and copper to seeds. SCIENCE ADVANCES 2021; 7:eabh2450. [PMID: 34516912 PMCID: PMC8442890 DOI: 10.1126/sciadv.abh2450] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/13/2021] [Indexed: 05/18/2023]
Abstract
Accumulation of iron in seeds is essential for both plant reproduction and human nutrition. Transport of iron to seeds requires the chelator nicotianamine (NA) to prevent its precipitation in the plant vascular tissues. However, how NA is transported to the apoplast for forming metal-NA complexes remains unknown. Here, we report that two members of the nitrate/peptide transporter family, NAET1 and NAET2, function as NA transporters required for translocation of both iron and copper to seeds. We show that NAET1 and NAET2 are predominantly expressed in the shoot and root vascular tissues and mediate secretion of NA out of the cells in resembling the release of neurotransmitters from animal synaptic vesicles. These findings reveal an unusual mechanism of transmembrane transport in plants and uncover a fundamental aspect of plant nutrition that has implications for improving food nutrition and human health.
Collapse
Affiliation(s)
- Zhen-Fei Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Ling Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuan-Yuan Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Chu-Ying Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- School of Life Science, Henan University, Kaifeng 457000, China
| | - Peng-Yun Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- School of Life Science, Henan University, Kaifeng 457000, China
| | - Tao Song
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chu-Bin Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiao-Yan Lv
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei-Ling Han
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shan-Shan Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Ming-Guang Lei
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Corresponding author.
| |
Collapse
|
13
|
Petre B, Contreras MP, Bozkurt TO, Schattat MH, Sklenar J, Schornack S, Abd-El-Haliem A, Castells-Graells R, Lozano-Durán R, Dagdas YF, Menke FLH, Jones AME, Vossen JH, Robatzek S, Kamoun S, Win J. Host-interactor screens of Phytophthora infestans RXLR proteins reveal vesicle trafficking as a major effector-targeted process. THE PLANT CELL 2021. [PMID: 33677602 DOI: 10.1101/2020.09.24.308585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Pathogens modulate plant cell structure and function by secreting effectors into host tissues. Effectors typically function by associating with host molecules and modulating their activities. This study aimed to identify the host processes targeted by the RXLR class of host-translocated effectors of the potato blight pathogen Phytophthora infestans. To this end, we performed an in planta protein-protein interaction screen by transiently expressing P. infestans RXLR effectors in Nicotiana benthamiana leaves followed by coimmunoprecipitation and liquid chromatography-tandem mass spectrometry. This screen generated an effector-host protein interactome matrix of 59 P. infestans RXLR effectors x 586 N. benthamiana proteins. Classification of the host interactors into putative functional categories revealed over 35 biological processes possibly targeted by P. infestans. We further characterized the PexRD12/31 family of RXLR-WY effectors, which associate and colocalize with components of the vesicle trafficking machinery. One member of this family, PexRD31, increased the number of FYVE positive vesicles in N. benthamiana cells. FYVE positive vesicles also accumulated in leaf cells near P. infestans hyphae, indicating that the pathogen may enhance endosomal trafficking during infection. This interactome dataset will serve as a useful resource for functional studies of P. infestans effectors and of effector-targeted host processes.
Collapse
Affiliation(s)
- Benjamin Petre
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Université de Lorraine, INRAE, IAM, Nancy, France
| | - Mauricio P Contreras
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Tolga O Bozkurt
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Life Sciences, Imperial College London, London, UK
| | - Martin H Schattat
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Plant Physiology, Institute for Biology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Jan Sklenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Sebastian Schornack
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | | | - Roger Castells-Graells
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Rosa Lozano-Durán
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yasin F Dagdas
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Alexandra M E Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Jack H Vossen
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Silke Robatzek
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
14
|
Petre B, Contreras MP, Bozkurt TO, Schattat MH, Sklenar J, Schornack S, Abd-El-Haliem A, Castells-Graells R, Lozano-Durán R, Dagdas YF, Menke FLH, Jones AME, Vossen JH, Robatzek S, Kamoun S, Win J. Host-interactor screens of Phytophthora infestans RXLR proteins reveal vesicle trafficking as a major effector-targeted process. THE PLANT CELL 2021; 33:1447-1471. [PMID: 33677602 PMCID: PMC8254500 DOI: 10.1093/plcell/koab069] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/19/2021] [Indexed: 05/20/2023]
Abstract
Pathogens modulate plant cell structure and function by secreting effectors into host tissues. Effectors typically function by associating with host molecules and modulating their activities. This study aimed to identify the host processes targeted by the RXLR class of host-translocated effectors of the potato blight pathogen Phytophthora infestans. To this end, we performed an in planta protein-protein interaction screen by transiently expressing P. infestans RXLR effectors in Nicotiana benthamiana leaves followed by coimmunoprecipitation and liquid chromatography-tandem mass spectrometry. This screen generated an effector-host protein interactome matrix of 59 P. infestans RXLR effectors x 586 N. benthamiana proteins. Classification of the host interactors into putative functional categories revealed over 35 biological processes possibly targeted by P. infestans. We further characterized the PexRD12/31 family of RXLR-WY effectors, which associate and colocalize with components of the vesicle trafficking machinery. One member of this family, PexRD31, increased the number of FYVE positive vesicles in N. benthamiana cells. FYVE positive vesicles also accumulated in leaf cells near P. infestans hyphae, indicating that the pathogen may enhance endosomal trafficking during infection. This interactome dataset will serve as a useful resource for functional studies of P. infestans effectors and of effector-targeted host processes.
Collapse
Affiliation(s)
- Benjamin Petre
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Université de Lorraine, INRAE, IAM, Nancy, France
| | - Mauricio P Contreras
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Tolga O Bozkurt
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Life Sciences, Imperial College London, London, UK
| | - Martin H Schattat
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Plant Physiology, Institute for Biology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Jan Sklenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Sebastian Schornack
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | | | - Roger Castells-Graells
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Rosa Lozano-Durán
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yasin F Dagdas
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Alexandra M E Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Jack H Vossen
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Silke Robatzek
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
15
|
Hiroguchi A, Sakamoto S, Mitsuda N, Miwa K. Golgi-localized membrane protein AtTMN1/EMP12 functions in the deposition of rhamnogalacturonan II and I for cell growth in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3611-3629. [PMID: 33587102 PMCID: PMC8096605 DOI: 10.1093/jxb/erab065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/10/2021] [Indexed: 05/20/2023]
Abstract
Appropriate pectin deposition in cell walls is important for cell growth in plants. Rhamnogalacturonan II (RG-II) is a portion of pectic polysaccharides; its borate crosslinking is essential for maintenance of pectic networks. However, the overall process of RG-II synthesis is not fully understood. To identify a novel factor for RG-II deposition or dimerization in cell walls, we screened Arabidopsis mutants with altered boron (B)-dependent growth. The mutants exhibited alleviated disorders of primary root and stem elongation, and fertility under low B, but reduced primary root lengths under sufficient B conditions. Altered primary root elongation was associated with cell elongation changes caused by loss of function in AtTMN1 (Transmembrane Nine 1)/EMP12, which encodes a Golgi-localized membrane protein of unknown function that is conserved among eukaryotes. Mutant leaf and root dry weights were lower than those of wild-type plants, regardless of B conditions. In cell walls, AtTMN1 mutations reduced concentrations of B, RG-II specific 2-keto-3-deoxy monosaccharides, and rhamnose largely derived from rhamnogalacturonan I (RG-I), suggesting reduced RG-II and RG-I. Together, our findings demonstrate that AtTMN1 is required for the deposition of RG-II and RG-I for cell growth and suggest that pectin modulates plant growth under low B conditions.
Collapse
Affiliation(s)
- Akihiko Hiroguchi
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305–8566, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305–8566, Japan
| | - Kyoko Miwa
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
- Correspondence:
| |
Collapse
|
16
|
Lee SK, Hong WJ, Silva J, Kim EJ, Park SK, Jung KH, Kim YJ. Global Identification of ANTH Genes Involved in Rice Pollen Germination and Functional Characterization of a Key Member, OsANTH3. FRONTIERS IN PLANT SCIENCE 2021; 12:609473. [PMID: 33927731 PMCID: PMC8076639 DOI: 10.3389/fpls.2021.609473] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/22/2021] [Indexed: 06/02/2023]
Abstract
Pollen in angiosperms plays a critical role in double fertilization by germinating and elongating pollen tubes rapidly in one direction to deliver sperm. In this process, the secretory vesicles deliver cell wall and plasma membrane materials, and excessive materials are sequestered via endocytosis. However, endocytosis in plants is poorly understood. AP180 N-terminal homology (ANTH) domain-containing proteins function as adaptive regulators for clathrin-mediated endocytosis in eukaryotic systems. Here, we identified 17 ANTH domain-containing proteins from rice based on a genome-wide investigation. Motif and phylogenomic analyses revealed seven asparagine-proline-phenylalanine (NPF)-rich and 10 NPF-less subgroups of these proteins, as well as various clathrin-mediated endocytosis-related motifs in their C-terminals. To investigate their roles in pollen germination, we performed meta-expression analysis of all genes encoding ANTH domain-containing proteins in Oryza sativa (OsANTH genes) in anatomical samples, including pollen, and identified five mature pollen-preferred OsANTH genes. The subcellular localization of four OsANTH proteins that were preferentially expressed in mature pollen can be consistent with their role in endocytosis in the plasma membrane. Of them, OsANTH3 represented the highest expression in mature pollen. Functional characterization of OsANTH3 using T-DNA insertional knockout and gene-edited mutants revealed that a mutation in OsANTH3 decreased seed fertility by reducing the pollen germination percentage in rice. Thus, our study suggests OsANTH3-mediated endocytosis is important for rice pollen germination.
