1
|
Guedes LM, Aguilera N, Kuster VC, da Silva Carneiro RG, de Oliveira DC. Integrated insights into the cytological, histochemical, and cell wall composition features of Espinosa nothofagi (Hymenoptera) gall tissues: implications for functionality. PROTOPLASMA 2025; 262:149-165. [PMID: 39249158 DOI: 10.1007/s00709-024-01985-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/25/2024] [Indexed: 09/10/2024]
Abstract
Many insect-induced galls are considered complex structures due to their tissue compartmentalization and multiple roles performed by them. The current study investigates the complex interaction between Nothofagus obliqua host plant and the hymenopteran gall-inducer Espinosa nothofagi, focusing on cell wall properties and cytological features. The E. nothofagi galls present an inner cortex with nutritive and storage tissues, as well as outer cortex with epidermis, chlorenchyma, and water-storing parenchyma. The water-storing parenchyma cells are rich in pectins, heteromannans, and xyloglucans in their walls, and have large vacuoles. Homogalacturonans contribute to water retention, and periplasmic spaces function as additional water reservoirs. Nutritive storage cell walls support nutrient storage, with plasmodesmata facilitating nutrient mobilization crucial for larval nutrition. Their primary and sometimes thick secondary cell walls support structural integrity and act as a carbon reserve. The absent labeling of non-cellulosic epitopes indicates a predominantly cellulosic nature in nutritive cell walls, facilitating larval access to lipid, protein, and reducing sugar-rich contents. The nutritive tissue, with functional chloroplasts and high metabolism-related organelles, displays signs of self-sufficiency, emphasizing its role in larval nutrition and cellular maintenance. Overall, the intricate cell wall composition in E. nothofagi galls showcases adaptations for water storage, nutrient mobilization, and larval nutrition, contributing significantly to our understanding of plant-insect interactions.
Collapse
Affiliation(s)
- Lubia María Guedes
- Laboratorio de Semioquímica Aplicada, Facultad de Ciencias Forestales, Universidad de Concepción, Casilla 160‑C, 4030000, Concepción, Chile
| | - Narciso Aguilera
- Laboratorio de Semioquímica Aplicada, Facultad de Ciencias Forestales, Universidad de Concepción, Casilla 160‑C, 4030000, Concepción, Chile
| | - Vinícius Coelho Kuster
- Laboratório de Anatomia Vegetal, Instituto de Biociências, Universidade Federal de Jataí, Campus Jatobá, Cidade Universitária, Jataí, Goiás, Brazil
| | - Renê Gonçalves da Silva Carneiro
- Laboratório de Anatomia Vegetal, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus Samambaia, Goiânia, Goiás, Brazil
| | - Denis Coelho de Oliveira
- Laboratório de Anatomia, Desenvolvimento Vegetal E Interações, Instituto de Biologia, Universidade Federal de Uberlândia, Campus Umuarama, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
2
|
de Lima JF, de Oliveira DC, Kuster VC, Moreira ASFP. Aerial and terrestrial root habits influence the composition of the cell walls of Vanilla phaeantha (Orchidaceae). PROTOPLASMA 2025; 262:87-98. [PMID: 39207504 DOI: 10.1007/s00709-024-01980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
In response to the restrictions imposed by their epiphytic habit, orchids have developed structural traits that allow greater efficiency in water uptake and use, such as a complex adventitious root system with velamen. The composition of cell wall of this specialized epidermis can be altered according to the substrate to which it is fixed, influencing wall permeability, absorption, and storage of water in roots. The current study aimed to evaluate the cell wall composition of adventitious roots of Vanilla phaeantha (Orchidaceae) that grow attached to the phorophyte, fixed in the soil, or hung free. Immunocytochemical analyses were used to determine the protein, hemicellulose, and pectin composition of the cell walls of aerial and terrestrial roots. We observed that pectins are present in the different tissues of the aerial roots, while in the terrestrial roots, they are concentrated in the cortical parenchyma. The deposition of xyloglucans, extensins, and arabinogalactans was greater in the epidermis of the free side of the roots attached to the phorophyte. The strong labeling of pectins in aerial roots may be related to the influx of water and nutrients, which are generally scarce in this environment. The arrangement of hemicelluloses and proteins with the pectins may be associated with increased cell rigidity and sustainability, a feature of interest for the aerial roots. In summary, the habit of roots can interfere with the non-cellulosic composition of the cell walls of V. phaeantha, possibly related to changes in cell functionality.
Collapse
Affiliation(s)
- Jéssica Ferreira de Lima
- Instituto de Biologia, Universidade Federal de Uberlândia, Rua Ceará S/N, Bloco 2D, Campus Umuarama, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Denis Coelho de Oliveira
- Instituto de Biologia, Universidade Federal de Uberlândia, Rua Ceará S/N, Bloco 2D, Campus Umuarama, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Vinícius Coelho Kuster
- Instituto de Biociências, Universidade Federal de Jataí, Campus Cidade Universitária, BR 364, Km 195, No. 3800, Jataí, Goiás, 75801-615, Brazil
| | - Ana Silvia Franco Pinheiro Moreira
- Instituto de Biologia, Universidade Federal de Uberlândia, Rua Ceará S/N, Bloco 2D, Campus Umuarama, Uberlândia, Minas Gerais, 38400-902, Brazil.
| |
Collapse
|
3
|
Bovet L, Battey J, Lu J, Sierro N, Dewey RE, Goepfert S. Nitrate assimilation pathway is impacted in young tobacco plants overexpressing a constitutively active nitrate reductase or displaying a defective CLCNt2. BMC PLANT BIOLOGY 2024; 24:1132. [PMID: 39592946 PMCID: PMC11600588 DOI: 10.1186/s12870-024-05834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND We have previously shown that the expression of a constitutively active nitrate reductase variant and the suppression of CLCNt2 gene function (belonging to the chloride channel (CLC) gene family) in field-grown tobacco reduces tobacco-specific nitrosamines (TSNA) accumulation in cured leaves and cigarette smoke. In both cases, TSNA reductions resulted from a strong diminution of free nitrate in the leaf, as nitrate is a precursor of the TSNA-producing nitrosating agents formed during tobacco curing and smoking. These nitrosating agents modify tobacco alkaloids to produce TSNAs, the most problematic of which are NNN (N-nitrosonornicotine) and NNK (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone). The expression of a deregulated nitrate reductase enzyme (DNR) that is no longer responsive to light regulation is believed to diminish free nitrate pools by immediately channeling incoming nitrate into the nitrate assimilation pathway. The reduction in nitrate observed when the two tobacco gene copies encoding the vacuolar nitrate transporter CLCNt2 were down-regulated by RNAi-mediated suppression or knocked out using the CRISPR-Cas technology was mechanistically distinct; likely attributable to the inability of the tobacco cell to efficiently sequester nitrate into the vacuole where this metabolite is protected from further assimilation. In this study, we used transcriptomic and metabolomic analyses to compare the nitrate assimilation response in tobacco plants either expressing DNR or lacking CLCNt2 function. RESULTS When grown in a controlled environment, both DNR and CLCNt2-KO (CLCKO) plants exhibited (1) reduced nitrate content in the leaf; (2) increased N-assimilation into the amino acids Gln and Asn; and (3) a similar pattern of differential regulation of several genes controlling stress responses, including water stress, and cell wall metabolism in comparison to wild-type plants. Differences in gene regulation were also observed between DNR and CLCKO plants, including genes encoding nitrite reductase and asparagine synthetase. CONCLUSIONS Our data suggest that even though both DNR and CLCKO plants display common characteristics with respect to nitrate assimilation, cellular responses, water stress, and cell wall remodeling, notable differences in gene regulatory patterns between the two low nitrate plants are also observed. These findings open new avenues in using plants fixing more nitrogen into amino acids for plant improvement or nutrition perspectives.
Collapse
Affiliation(s)
- L Bovet
- PMI R&D, Philip Morris Products S.A., Quai-Jeanrenaud 5, Neuchâtel, 2000, Switzerland.
| | - J Battey
- PMI R&D, Philip Morris Products S.A., Quai-Jeanrenaud 5, Neuchâtel, 2000, Switzerland
| | - J Lu
- Department of Crop and Soil Sciences, North Carolina State University, Campus Box 8009, Raleigh, NC, 27695, USA
| | - N Sierro
- PMI R&D, Philip Morris Products S.A., Quai-Jeanrenaud 5, Neuchâtel, 2000, Switzerland
| | - R E Dewey
- Department of Crop and Soil Sciences, North Carolina State University, Campus Box 8009, Raleigh, NC, 27695, USA
| | - S Goepfert
- PMI R&D, Philip Morris Products S.A., Quai-Jeanrenaud 5, Neuchâtel, 2000, Switzerland
| |
Collapse
|
4
|
Bonnin M, Soriano A, Favreau B, Lourkisti R, Miranda M, Ollitrault P, Oustric J, Berti L, Santini J, Morillon R. Comparative transcriptomic analyses of diploid and tetraploid citrus reveal how ploidy level influences salt stress tolerance. FRONTIERS IN PLANT SCIENCE 2024; 15:1469115. [PMID: 39544537 PMCID: PMC11561191 DOI: 10.3389/fpls.2024.1469115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/26/2024] [Indexed: 11/17/2024]
Abstract
Introduction Citrus is an important fruit crop for human health. The sensitivity of citrus trees to a wide range of abiotic stresses is a major challenge for their overall growth and productivity. Among these abiotic stresses, salinity results in a significant loss of global citrus yield. In order to find straightforward and sustainable solutions for the future and to ensure citrus productivity, it is of paramount importance to decipher the mechanisms responsible for salinity stress tolerance. Thisstudy aimed to investigate how ploidy levels influence salt stress tolerance in citrus by comparing the transcriptomic responses of diploid and tetraploid genotypes. In a previous article we investigated the physiological and biochemical response of four genotypes with different ploidy levels: diploid trifoliate orange (Poncirus trifoliata [L.] Raf.) (PO2x) and Cleopatra mandarin (Citrus reshni Hort. Ex Tan.) (CL2x) and their respective tetraploids (PO4x, CL4x). Methods In this study, we useda multifactorial gene selection and gene clustering approach to finely dissect the influence of ploidy level on the salt stress response of each genotype. Following transcriptome sequencing, differentially expressed genes (DEGs) were identified in response to salt stress in leaves and roots of the different citrus genotypes. Result and discussion Gene expression profiles and functional characterization of genes involved in the response to salt stress, as a function of ploidy level and the interaction between stress response and ploidy level, have enabled us to highlight the mechanisms involved in the varieties tested. Saltstress induced overexpression of carbohydrate biosynthesis and cell wall remodelling- related genes specifically in CL4x Ploidy level enhanced oxidative stress response in PO and ion management capacity in both genotypes. Results further highlighted that under stress conditions, only the CL4x genotype up- regulated genes involved in sugar biosynthesis, transport management, cell wall remodelling, hormone signalling, enzyme regulation and antioxidant metabolism. These findings provide crucial insights that could inform breeding strategies for developing salt-tolerant citrus varieties.
Collapse
Affiliation(s)
- Marie Bonnin
- Projet Ressources Naturelles Axe Adaptation des végé taux aux changements globaux, Unité Mixte de Recherche Centre National de la Recherche Scientifique (UMR CNRS) 6134 Science Pour l’Environment (SPE), Universitéde Corse, Corsica, France
| | - Alexandre Soriano
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Univ. Montpellier, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut Agro, Montpellier, France
| | - Bénédicte Favreau
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Univ. Montpellier, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut Agro, Montpellier, France
| | - Radia Lourkisti
- Projet Ressources Naturelles Axe Adaptation des végé taux aux changements globaux, Unité Mixte de Recherche Centre National de la Recherche Scientifique (UMR CNRS) 6134 Science Pour l’Environment (SPE), Universitéde Corse, Corsica, France
| | - Maëva Miranda
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Univ. Montpellier, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut Agro, Montpellier, France
| | - Patrick Ollitrault
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Univ. Montpellier, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut Agro, Montpellier, France
| | - Julie Oustric
- Projet Ressources Naturelles Axe Adaptation des végé taux aux changements globaux, Unité Mixte de Recherche Centre National de la Recherche Scientifique (UMR CNRS) 6134 Science Pour l’Environment (SPE), Universitéde Corse, Corsica, France
| | - Liliane Berti
- Projet Ressources Naturelles Axe Adaptation des végé taux aux changements globaux, Unité Mixte de Recherche Centre National de la Recherche Scientifique (UMR CNRS) 6134 Science Pour l’Environment (SPE), Universitéde Corse, Corsica, France
| | - Jérémie Santini
- Projet Ressources Naturelles Axe Adaptation des végé taux aux changements globaux, Unité Mixte de Recherche Centre National de la Recherche Scientifique (UMR CNRS) 6134 Science Pour l’Environment (SPE), Universitéde Corse, Corsica, France
| | - Raphaël Morillon
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Univ. Montpellier, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut Agro, Montpellier, France
| |
Collapse
|
5
|
Kowalczyk J, Kłodawska K, Zych M, Burczyk J, Malec P. Ubiquitin-like and ubiquitinylated proteins associated with the maternal cell walls of Scenedesmus obliquus 633 as identified by immunochemistry and LC-MS/MS proteomics. PROTOPLASMA 2024:10.1007/s00709-024-01994-3. [PMID: 39365352 DOI: 10.1007/s00709-024-01994-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
The cell walls of green algae Scenedesmus obliquus are complex, polymeric structures including an inner cellulose layer surrounded by an algaenan-containing trilaminar sheath. The process of autosporulation leads to the formation of sporangial (maternal) cell walls, which are released into the medium after sporangial autolysis. In this study, a fraction of maternal cell wall material (CWM) was isolated from the stationary phase cultures of Scenedesmus obliquus 633 and subjected to immunofluorescence microscopy using polyclonal anti-ubiquitin antibodies. The water-extracted polypeptide fraction from the maternal cell walls was then analyzed using immunoblotting and LC-MS/MS. An immunoanalysis showed the presence of several peptides reactive with polyclonal anti-ubiquitin serum, with apparent molecular masses of c. 12, 70, 120, 200, and > 250 kDa. Cell wall-associated peptides were identified on the basis of LC-MS/MS spectra across NCBI databases, including the Scenedesmaceae family (58 records), the Chlorophyceae class (37 records), and Chlamydomonas reinhardtii (18 records) corresponding to the signatures of 95 identified proteins. In particular, three signatures identified ubiquitin and ubiquitin-related proteins. In the maternal cell walls, immunoblotting analysis, immunofluorescence microscopy, and LC-MS/MS proteomics collectively demonstrated the presence of ubiquitin-like epitopes, ubiquitin-specific peptide signatures, and several putative ubiquitin conjugates of a higher molecular mass. These results support the presence of ubiquitin-like proteins in the extramembranous compartment of Scenedesmus obliquus 633 and suggest that protein ubiquitination plays a significant role in the formation and functional integrity of the maternal cell walls in green algae.
