1
|
Wang L, Liu H, Sun Y, Wang W, Li C, Liu Y, Liu Z, Ji R, Huang S, Qu G, Wang Y. Identification and Candidate Gene Analysis of Brcl1, a Novel Gene Confers a Leaf Curled Phenotype in Brassica rapa L. Int J Mol Sci 2025; 26:732. [PMID: 39859447 PMCID: PMC11765633 DOI: 10.3390/ijms26020732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Leaf shape is an important determinant of photosynthesis, yield and quality in plants. In this study, we obtained a curled leaf mutant, cl1, from an ethyl methanesulfonate (EMS)-induced mutagenesis population. It was designated the Brcl1YS locus. Bulk segregant RNA sequencing combined with recombinant screening identified the candidate interval responsible for Brcl1YS in a 97.5 kb region on chromosome A02. Twelve genes were identified within the candidate region. Sequence differences and co-separation verification confirmed that BraA02g017030.3C was the most promising candidate gene underlying the Brcl1YS locus. It is homologous to Arabidopsis AT1G66350 (RGL1), which has been shown to act as a negative regulator of the gibberellin pathway. Combined with cell morphology observation, it is speculated that the loss of function of Brcl1YS results in differences in cell development, ultimately leading to changes in leaf morphology. The results will contribute to the understanding of the molecular mechanisms underlying leaf curling in B. rapa.
Collapse
Affiliation(s)
- Lihui Wang
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Huishan Liu
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yunxia Sun
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Wei Wang
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Chao Li
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanwei Liu
- Department of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Zhiyong Liu
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Ruiqin Ji
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Shengnan Huang
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Gaoyang Qu
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yugang Wang
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
2
|
Tao Z, Zhu L, Li H, Sun B, Liu X, Li D, Hu W, Wang S, Miao X, Shi Z. ACL1-ROC4/5 complex reveals a common mechanism in rice response to brown planthopper infestation and drought. Nat Commun 2024; 15:8107. [PMID: 39285171 PMCID: PMC11405696 DOI: 10.1038/s41467-024-52436-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 09/05/2024] [Indexed: 09/20/2024] Open
Abstract
Brown planthopper (BPH) is the most destructive insect pest of rice. Drought is the most detrimental environmental stress. BPH infestation causes adaxial leaf-rolling and bulliform cells (BCs) shrinkage similar to drought. The BC-related abaxially curled leaf1 (ACL1) gene negatively regulates BPH resistance and drought tolerance, with decreased cuticular wax in the gain-of-function mutant ACL1-D. ACL1 shows an epidermis-specific expression. The TurboID system and multiple biochemical assays reveal that ACL1 interacts with the epidermal-characteristic rice outermost cell-specific (ROC) proteins. ROC4 and ROC5 positively regulate BPH resistance and drought tolerance through modulating cuticular wax and BCs, respectively. Overexpression of ROC4 and ROC5 both rescue ACL1-D mutant in various related phenotypes. ACL1 competes with ROC4/ROC5 in homo-dimer and hetero-dimer formation, and interacts with the repressive TOPLESS-related proteins. Altogether, we illustrate that ACL1-ROC4/5 complexes synergistically mediate drought tolerance and BPH resistance through regulating cuticular wax content and BC development in rice, a mechanism that might facilitate BPH-resistant breeding.
Collapse
Affiliation(s)
- Zhihuan Tao
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lin Zhu
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haichao Li
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Bo Sun
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue Liu
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, P. R. China
| | - Dayong Li
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, P. R. China
| | - Wenli Hu
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Shanshan Wang
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xuexia Miao
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| | - Zhenying Shi
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
3
|
Tao Z, Miao X, Shi Z. HD-ZIP IV Gene ROC1 Regulates Leaf Rolling and Drought Response Through Formation of Heterodimers with ROC5 and ROC8 in Rice. RICE (NEW YORK, N.Y.) 2024; 17:45. [PMID: 39060652 PMCID: PMC11282044 DOI: 10.1186/s12284-024-00717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/21/2024] [Indexed: 07/28/2024]
Abstract
Leaf morphology is a crucial agronomic characteristic of rice that influences crop yield directly. One primary cause of rice leaf rolling can be attributed to alterations in bulliform cells. Several HD-ZIP IV genes have been identified to be epidemical characterized and function in leaf rolling in rice. Still others need to be studied to fully understand the overall function of HD-ZIP IV family. Among the nine ROC genes encoding HD-ZIP IV family transcription factors in rice, ROC1 exhibits the highest expression in the leaves. Overexpression of ROC1 decreased the size of bulliform cells, and thus resulted in adaxially rolled leaves. To the contrary, knockout of ROC1 (ROC1KO) through Crispr-cas9 system enlarged bulliform cells, and thus led to abaxially rolled leaves. Moreover, ROC1KO plants were sensitive to drought. ROC1 could form homodimers on its own, and heterodimers with ROC5 and ROC8 respectively. Compared to ROC1KO plants, leaves of the ROC1 and ROC8 double knocked out plants (ROC1/8DKO) were more severely rolled abaxially due to enlarged bulliform cells, and ROC1/8DKO plants were more drought sensitive. However, overexpression of ROC8 could not restore the abaxial leaf phenotype of ROC1KO plants. Therefore, we proved that ROC1, a member of the HD-ZIP IV family, regulated leaf rolling and drought stress response through tight association with ROC5 and ROC8.
Collapse
Affiliation(s)
- Zhihuan Tao
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuexia Miao
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Zhenying Shi
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
4
|
Xu X, Wang Y, Lu H, Zhao X, Jiang J, Liu M, Yang C. Morphological characterization and transcriptome analysis of rolled and narrow leaf mutant in soybean. BMC PLANT BIOLOGY 2024; 24:686. [PMID: 39026194 PMCID: PMC11264519 DOI: 10.1186/s12870-024-05389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND In plants, the leaf functions as a solar panel, where photosynthesis converts carbon dioxide and water into carbohydrates and oxygen. In soybean, leaf type traits, including leaf shape, leaf area, leaf width, and leaf width so on, are considered to be associated with yield. In this study, we performed morphological characterization, transcriptome analysis, and endogenous hormone analysis of a rolled and narrow leaf mutant line (rl) in soybean. RESULTS Compared with wild type HX3, mutant line rl showed rolled and narrower leaflet, and smaller leaf, meanwhile rl also performed narrower pod and narrower seed. Anatomical analysis of leaflet demonstrated that cell area of upper epidermis was bigger than the cell area of lower epidermis in rl, which may lead rolled and narrow leaf. Transcriptome analysis revealed that several cytokinin oxidase/dehydrogenase (CKX) genes (Glyma.06G028900, Glyma.09G225400, Glyma.13G104700, Glyma.14G099000, and Glyma.17G054500) were up-regulation dramatically, which may cause lower cytokinin level in rl. Endogenous hormone analysis verified that cytokinin content of rl was lower. Hormone treatment results indicated that 6-BA rescued rolled leaf enough, rescued partly narrow leaf. And after 6-BA treatment, the cell area was similar between upper epidermis and lower epidermis in rl. Although IAA content and ABA content were reduced in rl, but exogenous IAA and ABA didn't affect leaf type of HX3 and rl. CONCLUSIONS Our results suggest abnormal cytokinin metabolism caused rolled and narrow leaf in rl, and provide valuable clues for further understanding the mechanisms underlying leaf development in soybean.
Collapse
Affiliation(s)
- Xiaomin Xu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yongzhen Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Housheng Lu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xueqian Zhao
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiacan Jiang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Mengshi Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Cunyi Yang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Li D, Fan L, Shu Q, Guo F. Ectopic expression of OsWOX9A alters leaf anatomy and plant architecture in rice. PLANTA 2024; 260:30. [PMID: 38879830 DOI: 10.1007/s00425-024-04463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/09/2024] [Indexed: 07/03/2024]
Abstract
MAIN CONCLUSION Ectopic expression of OsWOX9A induces narrow adaxially rolled rice leaves with larger bulliform cells and fewer large veins, probably through regulating the expression of auxin-related and expansin genes. The WUSCHEL-related homeobox (WOX) family plays a pivotal role in plant development by regulating genes involved in various aspects of growth and differentiation. OsWOX9A (DWT1) has been linked to tiller growth, uniform plant growth, and flower meristem activity. However, its impact on leaf growth and development in rice has not been studied. In this study, we investigated the biological role of OsWOX9A in rice growth and development using transgenic plants. Overexpression of OsWOX9A conferred narrow adaxially rolled rice leaves and altered plant architecture. These plants exhibited larger bulliform cells and fewer larger veins compared to wild-type plants. OsWOX9A overexpression also reduced plant height, tiller number, and seed-setting rate. Comparative transcriptome analysis revealed several differentially expressed auxin-related and expansin genes in OsWOX9A overexpressing plants, consistent with their roles in leaf and plant development. These results indicate that the ectopic expression of OsWOX9A may have multiple effects on the development and growth of rice, providing a more comprehensive picture of how the WOX9 subfamily contributes to leaf development and plant architecture.
Collapse
Affiliation(s)
- Dandan Li
- Hainan Institute, Yazhou Bay Science and Technology City, Zhejiang University, Sanya, 572025, China
| | - Longjiang Fan
- Hainan Institute, Yazhou Bay Science and Technology City, Zhejiang University, Sanya, 572025, China
| | - Qingyao Shu
- Hainan Institute, Yazhou Bay Science and Technology City, Zhejiang University, Sanya, 572025, China
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fu Guo
- Hainan Institute, Yazhou Bay Science and Technology City, Zhejiang University, Sanya, 572025, China.