Collapse
Affiliation(s)
- Su Kyoung Lee
- Graduate School of Biotechnology, Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Woo-Jong Hong
- Graduate School of Biotechnology, Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Jeniffer Silva
- Graduate School of Biotechnology, Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Eui-Jung Kim
- Graduate School of Biotechnology, Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology, Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Korea
| |
Collapse
|
17
|
Scali M, Moscatelli A, Bini L, Onelli E, Vignani R, Wang W. Protein Analysis of Pollen Tubes after the Treatments of Membrane Trafficking Inhibitors Gains Insights on Molecular Mechanism Underlying Pollen Tube Polar Growth. Protein J 2021; 40:205-222. [PMID: 33751342 PMCID: PMC8019430 DOI: 10.1007/s10930-021-09972-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2021] [Indexed: 12/03/2022]
Abstract
Pollen tube elongation is characterized by a highly-polarized tip growth process dependent on an efficient vesicular transport system and largely mobilized by actin cytoskeleton. Pollen tubes are an ideal model system to study exocytosis, endocytosis, membrane recycling, and signaling network coordinating cellular processes, structural organization and vesicular trafficking activities required for tip growth. Proteomic analysis was applied to identify Nicotiana tabacum Differentially Abundant Proteins (DAPs) after in vitro pollen tube treatment with membrane trafficking inhibitors Brefeldin A, Ikarugamycin and Wortmannin. Among roughly 360 proteins separated in two-dimensional gel electrophoresis, a total of 40 spots visibly changing between treated and control samples were identified by MALDI-TOF MS and LC-ESI-MS/MS analysis. The identified proteins were classified according to biological processes, and most proteins were related to pollen tube energy metabolism, including ammino acid synthesis and lipid metabolism, structural features of pollen tube growth as well modification and actin cytoskeleton organization, stress response, and protein degradation. In-depth analysis of proteins corresponding to energy-related pathways revealed the male gametophyte to be a reliable model of energy reservoir and dynamics.
Collapse
Affiliation(s)
- Monica Scali
- Department of Life Sciences, University of Siena, Siena, Italy.
| | | | - Luca Bini
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Rita Vignani
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Wei Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
18
|
Sun Y, Liang W, Cheng H, Wang H, Lv D, Wang W, Liang M, Miao C. NADPH Oxidase-derived ROS promote mitochondrial alkalization under salt stress in Arabidopsis root cells. PLANT SIGNALING & BEHAVIOR 2021; 16:1856546. [PMID: 33315520 PMCID: PMC7889232 DOI: 10.1080/15592324.2020.1856546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
The plasma membrane NADPH Oxidase-derived ROS as signaling molecules play crucial roles in salt stress response. As the motor organelle of cells, mitochondria are also important for salt tolerance. However, the possible interaction between NADPH Oxidase-derived ROS and mitochondria is not well studied. Here, a transgenic Arabidopsis expressing mitochondrial matrix-targeted pH-sensitive indicator cpYFP was used to monitor the pH dynamics in root cells under salt stress. A significant alkalization in mitochondria was observed when the root was exposed to NaCl or KCl, but not osmotic stress such as isotonic mannitol. Interestingly, when pretreated with the NADPH Oxidase inhibitor DPI, the mitochondrial alkalization in root cells was largely abolished. Genetic evidence further showed that salt-induced mitochondrial alkalization was significantly reduced in the loss of function mutant atrbohF . Pretreatment with endocytosis-related inhibitor PAO or TyrA23, which inhibited the ROS accumulation under salt treatment, almost abolished this effect. Furthermore, [Ca2+]cyt increase might also play important roles by affecting ROS generation to mediate salt-induced mitochondrial alkalization as indicated by treatment with plasma membrane Ca2+ channel inhibitor LaCl3 and mitochondrial Ca2+ uniporter inhibitor Ruthenium Red. Together, these results suggest that the plasma membrane NADPH Oxidase-derived ROS promote the mitochondrial alkalization under salt treatment, providing a possible link between different cellular compartments under salt stress.
Collapse
Affiliation(s)
- Yanfeng Sun
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Weihong Liang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Hui Cheng
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Huan Wang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Dong Lv
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Wei Wang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Modan Liang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Chen Miao
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
19
|
Analysis of Membrane Proteins Transport from Endosomal Compartments to Vacuoles. Methods Mol Biol 2020. [PMID: 32632801 DOI: 10.1007/978-1-0716-0767-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Endocytosis and endosomal trafficking to vacuoles play important roles in regulating the homeostasis of plasma membrane (PM) proteins in plant cells. FREE1 (FYVE domain protein required for endosomal sorting 1) is a plant-unique component of the ESCRT (endosomal sorting complex required for transport) machinery. In free1 mutant plants, PIN-FORMED 2 (PIN2)-GFP was found to mislocalize from the PM to the tonoplast. In this chapter, we describe a detailed protocol for studying vacuolar sorting and degradation of PIN2-GFP by using T-DNA insertional mutants, dexamethasone (DEX) inducible RNAi lines, and other tools, including Fei-Mao (FM) dye staining and dark treatment. By using these methods, we illustrate the endosomal trafficking and vacuolar degradation of PIN2-GFP in plants.
Collapse
|
20
|
Schwihla M, Korbei B. The Beginning of the End: Initial Steps in the Degradation of Plasma Membrane Proteins. FRONTIERS IN PLANT SCIENCE 2020; 11:680. [PMID: 32528512 PMCID: PMC7253699 DOI: 10.3389/fpls.2020.00680] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/30/2020] [Indexed: 05/05/2023]
Abstract
The plasma membrane (PM), as border between the inside and the outside of a cell, is densely packed with proteins involved in the sensing and transmission of internal and external stimuli, as well as transport processes and is therefore vital for plant development as well as quick and accurate responses to the environment. It is consequently not surprising that several regulatory pathways participate in the tight regulation of the spatiotemporal control of PM proteins. Ubiquitination of PM proteins plays a key role in directing their entry into the endo-lysosomal system, serving as a signal for triggering endocytosis and further sorting for degradation. Nevertheless, a uniting picture of the different roles of the respective types of ubiquitination in the consecutive steps of down-regulation of membrane proteins is still missing. The trans-Golgi network (TGN), which acts as an early endosome (EE) in plants receives the endocytosed cargo, and here the decision is made to either recycled back to the PM or further delivered to the vacuole for degradation. A multi-complex machinery, the endosomal sorting complex required for transport (ESCRT), concentrates ubiquitinated proteins and ushers them into the intraluminal vesicles of multi-vesicular bodies (MVBs). Several ESCRTs have ubiquitin binding subunits, which anchor and guide the cargos through the endocytic degradation route. Basic enzymes and the mode of action in the early degradation steps of PM proteins are conserved in eukaryotes, yet many plant unique components exist, which are often essential in this pathway. Thus, deciphering the initial steps in the degradation of ubiquitinated PM proteins, which is the major focus of this review, will greatly contribute to the larger question of how plants mange to fine-tune their responses to their environment.
Collapse
|
21
|
Goto-Yamada S, Oikawa K, Bizan J, Shigenobu S, Yamaguchi K, Mano S, Hayashi M, Ueda H, Hara-Nishimura I, Nishimura M, Yamada K. Sucrose Starvation Induces Microautophagy in Plant Root Cells. FRONTIERS IN PLANT SCIENCE 2019; 10:1604. [PMID: 31850051 PMCID: PMC6901504 DOI: 10.3389/fpls.2019.01604] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/14/2019] [Indexed: 05/26/2023]
Abstract
Autophagy is an essential system for degrading and recycling cellular components for survival during starvation conditions. Under sucrose starvation, application of a papain protease inhibitor E-64d to the Arabidopsis root and tobacco BY-2 cells induced the accumulation of vesicles, labeled with a fluorescent membrane marker FM4-64. The E-64d-induced vesicle accumulation was reduced in the mutant defective in autophagy-related genes ATG2, ATG5, and ATG7, suggesting autophagy is involved in the formation of these vesicles. To clarify the formation of these vesicles in detail, we monitored time-dependent changes of tonoplast, and vesicle accumulation in sucrose-starved cells. We found that these vesicles were derived from the tonoplast and produced by microautophagic process. The tonoplast proteins were excluded from the vesicles, suggesting that the vesicles are generated from specific membrane domains. Concanamycin A treatment in GFP-ATG8a transgenic plants showed that not all FM4-64-labeled vesicles, which were derived from the tonoplast, contained the ATG8a-containing structure. These results suggest that ATG8a may not always be necessary for microautophagy.