Collapse
Affiliation(s)
- Justyna Kowalczyk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348, Kraków, Poland
| | - Kinga Kłodawska
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
| | - Maria Zych
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200, Sosnowiec, Poland
| | - Jan Burczyk
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200, Sosnowiec, Poland
- Laboratory of Biotechnology, Puńcowska 74, 43-400, Cieszyn, Poland
| | - Przemysław Malec
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Kraków, Poland.
| |
Collapse
|
6
|
Zou Y, Gigli-Bisceglia N, van Zelm E, Kokkinopoulou P, Julkowska MM, Besten M, Nguyen TP, Li H, Lamers J, de Zeeuw T, Dongus JA, Zeng Y, Cheng Y, Koevoets IT, Jørgensen B, Giesbers M, Vroom J, Ketelaar T, Petersen BL, Engelsdorf T, Sprakel J, Zhang Y, Testerink C. Arabinosylation of cell wall extensin is required for the directional response to salinity in roots. THE PLANT CELL 2024; 36:3328-3343. [PMID: 38691576 PMCID: PMC11371136 DOI: 10.1093/plcell/koae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/29/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Soil salinity is a major contributor to crop yield losses. To improve our understanding of root responses to salinity, we developed and exploited a real-time salt-induced tilting assay. This assay follows root growth upon both gravitropic and salt challenges, revealing that root bending upon tilting is modulated by Na+ ions, but not by osmotic stress. Next, we measured this salt-specific response in 345 natural Arabidopsis (Arabidopsis thaliana) accessions and discovered a genetic locus, encoding the cell wall-modifying enzyme EXTENSIN ARABINOSE DEFICIENT TRANSFERASE (ExAD) that is associated with root bending in the presence of NaCl (hereafter salt). Extensins are a class of structural cell wall glycoproteins known as hydroxyproline (Hyp)-rich glycoproteins, which are posttranslationally modified by O-glycosylation, mostly involving Hyp-arabinosylation. We show that salt-induced ExAD-dependent Hyp-arabinosylation influences root bending responses and cell wall thickness. Roots of exad1 mutant seedlings, which lack Hyp-arabinosylation of extensin, displayed increased thickness of root epidermal cell walls and greater cell wall porosity. They also showed altered gravitropic root bending in salt conditions and a reduced salt-avoidance response. Our results suggest that extensin modification via Hyp-arabinosylation is a unique salt-specific cellular process required for the directional response of roots exposed to salinity.
Collapse
Affiliation(s)
- Yutao Zou
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
- Plant Cell Biology, Swammerdam Institute for Life Science, Universiteit van Amsterdam, 1090 GE Amsterdam, the Netherlands
| | - Nora Gigli-Bisceglia
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, 3508 TB Utrecht, the Netherlands
| | - Eva van Zelm
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Pinelopi Kokkinopoulou
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | | | - Maarten Besten
- Laboratory of Biochemistry, Wageningen University & Research, 6708 WE Wageningen, the Netherlands
| | - Thu-Phuong Nguyen
- Laboratory of Genetics, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Hongfei Li
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Jasper Lamers
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Thijs de Zeeuw
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Joram A Dongus
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Yuxiao Zeng
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Yu Cheng
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Iko T Koevoets
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
- Plant Cell Biology, Swammerdam Institute for Life Science, Universiteit van Amsterdam, 1090 GE Amsterdam, the Netherlands
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C 1871, Denmark
| | - Marcel Giesbers
- Wageningen Electron Microscopy Centre, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Jelmer Vroom
- Wageningen Electron Microscopy Centre, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Bent Larsen Petersen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C 1871, Denmark
| | - Timo Engelsdorf
- Molecular Plant Physiology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Joris Sprakel
- Laboratory of Biochemistry, Wageningen University & Research, 6708 WE Wageningen, the Netherlands
| | - Yanxia Zhang
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
- College of Agriculture, South China Agricultural University, 510642 Guangzhou, China
| | - Christa Testerink
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| |
Collapse
|
7
|
Sede AR, Wengier DL, Borassi C, Ricardi M, Somoza SC, Aguiló R, Estevez JM, Muschietti JP. Arabidopsis pollen prolyl-hydroxylases P4H4/6 are relevant for correct hydroxylation and secretion of LRX11 in pollen tubes. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4415-4427. [PMID: 38877792 DOI: 10.1093/jxb/erae269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 06/13/2024] [Indexed: 06/16/2024]
Abstract
Major constituents of the plant cell walls are structural proteins that belong to the hydroxyproline-rich glycoprotein (HRGP) family. Leucine-rich repeat extensin (LRX) proteins contain a leucine-rich domain and a C-terminal domain with repetitive Ser-Pro3-5 motifs that are potentially to be O-glycosylated. It has been demonstrated that pollen-specific LRX8-LRX11 from Arabidopsis thaliana are necessary to maintain the integrity of the pollen tube cell wall during polarized growth. In HRGPs, including classical extensins (EXTs), and probably in LRXs, proline residues are converted to hydroxyproline by prolyl-4-hydroxylases (P4Hs), thus defining novel O-glycosylation sites. In this context, we aimed to determine whether hydroxylation and subsequent O-glycosylation of Arabidopsis pollen LRXs are necessary for their proper function and cell wall localization in pollen tubes. We hypothesized that pollen-expressed P4H4 and P4H6 catalyze the hydroxylation of the proline units present in Ser-Pro3-5 motifs of LRX8-LRX11. Here, we show that the p4h4-1 p4h6-1 double mutant exhibits a reduction in pollen germination rates and a slight reduction in pollen tube length. Pollen germination is also inhibited by P4H inhibitors, suggesting that prolyl hydroxylation is required for pollen tube development. Plants expressing pLRX11::LRX11-GFP in the p4h4-1 p4h6-1 background show partial re-localization of LRX11-green fluorescent protein (GFP) from the pollen tube tip apoplast to the cytoplasm. Finally, immunoprecipitation-tandem mass spectrometry analysis revealed a decrease in oxidized prolines (hydroxyprolines) in LRX11-GFP in the p4h4-1 p4h6-1 background compared with lrx11 plants expressing pLRX11::LRX11-GFP. Taken together, these results suggest that P4H4 and P4H6 are required for pollen germination and for proper hydroxylation of LRX11 necessary for its localization in the cell wall of pollen tubes.
Collapse
Affiliation(s)
- Ana R Sede
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, C1428EGA, Buenos Aires, Argentina
| | - Diego L Wengier
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
| | - Cecilia Borassi
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, Argentina
| | - Martiniano Ricardi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-CONICET), Universidad de Buenos Aires, Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - Sofía C Somoza
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, C1428EGA, Buenos Aires, Argentina
| | - Rafael Aguiló
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-CONICET), Universidad de Buenos Aires, Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
- Centro de Biotecnología Vegetal (CBV), Facultad de Cs. de la Vida, Universidad Andrés Bello, ANID-Millennium Science Initiative Program-Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile and ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Jorge P Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, C1428EGA, Buenos Aires, Argentina
| |
Collapse
|
8
|
Fu G, Yu S, Wu K, Yang M, Altaf MA, Wu Z, Deng Q, Lu X, Fu H, Wang Z, Cheng S. Genome-wide association study and candidate gene identification for agronomic traits in 182 upward-growing fruits of C. frutescens and C. annuum. Sci Rep 2024; 14:14691. [PMID: 38926509 PMCID: PMC11208541 DOI: 10.1038/s41598-024-65332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
Pepper agronomic traits serve as pivotal indicators for characterizing germplasm attributes and correlations. It is important to study differential genotypic variation through phenotypic differences of target traits. Whole genome resequencing was used to sequence the whole genome among different individuals of species with known reference genomes and annotations, and based on this, differential analyses of individuals or populations were carried out to identify SNPs for agronomic traits related to pepper. This study conducted a genome-wide association study encompassing 26 key agronomic traits in 182 upward-growing fruits of C. frutescens and C. annuum. The population structure (phylogenetics, population structure, population principal component analysis, genetic relationship) and linkage disequilibrium analysis were realized to ensure the accuracy and reliability of GWAS results, and the optimal statistical model was determined. A total of 929 SNPs significantly associated with 26 agronomic traits, were identified, alongside the detection of 519 candidate genes within 100 kb region adjacent to these SNPs. Additionally, through gene annotation and expression pattern scrutiny, genes such as GAUT1, COP10, and DDB1 correlated with fruit traits in Capsicum frutescens and Capsicum annuum were validated via qRT-PCR. In the CH20 (Capsicum annuum) and YB-4 (Capsicum frutescens) cultivars, GAUT1 and COP10 were cloned with cDNA lengths of 1065 bp and 561 bp, respectively, exhibiting only a small number of single nucleotide variations and nucleotide deletions. This validation provides a robust reference for molecular marker-assisted breeding of pepper agronomic traits, offering both genetic resources and theoretical foundations for future endeavors in molecular marker-assisted breeding for pepper.
Collapse
Affiliation(s)
- Genying Fu
- Key Laboratory for Quality Regulation of Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Shuang Yu
- Key Laboratory for Quality Regulation of Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Kun Wu
- Key Laboratory for Quality Regulation of Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Mengxian Yang
- Key Laboratory for Quality Regulation of Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Muhammad Ahsan Altaf
- Key Laboratory for Quality Regulation of Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Zhuo Wu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Qin Deng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Xu Lu
- Key Laboratory for Quality Regulation of Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Huizhen Fu
- Key Laboratory for Quality Regulation of Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Shanhan Cheng
- Key Laboratory for Quality Regulation of Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China.
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
9
|
Yang H, Huang J, Ye Y, Xu Y, Xiao Y, Chen Z, Li X, Ma Y, Lu T, Rao Y. Research Progress on Mechanical Strength of Rice Stalks. PLANTS (BASEL, SWITZERLAND) 2024; 13:1726. [PMID: 38999566 PMCID: PMC11243543 DOI: 10.3390/plants13131726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
As one of the most important food crops in the world, rice yield is directly related to national food security. Lodging is one of the most important factors restricting rice production, and the cultivation of rice varieties with lodging resistance is of great significance in rice breeding. The lodging resistance of rice is directly related to the mechanical strength of the stalks. In this paper, we reviewed the cell wall structure, its components, and its genetic regulatory mechanism, which improved the regulatory network of rice stalk mechanical strength. Meanwhile, we analyzed the new progress in genetic breeding and put forward some scientific problems that need to be solved in this field in order to provide theoretical support for the improvement and application of rice breeding.
Collapse
Affiliation(s)
- Huimin Yang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiahui Huang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuhan Ye
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuqing Xu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yao Xiao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ziying Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xinyu Li
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yingying Ma
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Tao Lu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuchun Rao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
10
|
Delmer D, Dixon RA, Keegstra K, Mohnen D. The plant cell wall-dynamic, strong, and adaptable-is a natural shapeshifter. THE PLANT CELL 2024; 36:1257-1311. [PMID: 38301734 PMCID: PMC11062476 DOI: 10.1093/plcell/koad325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024]
Abstract
Mythology is replete with good and evil shapeshifters, who, by definition, display great adaptability and assume many different forms-with several even turning themselves into trees. Cell walls certainly fit this definition as they can undergo subtle or dramatic changes in structure, assume many shapes, and perform many functions. In this review, we cover the evolution of knowledge of the structures, biosynthesis, and functions of the 5 major cell wall polymer types that range from deceptively simple to fiendishly complex. Along the way, we recognize some of the colorful historical figures who shaped cell wall research over the past 100 years. The shapeshifter analogy emerges more clearly as we examine the evolving proposals for how cell walls are constructed to allow growth while remaining strong, the complex signaling involved in maintaining cell wall integrity and defense against disease, and the ways cell walls adapt as they progress from birth, through growth to maturation, and in the end, often function long after cell death. We predict the next century of progress will include deciphering cell type-specific wall polymers; regulation at all levels of polymer production, crosslinks, and architecture; and how walls respond to developmental and environmental signals to drive plant success in diverse environments.