- Hainan Seed Industry Laboratory, Yazhou Bay Science and Technology City, Sanya, 572025, China.
| |
Collapse
|
6
|
Li M, Ali S, Hussain SA, Khan A, Chen Y. Diverse tillage practices with straw mulched management strategies to improve water use efficiency and maize productivity under a dryland farming system. Heliyon 2024; 10:e29839. [PMID: 38681585 PMCID: PMC11046197 DOI: 10.1016/j.heliyon.2024.e29839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Straw mulching incorporation has a wide range of environmental benefits that make it an effective practice for sustainable agro-ecosystem in the semi-arid regions. There is an urgent need to improve the 13C-photosynthates distribution, water use efficiency (WUE) and maize canopy characteristics under the diverse tillage practices with straw mulched management strategies for sustainable intensification of maize production. The field study consists of three diverse tillage systems (RT: rotary tillage; CT, conventional tillage; MT, minimum tillage) with three straws mulching (NS: no straw mulch; SS: straw mulch on the soil surface; SI: straw incorporated into the soil) were assessed under the ridge-furrow rainfall harvesting system. Our results showed that the rotary tillage with straw incorporated into the soil significantly reduces the ET rate (11 %), and leaf rolling index; as a result considerably improves LAI, LEI, 13C-photosynthates distribution, N accumulation, and above ground biomass under various growth stages. The RTSI treatment significantly improved soil water storage, soil organic carbon (52 %, SOC), soil C storage (39 %, SCS), and NPK nutrients uptake (70 %, 62 %, and 69 %) of maize than observed for the rest of all other treatments, respectively. The RTSI treatment improves soil water balance, grain yield (53 %), biomass yield (37 %), WUEg (51 %), WUEb (35 %), nutrients uptake, and mitigating soil water depletion than the MTNS treatment. Although RTSS can achieve optimal soil water storage in the short term, RTSI has a great potential in improving soil carbon stability, canopy characteristics, soil water storage, and WUE, contributing to sustainable and intensive corn production in agricultural ecosystems in semi-arid regions.
Collapse
Affiliation(s)
- Mingxi Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Shahzad Ali
- College of Chemistry and Materials Science, Zhejiang Normal University, China
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, P.O. Box - 2454, Riyadh, 11451, Saudi Arabia
| | - Aqil Khan
- Department of Economics, University of Peshawar, Pakistan
| | - Yan Chen
- Heilongjiang Academy of Agricultural Science, Harbin. 150086, China
| |
Collapse
|
7
|
Huang L, Gan M, Zhao W, Hu Y, Du L, Li Y, Zeng K, Wu D, Hao M, Ning S, Yuan Z, Feng L, Zhang L, Wu B, Liu D. Characterization and Mapping of a Rolling Leaf Mutant Allele rlT73 on Chromosome 1BL of Wheat. Int J Mol Sci 2024; 25:4103. [PMID: 38612912 PMCID: PMC11012251 DOI: 10.3390/ijms25074103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Leaf rolling is regarded as an important morphological trait in wheat breeding. Moderate leaf rolling is helpful to keep leaves upright and improve the photosynthesis of plants, leading to increased yield. However, studies on the identification of genomic regions/genes associated with rolling leaf have been reported less frequently in wheat. In this study, a rolling leaf mutant, T73, which has paired spikelets, dwarfism, and delayed heading traits, was obtained from a common wheat landrace through ethyl methanesulfonate mutagenesis. The rlT73 mutation caused an increase in the number of epidermal cells on the abaxial side and the shrinkage of bulliform cells on the adaxial side, leading to an adaxially rolling leaf phenotype. Genetic analysis showed that the rolling leaf phenotype was controlled by a single recessive gene. Further Wheat55K single nucleotide polymorphism array-based bulked segregant analysis and molecular marker mapping delimited rlT73 to a physical interval of 300.29-318.33 Mb on the chromosome arm 1BL in the Chinese Spring genome. We show that a point mutation at the miRNA165/166 binding site of the HD zipper class III transcription factor on 1BL altered its transcriptional level, which may be responsible for the rolling leaf phenotype. Our results suggest the important role of rlT73 in regulating wheat leaf development and the potential of miRNA-based gene regulation for crop trait improvement.
Collapse
Affiliation(s)
- Lin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Meijuan Gan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenzhuo Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanling Hu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lilin Du
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuqin Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Kanghui Zeng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Dandan Wu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lihua Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Lianquan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Bihua Wu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
8
|
Mai H, Qin T, Wei H, Yu Z, Pang G, Liang Z, Ni J, Yang H, Tang H, Xiao L, Liu H, Liu T. Overexpression of OsACL5 triggers environmentally-dependent leaf rolling and reduces grain size in rice. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:833-847. [PMID: 37965680 PMCID: PMC10955489 DOI: 10.1111/pbi.14227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
Major polyamines include putrescine, spermidine, spermine and thermospermine, which play vital roles in growth and adaptation against environmental changes in plants. Thermospermine (T-Spm) is synthetised by ACL5. The function of ACL5 in rice is still unknown. In this study, we used a reverse genetic strategy to investigate the biological function of OsACL5. We generated several knockout mutants by pYLCRISPR/Cas9 system and overexpressing (OE) lines of OsACL5. Interestingly, the OE plants exhibited environmentally-dependent leaf rolling, smaller grains, lighter 1000-grain weight and reduction in yield per plot. The area of metaxylem vessels of roots and leaves of OE plants were significantly smaller than those of WT, which possibly caused reduction in leaf water potential, resulting in leaf rolling with rise in the environmental temperature and light intensity and decrease in humidity. Additionally, the T-Spm contents were markedly increased by over ninefold whereas the ethylene evolution was reduced in OE plants, suggesting that T-Spm signalling pathway interacts with ethylene pathway to regulate multiple agronomic characters. Moreover, the osacl5 exhibited an increase in grain length, 1000-grain weight, and yield per plot. OsACL5 may affect grain size via mediating the expression of OsDEP1, OsGS3 and OsGW2. Furthermore, haplotypes analysis indicated that OsACL5 plays a conserved function on regulating T-Spm levels during the domestication of rice. Our data demonstrated that identification of OsACL5 provides a theoretical basis for understanding the physiological mechanism of T-Spm which may play roles in triggering environmentally dependent leaf rolling; OsACL5 will be an important gene resource for molecular breeding for higher yield.
Collapse
Affiliation(s)
- Huafu Mai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Tian Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Huan Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Zhen Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Gang Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Zhiman Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Jiansheng Ni
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Haishan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Haiying Tang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Lisi Xiao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Huili Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Taibo Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| |
Collapse
|
9
|
Qiao L, Wu Q, Yuan L, Huang X, Yang Y, Li Q, Shahzad N, Li H, Li W. SMALL PLANT AND ORGAN 1 ( SPO1) Encoding a Cellulose Synthase-like Protein D4 (OsCSLD4) Is an Important Regulator for Plant Architecture and Organ Size in Rice. Int J Mol Sci 2023; 24:16974. [PMID: 38069299 PMCID: PMC10707047 DOI: 10.3390/ijms242316974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Plant architecture and organ size are considered as important traits in crop breeding and germplasm improvement. Although several factors affecting plant architecture and organ size have been identified in rice, the genetic and regulatory mechanisms remain to be elucidated. Here, we identified and characterized the small plant and organ 1 (spo1) mutant in rice (Oryza sativa), which exhibits narrow and rolled leaf, reductions in plant height, root length, and grain width, and other morphological defects. Map-based cloning revealed that SPO1 is allelic with OsCSLD4, a gene encoding the cellulose synthase-like protein D4, and is highly expressed in the roots at the seedling and tillering stages. Microscopic observation revealed the spo1 mutant had reduced number and width in leaf veins, smaller size of leaf bulliform cells, reduced cell length and cell area in the culm, and decreased width of epidermal cells in the outer glume of the grain. These results indicate the role of SPO1 in modulating cell division and cell expansion, which modulates plant architecture and organ size. It is showed that the contents of endogenous hormones including auxin, abscisic acid, gibberellin, and zeatin tested in the spo1 mutant were significantly altered, compared to the wild type. Furthermore, the transcriptome analysis revealed that the differentially expressed genes (DEGs) are significantly enriched in the pathways associated with plant hormone signal transduction, cell cycle progression, and cell wall formation. These results indicated that the loss of SPO1/OsCSLD4 function disrupted cell wall cellulose synthase and hormones homeostasis and signaling, thus leading to smaller plant and organ size in spo1. Taken together, we suggest the functional role of SPO1/OsCSLD4 in the control of rice plant and organ size by modulating cell division and expansion, likely through the effects of multiple hormonal pathways on cell wall formation.
Collapse
Affiliation(s)
- Lei Qiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Qilong Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Liuzhen Yuan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Xudong Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Yutao Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Qinying Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Nida Shahzad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Haifeng Li
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Wenqiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| |
Collapse
|
10
|
Liu X, Lin Y, Wu C, Yang Y, Su D, Xian Z, Zhu Y, Yu C, Hu G, Deng W, Li Z, Bouzayen M, Chen R, Hao Y. The SlARF4-SlHB8 regulatory module mediates leaf rolling in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111790. [PMID: 37454820 DOI: 10.1016/j.plantsci.2023.111790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Leaf is the main photosynthetic organ in plants and the primary energy source all along the plant life. Given the beneficial role of leaf rolling in improving photosynthetic efficiency and yield in specific environmental conditions, a better understanding of the factors and molecular mechanisms underlying this process is highly suited. Previously, the SlARF4 knocking out mutant exhibited upward curly leaf showed higher resistance to water deficit which driving us to uncover the function of SlARF4 in regulating the curly leaf formation. In this study, we unraveled the unexplored role of the SlARF4-SlHB8 module of transcription factors in the development of leaf rolling. Both SlARF4 loss-of-function and SlHB8 overexpressing tomato plants exhibited upward-rolled leaves, reflecting the active role of the two genes in controlling leaf rolling. Dual-luciferase reporter assays and phenotypic analysis of hybrid progenies suggested that SlHB8 acts downstream of SlARF4 in curly leaf formation. SlARF4 and SlHB8 influence the development of leaf palisade tissues via modulating the expression of genes associated with curly leaf formation. SEM analysis revealed no significant differences in leaf epidermal cells between the two leaf-rolling mutants and the wild type, indicating that curly leaves of arf4 and SlHB8-OE do not result from the asymmetric leaf epidermal cell growth. Our data provide novel insight into the molecular mechanism of abaxial-adaxial determination involving SlARF4 and SlHB8 and reveals that leaf rolling operates via different regulation mechanisms in tomato and Arabidopsis model plant.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yuxiang Lin
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Caiyu Wu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yang Yang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Deding Su
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Zhiqiang Xian
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Yiyi Zhu
- BioGround Biotechnology Institution, International Park of Entrepreneur' Port, Shapingba, Chongqing, China
| | - Canye Yu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Guojian Hu
- UMR990 INRA/INP-ENSAT, Université de Toulouse, Castanet-Tolosan, France
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Mondher Bouzayen
- UMR990 INRA/INP-ENSAT, Université de Toulouse, Castanet-Tolosan, France
| | - Riyuan Chen
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Yanwei Hao
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
11
|
Han Y, Yang J, Wu H, Liu F, Qin B, Li R. Improving Rice Leaf Shape Using CRISPR/Cas9-Mediated Genome Editing of SRL1 and Characterizing Its Regulatory Network Involved in Leaf Rolling through Transcriptome Analysis. Int J Mol Sci 2023; 24:11087. [PMID: 37446265 DOI: 10.3390/ijms241311087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Leaf rolling is a crucial agronomic trait to consider in rice (Oryza sativa L.) breeding as it keeps the leaves upright, reducing interleaf shading and improving photosynthetic efficiency. The SEMI-ROLLED LEAF 1 (SRL1) gene plays a key role in regulating leaf rolling, as it encodes a glycosylphosphatidylinositol-anchored protein located on the plasma membrane. In this study, we used CRISPR/Cas9 to target the second and third exons of the SRL1 gene in the indica rice line GXU103, which resulted in the generation of 14 T0 transgenic plants with a double-target mutation rate of 21.4%. After screening 120 T1 generation plants, we identified 26 T-DNA-free homozygous double-target mutation plants. We designated the resulting SRL1 homozygous double-target knockout as srl1-103. This line exhibited defects in leaf development, leaf rolling in the mature upright leaves, and a compact nature of the fully grown plants. Compared with the wild type (WT), the T2 generation of srl1-103 varied in two key aspects: the width of flag leaf (12.6% reduction compared with WT) and the leaf rolling index (48.77% increase compared with WT). In order to gain a deeper understanding of the involvement of SRL1 in the regulatory network associated with rice leaf development, we performed a transcriptome analysis for the T2 generation of srl1-103. A comparison of srl1-103 with WT revealed 459 differentially expressed genes (DEGs), including 388 upregulated genes and 71 downregulated genes. In terms of the function of the DEGs, there seemed to be a significant enrichment of genes associated with cell wall synthesis (LOC_Os08g01670, LOC_Os05g46510, LOC_Os04g51450, LOC_Os10g28080, LOC_Os04g39814, LOC_Os01g71474, LOC_Os01g71350, and LOC_Os11g47600) and vacuole-related genes (LOC_Os09g23300), which may partially explain the increased leaf rolling in srl1-103. Furthermore, the significant downregulation of BAHD acyltransferase-like protein gene (LOC_Os08g44840) could be the main reason for the decreased leaf angle and the compact nature of the mutant plants. In summary, this study successfully elucidated the gene regulatory network in which SRL1 participates, providing theoretical support for targeting this gene in rice breeding programs to promote variety improvement.