Collapse
Affiliation(s)
- Shino Goto-Yamada
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Kazusato Oikawa
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Jakub Bizan
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Katsushi Yamaguchi
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, Japan
| | - Shoji Mano
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Makoto Hayashi
- Department of Bioscience, Nagahama Institute of Bioscience and Technology, Nagahama, Japan
| | - Haruko Ueda
- Faculty of Science and Engineering, Konan University, Kobe, Japan
| | | | - Mikio Nishimura
- Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Kenji Yamada
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
22
|
Zhu D, Zhang M, Gao C, Shen J. Protein trafficking in plant cells: Tools and markers. SCIENCE CHINA-LIFE SCIENCES 2019; 63:343-363. [DOI: 10.1007/s11427-019-9598-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/22/2019] [Indexed: 12/26/2022]
|
23
|
Zhao Q, Shen J, Gao C, Cui Y, Wang Y, Cui J, Cheng L, Cao W, Zhu Y, Huang S, Zhou Q, Leong CK, Leung KP, Chen X, Jiang L. RST1 Is a FREE1 Suppressor That Negatively Regulates Vacuolar Trafficking in Arabidopsis. THE PLANT CELL 2019; 31:2152-2168. [PMID: 31221737 PMCID: PMC6751125 DOI: 10.1105/tpc.19.00003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/18/2019] [Accepted: 06/17/2019] [Indexed: 05/23/2023]
Abstract
FYVE domain protein required for endosomal sorting1 (FREE1), a plant-specific endosomal sorting complex required for transport-I component, is essential for the biogenesis of multivesicular bodies (MVBs), vacuolar degradation of membrane protein, cargo vacuolar sorting, autophagic degradation, and vacuole biogenesis in Arabidopsis (Arabidopsis thaliana). Here, we report the characterization of RESURRECTION1 (RST1) as a suppressor of free1 that, when mutated as a null mutant, restores the normal MVB and vacuole formation of a FREE1-RNAi knockdown line and consequently allows survival. RST1 encodes an evolutionarily conserved multicellular organism-specific protein, which contains two Domain of Unknown Function 3730 domains, showing no similarity to known proteins, and predominantly localizes in the cytosol. The depletion of FREE1 causes substantial accumulation of RST1, and transgenic Arabidopsis plants overexpressing RST1 display retarded seedling growth with dilated MVBs, and inhibition of endocytosed FM4-64 dye to the tonoplast, suggesting that RST1 has a negative role in vacuolar transport. Consistently, enhanced endocytic degradation of membrane vacuolar cargoes occurs in the rst1 mutant. Further transcriptomic comparison of rst1 with free1 revealed a negative association between gene expression profiles, demonstrating that FREE1 and RST1 have antagonistic functions. Thus, RST1 is a negative regulator controlling membrane protein homeostasis and FREE1-mediated functions in plants.
Collapse
Affiliation(s)
- Qiong Zhao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou 510631, China
| | - Yong Cui
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yongyi Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jie Cui
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Lixin Cheng
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Department of Critical Care Medicine, Shenzhen People’s Hospital, The Second Clinical Medicine College of Ji’nan University, Shenzhen 518020, China
| | - Wenhan Cao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ying Zhu
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Shuxian Huang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Qianzi Zhou
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Cheuk Ka Leong
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - King Pong Leung
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
24
|
Vieira V, Peixoto B, Costa M, Pereira S, Pissarra J, Pereira C. N-Linked Glycosylation Modulates Golgi-Independent Vacuolar Sorting Mediated by the Plant Specific Insert. PLANTS 2019; 8:plants8090312. [PMID: 31480247 PMCID: PMC6784193 DOI: 10.3390/plants8090312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 01/06/2023]
Abstract
In plant cells, the conventional route to the vacuole involves the endoplasmic reticulum, the Golgi and the prevacuolar compartment. However, over the years, unconventional sorting to the vacuole, bypassing the Golgi, has been described, which is the case of the Plant-Specific Insert (PSI) of the aspartic proteinase cardosin A. Interestingly, this Golgi-bypass ability is not a characteristic shared by all PSIs, since two related PSIs showed to have different sensitivity to ER-to-Golgi blockage. Given the high sequence similarity between the PSI domains, we sought to depict the differences in terms of post-translational modifications. In fact, one feature that draws our attention is that one is N-glycosylated and the other one is not. Using site-directed mutagenesis to obtain mutated versions of the two PSIs, with and without the glycosylation motif, we observed that altering the glycosylation pattern interferes with the trafficking of the protein as the non-glycosylated PSI-B, unlike its native glycosylated form, is able to bypass ER-to-Golgi blockage and accumulate in the vacuole. This is also true when the PSI domain is analyzed in the context of the full-length cardosin. Regardless of opening exciting research gaps, the results obtained so far need a more comprehensive study of the mechanisms behind this unconventional direct sorting to the vacuole.
Collapse
Affiliation(s)
- Vanessa Vieira
- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/nº, 4169-007 Porto, Portugal
| | - Bruno Peixoto
- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/nº, 4169-007 Porto, Portugal
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Mónica Costa
- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/nº, 4169-007 Porto, Portugal
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Susana Pereira
- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/nº, 4169-007 Porto, Portugal
- GreenUPorto-Sustainable Agrifood Production Research Center, Campus de Vairão, Rua Padre Armando Quintas 7, 4485-661 Vila do Conde, Portugal
| | - José Pissarra
- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/nº, 4169-007 Porto, Portugal
- GreenUPorto-Sustainable Agrifood Production Research Center, Campus de Vairão, Rua Padre Armando Quintas 7, 4485-661 Vila do Conde, Portugal
| | - Cláudia Pereira
- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/nº, 4169-007 Porto, Portugal.
- GreenUPorto-Sustainable Agrifood Production Research Center, Campus de Vairão, Rua Padre Armando Quintas 7, 4485-661 Vila do Conde, Portugal.
| |
Collapse
|
25
|
Gao J, Chaudhary A, Vaddepalli P, Nagel MK, Isono E, Schneitz K. The Arabidopsis receptor kinase STRUBBELIG undergoes clathrin-dependent endocytosis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3881-3894. [PMID: 31107531 PMCID: PMC6685663 DOI: 10.1093/jxb/erz190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 04/09/2019] [Indexed: 05/04/2023]
Abstract
Signaling mediated by cell surface receptor kinases is central to the coordination of growth patterns during organogenesis. Receptor kinase signaling is in part controlled through endocytosis and subcellular distribution of the respective receptor kinase. For the majority of plant cell surface receptors, the underlying trafficking mechanisms are not characterized. In Arabidopsis, tissue morphogenesis requires the atypical receptor kinase STRUBBELIG (SUB). Here, we studied the endocytic mechanism of SUB. Our data revealed that a functional SUB-enhanced green fluorescent protein (EGFP) fusion is ubiquitinated in vivo. We further showed that plasma membrane-bound SUB:EGFP becomes internalized in a clathrin-dependent fashion. We also found that SUB:EGFP associates with the trans-Golgi network and accumulates in multivesicular bodies and the vacuole. Co-immunoprecipitation experiments revealed that SUB:EGFP and clathrin are present within the same protein complex. Our genetic analysis showed that SUB and CLATHRIN HEAVY CHAIN (CHC) 2 regulate root hair patterning. By contrast, genetic reduction of CHC activity ameliorates the floral defects of sub mutants. Taken together, the data indicate that SUB undergoes clathrin-mediated endocytosis, that this process does not rely on stimulation of SUB signaling by an exogenous agent, and that SUB genetically interacts with clathrin-dependent pathways in a tissue-specific manner.
Collapse
Affiliation(s)
- Jin Gao
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Ajeet Chaudhary
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Prasad Vaddepalli
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
- Present address: Laboratory of Biochemistry, Wageningen University, Wageningen, the Netherlands
| | - Marie-Kristin Nagel
- Department of Biology, Chair of Plant Physiology and Biochemistry, University of Konstanz, Konstanz, Germany
| | - Erika Isono
- Department of Biology, Chair of Plant Physiology and Biochemistry, University of Konstanz, Konstanz, Germany
| | - Kay Schneitz
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
- Correspondence:
| |
Collapse
|
26
|
Pan W, Wu Y, Xie Q. Regulation of Ubiquitination Is Central to the Phosphate Starvation Response. TRENDS IN PLANT SCIENCE 2019; 24:755-769. [PMID: 31176527 DOI: 10.1016/j.tplants.2019.05.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 05/22/2023]
Abstract
As sessile organisms, plants have developed numerous strategies to overcome the limiting availability of the essential nutrient phosphate in nature. Recent studies reveal that post-translational modification (PTM) by ubiquitination is an important and central regulation mechanism in the plant phosphate starvation response (PSR). Ubiquitination precisely modulates the stability and trafficking of proteins in response to the heterogeneous phosphate supplement. Induction of autophagy provides novel insights into the molecular mechanisms under phosphate starvation. In this review, we present and discuss novel findings on the regulation of diverse PSRs through ubiquitination. Resolving these regulation mechanisms will pave the way to improve phosphate acquisition and utilization efficiency in crops.
