1
|
Chouaibi Y, Taieb Bouteraa M, Ben Romdhane W, Baazaoui N, Y Alfaifi M, Kačániová M, Čmiková N, Ben Hsouna A, Garzoli S, Wiszniewska A, Saad RB. Durum wheat nuclear factor Y (NF-Y) a subfamily: structure, phylogeny, and expression analysis in response to hormones and abiotic stresses. Funct Integr Genomics 2025; 25:102. [PMID: 40360817 PMCID: PMC12075364 DOI: 10.1007/s10142-025-01607-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 04/18/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
Nuclear factor-Y (NF-Y) transcription factors are heterotrimeric complexes that are widely distributed in eukaryotes and play essential roles in many biological processes. Although NF-YA proteins have been characterized in numerous plants, their contribution to the response of durum wheat (Triticum turgidum ssp. durum) to environmental factors has not been reported. Thus, this study was aimed at identification and characterization of Triticum turgidum TtNF-YA family members through genome-wide analysis. Twelve NF-YA genes were discovered in Triticum turgidum. Discovered genes were distributed across eight chromosomes, while their encoded proteins were localized in cell nucleus. Structure and motif pattern analyses revealed that the TtNF-YA genes were relatively conserved. The expression of TtNF-YAs genes was significantly induced by several stressors and their expression profiles differed in various tissues and at various development stages. Notably, TtNF-YA2 A-1 and TtNF-YA2B-1 exhibited the greatest increase in response to Polyethylene glycol, while TtNF-YA4 A and TtNF-YA4B-1 showed the highest increase under salt stress. Additionally, TtNF-YA5B-1 and TtNF-YA6 A-1 displayed pronounced upregulation when exposed to exogenous Abscisic acid, suggesting that TtNF-YA are involved in a series of cellular and developmental events. This finding was corroborated by the recognition of several cis-regulatory elements in the TtNF-YAs promoter region, associated with the applied treatments. Overexpression of TtNF-YA2 A-1, TtNF-YA2B-1, TtNF-YA4 A, TtNF-YA4 A-1, TtNF-YA4B-1, and TtNF-YA5 A-2 genes in Saccharomyces cerevisiae showed that these genes increase cell tolerance to multiple stresses. Our results will facilitate subsequent functional analysis of TtNF-YAs genes, which emerge as promising targets for genetic engineering for increasing wheat tolerance to multiple stresses.
Collapse
Affiliation(s)
- Yosra Chouaibi
- Centre of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, B.P '1177', 3018, Sfax, Tunisia
| | - Mohamed Taieb Bouteraa
- Centre of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, B.P '1177', 3018, Sfax, Tunisia
- Faculty of Sciences of Bizerte UR13ES47, University of Carthage, BP W, 7021, Jarzouna, Bizerte, Tunisia
| | - Walid Ben Romdhane
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia
| | - Narjes Baazaoui
- Biology Department, College of Sciences and Arts Muhayil Assir, King Khalid University, 61421, Abha, Saudi Arabia
| | - Mohammad Y Alfaifi
- Biology Department, Faculty of Science, King Khalid University, 61421, Abha, Saudi Arabia
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01043, Warsaw, Poland
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Anis Ben Hsouna
- Centre of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, B.P '1177', 3018, Sfax, Tunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5100, Mahdia, Tunisia
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P.Le Aldo Moro 5, 00185, Rome, Italy.
| | - Alina Wiszniewska
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, Al. Mickiewicza 21, 31-120, Cracow, Poland
| | - Rania Ben Saad
- Centre of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, B.P '1177', 3018, Sfax, Tunisia
| |
Collapse
|
2
|
Ayra L, Jiménez-Nopala G, Guerrero G, Fuentes SI, Leija A, Ramírez M, Hernández G. Expression profiling and transcriptional regulation of the SRS transcription factor gene family of common bean (Phaseolus vulgaris) in symbiosis with Rhizobium etli. PLoS One 2025; 20:e0321784. [PMID: 40315204 PMCID: PMC12047762 DOI: 10.1371/journal.pone.0321784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/11/2025] [Indexed: 05/04/2025] Open
Abstract
The SRS/STY transcription factors from the model legumes: Lotus japonicus and Medicago truncatula, are part of regulatory networks that play relevant roles for nodule development during the N-fixing symbiosis with rhizobia. In this work we analyzed the participation of the PvSRS transcription factors from common bean (Phaseolus vulgaris), a most important legume crop, in the symbiosis with Rhizobium etli. Our phylogenetic analysis of SRS TFs across five plant species, including four legumes and Arabidopsis thaliana, identified clades that group SRS proteins that are highly expressed in legume nodules and in Arabidopsis roots. A qRT-PCR expression analysis of the 10 PvSRS in root/nodule of inoculated plants, revealed that all the PvSRS genes are expressed at different stages of the symbiosis, albeit at different levels. Based on what is known for L. japonicus, we demonstrated that the PvSRS10 gene -with highest expression during symbiosis- is transcriptionally activated by NF-Y transcription factor, thus indicating its participation in the NIN-NF-Y regulatory cascade. Based on our previous work about the relevant role of members from the MADS-domain/AGL transcription factors as regulators of the N-fixing symbiosis, in this work we demonstrated the transcriptional regulation of PvSRS10 by the MADS-TF PvFUL-like. Analysis of protein-protein interaction networks predicted thatPvSRS5 and PvSRS6 interact with proteins involved in transcriptional regulation and the auxin-activated signaling pathway. The regulatory mechanisms of PvSRS TF in common bean symbiosis may be related to auxin biosynthesis regulation, that is essential for determinate nodules development. Our study highlights the role of PvSRS TF in the N-/fixing symbiosis, a relevant process for sustainable agriculture.
Collapse
Affiliation(s)
- Litzy Ayra
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Gladys Jiménez-Nopala
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Gabriela Guerrero
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Sara Isabel Fuentes
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Alfonso Leija
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Mario Ramírez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Georgina Hernández
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
3
|
Wu G, Wang Z, Li Y, Du P, Liu X, Hou J, Zhou W, Zhou Y. Identification of nuclear factor YA6 genes in sorghum and characterization of their involvement in drought tolerance. FRONTIERS IN PLANT SCIENCE 2025; 16:1524066. [PMID: 40177019 PMCID: PMC11961913 DOI: 10.3389/fpls.2025.1524066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/20/2025] [Indexed: 04/05/2025]
Abstract
Nuclear factor Y alpha proteins (NF-YAs) are conserved transcription factor proteins crucial to plant growth and development that exhibit specific responses to biotic and abiotic stresses. Using bioinformatics approaches to investigate the NF-YA family in sorghum (Sorghum bicolor), we identified nine SbNF-YA genes unevenly distributed on four of the 10 sorghum chromosomes. Despite variations in gene structure, all encode proteins have the characteristic CBFB_NFYA domain and other predicted motifs. The secondary structure of SbNF-YA members is predominantly composed of α-helices and random coils. A phylogenetic analysis of NF-YAs of sorghum and other plant species indicated that SbNF-YAs are closely related to NF-YAs from maize (Zea mays) and distantly related to those in Arabidopsis (Arabidopsis thaliana). A colinearity analysis determined that six of the nine SbNF-YA genes arose from segmental duplication events. Transcriptome and RT-qPCR analyses showed that the expression levels of eight of the SbNF-YA genes (SbNF-YA5 being the exception) are responsive to drought stress to varying degrees. Notably, SbNF-YA1, SbNF-YA4, SbNF-YA6, SbNF-YA8, and SbNF-YA9 expression was significantly upregulated under the stress conditions, suggesting that they participate in drought response. When heterologously expressed in Arabidopsis, SbNF-YA6 conferred greater tolerance of drought stress imposed by treatment with the osmolyte mannitol, with the transgenic Arabidopsis lines showing superior germination rates; longer roots; higher fresh weight; higher activities of the enzymes peroxidase, superoxide dismutase, and catalase; and higher soluble protein and proline contents, compared to the wild type. Additionally, the transgenic Arabidopsis lines accumulated lower levels of hydrogen peroxide, superoxide anion, and malondialdehyde. The expression levels of several drought-responsive genes were elevated in transgenic Arabidopsis seedlings relative to the wild type, indicating that the heterologous expression of SbNF-YA6 enhances the drought tolerance of Arabidopsis.
Collapse
Affiliation(s)
- GuoJiang Wu
- Key Laboratory of State Ethnic Affairs Commission of Ecological Agriculture in Horchin Sandy Land, College of Agriculture, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - ZhenGuo Wang
- Tongliao Academy of Agricultural Science, Tongliao, Inner Mongolia, China
| | - Yan Li
- Tongliao Academy of Agricultural Science, Tongliao, Inner Mongolia, China
| | - PinTing Du
- Key Laboratory of State Ethnic Affairs Commission of Ecological Agriculture in Horchin Sandy Land, College of Agriculture, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - XinYu Liu
- Key Laboratory of State Ethnic Affairs Commission of Ecological Agriculture in Horchin Sandy Land, College of Agriculture, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Jie Hou
- Key Laboratory of State Ethnic Affairs Commission of Ecological Agriculture in Horchin Sandy Land, College of Agriculture, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Wei Zhou
- Key Laboratory of State Ethnic Affairs Commission of Ecological Agriculture in Horchin Sandy Land, College of Agriculture, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - YaXing Zhou
- Key Laboratory of State Ethnic Affairs Commission of Ecological Agriculture in Horchin Sandy Land, College of Agriculture, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| |
Collapse
|
4
|
Hong J, Feng X, Cai Y, Manzoor MA, Cao Y. The role of nuclear factor-Y (NF-Y) transcription factor in plant growth and development. FUNCTIONAL PLANT BIOLOGY : FPB 2025; 52:FP25010. [PMID: 40146735 DOI: 10.1071/fp25010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025]
Abstract
The nuclear factor-Y (NF-Y) transcription factor, also known as heme-activator protein (HAP) or CCAAT-binding factor (CBF), is a critical transcription factor widely present in eukaryotes. The number of NF-Y subunits has significantly increased in higher plants compared to animals and fungi. The NF-Y complex is composed of three subunits: (1) NF-YA; (2) NF-YB; and (3) NF-YC. NF-YB and NF-YC contain histone fold domains (HFDs), which can interact with NF-YA or other transcription factors, or directly bind to the promoter CCAAT box to regulate the transcription of downstream genes. NF-Y plays a significant role in various plant processes, including growth and development. This review elucidates the structural and functional aspects of NF-Y subunits, identified NF-Y complexes, and their molecular regulatory mechanisms. Understanding these facets of NF-Y provides valuable insights into advancing crop genetic improvement and promoting sustainable agricultural practices.
Collapse
Affiliation(s)
- Jiayi Hong
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiaofeng Feng
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yongping Cai
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Muhammad Aamir Manzoor
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China
| | - Yunpeng Cao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
5
|
Barrios A, Gaggion N, Mansilla N, Blein T, Sorin C, Lucero L, Ferrante E, Crespi M, Ariel F. The transcription factor NF-YA10 determines the area explored by Arabidopsis thaliana roots and directly regulates LAZY genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70016. [PMID: 40051141 PMCID: PMC11885863 DOI: 10.1111/tpj.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/17/2025] [Indexed: 03/10/2025]
Abstract
Root developmental plasticity relies on transcriptional reprogramming, which largely depends on the activity of transcription factors (TFs). NF-YA2 and NF-YA10 (nuclear factor A2 and A10) are downregulated by the specific miRNA isoform miR169defg. Here, we analyzed the role of the Arabidopsis thaliana TF NF-YA10 in the regulation of lateral root (LR) development. Plants expressing a version of NF-YA10 resistant to miR169 cleavage showed a perturbation in the LR gravitropic response. By extracting several features of root architecture using an improved version of the ChronoRoot deep-learning-based phenotyping system, we uncovered that these plants showed a differential angle of LRs over time when compared to Col-0. Detailed phenotyping of root growth dynamics revealed that NF-YA10 misregulation modulates the area explored by Arabidopsis roots. Furthermore, we found that NF-YA10 directly regulates LAZY genes, which were previously linked to gravitropism, by targeting their promoter regions. Hence, the TF NF-YA10 is a new element in the control of LR bending and root system architecture.
Collapse
Affiliation(s)
- Andana Barrios
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRAUniversité Evry, Université Paris‐SaclayBâtiment 630Orsay91405France
- Institute of Plant Sciences Paris‐Saclay IPS2Université de ParisBâtiment 630Orsay91405France
- Instituto de Agrobiotecnología del Litoral, CONICETUniversidad Nacional del LitoralColectora Ruta Nacional 168 km 0Santa Fe3000Argentina
| | - Nicolas Gaggion
- APOLO BiotechSanta Fe de la Vera CruzSanta FeArgentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE)CONICET‐Universidad de Buenos AiresBuenos AiresC1428EHAArgentina
| | - Natanael Mansilla
- APOLO BiotechSanta Fe de la Vera CruzSanta FeArgentina
- Facultad de Bioquímica y Ciencias Biológicas Universidad Nacional del LitoralSanta FeArgentina
| | - Thomas Blein
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRAUniversité Evry, Université Paris‐SaclayBâtiment 630Orsay91405France
- Institute of Plant Sciences Paris‐Saclay IPS2Université de ParisBâtiment 630Orsay91405France
| | - Céline Sorin
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRAUniversité Evry, Université Paris‐SaclayBâtiment 630Orsay91405France
- Institute of Plant Sciences Paris‐Saclay IPS2Université de ParisBâtiment 630Orsay91405France
| | - Leandro Lucero
- Instituto de Agrobiotecnología del Litoral, CONICETUniversidad Nacional del LitoralColectora Ruta Nacional 168 km 0Santa Fe3000Argentina
| | - Enzo Ferrante
- Instituto de Ciencias de la ComputaciónCONICET‐Universidad de Buenos AiresBuenos AiresC1428EHAArgentina
| | - Martin Crespi
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRAUniversité Evry, Université Paris‐SaclayBâtiment 630Orsay91405France
- Institute of Plant Sciences Paris‐Saclay IPS2Université de ParisBâtiment 630Orsay91405France
| | - Federico Ariel
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE)CONICET‐Universidad de Buenos AiresBuenos AiresC1428EHAArgentina
| |
Collapse
|
6
|
Nobles A, Wendel JF, Yoo MJ. Comparative Analysis of Floral Transcriptomes in Gossypium hirsutum (Malvaceae). PLANTS (BASEL, SWITZERLAND) 2025; 14:502. [PMID: 40006762 PMCID: PMC11859044 DOI: 10.3390/plants14040502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Organ-specific transcriptomes provide valuable insight into the genes involved in organ identity and developmental control. This study investigated transcriptomes of floral organs and subtending bracts in wild and domesticated Gossypium hirsutum, focusing on MADS-box genes critical for floral development. The expression profiles of A, B, C, D, and E class genes were analyzed, confirming their roles in floral organ differentiation. Hierarchical clustering revealed similar expression patterns between bracts and sepals, as well as between petals and stamens, while carpels clustered with developing cotton fibers, reflecting their shared characteristics. Beyond MADS-box genes, other transcription factors were analyzed to explore the genetic basis of floral development. While wild and domesticated cotton showed similar expression patterns for key genes, domesticated cotton exhibited significantly higher expression in carpels compared to wild cotton, which aligns with the increased number of ovules in the carpels of domesticated cotton. Functional enrichment analysis highlighted organ-specific roles: genes upregulated in bracts were enriched for photosynthesis-related GO terms, while diverse functions were enriched in floral organs, supporting their respective functions. Notably, A class genes were not significantly expressed in petals, deviating from the ABCDE model, which warrants further analysis. Lastly, the ABCDE class genes exhibited differential homoeolog expression bias toward each subgenome between two accessions, suggesting that the domestication process has influenced homoeolog utilization despite functional constraints in floral organogenesis.