Collapse
Affiliation(s)
- Deborah Delmer
- Section of Plant Biology, University of California Davis, Davis, CA 95616, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Kenneth Keegstra
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA
| | - Debra Mohnen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
11
|
Zhong S, Zhao P, Peng X, Li HJ, Duan Q, Cheung AY. From gametes to zygote: Mechanistic advances and emerging possibilities in plant reproduction. PLANT PHYSIOLOGY 2024; 195:4-35. [PMID: 38431529 PMCID: PMC11060694 DOI: 10.1093/plphys/kiae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hong-Ju Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Center for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiaohong Duan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular and Cellular Biology Program, Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
12
|
Takagi H, Lee N, Hempton AK, Purushwani S, Notaguchi M, Yamauchi K, Shirai K, Kawakatsu Y, Uehara S, Albers WG, Downing BLR, Ito S, Suzuki T, Matsuura T, Mori IC, Mitsuda N, Kurihara D, Matsushita T, Song YH, Sato Y, Nomoto M, Tada Y, Hanada K, Cuperus JT, Queitsch C, Imaizumi T. Florigen-producing cells express FPF1-LIKE PROTEIN 1 that accelerates flowering and stem growth in long days with sunlight red/far-red ratio in Arabidopsis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591289. [PMID: 38746097 PMCID: PMC11092471 DOI: 10.1101/2024.04.26.591289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Seasonal changes in spring induce flowering by expressing the florigen, FLOWERING LOCUS T (FT), in Arabidopsis. FT is expressed in unique phloem companion cells with unknown characteristics. The question of which genes are co-expressed with FT and whether they have roles in flowering remains elusive. Through tissue-specific translatome analysis, we discovered that under long-day conditions with the natural sunlight red/far-red ratio, the FT-producing cells express a gene encoding FPF1-LIKE PROTEIN 1 (FLP1). The master FT regulator, CONSTANS (CO), controls FLP1 expression, suggesting FLP1's involvement in the photoperiod pathway. FLP1 promotes early flowering independently of FT, is active in the shoot apical meristem, and induces the expression of SEPALLATA 3 (SEP3), a key E-class homeotic gene. Unlike FT, FLP1 facilitates inflorescence stem elongation. Our cumulative evidence indicates that FLP1 may act as a mobile signal. Thus, FLP1 orchestrates floral initiation together with FT and promotes inflorescence stem elongation during reproductive transitions.
Collapse
Affiliation(s)
- Hiroshi Takagi
- Department of Biology, University of Washington, Seattle, Washington, 98195-1800, USA
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| | - Nayoung Lee
- Department of Biology, University of Washington, Seattle, Washington, 98195-1800, USA
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| | - Andrew K. Hempton
- Department of Biology, University of Washington, Seattle, Washington, 98195-1800, USA
| | - Savita Purushwani
- Department of Biology, University of Washington, Seattle, Washington, 98195-1800, USA
| | - Michitaka Notaguchi
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601, Japan
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Kota Yamauchi
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, 820-8502, Japan
| | - Kazumasa Shirai
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, 820-8502, Japan
| | - Yaichi Kawakatsu
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601, Japan
| | - Susumu Uehara
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| | - William G. Albers
- Department of Biology, University of Washington, Seattle, Washington, 98195-1800, USA
| | | | - Shogo Ito
- Department of Biology, University of Washington, Seattle, Washington, 98195-1800, USA
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, 487-8501, Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Izumi C. Mori
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan
| | - Daisuke Kurihara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
- Institute for Advanced Research (IAR), Nagoya University, Nagoya, 464-8601, Japan
| | - Tomonao Matsushita
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Young Hun Song
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
| | - Mika Nomoto
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Yasuomi Tada
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Kousuke Hanada
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, 820-8502, Japan
| | - Josh T. Cuperus
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195-5065, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195-5065, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington, 98195-8047, USA
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, Washington, 98195-1800, USA
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| |
Collapse
|
13
|
Benyó D, Bató E, Faragó D, Rigó G, Domonkos I, Labhane N, Zsigmond L, Prasad M, Nagy I, Szabados L. The zinc finger protein 3 of Arabidopsis thaliana regulates vegetative growth and root hair development. FRONTIERS IN PLANT SCIENCE 2024; 14:1221519. [PMID: 38250442 PMCID: PMC10796524 DOI: 10.3389/fpls.2023.1221519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024]
Abstract
Introduction Zinc finger protein 3 (ZFP3) and closely related C2H2 zinc finger proteins have been identified as regulators of abscisic acid signals and photomorphogenic responses during germination. Whether ZFP3 and related ZFP factors regulate plant development is, however, not known. Results ZFP3 overexpression reduced plant growth, limited cell expansion in leaves, and compromised root hair development. The T-DNA insertion zfp3 mutant and transgenic lines with silenced ZFP1, ZFP3, ZFP4, and ZFP7 genes were similar to wild-type plants or had only minor differences in plant growth and morphology, probably due to functional redundancy. RNAseq transcript profiling identified ZFP3-controlled gene sets, including targets of ABA signaling with reduced transcript abundance. The largest gene set that was downregulated by ZFP3 encoded regulatory and structural proteins in cell wall biogenesis, cell differentiation, and root hair formation. Chromatin immunoprecipitation confirmed ZFP3 binding to several target promoters. Discussion Our results suggest that ZFP3 and related ZnF proteins can modulate cellular differentiation and plant vegetative development by regulating the expression of genes implicated in cell wall biogenesis.
Collapse
Affiliation(s)
- Dániel Benyó
- Instiute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Emese Bató
- Instiute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Dóra Faragó
- Instiute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Gábor Rigó
- Instiute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Ildikó Domonkos
- Instiute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Nitin Labhane
- Department of Botany, Bhavan’s College, Mumbai, Maharashtra, India
| | - Laura Zsigmond
- Instiute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Melvin Prasad
- Instiute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - István Nagy
- Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
- SeqOmics Biotechnology Ltd, Mórahalom, Hungary
| | - László Szabados
- Instiute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| |
Collapse
|
14
|
Lu Z, Qin G, Gan S, Liu H, Macreadie PI, Cheah W, Wang F. Blue carbon sink capacity of mangroves determined by leaves and their associated microbiome. GLOBAL CHANGE BIOLOGY 2024; 30:e17007. [PMID: 37916453 DOI: 10.1111/gcb.17007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/17/2023] [Accepted: 10/08/2023] [Indexed: 11/03/2023]
Abstract
Mangroves play a globally significant role in carbon capture and storage, known as blue carbon ecosystems. Yet, there are fundamental biogeochemical processes of mangrove blue carbon formation that are inadequately understood, such as the mechanisms by which mangrove afforestation regulates the microbial-driven transfer of carbon from leaf to below-ground blue carbon pool. In this study, we addressed this knowledge gap by investigating: (1) the mangrove leaf characteristics using state-of-the-art FT-ICR-MS; (2) the microbial biomass and their transformation patterns of assimilated plant-carbon; and (3) the degradation potentials of plant-derived carbon in soils of an introduced (Sonneratia apetala) and a native mangrove (Kandelia obovata). We found that biogeochemical cycling took entirely different pathways for S. apetala and K. obovata. Blue carbon accumulation and the proportion of plant-carbon for native mangroves were high, with microbes (dominated by K-strategists) allocating the assimilated-carbon to starch and sucrose metabolism. Conversely, microbes with S. apetala adopted an r-strategy and increased protein- and nucleotide-biosynthetic potentials. These divergent biogeochemical pathways were related to leaf characteristics, with S. apetala leaves characterized by lower molecular-weight, C:N ratio, and lignin content than K. obovata. Moreover, anaerobic-degradation potentials for lignin were high in old-aged soils, but the overall degradation potentials of plant carbon were age-independent, explaining that S. apetala age had no significant influences on the contribution of plant-carbon to blue carbon. We propose that for introduced mangroves, newly fallen leaves release nutrient-rich organic matter that favors growth of r-strategists, which rapidly consume carbon to fuel growth, increasing the proportion of microbial-carbon to blue carbon. In contrast, lignin-rich native mangrove leaves shape K-strategist-dominated microbial communities, which grow slowly and store assimilated-carbon in cells, ultimately promoting the contribution of plant-carbon to the remarkable accumulation of blue carbon. Our study provides new insights into the molecular mechanisms of microbial community responses during reforestation in mangrove ecosystems.
Collapse
Affiliation(s)
- Zhe Lu
- Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, P.R. China
- South China National Botanical Garden, Guangzhou, P.R. China
| | - Guoming Qin
- Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Shuchai Gan
- Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, P.R. China
- South China National Botanical Garden, Guangzhou, P.R. China
| | - Hongbin Liu
- Department of Ocean Sciences and Division of Life Sciences, School of Science, Hong Kong University of Science and Technology, Hong Kong, P.R. China
| | - Peter I Macreadie
- School of Life and Environmental Sciences, Deakin University, Burwood Campus, Burwood, Victoria, Australia
| | - Wee Cheah
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Faming Wang
- Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, P.R. China
- South China National Botanical Garden, Guangzhou, P.R. China
| |
Collapse
|
15
|
Cheng SY, Chu PK, Chen YJ, Wu YH, Huang MD. Exploring the extensin gene family: an updated genome-wide survey in plants and algae. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:152-167. [PMID: 37769205 DOI: 10.1093/jxb/erad380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023]
Abstract
Extensins (EXTs), a class of hydroxyproline-rich glycoprotein with multiple Ser-Pro3-5 motifs, are known to play roles in cell wall reinforcement and environmental responses. EXTs with repetitive Tyr-X-Tyr (YXY) motifs for crosslinking are referred as crosslinking EXTs. Our comprehensive study spanned 194 algal and plant species, categorizing EXTs into seven subfamilies: classical extensins (EXT I and II), arabinogalactan-protein extensins (AGP-EXTs), proline-rich extensin-like receptor kinases (PERKs), leucine-rich repeat extensins (LRX I and II), formin homology (FH) domain-containing extensins (FH-EXTs), proline-rich, arabinogalactan proteins, conserved cysteines (PAC) domain-containing extensins (PAC I and II), and eight-cysteine motif (8CM)-containing extensins (8CM-EXTs). In the examined dataset, EXTs were detected ubiquitously in plants but infrequently in algae, except for one Coccomyxa and four Chlamydomonadales species. No crosslinking EXTs were found in Poales or certain Zingiberales species. Notably, the previously uncharacterized EXT II, PAC II, and liverwort-specific 8CM-EXTs were found to be crosslinking EXTs. EXT II, featuring repetitive YY motifs instead of the conventional YXY motif, was exclusively identified in Solanaceae. Furthermore, tandem genes encoding distinctive 8CM-EXTs specifically expressed in the germinating spores of Marchantia polymorpha. This updated classification of EXT types allows us to propose a plausible evolutionary history of EXT genes during the course of plant evolution.
Collapse
Affiliation(s)
- Sou-Yu Cheng
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Ping-Kuan Chu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Yi-Jing Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Yun-Hsuan Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Ming-Der Huang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
16
|
Zhang W, Shang M, Qiu L, Liu B, Zang X. Based on Transcriptome Sequencing of Cell Wall Deficient Strain, Research on Arabinosyltransferase Inhibition's Effect on the Synthesis of Cell Wall in Chlamydomonas reinhardtii. Int J Mol Sci 2023; 24:17595. [PMID: 38139423 PMCID: PMC10744005 DOI: 10.3390/ijms242417595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023] Open
Abstract
To explore the key genes involved in cell wall synthesis and understand the molecular mechanism of cell wall assembly in the model alga-Chlamydomonas reinhardtii, transcriptome sequencing was used to discover the differentially expressed genes in the cell wall defective strain. In the glucose metabolism, lipid metabolism, and amino acid metabolism pathways, the gene expressions involved in the synthesis of cell wall functional components were analyzed. The results showed that in the cell wall defective strain, arabinosyltransferase gene (XEG113, RRA) related to synthesis of plant extensin and some cell wall structural protein genes (hyp, PHC19, PHC15, PHC4, PHC3) were up-regulated, 1,3-β-glucan synthase gene (Gls2) and endoglucanase gene (EG2) about synthesis and degradation of glycoskeleton were both mainly up-regulated. Then, ethambutol dihydrochloride, an arabinosyltransferase inhibitor, was found to affect the permeability of the cell wall of the normal strain, while the cell wall deficient strain was not affected. To further research the function of arabinosyltransferase, the RRA gene was inactivated by knockout in the normal cell wall algal strain. Through a combination of microscope observation and physiological index detection, it was found that the cell wall of the mutant strains showed reduced structure levels, suggesting that the structure and function of the cell wall glycoprotein were weakened. Therefore, arabinosyltransferase may affect the glycosylation modification of cell wall glycoprotein, further affecting the structure assembly of cell wall glycoprotein.
Collapse
Affiliation(s)
- Wenhua Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China; (W.Z.); (M.S.); (L.Q.)
| | - Menghui Shang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China; (W.Z.); (M.S.); (L.Q.)
| | - Lexin Qiu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China; (W.Z.); (M.S.); (L.Q.)
| | - Bin Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China; (W.Z.); (M.S.); (L.Q.)
- Yellow Sea Fisheries Research Institute, Qingdao 266003, China
| | - Xiaonan Zang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China; (W.Z.); (M.S.); (L.Q.)
| |
Collapse
|
17
|
Lee HK, Santiago J. Structural insights of cell wall integrity signaling during development and immunity. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102455. [PMID: 37739866 DOI: 10.1016/j.pbi.2023.102455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/12/2023] [Accepted: 08/25/2023] [Indexed: 09/24/2023]
Abstract
A communication system between plant cells and their surrounding cell wall is required to coordinate development, immunity, and the integration of environmental cues. This communication network is facilitated by a large pool of membrane- and cell-wall-anchored proteins that can potentially interact with the matrix or its fragments, promoting cell wall patterning or eliciting cellular responses that may lead to changes in the architecture and chemistry of the wall. A mechanistic understanding of how these receptors and cell wall proteins recognize and interact with cell wall epitopes would be key to a better understanding of all plant processes that require cell wall remodeling such as expansion, morphogenesis, and defense responses. This review focuses on the latest developments in structurally and biochemically characterized receptors and protein complexes implicated in reading and regulating cell wall integrity and immunity.
Collapse
Affiliation(s)
- Hyun Kyung Lee
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Julia Santiago
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
18
|
Moussu S, Lee HK, Haas KT, Broyart C, Rathgeb U, De Bellis D, Levasseur T, Schoenaers S, Fernandez GS, Grossniklaus U, Bonnin E, Hosy E, Vissenberg K, Geldner N, Cathala B, Höfte H, Santiago J. Plant cell wall patterning and expansion mediated by protein-peptide-polysaccharide interaction. Science 2023; 382:719-725. [PMID: 37943924 DOI: 10.1126/science.adi4720] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/22/2023] [Indexed: 11/12/2023]
Abstract
Assembly of cell wall polysaccharides into specific patterns is required for plant growth. A complex of RAPID ALKALINIZATION FACTOR 4 (RALF4) and its cell wall-anchored LEUCINE-RICH REPEAT EXTENSIN 8 (LRX8)-interacting protein is crucial for cell wall integrity during pollen tube growth, but its molecular connection with the cell wall is unknown. Here, we show that LRX8-RALF4 complexes adopt a heterotetrametric configuration in vivo, displaying a dendritic distribution. The LRX8-RALF4 complex specifically interacts with demethylesterified pectins in a charge-dependent manner through RALF4's polycationic surface. The LRX8-RALF4-pectin interaction exerts a condensing effect, patterning the cell wall's polymers into a reticulated network essential for wall integrity and expansion. Our work uncovers a dual structural and signaling role for RALF4 in pollen tube growth and in the assembly of complex extracellular polymers.