Collapse
Affiliation(s)
- Wenbo Pan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaorong Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
27
|
Rosquete MR, Worden N, Ren G, Sinclair RM, Pfleger S, Salemi M, Phinney BS, Domozych D, Wilkop T, Drakakaki G. AtTRAPPC11/ROG2: A Role for TRAPPs in Maintenance of the Plant Trans-Golgi Network/Early Endosome Organization and Function. THE PLANT CELL 2019; 31:1879-1898. [PMID: 31175171 PMCID: PMC6713296 DOI: 10.1105/tpc.19.00110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/06/2019] [Accepted: 06/02/2019] [Indexed: 05/14/2023]
Abstract
The dynamic trans-Golgi network/early endosome (TGN/EE) facilitates cargo sorting and trafficking and plays a vital role in plant development and environmental response. Transport protein particles (TRAPPs) are multi-protein complexes acting as guanine nucleotide exchange factors and possibly as tethers, regulating intracellular trafficking. TRAPPs are essential in all eukaryotic cells and are implicated in a number of human diseases. It has been proposed that they also play crucial roles in plants; however, our current knowledge about the structure and function of plant TRAPPs is very limited. Here, we identified and characterized AtTRAPPC11/RESPONSE TO OLIGOGALACTURONIDE2 (AtTRAPPC11/ROG2), a TGN/EE-associated, evolutionarily conserved TRAPP protein in Arabidopsis (Arabidopsis thaliana). AtTRAPPC11/ROG2 regulates TGN integrity, as evidenced by altered TGN/EE association of several residents, including SYNTAXIN OF PLANTS61, and altered vesicle morphology in attrappc11/rog2 mutants. Furthermore, endocytic traffic and brefeldin A body formation are perturbed in attrappc11/rog2, suggesting a role for AtTRAPPC11/ROG2 in regulation of endosomal function. Proteomic analysis showed that AtTRAPPC11/ROG2 defines a hitherto uncharacterized TRAPPIII complex in plants. In addition, attrappc11/rog2 mutants are hypersensitive to salinity, indicating an undescribed role of TRAPPs in stress responses. Overall, our study illustrates the plasticity of the endomembrane system through TRAPP protein functions and opens new avenues to explore this dynamic network.
Collapse
Affiliation(s)
| | - Natasha Worden
- Department of Plant Sciences University of California, Davis, California 95616
| | - Guangxi Ren
- Department of Plant Sciences University of California, Davis, California 95616
| | - Rosalie M Sinclair
- Department of Plant Sciences University of California, Davis, California 95616
| | - Sina Pfleger
- Department of Plant Sciences University of California, Davis, California 95616
| | - Michelle Salemi
- Genome Center, University of California, Davis, California 95616
| | - Brett S Phinney
- Genome Center, University of California, Davis, California 95616
| | - David Domozych
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York 12866
| | - Thomas Wilkop
- Department of Plant Sciences University of California, Davis, California 95616
- Light Microscopy Core, University of Kentucky, Lexington, Kentucky 40536
| | - Georgia Drakakaki
- Department of Plant Sciences University of California, Davis, California 95616
| |
Collapse
|
28
|
Bapaume L, Laukamm S, Darbon G, Monney C, Meyenhofer F, Feddermann N, Chen M, Reinhardt D. VAPYRIN Marks an Endosomal Trafficking Compartment Involved in Arbuscular Mycorrhizal Symbiosis. FRONTIERS IN PLANT SCIENCE 2019; 10:666. [PMID: 31231402 PMCID: PMC6558636 DOI: 10.3389/fpls.2019.00666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/02/2019] [Indexed: 05/08/2023]
Abstract
Arbuscular mycorrhiza (AM) is a symbiosis between plants and AM fungi that requires the intracellular accommodation of the fungal partner in the host. For reciprocal nutrient exchange, AM fungi form intracellular arbuscules that are surrounded by the peri-arbuscular membrane. This membrane, together with the fungal plasma membrane, and the space in between, constitute the symbiotic interface, over which nutrients are exchanged. Intracellular establishment of AM fungi requires the VAPYRIN protein which is induced in colonized cells, and which localizes to numerous small mobile structures of unknown identity (Vapyrin-bodies). In order to characterize the identity and function of the Vapyrin-bodies we pursued a dual strategy. First, we co-expressed fluorescently tagged VAPYRIN with a range of subcellular marker proteins, and secondly, we employed biochemical tools to identify interacting partner proteins of VAPYRIN. As an important tool for the quantitative analysis of confocal microscopic data sets from co-expression of fluorescent proteins, we developed a semi-automated image analysis pipeline that allows for precise spatio-temporal quantification of protein co-localization and of the dynamics of organelle association from movies. Taken together, these experiments revealed that Vapyrin-bodies have an endosomal identity with trans-Golgi features, and that VAPYRIN interacts with a symbiotic R-SNARE of the VAMP721 family, that localizes to the same compartment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Didier Reinhardt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
29
|
Słupianek A, Kasprowicz-Maluśki A, Myśkow E, Turzańska M, Sokołowska K. Endocytosis acts as transport pathway in wood. THE NEW PHYTOLOGIST 2019; 222:1846-1861. [PMID: 30548617 DOI: 10.1111/nph.15637] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
In trees, dead and living cells of secondary xylem (wood) function collectively, rendering cell-to-cell communication challenging. Water and solutes are transported over long distances from the roots to the above-ground organs via vessels, the main component of wood, and then radially over short distances to the neighboring cells. This enables proper functioning of trees and integrates whole-plant activity. In this study, tracer loading, immunolocalization experiments and inhibitor assays were used to decipher the mechanisms enabling transport in wood of Acer pseudoplatanus (maple), Fraxinus excelsior (ash) and Populus tremula × tremuloides (poplar) trees. We show that tracer uptake from dead water-conducting vessels, elements of the apoplasm, to living vessel-associated cells (VACs) of the xylem parenchyma of the symplasm system proceeds via the endocytic pathway, including clathrin-mediated and clathrin-independent processes. These findings enhance our understanding of the transport pathways in complex wood tissue, providing experimental evidence of the involvement of VACs and endocytosis in radial uptake from vessels.
Collapse
Affiliation(s)
- Aleksandra Słupianek
- Department of Plant Developmental Biology, Institute of Experimental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, Wrocław, 50-328, Poland
| | - Anna Kasprowicz-Maluśki
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, Poznań, 61-614, Poland
| | - Elżbieta Myśkow
- Department of Plant Developmental Biology, Institute of Experimental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, Wrocław, 50-328, Poland
| | - Magdalena Turzańska
- Department of Plant Developmental Biology, Institute of Experimental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, Wrocław, 50-328, Poland
| | - Katarzyna Sokołowska
- Department of Plant Developmental Biology, Institute of Experimental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, Wrocław, 50-328, Poland
| |
Collapse
|
30
|
Zhao Y, Wu G, Shi H, Tang D. RECEPTOR-LIKE KINASE 902 Associates with and Phosphorylates BRASSINOSTEROID-SIGNALING KINASE1 to Regulate Plant Immunity. MOLECULAR PLANT 2019; 12:59-70. [PMID: 30408577 DOI: 10.1016/j.molp.2018.10.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 10/16/2018] [Accepted: 10/30/2018] [Indexed: 05/03/2023]
Abstract
Plants employ receptor-like kinases (RLKs) and receptor-like proteins for rapid recognition of invading pathogens, and RLKs then transmit signals to receptor-like cytoplasmic kinases (RLCKs) to activate immune responses. RLKs are under fine regulation mediated by subcellular trafficking, which contributes to proper activation of plant immunity. In this study, we show that Arabidopsis thaliana RECEPTOR-LIKE KINASE 902 (RLK902) plays important roles in resistance to the bacterial pathogen Pseudomonas syringae, but not to the fungal powdery mildew pathogen Golovinomyces cichoracearum. RLK902 localizes at the plasma membrane and associates with ENHANCED DISEASE RESISTANCE 4 (EDR4), a protein involved in clathrin-mediated trafficking pathways. EDR4 and CLATHRIN HEAVY CHAIN 2 (CHC2) regulate the subcellular trafficking and accumulation of RLK902 protein. Furthermore, we found that RLK902 directly associates with the RLCK BRASSINOSTEROID-SIGNALING KINASE1 (BSK1), a key component of plant immunity, but not with other members of the FLAGELLIN SENSING 2 immune complex. RLK902 phosphorylates BSK1, and its Ser-230 is a key phosphorylation site critical for RLK902-mediated defense signaling. Taken together, our data indicate that EDR4 regulates plant immunity by modulating the subcellular trafficking and protein accumulation of RLK902, and that RLK902 transmits immune signals by phosphorylating BSK1.
Collapse
Affiliation(s)
- Yaofei Zhao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; University of Chinese Academy of Sciences, Beijing 100039, China; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guangheng Wu
- Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, Fujian 354300, China
| | - Hua Shi
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Fujian Key Laboratory of Crop by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
31
|
Watanabe Y, Schneider R, Barkwill S, Gonzales-Vigil E, Hill JL, Samuels AL, Persson S, Mansfield SD. Cellulose synthase complexes display distinct dynamic behaviors during xylem transdifferentiation. Proc Natl Acad Sci U S A 2018; 115:E6366-E6374. [PMID: 29871949 PMCID: PMC6142216 DOI: 10.1073/pnas.1802113115] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In plants, plasma membrane-embedded CELLULOSE SYNTHASE (CESA) enzyme complexes deposit cellulose polymers into the developing cell wall. Cellulose synthesis requires two different sets of CESA complexes that are active during cell expansion and secondary cell wall thickening, respectively. Hence, developing xylem cells, which first undergo cell expansion and subsequently deposit thick secondary walls, need to completely reorganize their CESA complexes from primary wall- to secondary wall-specific CESAs. Using live-cell imaging, we analyzed the principles underlying this remodeling. At the onset of secondary wall synthesis, the primary wall CESAs ceased to be delivered to the plasma membrane and were gradually removed from both the plasma membrane and the Golgi. For a brief transition period, both primary wall- and secondary wall-specific CESAs coexisted in banded domains of the plasma membrane where secondary wall synthesis is concentrated. During this transition, primary and secondary wall CESAs displayed discrete dynamic behaviors and sensitivities to the inhibitor isoxaben. As secondary wall-specific CESAs were delivered and inserted into the plasma membrane, the primary wall CESAs became concentrated in prevacuolar compartments and lytic vacuoles. This adjustment in localization between the two CESAs was accompanied by concurrent decreased primary wall CESA and increased secondary wall CESA protein abundance. Our data reveal distinct and dynamic subcellular trafficking patterns that underpin the remodeling of the cellulose biosynthetic machinery, resulting in the removal and degradation of the primary wall CESA complex with concurrent production and recycling of the secondary wall CESAs.