Collapse
Affiliation(s)
- Alexander Nobles
- Chemistry & Biomolecular Science Department, Clarkson University, Potsdam, NY 13699, USA;
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA;
| | - Mi-Jeong Yoo
- Biology Department, Clarkson University, Potsdam, NY 13699, USA
| |
Collapse
|
7
|
Xu X, He X, Zhang Q, Yang L. Genome-Wide Identification and Expression Pattern Analysis of Nuclear Factor Y B/C Genes in Pinus koraiensis, and Functional Identification of LEAFY COTYLEDON 1. PLANTS (BASEL, SWITZERLAND) 2025; 14:438. [PMID: 39943000 PMCID: PMC11819940 DOI: 10.3390/plants14030438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025]
Abstract
The nuclear factor Y (NF-Y) transcription factor is widely involved in various plant biological processes, such as embryogenesis, abscisic acid signaling, and abiotic stress responses. This study presents a comprehensive genome-wide identification and expression profile of transcription factors NF-YB and NF-YC in Pinus koraiensis. Eight NF-YB and seven NF-YC transcription factors were identified through bioinformatics analysis, including sequence alignment, phylogenetic tree construction, and conserved motif analysis. We evaluate the expression patterns of NF-YB/C genes in various tissues and somatic embryo maturation processes through the transcriptomics of ABA-treated tissues from multiple nutritional tissues, reproductive tissues, and somatic embryo maturation processes. The Leafy cotyledon1 (LEC1) gene belongs to the LEC1-type gene in the NF-YB family, numbered PkNF-YB7. In this study, we characterized the function of PkLEC1 during somatic embryonic development using genetic transformation techniques. The results indicate that PkNF-YB/C transcription factors are involved in the growth and development of nutritional tissues and reproductive organs, with specific high expression in PkNF-YB7 embryogenic callus, somatic embryos, zygotic embryos, and macropores. Most PkNF YB/C genes do not respond to ABA treatment during the maturation culture process. Compared with the absence of ABA, PkNF-YB8 was up-regulated in ABA treatment for one week (4.1 times) and two weeks (11.6 times). However, PkNF-YC5 was down-regulated in both one week (0.6 times) and two weeks (0.36 times) of culture, but the down-regulation trend was weakened in tissues treated with ABA (0.72-0.83 times). In addition, the promoter of PkNF YB/Cs was rich in elements that respond to various plant hormones, indicating their critical role in hormone pathways. The overexpression of PkLEC1 stimulated the generation of early somatic embryos from callus tissue with no potential for embryogenesis, enhancing the somatic embryogenesis ability of P. koraiensis callus tissue.
Collapse
Affiliation(s)
- Xiuyue Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.X.); (X.H.); (Q.Z.)
| | - Xin He
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.X.); (X.H.); (Q.Z.)
| | - Qun Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.X.); (X.H.); (Q.Z.)
| | - Ling Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.X.); (X.H.); (Q.Z.)
- College of Forestry, Beijing Forestry University, Beijing 100091, China
| |
Collapse
|
8
|
Huang X, Ma Z, He D, Han X, Liu X, Dong Q, Tan C, Yu B, Sun T, Nordenskiöld L, Lu L, Miao Y, Hou X. Molecular condensation of the CO/NF-YB/NF-YC/FT complex gates floral transition in Arabidopsis. EMBO J 2025; 44:225-250. [PMID: 39567828 PMCID: PMC11696179 DOI: 10.1038/s44318-024-00293-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024] Open
Abstract
The plant master photoperiodic regulator CONSTANS (CO) interacts with Nuclear Factor-Y subunits B2 (NF-YB2) and C9 (NF-YC9) and transcriptionally activates the florigen gene FLOWERING LOCUS T (FT), regulating floral transition. However, the molecular mechanism of the functional four-component complex assembly in the nucleus remains elusive. We report that co-phase separation of CO with NF-YB2/NF-YC9/FT precisely controls heterogeneous CO assembly and FT transcriptional activation. In response to light signals, CO proteins form functional percolation clusters from a diffuse distribution in a B-box-motif-dependent manner. Multivalent coassembly with NF-YC9 and NF-YB2 prevents inhibitory condensate formation and is necessary to maintain proper CO assembly and material properties. The intrinsically disordered region (IDR) of NF-YC9, containing a polyglutamine motif, fine-tunes the functional properties of CO/NF-YB/NF-YC condensates. Specific FT promoter recognition with polyelectrolyte partitioning also enables the fluidic functional properties of CO/NF-YB/NF-YC/FT condensates. Our findings offer novel insights into the tunable macromolecular condensation of the CO/NF-YB/NF-YC/FT complex in controlling flowering in the photoperiod control.
Collapse
Affiliation(s)
- Xiang Huang
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Danxia He
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Xiao Han
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Xu Liu
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Qiong Dong
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Cuirong Tan
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Bin Yu
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Tiedong Sun
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Lanyuan Lu
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, Singapore, 636921, Singapore.
| | - Xingliang Hou
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
- University of the Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Gao C, Wei P, Xie Z, Zhang P, Tahir MM, Toktonazarovich TK, Shen Y, Zuo X, Mao J, Zhang D, Lv Y, Zhang X. Genomic identification of the NF-Y gene family in apple and functional analysis of MdNF-YB18 involved in flowering transition. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:4. [PMID: 39726978 PMCID: PMC11668704 DOI: 10.1007/s11032-024-01524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
Apple is a crucial economic product extensively cultivated worldwide. Its production and quality are closely related to the floral transition, which is regulated by intricate molecular and environmental factors. Nuclear factor Y (NF-Y) is a transcription factor that is involved in regulating plant growth and development, with certain NF-Ys play significant roles in regulating flowering. However, there is little information available regarding NF-Ys and their role in apple flowering development. In the present study, 51 NF-Y proteins were identified and classified into three subfamilies, including 11 MdNF-YAs, 26 MdNF-YBs, and 14 MdNF-YCs, according to their structural and phylogenetic features. Further functional analysis focused on MdNF-YB18. Overexpression of MdNF-YB18 in Arabidopsis resulted in earlier flowering compared to the wild-type plants. Subcellular localization confirmed MdNF-YB18 was located in the nuclear. Interaction between MdNFY-B18 and MdNF-YC3/7 was demonstrated through yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays. Yeast one-hybrid (Y1H) and the dual-luciferase reporter assays showed MdNF-YB18 could bind the promoter of MdFT1 and activate its expression. Moreover, this activation was enhanced with the addition of MdNF-YC3 and MdNF-YC7. Additionally, MdNF-YB18 also could interact with MdCOLs (CONSTANS Like). This study lays the foundation for exploring the functional traits of MdNF-Y proteins, highlighting the crucial role of MdNF-YB18 in activating MdFT1 in Malus. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01524-2.
Collapse
Affiliation(s)
- Cai Gao
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest A&F University, Yangling, 712100 Shannxi China
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100 Shannxi China
| | - Pengyan Wei
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest A&F University, Yangling, 712100 Shannxi China
| | - Zushu Xie
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest A&F University, Yangling, 712100 Shannxi China
| | - Pan Zhang
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest A&F University, Yangling, 712100 Shannxi China
| | - Muhammad Mobeen Tahir
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest A&F University, Yangling, 712100 Shannxi China
| | | | - Yawen Shen
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest A&F University, Yangling, 712100 Shannxi China
| | - Xiya Zuo
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest A&F University, Yangling, 712100 Shannxi China
| | - Jiangping Mao
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest A&F University, Yangling, 712100 Shannxi China
| | - Dong Zhang
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest A&F University, Yangling, 712100 Shannxi China
| | - Yanrong Lv
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest A&F University, Yangling, 712100 Shannxi China
| | - Xiaoyun Zhang
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest A&F University, Yangling, 712100 Shannxi China
- College of Agriculture, The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization in Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832003 Xinjiang China
| |
Collapse
|
10
|
Xie K, Ren Y, Huang Y, Wang L, Li L, Ye H, Yang C, Wang S, Xu G, Chen A. A conserved nuclear factor YC subunit, NF-YC3, is essential for arbuscule development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17195. [PMID: 39642156 DOI: 10.1111/tpj.17195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024]
Abstract
Establishing reciprocal symbiosis with arbuscular mycorrhizal (AM) fungi is an important evolutionary strategy of most terrestrial plants to adapt to environmental stresses, especially phosphate (Pi) deficiencies. Identifying the key genes essential for AM symbiosis in plants and dissecting their functional mechanisms will be helpful for the breeding of new crop varieties with enhanced nutrient uptake efficiency. Here, we report a nuclear factor YC subunit-encoding gene, OsNF-YC3, whose expression is specifically induced in arbuscule-containing cells, plays an essential role in AM symbiosis. Knockout of OsNF-YC3 resulted in stunted arbuscule morphology and substantially decreased P accumulation, while overexpressing OsNF-YC3 enhanced mycorrhization and Pi uptake efficiency. OsNF-YC3 is directly regulated by OsPHRs, the major regulators of Pi starvation responses. Chromatin immunoprecipitation sequencing analysis uncovered multiple genes with crucial roles in arbuscule development as its potential downstream targets, including the AM-specific Pi transporter gene OsPT11. OsNF-YC3 can form a heterotrimer with the other two NF-Y subunits, OsNF-YA11 and OsNF-YB11, in yeast. Loss of OsNF-YA11 function also severely impaired arbuscule development in its mutants. Overall, our results highlight an essential role of OsNF-YC3 and its potential interacting NF-Y subunit, OsNF-YA11, in regulating AM symbiosis and arbuscule development.
Collapse
Affiliation(s)
- Kun Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuhan Ren
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yujuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lingxiao Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lechuan Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hanghang Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Congfan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuangshuang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aiqun Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
11
|
Zhang Y, Xu Y, Mao Y, Tan X, Tian Y, Ma X, Ji H, Zhang D. Genome-Wide Identification and Expression Analysis of NF-YA Gene Family in the Filling Stage of Wheat ( Triticum aestivum L.). Int J Mol Sci 2024; 26:133. [PMID: 39795991 PMCID: PMC11719562 DOI: 10.3390/ijms26010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/11/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
The NF-YA gene family is a highly conserved transcription factor that plays a crucial role in regulating plant growth, development, and responses to various stresses. Despite extensive studies in multiple plants, there has been a dearth of focused and systematic analysis on NF-YA genes in wheat grains. In this study, we carried out a comprehensive bioinformatics analysis of the NF-YA gene family in wheat, using the latest genomic data from the Chinese Spring. A total of 19 TaNF-YA genes were identified. An analysis of conserved domains, phylogenetic relationships, and gene structure indicated a significant degree of conservation among TaNF-YAs. A gene collinearity analysis demonstrated that fragment duplication was the predominant mechanism driving the amplification of TaNF-YAs. Furthermore, cis-acting elements within the promoters of TaNF-YAs were found to be implicated in grain development. Subsequently, SNP analysis revealed the genetic variation in the NF-YA gene family in different wheat. Moreover, published RNA-seq data were used and RNA-seqs of Pinyu8155, Yaomai30, Yaomai36, and Pinyu8175 were performed to identify TaNF-YAs influencing grain development. Finally, it was found that NF-YAs had no self-activating activity in wheat. This study provides key candidate genes for the exploration of grain development in the wheat filling stage and also lays a foundation for further research on the regulation of starch and protein synthesis and accumulation.
Collapse
Affiliation(s)
- Yang Zhang
- Wheat Research Institute, Shanxi Agricultural University, Linfen 041000, China; (Y.Z.); (Y.X.); (Y.M.); (X.T.); (Y.T.); (D.Z.)
| | - Yanmin Xu
- Wheat Research Institute, Shanxi Agricultural University, Linfen 041000, China; (Y.Z.); (Y.X.); (Y.M.); (X.T.); (Y.T.); (D.Z.)
- Agricultural College, Shanxi Agricultural University, Jinzhong 030810, China
| | - Yulu Mao
- Wheat Research Institute, Shanxi Agricultural University, Linfen 041000, China; (Y.Z.); (Y.X.); (Y.M.); (X.T.); (Y.T.); (D.Z.)
- Agricultural College, Shanxi Agricultural University, Jinzhong 030810, China
| | - Xiaodi Tan
- Wheat Research Institute, Shanxi Agricultural University, Linfen 041000, China; (Y.Z.); (Y.X.); (Y.M.); (X.T.); (Y.T.); (D.Z.)
- Agricultural College, Shanxi Agricultural University, Jinzhong 030810, China
| | - Yuan Tian
- Wheat Research Institute, Shanxi Agricultural University, Linfen 041000, China; (Y.Z.); (Y.X.); (Y.M.); (X.T.); (Y.T.); (D.Z.)
- Agricultural College, Shanxi Agricultural University, Jinzhong 030810, China
| | - Xiaofei Ma
- Wheat Research Institute, Shanxi Agricultural University, Linfen 041000, China; (Y.Z.); (Y.X.); (Y.M.); (X.T.); (Y.T.); (D.Z.)
| | - Hutai Ji
- Wheat Research Institute, Shanxi Agricultural University, Linfen 041000, China; (Y.Z.); (Y.X.); (Y.M.); (X.T.); (Y.T.); (D.Z.)
| | - Dingyi Zhang
- Wheat Research Institute, Shanxi Agricultural University, Linfen 041000, China; (Y.Z.); (Y.X.); (Y.M.); (X.T.); (Y.T.); (D.Z.)
| |
Collapse
|
12
|
Siriwardana CL. Plant Nuclear Factor Y (NF-Y) Transcription Factors: Evolving Insights into Biological Functions and Gene Expansion. Int J Mol Sci 2024; 26:38. [PMID: 39795894 PMCID: PMC11719662 DOI: 10.3390/ijms26010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Gene expansion is a common phenomenon in plant transcription factor families; however, the underlying molecular mechanisms remain elusive. Examples of gene expansion in transcription factors are found in all eukaryotes. One example is plant nuclear factor Y (NF-Y) transcription factors. NF-Y is ubiquitous to eukaryotes and comprises three independent protein families: NF-YA, NF-YB, and NF-YC. While animals and fungi mostly have one of each NF-Y subunit, NF-Y is greatly expanded in plants. For example, humans have one each of NF-YA, NF-YB, and NF-YC, while the model plant Arabidopsis has ten each of NF-YA, NF-YB, and NF-YC. Our understanding of the plant NF-Y, including its biological roles, molecular mechanisms, and gene expansion, has improved over the past few years. Here we will review its biological roles and focus on studies demonstrating that NF-Y can serve as a model for plant gene expansion. These studies show that NF-Y can be classified into ancestrally related subclasses. Further, the primary structure of each NF-Y contains a conserved core domain flanked by non-conserved N- and C-termini. The non-conserved N- and C-termini, under pressure for diversifying selection, may provide clues to this gene family's retention and functional diversification following gene duplication. In summary, this review demonstrates that NF-Y expansion has the potential to be used as a model to study the gene expansion and retention of transcription factor families.