Collapse
Affiliation(s)
- Yue Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jinlian Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Hu Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Fang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Baoxiang Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
12
|
Wang J, Xu J, Wang L, Zhou M, Nian J, Chen M, Lu X, Liu X, Wang Z, Cen J, Liu Y, Zhang Z, Zeng D, Hu J, Zhu L, Dong G, Ren D, Gao Z, Shen L, Zhang Q, Li Q, Guo L, Yu S, Qian Q, Zhang G. SEMI-ROLLED LEAF 10 stabilizes catalase isozyme B to regulate leaf morphology and thermotolerance in rice (Oryza sativa L.). PLANT BIOTECHNOLOGY JOURNAL 2023; 21:819-838. [PMID: 36597711 PMCID: PMC10037157 DOI: 10.1111/pbi.13999] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 12/18/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Plant architecture and stress tolerance play important roles in rice breeding. Specific leaf morphologies and ideal plant architecture can effectively improve both abiotic stress resistance and rice grain yield. However, the mechanism by which plants simultaneously regulate leaf morphogenesis and stress resistance remains elusive. Here, we report that SRL10, which encodes a double-stranded RNA-binding protein, regulates leaf morphology and thermotolerance in rice through alteration of microRNA biogenesis. The srl10 mutant had a semi-rolled leaf phenotype and elevated sensitivity to high temperature. SRL10 directly interacted with catalase isozyme B (CATB), and the two proteins mutually increased one other's stability to enhance hydrogen peroxide (H2 O2 ) scavenging, thereby contributing to thermotolerance. The natural Hap3 (AGC) type of SRL10 allele was found to be present in the majority of aus rice accessions, and was identified as a thermotolerant allele under high temperature stress in both the field and the growth chamber. Moreover, the seed-setting rate was 3.19 times higher and grain yield per plant was 1.68 times higher in near-isogenic line (NIL) carrying Hap3 allele compared to plants carrying Hap1 allele under heat stress. Collectively, these results reveal a new locus of interest and define a novel SRL10-CATB based regulatory mechanism for developing cultivars with high temperature tolerance and stable yield. Furthermore, our findings provide a theoretical basis for simultaneous breeding for plant architecture and stress resistance.
Collapse
Affiliation(s)
- Jiajia Wang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene ResearchCollege of Plant Science and Technology, Huazhong Agricultural UniversityWuhanChina
| | - Jing Xu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang ProvinceResearch Institute of Subtropical Forestry, Chinese Academy of ForestryHangzhouChina
| | - Li Wang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Mengyu Zhou
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Jinqiang Nian
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Minmin Chen
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Xueli Lu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Xiong Liu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Zian Wang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Jiangsu Cen
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Yiting Liu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Zhihai Zhang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Dali Zeng
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Jiang Hu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Li Zhu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Guojun Dong
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Deyong Ren
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Zhenyu Gao
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Lan Shen
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Qiang Zhang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Qing Li
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Longbiao Guo
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene ResearchCollege of Plant Science and Technology, Huazhong Agricultural UniversityWuhanChina
| | - Qian Qian
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
- Hainan Yazhou Bay Seed LaboratorySanyaChina
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural SciencesSanyaChina
| | - Guangheng Zhang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
- Hainan Yazhou Bay Seed LaboratorySanyaChina
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural SciencesSanyaChina
| |
Collapse
|
13
|
Bian R, Liu N, Xu Y, Su Z, Chai L, Bernardo A, St Amand P, Fritz A, Zhang G, Rupp J, Akhunov E, Jordan KW, Bai G. Quantitative trait loci for rolled leaf in a wheat EMS mutant from Jagger. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:52. [PMID: 36912970 DOI: 10.1007/s00122-023-04284-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/26/2022] [Indexed: 06/18/2023]
Abstract
Two QTLs with major effects on rolled leaf trait were consistently detected on chromosomes 1A (QRl.hwwg-1AS) and 5A (QRl.hwwg-5AL) in the field experiments. Rolled leaf (RL) is a morphological strategy to protect plants from dehydration under stressed field conditions. Identification of quantitative trait loci (QTLs) underlining RL is essential to breed drought-tolerant wheat cultivars. A mapping population of 154 recombinant inbred lines was developed from the cross between JagMut1095, a mutant of Jagger, and Jagger to identify quantitative trait loci (QTLs) for the RL trait. A linkage map of 3106 cM was constructed with 1003 unique SNPs from 21 wheat chromosomes. Two consistent QTLs were identified for RL on chromosomes 1A (QRl.hwwg-1AS) and 5A (QRl.hwwg-5AL) in all field experiments. QRl.hwwg-1AS explained 24-56% of the phenotypic variation and QRl.hwwg-5AL explained up to 20% of the phenotypic variation. The combined percent phenotypic variation associated with the two QTLs was up to 61%. Analyses of phenotypic and genotypic data of recombinants generated from heterogeneous inbred families of JagMut1095 × Jagger delimited QRl.hwwg-1AS to a 6.04 Mb physical interval. This work lays solid foundation for further fine mapping and map-based cloning of QRl.hwwg-1AS.
Collapse
Affiliation(s)
- Ruolin Bian
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Na Liu
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
- Henan Agricultural University, Zhengzhou, 450002, Henan Province, China
| | - Yuzhou Xu
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Zhenqi Su
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
- China Agricultural University, Beijing, 100083, China
| | - Lingling Chai
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
- China Agricultural University, Beijing, 100083, China
| | - Amy Bernardo
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Paul St Amand
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Allan Fritz
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Guorong Zhang
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Jessica Rupp
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Katherine W Jordan
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Guihua Bai
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA.
| |
Collapse
|
14
|
Zhao H, Liu X, Wang J, Qian Q, Zhang G. The coordinated regulation mechanism of rice plant architecture and its tolerance to stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1087378. [PMID: 36600918 PMCID: PMC9807110 DOI: 10.3389/fpls.2022.1087378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Rice plant architecture and stress tolerance have historically been primary concerns for rice breeders. The "Green Revolution" and super-rice breeding practices have demonstrated that ideal plant architecture can effectively improve both stress tolerance and yield. The synergistic selection and breeding of rice varieties with ideal architecture and stress tolerance can increase and stabilize yield. While rice plant plant architecture and stress tolerance are separately regulated by complicated genetic networks, the molecular mechanisms underlying their relationships and synergism have not yet been explored. In this paper, we review the regulatory mechanism between plant architecture, stress tolerance, and biological defense at the different level to provide a theoretical basis for the genetic network of the synergistic regulation and improvement of multiple traits.
Collapse
Affiliation(s)
- Huibo Zhao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Xiong Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Jiajia Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
15
|
Chen K, Qu C, Zhang XY, Wang W, Gu CR, Liu GF, Yu QB, Yang CP, Jiang J. Molecular mechanism of leaf adaxial upward curling caused by BpPIN3 suppression in Betula pendula. FRONTIERS IN PLANT SCIENCE 2022; 13:1060228. [PMID: 36531359 PMCID: PMC9751824 DOI: 10.3389/fpls.2022.1060228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Leaves are one of the vegetative organs of plants that are essential for plant growth and development. PIN-FORMED (PINs) gene is an indoleacetic acid (IAA) transporter that plays a critical role in leaf development. To determine the function of BpPIN3 in leaf polarity formation in Betula pendula, the transgenic lines with BpPIN3 overexpression (OE) and BpPIN3-reduced expression (RE) were analyzed using the Agrobacterium-mediated method. The RE lines displayed the characteristics of leaf margin adaxial upward curling, with lower expression of BpPIN3 resulting in greater rolling. Tissue localization of IAA in the auxin GUS reporter system proved that auxin in the RE was mainly distributed in the secondary veins, palisade tissues, and epidermal cells in the leaf margin area. The auxin content in the leaf margin area was significantly greater than that in the main vein tissue. The cell density of the palisade tissue and the ratio of palisade tissue to spongy tissue in the curled leaf margin of the RE lines were found to be significantly decreased. RNA-seq analysis revealed that the RE hormone-signaling pathway genes were significantly enriched compared with those of the OE and WT lines; in particular, the auxin response-related genes SAURs (i.e., SAUR23, SAUR24, SAUR28, and SAUR50) and GH3.10 were found to be significantly upregulated. qRT-PCR analysis indicated that BpPIN3 expression at the leaf margin was significantly lower than that near the main vein in the RE lines. In contrast, the expression levels of SAURs and GH3.10 were significantly higher than those near the midrib. In conclusion, BpPIN3 regulates the expression of auxin response-related genes and the polar transport of auxin to change the polar form of the proximal and distal axes of birch leaves.