Collapse
Affiliation(s)
- Yoichiro Watanabe
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Rene Schneider
- School of Biosciences, University of Melbourne, Parkville VIC 3010, Australia
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Sarah Barkwill
- Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Eliana Gonzales-Vigil
- Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Joseph L Hill
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | - A Lacey Samuels
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville VIC 3010, Australia;
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| |
Collapse
|
32
|
Zhang T, Yang J, Sun Y, Kang Y, Yang J, Qi Z. Calcium deprivation enhances non-selective fluid-phase endocytosis and modifies membrane lipid profiles in Arabidopsis roots. JOURNAL OF PLANT PHYSIOLOGY 2018; 226:22-30. [PMID: 29689431 DOI: 10.1016/j.jplph.2018.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/06/2018] [Accepted: 04/07/2018] [Indexed: 06/08/2023]
Abstract
Ecological studies have revealed significant decreases in calcium (Ca) levels in various soils, and widely occurring physiological Ca deficits worldwide. These changes may cause decreases in plant diversity and increases in plant vulnerability to environmental stress, but the underlying cellular mechanism is not well understood. In this study, we found that in Arabidopsis thaliana roots, deprivation of Ca2+, but not other minerals, dramatically enhanced plasma membrane invagination, endosome formation, and trafficking to the vacuole through the trans-Golgi network and pre-vacuole compartment, a typical pathway of endocytosis. Antagonist and cellular tracing analyses using non-bioactive, membrane-impermeable fluorescent probes indicated that this type of endocytosis is not regulated by receptors, instead representing a non-selective, non-specific fluid phase-based process. We performed lipid-profiling analysis of roots in response to Ca2+ deprivation, finding increased phosphatidylcholine (PC), Lyso-PC, phosphatidylethanolamine (PE), Lyso-PE, phosphatidylinositol (PI) and triacylglycerols (TAG) biosynthesis but deceased phosphatidic acid (PA) and diacylglycerols (DAG) biosynthesis. The increased TAG contents and molar ratio of PC/PE in these roots might reflect a cellular response to maintain membrane stability and the balance between the membrane and storage lipids. This study demonstrates the essential role of Ca in maintaining plasma membrane stability and the selectivity of plant root cells, and it highlights the potential deleterious effect of decreased Ca levels in surface soil on plant growth.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, PR China
| | - Ju Yang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, PR China
| | - Yongwei Sun
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, PR China
| | - Yan Kang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, PR China
| | - Jia Yang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, PR China.
| | - Zhi Qi
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, PR China.
| |
Collapse
|
33
|
Abstract
Membrane trafficking is essential for multiple aspects of plant growth and development. Some small molecules have been widely used to study the mechanisms of membrane trafficking in plants. For example, short-term treatment with small molecules combined with live cell imaging has been shown to be very useful in understanding the dynamic processes of membrane trafficking. Small molecule Endosidin2 (ES2) has been found to target Exo70 protein and inhibit exocytosis and promote vacuolar trafficking in plants. Here we describe the method of using short-term ES2 treatment combined with live cell imaging to study plant exocytosis and vacuolar trafficking in Arabidopsis seedlings expressing a cargo protein PIN2:GFP.
Collapse
Affiliation(s)
- Lei Huang
- Department of Botany and Pathology, Purdue University, 915 W. State St., West Lafayette, IN, 47907, USA
| | - Chunhua Zhang
- Department of Botany and Pathology, Purdue University, 915 W. State St., West Lafayette, IN, 47907, USA.
| |
Collapse
|
34
|
Reynolds GD, Wang C, Pan J, Bednarek SY. Inroads into Internalization: Five Years of Endocytic Exploration. PLANT PHYSIOLOGY 2018; 176:208-218. [PMID: 29074601 PMCID: PMC5761813 DOI: 10.1104/pp.17.01117] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/23/2017] [Indexed: 05/21/2023]
Abstract
Advances over recent years underlines a growing interest in investigating endocytosis in plants.
Collapse
Affiliation(s)
- Gregory D Reynolds
- Department of Biochemistry University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Chao Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, College of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianwei Pan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, College of Life Sciences, Lanzhou University, Lanzhou 730000, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang 321004, China
| | - Sebastian Y Bednarek
- Department of Biochemistry University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
35
|
Gao YQ, Chen JG, Chen ZR, An D, Lv QY, Han ML, Wang YL, Salt DE, Chao DY. A new vesicle trafficking regulator CTL1 plays a crucial role in ion homeostasis. PLoS Biol 2017; 15:e2002978. [PMID: 29284002 PMCID: PMC5746208 DOI: 10.1371/journal.pbio.2002978] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/21/2017] [Indexed: 11/18/2022] Open
Abstract
Ion homeostasis is essential for plant growth and environmental adaptation, and maintaining ion homeostasis requires the precise regulation of various ion transporters, as well as correct root patterning. However, the mechanisms underlying these processes remain largely elusive. Here, we reported that a choline transporter gene, CTL1, controls ionome homeostasis by regulating the secretory trafficking of proteins required for plasmodesmata (PD) development, as well as the transport of some ion transporters. Map-based cloning studies revealed that CTL1 mutations alter the ion profile of Arabidopsis thaliana. We found that the phenotypes associated with these mutations are caused by a combination of PD defects and ion transporter misregulation. We also established that CTL1 is involved in regulating vesicle trafficking and is thus required for the trafficking of proteins essential for ion transport and PD development. Characterizing choline transporter-like 1 (CTL1) as a new regulator of protein sorting may enable researchers to understand not only ion homeostasis in plants but also vesicle trafficking in general.
Collapse
Affiliation(s)
- Yi-Qun Gao
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiu-Geng Chen
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zi-Ru Chen
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dong An
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiao-Yan Lv
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mei-Ling Han
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ya-Ling Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - David E. Salt
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
36
|
Palocci C, Valletta A, Chronopoulou L, Donati L, Bramosanti M, Brasili E, Baldan B, Pasqua G. Endocytic pathways involved in PLGA nanoparticle uptake by grapevine cells and role of cell wall and membrane in size selection. PLANT CELL REPORTS 2017; 36:1917-1928. [PMID: 28913707 DOI: 10.1007/s00299-017-2206-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/05/2017] [Indexed: 05/28/2023]
Abstract
PLGA NPs' cell uptake involves different endocytic pathways. Clathrin-independent endocytosis is the main internalization route. The cell wall plays a more prominent role than the plasma membrane in NPs' size selection. In the last years, many studies on absorption and cell uptake of nanoparticles by plants have been conducted, but the understanding of the internalization mechanisms is still largely unknown. In this study, polydispersed and monodispersed poly(lactic-co-glycolic) acid nanoparticles (PLGA NPs) were synthesized, and a strategy combining the use of transmission electron microscopy (TEM), confocal analysis, fluorescently labeled PLGA NPs, a probe for endocytic vesicles (FM4-64), and endocytosis inhibitors (i.e., wortmannin, ikarugamycin, and salicylic acid) was employed to shed light on PLGA NP cell uptake in grapevine cultured cells and to assess the role of the cell wall and plasma membrane in size selection of PLGA NPs. The ability of PLGA NPs to cross the cell wall and membrane was confirmed by TEM and fluorescence microscopy. A strong adhesion of PLGA NPs to the outer side of the cell wall was observed, presumably due to electrostatic interactions. Confocal microscopy and treatment with endocytosis inhibitors suggested the involvement of both clathrin-dependent and clathrin-independent endocytosis in cell uptake of PLGA NPs and the latter appeared to be the main internalization pathway. Experiments on grapevine protoplasts revealed that the cell wall plays a more prominent role than the plasma membrane in size selection of PLGA NPs. While the cell wall prevents the uptake of PLGA NPs with diameters over 50 nm, the plasma membrane can be crossed by PLGA NPs with a diameter of 500-600 nm.