Collapse
Affiliation(s)
- Chamindika L Siriwardana
- Department of Science and Mathematics, Texas A&M University-Central Texas, Killeen, TX 76549, USA
| |
Collapse
|
13
|
Hussain H, Fatima N, Sajid M, Mehar I, Noor M, Attia KA, Hafez YM, Abdelaal K, Shah TA. Genome-wide analysis and identification of nuclear factor Y gene family in switchgrass (Panicum virgatum L.). BMC Genomics 2024; 25:1218. [PMID: 39702036 DOI: 10.1186/s12864-024-11092-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
NF-Y is a class of heterotrimeric transcription factor composed of three subunits; NF-YA, NF-YB, and NF-YC. This complex binds to the CCAAT box found in eukaryotic promoters and is involved in the plant development and proliferation at various stages. Although many studies were conducted on NF-Y gene family in various species, but no study has been reported yet in switchgrass (Panicum virgatum L.). In this study, 47 PvNF-Y genes (17 PvNF-YA, 18 PvNF-YB, and 12 PvNF-YC) have been identified and named according to their subfamily. Chromosome location analysis revealed that all 47 PvNF-Y genes are randomly distributed across nine chromosomes. Moreover, multiple sequence alignment showed the DNA-binding domain and NF-YA/NFYB interacting domains flanking with non-conserved domains. In addition, prediction of functional similarities among PvNF-Ys genes phylogenetic tree was constructed corresponding to Arabidopsis. The gene structure, conserved domains and motifs analysis of PvNF-Ys genes demonstrated their specificity and functional conservation. Cis-regulatory elements analysis identified numerous key CREs that are significantly associated with light, hormone, stress and plant development responses. Expression profiling indicated higher expression levels of many PvNF-YA genes during drought and heat stress. Additionally, qRT-PCR analysis showed that some PvNF-Ys genes have high expression level in root. In conclusion, the findings of this study could provide a foundation for further cloning and functional analysis of NF-Y genes in switchgrass.
Collapse
Affiliation(s)
- Hadia Hussain
- Department of Biotechnology, University of Okara, Okara, Pakistan.
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024, China.
| | - Noor Fatima
- Department of Biotechnology, University of Okara, Okara, Pakistan
| | - Muhammad Sajid
- Department of Biotechnology, University of Okara, Okara, Pakistan
| | - Iqra Mehar
- Department of Botany, Government College University Faisalabad, Faisalabad, Pakistan
| | - Maryam Noor
- Department of Biotechnology, University of Okara, Okara, Pakistan
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Yaser M Hafez
- EPCRS Excellence Center, Plant Pathology and Biotechnology Lab, Agric. Botany Dept., Fac. Agric, Kafrelsheikh Univ, Kafr el-Sheikh, 33516, Egypt
| | - Khaled Abdelaal
- EPCRS Excellence Center, Plant Pathology and Biotechnology Lab, Agric. Botany Dept., Fac. Agric, Kafrelsheikh Univ, Kafr el-Sheikh, 33516, Egypt
| | - Tawaf Ali Shah
- College of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| |
Collapse
|
14
|
Wang G, Zhang D, Wang H, Kong J, Chen Z, Ruan C, Deng C, Zheng Q, Guo Z, Liu H, Li W, Wang X, Guo W. Natural SNP Variation in GbOSM1 Promotor Enhances Verticillium Wilt Resistance in Cotton. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406522. [PMID: 39413014 PMCID: PMC11615771 DOI: 10.1002/advs.202406522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/27/2024] [Indexed: 10/18/2024]
Abstract
Osmotin is classified as the pathogenesis-related protein 5 group. However, its molecular mechanism involved in plant disease resistance remains largely unknown. Here, a Verticillium wilt (VW) resistance-related osmotin gene is identified in Gossypium barbadense (Gb), GbOSM1. GbOSM1 is preferentially expressed in the roots of disease-resistant G. barbadense acc. Hai7124 and highly induced by Verticillium dahliae (Vd). Silencing GbOSM1 reduces the VW resistance of Hai7124, while overexpression of GbOSM1 in disease-susceptible G. hirsutum improves tolerance. GbOSM1 predominantly localizes in tonoplasts, while it relocates to the apoplast upon exposure to osmotic stress or Vd infection. GbOSM1 confers VW resistance by hydrolyzing cell wall polysaccharides of Vd and activating plant immune pathways. Natural variation contributes to a differential CCAAT/CCGAT elements in the OSM1 promoter in cotton accessions. All G. hirsutum (Gh) exhibit the CCAAT haplotype, while there are two haplotypes of CCAAT/CCGAT in G. barbadense, with higher expression and stronger VW resistance in CCGAT haplotype. A NFYA5 transcription factor binds to the CCAAT element of GhOSM1 promoter and inhibits its transcription. Silencing GhNFYA5 results in higher GhOSM1 expression and enhances VW resistance. These results broaden the insights into the functional mechanisms of osmotin and provide an effective strategy to breed VW-resistant cotton.
Collapse
Affiliation(s)
- Guilin Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Dayong Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Haitang Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Jinmin Kong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Zhiguo Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Chaofeng Ruan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Chaoyang Deng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Qihang Zheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Zhan Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Hanqiao Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Weixi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Xinyu Wang
- College of Life SciencesNanjing Agricultural UniversityNanjing210095China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| |
Collapse
|
15
|
Chien H, Kuo TY, Yao CH, Su YR, Chang YT, Guo ZL, Chang KC, Hsieh YH, Yang SY. Nuclear factors NF-YC3 and NF-YBs positively regulate arbuscular mycorrhizal symbiosis in tomato. PLANT PHYSIOLOGY 2024; 196:1840-1856. [PMID: 39028839 DOI: 10.1093/plphys/kiae381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/21/2024]
Abstract
The involvement of nuclear factor Y (NF-Y) in transcriptional reprogramming during arbuscular mycorrhizal symbiosis has been demonstrated in several plant species. However, a comprehensive picture is lacking. We showed that the spatial expression of NF-YC3 was observed in cortical cells containing arbuscules via the cis-regulatory element GCC boxes. Moreover, the NF-YC3 promoter was transactivated by the combination of CYCLOPS and autoactive calcium and calmodulin-dependent kinase (CCaMK) via GCC boxes. Knockdown of NF-YC3 significantly reduced the abundance of all intraradical fungal structures and affected arbuscule size. BCP1, SbtM1, and WRI5a, whose expression associated with NF-YC3 levels, might be downstream of NF-YC3. NF-YC3 interacted with NF-YB3a, NF-YB5c, or NF-YB3b, in yeast (Saccharomyces cerevisiae) and in planta, and interacted with NF-YA3a in yeast. Spatial expression of 3 NF-YBs was observed in all cell layers of roots under both mock and mycorrhizal conditions. Simultaneous knockdown of 3 NF-YBs, but not individually, reduced the fungal colonization level, suggesting that there might be functional redundancy of NF-YBs to regulate AM symbiosis. Collectively, our data suggest that NF-YC3 and NF-YBs positively regulate AM symbiosis in tomato, and arbuscule-related NF-YC3 may be an important downstream gene of the common symbiosis signaling pathway.
Collapse
Affiliation(s)
- Heng Chien
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Ting-Yu Kuo
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Ching-Hung Yao
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Ru Su
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Ting Chang
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Zheng-Lin Guo
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Kai-Chieh Chang
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Heng Hsieh
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Shu-Yi Yang
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
16
|
Shivaprasad KM, Dikshit HK, Mishra GP, Sinha SK, Aski M, Kohli M, Mishra DC, Singh AK, Gupta S, Singh A, Tripathi K, Kumar RR, Kumar A, Jha GK, Kumar S, Varshney RK. Delineation of loci governing an extra-earliness trait in lentil (Lens culinaris Medik.) using the QTL-Seq approach. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2932-2949. [PMID: 38923713 PMCID: PMC11536446 DOI: 10.1111/pbi.14415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/18/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Developing early maturing lentil has the potential to minimize yield losses, mainly during terminal drought. Whole-genome resequencing (WGRS) based QTL-seq identified the loci governing earliness in lentil. The genetic analysis for maturity duration provided a good fit to 3:1 segregation (F2), indicating earliness as a recessive trait. WGRS of Globe Mutant (late parent), late-flowering, and early-flowering bulks (from RILs) has generated 1124.57, 1052.24 million raw and clean reads, respectively. The QTL-Seq identified three QTLs (LcqDTF3.1, LcqDTF3.2, and LcqDTF3.3) on chromosome 3 having 246244 SNPs and 15577 insertions/deletions (InDels) and 13 flowering pathway genes. Of these, 11 exhibited sequence variations between bulks and validation (qPCR) revealed a significant difference in the expression of nine candidate genes (LcGA20oxG, LcFRI, LcLFY, LcSPL13a, Lcu.2RBY.3g060720, Lcu.2RBY.3g062540, Lcu.2RBY.3g062760, LcELF3a, and LcEMF1). Interestingly, the LcELF3a gene showed significantly higher expression in late-flowering genotype and exhibited substantial involvement in promoting lateness. Subsequently, an InDel marker (I-SP-383.9; LcELF3a gene) developed from LcqDTF3.2 QTL region showed 82.35% PVE (phenotypic variation explained) for earliness. The cloning, sequencing, and comparative analysis of the LcELF3a gene from both parents revealed 23 SNPs and InDels. Interestingly, a 52 bp deletion was recorded in the LcELF3a gene of L4775, predicted to cause premature termination of protein synthesis after 4 missense amino acids beyond the 351st amino acid due to the frameshift during translation. The identified InDel marker holds significant potential for breeding early maturing lentil varieties.
Collapse
Affiliation(s)
- Kumbarahally Murthigowda Shivaprasad
- Division of GeneticsIndian Agricultural Research InstituteNew DelhiIndia
- Indian Council of Forestry Research and Education (ICFRE)‐Institute of Forest BiodiversityHyderabadIndia
| | - Harsh K. Dikshit
- Division of GeneticsIndian Agricultural Research InstituteNew DelhiIndia
| | | | - Subodh Kumar Sinha
- Indian Council of Agricultural Research (ICAR)‐National Institute for Plant BiotechnologyNew DelhiIndia
| | - Muraleedhar Aski
- Division of GeneticsIndian Agricultural Research InstituteNew DelhiIndia
| | - Manju Kohli
- Division of GeneticsIndian Agricultural Research InstituteNew DelhiIndia
| | | | - Amit Kumar Singh
- Division of Genomic Resources, National Bureau of Plant Genetic ResourcesNew DelhiIndia
| | - Soma Gupta
- Division of GeneticsIndian Agricultural Research InstituteNew DelhiIndia
| | - Akanksha Singh
- South Asia and China Program, International Center for Agricultural Research in the Dry Areas, National Agriculture Science ComplexNew DelhiIndia
| | - Kuldeep Tripathi
- Germplasm Evaluation Division, National Bureau of Plant Genetic ResourcesNew DelhiIndia
| | | | - Atul Kumar
- Division of Seed Science and TechnologyIndian Agricultural Research InstituteNew DelhiIndia
| | | | - Shiv Kumar
- South Asia and China Program, International Center for Agricultural Research in the Dry Areas, National Agriculture Science ComplexNew DelhiIndia
| | - Rajeev K. Varshney
- Centre for Crop & Food Innovation, State Agricultural Biotechnology CentreFood Futures Institute, Murdoch UniversityMurdochWAAustralia
| |
Collapse
|
17
|
Rani V, Singh VK, Joshi D, Singh R, Yadav D. Genome-wide identification of nuclear factor -Y (NF-Y) transcription factor family in finger millet reveals structural and functional diversity. Heliyon 2024; 10:e36370. [PMID: 39315219 PMCID: PMC11417175 DOI: 10.1016/j.heliyon.2024.e36370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
The Nuclear Factor Y (NF-Y) is one of the widely explored transcription factors (TFs) family for its potential role in regulating molecular mechanisms related to stress response and developmental processes. Finger millet (Eleusine coracana (L.) Gaertn) is a hardy and stress-tolerant crop where partial efforts have been made to characterize a few transcription factors. However, the NF-Y TF is still poorly explored and not well documented. The present study aims to identify and characterize NF-Y genes of finger millet using a bioinformatics approach. Genome mining revealed 57 EcNF-Y (Eleusine coracana Nuclear Factor-Y) genes in finger millet, comprising 18 NF-YA, 23 NF-YB, and 16 NF-YC genes. The gene organization, conserved motif, cis-regulatory elements, miRNA target sites, and three-dimensional structures of these NF-Ys were analyzed. The nucleotide substitution rate and gene duplication analysis showed the presence of 7 EcNF-YA, 10 EcNF-YB, and 8 EcNF-YC paralogous genes and revealed the possibilities of synonymous substitution and stabilizing selection during evolution. The role of NF-Ys of finger millet in abiotic stress tolerance was evident by the presence of relevant cis-elements such as ABRE (abscisic acid-responsive elements), DRE (dehydration-responsive element), MYB (myeloblastosis) or MYC (myelocytomatosis). Twenty-three isoforms of miR169, mainly targeting a single NF-Y gene, i.e., the EcNF-YA13 gene, were observed. This interaction could be targeted for finger millet improvement against Magnaporthe oryzae (blast fungus). Therefore, by this study, the putative functions related to biotic and abiotic stress tolerance for many of the EcNF-Y genes could be explored in finger millet.