Collapse
Affiliation(s)
- Kun Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Chang Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiao-yue Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Wei Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Chen-rui Gu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Gui-feng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qi-bin Yu
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Chuan-ping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
16
|
Kang SG, Lee DS, Do GS, Pandeya D, Matin MN. Genetic analysis of a DROOPING LEAF mutant allele dl-6 associated with a twisted and folded leaf base caused by a deficiency in midrib development in rice. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153837. [PMID: 36279633 DOI: 10.1016/j.jplph.2022.153837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The failure of midrib formation in rice leaf blades results in the drooping leaf (dl) phenotype. A normal DROOPING LEAF (DL) gene is necessary for leaf homeotic transformation, which affects midrib and pistil development. Genetic analysis was performed on a new drooping leaf (dl) mutant named dl-6 in rice. The dl-6 allelic mutant exhibited drooping leaves that were severely folded and twisted at the base but had normal flower structure. The dl-6 allele is a nuclear recessive trait that fits a 3:1 Mendelian segregation ratio. The dl-6 mutant leaves displayed an abnormal main vein (midrib-less) with undeveloped aerenchyma and vascular bundles, resulting in severe leaf drooping. The lack of a midrib in dl-6 caused weak mechanical support, which resulted in folding at the collar junction of the leaf base and downward bending. Through genetic mapping, the dl-6 allele was identified at approximately 28.2 cM on rice chromosome 3. The allele was caused by mutations within the DL (LOC_Os03g11600.1) gene, with specific amino acid substitutions and additions in the encoded protein of the YABBY transcription factor. The dl-6 mutant is a recessive allele encoding a dysfunctional YABBY transcription factor that regulates leaf midrib development and aerenchymatous clear cell structures, leading to a drooping leaf phenotype in rice.
Collapse
Affiliation(s)
- Sang Gu Kang
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Dong Sun Lee
- Key Lab of Agro-Biodiversity and Pest Management of Education Ministry, Yunnam Agricultural University, Kunming, China
| | - Geum Sook Do
- Department of Biology, College of Natural Sciences, Kyungpook National University, 80 Daehak-Ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Devendra Pandeya
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Mohammad Nurul Matin
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Molecular Genetics Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
17
|
Chandra AK, Jha SK, Agarwal P, Mallick N, Niranjana M, Vinod. Leaf rolling in bread wheat ( Triticum aestivum L.) is controlled by the upregulation of a pair of closely linked/duplicate zinc finger homeodomain class transcription factors during moisture stress conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:1038881. [PMID: 36483949 PMCID: PMC9723156 DOI: 10.3389/fpls.2022.1038881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
Zinc finger-homeodomain (ZF-HDs) class IV transcriptional factors (TFs) is a plant-specific transcription factor and play a key role in stress responses, plant growth, development, and hormonal signaling. In this study, two new leaf rolling TFs genes, namely TaZHD1 and TaZHD10, were identified in wheat using comparative genomic analysis of the target region that carried a major QTL for leaf rolling identified through multi-environment phenotyping and high throughput genotyping of a RIL population. Structural and functional annotation of the candidate ZHD genes with its closest rice orthologs reflects the species-specific evolution and, undoubtedly, validates the notions of remote-distance homology concept. Meanwhile, the morphological analysis resulted in contrasting difference for leaf rolling in extreme RILs between parental lines HD2012 and NI5439 at booting and heading stages. Transcriptome-wide expression profiling revealed that TaZHD10 transcripts showed significantly higher expression levels than TaZHD1 in all leaf tissues upon drought stress. The relative expression of these genes was further validated by qRT-PCR analysis, which also showed consistent results across the studied genotypes at the booting and anthesis stage. The contrasting modulation of these genes under drought conditions and the available evidenced for its epigenetic behavior that might involve the regulation of metabolic and gene regulatory networks. Prediction of miRNAs resulted in five Tae-miRs that could be associated with RNAi mediated control of TaZHD1 and TaZHD10 putatively involved in the metabolic pathway controlling rolled leaf phenotype. Gene interaction network analysis indicated that TaZHD1 and TaZHD10 showed pleiotropic effects and might also involve other functions in wheat in addition to leaf rolling. Overall, the results increase our understanding of TaZHD genes and provide valuable information as robust candidate genes for future functional genomics research aiming for the breeding of wheat varieties tolerant to leaf rolling.
Collapse
Affiliation(s)
| | - Shailendra Kumar Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | | | - Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
18
|
Du B, Wu J, Islam MS, Sun C, Lu B, Wei P, Liu D, Chen C. Genome-wide meta-analysis of QTL for morphological related traits of flag leaf in bread wheat. PLoS One 2022; 17:e0276602. [PMID: 36279291 PMCID: PMC9591062 DOI: 10.1371/journal.pone.0276602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
Flag leaf is an important organ for photosynthesis of wheat plants, and a key factor affecting wheat yield. In this study, quantitative trait loci (QTL) for flag leaf morphological traits in wheat reported since 2010 were collected to investigate the genetic mechanism of these traits. Integration of 304 QTLs from various mapping populations into a high-density consensus map composed of various types of molecular markers as well as QTL meta-analysis discovered 55 meta-QTLs (MQTL) controlling morphological traits of flag leaves, of which 10 MQTLs were confirmed by GWAS. Four high-confidence MQTLs (MQTL-1, MQTL-11, MQTL-13, and MQTL-52) were screened out from 55 MQTLs, with an average confidence interval of 0.82 cM and a physical distance of 9.4 Mb, according to the definition of hcMQTL. Ten wheat orthologs from rice (7) and Arabidopsis (3) that regulated leaf angle, development and morphogenesis traits were identified in the hcMQTL region using comparative genomics, and were speculated to be potential candidate genes regulating flag leaf morphological traits in wheat. The results from this study provides valuable information for fine mapping and molecular markers assisted selection to improve morphological characters in wheat flag leaf.
Collapse
Affiliation(s)
- Binbin Du
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Jia Wu
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Md. Samiul Islam
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Chaoyue Sun
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Baowei Lu
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Peipei Wei
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Dong Liu
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Cunwu Chen
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| |
Collapse
|
19
|
Yuan Z, Pan J, Chen C, Tang Y, Zhang H, Guo J, Yang X, Chen L, Li C, Zhao K, Wang Q, Yang B, Sun C, Deng X, Wang P. DRB2 Modulates Leaf Rolling by Regulating Accumulation of MicroRNAs Related to Leaf Development in Rice. Int J Mol Sci 2022; 23:ijms231911147. [PMID: 36232465 PMCID: PMC9570175 DOI: 10.3390/ijms231911147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022] Open
Abstract
As an important agronomic trait in rice (Oryza sativa), moderate leaf rolling helps to maintain the erectness of leaves and minimize shadowing between leaves, leading to improved photosynthetic efficiency and grain yield. However, the molecular mechanisms underlying rice leaf rolling still need to be elucidated. Here, we isolated a rice mutant, rl89, showing adaxially rolled leaf phenotype due to decreased number and size of bulliform cells. We confirmed that the rl89 phenotypes were caused by a single nucleotide substitution in OsDRB2 (LOC_Os10g33970) gene encoding DOUBLE-STRANDED RNA-BINDING2. This gene was constitutively expressed, and its encoded protein was localized to both nucleus and cytoplasm. Yeast two-hybrid assay showed that OsDRB2 could interact with DICER-LIKE1 (DCL1) and OsDRB1-2 respectively. qRT-PCR analysis of 29 related genes suggested that defects of the OsDRB2-miR166-OsHBs pathway could play an important role in formation of the rolled leaf phenotype of rl89, in which OsDRB2 mutation reduced miR166 accumulation, resulting in elevated expressions of the class III homeodomain-leucine zipper genes (such as OsHB1, 3 and 5) involved in leaf polarity and/or morphology development. Moreover, OsDRB2 mutation also reduced accumulation of miR160, miR319, miR390, and miR396, which could cause the abnormal leaf development in rl89 by regulating expressions of their target genes related to leaf development.
Collapse
Affiliation(s)
- Zhaodi Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jihong Pan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Congping Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yulin Tang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongshan Zhang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jia Guo
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaorong Yang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Longfei Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunyan Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Ke Zhao
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Qian Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Yang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Changhui Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaojian Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (X.D.); (P.W.)
| | - Pingrong Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (X.D.); (P.W.)
| |
Collapse
|
20
|
Zhu Z, Wang J, Li C, Li L, Mao X, Hu G, Wang J, Chang J, Jing R. A transcription factor TaMYB5 modulates leaf rolling in wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:897623. [PMID: 36082295 PMCID: PMC9445664 DOI: 10.3389/fpls.2022.897623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Leaf rolling is an important agronomic trait in wheat (Triticum aestivum L.). Moderate leaf rolling keeps leaves upright and maintains the relatively normal photosynthesis of plants under drought stress. However, the molecular mechanism of wheat leaf rolling remains unclear. Here, we identified a candidate gene TaMYB5-3A that regulates leaf rolling by using a genome-wide association study (GWAS) in a panel of 323 wheat accessions. Phenotype analysis indicated that the leaves of tamyb5 mutants were flatter than that of the wild type under drought condition. A nucleotide variation in the TaMYB5-3A coding region resulted in a substitution of Thr to Lys, which corresponds to two alleles SNP-3A-1 and SNP-3A-2. The leaf rolling index (LRI) of the SNP-3A-1 genotype was significantly lower than that of the SNP-3A-2 genotype. In addition, TaMYB5-3A alleles were associated with canopy temperature (CT) in multiple environments. The CT of the SNP-3A-1 genotype was lower than that of the SNP-3A-2 genotype. Gene expression analysis showed that TaMYB5-3A was mainly expressed in leaves and down-regulated by PEG and ABA treatment. TaMYB5 induces TaNRL1 gene expression through the direct binding to the AC cis-acting element of the promoter of the target gene, which was validated by EMSA (electrophoretic mobility shift assay). Our results revealed a crucial molecular mechanism in wheat leaf rolling and provided the theoretical basis and a gene resource for crop breeding.