Collapse
Affiliation(s)
- Cleofe Palocci
- Department of Chemistry, University of Rome La Sapienza, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Alessio Valletta
- Department of Environmental Biology, University of Rome La Sapienza, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Laura Chronopoulou
- Department of Chemistry, University of Rome La Sapienza, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Livia Donati
- Department of Environmental Biology, University of Rome La Sapienza, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Marco Bramosanti
- Department of Chemistry, University of Rome La Sapienza, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Elisa Brasili
- Department of Chemistry, University of Rome La Sapienza, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Barbara Baldan
- Department of Biology, University of Padua, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Gabriella Pasqua
- Department of Environmental Biology, University of Rome La Sapienza, Piazzale A. Moro 5, 00185, Rome, Italy
| |
Collapse
|
37
|
Rips S, Frank M, Elting A, Offenborn JN, von Schaewen A. Golgi α1,4-fucosyltransferase of Arabidopsis thaliana partially localizes at the nuclear envelope. Traffic 2017; 18:646-657. [PMID: 28753226 DOI: 10.1111/tra.12506] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 02/04/2023]
Abstract
We analyzed plant-derived α1,4-fucosyltransferase (FucTc) homologs by reporter fusions and focused on representatives of the Brassicaceae and Solanaceae. Arabidopsis thaliana AtFucTc-green fluorescent protein (GFP) or tomato LeFucTc-GFP restored Lewis-a formation in a fuctc mutant, confirming functionality in the trans-Golgi. AtFucTc-GFP partly accumulated at the nuclear envelope (NE) not observed for other homologs or truncated AtFucTc lacking the N-terminus or catalytic domain. Analysis of At/LeFucTc-GFP swap constructs with exchanged cytosolic, transmembrane and stalk (CTS), or only the CT regions, revealed that sorting information resides in the membrane anchor. Other domains of AtFuctc also contribute, since amino-acid changes in the CT region strongly reduced but did not abolish NE localization. By contrast, two N-terminal GFP copies did, indicating localization at the inner nuclear membrane (INM). Tunicamycin treatment of AtFucTc-GFP abolished NE localization and enhanced overlap with an endosomal marker, suggesting involvement of N-glycosylation. Yet neither expression in protoplasts of Arabidopsis N-glycosylation mutants nor elimination of the N-glycosylation site in AtFucTc prevented perinuclear accumulation. Disruption of endoplasmic reticulum (ER)-to-Golgi transport by co-expression of Sar1(H74L) trapped tunicamycin-released AtFucTc-GFP in the ER, however, without NE localization. Since recovery after tunicamycin-washout required de novo-protein synthesis, our analyses suggest that AtFucTc localizes to the NE/INM due to interaction with an unknown (glyco)protein.
Collapse
Affiliation(s)
- Stephan Rips
- Institute of Plant Biology & Biotechnology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Manuel Frank
- Institute of Plant Biology & Biotechnology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Annegret Elting
- Institute of Plant Biology & Biotechnology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Jan Niklas Offenborn
- Institute of Plant Biology & Biotechnology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Antje von Schaewen
- Institute of Plant Biology & Biotechnology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
38
|
Erwig J, Ghareeb H, Kopischke M, Hacke R, Matei A, Petutschnig E, Lipka V. Chitin-induced and CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) phosphorylation-dependent endocytosis of Arabidopsis thaliana LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE5 (LYK5). THE NEW PHYTOLOGIST 2017; 215:382-396. [PMID: 28513921 DOI: 10.1111/nph.14592] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/23/2017] [Indexed: 05/21/2023]
Abstract
To detect potential pathogens, plants perceive the fungal polysaccharide chitin through receptor complexes containing lysin motif receptor-like kinases (LysM-RLKs). To investigate the ligand-induced spatial dynamics of chitin receptor components, we studied the subcellular behaviour of two Arabidopsis thaliana LysM-RLKs involved in chitin signalling, CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) and LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE5. We performed standard and quantitative confocal laser scanning microscopy on stably transformed A. thaliana plants expressing fluorescently tagged CERK1 and LYK5 from their native promoters. Microscopy approaches were complemented by biochemical analyses in plants and in vitro. Both CERK1 and LYK5 localized to the plasma membrane and showed constitutive endomembrane trafficking. After chitin treatment, however, CERK1 remained at the plasma membrane while LYK5 relocalized into mobile intracellular vesicles. Detailed analyses revealed that chitin perception transiently induced the internalization of LYK5 into late endocytic compartments. Plants that lacked CERK1 or expressed an enzymatically inactive CERK1 variant did not exhibit chitin-induced endocytosis of LYK5. CERK1 could phosphorylate LYK5 in vitro and chitin treatment induced CERK1-dependent phosphorylation of LYK5 in planta. Our results suggest that chitin-induced phosphorylation by CERK1 triggers LYK5 internalization. Thus, our work identifies phosphorylation as a key regulatory step in endocytosis of plant RLKs and also provides evidence for receptor complex dissociation after ligand perception.
Collapse
Affiliation(s)
- Jan Erwig
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| | - Hassan Ghareeb
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
- Department of Plant Biotechnology, National Research Centre, El Buhouth St, Dokki, Cairo, Egypt
| | - Michaela Kopischke
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| | - Ronja Hacke
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| | - Alexandra Matei
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| | - Elena Petutschnig
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| |
Collapse
|
39
|
Keicher J, Jaspert N, Weckermann K, Möller C, Throm C, Kintzi A, Oecking C. Arabidopsis 14-3-3 epsilon members contribute to polarity of PIN auxin carrier and auxin transport-related development. eLife 2017. [PMID: 28422008 DOI: 10.7554/elife.24336.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
Eukaryotic 14-3-3 proteins have been implicated in the regulation of diverse biological processes by phosphorylation-dependent protein-protein interactions. The Arabidopsis genome encodes two groups of 14-3-3s, one of which - epsilon - is thought to fulfill conserved cellular functions. Here, we assessed the in vivo role of the ancestral 14-3-3 epsilon group members. Their simultaneous and conditional repression by RNA interference and artificial microRNA in seedlings led to altered distribution patterns of the phytohormone auxin and associated auxin transport-related phenotypes, such as agravitropic growth. Moreover, 14-3-3 epsilon members were required for pronounced polar distribution of PIN-FORMED auxin efflux carriers within the plasma membrane. Defects in defined post-Golgi trafficking processes proved causal for this phenotype and might be due to lack of direct 14-3-3 interactions with factors crucial for membrane trafficking. Taken together, our data demonstrate a fundamental role for the ancient 14-3-3 epsilon group members in regulating PIN polarity and plant development.
Collapse
Affiliation(s)
- Jutta Keicher
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Nina Jaspert
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Katrin Weckermann
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Claudia Möller
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Christian Throm
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Aaron Kintzi
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Claudia Oecking
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
40
|
Keicher J, Jaspert N, Weckermann K, Möller C, Throm C, Kintzi A, Oecking C. Arabidopsis 14-3-3 epsilon members contribute to polarity of PIN auxin carrier and auxin transport-related development. eLife 2017; 6. [PMID: 28422008 PMCID: PMC5397284 DOI: 10.7554/elife.24336] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/06/2017] [Indexed: 12/30/2022] Open
Abstract
Eukaryotic 14-3-3 proteins have been implicated in the regulation of diverse biological processes by phosphorylation-dependent protein-protein interactions. The Arabidopsis genome encodes two groups of 14-3-3s, one of which - epsilon - is thought to fulfill conserved cellular functions. Here, we assessed the in vivo role of the ancestral 14-3-3 epsilon group members. Their simultaneous and conditional repression by RNA interference and artificial microRNA in seedlings led to altered distribution patterns of the phytohormone auxin and associated auxin transport-related phenotypes, such as agravitropic growth. Moreover, 14-3-3 epsilon members were required for pronounced polar distribution of PIN-FORMED auxin efflux carriers within the plasma membrane. Defects in defined post-Golgi trafficking processes proved causal for this phenotype and might be due to lack of direct 14-3-3 interactions with factors crucial for membrane trafficking. Taken together, our data demonstrate a fundamental role for the ancient 14-3-3 epsilon group members in regulating PIN polarity and plant development.
Collapse
Affiliation(s)
- Jutta Keicher
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Nina Jaspert
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Katrin Weckermann
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Claudia Möller
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Christian Throm
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Aaron Kintzi
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Claudia Oecking
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
41
|
Keicher J, Jaspert N, Weckermann K, Möller C, Throm C, Kintzi A, Oecking C. Arabidopsis 14-3-3 epsilon members contribute to polarity of PIN auxin carrier and auxin transport-related development. eLife 2017; 6. [PMID: 28422008 DOI: 10.7554/elife.24336.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/06/2017] [Indexed: 05/19/2023] Open
Abstract
Eukaryotic 14-3-3 proteins have been implicated in the regulation of diverse biological processes by phosphorylation-dependent protein-protein interactions. The Arabidopsis genome encodes two groups of 14-3-3s, one of which - epsilon - is thought to fulfill conserved cellular functions. Here, we assessed the in vivo role of the ancestral 14-3-3 epsilon group members. Their simultaneous and conditional repression by RNA interference and artificial microRNA in seedlings led to altered distribution patterns of the phytohormone auxin and associated auxin transport-related phenotypes, such as agravitropic growth. Moreover, 14-3-3 epsilon members were required for pronounced polar distribution of PIN-FORMED auxin efflux carriers within the plasma membrane. Defects in defined post-Golgi trafficking processes proved causal for this phenotype and might be due to lack of direct 14-3-3 interactions with factors crucial for membrane trafficking. Taken together, our data demonstrate a fundamental role for the ancient 14-3-3 epsilon group members in regulating PIN polarity and plant development.
Collapse
Affiliation(s)
- Jutta Keicher
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Nina Jaspert
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Katrin Weckermann
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Claudia Möller
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Christian Throm
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Aaron Kintzi
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Claudia Oecking
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
42
|
Schreiber V, Dersch J, Puzik K, Bäcker O, Liu X, Stork S, Schulz J, Heimerl T, Klingl A, Zauner S, Maier UG. The Central Vacuole of the Diatom Phaeodactylum tricornutum: Identification of New Vacuolar Membrane Proteins and of a Functional Di-leucine-based Targeting Motif. Protist 2017; 168:271-282. [PMID: 28495413 DOI: 10.1016/j.protis.2017.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/24/2017] [Accepted: 03/04/2017] [Indexed: 01/22/2023]
Abstract
Diatoms are unicellular organisms evolved by secondary endosymbiosis. Although studied in many aspects, the functions of vacuolar-like structures of these organisms are rarely investigated. One of these structures is a dominant central vacuole-like compartment with a marbled phenotype, which is supposed to represent a chrysolaminarin-storing and carbohydrate mobilization compartment. However, other functions as well as targeting of proteins to this compartment are not shown experimentally. In order to study trafficking of membrane proteins to the vacuolar membrane, we scanned the genome for intrinsic vacuolar membrane proteins and used one representative for targeting studies. Our work led to the identification of several proteins located in the vacuolar membrane as well as the sub-compartmentalized localization of one protein. In addition, we show that a di-leucine-based motif is an important signal for correct targeting to the central vacuole of diatoms, like it is in plants.