Collapse
Affiliation(s)
- Varsha Rani
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India
- Department of Biotechnology, School of Engineering and Technology, Sandip University, Nashik, 422213, Maharashtra, India
| | - Vinay Kumar Singh
- Centre for Bioinformatics, School of Biotechnology, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - D.C. Joshi
- ICAR-Vivekananda Institute of Hill Agriculture, Almora, 263601, Uttarakhand, India
| | - Rajesh Singh
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221 005, India
| | - Dinesh Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India
| |
Collapse
|
18
|
Chen J, Zhong Y, Zou P, Ni J, Liu Y, Dai S, Zhou R. Identification of Genomic Regions Associated with Differences in Flowering Time and Inflorescence Architecture between Melastoma candidum and M. normale. Int J Mol Sci 2024; 25:10250. [PMID: 39408579 PMCID: PMC11477356 DOI: 10.3390/ijms251910250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Understanding the genetic basis of species differences in flowering time and inflorescence architecture can shed light on speciation and molecular breeding. Melastoma shows rapid speciation, with about 100 species formed in the past few million years, and, meanwhile, possesses high ornamental values. Two largely sympatric and closely related species of this genus, M. candidum and M. normale, differ markedly in flowering time and flower number per inflorescence. Here, we constructed an F2 population between M. candidum and M. normale, and used extreme bulks for flowering time and flower number per inflorescence in this population to identify genomic regions underlying the two traits. We found high differentiation on nearly the whole chromosome 7 plus a few regions on other chromosomes between the two extreme bulks for flowering time. Large chromosomal inversions on chromosome 7 between the two species, which contain flowering-related genes, can explain recombinational suppression on the chromosome. We identified 1872 genes with one or more highly differentiated SNPs between the two bulks for flowering time, including CSTF77, FY, SPA3, CDF3, AGL8, AGL15, FHY1, COL9, CIB1, FKF1 and FAR1, known to be related to flowering. We also identified 680 genes with one or more highly differentiated SNPs between the two bulks for flower number per inflorescence, including PNF, FIL and LAS, knows to play important roles in inflorescence development. These large inversions on chromosome 7 prevent us from narrowing down the genomic region(s) associated with flowering time differences between the two species. Flower number per inflorescence in Melastoma appears to be controlled by multiple genes, without any gene of major effect. Our study indicates that large chromosomal inversions can hamper the identification of the genetic basis of important traits, and the inflorescence architecture of Melastoma species may have a complex genetic basis.
Collapse
Affiliation(s)
- Jingfang Chen
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-sen University, Guangzhou 510275, China; (J.C.); (Y.Z.); (Y.L.)
| | - Yan Zhong
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-sen University, Guangzhou 510275, China; (J.C.); (Y.Z.); (Y.L.)
- School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Peishan Zou
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou Collaborative Innovation Center on Science-Tech of Ecology and Landscape, Guangzhou 510405, China; (P.Z.); (J.N.)
| | - Jianzhong Ni
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou Collaborative Innovation Center on Science-Tech of Ecology and Landscape, Guangzhou 510405, China; (P.Z.); (J.N.)
| | - Ying Liu
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-sen University, Guangzhou 510275, China; (J.C.); (Y.Z.); (Y.L.)
- School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Seping Dai
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou Collaborative Innovation Center on Science-Tech of Ecology and Landscape, Guangzhou 510405, China; (P.Z.); (J.N.)
| | - Renchao Zhou
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-sen University, Guangzhou 510275, China; (J.C.); (Y.Z.); (Y.L.)
| |
Collapse
|
19
|
Lin C, Lan C, Li X, Xie W, Lin F, Liang Y, Tao Z. A pair of nuclear factor Y transcription factors act as positive regulators in jasmonate signaling and disease resistance in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2042-2057. [PMID: 38953749 DOI: 10.1111/jipb.13732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Abstract
The plant hormone jasmonate (JA) regulates plant growth and immunity by orchestrating a genome-wide transcriptional reprogramming. In the resting stage, JASMONATE-ZIM DOMAIN (JAZ) proteins act as main repressors to regulate the expression of JA-responsive genes in the JA signaling pathway. However, the mechanisms underlying de-repression of JA-responsive genes in response to JA treatment remain elusive. Here, we report two nuclear factor Y transcription factors NF-YB2 and NF-YB3 (thereafter YB2 and YB3) play key roles in such de-repression in Arabidopsis. YB2 and YB3 function redundantly and positively regulate plant resistance against the necrotrophic pathogen Botrytis cinerea, which are specially required for transcriptional activation of a set of JA-responsive genes following inoculation. Furthermore, YB2 and YB3 modulated their expression through direct occupancy and interaction with histone demethylase Ref6 to remove repressive histone modifications. Moreover, YB2 and YB3 physically interacted with JAZ repressors and negatively modulated their abundance, which in turn attenuated the inhibition of JAZ proteins on the transcription of JA-responsive genes, thereby activating JA response and promoting disease resistance. Overall, our study reveals the positive regulators of YB2 and YB3 in JA signaling by positively regulating transcription of JA-responsive genes and negatively modulating the abundance of JAZ proteins.
Collapse
Affiliation(s)
- Chuyu Lin
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Chenghao Lan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoxiao Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Wei Xie
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fucheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 311400, China
| | - Yan Liang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zeng Tao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
20
|
Li HL, Wu X, Gong M, Xia M, Zhang W, Chen Z, Xing HT. Genome-wide investigation of the nuclear factor Y gene family in Ginger (Zingiber officinale Roscoe): evolution and expression profiling during development and abiotic stresses. BMC Genomics 2024; 25:820. [PMID: 39217307 PMCID: PMC11365145 DOI: 10.1186/s12864-024-10588-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/03/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Nuclear factor Y (NF-Y) plays a vital role in numerous biological processes as well as responses to biotic and abiotic stresses. However, its function in ginger (Zingiber officinale Roscoe), a significant medicinal and dietary vegetable, remains largely unexplored. Although the NF-Y family has been thoroughly identified in many plant species, and the function of individual NF-Y TFs has been characterized, there is a paucity of knowledge concerning this family in ginger. METHODS We identified the largest number of NF-Y genes in the ginger genome using two BLASTP methods as part of our ginger genome research project. The conserved motifs of NF-Y proteins were analyzed through this process. To examine gene duplication events, we employed the Multiple Collinearity Scan toolkit (MCScanX). Syntenic relationships of NF-Y genes were mapped using the Dual Synteny Plotter software. Multiple sequence alignments were performed with MUSCLE under default parameters, and the resulting alignments were used to generate a maximum likelihood (ML) phylogenetic tree with the MEGA X program. RNA-seq analysis was conducted on collected samples, and statistical analyses were performed using Sigma Plot v14.0 (SYSTAT Software, USA). RESULTS In this study, the ginger genome was utilized to identify 36 NF-Y genes (10 ZoNF-YAs, 16 ZoNF-YBs, and 10 ZoNF-YCs), which were renamed based on their chromosomal distribution. Ten distinct motifs were identified within the ZoNF-Y genes, with certain unique motifs being vital for gene function. By analyzing their chromosomal location, gene structure, conserved protein motifs, and gene duplication events, we gained a deeper understanding of the evolutionary characteristics of these ZoNF-Y genes. Detailed analysis of ZoNF-Y gene expression patterns across various tissues, performed through RNA-seq and qRT-PCR, revealed their significant role in regulating ginger rhizome and flower growth and development. Additionally, we identified the ZoNF-Y family genes that responded to abiotic stresses. CONCLUSION This study represents the first identification of the ZoNF-Y family in ginger. Our findings contribute to research on evolutionary characteristics and provide a better understanding of the molecular basis for development and abiotic stress response. Furthermore, it lays the foundation for further functional characterization of ZoNF-Y genes with an aim of ginger crop improvement.
Collapse
Affiliation(s)
- Hong-Lei Li
- Chongqing Engineering Research Center for Horticultural Plant, College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Xiaoli Wu
- Chongqing Engineering Research Center for Horticultural Plant, College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Min Gong
- Chongqing Engineering Research Center for Horticultural Plant, College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - Maoqin Xia
- Chongqing Engineering Research Center for Horticultural Plant, College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Wenlin Zhang
- Chongqing Engineering Research Center for Horticultural Plant, College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Zhiduan Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hai-Tao Xing
- Chongqing Engineering Research Center for Horticultural Plant, College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| |
Collapse
|
21
|
le Roux J, Jacob R, Fischer R, van der Vyver C. Identification and expression analysis of nuclear factor Y transcription factor genes under drought, cold and Eldana infestation in sugarcane (Saccharum spp. hybrid). Genes Genomics 2024; 46:927-940. [PMID: 38877289 PMCID: PMC11329523 DOI: 10.1007/s13258-024-01529-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/31/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND The Nuclear Factor Y (NF-Y) transcription factor (TF) gene family plays a crucial role in plant development and response to stress. Limited information is available on this gene family in sugarcane. OBJECTIVES To identify sugarcane NF-Y genes through bioinformatic analysis and phylogenetic association and investigate the expression of these genes in response to abiotic and biotic stress. METHODS Sugarcane NF-Y genes were identified using comparative genomics from functionally annotated Poaceae and Arabidopsis species. Quantitative PCR and transcriptome analysis assigned preliminary functional roles to these genes in response to water deficit, cold and African sugarcane borer (Eldana saccharina) infestation. RESULTS We identify 21 NF-Y genes in sugarcane. Phylogenetic analysis revealed three main branches representing the subunits with potential discrepancies present in the assignment of numerical names of some NF-Y putative orthologs across the different species. Gene expression analysis indicated that three genes, ShNF-YA1, A3 and B3 were upregulated and two genes, NF-YA4 and A7 were downregulated, while three genes were upregulated, ShNF-YB2, B3 and C4, in the plants exposed to water deficit and cold stress, respectively. Functional involvement of NF-Y genes in the biotic stress response were also detected where three genes, ShNF-YA6, A3 and A7 were downregulated in the early resistant (cv. N33) response to Eldana infestation whilst only ShNF-YA6 was downregulated in the susceptible (cv. N11) early response. CONCLUSIONS Our research findings establish a foundation for investigating the function of ShNF-Ys and offer candidate genes for stress-resistant breeding and improvement in sugarcane.
Collapse
Affiliation(s)
- Jancke le Roux
- Institute for Plant Biotechnology, Department of Genetics, University of Stellenbosch, Stellenbosch, 7602, South Africa
| | - Robyn Jacob
- South African Sugarcane Research Institute (SASRI), KwaZulu-Natal, P/Bag X02, Mount Edgecombe, Durban, 4300, South Africa
| | - Riëtte Fischer
- Institute for Plant Biotechnology, Department of Genetics, University of Stellenbosch, Stellenbosch, 7602, South Africa
| | - Christell van der Vyver
- Institute for Plant Biotechnology, Department of Genetics, University of Stellenbosch, Stellenbosch, 7602, South Africa.
| |
Collapse
|
22
|
Guo Y, Wang Z, Jiao Z, Yuan G, Cui L, Duan P, Niu J, Lv P, Wang J, Shi Y. Genome-Wide Identification of Sorghum Paclobutrazol-Resistance Gene Family and Functional Characterization of SbPRE4 in Response to Aphid Stress. Int J Mol Sci 2024; 25:7257. [PMID: 39000365 PMCID: PMC11241634 DOI: 10.3390/ijms25137257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Sorghum (Sorghum bicolor), the fifth most important cereal crop globally, serves as a staple food, animal feed, and a bioenergy source. Paclobutrazol-Resistance (PRE) genes play a pivotal role in the response to environmental stress, yet the understanding of their involvement in pest resistance remains limited. In the present study, a total of seven SbPRE genes were found within the sorghum BTx623 genome. Subsequently, their genomic location was studied, and they were distributed on four chromosomes. An analysis of cis-acting elements in SbPRE promoters revealed that various elements were associated with hormones and stress responses. Expression pattern analysis showed differentially tissue-specific expression profiles among SbPRE genes. The expression of some SbPRE genes can be induced by abiotic stress and aphid treatments. Furthermore, through phytohormones and transgenic analyses, we demonstrated that SbPRE4 improves sorghum resistance to aphids by accumulating jasmonic acids (JAs) in transgenic Arabidopsis, giving insights into the molecular and biological function of atypical basic helix-loop-helix (bHLH) transcription factors in sorghum pest resistance.
Collapse
Affiliation(s)
- Yongchao Guo
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang 050035, China; (Y.G.); (Z.W.); (Z.J.); (G.Y.); (J.N.); (P.L.)
| | - Zhifang Wang
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang 050035, China; (Y.G.); (Z.W.); (Z.J.); (G.Y.); (J.N.); (P.L.)
| | - Zhiyin Jiao
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang 050035, China; (Y.G.); (Z.W.); (Z.J.); (G.Y.); (J.N.); (P.L.)
| | - Guang Yuan
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang 050035, China; (Y.G.); (Z.W.); (Z.J.); (G.Y.); (J.N.); (P.L.)
| | - Li Cui
- Hebei Plant Protection and Plant Inspection Station, Shijiazhuang 050035, China;
| | - Pengwei Duan
- Hebei Academy of Agriculture & Forestry Sciences, Shijiazhuang 050035, China;
| | - Jingtian Niu
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang 050035, China; (Y.G.); (Z.W.); (Z.J.); (G.Y.); (J.N.); (P.L.)
| | - Peng Lv
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang 050035, China; (Y.G.); (Z.W.); (Z.J.); (G.Y.); (J.N.); (P.L.)
| | - Jinping Wang
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang 050035, China; (Y.G.); (Z.W.); (Z.J.); (G.Y.); (J.N.); (P.L.)
| | - Yannan Shi
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang 050035, China; (Y.G.); (Z.W.); (Z.J.); (G.Y.); (J.N.); (P.L.)
| |
Collapse
|
23
|
Yin K, Liu Y, Liu Z, Zhao R, Zhang Y, Yan C, Zhao Z, Feng B, Zhang X, An K, Li J, Liu J, Dong K, Yao J, Zhao N, Zhou X, Chen S. Populus euphratica CPK21 Interacts with NF-YC3 to Enhance Cadmium Tolerance in Arabidopsis. Int J Mol Sci 2024; 25:7214. [PMID: 39000320 PMCID: PMC11240976 DOI: 10.3390/ijms25137214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The toxic metal cadmium (Cd) poses a serious threat to plant growth and human health. Populus euphratica calcium-dependent protein kinase 21 (CPK21) has previously been shown to attenuate Cd toxicity by reducing Cd accumulation, enhancing antioxidant defense and improving water balance in transgenic Arabidopsis. Here, we confirmed a protein-protein interaction between PeCPK21 and Arabidopsis nuclear transcription factor YC3 (AtNF-YC3) by yeast two-hybrid and bimolecular fluorescence complementation assays. AtNF-YC3 was induced by Cd and strongly expressed in PeCPK21-overexpressed plants. Overexpression of AtNF-YC3 in Arabidopsis reduced the Cd inhibition of root length, fresh weight and membrane stability under Cd stress conditions (100 µM, 7 d), suggesting that AtNF-YC3 appears to contribute to the improvement of Cd stress tolerance. AtNF-YC3 improved Cd tolerance by limiting Cd uptake and accumulation, activating antioxidant enzymes and reducing hydrogen peroxide (H2O2) production under Cd stress. We conclude that PeCPK21 interacts with AtNF-YC3 to limit Cd accumulation and enhance the reactive oxygen species (ROS) scavenging system and thereby positively regulate plant adaptation to Cd environments. This study highlights the interaction between PeCPK21 and AtNF-YC3 under Cd stress conditions, which can be utilized to improve Cd tolerance in higher plants.