Collapse
Affiliation(s)
- Steven Moussu
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Hyun Kyung Lee
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Kalina T Haas
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Caroline Broyart
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Ursina Rathgeb
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Damien De Bellis
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
- Electron Microscopy Facility, University of Lausanne, 1015 Lausanne, Switzerland
| | | | - Sébastjen Schoenaers
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
| | - Gorka S Fernandez
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | | | - Eric Hosy
- IINS, CNRS UMR5297, University of Bordeaux, 33000 Bordeaux, France
| | - Kris Vissenberg
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
- Plant Biochemistry & Biotechnology Lab, Department of Agriculture, Hellenic Mediterranean University, Stavromenos PC 71410, Heraklion, Crete, Greece
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | | | - Herman Höfte
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Julia Santiago
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Boulogne I, Petit P, Desfontaines L, Durambur G, Deborde C, Mirande-Ney C, Arnaudin Q, Plasson C, Grivotte J, Chamot C, Bernard S, Loranger-Merciris G. Biological and Chemical Characterization of Musa paradisiaca Leachate. BIOLOGY 2023; 12:1326. [PMID: 37887036 PMCID: PMC10604775 DOI: 10.3390/biology12101326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
There is a growing demand for molecules of natural origin for biocontrol and biostimulation, given the current trend away from synthetic chemical products. Leachates extracted from plantain stems were obtained after biodegradation of the plant material. To characterize the leachate, quantitative determinations of nitrogen, carbon, phosphorus, and cations (K+, Ca2+, Mg2+, Na+), Q2/4, Q2/6, and Q4/6 absorbance ratios, and metabolomic analysis were carried out. The potential role of plantain leachates as fungicide, elicitor of plant defense, and/or plant biostimulant was evaluated by agar well diffusion method, phenotypic, molecular, and imaging approaches. The plant extracts induced a slight inhibition of fungal growth of an aggressive strain of Colletotrichum gloeosporioides, which causes anthracnose. Organic compounds such as cinnamic, ellagic, quinic, and fulvic acids and indole alkaloid such as ellipticine, along with some minerals such as potassium, calcium, and phosphorus, may be responsible for the inhibition of fungal growth. In addition, jasmonic, benzoic, and salicylic acids, which are known to play a role in plant defense and as biostimulants in tomato, were detected in leachate extract. Indeed, foliar application of banana leachate induced overexpression of LOXD, PPOD, and Worky70-80 genes, which are involved in phenylpropanoid metabolism, jasmonic acid biosynthesis, and salicylic acid metabolism, respectively. Leachate also activated root growth in tomato seedlings. However, the main impact of the leachate was observed on mature plants, where it caused a reduction in leaf area and fresh weight, the remodeling of stem cell wall glycopolymers, and an increase in the expression of proline dehydrogenase.
Collapse
Affiliation(s)
- Isabelle Boulogne
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, F-76000 Rouen, France; (I.B.); (G.D.); (C.M.-N.); (Q.A.); (C.P.); (J.G.); (S.B.)
| | - Philippe Petit
- Université des Antilles, UMR ISYEB-MNHN-CNRS-Sorbonne Université-EPHE, UFR Sciences Exactes et Naturelles, Campus de Fouillole, F-97157 Pointe-à-Pitre, Guadeloupe, France;
| | | | - Gaëlle Durambur
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, F-76000 Rouen, France; (I.B.); (G.D.); (C.M.-N.); (Q.A.); (C.P.); (J.G.); (S.B.)
| | - Catherine Deborde
- INRAE, PROBE Research Infrastructure, BIBS Facility, F-44300 Nantes, France;
- INRAE, UR1268 BIA Biopolymères Interactions Assemblages F-44300 Nantes, France
| | - Cathleen Mirande-Ney
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, F-76000 Rouen, France; (I.B.); (G.D.); (C.M.-N.); (Q.A.); (C.P.); (J.G.); (S.B.)
| | - Quentin Arnaudin
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, F-76000 Rouen, France; (I.B.); (G.D.); (C.M.-N.); (Q.A.); (C.P.); (J.G.); (S.B.)
| | - Carole Plasson
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, F-76000 Rouen, France; (I.B.); (G.D.); (C.M.-N.); (Q.A.); (C.P.); (J.G.); (S.B.)
| | - Julie Grivotte
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, F-76000 Rouen, France; (I.B.); (G.D.); (C.M.-N.); (Q.A.); (C.P.); (J.G.); (S.B.)
| | - Christophe Chamot
- Université de Rouen Normandie, Normandie Univ, INSERM, CNRS, HeRacLeS US 51 UAR 2026, PRIMACEN, F-76000 Rouen, France;
| | - Sophie Bernard
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, F-76000 Rouen, France; (I.B.); (G.D.); (C.M.-N.); (Q.A.); (C.P.); (J.G.); (S.B.)
- Université de Rouen Normandie, Normandie Univ, INSERM, CNRS, HeRacLeS US 51 UAR 2026, PRIMACEN, F-76000 Rouen, France;
| | - Gladys Loranger-Merciris
- Université des Antilles, UMR ISYEB-MNHN-CNRS-Sorbonne Université-EPHE, UFR Sciences Exactes et Naturelles, Campus de Fouillole, F-97157 Pointe-à-Pitre, Guadeloupe, France;
| |
Collapse
|
20
|
Godel-Jędrychowska K, Milewska-Hendel A, Sala K, Barański R, Kurczyńska E. The Impact of Gold Nanoparticles on Somatic Embryogenesis Using the Example of Arabidopsis thaliana. Int J Mol Sci 2023; 24:10356. [PMID: 37373504 DOI: 10.3390/ijms241210356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Although the influence of nanoparticles (NPs) on developmental processes is better understood, little is known about their impact on somatic embryogenesis (SE). This process involves changes in the direction of cell differentiation. Thus, studying the effect of NPs on SE is essential to reveal their impact on cell fate. This study aimed to examine the influence of gold nanoparticles (Au NPs) with different surface charges on the SE of 35S:BBM Arabidopsis thaliana, with particular emphasis on the spatiotemporal localization of pectic arabinogalactan proteins (AGPs) and extensin epitopes in cells changing the direction of their differentiation. The results show that under the influence of nanoparticles, the explant cells of 35S:BBM Arabidopsis thaliana seedling origin did not enter the path of SE. Bulges and the formation of organ-like structures were observed in these explants, in contrast to the control, where somatic embryos developed. Additionally, spatiotemporal changes in the chemical composition of the cell walls during the culture were observed. Under the influence of Au NPs, the following effects were observed: (1) explant cells did not enter the SE pathway, (2) the impacts of Au NPs with different surface charges on the explants were variable, and (3) the compositions of the analyzed pectic AGPs and extensin epitopes were diverse in the cells with different developmental programs: SE (control) and non-SE (treated with Au NPs).
Collapse
Affiliation(s)
- Kamila Godel-Jędrychowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Anna Milewska-Hendel
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Katarzyna Sala
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Rafał Barański
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-130 Kraków, Poland
| | - Ewa Kurczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| |
Collapse
|
21
|
Jaffri SRF, Scheer H, MacAlister CA. The hydroxyproline O-arabinosyltransferase FIN4 is required for tomato pollen intine development. PLANT REPRODUCTION 2023; 36:173-191. [PMID: 36749417 DOI: 10.1007/s00497-023-00459-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/20/2023] [Indexed: 06/09/2023]
Abstract
The pollen grain cell wall is a highly specialized structure composed of distinct layers formed through complex developmental pathways. The production of the innermost intine layer, composed of cellulose, pectin and other polymers, is particularly poorly understood. Here we demonstrate an important and specific role for the hydroxyproline O-arabinosyltransferase (HPAT) FIN4 in tomato intine development. HPATs are plant-specific enzymes which initiate glycosylation of certain cell wall structural proteins and signaling peptides. FIN4 was expressed throughout pollen development in both the developing pollen and surrounding tapetal cells. A fin4 mutant with a partial deletion of the catalytic domain displayed significantly reduced male fertility in vivo and compromised pollen hydration and germination in vitro. However, fin4 pollen that successfully germinated formed morphologically normal pollen tubes with the same growth rate as the wild-type pollen. When we examined mature fin4 pollen, we found they were cytologically normal, and formed morphologically normal exine, but produced significantly thinner intine. During intine deposition at the late stages of pollen development we found fin4 pollen had altered polymer deposition, including reduced cellulose and increased detection of pectin, specifically homogalacturonan with both low and high degrees of methylesterification. Therefore, FIN4 plays an important role in intine formation and, in turn pollen hydration and germination and the process of intine formation involves dynamic changes in the developing pollen cell wall.
Collapse
Affiliation(s)
- Syeda Roop Fatima Jaffri
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Holly Scheer
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Cora A MacAlister
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
22
|
Park S, Chin-Hun Kuo J, Reesink HL, Paszek MJ. Recombinant mucin biotechnology and engineering. Adv Drug Deliv Rev 2023; 193:114618. [PMID: 36375719 PMCID: PMC10253230 DOI: 10.1016/j.addr.2022.114618] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/14/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Mucins represent a largely untapped class of polymeric building block for biomaterials, therapeutics, and other biotechnology. Because the mucin polymer backbone is genetically encoded, sequence-specific mucins with defined physical and biochemical properties can be fabricated using recombinant technologies. The pendent O-glycans of mucins are increasingly implicated in immunomodulation, suppression of pathogen virulence, and other biochemical activities. Recent advances in engineered cell production systems are enabling the scalable synthesis of recombinant mucins with precisely tuned glycan side chains, offering exciting possibilities to tune the biological functionality of mucin-based products. New metabolic and chemoenzymatic strategies enable further tuning and functionalization of mucin O-glycans, opening new possibilities to expand the chemical diversity and functionality of mucin building blocks. In this review, we discuss these advances, and the opportunities for engineered mucins in biomedical applications ranging from in vitro models to therapeutics.
Collapse
Affiliation(s)
- Sangwoo Park
- Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
| | - Joe Chin-Hun Kuo
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Heidi L Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Matthew J Paszek
- Field of Biophysics, Cornell University, Ithaca, NY 14853, USA; Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
23
|
Abstract
EXTENSINS (EXTs) are an abundant and yet enigmatic class of cell wall proteins that are found across multicellular plant lineages, from Bryophytes to Angiosperms. They have been shown to be integrated within the cell wall matrix, and are proposed to play key roles in the dynamic regulation of cell-wall properties. Consistent with this, EXTs are thought to be important for plant growth and development. However, like many other classes of cell wall proteins, EXTs are biochemically complex, highly diverse, and are encoded by multiple genes, making in-depth functional characterization a challenging undertaking. Here we will provide an overview of current knowledge of the biochemistry and properties of EXTs, and of the tools that have been deployed to study their biological functions in plants.
Collapse
Affiliation(s)
- Steven Moussu
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31320 Auzeville Tolosane, France
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
- Corresponding authors at: Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31320 Auzeville Tolosane, France (S. Moussu) and Laboratoire Reproduction et Développement des Plants, ENS de Lyon, CNRS, INRAE, UCBL, Lyon, France (G.Ingram).
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, UCBL, Lyon, France
- Corresponding authors at: Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31320 Auzeville Tolosane, France (S. Moussu) and Laboratoire Reproduction et Développement des Plants, ENS de Lyon, CNRS, INRAE, UCBL, Lyon, France (G.Ingram).
| |
Collapse
|
24
|
Feng J, Li Z, Luo W, Liang G, Xu Y, Chong K. COG2 negatively regulates chilling tolerance through cell wall components altered in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:19. [PMID: 36680595 DOI: 10.1007/s00122-023-04261-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/10/2022] [Indexed: 06/17/2023]
Abstract
Chilling-tolerant QTL gene COG2 encoded an extensin and repressed chilling tolerance by affecting the compositions of cell wall. Rice as a major crop is susceptible to chilling stress. Chilling tolerance is a complex trait controlled by multiple quantitative trait loci (QTLs). Here, we identify a QTL gene, COG2, that negatively regulates cold tolerance at seedling stage in rice. COG2 overexpression transgenic plants are sensitive to cold, whereas knockout transgenic lines enhance chilling tolerance. Natural variation analysis shows that Hap1 is a specific haplotype in japonica/Geng rice and correlates with chilling tolerance. The SNP1 in COG2 promoter is a specific divergency and leads to the difference in the expression level of COG2 between japonica/Geng and indica/Xian cultivars. COG2 encodes a cell wall-localized extensin and affects the compositions of cell wall, including pectin and cellulose, to defense the chilling stress. The results extend the understanding of the adaptation to the environment and provide an editing target for molecular design breeding of cold tolerance in rice.