Collapse
Affiliation(s)
- Zhi Zhu
- Shanxi Institute of Organic Dryland Farming, Organic Dry Farming of Shanxi Province Key Laboratory, Shanxi Agricultural University, Jinzhong, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Long Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ge Hu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinping Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Jianzhong Chang
- Shanxi Institute of Organic Dryland Farming, Organic Dry Farming of Shanxi Province Key Laboratory, Shanxi Agricultural University, Jinzhong, China
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
21
|
Wang J, Liu Y, Hu S, Xu J, Nian J, Cao X, Chen M, Cen J, Liu X, Zhang Z, Liu D, Zhu L, Hu J, Ren D, Gao Z, Shen L, Dong G, Zhang Q, Li Q, Yu S, Qian Q, Zhang G. LEAF TIP RUMPLED 1 Regulates Leaf Morphology and Salt Tolerance in Rice. Int J Mol Sci 2022; 23:8818. [PMID: 35955949 PMCID: PMC9369171 DOI: 10.3390/ijms23158818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 12/02/2022] Open
Abstract
Leaf morphology is one of the important traits related to ideal plant architecture and is an important factor determining rice stress resistance, which directly affects yield. Wax layers form a barrier to protect plants from different environmental stresses. However, the regulatory effect of wax synthesis genes on leaf morphology and salt tolerance is not well-understood. In this study, we identified a rice mutant, leaf tip rumpled 1 (ltr1), in a mutant library of the classic japonica variety Nipponbare. Phenotypic investigation of NPB and ltr1 suggested that ltr1 showed rumpled leaf with uneven distribution of bulliform cells and sclerenchyma cells, and disordered vascular bundles. A decrease in seed-setting rate in ltr1 led to decreased per-plant grain yield. Moreover, ltr1 was sensitive to salt stress, and LTR1 was strongly induced by salt stress. Map-based cloning of LTR1 showed that there was a 2-bp deletion in the eighth exon of LOC_Os02g40784 in ltr1, resulting in a frameshift mutation and early termination of transcription. Subsequently, the candidate gene was confirmed using complementation, overexpression, and knockout analysis of LOC_Os02g40784. Functional analysis of LTR1 showed that it was a wax synthesis gene and constitutively expressed in entire tissues with higher relative expression level in leaves and panicles. Moreover, overexpression of LTR1 enhanced yield in rice and LTR1 positively regulates salt stress by affecting water and ion homeostasis. These results lay a theoretical foundation for exploring the molecular mechanism of leaf morphogenesis and stress response, providing a new potential strategy for stress-tolerance breeding.
Collapse
Affiliation(s)
- Jiajia Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiting Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
- Research Center of Plant Functional Genes and Tissue Culture Technology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Songping Hu
- Research Center of Plant Functional Genes and Tissue Culture Technology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jing Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Jinqiang Nian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Xiaoping Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Minmin Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Jiangsu Cen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Xiong Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhihai Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Dan Liu
- Research Center of Plant Functional Genes and Tissue Culture Technology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Li Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Deyong Ren
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Lan Shen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Qiang Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Qing Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
22
|
Rasheed A, Jie Y, Nawaz M, Jie H, Ma Y, Shah AN, Hassan MU, Gillani SFA, Batool M, Aslam MT, Naseem AR, Qari SH. Improving Drought Stress Tolerance in Ramie ( Boehmeria nivea L.) Using Molecular Techniques. FRONTIERS IN PLANT SCIENCE 2022; 13:911610. [PMID: 35845651 PMCID: PMC9280341 DOI: 10.3389/fpls.2022.911610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Ramie is one of the most significant fiber crops and contributes to good quality fiber. Drought stress (DS) is one of the most devastating abiotic factors which is accountable for a substantial loss in crop growth and production and disturbing sustainable crop production. DS impairs growth, plant water relation, and nutrient uptake. Ramie has evolved a series of defense responses to cope with DS. There are numerous genes regulating the drought tolerance (DT) mechanism in ramie. The morphological and physiological mechanism of DT is well-studied; however, modified methods would be more effective. The use of novel genome editing tools like clustered regularly interspaced short palindromic repeats (CRISPR) is being used to edit the recessive genes in crops to modify their function. The transgenic approaches are used to develop several drought-tolerant varieties in ramie, and further identification of tolerant genes is needed for an effective breeding plan. Quantitative trait loci (QTLs) mapping, transcription factors (TFs) and speed breeding are highly studied techniques, and these would lead to the development of drought-resilient ramie cultivars. The use of hormones in enhancing crop growth and development under water scarcity circumstances is critical; however, using different concentrations and testing genotypes in changing environments would be helpful to sort the tolerant genotypes. Since plants use various ways to counter DS, investigating mechanisms of DT in plants will lead to improved DT in ramie. This critical review summarized the recent advancements on DT in ramie using novel molecular techniques. This information would help ramie breeders to conduct research studies and develop drought tolerant ramie cultivars.
Collapse
Affiliation(s)
- Adnan Rasheed
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yucheng Jie
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Hongdong Jie
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yushen Ma
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | | | - Maria Batool
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Ahmad Raza Naseem
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Sameer H. Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
23
|
Liu X, Deng XJ, Li CY, Xiao YK, Zhao K, Guo J, Yang XR, Zhang HS, Chen CP, Luo YT, Tang YL, Yang B, Sun CH, Wang PR. Mutation of Protoporphyrinogen IX Oxidase Gene Causes Spotted and Rolled Leaf and Its Overexpression Generates Herbicide Resistance in Rice. Int J Mol Sci 2022; 23:ijms23105781. [PMID: 35628595 PMCID: PMC9146718 DOI: 10.3390/ijms23105781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Protoporphyrinogen IX (Protogen IX) oxidase (PPO) catalyzes the oxidation of Protogen IX to Proto IX. PPO is also the target site for diphenyl ether-type herbicides. In plants, there are two PPO encoding genes, PPO1 and PPO2. To date, no PPO gene or mutant has been characterized in monocotyledonous plants. In this study, we isolated a spotted and rolled leaf (sprl1) mutant in rice (Oryza sativa). The spotted leaf phenotype was sensitive to high light intensity and low temperature, but the rolled leaf phenotype was insensitive. We confirmed that the sprl1 phenotypes were caused by a single nucleotide substitution in the OsPPO1 (LOC_Os01g18320) gene. This gene is constitutively expressed, and its encoded product is localized to the chloroplast. The sprl1 mutant accumulated excess Proto(gen) IX and reactive oxygen species (ROS), resulting in necrotic lesions. The expressions of 26 genes associated with tetrapyrrole biosynthesis, photosynthesis, ROS accumulation, and rolled leaf were significantly altered in sprl1, demonstrating that these expression changes were coincident with the mutant phenotypes. Importantly, OsPPO1-overexpression transgenic plants were resistant to the herbicides oxyfluorfen and acifluorfen under field conditions, while having no distinct influence on plant growth and grain yield. These finding indicate that the OsPPO1 gene has the potential to engineer herbicide resistance in rice.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (C.-H.S.)
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.-Y.L.); (Y.-K.X.); (K.Z.); (J.G.); (X.-R.Y.); (H.-S.Z.); (C.-P.C.); (Y.-T.L.); (Y.-L.T.); (B.Y.)
| | - Xiao-Jian Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (C.-H.S.)
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.-Y.L.); (Y.-K.X.); (K.Z.); (J.G.); (X.-R.Y.); (H.-S.Z.); (C.-P.C.); (Y.-T.L.); (Y.-L.T.); (B.Y.)
- Correspondence: (X.-J.D.); (P.-R.W.)
| | - Chun-Yan Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.-Y.L.); (Y.-K.X.); (K.Z.); (J.G.); (X.-R.Y.); (H.-S.Z.); (C.-P.C.); (Y.-T.L.); (Y.-L.T.); (B.Y.)
| | - Yong-Kang Xiao
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.-Y.L.); (Y.-K.X.); (K.Z.); (J.G.); (X.-R.Y.); (H.-S.Z.); (C.-P.C.); (Y.-T.L.); (Y.-L.T.); (B.Y.)
| | - Ke Zhao
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.-Y.L.); (Y.-K.X.); (K.Z.); (J.G.); (X.-R.Y.); (H.-S.Z.); (C.-P.C.); (Y.-T.L.); (Y.-L.T.); (B.Y.)
| | - Jia Guo
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.-Y.L.); (Y.-K.X.); (K.Z.); (J.G.); (X.-R.Y.); (H.-S.Z.); (C.-P.C.); (Y.-T.L.); (Y.-L.T.); (B.Y.)
| | - Xiao-Rong Yang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.-Y.L.); (Y.-K.X.); (K.Z.); (J.G.); (X.-R.Y.); (H.-S.Z.); (C.-P.C.); (Y.-T.L.); (Y.-L.T.); (B.Y.)
| | - Hong-Shan Zhang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.-Y.L.); (Y.-K.X.); (K.Z.); (J.G.); (X.-R.Y.); (H.-S.Z.); (C.-P.C.); (Y.-T.L.); (Y.-L.T.); (B.Y.)
| | - Cong-Ping Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.-Y.L.); (Y.-K.X.); (K.Z.); (J.G.); (X.-R.Y.); (H.-S.Z.); (C.-P.C.); (Y.-T.L.); (Y.-L.T.); (B.Y.)
| | - Ya-Ting Luo
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.-Y.L.); (Y.-K.X.); (K.Z.); (J.G.); (X.-R.Y.); (H.-S.Z.); (C.-P.C.); (Y.-T.L.); (Y.-L.T.); (B.Y.)
| | - Yu-Lin Tang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.-Y.L.); (Y.-K.X.); (K.Z.); (J.G.); (X.-R.Y.); (H.-S.Z.); (C.-P.C.); (Y.-T.L.); (Y.-L.T.); (B.Y.)
| | - Bin Yang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.-Y.L.); (Y.-K.X.); (K.Z.); (J.G.); (X.-R.Y.); (H.-S.Z.); (C.-P.C.); (Y.-T.L.); (Y.-L.T.); (B.Y.)
| | - Chang-Hui Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (C.-H.S.)
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.-Y.L.); (Y.-K.X.); (K.Z.); (J.G.); (X.-R.Y.); (H.-S.Z.); (C.-P.C.); (Y.-T.L.); (Y.-L.T.); (B.Y.)
| | - Ping-Rong Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (C.-H.S.)
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.-Y.L.); (Y.-K.X.); (K.Z.); (J.G.); (X.-R.Y.); (H.-S.Z.); (C.-P.C.); (Y.-T.L.); (Y.-L.T.); (B.Y.)