Collapse
Affiliation(s)
- Kexin Yin
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (Y.L.); (Z.L.); (R.Z.); (Y.Z.); (C.Y.); (Z.Z.); (B.F.); (X.Z.); (K.A.); (J.L.); (J.L.); (K.D.); (N.Z.); (X.Z.)
| | - Yi Liu
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (Y.L.); (Z.L.); (R.Z.); (Y.Z.); (C.Y.); (Z.Z.); (B.F.); (X.Z.); (K.A.); (J.L.); (J.L.); (K.D.); (N.Z.); (X.Z.)
| | - Zhe Liu
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (Y.L.); (Z.L.); (R.Z.); (Y.Z.); (C.Y.); (Z.Z.); (B.F.); (X.Z.); (K.A.); (J.L.); (J.L.); (K.D.); (N.Z.); (X.Z.)
| | - Rui Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (Y.L.); (Z.L.); (R.Z.); (Y.Z.); (C.Y.); (Z.Z.); (B.F.); (X.Z.); (K.A.); (J.L.); (J.L.); (K.D.); (N.Z.); (X.Z.)
| | - Ying Zhang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (Y.L.); (Z.L.); (R.Z.); (Y.Z.); (C.Y.); (Z.Z.); (B.F.); (X.Z.); (K.A.); (J.L.); (J.L.); (K.D.); (N.Z.); (X.Z.)
| | - Caixia Yan
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (Y.L.); (Z.L.); (R.Z.); (Y.Z.); (C.Y.); (Z.Z.); (B.F.); (X.Z.); (K.A.); (J.L.); (J.L.); (K.D.); (N.Z.); (X.Z.)
| | - Ziyan Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (Y.L.); (Z.L.); (R.Z.); (Y.Z.); (C.Y.); (Z.Z.); (B.F.); (X.Z.); (K.A.); (J.L.); (J.L.); (K.D.); (N.Z.); (X.Z.)
| | - Bing Feng
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (Y.L.); (Z.L.); (R.Z.); (Y.Z.); (C.Y.); (Z.Z.); (B.F.); (X.Z.); (K.A.); (J.L.); (J.L.); (K.D.); (N.Z.); (X.Z.)
| | - Xiaomeng Zhang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (Y.L.); (Z.L.); (R.Z.); (Y.Z.); (C.Y.); (Z.Z.); (B.F.); (X.Z.); (K.A.); (J.L.); (J.L.); (K.D.); (N.Z.); (X.Z.)
| | - Keyue An
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (Y.L.); (Z.L.); (R.Z.); (Y.Z.); (C.Y.); (Z.Z.); (B.F.); (X.Z.); (K.A.); (J.L.); (J.L.); (K.D.); (N.Z.); (X.Z.)
| | - Jing Li
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (Y.L.); (Z.L.); (R.Z.); (Y.Z.); (C.Y.); (Z.Z.); (B.F.); (X.Z.); (K.A.); (J.L.); (J.L.); (K.D.); (N.Z.); (X.Z.)
| | - Jian Liu
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (Y.L.); (Z.L.); (R.Z.); (Y.Z.); (C.Y.); (Z.Z.); (B.F.); (X.Z.); (K.A.); (J.L.); (J.L.); (K.D.); (N.Z.); (X.Z.)
| | - Kaiyue Dong
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (Y.L.); (Z.L.); (R.Z.); (Y.Z.); (C.Y.); (Z.Z.); (B.F.); (X.Z.); (K.A.); (J.L.); (J.L.); (K.D.); (N.Z.); (X.Z.)
| | - Jun Yao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China;
| | - Nan Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (Y.L.); (Z.L.); (R.Z.); (Y.Z.); (C.Y.); (Z.Z.); (B.F.); (X.Z.); (K.A.); (J.L.); (J.L.); (K.D.); (N.Z.); (X.Z.)
| | - Xiaoyang Zhou
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (Y.L.); (Z.L.); (R.Z.); (Y.Z.); (C.Y.); (Z.Z.); (B.F.); (X.Z.); (K.A.); (J.L.); (J.L.); (K.D.); (N.Z.); (X.Z.)
| | - Shaoliang Chen
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (Y.L.); (Z.L.); (R.Z.); (Y.Z.); (C.Y.); (Z.Z.); (B.F.); (X.Z.); (K.A.); (J.L.); (J.L.); (K.D.); (N.Z.); (X.Z.)
| |
Collapse
|
24
|
Wang R, Cheng Y, Jiang N, Jiang T, Wei Z. Overexpression of the PtrNF-YA6 gene inhibits secondary cell wall thickening in poplar. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112058. [PMID: 38447913 DOI: 10.1016/j.plantsci.2024.112058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/20/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
The NF-Y gene family in plants plays a crucial role in numerous biological processes, encompassing hormone response, stress response, as well as growth and development. In this study, we first used bioinformatics techniques to identify members of the NF-YA family that may function in wood formation. We then used molecular biology techniques to investigate the role and molecular mechanism of PtrNF-YA6 in secondary cell wall (SCW) formation in Populus trichocarpa. We found that PtrNF-YA6 protein was localized in the nucleus and had no transcriptional activating activity. Overexpression of PtrNF-YA6 had an inhibitory effect on plant growth and development and significantly suppressed hemicellulose synthesis and SCW thickening in transgenic plants. Yeast one-hybrid and ChIP-PCR assays revealed that PtrNF-YA6 directly regulated the expression of hemicellulose synthesis genes (PtrGT47A-1, PtrGT8C, PtrGT8F, PtrGT43B, PtrGT47C, PtrGT8A and PtrGT8B). In conclusion, PtrNF-YA6 can inhibit plant hemicellulose synthesis and SCW thickening by regulating the expression of downstream SCW formation-related target genes.
Collapse
Affiliation(s)
- Ruiqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Yujia Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Nan Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang 150040, China.
| | - Zhigang Wei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang 150040, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China.
| |
Collapse
|
25
|
Zhang D, Ji K, Wang J, Liu X, Zhou Z, Huang R, Ai G, Li Y, Wang X, Wang T, Lu Y, Hong Z, Ye Z, Zhang J. Nuclear factor Y-A3b binds to the SINGLE FLOWER TRUSS promoter and regulates flowering time in tomato. HORTICULTURE RESEARCH 2024; 11:uhae088. [PMID: 38799124 PMCID: PMC11116822 DOI: 10.1093/hr/uhae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/20/2024] [Indexed: 05/29/2024]
Abstract
The control of flowering time is essential for reproductive success and has a major effect on seed and fruit yield and other important agricultural traits in crops. Nuclear factors Y (NF-Ys) are transcription factors that form heterotrimeric protein complexes to regulate gene expression required for diverse biological processes, including flowering time control in plants. However, to our knowledge, there has been no report on mutants of individual NF-YA subunits that promote early flowering phenotype in plants. In this study, we identified SlNF-YA3b, encoding a member of the NF-Y transcription factor family, as a key gene regulating flowering time in tomato. Knockout of NF-YA3b resulted in an early flowering phenotype in tomato, whereas overexpression of NF-YA3b delayed flowering in transgenic tomato plants. NF-YA3b was demonstrated to form heterotrimeric protein complexes with multiple NF-YB/NF-YC heterodimers in yeast three-hybrid assays. Biochemical evidence indicated that NF-YA3b directly binds to the CCAAT cis-elements of the SINGLE FLOWER TRUSS (SFT) promoter to suppress its gene expression. These findings uncovered a critical role of NF-YA3b in regulating flowering time in tomato and could be applied to the management of flowering time in crops.
Collapse
Affiliation(s)
- Dedi Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Kangna Ji
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiafa Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinyu Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Zheng Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Rong Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Guo Ai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Li
- Zhumadian Academy of Agricultural Sciences, Zhumadian 463000, China
| | - Xin Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Taotao Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongen Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Zonglie Hong
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Zhibiao Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Junhong Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
26
|
Tan X, Wang G, Cao C, Yang Z, Zhang H, Li Y, Wei Z, Chen J, Sun Z. Two different viral proteins suppress NUCLEAR FACTOR-YC-mediated antiviral immunity during infection in rice. PLANT PHYSIOLOGY 2024; 195:850-864. [PMID: 38330080 DOI: 10.1093/plphys/kiae070] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 02/10/2024]
Abstract
Plant viruses have multiple strategies to counter and evade the host's antiviral immune response. However, limited research has been conducted on the antiviral defense mechanisms commonly targeted by distinct types of plant viruses. In this study, we discovered that NUCLEAR FACTOR-YC (NF-YC) and NUCLEAR FACTOR-YA (NF-YA), 2 essential components of the NF-Y complex, were commonly targeted by viral proteins encoded by 2 different rice (Oryza sativa L.) viruses, rice stripe virus (RSV, Tenuivirus) and southern rice black streaked dwarf virus (SRBSDV, Fijivirus). In vitro and in vivo experiments showed that OsNF-YCs associate with OsNF-YAs and inhibit their transcriptional activation activity, resulting in the suppression of OsNF-YA-mediated plant susceptibility to rice viruses. Different viral proteins RSV P2 and SRBSDV SP8 directly disrupted the association of OsNF-YCs with OsNF-YAs, thereby suppressing the antiviral defense mediated by OsNF-YCs. These findings suggest an approach for conferring broad-spectrum disease resistance in rice and reveal a common mechanism employed by viral proteins to evade the host's antiviral defense by hindering the antiviral capabilities of OsNF-YCs.
Collapse
Affiliation(s)
- Xiaoxiang Tan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Guoda Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Chen Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zihang Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hehong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yanjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhongyan Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
27
|
Bin J, Tan Q, Wen S, Huang L, Wang H, Imtiaz M, Zhang Z, Guo H, Xie L, Zeng R, Wei Q. Comprehensive Analyses of Four PhNF-YC Genes from Petunia hybrida and Impacts on Flowering Time. PLANTS (BASEL, SWITZERLAND) 2024; 13:742. [PMID: 38475587 DOI: 10.3390/plants13050742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
Nuclear Factor Y (NF-Y) is a class of heterotrimeric transcription factors composed of three subunits: NF-A, NF-YB, and NF-YC. NF-YC family members play crucial roles in various developmental processes, particularly in the regulation of flowering time. However, their functions in petunia remain poorly understood. In this study, we isolated four PhNF-YC genes from petunia and confirmed their subcellular localization in both the nucleus and cytoplasm. We analyzed the transcript abundance of all four PhNF-YC genes and found that PhNF-YC2 and PhNF-YC4 were highly expressed in apical buds and leaves, with their transcript levels decreasing before flower bud differentiation. Silencing PhNF-YC2 using VIGS resulted in a delayed flowering time and reduced chlorophyll content, while PhNF-YC4-silenced plants only exhibited a delayed flowering time. Furthermore, we detected the transcript abundance of flowering-related genes involved in different signaling pathways and found that PhCO, PhGI, PhFBP21, PhGA20ox4, and PhSPL9b were regulated by both PhNF-YC2 and PhNF-YC4. Additionally, the transcript abundance of PhSPL2, PhSPL3, and PhSPL4 increased only in PhNF-YC2-silenced plants. Overall, these results provide evidence that PhNF-YC2 and PhNF-YC4 negatively regulate flowering time in petunia by modulating a series of flowering-related genes.
Collapse
Affiliation(s)
- Jing Bin
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Qinghua Tan
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Shiyun Wen
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Licheng Huang
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Huimin Wang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Imtiaz
- Department of Horticulture, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Zhisheng Zhang
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Herong Guo
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Li Xie
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Ruizhen Zeng
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Qian Wei
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
28
|
Wang L, Zhao X, Zheng R, Huang Y, Zhang C, Zhang MM, Lan S, Liu ZJ. Genome-Wide Identification and Drought Stress Response Pattern of the NF-Y Gene Family in Cymbidium sinense. Int J Mol Sci 2024; 25:3031. [PMID: 38474276 DOI: 10.3390/ijms25053031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Cymbidium sinense, a type of orchid plant, is more drought-resistant and ornamental than other terrestrial orchids. Research has shown that many members of the NUCLEAR FACTOR Y (NF-Y) transcription factor family are responsive to plant growth, development, and abiotic stress. However, the mechanism of the NF-Y gene family's response to abiotic stress in orchids has not yet been reported. In this study, phylogenetic analysis allowed for 27 CsNF-Y genes to be identified (5 CsNF-YAs, 9 CsNF-YBs, and 13 CsNF-YC subunits), and the CsNF-Ys were homologous to those in Arabidopsis and Oryza. Protein structure analysis revealed that different subfamilies contained different motifs, but all of them contained Motif 2. Secondary and tertiary protein structure analysis indicated that the CsNF-YB and CsNF-YC subfamilies had a high content of alpha helix structures. Cis-element analysis showed that elements related to drought stress were mainly concentrated in the CsNF-YB and CsNF-YC subfamilies, with CsNF-YB3 and CsNF-YC12 having the highest content. The results of a transcriptome analysis showed that there was a trend of downregulation of almost all CsNF-Ys in leaves under drought stress, while in roots, most members of the CsNF-YB subfamily showed a trend of upregulation. Additionally, seven genes were selected for real-time reverse transcription quantitative PCR (qRT-PCR) experiments. The results were generally consistent with those of the transcriptome analysis. The regulatory roles of CsNF-YB 1, 2, and 4 were particularly evident in the roots. The findings of our study may make a great contribution to the understanding of the role of CsNF-Ys in stress-related metabolic processes.
Collapse
Affiliation(s)
- Linying Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuewei Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruiyue Zheng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ye Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuili Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meng-Meng Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
29
|
Tian Y, Song K, Li B, Song Y, Zhang X, Li H, Yang L. Genome-wide identification and expression analysis of NF-Y gene family in tobacco (Nicotiana tabacum L.). Sci Rep 2024; 14:5257. [PMID: 38438470 PMCID: PMC10912202 DOI: 10.1038/s41598-024-55799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/27/2024] [Indexed: 03/06/2024] Open
Abstract
Nuclear factor Y (NF-Y) gene family is an important transcription factor composed of three subfamilies of NF-YA, NF-YB and NF-YC, which is involved in plant growth, development and stress response. In this study, 63 tobacco NF-Y genes (NtNF-Ys) were identified in Nicotiana tabacum L., including 17 NtNF-YAs, 30 NtNF-YBs and 16 NtNF-YCs. Phylogenetic analysis revealed ten pairs of orthologues from tomato and tobacco and 25 pairs of paralogues from tobacco. The gene structure of NtNF-YAs exhibited similarities, whereas the gene structure of NtNF-YBs and NtNF-YCs displayed significant differences. The NtNF-Ys of the same subfamily exhibited a consistent distribution of motifs and protein 3D structure. The protein interaction network revealed that NtNF-YC12 and NtNF-YC5 exhibited the highest connectivity. Many cis-acting elements related to light, stress and hormone response were found in the promoter of NtNF-Ys. Transcriptome analysis showed that more than half of the NtNF-Y genes were expressed in all tissues, and NtNF-YB9/B14/B15/B16/B17/B29 were specifically expressed in roots. A total of 15, 12, 5, and 6 NtNF-Y genes were found to respond to cold, drought, salt, and alkali stresses, respectively. The results of this study will lay a foundation for further study of NF-Y genes in tobacco and other Solanaceae plants.