Collapse
Affiliation(s)
- Jinglei Feng
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhitao Li
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Luo
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Guohua Liang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Centre for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Yunyuan Xu
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Kang Chong
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
25
|
Trentelman JJA, de Vogel FA, Colstrup E, Sima R, Coumou J, Koetsveld J, Klouwens MJ, Nayak A, Ersoz J, Barriales D, Tomás-Cortázar J, Narasimhan S, Hajdusek O, Anguita J, Hovius JW. Identification of novel conserved Ixodes vaccine candidates; a promising role for non-secreted salivary gland proteins. Vaccine 2022; 40:7593-7603. [PMID: 36357287 DOI: 10.1016/j.vaccine.2022.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022]
Abstract
Ixodes ricinus and Ixodes scapularis are the main vectors for the causative agents of Lyme borreliosis and a wide range of other pathogens. Repeated tick-bites are known to lead to tick rejection; a phenomenon designated as tick immunity. Tick immunity is mainly directed against tick salivary gland proteins (TSGPs) and has been shown to partially protect against experimental Lyme borreliosis. TSGPs recognized by antibodies from tick immune animals could therefore be interesting candidates for an anti-tick vaccine, which might also block pathogen transmission. To identify conserved Ixodes TSGPs that could serve as a universal anti-tick vaccine in both Europe and the US, a Yeast Surface Display containing salivary gland genes of nymphal I. ricinus expressed at 24, 48 and 72 h into tick feeding was probed with either sera from rabbits repeatedly exposed for 24 h to I. ricinus nymphal ticks and/or sera from rabbits immune to I. scapularis. Thus, we identified thirteen TSGP vaccine candidates, of which ten were secreted. For vaccination studies in rabbits, we selected six secreted TSGPs, five full length and one conserved peptide. None of these proteins hampered tick feeding. In contrast, vaccination of guinea pigs with four non-secreted TSGPs - two from the current and two from a previous human immunoscreening - did significantly reduce tick attachment and feeding. Therefore, non-secreted TSGPs appear to be involved in the development of tick immunity and are interesting candidates for an anti-tick vaccine.
Collapse
Affiliation(s)
- Jos J A Trentelman
- Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| | - Fons A de Vogel
- Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Emil Colstrup
- Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Radek Sima
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Biopticka laborator s.r.o., Plzen, Czech Republic
| | - Jeroen Coumou
- Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Joris Koetsveld
- Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Michelle J Klouwens
- Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Abhijeet Nayak
- Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Jasmin Ersoz
- Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Diego Barriales
- CIC bioGUNE-Basque Research & Technology Alliance, Derio 48160, Spain
| | - Julen Tomás-Cortázar
- CIC bioGUNE-Basque Research & Technology Alliance, Derio 48160, Spain; UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Ondrej Hajdusek
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Juan Anguita
- CIC bioGUNE-Basque Research & Technology Alliance, Derio 48160, Spain; Ikerbasque, Basque Foundation for Science, Bilbao 48012, Spain
| | - Joppe W Hovius
- Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
26
|
Doll NM, Berenguer E, Truskina J, Ingram G. AtEXT3 is not essential for early embryogenesis or plant viability in Arabidopsis. THE NEW PHYTOLOGIST 2022; 236:1629-1633. [PMID: 36052714 PMCID: PMC9826179 DOI: 10.1111/nph.18452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Nicolas Max Doll
- Laboratoire Reproduction et Développement des PlantesENS de Lyon, CNRS, INRAE, UCBLF‐69342LyonFrance
| | - Eduardo Berenguer
- Laboratoire Reproduction et Développement des PlantesENS de Lyon, CNRS, INRAE, UCBLF‐69342LyonFrance
| | - Jekaterina Truskina
- Laboratoire Reproduction et Développement des PlantesENS de Lyon, CNRS, INRAE, UCBLF‐69342LyonFrance
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des PlantesENS de Lyon, CNRS, INRAE, UCBLF‐69342LyonFrance
| |
Collapse
|
27
|
Lee B, Jaberi-Lashkari N, Calo E. A unified view of low complexity regions (LCRs) across species. eLife 2022; 11:e77058. [PMID: 36098382 PMCID: PMC9470157 DOI: 10.7554/elife.77058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Low complexity regions (LCRs) play a role in a variety of important biological processes, yet we lack a unified view of their sequences, features, relationships, and functions. Here, we use dotplots and dimensionality reduction to systematically define LCR type/copy relationships and create a map of LCR sequence space capable of integrating LCR features and functions. By defining LCR relationships across the proteome, we provide insight into how LCR type and copy number contribute to higher order assemblies, such as the importance of K-rich LCR copy number for assembly of the nucleolar protein RPA43 in vivo and in vitro. With LCR maps, we reveal the underlying structure of LCR sequence space, and relate differential occupancy in this space to the conservation and emergence of higher order assemblies, including the metazoan extracellular matrix and plant cell wall. Together, LCR relationships and maps uncover and identify scaffold-client relationships among E-rich LCR-containing proteins in the nucleolus, and revealed previously undescribed regions of LCR sequence space with signatures of higher order assemblies, including a teleost-specific T/H-rich sequence space. Thus, this unified view of LCRs enables discovery of how LCRs encode higher order assemblies of organisms.
Collapse
Affiliation(s)
- Byron Lee
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Nima Jaberi-Lashkari
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Eliezer Calo
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
28
|
Allan MC, Johanningsmeier SD. Sweetpotato chip texture and fat content: Effects of enzymatic modification of cell wall polymers. J Food Sci 2022; 87:3995-4008. [PMID: 35942682 DOI: 10.1111/1750-3841.16267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022]
Abstract
Impacts of cell wall polymers on sweetpotato chip texture and fat content were investigated through enzymatic modification. Covington sweetpotato slices were treated with cellulase, hemicellulase, pectinase, pectin methyl esterase, protease, the enzyme blend Viscozyme, or no enzymes (control) at 40-45°C for 0.5-2 h. Treated slices were blanched, dried, and fried in triplicate per experimental condition. Breaking forces of 20 chips per frying replicate were measured followed by chip fat, moisture, sugar, alcohol insoluble solids, glass transition temperature, and color analyses. Untreated slices from each batch (daily check) were fried and analyzed to account for starting material variability. Viscozyme and protease-treated chips had the greatest reduction in breaking force from untreated chips (-30.9% and -23.7%, respectively), while pectin methyl esterase-treated chips had the lowest reduction in breaking force (-9.0%). Chips treated with Viscozyme for 2 h were 6.7-6.3 percentiles lower in fat than the control. Principal component analysis elucidated that chip breaking force was associated with unfried slice puncture force, alcohol insoluble solids, and chip color, and chip fat content was inversely associated with maltose content and glass transition temperature. Breaking down multiple cell wall polysaccharides or structural proteins weakened chip textures, while strengthening the pectic fraction resulted in harder chips. Chip fat reduction also occurred when multiple cell wall polysaccharides were broken down. Therefore, cell wall polymers impact sweetpotato chip texture and fat contents, and their attributes should be considered when selecting cultivars and processes for sweetpotato chips. PRACTICAL APPLICATION: Sweetpotato chips are an increasingly popular snack, but there is little understanding how cell wall polymers impact chip textures and fat contents. Raw sweetpotato slices were enzymatically treated to selectively modify cell wall polymers before frying. Chip breaking forces were lowered by protease or Viscozyme (cell wall enzyme blend) treatments, while breaking forces were increased with pectin methyl esterase. In addition, chip fat contents were reduced by the Viscozyme treatment. Since cell wall modifications could impact chip texture and fat content, cell wall polymer attributes should be considered in selection and processing of sweetpotatoes for chip manufacturing.
Collapse
Affiliation(s)
- Matthew C Allan
- USDA-ARS, SEA, Food Science and Market Quality and Handling Research Unit, North Carolina State University, Raleigh, North Carolina, USA
| | - Suzanne D Johanningsmeier
- USDA-ARS, SEA, Food Science and Market Quality and Handling Research Unit, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
29
|
Ma Z, Zhu K, Gao Y, Tan S, Miao Y. Molecular condensation and mechanoregulation of plant class I formin, an integrin‐like actin nucleator. FEBS J 2022. [DOI: 10.1111/febs.16571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/29/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Zhiming Ma
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
| | - Kexin Zhu
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
| | - Yong‐Gui Gao
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
| | - Suet‐Mien Tan
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
| | - Yansong Miao
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
- Institute for Digital Molecular Analytics and Science Nanyang Technological University Singapore City Singapore
| |
Collapse
|
30
|
Lara-Mondragón CM, Dorchak A, MacAlister CA. O-glycosylation of the extracellular domain of pollen class I formins modulates their plasma membrane mobility. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3929-3945. [PMID: 35383367 PMCID: PMC9232206 DOI: 10.1093/jxb/erac131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/31/2022] [Indexed: 06/09/2023]
Abstract
In plant cells, linkage between the cytoskeleton, plasma membrane, and cell wall is crucial for maintaining cell shape. In highly polarized pollen tubes, this coordination is especially important to allow rapid tip growth and successful fertilization. Class I formins contain cytoplasmic actin-nucleating formin homology domains as well as a proline-rich extracellular domain and are candidate coordination factors. Here, using Arabidopsis, we investigated the functional significance of the extracellular domain of two pollen-expressed class I formins: AtFH3, which does not have a polar localization, and AtFH5, which is limited to the growing tip region. We show that the extracellular domain of both is necessary for their function, and identify distinct O-glycans attached to these sequences, AtFH5 being hydroxyproline-arabinosylated and AtFH3 carrying arabinogalactan chains. Loss of hydroxyproline arabinosylation altered the plasma membrane localization of AtFH5 and disrupted actin cytoskeleton organization. Moreover, we show that O-glycans differentially affect lateral mobility in the plasma membrane. Together, our results support a model of protein sub-functionalization in which AtFH5 and AtFH3, restricted to specific plasma membrane domains by their extracellular domains and the glycans attached to them, organize distinct subarrays of actin during pollen tube elongation.
Collapse
Affiliation(s)
- Cecilia M Lara-Mondragón
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Alexandria Dorchak
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
31
|
Abi-Habib E, Vernhet A, Roi S, Carrillo S, Jørgensen B, Hansen J, Doco T, Poncet-Legrand C. Impact of the variety on the adsorption of anthocyanins and tannins on grape flesh cell walls. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3379-3392. [PMID: 34820844 DOI: 10.1002/jsfa.11685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/15/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND During winemaking, after extraction from the skins, anthocyanins and tannins adsorb onto the pulp flesh cell walls. The present study aimed to quantify the amounts adsorbed and their impact on wine composition, the impact of variety and ethanol on adsorption, and whether the presence of anthocyanins plays a role and impacts tannin adsorption. RESULTS Anthocyanin and tannin fractions obtained by mimicking winemaking conditions were mixed with fresh flesh cell walls of two varieties: Carignan and Grenache. Adsorption isotherms were measured. Adsorption of tannins was higher with Carignan than with Grenache and decreased when the ethanol content increased. In comparison, anthocyanins were adsorbed in small amounts, and their mixing with tannins had no impact on their adsorption. The differences were related to differences in pulp cell wall composition, particularly in terms of extensins and arabinans. CONCLUSION Adsorption of tannins, which can reach 50% of the initial amount, depends on the pulp cell wall composition. This needs to be investigated further. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Elissa Abi-Habib
- SPO, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Aude Vernhet
- SPO, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Stéphanie Roi
- SPO, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Stéphanie Carrillo
- SPO, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Jeanett Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Thierry Doco
- SPO, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | | |
Collapse
|
32
|
Burnett CL, Boyer IJ, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Heldreth B. Safety Assessment of Plant-Derived Proteins and Peptides as Used in Cosmetics. Int J Toxicol 2022; 41:5S-20S. [PMID: 35604030 DOI: 10.1177/10915818221100700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Expert Panel for Cosmetic Ingredient Safety (Panel) reviewed the safety of 19 plant-derived proteins and peptides, which function mainly as skin and/or hair conditioning agents in personal care products. The Panel concluded that 18 plant-derived proteins and peptides are safe as used in the present practices of use and concentration as described in this safety assessment, while the data on Hydrolyzed Maple Sycamore Protein are insufficient to determine safety.
Collapse
Affiliation(s)
| | | | | | | | - Ronald A Hill
- Former Expert Panel for Cosmetic Ingredient Safety Member
| | | | | | - James G Marks
- Former Expert Panel for Cosmetic Ingredient Safety Member
| | - Ronald C Shank
- Former Expert Panel for Cosmetic Ingredient Safety Member
| | | | | | | |
Collapse
|
33
|
Abstract
In angiosperms, double fertilization triggers the concomitant development of two closely juxtaposed tissues, the embryo and the endosperm. Successful seed development and germination require constant interactions between these tissues, which occur across their common interface. The embryo-endosperm interface is a complex and poorly understood compound apoplast comprising components derived from both tissues, across which nutrients transit to fuel embryo development. Interface properties, which affect molecular diffusion and thus communication, are themselves dynamically regulated by molecular and physical dialogues between the embryo and endosperm. We review the current understanding of embryo-endosperm interactions, with a focus on the structure, properties, and function of their shared interface. Concentrating on Arabidopsis, but with reference to other species, we aim to situate recent findings within the broader context of seed physiology, developmental biology, and genetic factors such as parental conflicts over resource allocation.
Collapse
Affiliation(s)
- Nicolas M Doll
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium;
- VIB Center of Plant Systems Biology, Ghent, Belgium
| | - Gwyneth C Ingram
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, Université de Lyon 1, Lyon, France;
| |
Collapse
|
34
|
Marzol E, Borassi C, Carignani Sardoy M, Ranocha P, Aptekmann AA, Bringas M, Pennington J, Paez-Valencia J, Martínez Pacheco J, Rodríguez-Garcia DR, Rondón Guerrero YDC, Peralta JM, Fleming M, Mishler-Elmore JW, Mangano S, Blanco-Herrera F, Bedinger PA, Dunand C, Capece L, Nadra AD, Held M, Otegui MS, Estevez JM. Class III Peroxidases PRX01, PRX44, and PRX73 Control Root Hair Growth in Arabidopsis thaliana. Int J Mol Sci 2022; 23:5375. [PMID: 35628189 PMCID: PMC9141322 DOI: 10.3390/ijms23105375] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022] Open
Abstract
Root hair cells are important sensors of soil conditions. They grow towards and absorb water-soluble nutrients. This fast and oscillatory growth is mediated by continuous remodeling of the cell wall. Root hair cell walls contain polysaccharides and hydroxyproline-rich glycoproteins, including extensins (EXTs). Class-III peroxidases (PRXs) are secreted into the apoplastic space and are thought to trigger either cell wall loosening or polymerization of cell wall components, such as Tyr-mediated assembly of EXT networks (EXT-PRXs). The precise role of these EXT-PRXs is unknown. Using genetic, biochemical, and modeling approaches, we identified and characterized three root-hair-specific putative EXT-PRXs, PRX01, PRX44, and PRX73. prx01,44,73 triple mutation and PRX44 and PRX73 overexpression had opposite effects on root hair growth, peroxidase activity, and ROS production, with a clear impact on cell wall thickness. We use an EXT fluorescent reporter with contrasting levels of cell wall insolubilization in prx01,44,73 and PRX44-overexpressing background plants. In this study, we propose that PRX01, PRX44, and PRX73 control EXT-mediated cell wall properties during polar expansion of root hair cells.