- Correspondence: (X.-J.D.); (P.-R.W.)
| |
Collapse
|
24
|
Transcriptomic analysis of OsRUS1 overexpression rice lines with rapid and dynamic leaf rolling morphology. Sci Rep 2022; 12:6736. [PMID: 35468979 PMCID: PMC9038715 DOI: 10.1038/s41598-022-10784-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/13/2022] [Indexed: 01/12/2023] Open
Abstract
Moderate leaf rolling helps to form the ideotype of rice. In this study, six independent OsRUS1-GFP overexpression (OsRUS1-OX) transgenic rice lines with rapid and dynamic leaf rolling phenotype in response to sunlight were constructed. However, the mechanism is unknown. Here, RNA-Seq approach was utilized to identify differentially expressed genes between flag leaves of OsRUS1-OX and wildtype under sunlight. 2920 genes were differentially expressed between OsRUS1-OX and WT, of which 1660 upregulated and 1260 downregulated. Six of the 16 genes in GO: 0009415 (response to water stimulus) were significantly upregulated in OsRUS1-OX. The differentially expressed genes between WT and OsRUS1-OX were assigned to 110 KEGG pathways. 42 of the 222 genes in KEGG pathway dosa04075 (Plant hormone signal transduction) were differentially expressed between WT and OsRUS1-OX. The identified genes in GO:0009415 and KEGG pathway dosa04075 were good candidates to explain the leaf rolling phenotype of OsRUS1-OX. The expression patterns of the 15 genes identified by RNA-Seq were verified by qRT-PCR. Based on transcriptomic and qRT-PCR analysis, a mechanism for the leaf rolling phenotype of OsRUS1-OX was proposed. The differential expression profiles between WT and OsRUS1-OX established by this study provide important insights into the molecular mechanism behind the leaf rolling phenotype of OsRUS1-OX.
Collapse
|
25
|
Chen DG, Zhou XQ, Chen K, Chen PL, Guo J, Liu CG, Chen YD. Fine-mapping and candidate gene analysis of a major locus controlling leaf thickness in rice ( Oryza sativa L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:6. [PMID: 35103045 PMCID: PMC8792131 DOI: 10.1007/s11032-022-01275-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/13/2022] [Indexed: 05/16/2023]
Abstract
UNLABELLED Leaf thickness is an important trait in rice (Oryza sativa L.). It affects both photosynthesis and sink-resource efficiency. However, compared to leaf length and length width, reports seldom focused on leaf thickness due to the complicated measurement and minor difference. To identify the quantitative trait loci (QTL) and explore the genetic mechanism regulating the natural variation of leaf thickness, we crossed a high leaf thickness variety Aixiuzhan (AXZ) to a thin leaf thickness variety Yangdao No.6 (YD 6) and evaluated 585 F2 individuals. We further use bulked sergeant analysis with whole-genome resequencing (BSA-seq) to identify five genomic regions, including chromosomes 1, 6, 9, 10, and 12. These regions represented significant allele frequency differentiation between thick and thin leaf thickness among the mixed pool offspring. Moreover, we conducted a linkage mapping using 276 individuals derived from the F2 population. We fine-mapped and confirmed that chromosome 9 contributed the primary explanation of phenotypic variance. We fine-mapped the candidate regions and confirmed that the chromosome 9 region contributed to flag leaf thickness in rice. We observed the virtual cellular slices and found that the bundle sheath cells in YD 6 flag leaf veins are fewer than AXZ. We analyzed the potential regions on chromosome 9 and narrowed the QTL candidate intervals in the 928-kb region. Candidate genes of this major QTL were listed as potentially controlled leaf thickness. These results provide promising evidence that cloning leaf thickness is associated with yield production in rice. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11032-022-01275-y.
Collapse
Affiliation(s)
- Da-gang Chen
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Xin-qiao Zhou
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Ke Chen
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Ping-li Chen
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Jie Guo
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Chuan-guang Liu
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - You-ding Chen
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| |
Collapse
|
26
|
Xu Y, Kong W, Wang F, Wang J, Tao Y, Li W, Chen Z, Fan F, Jiang Y, Zhu Q, Yang J. Heterodimer formed by ROC8 and ROC5 modulates leaf rolling in rice. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2662-2672. [PMID: 34448351 PMCID: PMC8633501 DOI: 10.1111/pbi.13690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Moderately rolled leaf is one of the target traits of the ideal plant architecture in rice breeding. Many genes, including homeodomain leucine zipper IV transcription factors ROC5 and ROC8, regulating rice leaf rolling have been cloned and functionally analysed. However, the molecular mechanism by which these genes modulate leaf-rolling remains largely elusive. In this study, we demonstrated the transcription activation activity of both ROC8 and ROC5. Overexpressing ROC8 caused adaxially rolled leaves due to decreased number and size of bulliform cells, whereas knockout of ROC8 induced abaxially rolled leaves due to increased number and size of bulliform cells. ROC8 and ROC5 each could form homodimer, but ROC8 interacted preferably with ROC5 to forms a heterodimer. Importantly, we showed that the ROC8-ROC5 heterodimer rather than the homodimer of ROC8 or ROC5 was functional as neither overexpressing ROC8 in the ROC5 mutant nor overexpressing ROC5 in the ROC8-knockout line could rescue the mutant phenotype. This was further partially supported by the identification of a large number of common differentially expressed genes in single and double mutants of roc8 and roc5. ROC8 and ROC5 were functionally additive as the phenotype of abaxially rolled leaves was stronger in the roc5roc8 double mutant than in their single mutants. Our results provide evidence for the role of dimerization of ROC members in regulating leaf rolling of rice.
Collapse
Affiliation(s)
- Yang Xu
- Institute of Food CropsJiangsu Academy of Agricultural SciencesNanjingChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
- Provincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjingChina
| | - Weiyi Kong
- College of Grassland ScienceNanjing Agricultural UniversityNanjingChina
| | - Fangquan Wang
- Institute of Food CropsJiangsu Academy of Agricultural SciencesNanjingChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
- Provincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjingChina
| | - Jun Wang
- Institute of Food CropsJiangsu Academy of Agricultural SciencesNanjingChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
- Provincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjingChina
| | - Yajun Tao
- Institute of Food CropsJiangsu Academy of Agricultural SciencesNanjingChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
- Provincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjingChina
| | - Wenqi Li
- Institute of Food CropsJiangsu Academy of Agricultural SciencesNanjingChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
- Provincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjingChina
| | - Zhihui Chen
- Institute of Food CropsJiangsu Academy of Agricultural SciencesNanjingChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
- Provincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjingChina
| | - Fangjun Fan
- Institute of Food CropsJiangsu Academy of Agricultural SciencesNanjingChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
- Provincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjingChina
| | - Yanjie Jiang
- Institute of Food CropsJiangsu Academy of Agricultural SciencesNanjingChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
- Provincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjingChina
| | | | - Jie Yang
- Institute of Food CropsJiangsu Academy of Agricultural SciencesNanjingChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
- Provincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjingChina
| |
Collapse
|
27
|
Montero H, Lee T, Pucker B, Ferreras-Garrucho G, Oldroyd G, Brockington SF, Miyao A, Paszkowski U. A mycorrhiza-associated receptor-like kinase with an ancient origin in the green lineage. Proc Natl Acad Sci U S A 2021; 118:e2105281118. [PMID: 34161289 PMCID: PMC8237591 DOI: 10.1073/pnas.2105281118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Receptor-like kinases (RLKs) are key cell signaling components. The rice ARBUSCULAR RECEPTOR-LIKE KINASE 1 (OsARK1) regulates the arbuscular mycorrhizal (AM) association postarbuscule development and belongs to an undefined subfamily of RLKs. Our phylogenetic analysis revealed that ARK1 has an ancient paralogue in spermatophytes, ARK2 Single ark2 and ark1/ark2 double mutants in rice showed a nonredundant AM symbiotic function for OsARK2 Global transcriptomics identified a set of genes coregulated by the two RLKs, suggesting that OsARK1 and OsARK2 orchestrate symbiosis in a common pathway. ARK lineage proteins harbor a newly identified SPARK domain in their extracellular regions, which underwent parallel losses in ARK1 and ARK2 in monocots. This protein domain has ancient origins in streptophyte algae and defines additional overlooked groups of putative cell surface receptors.
Collapse
Affiliation(s)
- Héctor Montero
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge CB3 0LE, United Kingdom;
| | - Tak Lee
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge CB3 0LE, United Kingdom
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Boas Pucker
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | | | - Giles Oldroyd
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge CB3 0LE, United Kingdom
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Samuel F Brockington
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Akio Miyao
- Institute of Crop Science, National Agriculture and Food Research Organization, Ibaraki 305-8518 Tsukuba, Japan
| | - Uta Paszkowski
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge CB3 0LE, United Kingdom;
| |
Collapse
|
28
|
Roodt D. Bringing on the bulliform cells: a complex transcriptional regulatory module keeps rice leaves flat. PLANT PHYSIOLOGY 2021; 185:1476-1478. [PMID: 33582803 PMCID: PMC8133670 DOI: 10.1093/plphys/kiab037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Danielle Roodt
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
29
|
Fang J, Guo T, Xie Z, Chun Y, Zhao J, Peng L, Zafar SA, Yuan S, Xiao L, Li X. The URL1-ROC5-TPL2 transcriptional repressor complex represses the ACL1 gene to modulate leaf rolling in rice. PLANT PHYSIOLOGY 2021; 185:1722-1744. [PMID: 33793928 PMCID: PMC8133684 DOI: 10.1093/plphys/kiaa121] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/13/2020] [Indexed: 05/31/2023]
Abstract
Moderate leaf rolling is beneficial for leaf erectness and compact plant architecture. However, our understanding regarding the molecular mechanisms of leaf rolling is still limited. Here, we characterized a semi-dominant rice (Oryza sativa L.) mutant upward rolled leaf 1 (Url1) showing adaxially rolled leaves due to a decrease in the number and size of bulliform cells. Map-based cloning revealed that URL1 encodes the homeodomain-leucine zipper (HD-Zip) IV family member RICE OUTERMOST CELL-SPECIFIC 8 (ROC8). A single-base substitution in one of the two conserved complementary motifs unique to the 3'-untranslated region of this family enhanced URL1 mRNA stability and abundance in the Url1 mutant. URL1 (UPWARD ROLLED LEAF1) contains an ethylene-responsive element binding factor-associated amphiphilic repression motif and functions as a transcriptional repressor via interaction with the TOPLESS co-repressor OsTPL2. Rather than homodimerizing, URL1 heterodimerizes with another HD-ZIP IV member ROC5. URL1 could bind directly to the promoter and suppress the expression of abaxially curled leaf 1 (ACL1), a positive regulator of bulliform cell development. Knockout of OsTPL2 or ROC5 or overexpression of ACL1 in the Url1 mutant partially suppressed the leaf-rolling phenotype. Our results reveal a regulatory network whereby a transcriptional repression complex composed of URL1, ROC5, and the transcriptional corepressor TPL2 suppresses the expression of the ACL1 gene, thus modulating bulliform cell development and leaf rolling in rice.