Collapse
Affiliation(s)
- Yue Tian
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China
| | - Kangkang Song
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai'an, China
| | - Bin Li
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China
| | - Yanru Song
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiaohua Zhang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China
| | - Haozhen Li
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China
| | - Long Yang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
30
|
Chen S, Wei X, Hu X, Zhang P, Chang K, Zhang D, Chen W, Tang D, Tang Q, Li P, Tan L. Genome-Wide Analysis of Nuclear factor-YC Genes in the Tea Plant ( Camellia sinensis) and Functional Identification of CsNF-YC6. Int J Mol Sci 2024; 25:836. [PMID: 38255910 PMCID: PMC10815638 DOI: 10.3390/ijms25020836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Nuclear factor Y (NF-Y) is a class of transcription factors consisting of NF-YA, NF-YB and NF-YC subunits, which are widely distributed in eukaryotes. The NF-YC subunit regulates plant growth and development and plays an important role in the response to stresses. However, there are few reports on this gene subfamily in tea plants. In this study, nine CsNF-YC genes were identified in the genome of 'Longjing 43'. Their phylogeny, gene structure, promoter cis-acting elements, motifs and chromosomal localization of these gene were analyzed. Tissue expression characterization revealed that most of the CsNF-YCs were expressed at low levels in the terminal buds and at relatively high levels in the flowers and roots. CsNF-YC genes responded significantly to gibberellic acid (GA) and abscisic acid (ABA) treatments. We further focused on CsNF-YC6 because it may be involved in the growth and development of tea plants and the regulation of response to abiotic stresses. The CsNF-YC6 protein is localized in the nucleus. Arabidopsis that overexpressed CsNF-YC6 (CsNF-YC6-OE) showed increased seed germination and increased root length under ABA and GA treatments. In addition, the number of cauline leaves, stem lengths and silique numbers were significantly higher in overexpressing Arabidopsis lines than wild type under long-day growth conditions, and CsNF-YC6 promoted primary root growth and increased flowering in Arabidopsis. qPCR analysis showed that in CsNF-YC6-OE lines, flowering pathway-related genes were transcribed at higher levels than wild type. The investigation of the CsNF-YC gene has unveiled that CsNF-YC6 plays a pivotal role in plant growth, root and flower development, as well as responses to abiotic stress.
Collapse
Affiliation(s)
- Shengxiang Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (S.C.)
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Xujiao Wei
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (S.C.)
| | - Xiaoli Hu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (S.C.)
| | - Peng Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (S.C.)
| | - Kailin Chang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (S.C.)
| | - Dongyang Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (S.C.)
| | - Wei Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (S.C.)
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Dandan Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (S.C.)
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Qian Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (S.C.)
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Pinwu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (S.C.)
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Liqiang Tan
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (S.C.)
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China
| |
Collapse
|
31
|
Seo JS, Kim SH, Shim JS, Um T, Oh N, Park T, Kim YS, Oh SJ, Kim JK. The rice NUCLEAR FACTOR-YA5 and MICRORNA169a module promotes nitrogen utilization during nitrogen deficiency. PLANT PHYSIOLOGY 2023; 194:491-510. [PMID: 37723121 PMCID: PMC10756765 DOI: 10.1093/plphys/kiad504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023]
Abstract
Nitrogen (N) is essential for plant growth and development. Therefore, understanding its utilization is essential for improving crop productivity. However, much remains to be learned about plant N sensing and signaling. Here, rice (Oryza sativa) NUCLEAR FACTOR-YA5 (OsNF-YA5) expression was tightly regulated by N status and induced under N-deficient conditions. Overexpression (OE) of OsNF-YA5 in rice resulted in increased chlorophyll levels and delayed senescence compared to control plants under normal N conditions. Agronomic traits were significantly improved in OE plants and impaired in knockout mutants under N-deficient conditions. Using a dexamethasone-inducible system, we identified the putative targets of OsNF-YA5 that include amino acid, nitrate/peptide transporters, and NITRATE TRANSPORTER 1.1A (OsNRT1.1A), which functions as a key transporter in rice. OsNF-YA5 directly enhanced OsNRT1.1A expression and N uptake rate under N-deficient conditions. Besides, overexpression of OsNF-YA5 also enhanced the expression of GLUTAMINE SYNTHETASE 1/2 (GS1/2) and GLUTAMINE OXOGLUTARATE AMINOTRANSFERASE 1/2 (GOGAT1/2), increasing free amino acid contents under N-deficient conditions. Osa-miR169a expression showed an opposite pattern with OsNF-YA5 depending on N status. Further analysis revealed that osa-miR169a negatively regulates OsNF-YA5 expression and N utilization, demonstrating that an OsNF-YA5/osa-miR169a module tightly regulates rice N utilization for adaptation to N status.
Collapse
Affiliation(s)
- Jun Sung Seo
- GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Sung Hwan Kim
- Crop Biotechnology Institute, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Jae Sung Shim
- GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Taeyoung Um
- GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Nuri Oh
- Crop Biotechnology Institute, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Taehyeon Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Youn Shic Kim
- GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Se-Jun Oh
- LaSemilla Co. Ltd., Pyeongchang 25354, Korea
| | - Ju-Kon Kim
- GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea
- Crop Biotechnology Institute, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
- LaSemilla Co. Ltd., Pyeongchang 25354, Korea
| |
Collapse
|
32
|
Abd El Moneim D, Mansour H, Alshegaihi RM, Safhi FA, Alwutayd KM, Alshamrani R, Alamri A, Felembam W, Abuzaid AO, Magdy M. Evolutionary insights and expression dynamics of the CaNFYB transcription factor gene family in pepper ( Capsicum annuum) under salinity stress. Front Genet 2023; 14:1288453. [PMID: 38028611 PMCID: PMC10652888 DOI: 10.3389/fgene.2023.1288453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: The Capsicum annuum nuclear factor Y subunit B (CaNFYB) gene family plays a significant role in diverse biological processes, including plant responses to abiotic stressors such as salinity. Methods: In this study, we provide a comprehensive analysis of the CaNFYB gene family in pepper, encompassing their identification, structural details, evolutionary relationships, regulatory elements in promoter regions, and expression profiles under salinity stress. Results and discussion: A total of 19 CaNFYB genes were identified and subsequently characterized based on their secondary protein structures, revealing conserved domains essential for their functionality. Chromosomal distribution showed a non-random localization of these genes, suggesting potential clusters or hotspots for NFYB genes on specific chromosomes. The evolutionary analysis focused on pepper and comparison with other plant species indicated a complex tapestry of relationships with distinct evolutionary events, including gene duplication. Moreover, promoter cis-element analysis highlighted potential regulatory intricacies, with notable occurrences of light-responsive and stress-responsive binding sites. In response to salinity stress, several CaNFYB genes demonstrated significant temporal expression variations, particularly in the roots, elucidating their role in stress adaptation. Particularly CaNFYB01, CaNFYB18, and CaNFYB19, play a pivotal role in early salinity stress response, potentially through specific regulatory mechanisms elucidated by their cis-elements. Their evolutionary clustering with other Solanaceae family members suggests conserved ancestral functions vital for the family's survival under stress. This study provides foundational knowledge on the CaNFYB gene family in C. annuum, paving the way for further research to understand their functional implications in pepper plants and relative species and their potential utilization in breeding programs to enhance salinity tolerance.
Collapse
Affiliation(s)
- Diaa Abd El Moneim
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Hassan Mansour
- Department of Biological Sciences, Faculty of Science & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Rana M. Alshegaihi
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Fatmah Ahmed Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Rahma Alshamrani
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amnah Alamri
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wessam Felembam
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amani Omar Abuzaid
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud Magdy
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| |
Collapse
|
33
|
Jiang L, Ren Y, Jiang Y, Hu S, Wu J, Wang G. Characterization of NF-Y gene family and their expression and interaction analysis in Phalaenopsis orchid. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108143. [PMID: 37913748 DOI: 10.1016/j.plaphy.2023.108143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
The complex of Nuclear Factor Ys (NF-Ys), a family of heterotrimeric transcription factors composed of three unique subunits (NF-YA, NF-YB, and NF-YC), binds to the CCAAT box of eukaryotic promoters to activate or repress transcription of the downstream genes involved into various biological processes in plants. However, the systematic characterization of NF-Y gene family has not been elucidated in Phalaenopsis. A total of 24 NF-Y subunits (4 NF-YA, 9 NF-YB, and 11 NF-YC subunits) were identified in Phalaenopsis genome, whose exon/intron structures were highly differentiated among the PhNF-Y subunits. The distribution of motifs between coding regions of PhNF-YA and PhNF-YB/C was distinct. Segmental and tandem duplication events among paralogous PhNF-Ys were occurred. Six pairs of orthologous NF-Ys from Phalaenopsis and Arabidopsis and five pairs of orthologous NF-Ys from Phalaenopsis and rice involved in the phylogenetic gene synteny were identified. The various cis-elements being responsive to low-temperature, drought and ABA were distributed in the promoters of PhNF-Ys. qRT-PCR analysis indicated all of PhNF-Ys displayed the spatial specificity of expression in different tissues. Moreover, the expression levels of multiple PhNF-Ys significantly changed responding to low-temperature and ABA treatment. Yeast two hybrid and bimolecular fluorescence complementation assays approved the interaction of PhNF-YA1/3 with PhNF-YB6/PhNF-YC7, respectively, as well as PhNF-YB6 with PhNF-YC7. PhNF-YA1/3, PhNF-YB6, and PhNF-YC7 proteins were all localized in the nucleus. Further, transient overexpression of PhNF-YB6 and PhNF-YC7 promoted PhFT3 and repressed PhSVP expression in Phalaenopsis. These findings will facilitate to explore the role of PhNF-Ys in floral transition in Phalaenopsis orchid.
Collapse
Affiliation(s)
- Li Jiang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuepeng Ren
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yifan Jiang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shasha Hu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiayi Wu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guangdong Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
34
|
Tang M, Gao X, Meng W, Lin J, Zhao G, Lai Z, Lin Y, Chen Y. Transcription factors NF-YB involved in embryogenesis and hormones responses in Dimocarpus Longan Lour. FRONTIERS IN PLANT SCIENCE 2023; 14:1255436. [PMID: 37841620 PMCID: PMC10570845 DOI: 10.3389/fpls.2023.1255436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023]
Abstract
Introduction NF-YB transcription factor is an important regulatory factor in plant embryonic development. Results In this study, 15 longan NF-YB (DlNF-YB) family genes were systematically identified in the whole genome of longan, and a comprehensive bioinformatics analysis of DlNF-YB family was performed. Comparative transcriptome analysis of DlNF-YBs expression in different tissues, early somatic embryogenesis (SE), and under different light and temperature treatments revealed its specific expression profiles and potential biological functions in longan SE. The qRT-PCR results implied that the expression patterns of DlNF-YBs were different during SE and the zygotic embryo development of longan. Supplementary 2,4-D, NPA, and PP333 in longan EC notably inhibited the expression of DlNF-YBs; ABA, IAA, and GA3 suppressed the expressions of DlNF-YB6 and DlNF-YB9, but IAA and GA3 induced the other DlNF-YBs. Subcellular localization indicated that DlNF-YB6 and DlNF-YB9 were located in the nucleus. Furthermore, verification by the modified 5'RNA Ligase Mediated Rapid Amplification of cDNA Ends (5' RLM-RACE) method demonstrated that DlNF-YB6 was targeted by dlo-miR2118e, and dlo-miR2118e regulated longan somatic embryogenesis (SE) by targeting DlNF-YB6. Compared with CaMV35S- actuated GUS expression, DlNF-YB6 and DlNF-YB9 promoters significantly drove GUS expression. Meanwhile, promoter activities were induced to the highest by GA3 but suppressed by IAA. ABA induced the activities of the promoter of DlNF-YB9, whereas it inhibited the promoter of DlNF-YB6. Discussion Hence, DlNF-YB might play a prominent role in longan somatic and zygotic embryo development, and it is involved in complex plant hormones signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
35
|
Wang W, Gao L, Zhao T, Chen J, Chen T, Lin W. Arabidopsis NF-YC7 Interacts with CRY2 and PIF4/5 to Repress Blue Light-Inhibited Hypocotyl Elongation. Int J Mol Sci 2023; 24:12444. [PMID: 37569819 PMCID: PMC10419918 DOI: 10.3390/ijms241512444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 08/13/2023] Open
Abstract
Light is an important environmental factor. Plants adapt to their light environment by developing the optimal phenotypes. Light-mediated hypocotyl growth is an ideal phenotype for studying how plants respond to light. Thus far, many signaling components in light-mediated hypocotyl growth have been reported. Here, we focused on identifying the transcription factors (TFs) involved in blue light-mediated hypocotyl growth. We analyzed the blue-light-mediated hypocotyl lengths of Arabidopsis TF-overexpressing lines and identified three NF-YC proteins, NF-YC7, NF-YC5, and NF-YC8 (NF-YCs being the short name), as the negative regulators in blue light-inhibited hypocotyl elongation. NF-YC-overexpressing lines developed longer hypocotyls than those of the wild type under blue light, while the deficient mutants nf-yc5nf-yc7 and nf-yc7nf-yc8 failed to exhibit hypocotyl elongation under blue light. NF-YCs physically interacted with CRY2 (cryptochrome 2) and PIF4/5 (phytochrome interacting factor 4 or 5), while the NF-YCs-PIF4/5 interactions were repressed by CRY2. Moreover, the overexpression of CRY2 or deficiency of PIF4/5 repressed NF-YC7-induced hypocotyl elongation under blue light. Further investigation revealed that NF-YC7 may increase CRY2 degradation and regulate PIF4/5 activities under blue light. Taken together, this study will provide new insight into the mechanism of how blue light inhibits hypocotyl elongation.
Collapse
Affiliation(s)
- Wei Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Ningde Normal University, Ningde 352100, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin Gao
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianliang Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiamei Chen
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ting Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
36
|
Siriwardana CL, Risinger JR, Carpenter EM, Holt BF. Analysis of gene duplication within the Arabidopsis NUCLEAR FACTOR Y, subunit B (NF-YB) protein family reveals domains under both purifying and diversifying selection. PLoS One 2023; 18:e0289332. [PMID: 37531316 PMCID: PMC10396019 DOI: 10.1371/journal.pone.0289332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023] Open
Abstract
Gene duplication is an evolutionary mechanism that provides new genetic material. Since gene duplication is a major driver for molecular evolution, examining the fate of duplicated genes is an area of active research. The fate of duplicated genes can include loss, subfunctionalization, and neofunctionalization. In this manuscript, we chose to experimentally study the fate of duplicated genes using the Arabidopsis NUCLEAR FACTOR Y (NF-Y) transcription factor family. NF-Y transcription factors are heterotrimeric complexes, composed of NF-YA, NF-YB, and NF-YC. NF-YA subunits are responsible for nucleotide-specific binding to a CCAAT cis-regulatory element. NF-YB and NF-YC subunits make less specific, but essential complex-stabilizing contacts with the DNA flanking the core CCAAT pentamer. While ubiquitous in eukaryotes, each NF-Y family has expanded by duplication in the plant lineage. For example, the model plant Arabidopsis contains 10 each of the NF-Y subunits. Here we examine the fate of duplicated NF-YB proteins in Arabidopsis, which are composed of central histone fold domains (HFD) and less conserved flanking regions (N- and C-termini). Specifically, the principal question we wished to address in this manuscript was to what extent can the 10 Arabidopsis NF-YB paralogs functionally substitute the genes NF-YB2 and NF-YB3 in the promotion of photoperiodic flowering? Our results demonstrate that the conserved histone fold domains (HFD) may be under pressure for purifying (negative) selection, while the non-conserved N- and C-termini may be under pressure for diversifying (positive) selection, which explained each paralog's ability to substitute. In conclusion, our data demonstrate that the N- and C-termini may have allowed the duplicated genes to undergo functional diversification, allowing the retention of the duplicated genes.