Collapse
Affiliation(s)
- Eliana Marzol
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; (E.M.); (C.B.); (M.C.S.); (J.M.P.); (D.R.R.-G.); (Y.d.C.R.G.); (J.M.P.); (S.M.)
| | - Cecilia Borassi
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; (E.M.); (C.B.); (M.C.S.); (J.M.P.); (D.R.R.-G.); (Y.d.C.R.G.); (J.M.P.); (S.M.)
| | - Mariana Carignani Sardoy
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; (E.M.); (C.B.); (M.C.S.); (J.M.P.); (D.R.R.-G.); (Y.d.C.R.G.); (J.M.P.); (S.M.)
| | - Philippe Ranocha
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 24, Chemin de Borde-Rouge, 31320 Auzeville-Tolosane, France; (P.R.); (C.D.)
| | - Ariel A. Aptekmann
- Departamento de Fisiología, Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3). Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina; (A.A.A.); (A.D.N.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (IQUIBICEN-CONICET), Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Mauro Bringas
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (INQUIMAE-CONICET), Buenos Aires C1428EGA, Argentina; (M.B.); (L.C.)
| | - Janice Pennington
- Laboratory of Cell and Molecular Biology, University of Wisconsin, Madison and Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI 53706, USA; (J.P.); (J.P.-V.); (M.S.O.)
| | - Julio Paez-Valencia
- Laboratory of Cell and Molecular Biology, University of Wisconsin, Madison and Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI 53706, USA; (J.P.); (J.P.-V.); (M.S.O.)
| | - Javier Martínez Pacheco
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; (E.M.); (C.B.); (M.C.S.); (J.M.P.); (D.R.R.-G.); (Y.d.C.R.G.); (J.M.P.); (S.M.)
| | - Diana R. Rodríguez-Garcia
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; (E.M.); (C.B.); (M.C.S.); (J.M.P.); (D.R.R.-G.); (Y.d.C.R.G.); (J.M.P.); (S.M.)
| | - Yossmayer del Carmen Rondón Guerrero
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; (E.M.); (C.B.); (M.C.S.); (J.M.P.); (D.R.R.-G.); (Y.d.C.R.G.); (J.M.P.); (S.M.)
| | - Juan Manuel Peralta
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; (E.M.); (C.B.); (M.C.S.); (J.M.P.); (D.R.R.-G.); (Y.d.C.R.G.); (J.M.P.); (S.M.)
| | - Margaret Fleming
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878, USA; (M.F.); (P.A.B.)
| | - John W. Mishler-Elmore
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA; (J.W.M.-E.); (M.H.)
| | - Silvina Mangano
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; (E.M.); (C.B.); (M.C.S.); (J.M.P.); (D.R.R.-G.); (Y.d.C.R.G.); (J.M.P.); (S.M.)
| | - Francisca Blanco-Herrera
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8320000, Chile;
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello Santiago, Santiago 8370146, Chile
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio) and Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
| | - Patricia A. Bedinger
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878, USA; (M.F.); (P.A.B.)
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 24, Chemin de Borde-Rouge, 31320 Auzeville-Tolosane, France; (P.R.); (C.D.)
| | - Luciana Capece
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (INQUIMAE-CONICET), Buenos Aires C1428EGA, Argentina; (M.B.); (L.C.)
| | - Alejandro D. Nadra
- Departamento de Fisiología, Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3). Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina; (A.A.A.); (A.D.N.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (IQUIBICEN-CONICET), Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Michael Held
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA; (J.W.M.-E.); (M.H.)
| | - Marisa S. Otegui
- Laboratory of Cell and Molecular Biology, University of Wisconsin, Madison and Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI 53706, USA; (J.P.); (J.P.-V.); (M.S.O.)
- Departments of Botany and Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - José M. Estevez
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; (E.M.); (C.B.); (M.C.S.); (J.M.P.); (D.R.R.-G.); (Y.d.C.R.G.); (J.M.P.); (S.M.)
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello Santiago, Santiago 8370146, Chile
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio) and Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
| |
Collapse
|
35
|
Althammer M, Regl C, Herburger K, Blöchl C, Voglas E, Huber CG, Tenhaken R. Overexpression of UDP-sugar pyrophosphorylase leads to higher sensitivity towards galactose, providing new insights into the mechanisms of galactose toxicity in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1416-1426. [PMID: 34913539 PMCID: PMC9306886 DOI: 10.1111/tpj.15638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 05/04/2023]
Abstract
Galactose toxicity (Gal-Tox) is a widespread phenomenon ranging from Escherichia coli to mammals and plants. In plants, the predominant pathway for the conversion of galactose into UDP-galactose (UDP-Gal) and UDP-glucose is catalyzed by the enzymes galactokinase, UDP-sugar pyrophosphorylase (USP) and UDP-galactose 4-epimerase. Galactose is a major component of cell wall polymers, glycolipids and glycoproteins; therefore, it becomes surprising that exogenous addition of galactose leads to drastic root phenotypes including cessation of primary root growth and induction of lateral root formation. Currently, little is known about galactose-mediated toxicity in plants. In this study, we investigated the role of galactose-containing metabolites like galactose-1-phosphate (Gal-1P) and UDP-Gal in Gal-Tox. Recently published data from mouse models suggest that a reduction of the Gal-1P level via an mRNA-based therapy helps to overcome Gal-Tox. To test this hypothesis in plants, we created Arabidopsis thaliana lines overexpressing USP from Pisum sativum. USP enzyme assays confirmed a threefold higher enzyme activity in the overexpression lines leading to a significant reduction of the Gal-1P level in roots. Interestingly, the overexpression lines are phenotypically more sensitive to the exogenous addition of galactose (0.5 mmol L-1 Gal). Nucleotide sugar analysis via high-performance liquid chromatography-mass spectrometry revealed highly elevated UDP-Gal levels in roots of seedlings grown on 1.5 mmol L-1 galactose versus 1.5 mmol L-1 sucrose. Analysis of plant cell wall glycans by comprehensive microarray polymer profiling showed a high abundance of antibody binding recognizing arabinogalactanproteins and extensins under Gal-feeding conditions, indicating that glycoproteins are a major target for elevated UDP-Gal levels in plants.
Collapse
Affiliation(s)
- Martina Althammer
- Department of BiosciencesMolecular Plant PhysiologyUniversity of SalzburgHellbrunnerstr. 34Salzburg5020Austria
| | - Christof Regl
- Department of BiosciencesBioanalytical Research LabsUniversity of SalzburgHellbrunnerstr. 34Salzburg5020Austria
| | - Klaus Herburger
- Department of Plant and Environmental SciencesSection for Plant GlycobiologyUniversity of CopenhagenFrederiksberg1871Denmark
| | - Constantin Blöchl
- Department of BiosciencesBioanalytical Research LabsUniversity of SalzburgHellbrunnerstr. 34Salzburg5020Austria
| | - Elena Voglas
- Department of BiosciencesMolecular Plant PhysiologyUniversity of SalzburgHellbrunnerstr. 34Salzburg5020Austria
| | - Christian G. Huber
- Department of BiosciencesBioanalytical Research LabsUniversity of SalzburgHellbrunnerstr. 34Salzburg5020Austria
| | - Raimund Tenhaken
- Department of BiosciencesMolecular Plant PhysiologyUniversity of SalzburgHellbrunnerstr. 34Salzburg5020Austria
| |
Collapse
|
36
|
Wilmowicz E, Kućko A, Alché JDD, Czeszewska-Rosiak G, Florkiewicz AB, Kapusta M, Karwaszewski J. Remodeling of Cell Wall Components in Root Nodules and Flower Abscission Zone under Drought in Yellow Lupine. Int J Mol Sci 2022; 23:ijms23031680. [PMID: 35163603 PMCID: PMC8836056 DOI: 10.3390/ijms23031680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/29/2022] Open
Abstract
We recently showed that yellow lupine is highly sensitive to soil water deficits since this stressor disrupts nodule structure and functioning, and at the same time triggers flower separation through abscission zone (AZ) activation in the upper part of the plant. Both processes require specific transformations including cell wall remodeling. However, knowledge about the involvement of particular cell wall elements in nodulation and abscission in agronomically important, nitrogen-fixing crops, especially under stressful conditions, is still scarce. Here, we used immuno-fluorescence techniques to visualize dynamic changes in cell wall compounds taking place in the root nodules and flower AZ of Lupinus luteus following drought. The reaction of nodules and the flower AZ to drought includes the upregulation of extensins, galactans, arabinans, xylogalacturonan, and xyloglucans. Additionally, modifications in the localization of high- and low-methylated homogalacturonans and arabinogalactan proteins were detected in nodules. Collectively, we determined for the first time the drought-associated modification of cell wall components responsible for their remodeling in root nodules and the flower AZ of L. luteus. The involvement of these particular molecules and their possible interaction in response to stress is also deeply discussed herein.
Collapse
Affiliation(s)
- Emilia Wilmowicz
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1 Street, 87-100 Toruń, Poland; (G.C.-R.); (A.B.F.); (J.K.)
- Correspondence: ; Tel.: +48-(56)-611-44-61
| | - Agata Kućko
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159 Street, 02-776 Warsaw, Poland;
| | - Juan De Dios Alché
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, E-18008 Granada, Spain;
| | - Grażyna Czeszewska-Rosiak
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1 Street, 87-100 Toruń, Poland; (G.C.-R.); (A.B.F.); (J.K.)
| | - Aleksandra Bogumiła Florkiewicz
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1 Street, 87-100 Toruń, Poland; (G.C.-R.); (A.B.F.); (J.K.)
| | - Małgorzata Kapusta
- Department of Plant Cytology and Embryology, University of Gdańsk, Wita Stwosza 59 Street, 80-308 Gdańsk, Poland;
| | - Jacek Karwaszewski
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1 Street, 87-100 Toruń, Poland; (G.C.-R.); (A.B.F.); (J.K.)
| |
Collapse
|
37
|
Frey C, Manga-Robles A, Acebes JL, Encina A. The graft framework: Quantitative changes in cell wall matrix polysaccharides throughout the tomato graft union formation. Carbohydr Polym 2022; 276:118781. [PMID: 34823794 DOI: 10.1016/j.carbpol.2021.118781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/14/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022]
Abstract
Plant cell walls provide essential functions in cell recognition, differentiation, adhesion and wound responses. Therefore, it is tempting to hypothesize that cell walls play a key role in grafting, but to date there are no quantitative studies targeting on cell wall changes during grafting. The aim of this work was to investigate the dynamics of pectic and hemicellulosic polysaccharides at the graft junctions in tomato homografts throughout the first 12 days after grafting. Cell wall fractionation, combined with ATR-FTIR spectroscopy and gas-chromatography, evidenced a marked increase in pectin content and a decrease in the degree of methyl-esterification of homogalacturonan in scion and rootstock throughout grafting. Also, recovery of tightly-bound hemicelluloses decreased at late times after grafting suggesting an increase of cross-linked hemicelluloses along grafting. In addition, immuno-dot assays revealed an increase in xyloglucan and arabinogalactan proteins in the first days after grafting, pointing to a presumed role in tissue adhesion-cohesion.
Collapse
Affiliation(s)
- Carlos Frey
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus Vegazana, s/n, E-24007 León, Spain.
| | - Alba Manga-Robles
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus Vegazana, s/n, E-24007 León, Spain.
| | - José Luis Acebes
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus Vegazana, s/n, E-24007 León, Spain.
| | - Antonio Encina
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus Vegazana, s/n, E-24007 León, Spain.
| |
Collapse
|
38
|
Damasceno Junior CV, Godoy S, Gonela A, Scapim CA, Grandis A, Dos Santos WD, Mangolin CA, Buckeridge MS, Machado MDFPS. Biochemical composition of the pericarp cell wall of popcorn inbred lines with different popping expansion. Curr Res Food Sci 2022; 5:102-106. [PMID: 35024623 PMCID: PMC8728428 DOI: 10.1016/j.crfs.2021.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 11/03/2022] Open
Abstract
The popping expansion is a characteristic that is positively related with the quality of popcorn. A positive correlation between the volume of expansion and the thickness of the pericarp, and between the proportion of the opaque/shiny endosperm and the grain weight and volume, were postulated. However, there are no reports in the literature that address the importance of cell wall components in the popping expansion. Here, we investigate the biochemical composition of the pericarp cell walls of three inbred lines of popcorn with different popping expansion. Inbred lines GP12 (expansion volume >40 mL g−1), P11 (expansion volume 30 mL g−1) and P16 (expansion volume 14 mL g−1) were used for the analysis and quantification of monosaccharides by HPAEC-PAD, and ferulic and p-coumaric acids and lignin by HPLC. Our hypothesis is that the biochemical composition of the pericarp cell walls may be related to greater or lesser popping expansion. Our data suggest that the lignin content and composition contribute to popping expansion. The highest concentration of lignin (129.74 μg mg−1; 12.97%) was detected in the pericarp cell wall of the GP12 inbred line with extremely high popping expansion, and the lowest concentration (113.52 μg mg−1; 11.35%) was observed in the P16 inbred line with low popping expansion. These findings may contribute to indicating the quantitative trait locus for breeding programs and to developing other methods to improve the popping expansion of popcorn. Biochemical composition of the pericarp cell wall was related to popcorn expansion. •Three lineages of popcorn with different expansion capacities were analyzed. •Monosaccharides, ferulic and p-coumaric acids and lignin were quantified. •Xylose was detected in the highest concentration in the three lineages of popcorn. •The lignin content and composition contributed to popcorn grain expansion capacity.