Collapse
Affiliation(s)
- Jingjing Fang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tingting Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Hunan Provincial Key Laboratory of Phytohormones, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Zhiwei Xie
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Chun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lixiang Peng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Syed Adeel Zafar
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shoujiang Yuan
- Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
30
|
Ganie SA, Ahammed GJ. Dynamics of cell wall structure and related genomic resources for drought tolerance in rice. PLANT CELL REPORTS 2021; 40:437-459. [PMID: 33389046 DOI: 10.1007/s00299-020-02649-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/04/2020] [Indexed: 05/03/2023]
Abstract
Cell wall plasticity plays a very crucial role in vegetative and reproductive development of rice under drought and is a highly potential trait for improving rice yield under drought. Drought is a major constraint in rice (Oryza sativa L.) cultivation severely affecting all developmental stages, with the reproductive stage being the most sensitive. Rice plants employ multiple strategies to cope with drought, in which modification in cell wall dynamics plays a crucial role. Over the years, significant progress has been made in discovering the cell wall-specific genomic resources related to drought tolerance at vegetative and reproductive stages of rice. However, questions remain about how the drought-induced changes in cell wall made by these genomic resources potentially influence the vegetative and reproductive development of rice. The possibly major candidate genes underlying the function of quantitative trait loci directly or indirectly associated with the cell wall plasticization-mediated drought tolerance of rice might have a huge promise in dissecting the putative genomic regions associated with cell wall plasticity under drought. Furthermore, engineering the drought tolerance of rice using cell wall-related genes from resurrection plants may have huge prospects for rice yield improvement. Here, we review the comprehensive multidisciplinary analyses to unravel different components and mechanisms involved in drought-induced cell wall plasticity at vegetative and reproductive stages that could be targeted for improving rice yield under drought.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- Department of Biotechnology, Visva-Bharati, Santiniketan, West Bengal, 731235, India.
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
31
|
Sheng C, Song S, Zhou R, Li D, Gao Y, Cui X, Tang X, Zhang Y, Tu J, Zhang X, Wang L. QTL-Seq and Transcriptome Analysis Disclose Major QTL and Candidate Genes Controlling Leaf Size in Sesame ( Sesamum indicum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:580846. [PMID: 33719280 PMCID: PMC7943740 DOI: 10.3389/fpls.2021.580846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Leaf size is a crucial component of sesame (Sesamum indicum L.) plant architecture and further influences yield potential. Despite that it is well known that leaf size traits are quantitative traits controlled by large numbers of genes, quantitative trait loci (QTL) and candidate genes for sesame leaf size remain poorly understood. In the present study, we combined the QTL-seq approach and SSR marker mapping to identify the candidate genomic regions harboring QTL controlling leaf size traits in an RIL population derived from a cross between sesame varieties Zhongzhi No. 13 (with big leaves) and ZZM2289 (with small leaves). The QTL mapping revealed 56 QTL with phenotypic variation explained (PVE) from 1.87 to 27.50% for the length and width of leaves at the 1/3 and 1/2 positions of plant height. qLS15-1, a major and environmentally stable pleiotropic locus for both leaf length and width explaining 5.81 to 27.50% phenotypic variation, was located on LG15 within a 408-Kb physical genomic region flanked by the markers ZMM6185 and ZMM6206. In this region, a combination of transcriptome analysis with gene annotations revealed three candidate genes SIN_1004875, SIN_1004882, and SIN_1004883 associated with leaf growth and development in sesame. These findings provided insight into the genetic characteristics and variability for sesame leaf and set up the foundation for future genomic studies on sesame leaves and will serve as gene resources for improvement of sesame plant architecture.
Collapse
Affiliation(s)
- Chen Sheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Shengnan Song
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Rong Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Donghua Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Yuan Gao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xianghua Cui
- Zhumadian Academy of Agricultural Sciences, Zhumadian, China
| | - Xuehui Tang
- Xiangyang Academy of Agricultural Sciences, Xiangyang, China
| | - Yanxin Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Xiurong Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Linhai Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| |
Collapse
|
32
|
Jang S, Shim S, Lee YK, Lee D, Koh HJ. Major QTLs, qARO1 and qARO9, Additively Regulate Adaxial Leaf Rolling in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:626523. [PMID: 33708231 PMCID: PMC7940999 DOI: 10.3389/fpls.2021.626523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Moderate leaf rolling is considered optimal for the ideal plant type in rice (Oryza sativa L.), as it improves photosynthetic efficiency and, consequently, grain yield. Determining the genetic basis of leaf rolling via the identification of quantitative trait loci (QTLs) could facilitate the development of high-yielding varieties. In this study, we identified three stable rice QTLs, qARO1, qARO5, and qARO9, which control adaxial leaf rolling in a recombinant inbred line (RIL) population derived from a cross between Tong 88-7 (T887) and Milyang 23 (M23), using high-density SNP markers. These QTLs controlled the rolling phenotype of both the flag leaf (FL) and secondary leaf (SL), and different allelic combinations of these QTLs led to a wide variation in the degree of leaf rolling. Additive gene actions of qARO1 and qARO9 on leaf rolling were observed in a backcross population. In addition, qARO1 (markers: 01id4854718 and 01asp4916781) and qARO9 (markers: 09id19650402 and 09id19740436) were successfully fine-mapped to approximately 60- and 90-kb intervals on chromosomes 1 and 9, respectively. Histological analysis of near-isogenic lines (NILs) revealed that qARO1 influences leaf thickness across the small vein, and qARO9 affects leaf thickness in the entire leaf and bulliform cell area, thus leading to adaxial leaf rolling. The results of this study advance our understanding of the genetic and molecular bases of adaxial leaf rolling, and this information can be used for the development of rice varieties with the ideal plant type.
Collapse
Affiliation(s)
- Su Jang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Sangrea Shim
- Department of Chemistry, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Yoon Kyung Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Dongryung Lee
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, Saudi Arabia
| | - Hee-Jong Koh
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
33
|
Zhang X, Wang Y, Zhu X, Wang X, Zhu Z, Li Y, Xie J, Xiong Y, Yang Z, He G, Sang X. Curled Flag Leaf 2, Encoding a Cytochrome P450 Protein, Regulated by the Transcription Factor Roc5, Influences Flag Leaf Development in Rice. FRONTIERS IN PLANT SCIENCE 2021; 11:616977. [PMID: 33643332 PMCID: PMC7907467 DOI: 10.3389/fpls.2020.616977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/28/2020] [Indexed: 05/28/2023]
Abstract
Moderate curling generally causes upright leaf blades, which favors the establishment of ideal plant architecture and increases the photosynthetic efficiency of the population, both of which are desirable traits for super hybrid rice (Oryza sativa L.). In this study, we identified a novel curled-leaf mutant, curled flag leaf 2 (cfl2), which shows specific curling at the base of the flag leaf owing to abnormal epidermal development, caused by enlarged bulliform cells and increased number of papillae with the disordered distribution. Map-based cloning reveals that CFL2 encodes a cytochrome P450 protein and corresponds to the previously reported OsCYP96B4. CFL2 was expressed in all analyzed tissues with differential abundance and was downregulated in the clf1 mutant [a mutant harbors a mutation in the homeodomain leucine zipper IV (HD-ZIP IV) transcription factor Roc5]. Yeast one-hybrid and transient expression assays confirm that Roc5 could directly bind to the cis-element L1 box in the promoter of CFL2 before activating CFL2 expression. RNA sequencing reveals that genes associated with cellulose biosynthesis and cell wall-related processes were significantly upregulated in the cfl2 mutant. The components of cell wall, such as lignin, cellulose, and some kinds of monosaccharide, were altered dramatically in the cfl2 mutant when compared with wild-type "Jinhui10" (WT). Taken together, CFL2, as a target gene of Roc5, plays an important role in the regulation of flag leaf shape by influencing epidermis and cell wall development.
Collapse
|
34
|
Wang J, Bao J, Zhou B, Li M, Li X, Jin J. The osa-miR164 target OsCUC1 functions redundantly with OsCUC3 in controlling rice meristem/organ boundary specification. THE NEW PHYTOLOGIST 2021; 229:1566-1581. [PMID: 32964416 PMCID: PMC7821251 DOI: 10.1111/nph.16939] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/05/2020] [Indexed: 05/22/2023]
Abstract
The specification of the meristem/organ boundary is critical for plant development. Here, we investigate two previously uncharacterized NAC transcription factors: the first, OsCUC1, which is negatively regulated by osa-miR164c, dimerizes with the second, OsCUC3, and functions partially redundantly in meristem/organ boundary specification in rice (Oryza sativa). We produced knockout lines for rice OsCUC1 (the homolog of Arabidopsis CUC1 and CUC2) and OsCUC3 (the homolog of Arabidopsis CUC3), as well as an overexpression line for osa-miR164c, to study the molecular mechanism of boundary specification in rice. A single mutation in either OsCUC1 or OsCUC3 leads to defects in the establishment of the meristem/organ boundary, resulting in reduced stamen numbers and the fusion of leaves and filaments, and the defects are greatly enhanced in the double mutant. Transgenic plants overexpressing osa-miR164c showed a phenotype similar to that of the OsCUC1 knockout line. In addition, knockout of OsCUC1 leads to multiple defects, including dwarf plant architecture, male sterility and twisted-rolling leaves. Further study indicated that OsCUC1 physically interacts with leaf-rolling related protein CURLED LEAF AND DWARF 1 (CLD1) and stabilizes it in the nucleus to control leaf morphology. This work demonstrated that the interplay of osa-miR164c, OsCUC1 and OsCUC3 controls boundary specification in rice.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanning530005China
| | - Jinlin Bao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanning530005China
| | - Beibei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanning530005China
| | - Min Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanning530005China
| | - Xizhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanning530005China
| | - Jian Jin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanning530005China
| |
Collapse
|
35
|
Zhang G, Hou X, Wang L, Xu J, Chen J, Fu X, Shen N, Nian J, Jiang Z, Hu J, Zhu L, Rao Y, Shi Y, Ren D, Dong G, Gao Z, Guo L, Qian Q, Luan S. PHOTO-SENSITIVE LEAF ROLLING 1 encodes a polygalacturonase that modifies cell wall structure and drought tolerance in rice. THE NEW PHYTOLOGIST 2021; 229:890-901. [PMID: 32858770 DOI: 10.1111/nph.16899] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/15/2020] [Indexed: 05/15/2023]
Abstract
The biosynthesis and modification of cell wall composition and structure are controlled by hundreds of enzymes and have a direct consequence on plant growth and development. However, the majority of these enzymes has not been functionally characterised. Rice mutants with leaf-rolling phenotypes were screened in a field. Phenotypic analysis under controlled conditions was performed for the selected mutant and the relevant gene was identified by map-based cloning. Cell wall composition was analysed by glycome profiling assay. We identified a photo-sensitive leaf rolling 1 (psl1) mutant with 'napping' (midday depression of photosynthesis) phenotype and reduced growth. The PSL1 gene encodes a cell wall-localised polygalacturonase (PG), a pectin-degrading enzyme. psl1 with a 260-bp deletion in its gene displayed leaf rolling in response to high light intensity and/or low humidity. Biochemical assays revealed PG activity of recombinant PSL1 protein. Significant modifications to cell wall composition in the psl1 mutant compared with the wild-type plants were identified. Such modifications enhanced drought tolerance of the mutant plants by reducing water loss under osmotic stress and drought conditions. Taken together, PSL1 functions as a PG that modifies cell wall biosynthesis, plant development and drought tolerance in rice.