Collapse
Affiliation(s)
- Chamindika L Siriwardana
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- Department of Science and Mathematics, Texas A&M University-Central Texas, Killeen, Texas, United States of America
| | - Jan R Risinger
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- Myriad Genetics Corporation, Salt Lake City, Utah, United States of America
| | - Emily Mills Carpenter
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- Aquatic Biomonitoring, Austin, Texas, United States of America
| | - Ben F Holt
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- AgBiome, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
37
|
Wang T, Zou H, Ren S, Jin B, Lu Z. Genome-Wide Identification, Characterization, and Expression Analysis of NF-Y Gene Family in Ginkgo biloba Seedlings and GbNF-YA6 Involved in Heat-Stress Response and Tolerance. Int J Mol Sci 2023; 24:12284. [PMID: 37569658 PMCID: PMC10418864 DOI: 10.3390/ijms241512284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/22/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Nuclear factor Y (NF-Y) transcription factors play an essential role in regulating plant growth, development, and stress responses. Despite extensive research on the NF-Y gene family across various species, the knowledge regarding the NF-Y family in Ginkgo biloba remains unknown. In this study, we identified a total of 25 NF-Y genes (seven GbNF-YAs, 12 GbNF-YBs, and six GbNF-YCs) in the G. biloba genome. We characterized the gene structure, conserved motifs, multiple sequence alignments, and phylogenetic relationships with other species (Populus and Arabidopsis). Additionally, we conducted a synteny analysis, which revealed the occurrence of segment duplicated NF-YAs and NF-YBs. The promoters of GbNF-Y genes contained cis-acting elements related to stress response, and miRNA-mRNA analysis showed that some GbNF-YAs with stress-related cis-elements could be targeted by the conserved miRNA169. The expression of GbNF-YA genes responded to drought, salt, and heat treatments, with GbNF-YA6 showing significant upregulation under heat and drought stress. Subcellular localization indicated that GbNF-YA6 was located in both the nucleus and the membrane. Overexpressing GbNF-YA6 in ginkgo callus significantly induced the expression of heat-shock factors (GbHSFs), and overexpressing GbNF-YA6 in transgenic Arabidopsis enhanced its heat tolerance. Additionally, Y2H assays demonstrated that GbNF-YA6 could interact with GbHSP at the protein level. Overall, our findings offer novel insights into the role of GbNF-YA in enhancing abiotic stress tolerance and warrant further functional research of GbNF-Y genes.
Collapse
Affiliation(s)
| | | | | | - Biao Jin
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China; (T.W.); (H.Z.); (S.R.)
| | - Zhaogeng Lu
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China; (T.W.); (H.Z.); (S.R.)
| |
Collapse
|
38
|
Jiang Z, Wang Y, Li W, Wang Y, Liu X, Ou X, Su W, Song S, Chen R. Genome-Wide Identification of the NF-Y Gene Family and Their Involvement in Bolting and Flowering in Flowering Chinese Cabbage. Int J Mol Sci 2023; 24:11898. [PMID: 37569274 PMCID: PMC10418651 DOI: 10.3390/ijms241511898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Flowering Chinese cabbage (Brassica campestris L. ssp. Chinensis var. utilis Tsen et Lee) is a widely consumed vegetable in southern China with significant economic value. Developing product organs in the flowering Chinese cabbage involves two key processes: bolting and flowering. Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor known for its crucial role in various plant developmental processes. However, there is limited information available on the involvement of this gene family during flowering during Chinese cabbage development. In this study, 49 BcNF-Y genes were identified and characterized along with their physicochemical properties, gene structure, chromosomal location, collinearity, and expression patterns. We also conducted subcellular localization, yeast two-hybrid, and transcriptional activity assays on selected BcNF-Y genes. The findings of this study revealed enhanced expression levels of specific BcNF-Y genes during the stalk development and flowering stages in flowering Chinese cabbage. Notably, BcNF-YA8, BcNF-YB14, BcNF-YB20, and BcNF-YC5 interacted with BcRGA1, a negative regulator of GA signaling, indicating their potential involvement in GA-mediated stalk development. This study provides valuable insights into the role of BcNF-Y genes in flowering Chinese cabbage development and suggests that they are potential candidates for further investigating the key regulators of cabbage bolting and flowering.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Riyuan Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.J.); (Y.W.); (W.L.); (Y.W.); (X.L.); (X.O.); (W.S.); (S.S.)
| |
Collapse
|
39
|
Rani V, Joshi DC, Joshi P, Singh R, Yadav D. "Millet Models" for harnessing nuclear factor-Y transcription factors to engineer stress tolerance in plants: current knowledge and emerging paradigms. PLANTA 2023; 258:29. [PMID: 37358736 DOI: 10.1007/s00425-023-04186-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
MAIN CONCLUSION The main purpose of this review is to shed light on the role of millet models in imparting climate resilience and nutritional security and to give a concrete perspective on how NF-Y transcription factors can be harnessed for making cereals more stress tolerant. Agriculture faces significant challenges from climate change, bargaining, population, elevated food prices, and compromises with nutritional value. These factors have globally compelled scientists, breeders, and nutritionists to think of some options that can combat the food security crisis and malnutrition. To address these challenges, mainstreaming the climate-resilient and nutritionally unparalleled alternative crops like millet is a key strategy. The C4 photosynthetic pathway and adaptation to low-input marginal agricultural systems make millets a powerhouse of important gene and transcription factor families imparting tolerance to various kinds of biotic and abiotic stresses. Among these, the nuclear factor-Y (NF-Y) is one of the prominent transcription factor families that regulate diverse genes imparting stress tolerance. The primary purpose of this article is to shed light on the role of millet models in imparting climate resilience and nutritional security and to give a concrete perspective on how NF-Y transcription factors can be harnessed for making cereals more stress tolerant. Future cropping systems could be more resilient to climate change and nutritional quality if these practices were implemented.
Collapse
Affiliation(s)
- Varsha Rani
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - D C Joshi
- ICAR-Vivekananda Institute of Hill Agriculture, Almora, Uttarakhand, 263601, India
| | - Priyanka Joshi
- Plant and Environmental Sciences, 113 Biosystems Research Complex, Clemson University, Clemson, South Carolina, 29634, USA
| | - Rajesh Singh
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Dinesh Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India.
| |
Collapse
|
40
|
Swathik Clarancia P, Naveenarani M, Ashwin Narayan J, Krishna SS, Thirugnanasambandam PP, Valarmathi R, Suresha GS, Gomathi R, Kumar RA, Manickavasagam M, Jegadeesan R, Arun M, Hemaprabha G, Appunu C. Genome-Wide Identification, Characterization and Expression Analysis of Plant Nuclear Factor (NF-Y) Gene Family Transcription Factors in Saccharum spp. Genes (Basel) 2023; 14:1147. [PMID: 37372327 DOI: 10.3390/genes14061147] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/16/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Plant nuclear factor (NF-Y) is a transcriptional activating factor composed of three subfamilies: NF-YA, NF-YB, and NF-YC. These transcriptional factors are reported to function as activators, suppressors, and regulators under different developmental and stress conditions in plants. However, there is a lack of systematic research on the NF-Y gene subfamily in sugarcane. In this study, 51 NF-Y genes (ShNF-Y), composed of 9 NF-YA, 18 NF-YB, and 24 NF-YC genes, were identified in sugarcane (Saccharum spp.). Chromosomal distribution analysis of ShNF-Ys in a Saccharum hybrid located the NF-Y genes on all 10 chromosomes. Multiple sequence alignment (MSA) of ShNF-Y proteins revealed conservation of core functional domains. Sixteen orthologous gene pairs were identified between sugarcane and sorghum. Phylogenetic analysis of NF-Y subunits of sugarcane, sorghum, and Arabidopsis showed that ShNF-YA subunits were equidistant while ShNF-YB and ShNF-YC subunits clustered distinctly, forming closely related and divergent groups. Expression profiling under drought treatment showed that NF-Y gene members were involved in drought tolerance in a Saccharum hybrid and its drought-tolerant wild relative, Erianthus arundinaceus. ShNF-YA5 and ShNF-YB2 genes had significantly higher expression in the root and leaf tissues of both plant species. Similarly, ShNF-YC9 had elevated expression in the leaf and root of E. arundinaceus and in the leaf of a Saccharum hybrid. These results provide valuable genetic resources for further sugarcane crop improvement programs.
Collapse
Affiliation(s)
- Peter Swathik Clarancia
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, India
| | - Murugan Naveenarani
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, India
- Bharathidasan University, Tiruchirappalli 620024, India
| | - Jayanarayanan Ashwin Narayan
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, India
| | - Sakthivel Surya Krishna
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, India
| | | | - Ramanathan Valarmathi
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, India
| | | | - Raju Gomathi
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, India
| | - Raja Arun Kumar
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, India
| | - Markandan Manickavasagam
- Department of Biotechnology, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Ramalingam Jegadeesan
- Centre for Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Muthukrishnan Arun
- Department of Biotechnology, Bharathiar University, Coimbatore 641046, India
| | - Govindakurup Hemaprabha
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, India
| | - Chinnaswamy Appunu
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, India
| |
Collapse
|
41
|
Li L, Ren X, Shao L, Huang X, Zhang C, Wang X, Yang J, Li C. Comprehensive Analysis of the NF-YB Gene Family and Expression under Abiotic Stress and Hormone Treatment in Larix kaempferi. Int J Mol Sci 2023; 24:ijms24108910. [PMID: 37240255 DOI: 10.3390/ijms24108910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
NF-YB, a subfamily of Nuclear Factor Y (NF-Y) transcription factor, play crucial role in many biological processes of plant growth and development and abiotic stress responses, and they can therefore be good candidate factors for breeding stress-resistant plants. However, the NF-YB proteins have not yet been explored in Larix kaempferi, a tree species with high economic and ecological values in northeast China and other regions, limiting the breeding of anti-stress L. kaempferi. In order to explore the roles of NF-YB transcription factors in L. kaempferi, we identified 20 LkNF-YB family genes from L. kaempferi full-length transcriptome data and carried out preliminary characterization of them through series of analyses on their phylogenetic relationships, conserved motif structure, subcellular localization prediction, GO annotation, promoter cis-acting elements as well as expression profiles under treatment of phytohormones (ABA, SA, MeJA) and abiotic stresses (salt and drought). The LkNF-YB genes were classified into three clades through phylogenetic analysis and belong to non-LEC1 type NF-YB transcription factors. They have 10 conserved motifs; all genes contain a common motif, and their promoters have various phytohormones and abiotic stress related cis-acting elements. Quantitative real time reverse transcription PCR (RT-qPCR) analysis showed that the sensitivity of the LkNF-YB genes to drought and salt stresses was higher in leaves than roots. The sensitivity of LKNF-YB genes to ABA, MeJA, SA stresses was much lower than that to abiotic stress. Among the LkNF-YBs, LkNF-YB3 showed the strongest responses to drought and ABA treatments. Further protein interaction prediction analysis for LkNF-YB3 revealed that LkNF-YB3 interacts with various factors associated with stress responses and epigenetic regulation as well as NF-YA/NF-YC factors. Taken together, these results unveiled novel L. kaempferi NF-YB family genes and their characteristics, providing the basic knowledge for further in-depth studies on their roles in abiotic stress responses of L. kaempferi.
Collapse
Affiliation(s)
- Lu Li
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Xi Ren
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Liying Shao
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Xun Huang
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Chunyan Zhang
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Xuhui Wang
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Jingli Yang
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Chenghao Li
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| |
Collapse
|
42
|
Zhang H, Liu S, Ren T, Niu M, Liu X, Liu C, Wang H, Yin W, Xia X. Crucial Abiotic Stress Regulatory Network of NF-Y Transcription Factor in Plants. Int J Mol Sci 2023; 24:ijms24054426. [PMID: 36901852 PMCID: PMC10002336 DOI: 10.3390/ijms24054426] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Nuclear Factor-Y (NF-Y), composed of three subunits NF-YA, NF-YB and NF-YC, exists in most of the eukaryotes and is relatively conservative in evolution. As compared to animals and fungi, the number of NF-Y subunits has significantly expanded in higher plants. The NF-Y complex regulates the expression of target genes by directly binding the promoter CCAAT box or by physical interaction and mediating the binding of a transcriptional activator or inhibitor. NF-Y plays an important role at various stages of plant growth and development, especially in response to stress, which attracted many researchers to explore. Herein, we have reviewed the structural characteristics and mechanism of function of NF-Y subunits, summarized the latest research on NF-Y involved in the response to abiotic stresses, including drought, salt, nutrient and temperature, and elaborated the critical role of NF-Y in these different abiotic stresses. Based on the summary above, we have prospected the potential research on NF-Y in response to plant abiotic stresses and discussed the difficulties that may be faced in order to provide a reference for the in-depth analysis of the function of NF-Y transcription factors and an in-depth study of plant responses to abiotic stress.
Collapse
Affiliation(s)
- Han Zhang
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shujing Liu
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Tianmeng Ren
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Mengxue Niu
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao Liu
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chao Liu
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Houling Wang
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Weilun Yin
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Correspondence: (W.Y.); (X.X.)
| | - Xinli Xia
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Correspondence: (W.Y.); (X.X.)
| |
Collapse
|
43
|
Zhong V, Archibald BN, Brophy JAN. Transcriptional and post-transcriptional controls for tuning gene expression in plants. CURRENT OPINION IN PLANT BIOLOGY 2023; 71:102315. [PMID: 36462457 PMCID: PMC12061055 DOI: 10.1016/j.pbi.2022.102315] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Plant biotechnologists seek to modify plants through genetic reprogramming, but our ability to precisely control gene expression in plants is still limited. Here, we review transcription and translation in the model plants Arabidopsis thaliana and Nicotiana benthamiana with an eye toward control points that may be used to predictably modify gene expression. We highlight differences in gene expression requirements between these plants and other species, and discuss the ways in which our understanding of gene expression has been used to engineer plants. This review is intended to serve as a resource for plant scientists looking to achieve precise control over gene expression.