Collapse
Affiliation(s)
| | - Samantha Godoy
- Post-Graduate Program in Genetics and Breeding, State University of Maringá, 87020-900, Maringá, PR, Brazil
| | - Adriana Gonela
- Department of Agronomy, State University of Maringá, 87020-900, Maringá, PR, Brazil
| | | | - Adriana Grandis
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Wanderley D Dos Santos
- Post-Graduate Program in Agronomy, State University of Maringá, 87020-900, Maringá, PR, Brazil.,Department of Biochemistry, State University of Maringá, Maringá, PR, Brazil
| | | | - Marcos S Buckeridge
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
39
|
Permann C, Herburger K, Felhofer M, Gierlinger N, Lewis LA, Holzinger A. Induction of Conjugation and Zygospore Cell Wall Characteristics in the Alpine Spirogyra mirabilis (Zygnematophyceae, Charophyta): Advantage under Climate Change Scenarios? PLANTS (BASEL, SWITZERLAND) 2021; 10:1740. [PMID: 34451785 PMCID: PMC8402014 DOI: 10.3390/plants10081740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 11/26/2022]
Abstract
Extreme environments, such as alpine habitats at high elevation, are increasingly exposed to man-made climate change. Zygnematophyceae thriving in these regions possess a special means of sexual reproduction, termed conjugation, leading to the formation of resistant zygospores. A field sample of Spirogyra with numerous conjugating stages was isolated and characterized by molecular phylogeny. We successfully induced sexual reproduction under laboratory conditions by a transfer to artificial pond water and increasing the light intensity to 184 µmol photons m-2 s-1. This, however was only possible in early spring, suggesting that the isolated cultures had an internal rhythm. The reproductive morphology was characterized by light- and transmission electron microscopy, and the latter allowed the detection of distinctly oriented microfibrils in the exo- and endospore, and an electron-dense mesospore. Glycan microarray profiling showed that Spirogyra cell walls are rich in major pectic and hemicellulosic polysaccharides, and immuno-fluorescence allowed the detection of arabinogalactan proteins (AGPs) and xyloglucan in the zygospore cell walls. Confocal RAMAN spectroscopy detected complex aromatic compounds, similar in their spectral signature to that of Lycopodium spores. These data support the idea that sexual reproduction in Zygnematophyceae, the sister lineage to land plants, might have played an important role in the process of terrestrialization.
Collapse
Affiliation(s)
- Charlotte Permann
- Department of Botany, Functional Plant Biology, University of Innsbruck, 6020 Innsbruck, Austria;
| | - Klaus Herburger
- Section for Plant Glycobiology, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark;
| | - Martin Felhofer
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria; (M.F.); (N.G.)
| | - Notburga Gierlinger
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria; (M.F.); (N.G.)
| | - Louise A. Lewis
- Department of Ecology and Evolutionary Biology, University of Conneticut, Storrs, CT 06269-3043, USA;
| | - Andreas Holzinger
- Department of Botany, Functional Plant Biology, University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
40
|
Patriarca EJ, Cermola F, D’Aniello C, Fico A, Guardiola O, De Cesare D, Minchiotti G. The Multifaceted Roles of Proline in Cell Behavior. Front Cell Dev Biol 2021; 9:728576. [PMID: 34458276 PMCID: PMC8397452 DOI: 10.3389/fcell.2021.728576] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Herein, we review the multifaceted roles of proline in cell biology. This peculiar cyclic imino acid is: (i) A main precursor of extracellular collagens (the most abundant human proteins), antimicrobial peptides (involved in innate immunity), salivary proteins (astringency, teeth health) and cornifins (skin permeability); (ii) an energy source for pathogenic bacteria, protozoan parasites, and metastatic cancer cells, which engage in extracellular-protein degradation to invade their host; (iii) an antistress molecule (an osmolyte and chemical chaperone) helpful against various potential harms (UV radiation, drought/salinity, heavy metals, reactive oxygen species); (iv) a neural metabotoxin associated with schizophrenia; (v) a modulator of cell signaling pathways such as the amino acid stress response and extracellular signal-related kinase pathway; (vi) an epigenetic modifier able to promote DNA and histone hypermethylation; (vii) an inducer of proliferation of stem and tumor cells; and (viii) a modulator of cell morphology and migration/invasiveness. We highlight how proline metabolism impacts beneficial tissue regeneration, but also contributes to the progression of devastating pathologies such as fibrosis and metastatic cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati Traverso”, Consiglio Nazionale delle Ricerche, Naples, Italy
| |
Collapse
|
41
|
Busoms S, Pérez-Martín L, Llimós M, Poschenrieder C, Martos S. Genome-Wide Association Study Reveals Key Genes for Differential Lead Accumulation and Tolerance in Natural Arabidopsis thaliana Accessions. FRONTIERS IN PLANT SCIENCE 2021; 12:689316. [PMID: 34421943 PMCID: PMC8377763 DOI: 10.3389/fpls.2021.689316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Soil contamination by lead (Pb) has become one of the major ecological threats to the environment. Understanding the mechanisms of Pb transport and deposition in plants is of great importance to achieve a global Pb reduction. We exposed a collection of 360 Arabidopsis thaliana natural accessions to a Pb-polluted soil. Germination rates, growth, and leaf Pb concentrations showed extensive variation among accessions. These phenotypic data were subjected to genome wide association studies (GWAs) and we found a significant association on chromosome 1 for low leaf Pb accumulation. Genes associated with significant SNP markers were evaluated and we selected EXTENSIN18 (EXT18) and TLC (TRAM-LAG1-CLN8) as candidates for having a role in Pb homeostasis. Six Pb-tolerant accessions, three of them exhibiting low leaf Pb content, and three of them with high leaf Pb content; two Pb-sensitive accessions; two knockout T-DNA lines of GWAs candidate genes (ext18, tlc); and Col-0 were screened under control and high-Pb conditions. The relative expression of EXT18, TLC, and other genes described for being involved in Pb tolerance was also evaluated. Analysis of Darwinian fitness, root and leaf ionome, and TEM images revealed that Pb-tolerant accessions employ two opposing strategies: (1) low translocation of Pb and its accumulation into root cell walls and vacuoles, or (2) high translocation of Pb and its efflux to inactive organelles or intracellular spaces. Plants using the first strategy exhibited higher expression of EXT18 and HMA3, thicker root cell walls and Pb vacuolar sequestration, suggesting that these genes may contribute to the deposition of Pb in the roots. On the other hand, plants translocating high amounts of Pb showed upregulation of TLC and ABC transporters, indicating that these plants were able to properly efflux Pb in the aerial tissues. We conclude that EXT18 and TLC upregulation enhances Pb tolerance promoting its sequestration: EXT18 favors the thickening of the cell walls improving Pb accumulation in roots and decreasing its toxicity, while TLC facilitates the formation of dictyosome vesicles and the Pb encapsulation in leaves. These findings are relevant for the design of phytoremediation strategies and environment restoration.
Collapse
Affiliation(s)
- Sílvia Busoms
- Plant Physiology Laboratory, Faculty of Bioscience, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Pérez-Martín
- Plant Physiology Laboratory, Faculty of Bioscience, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miquel Llimós
- Plant Physiology Laboratory, Faculty of Bioscience, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Charlotte Poschenrieder
- Plant Physiology Laboratory, Faculty of Bioscience, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Soledad Martos
- Plant Physiology Laboratory, Faculty of Bioscience, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
42
|
Pacheco JM, Mansilla N, Moison M, Lucero L, Gabarain VB, Ariel F, Estevez JM. The lncRNA APOLO and the transcription factor WRKY42 target common cell wall EXTENSIN encoding genes to trigger root hair cell elongation. PLANT SIGNALING & BEHAVIOR 2021; 16:1920191. [PMID: 33944666 PMCID: PMC8244768 DOI: 10.1080/15592324.2021.1920191] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plant long noncoding RNAs (lncRNAs) are key chromatin dynamics regulators, directing the transcriptional programs driving a wide variety of developmental outputs. Recently, we uncovered how the lncRNA AUXIN REGULATED PROMOTER LOOP (APOLO) directly recognizes the locus encoding the root hair (RH) master regulator ROOT HAIR DEFECTIVE 6 (RHD6) modulating its transcriptional activation and leading to low temperature-induced RH elongation. We further demonstrated that APOLO interacts with the transcription factor WRKY42 in a novel ribonucleoprotein complex shaping RHD6 epigenetic environment and integrating signals governing RH growth and development. In this work, we expand this model showing that APOLO is able to bind and positively control the expression of several cell wall EXTENSIN (EXT) encoding genes, including EXT3, a key regulator for RH growth. Interestingly, EXT3 emerged as a novel common target of APOLO and WRKY42. Furthermore, we showed that the ROS homeostasis-related gene NADPH OXIDASE C (NOXC) is deregulated upon APOLO overexpression, likely through the RHD6-RSL4 pathway, and that NOXC is required for low temperature-dependent enhancement of RH growth. Collectively, our results uncover an intricate regulatory network involving the APOLO/WRKY42 hub in the control of master and effector genes during RH development.
Collapse
Affiliation(s)
| | - Natanael Mansilla
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, FBCB/FHUC, Centro Científico Tecnológico CONICET Santa Fe, Paraje El Pozo, Santa Fe, Argentina
| | - Michaël Moison
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, FBCB/FHUC, Centro Científico Tecnológico CONICET Santa Fe, Paraje El Pozo, Santa Fe, Argentina
| | - Leandro Lucero
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, FBCB/FHUC, Centro Científico Tecnológico CONICET Santa Fe, Paraje El Pozo, Santa Fe, Argentina
| | | | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, FBCB/FHUC, Centro Científico Tecnológico CONICET Santa Fe, Paraje El Pozo, Santa Fe, Argentina
- CONTACT Federico Ariel Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, FBCB/FHUC, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional No 168km. 0, Paraje El Pozo, Santa Fe3000, Argentina
| | - José M. Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, CP, Argentina
- Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida (Fcsv), Universidad Andres Bello and Millennium Institute for Integrative Biology (Ibio), Santiago, Chile
- José M. Estevez Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, CPC1405BWE, Argentina
| |
Collapse
|
43
|
Behnami S, Bonetta D. With an Ear Up against the Wall: An Update on Mechanoperception in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2021; 10:1587. [PMID: 34451632 PMCID: PMC8398075 DOI: 10.3390/plants10081587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
Cells interpret mechanical signals and adjust their physiology or development appropriately. In plants, the interface with the outside world is the cell wall, a structure that forms a continuum with the plasma membrane and the cytoskeleton. Mechanical stress from cell wall damage or deformation is interpreted to elicit compensatory responses, hormone signalling, or immune responses. Our understanding of how this is achieved is still evolving; however, we can refer to examples from animals and yeast where more of the details have been worked out. Here, we provide an update on this changing story with a focus on candidate mechanosensitive channels and plasma membrane-localized receptors.
Collapse
Affiliation(s)
| | - Dario Bonetta
- Faculty of Science, Ontario Tech University, 2000 Simcoe St N, Oshawa, ON L1G 0C5, Canada;
| |
Collapse
|
44
|
Inhibition of Carotenoid Biosynthesis by CRISPR/Cas9 Triggers Cell Wall Remodelling in Carrot. Int J Mol Sci 2021; 22:ijms22126516. [PMID: 34204559 PMCID: PMC8234013 DOI: 10.3390/ijms22126516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/03/2022] Open
Abstract
Recent data indicate that modifications to carotenoid biosynthesis pathway in plants alter the expression of genes affecting chemical composition of the cell wall. Phytoene synthase (PSY) is a rate limiting factor of carotenoid biosynthesis and it may exhibit species-specific and organ-specific roles determined by the presence of psy paralogous genes, the importance of which often remains unrevealed. Thus, the aim of this work was to elaborate the roles of two psy paralogs in a model system and to reveal biochemical changes in the cell wall of psy knockout mutants. For this purpose, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR associated (Cas9) proteins (CRISPR/Cas9) vectors were introduced to carotenoid-rich carrot (Daucus carota) callus cells in order to induce mutations in the psy1 and psy2 genes. Gene sequencing, expression analysis, and carotenoid content analysis revealed that the psy2 gene is critical for carotenoid biosynthesis in this model and its knockout blocks carotenogenesis. The psy2 knockout also decreased the expression of the psy1 paralog. Immunohistochemical staining of the psy2 mutant cells showed altered composition of arabinogalactan proteins, pectins, and extensins in the mutant cell walls. In particular, low-methylesterified pectins were abundantly present in the cell walls of carotenoid-rich callus in contrast to the carotenoid-free psy2 mutant. Transmission electron microscopy revealed altered plastid transition to amyloplasts instead of chromoplasts. The results demonstrate for the first time that the inhibited biosynthesis of carotenoids triggers the cell wall remodelling.
Collapse
|
45
|
Moison M, Pacheco JM, Lucero L, Fonouni-Farde C, Rodríguez-Melo J, Mansilla N, Christ A, Bazin J, Benhamed M, Ibañez F, Crespi M, Estevez JM, Ariel F. The lncRNA APOLO interacts with the transcription factor WRKY42 to trigger root hair cell expansion in response to cold. MOLECULAR PLANT 2021; 14:937-948. [PMID: 33689931 DOI: 10.1016/j.molp.2021.03.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/08/2021] [Accepted: 03/03/2021] [Indexed: 05/25/2023]
Abstract
Plant long noncoding RNAs (lncRNAs) have emerged as important regulators of chromatin dynamics, impacting on transcriptional programs leading to different developmental outputs. The lncRNA AUXIN-REGULATED PROMOTER LOOP (APOLO) directly recognizes multiple independent loci across the Arabidopsis genome and modulates their three-dimensional chromatin conformation, leading to transcriptional shifts. Here, we show that APOLO recognizes the locus encoding the root hair (RH) master regulator ROOT HAIR DEFECTIVE 6 (RHD6) and controls RHD6 transcriptional activity, leading to cold-enhanced RH elongation through the consequent activation of the transcription factor gene RHD6-like RSL4. Furthermore, we demonstrate that APOLO interacts with the transcription factor WRKY42 and modulates its binding to the RHD6 promoter. WRKY42 is required for the activation of RHD6 by low temperatures and WRKY42 deregulation impairs cold-induced RH expansion. Collectively, our results indicate that a novel ribonucleoprotein complex with APOLO and WRKY42 forms a regulatory hub to activate RHD6 by shaping its epigenetic environment and integrate signals governing RH growth and development.