Collapse
Affiliation(s)
| | - Josefine Dersch
- Laboratory for Cell Biology, Philipps-Universität Marburg, Germany
| | - Katharina Puzik
- Laboratory for Cell Biology, Philipps-Universität Marburg, Germany
| | - Oliver Bäcker
- Laboratory for Cell Biology, Philipps-Universität Marburg, Germany
| | - Xiaojuan Liu
- Laboratory for Cell Biology, Philipps-Universität Marburg, Germany
| | - Simone Stork
- Laboratory for Cell Biology, Philipps-Universität Marburg, Germany
| | - Julian Schulz
- Laboratory for Cell Biology, Philipps-Universität Marburg, Germany
| | - Thomas Heimerl
- LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Germany
| | - Andreas Klingl
- LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Germany
| | - Stefan Zauner
- Laboratory for Cell Biology, Philipps-Universität Marburg, Germany
| | - Uwe G Maier
- Laboratory for Cell Biology, Philipps-Universität Marburg, Germany; LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Germany.
| |
Collapse
|
43
|
ATG9 regulates autophagosome progression from the endoplasmic reticulum in Arabidopsis. Proc Natl Acad Sci U S A 2017; 114:E426-E435. [PMID: 28053229 DOI: 10.1073/pnas.1616299114] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Autophagy is a conserved pathway for bulk degradation of cytoplasmic material by a double-membrane structure named the autophagosome. The initiation of autophagosome formation requires the recruitment of autophagy-related protein 9 (ATG9) vesicles to the preautophagosomal structure. However, the functional relationship between ATG9 vesicles and the phagophore is controversial in different systems, and the molecular function of ATG9 remains unknown in plants. Here, we demonstrate that ATG9 is essential for endoplasmic reticulum (ER)-derived autophagosome formation in plants. Through a combination of genetic, in vivo imaging and electron tomography approaches, we show that Arabidopsis ATG9 deficiency leads to a drastic accumulation of autophagosome-related tubular structures in direct membrane continuity with the ER upon autophagic induction. Dynamic analyses demonstrate a transient membrane association between ATG9 vesicles and the autophagosomal membrane during autophagy. Furthermore, trafficking of ATG18a is compromised in atg9 mutants during autophagy by forming extended tubules in a phosphatidylinositol 3-phosphate-dependent manner. Taken together, this study provides evidence for a pivotal role of ATG9 in regulating autophagosome progression from the ER membrane in Arabidopsis.
Collapse
|
44
|
Yoo CM, Naramoto S, Sparks JA, Khan BR, Nakashima J, Fukuda H, Blancaflor EB. Deletion analysis of AGD1 reveals domains crucial for its plasma membrane recruitment and function in root hair polarity. J Cell Sci 2017. [DOI: 10.1242/jcs.203828] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AGD1, a plant ACAP-type ADP-ribosylation factor-GTPase activating protein (ARF-GAP), functions in specifying root hair polarity in Arabidopsis thaliana. To better understand how AGD1 modulates root hair growth, we generated full length and domain-deleted AGD1-green fluorescent protein (GFP) constructs, and followed their localization during root hair development. AGD1-GFP localized to the cytoplasm and was recruited to specific regions of the root hair plasma membrane (PM). Distinct PM AGD1-GFP signal was first detected along the site of root hair bulge formation. The construct continued to mark the PM at the root hair apical dome but only during periods of reduced growth. During rapid tip-growth, AGD1-GFP labeled the PM of the lateral flanks and dissipated from the apical-most PM. Deletion analysis and a single domain GFP fusion revealed that the pleckstrin homology (PH) domain is the minimal unit required for recruitment of AGD1 to the PM. Our results indicate that differential recruitment of AGD1 to specific PM domains is an essential component of the membrane trafficking machinery that facilitates root hair developmental phase transitions and responses to changes in the root microenvironment.
Collapse
Affiliation(s)
- Cheol-Min Yoo
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
- Present address: Gulf Coast Research and Education Center, University of Florida, 14625 CR 672, Wimauma, FL 33598, USA
| | - Satoshi Naramoto
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1, Katahira, Aobaku, Japan
| | - J. Alan Sparks
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Bibi Rafeiza Khan
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Jin Nakashima
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
45
|
Wang HJ, Hsu YW, Guo CL, Jane WN, Wang H, Jiang L, Jauh GY. VPS36-Dependent Multivesicular Bodies Are Critical for Plasmamembrane Protein Turnover and Vacuolar Biogenesis. PLANT PHYSIOLOGY 2017; 173:566-581. [PMID: 27879389 PMCID: PMC5210736 DOI: 10.1104/pp.16.01356] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/19/2016] [Indexed: 05/18/2023]
Abstract
Most eukaryotic cells target ubiquitinated plasma membrane (PM) proteins for vacuolar degradation in response to environmental and developmental cues. This process involves endosomal sorting complexes required for transport (ESCRT). However, little is known about the cellular mechanisms of ESCRTs in plants. Here, we studied the function of one ESCRT-II component, VPS36, which shows ubiquitin-binding activity and may form a putative ESCRT-II with VPS22 and VPS25 in Arabidopsis (Arabidopsis thaliana). Recessive mutation of the ubiquitously expressed VPS36 causes multiple defects, including delayed embryogenesis, defective root elongation, and limited expansion of cotyledons, and these effects can be complemented by its genomic DNA. Abnormal intracellular compartments containing several membrane transporters, including members of the PIN-FORMEDs, AUXIN RESISTANT 1, and PIP1 families, were found in vps36-1 plants. Employing a genetic approach to cross vps36-1/+ with transgenic plants harboring various fluorescent protein-tagged organelle markers, as well as fluorescent probe and ultrastructural approaches, revealed PM proteins in microsomal fractions from vps36-1 seedlings and demonstrated that VPS36 is critical for forming multivesicular bodies and vacuolar biogenesis for protein degradation. Our study shows that functional VPS36 is essential for a proper endosomal sorting pathway and for vacuolar biogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Huei-Jing Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan (H.-J.W., Y.-W.H., C.-L.G., W.-N.J., G.-Y.J.)
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., L.J.)
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, National Chung-Hsing University - Academia Sinica, Taipei, Taiwan (G.-Y.J.); and
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan (G.Y.J.)
| | - Ya-Wen Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan (H.-J.W., Y.-W.H., C.-L.G., W.-N.J., G.-Y.J.)
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., L.J.)
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, National Chung-Hsing University - Academia Sinica, Taipei, Taiwan (G.-Y.J.); and
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan (G.Y.J.)
| | - Cian-Ling Guo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan (H.-J.W., Y.-W.H., C.-L.G., W.-N.J., G.-Y.J.)
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., L.J.)
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, National Chung-Hsing University - Academia Sinica, Taipei, Taiwan (G.-Y.J.); and
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan (G.Y.J.)
| | - Wann-Neng Jane
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan (H.-J.W., Y.-W.H., C.-L.G., W.-N.J., G.-Y.J.)
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., L.J.)
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, National Chung-Hsing University - Academia Sinica, Taipei, Taiwan (G.-Y.J.); and
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan (G.Y.J.)
| | - Hao Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan (H.-J.W., Y.-W.H., C.-L.G., W.-N.J., G.-Y.J.)
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., L.J.)
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, National Chung-Hsing University - Academia Sinica, Taipei, Taiwan (G.-Y.J.); and
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan (G.Y.J.)
| | - Liwen Jiang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan (H.-J.W., Y.-W.H., C.-L.G., W.-N.J., G.-Y.J.)
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., L.J.)
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, National Chung-Hsing University - Academia Sinica, Taipei, Taiwan (G.-Y.J.); and
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan (G.Y.J.)
| | - Guang-Yuh Jauh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan (H.-J.W., Y.-W.H., C.-L.G., W.-N.J., G.-Y.J.);
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., L.J.);
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, National Chung-Hsing University - Academia Sinica, Taipei, Taiwan (G.-Y.J.); and
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan (G.Y.J.)
| |
Collapse
|
46
|
Abstract
In plant secretory pathways, the Golgi apparatus serves as the major sorting hub to receive de novo synthesized protein from the endoplasmic reticulum for further sorting to post-Golgi compartments or for residence in the cisternae of Golgi stacks. Meanwhile, Golgi functions as a pivotal biochemical factory to make modifications of N-glycans and to produce mature glycoproteins. Fluorescent tag-based confocal microscopy in combination with the brefeldin A drug or the genetic tools to disturb Golgi function have been shown as powerful approaches to analyze Golgi-mediated protein traffic in transiently expressed plant protoplasts or in stably expressed transgenic plants. Various endoglycosidases like Endo H and PNGase F have been widely used to monitor Golgi-mediated glycosylation of secretory proteins. Here, using fluorescently tagged Golgi-resident proteins and known glycosylated proteins as examples, we describe detailed protocols to analyze Golgi-mediated protein traffic and glycosylation in transiently expressed protoplasts derived from Arabidopsis suspension culture cells and in stably expressed transgenic plants.