Collapse
Affiliation(s)
- Vivian Zhong
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Bella N Archibald
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
44
|
The NF-Y Transcription Factor Family in Watermelon: Re-Characterization, Assembly of ClNF-Y Complexes, Hormone- and Pathogen-Inducible Expression and Putative Functions in Disease Resistance. Int J Mol Sci 2022; 23:ijms232415778. [PMID: 36555422 PMCID: PMC9778975 DOI: 10.3390/ijms232415778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor that binds to the CCAAT cis-element in the promoters of target genes and plays critical roles in plant growth, development, and stress responses. In the present study, we aimed to re-characterize the ClNF-Y family in watermelon, examine the assembly of ClNF-Y complexes, and explore their possible involvement in disease resistance. A total of 25 ClNF-Y genes (7 ClNF-YAs, 10 ClNF-YBs, and 8 ClNF-YCs) were identified in the watermelon genome. The ClNF-Y family was comprehensively characterized in terms of gene and protein structures, phylogenetic relationships, and evolution events. Different types of cis-elements responsible for plant growth and development, phytohormones, and/or stress responses were identified in the promoters of the ClNF-Y genes. ClNF-YAs and ClNF-YCs were mainly localized in the nucleus, while most of the ClNF-YBs were localized in the cytoplasm of cells. ClNF-YB5, -YB6, -YB7, -YB8, -YB9, and -YB10 interacted with ClNF-YC2, -YC3, -YC4, -YC5, -YC6, -YC7, and -YC8, while ClNF-YB1 and -YB3 interacted with ClNF-YC1. A total of 37 putative ClNF-Y complexes were identified, e.g., ClNF-YA1, -YA2, -YA3, and -YA7 assembled into 13, 8, 8, and 8 ClNF-Y complexes with different ClNF-YB/-YC heterodimers. Most of the ClNF-Y genes responded with distinct expression patterns to defense hormones such as salicylic acid, methyl jasmonate, abscisic acid, and ethylene precursor 1-aminocyclopropane-1-carboxylate, and to infection by the vascular infecting fungus Fusarium oxysporum f. sp. niveum. Overexpression of ClNF-YB1, -YB8, -YB9, ClNF-YC2, and -YC7 in transgenic Arabidopsis resulted in an earlier flowering phenotype. Overexpression of ClNF-YB8 in Arabidopsis led to enhanced resistance while overexpression of ClNF-YA2 and -YC2 resulted in decreased resistance against Botrytis cinerea. Similarly, overexpression of ClNF-YA3, -YB1, and -YC4 strengthened resistance while overexpression of ClNF-YA2 and -YB8 attenuated resistance against Pseudomonas syringae pv. tomato DC3000. The re-characterization of the ClNF-Y family provides a basis from which to investigate the biological functions of ClNF-Y genes in respect of growth, development, and stress response in watermelon, and the identification of the functions of some ClNF-Y genes in disease resistance enables further exploration of the molecular mechanism of ClNF-Ys in the regulation of watermelon immunity against diverse pathogens.
Collapse
|
45
|
Fu R, Wang J, Zhou M, Ren X, Hua J, Liang M. Five NUCLEAR FACTOR-Y subunit B genes in rapeseed (Brassica napus) promote flowering and root elongation in Arabidopsis. PLANTA 2022; 256:115. [PMID: 36371542 DOI: 10.1007/s00425-022-04030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Heterologous expression of BnNF-YB2, BnNF-YB3, BnNF-YB4, BnNF-YB5, or BnNF-YB6 from rapeseed promotes the floral process and also affects root development in Arabidopsis. The transcriptional regulator NUCLEAR FACTOR-Y (NF-Y) is a heterotrimeric complex composed of NF-YA, NF-YB, and NF-YC proteins and is ubiquitous in yeast, animal, and plant systems. In this study, we found that five NF-YB proteins from rapeseed (Brassica napus), including BnNF-YB2, BnNF-YB3, BnNF-YB4, BnNF-YB5, and BnNF-YB6 (BnNF-YB2/3/4/5/6), all function in photoperiodic flowering and root elongation. Sequence alignment and phylogenetic analysis showed that BnNF-YB2/3 and BnNF-YB4/5/6 were clustered with Arabidopsis AtNF-YB2 and AtNF-YB3, respectively, implying that these NF-YBs are evolutionarily and functionally conserved. In support of this hypothesis, the heterologous expression of individual BnNF-YB2, 3, 4, 5, or 6 in Arabidopsis promoted early flowering under a long-day photoperiod. Further analysis suggested that BnNF-YB 2/3/4/5/6 elevated the expression of key downstream flowering time genes including CO, FT, LFY and SOC1. Promoter-GUS fusion analysis showed that the five BnNF-YBs were expressed in a variety of tissues at various developmental stages and GFP fusion analysis revealed that all BnNF-YBs were localized to the nucleus. In addition, we demonstrated that the heterologous expression of individual BnNF-YB2/3/4/5/6 in Arabidopsis promoted root elongation and increased the number of root tips formed under both normal and treatment with simulators of abiotic stress conditions.
Collapse
Affiliation(s)
- Ruixin Fu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210000, Jiangsu, China
- School of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, Henan, China
| | - Ji Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210000, Jiangsu, China
| | - Mengjia Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210000, Jiangsu, China
| | - Xuyang Ren
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210000, Jiangsu, China
| | - Jianyang Hua
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210000, Jiangsu, China
| | - Mingxiang Liang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210000, Jiangsu, China.
| |
Collapse
|
46
|
Ou S, Xu Z, Mai C, Li B, Wang J. Ectopic expression of GmNF-YA8 in Arabidopsis delays flowering via modulating the expression of gibberellic acid biosynthesis- and flowering-related genes and promotes lateral root emergence in low phosphorus conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:1033938. [PMID: 36340418 PMCID: PMC9630906 DOI: 10.3389/fpls.2022.1033938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
NUCLEAR FACTOR Y subunit alpha (NF-YA), together with NF-YB and NF-YC, regulates plant growth and development, as well as plant responses to biotic and abiotic stresses. Although extensive studies have examined the functions of NF-YAs in Arabidopsis thaliana, the roles of NF- YAs in Glycinme max are poorly understood. In this study, we identified a phosphorus (P) starvation-responsive NF-YA8 in soybean. The expression of GmNF-YA8 is induced by low P or low nitrogen in leaves, but not by potassium or iron starvation, respectively. GmNF-YA8 is localized in the nucleus and plasma membrane. Ectopic expression of GmNF-YA8 inhibits plant growth and delayed flowering in Arabidopsis. Exogenous application of gibberellic acid (GA) rescues the delayed flowering phenotype in Arabidopsis overexpressing GmNF-YA8 lines GmNF-YA8OE-05 and GmNF-YA8OE-20. Moreover, quantitative real time PCR (qRT-PCR) verified that overexpression of GmNF-YA8 downregulates GA20ox2 and GA3ox2 expression, but upregulates GA2ox2 and GA2ox3 that encode enzymes, which inactive bioactive GAs. Consistent with the late flowering phenotype of Arabidopsis trangenic lines that overexpress GmNF-YA8, the transcript levels of flowering-promoting genes AP1, CO, LFY, and SOC1 are reduced. In addition, overexpression of GmNF-YA8 promotes the emergence of lateral root (LR) primordium from epidermis rather than the initiation of LR in low P, and increases the LR density in low nitrogen. Our results provide insights into the roles of GmNF-YA8.
Collapse
Affiliation(s)
- Siyan Ou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Root Biology Center & College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China
| | - Zhihao Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Root Biology Center & College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China
| | - Cuishan Mai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Root Biology Center & College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China
| | - Bodi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Root Biology Center & College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China
| | - Jinxiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Root Biology Center & College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China
| |
Collapse
|
47
|
Yang Y, Wang B, Wang J, He C, Zhang D, Li P, Zhang J, Li Z. Transcription factors ZmNF-YA1 and ZmNF-YB16 regulate plant growth and drought tolerance in maize. PLANT PHYSIOLOGY 2022; 190:1506-1525. [PMID: 35861438 PMCID: PMC9516732 DOI: 10.1093/plphys/kiac340] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/25/2022] [Indexed: 05/26/2023]
Abstract
The identification of drought stress regulatory genes is crucial for the genetic improvement of maize (Zea mays L.) yield. Nuclear factors Y (NF-Ys) are important transcription factors, but their roles in the drought stress tolerance of plants and underlying molecular mechanisms are largely unknown. In this work, we used yeast two-hybrid screening to identify potential interactors of ZmNF-YB16 and confirmed the interaction between ZmNF-YA1 and ZmNF-YB16-YC17 and between ZmNF-YA7 and ZmNF-YB16-YC17. ZmNF-YB16 interacted with ZmNF-YC17 via its histone fold domain to form a heterodimer in the cytoplasm and then entered the nucleus to form a heterotrimer with ZmNF-YA1 or ZmNF-YA7 under osmotic stress. Overexpression of ZmNF-YA1 improved drought and salt stress tolerance and root development of maize, whereas zmnf-ya1 mutants exhibited drought and salt stress sensitivity. ZmNF-YA1-mediated transcriptional regulation, especially in JA signaling, histone modification, and chromatin remodeling, could underlie the altered stress tolerance of zmnf-ya1 mutant plants. ZmNF-YA1 bound to promoter CCAAT motifs and directly regulated the expression of multiple genes that play important roles in stress responses and plant development. Comparison of ZmNF-YB16- and ZmNF-YA1-regulated genes showed that ZmNF-YA1 and ZmNF-YB16 have similar biological functions in stress responses but varied functions in other biological processes. Taken together, ZmNF-YA1 is a positive regulator of plant drought and salt stress responses and is involved in the root development of maize, and ZmNF-Y complexes with different subunits may have discrepant functions.
Collapse
Affiliation(s)
| | | | | | - Chunmei He
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Dengfeng Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Peng Li
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Juren Zhang
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | | |
Collapse
|
48
|
Huang Y, Ma H, Wang X, Cui T, Han G, Zhang Y, Wang C. Expression patterns of the poplar NF-Y gene family in response to Alternaria alternata and hormone treatment and the role of PdbNF-YA11 in disease resistance. Front Bioeng Biotechnol 2022; 10:956271. [PMID: 36185440 PMCID: PMC9523018 DOI: 10.3389/fbioe.2022.956271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Plant nuclear factor-Y (NF-Y) transcription factors (TFs) are key regulators of growth and stress resistance. However, the role of NF-Y TFs in poplar in response to biotic stress is still unclear. In this study, we cloned 26 PdbNF-Y encoding genes in the hybrid poplar P. davidiana × P. bollena, including 12 PdbNF-YAs, six PdbNF-YBs, and eight PdbNF-YCs. Their physical and chemical parameters, conserved domains, and phylogeny were subsequently analyzed. The protein–protein interaction (PPI) network showed that the three PdbNF-Y subunits may interact with NF-Y proteins belonging to two other subfamilies and other TFs. Tissue expression analysis revealed that PdbNF-Ys exhibited three distinct expression patterns in three tissues. Cis-elements related to stress-responsiveness were found in the promoters of PdbNF-Ys, and most PdbNF-Ys were shown to be differentially expressed under Alternaria alternata and hormone treatments. Compared with the PdbNF-YB and PdbNF-YC subfamilies, more PdbNF-YAs were significantly induced under the two treatments. Moreover, loss- and gain-of-function analyses showed that PdbNF-YA11 plays a positive role in poplar resistance to A. alternata. Additionally, RT‒qPCR analyses showed that overexpression and silencing PdbNF-YA11 altered the transcript levels of JA-related genes, including LOX, AOS, AOC, COI, JAZ, ORCA, and MYC, suggesting that PdbNF-YA11-mediated disease resistance is related to activation of the JA pathway. Our findings will contribute to functional analysis of NF-Y genes in woody plants, especially their roles in response to biotic stress.
Collapse
|
49
|
Zhang M, Zheng H, Jin L, Xing L, Zou J, Zhang L, Liu C, Chu J, Xu M, Wang L. miR169o and ZmNF-YA13 act in concert to coordinate the expression of ZmYUC1 that determines seed size and weight in maize kernels. THE NEW PHYTOLOGIST 2022; 235:2270-2284. [PMID: 35713356 DOI: 10.1111/nph.18317] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
MicroRNAs (miRNAs) play key regulatory roles in seed development and emerge as new key targets for engineering grain size and yield. The Zma-miRNA169 family is highly expressed during maize seed development, but its functional roles in seed development remain elusive. Here, we generated zma-miR169o and ZmNF-YA13 transgenic plants. Phenotypic and genetic analyses were performed on these lines. Seed development and auxins contents were investigated. Overexpression of maize miRNA zma-miR169o increases seed size and weight, whereas the opposite is true when its expression is suppressed. Further studies revealed that zma-miR169 acts by negatively regulating its target gene, a transcription factor ZmNF-YA13 that also plays a key role in determining seed size. We demonstrate that ZmNF-YA13 regulates the expression of the auxin biosynthetic gene ZmYUC1, which modulates auxin levels in the early developing seeds and determines the number of endosperm cells, thereby governing maize seed size and ultimately yield. Overall, our present study has identified zma-miR169o and ZmNF-YA13 that form a functional module regulating auxin accumulation in maize seeds and playing an important role in determining maize seed size and yield, providing a set of novel molecular tools for yield improvement in molecular breeding and genetic engineering.
Collapse
Affiliation(s)
- Min Zhang
- Biotechnology Research Institute, CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, 100081, Beijing, China
| | - Hongyan Zheng
- Biotechnology Research Institute, CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, 100081, Beijing, China
- National Nanfan Research Institute (Sanya), 572022, Sanya, Hainan, China
| | - Lian Jin
- Biotechnology Research Institute, CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, 100081, Beijing, China
| | - Lijuan Xing
- Biotechnology Research Institute, CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, 100081, Beijing, China
| | - Junjie Zou
- Biotechnology Research Institute, CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, 100081, Beijing, China
| | - Lan Zhang
- Biotechnology Research Institute, CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, 100081, Beijing, China
| | - Cuimei Liu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100039, Beijing, China
| | - Miaoyun Xu
- Biotechnology Research Institute, CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, 100081, Beijing, China
| | - Lei Wang
- Biotechnology Research Institute, CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, 100081, Beijing, China
- National Nanfan Research Institute (Sanya), 572022, Sanya, Hainan, China
| |
Collapse
|
50
|
Yu J, Yuan Y, Zhang W, Song T, Hou X, Kong L, Cui G. Overexpression of an NF-YC2 gene confers alkali tolerance to transgenic alfalfa ( Medicago sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:960160. [PMID: 35991397 PMCID: PMC9389336 DOI: 10.3389/fpls.2022.960160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Alkaline stress severely limits plant growth and yield worldwide. NF-YC transcription factors (TFs) respond to abiotic stress by activating gene expression. However, the biological function of NF-YC TFs in alfalfa (Medicago sativa L.) is not clear. In our study, an NF-YC2 gene was identified and transgenic plants were obtained by constructing overexpression vector and cotyledon node transformation system in alfalfa. The open reading frame of MsNF-YC2 is 879 bp with 32.4 kDa molecular mass. MsNF-YC2 showed tissue expression specificity and was induced by a variety of abiotic stresses including drought, salt, and alkali stress in alfalfa. Under alkali stress treatment, transgenic plants exhibited higher levels of antioxidant enzyme activities and proline (Pro), correlating with a lower levels of hydrogen peroxide (H2O2), superoxide anion (O2 -) compared with wild-type (WT) plants. Transcriptomic results showed that overexpression of MsNF-YC2 regulated the expression of phytohormone signal transduction and photosynthesis-related genes under normal and alkaline stress treatments. These results suggest that the MsNF-YC2 gene plays crucial role enhance alkali adaptation abilities in alfalfa.
Collapse
|