Collapse
Affiliation(s)
- Michaël Moison
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, FBCB/FHUC, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional No 168 km. 0, Paraje El Pozo, Santa Fe 3000, Argentina
| | - Javier Martínez Pacheco
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires CP C1405BWE, Argentina
| | - Leandro Lucero
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, FBCB/FHUC, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional No 168 km. 0, Paraje El Pozo, Santa Fe 3000, Argentina
| | - Camille Fonouni-Farde
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, FBCB/FHUC, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional No 168 km. 0, Paraje El Pozo, Santa Fe 3000, Argentina
| | - Johan Rodríguez-Melo
- Instituto de Investigaciones Agrobiotecnológicas, CONICET, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Natanael Mansilla
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, FBCB/FHUC, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional No 168 km. 0, Paraje El Pozo, Santa Fe 3000, Argentina
| | - Aurélie Christ
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Saclay and University of Paris Bâtiment 630, 91192 Gif sur Yvette, France
| | - Jérémie Bazin
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Saclay and University of Paris Bâtiment 630, 91192 Gif sur Yvette, France
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Saclay and University of Paris Bâtiment 630, 91192 Gif sur Yvette, France
| | - Fernando Ibañez
- Instituto de Investigaciones Agrobiotecnológicas, CONICET, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Saclay and University of Paris Bâtiment 630, 91192 Gif sur Yvette, France
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires CP C1405BWE, Argentina; Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida (FCsV), Universidad Andres Bello, Santiago, Chile and Millennium Institute for Integrative Biology (iBio), Santiago, Chile.
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, FBCB/FHUC, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional No 168 km. 0, Paraje El Pozo, Santa Fe 3000, Argentina.
| |
Collapse
|
46
|
Wang G, DiTusa SF, Oh DH, Herrmann AD, Mendoza-Cozatl DG, O'Neill MA, Smith AP, Dassanayake M. Cross species multi-omics reveals cell wall sequestration and elevated global transcript abundance as mechanisms of boron tolerance in plants. THE NEW PHYTOLOGIST 2021; 230:1985-2000. [PMID: 33629348 DOI: 10.1111/nph.17295] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Boron toxicity is a world-wide problem for crops, yet we have a limited understanding of the genetic responses and adaptive mechanisms to this stress in plants. We employed a cross-species comparison between boron stress-sensitive Arabidopsis thaliana and its boron stress-tolerant extremophyte relative Schrenkiella parvula, and a multi-omics approach integrating genomics, transcriptomics, metabolomics and ionomics to assess plant responses and adaptations to boron stress. Schrenkiella parvula maintains lower concentrations of total boron and free boric acid than Arabidopsis when grown with excess boron. Schrenkiella parvula excludes excess boron more efficiently than Arabidopsis, which we propose is partly driven by SpBOR5, a boron transporter that we functionally characterize in this study. Both species use cell walls as a partial sink for excess boron. When accumulated in the cytoplasm, excess boron appears to interrupt RNA metabolism. The extremophyte S. parvula facilitates critical cellular processes while maintaining the pool of ribose-containing compounds that can bind with boric acid. The S. parvula transcriptome is pre-adapted to boron toxicity. It exhibits substantial overlaps with the Arabidopsis boron-stress responsive transcriptome. Cell wall sequestration and increases in global transcript levels under excess boron conditions emerge as key mechanisms for sustaining plant growth under boron toxicity.
Collapse
Affiliation(s)
- Guannan Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Sandra Feuer DiTusa
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Achim D Herrmann
- Department of Geology & Geophysics and Coastal Studies Institute, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - David G Mendoza-Cozatl
- Division of Plant Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Malcolm A O'Neill
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, 30602, USA
| | - Aaron P Smith
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
47
|
Narciso JO, Zeng W, Ford K, Lampugnani ER, Humphries J, Austarheim I, van de Meene A, Bacic A, Doblin MS. Biochemical and Functional Characterization of GALT8, an Arabidopsis GT31 β-(1,3)-Galactosyltransferase That Influences Seedling Development. FRONTIERS IN PLANT SCIENCE 2021; 12:678564. [PMID: 34113372 PMCID: PMC8186459 DOI: 10.3389/fpls.2021.678564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/21/2021] [Indexed: 05/31/2023]
Abstract
Arabinogalactan-proteins (AGPs) are members of the hydroxyproline-rich glycoprotein (HRGP) superfamily, a group of highly diverse proteoglycans that are present in the cell wall, plasma membrane as well as secretions of almost all plants, with important roles in many developmental processes. The role of GALT8 (At1g22015), a Glycosyltransferase-31 (GT31) family member of the Carbohydrate-Active Enzyme database (CAZy), was examined by biochemical characterization and phenotypic analysis of a galt8 mutant line. To characterize its catalytic function, GALT8 was heterologously expressed in tobacco leaves and its enzymatic activity tested. GALT8 was shown to be a β-(1,3)-galactosyltransferase (GalT) that catalyzes the synthesis of a β-(1,3)-galactan, similar to the in vitro activity of KNS4/UPEX1 (At1g33430), a homologous GT31 member previously shown to have this activity. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) confirmed the products were of 2-6 degree of polymerisation (DP). Previous reporter studies showed that GALT8 is expressed in the central and synergid cells, from whence the micropylar endosperm originates after the fertilization of the central cell of the ovule. Homozygous mutants have multiple seedling phenotypes including significantly shorter hypocotyls and smaller leaf area compared to wild type (WT) that are attributable to defects in female gametophyte and/or endosperm development. KNS4/UPEX1 was shown to partially complement the galt8 mutant phenotypes in genetic complementation assays suggesting a similar but not identical role compared to GALT8 in β-(1,3)-galactan biosynthesis. Taken together, these data add further evidence of the important roles GT31 β-(1,3)-GalTs play in elaborating type II AGs that decorate AGPs and pectins, thereby imparting functional consequences on plant growth and development.
Collapse
Affiliation(s)
- Joan Oñate Narciso
- ARC Centre of Excellence on Plant Cell Walls, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Wei Zeng
- ARC Centre of Excellence on Plant Cell Walls, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
- Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Kris Ford
- ARC Centre of Excellence on Plant Cell Walls, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Edwin R. Lampugnani
- ARC Centre of Excellence on Plant Cell Walls, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - John Humphries
- ARC Centre of Excellence on Plant Cell Walls, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Ingvild Austarheim
- ARC Centre of Excellence on Plant Cell Walls, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Allison van de Meene
- ARC Centre of Excellence on Plant Cell Walls, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Antony Bacic
- ARC Centre of Excellence on Plant Cell Walls, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
- Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Monika S. Doblin
- ARC Centre of Excellence on Plant Cell Walls, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
- Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
48
|
Gao Y, Fangel JU, Willats WGT, Vivier MA, Moore JP. Differences in berry skin and pulp cell wall polysaccharides from ripe and overripe Shiraz grapes evaluated using glycan profiling reveals extensin-rich flesh. Food Chem 2021; 363:130180. [PMID: 34157558 DOI: 10.1016/j.foodchem.2021.130180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 11/29/2022]
Abstract
Shiraz is a widely planted cultivar in many of the world's top wine regions where it is used for the production of top-quality single varietal or blended red wines. Cell wall changes during grape ripening and over-ripening have been investigated, particularly in the context of understanding berry deconstruction thereby facilitating the release of favorable compounds during winemaking. However, no information is available on cell wall changes during berry shrinkage in Shiraz. Glycan microarray technology was used to directly profile Shiraz berries for cell wall polysaccharide and glycoprotein epitopes. Skins and pulp tissues were profiled separately and revealed that whereas the skin was rich in pectins and xyloglucans, the pulp tissues were mainly composed of extensin glycoproteins. Overripe (26-28°B) berries, particularly those from the warmer region site, revealed degradation of their pectin and extensin epitopes.
Collapse
Affiliation(s)
- Yu Gao
- Center for Viticulture and Enology, Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200024, China
| | - Jonatan U Fangel
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1001, Denmark
| | - William G T Willats
- School of Agriculture, Food and Rural Development, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Melané A Vivier
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
| | - John P Moore
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa.
| |
Collapse
|
49
|
Mishler-Elmore JW, Zhou Y, Sukul A, Oblak M, Tan L, Faik A, Held MA. Extensins: Self-Assembly, Crosslinking, and the Role of Peroxidases. FRONTIERS IN PLANT SCIENCE 2021; 12:664738. [PMID: 34054905 PMCID: PMC8160292 DOI: 10.3389/fpls.2021.664738] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/19/2021] [Indexed: 05/29/2023]
Abstract
The extensin (EXT) network is elaborated by the covalent intermolecular crosslinking of EXT glycoprotein monomers, and its proper assembly is important for numerous aspects of basic wall architecture and cellular defense. In this review, we discuss new advances in the secretion of EXT monomers and the molecular drivers of EXT network self-assembly. Many of the functions of EXTs are conferred through covalent crosslinking into the wall, so we also discuss the different types of known intermolecular crosslinks, the enzymes that are involved, as well as the potential for additional crosslinks that are yet to be identified. EXTs also function in wall architecture independent of crosslinking status, and therefore, we explore the role of non-crosslinking EXTs. As EXT crosslinking is upregulated in response to wounding and pathogen infection, we discuss a potential regulatory mechanism to control covalent crosslinking and its relationship to the subcellular localization of the crosslinking enzymes.
Collapse
Affiliation(s)
| | - Yadi Zhou
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, United States
| | - Abhijit Sukul
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, United States
| | - Mercedes Oblak
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, United States
| | - Li Tan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Ahmed Faik
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH, United States
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, United States
| | - Michael A. Held
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, United States
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH, United States
| |
Collapse
|
50
|
Liang P, Schmitz C, Lace B, Ditengou FA, Su C, Schulze E, Knerr J, Grosse R, Keller J, Libourel C, Delaux PM, Ott T. Formin-mediated bridging of cell wall, plasma membrane, and cytoskeleton in symbiotic infections of Medicago truncatula. Curr Biol 2021; 31:2712-2719.e5. [PMID: 33930305 PMCID: PMC8231094 DOI: 10.1016/j.cub.2021.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 02/01/2021] [Accepted: 04/01/2021] [Indexed: 12/25/2022]
Abstract
Legumes have maintained the ability to associate with rhizobia to sustain the nitrogen-fixing root nodule symbiosis (RNS). In Medicago truncatula, the Nod factor (NF)-dependent intracellular root colonization by Sinorhizobium meliloti initiates from young, growing root hairs. They form rhizobial traps by physically curling around the symbiont.1,2 Although alterations in root hair morphology like branching and swelling have been observed in other plants in response to drug treatments3 or genetic perturbations,4, 5, 6 full root hair curling represents a rather specific invention in legumes. The entrapment of the symbiont completes with its full enclosure in a structure called the “infection chamber” (IC),1,2,7,8 from which a tube-like membrane channel, the “infection thread” (IT), initiates.1,2,9 All steps of rhizobium-induced root hair alterations are aided by a tip-localized cytosolic calcium gradient,10,11 global actin re-arrangements, and dense subapical fine actin bundles that are required for the delivery of Golgi-derived vesicles to the root hair tip.7,12, 13, 14 Altered actin dynamics during early responses to NFs or rhizobia have mostly been shown in mutants that are affected in the actin-related SCAR/WAVE complex.15, 16, 17, 18 Here, we identified a polarly localized SYMBIOTIC FORMIN 1 (SYFO1) to be required for NF-dependent alterations in membrane organization and symbiotic root hair responses. We demonstrate that SYFO1 mediates a continuum between the plasma membrane and the cell wall that is required for the onset of rhizobial infections. The SYMBIOTIC FORMIN 1 (SYFO1) specifically regulates symbiotic root hair curling SYFO1 directly binds actin and polarizes in responding root hairs SYFO1 induces membrane protrusions in cell-wall-devoid protoplasts Cell wall association of SYFO1 is indispensable for its function in root hairs
Collapse
Affiliation(s)
- Pengbo Liang
- University of Freiburg, Faculty of Biology, Cell Biology, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Clara Schmitz
- University of Freiburg, Faculty of Biology, Cell Biology, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Beatrice Lace
- University of Freiburg, Faculty of Biology, Cell Biology, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Franck Anicet Ditengou
- University of Freiburg, Faculty of Biology, Cell Biology, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Chao Su
- University of Freiburg, Faculty of Biology, Cell Biology, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Eija Schulze
- University of Freiburg, Faculty of Biology, Cell Biology, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Julian Knerr
- University of Freiburg, Medical Faculty, Institute of Pharmacology, Albertstr. 25, 79104 Freiburg, Germany
| | - Robert Grosse
- University of Freiburg, Medical Faculty, Institute of Pharmacology, Albertstr. 25, 79104 Freiburg, Germany; CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, Schänzlestr. 8, 79104 Freiburg, Germany
| | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, 24, chemin de Borde-Rouge, 31326 Castanet-Tolosan, France
| | - Cyril Libourel
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, 24, chemin de Borde-Rouge, 31326 Castanet-Tolosan, France
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, 24, chemin de Borde-Rouge, 31326 Castanet-Tolosan, France
| | - Thomas Ott
- University of Freiburg, Faculty of Biology, Cell Biology, Schänzlestr. 1, 79104 Freiburg, Germany; CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, Schänzlestr. 8, 79104 Freiburg, Germany.
| |
Collapse
|