Collapse
Affiliation(s)
- Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zhidan Xiao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jinbo Shen
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
47
|
Yu F, Lou L, Tian M, Li Q, Ding Y, Cao X, Wu Y, Belda-Palazon B, Rodriguez PL, Yang S, Xie Q. ESCRT-I Component VPS23A Affects ABA Signaling by Recognizing ABA Receptors for Endosomal Degradation. MOLECULAR PLANT 2016; 9:1570-1582. [PMID: 27856401 DOI: 10.1016/j.molp.2016.11.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/07/2016] [Accepted: 11/05/2016] [Indexed: 05/03/2023]
Abstract
Recent discovery of PYR/PYL/RCAR-type abscisic acid (ABA) receptors has become one of most significant advances in plant science in the past decade. In mammals, endosomal sorting acts as an important pathway to downregulate different types of receptors, but its role in plant hormone signaling is poorly understood. Here, we report that an ubiquitin E2-like protein, VPS23A, which is a key component of ESCRT-I, negatively regulates ABA signaling. VPS23A has epistatic relationship with PYR/PYL/RCAR-type ABA receptors and disruption of VPS23A enhanced the activity of key kinase OST1 in the ABA signaling pathway under ABA treatment. Moreover, VPS23A interacts with PYR1/PYLs and K63-linked diubiquitin, and PYL4 possesses K63-linked ubiquitinated modification in vivo. Further analysis revealed that VPS23A affects the subcellular localization of PYR1 and the stability of PYL4. Taken together, our results suggest that VPS23A affects PYR1/PYL4 via vacuole-mediated degradation, providing an advanced understanding of both the turnover of ABA receptors and ESCRTs in plant hormone signaling.
Collapse
Affiliation(s)
- Feifei Yu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, P. R. China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lijuan Lou
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, P. R. China
| | - Miaomiao Tian
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, P. R. China
| | - Qingliang Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, P. R. China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoqiang Cao
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, P. R. China
| | - Yaorong Wu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, P. R. China
| | - Borja Belda-Palazon
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, P. R. China.
| |
Collapse
|
48
|
Belda-Palazon B, Rodriguez L, Fernandez MA, Castillo MC, Anderson EM, Gao C, Gonzalez-Guzman M, Peirats-Llobet M, Zhao Q, De Winne N, Gevaert K, De Jaeger G, Jiang L, León J, Mullen RT, Rodriguez PL. FYVE1/FREE1 Interacts with the PYL4 ABA Receptor and Mediates Its Delivery to the Vacuolar Degradation Pathway. THE PLANT CELL 2016; 28:2291-2311. [PMID: 27495812 PMCID: PMC5059795 DOI: 10.1105/tpc.16.00178] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 07/06/2016] [Accepted: 08/04/2016] [Indexed: 05/17/2023]
Abstract
Recently, we described the ubiquitylation of PYL4 and PYR1 by the RING E3 ubiquitin ligase RSL1 at the plasma membrane of Arabidopsis thaliana This suggested that ubiquitylated abscisic acid (ABA) receptors might be targeted to the vacuolar degradation pathway because such ubiquitylation is usually an internalization signal for the endocytic route. Here, we show that FYVE1 (previously termed FREE1), a recently described component of the endosomal sorting complex required for transport (ESCRT) machinery, interacted with RSL1-receptor complexes and recruited PYL4 to endosomal compartments. Although the ESCRT pathway has been assumed to be reserved for integral membrane proteins, we show the involvement of this pathway in the degradation of ABA receptors, which can be associated with membranes but are not integral membrane proteins. Knockdown fyve1 alleles are hypersensitive to ABA, illustrating the biological relevance of the ESCRT pathway for the modulation of ABA signaling. In addition, fyve1 mutants are impaired in the targeting of ABA receptors for vacuolar degradation, leading to increased accumulation of PYL4 and an enhanced response to ABA Pharmacological and genetic approaches revealed a dynamic turnover of ABA receptors from the plasma membrane to the endosomal/vacuolar degradation pathway, which was mediated by FYVE1 and was dependent on RSL1. This process involves clathrin-mediated endocytosis and trafficking of PYL4 through the ESCRT pathway, which helps to regulate the turnover of ABA receptors and attenuate ABA signaling.
Collapse
Affiliation(s)
- Borja Belda-Palazon
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Lesia Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Maria A Fernandez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Mari-Cruz Castillo
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Erin M Anderson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Caiji Gao
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Miguel Gonzalez-Guzman
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Marta Peirats-Llobet
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Qiong Zhao
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Nancy De Winne
- Department of Plant Systems Biology and Department of Plant Biotechnology and Bioinformatics, Vlaams Instituut voor Biotechnologie, Ghent University, B-9052 Ghent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research and Department of Biochemistry, Vlaams Instituut voor Biotechnologie, Ghent University, B-9000 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology and Department of Plant Biotechnology and Bioinformatics, Vlaams Instituut voor Biotechnologie, Ghent University, B-9052 Ghent, Belgium
| | - Liwen Jiang
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - José León
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| |
Collapse
|
49
|
Yoshinari A, Fujimoto M, Ueda T, Inada N, Naito S, Takano J. DRP1-Dependent Endocytosis is Essential for Polar Localization and Boron-Induced Degradation of the Borate Transporter BOR1 in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2016; 57:1985-2000. [PMID: 27449211 DOI: 10.1093/pcp/pcw121] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/30/2016] [Indexed: 05/20/2023]
Abstract
Boron (B) is essential for plants but toxic in excess. The borate efflux transporter BOR1 is expressed in various root cells and localized to the inner/stele-side domain of the plasma membrane (PM) under low-B conditions. BOR1 is rapidly degraded through endocytosis upon sufficient B supply. The polar localization and degradation of BOR1 are considered important for efficient B translocation and avoidance of B toxicity, respectively. In this study, we first analyzed the subcellular localization of BOR1 in roots, cotyledons and hypocotyls, and revealed a polar localization in various cell types. We also found that the inner polarity of BOR1 is established after completion of cytokinesis in the root meristem. Moreover, variable-angle epifluorescence microscopy visualized BOR1-green fluorescent protein (GFP) as particles in the PM with significant lateral movements but in restricted areas. Importantly, a portion of BOR1-GFP particles co-localized with DYNAMIN-RELATED PROTEIN 1A (DRP1A), which is involved in scission of the clathrin-coated vesicles, and they disappeared together from the PM. To examine the contribution of DRP1A-mediated endocytosis to BOR1 localization and degradation, we developed an inducible expression system of the DRP1A K47A variant. The DRP1A variant prolonged the residence time of clathrin on the PM and inhibited endocytosis of membrane lipids. The dominant-negative DRP1A blocked endocytosis of BOR1 and disturbed its polar localization and B-induced degradation. Our results provided insight into the endocytic mechanisms that modulate the subcellular localization and abundance of a mineral transporter for nutrient homeostasis in plant cells.
Collapse
Affiliation(s)
- Akira Yoshinari
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho 1-1, Naka-ku, Sakai, 599-8531 Japan Graduate School of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo, 060-8589 Japan
| | - Masaru Fujimoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Takashi Ueda
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Japan Japan Science and Technology Agency (JST), PRESTO, Honcho 4-1-8, Kawaguchi, 332-0012 Japan
| | - Noriko Inada
- Graduate School of Biological Sciences, Nara Institute of Sciences and Technology, Takayama 8916-5, Ikoma, Nara, 630-0192 Japan
| | - Satoshi Naito
- Research Faculty of Agriculture, Hokkaido University, Kita-10, Nishi-7, Kita-ku, Sapporo, 060-0810 Japan
| | - Junpei Takano
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho 1-1, Naka-ku, Sakai, 599-8531 Japan
| |
Collapse
|
50
|
Lütz-Meindl U. Micrasterias as a Model System in Plant Cell Biology. FRONTIERS IN PLANT SCIENCE 2016; 7:999. [PMID: 27462330 PMCID: PMC4940373 DOI: 10.3389/fpls.2016.00999] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/24/2016] [Indexed: 05/18/2023]
Abstract
The unicellular freshwater alga Micrasterias denticulata is an exceptional organism due to its complex star-shaped, highly symmetric morphology and has thus attracted the interest of researchers for many decades. As a member of the Streptophyta, Micrasterias is not only genetically closely related to higher land plants but shares common features with them in many physiological and cell biological aspects. These facts, together with its considerable cell size of about 200 μm, its modest cultivation conditions and the uncomplicated accessibility particularly to any microscopic techniques, make Micrasterias a very well suited cell biological plant model system. The review focuses particularly on cell wall formation and composition, dictyosomal structure and function, cytoskeleton control of growth and morphogenesis as well as on ionic regulation and signal transduction. It has been also shown in the recent years that Micrasterias is a highly sensitive indicator for environmental stress impact such as heavy metals, high salinity, oxidative stress or starvation. Stress induced organelle degradation, autophagy, adaption and detoxification mechanisms have moved in the center of interest and have been investigated with modern microscopic techniques such as 3-D- and analytical electron microscopy as well as with biochemical, physiological and molecular approaches. This review is intended to summarize and discuss the most important results obtained in Micrasterias in the last 20 years and to compare the results to similar processes in higher plant cells.
Collapse
Affiliation(s)
- Ursula Lütz-Meindl
- Plant Physiology Division, Cell Biology Department, University of SalzburgSalzburg, Austria
| |
Collapse
|