Collapse
Affiliation(s)
- Guangheng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- Department of Plant & Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA, 94720, USA
| | - Xin Hou
- Department of Plant & Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA, 94720, USA
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Li Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jing Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jian Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xue Fu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Nianwei Shen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jinqiang Nian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Zhuanzhuan Jiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Li Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yuchun Rao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yafei Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Deyong Ren
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Sheng Luan
- Department of Plant & Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA, 94720, USA
| |
Collapse
|
36
|
Tu Y, Liu H, Liu J, Tang H, Mu Y, Deng M, Jiang Q, Liu Y, Chen G, Wang J, Qi P, Pu Z, Chen G, Peng Y, Jiang Y, Xu Q, Kang H, Lan X, Wei Y, Zheng Y, Ma J. QTL mapping and validation of bread wheat flag leaf morphology across multiple environments in different genetic backgrounds. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:261-278. [PMID: 33026461 DOI: 10.1007/s00122-020-03695-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/22/2020] [Indexed: 05/24/2023]
Abstract
Eight major and stably expressed QTL for flag leaf morphology across eleven environments were identified and validated using newly developed KASP markers in seven biparental populations with different genetic backgrounds. Flag leaf morphology is a determinant trait influencing plant architecture and yield potential in wheat (Triticum aestivum L.). A recombinant inbred line (RIL) population with a 55 K SNP-based constructed genetic map was used to map quantitative trait loci (QTL) for flag leaf length (FLL), width (FLW), area (FLA), angle (FLANG), opening angle (FLOA), and bend angle (FLBA) in eleven environments. Eight major QTL were detected in 11 environments with 5.73-54.38% of explained phenotypic variation. These QTL were successfully verified using the newly developed Kompetitive Allele Specific PCR (KASP) markers in six biparental populations with different genetic backgrounds. Among these 8 major QTL, two co-located intervals were identified. Significant interactions for both FLL- and FLW-related QTL were detected. Comparison analysis showed that QFll.sau-SY-2B and QFla.sau-SY-2B are likely new loci. Significant relationships between flag leaf- and yield-related traits were observed and discussed. Several genes associated with leaf development including the ortholog of maize ZmRAVL1, a B3-domain transcription factor involved in regulation of leaf angle, were predicted in physical intervals harboring these major QTL on reference genomes of bread wheat 'Chinese spring', T. turgidum, and Aegilops tauschii. Taken together, these results broaden our understanding on genetic basis of flag leaf morphology and provide clues for fine mapping and marker-assisted breeding wheat with optimized plant architecture for promising loci.
Collapse
Affiliation(s)
- Yang Tu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hang Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiajun Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Mu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanying Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
37
|
Sun J, Cui X, Teng S, Kunnong Z, Wang Y, Chen Z, Sun X, Wu J, Ai P, Quick WP, Lu T, Zhang Z. HD-ZIP IV gene Roc8 regulates the size of bulliform cells and lignin content in rice. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2559-2572. [PMID: 32559019 PMCID: PMC7680540 DOI: 10.1111/pbi.13435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/31/2020] [Indexed: 05/27/2023]
Abstract
The morphology of bulliform cells located on the upper epidermis of leaves is one of the most important cell structures affecting leaf shape. Although many mechanisms regulating the development of bulliform cells have been reported, the fine regulatory mechanisms governing this process have rarely been described. To identify novel components regulating rice leaf morphology, a mutant showing a constitutively rolling phenotype from the seedling stage to flowering, known as crm1-D, was selected for further analysis. Anatomical analyses in crm1-D were attributable to the size reduction of bulliform cells. The crm1-D was controlled by a single dominant nuclear gene. Map-based cloning revealed that Roc8, an HD zipper class IV family member, was responsible for the crm1-D phenotype. Notably, the 50-bp sequence in the 3'-untranslated region (3'-UTR) of the Roc8 gene represses Roc8 at the translational level. Moreover, the roc8 knockdown lines notably increased the size of bulliform cells. A series of assays revealed that Roc8 negatively regulates the size of bulliform cells. Unexpectedly, Roc8 was also observed to positively mediate lignin biosynthesis without incurring a production penalty. The above results show that Roc8 may have a practical application in cultivating materials with high photosynthetic efficiency and low lignin content.
Collapse
Affiliation(s)
- Jing Sun
- Joint CAAS/IRRI Laboratory for Photosynthetic EnhancementBiotechnology Research Institute/National Key Facility for Genetic Resources and Gene ImprovementThe Chinese Academy of Agricultural SciencesBeijingChina
| | - Xuean Cui
- Joint CAAS/IRRI Laboratory for Photosynthetic EnhancementBiotechnology Research Institute/National Key Facility for Genetic Resources and Gene ImprovementThe Chinese Academy of Agricultural SciencesBeijingChina
| | - Shouzhen Teng
- Joint CAAS/IRRI Laboratory for Photosynthetic EnhancementBiotechnology Research Institute/National Key Facility for Genetic Resources and Gene ImprovementThe Chinese Academy of Agricultural SciencesBeijingChina
| | - Zhao Kunnong
- Joint CAAS/IRRI Laboratory for Photosynthetic EnhancementBiotechnology Research Institute/National Key Facility for Genetic Resources and Gene ImprovementThe Chinese Academy of Agricultural SciencesBeijingChina
| | - Yanwei Wang
- Joint CAAS/IRRI Laboratory for Photosynthetic EnhancementBiotechnology Research Institute/National Key Facility for Genetic Resources and Gene ImprovementThe Chinese Academy of Agricultural SciencesBeijingChina
| | - Zhenhua Chen
- Joint CAAS/IRRI Laboratory for Photosynthetic EnhancementBiotechnology Research Institute/National Key Facility for Genetic Resources and Gene ImprovementThe Chinese Academy of Agricultural SciencesBeijingChina
| | - Xuehui Sun
- Joint CAAS/IRRI Laboratory for Photosynthetic EnhancementBiotechnology Research Institute/National Key Facility for Genetic Resources and Gene ImprovementThe Chinese Academy of Agricultural SciencesBeijingChina
| | - Jinxia Wu
- Joint CAAS/IRRI Laboratory for Photosynthetic EnhancementBiotechnology Research Institute/National Key Facility for Genetic Resources and Gene ImprovementThe Chinese Academy of Agricultural SciencesBeijingChina
| | - Pengfei Ai
- College of Bioscience and BioengineeringHebei University of Science and TechnologyHebeiChina
| | - William Paul Quick
- Joint CAAS/IRRI Laboratory for Photosynthetic EnhancementBiotechnology Research Institute/National Key Facility for Genetic Resources and Gene ImprovementThe Chinese Academy of Agricultural SciencesBeijingChina
- C4 Rice CenterInternational Rice Research Institute (IRRI)UPLBLos BañosLagunaPhilippines
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Tiegang Lu
- Joint CAAS/IRRI Laboratory for Photosynthetic EnhancementBiotechnology Research Institute/National Key Facility for Genetic Resources and Gene ImprovementThe Chinese Academy of Agricultural SciencesBeijingChina
| | - Zhiguo Zhang
- Joint CAAS/IRRI Laboratory for Photosynthetic EnhancementBiotechnology Research Institute/National Key Facility for Genetic Resources and Gene ImprovementThe Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
38
|
Hu W, Zhou T, Hu G, Wu H, Han Z, Xiao J, Li X, Xing Y. An ethyl methanesulfonate-induced neutral mutant-bridging method efficiently identifies spontaneously mutated genes in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1129-1141. [PMID: 32808346 DOI: 10.1111/tpj.14969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/19/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Spontaneous mutants are mainly obtained from tissue culture or natural occurrences in plants. The traditional strategy for identifying spontaneously mutated genes is to continuously backcross these mutants to another variety and develop a near-isogenic F2 population for map-based cloning or bulked segregant analysis. However, this strategy is time-consuming. Here, we have developed a new method to efficiently accelerate the identification process. The chemical mutagen ethyl methanesulfonate was first used to treat the wild type of the spontaneous mutants to induce thousands of neutral mutations. An induced individual without any statistically significant phenotypic changes which was compared with the wild type was chosen as the neutral mutant. The spontaneous mutant was then crossed with the neutral mutant to develop a pseudo-near-isogenic F2 population in which only the induced neutral mutations and the causal mutation were segregated in the genome. This population ensures that the variation of the mutated trait is controlled only by the spontaneously mutated gene. Finally, after sequencing the neutral mutant and the mutant-type DNA pool of the F2 population the spontaneous mutation will be identified quickly by bioinformatics analysis. Using this method, two spontaneously mutated genes were identified successfully. Therefore, the neutral mutant-bridging method efficiently identifies spontaneously mutated genes in rice, and its value in other plants is discussed.
Collapse
Affiliation(s)
- Wei Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tianhao Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gang Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hong Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongmin Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025, China
| |
Collapse
|
39
|
QTL detection and putative candidate gene prediction for leaf rolling under moisture stress condition in wheat. Sci Rep 2020; 10:18696. [PMID: 33122772 PMCID: PMC7596552 DOI: 10.1038/s41598-020-75703-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
Leaf rolling is an important mechanism to mitigate the effects of moisture stress in several plant species. In the present study, a set of 92 wheat recombinant inbred lines derived from the cross between NI5439 × HD2012 were used to identify QTLs associated with leaf rolling under moisture stress condition. Linkage map was constructed using Axiom 35 K Breeder’s SNP Array and microsatellite (SSR) markers. A linkage map with 3661 markers comprising 3589 SNP and 72 SSR markers spanning 22,275.01 cM in length across 21 wheat chromosomes was constructed. QTL analysis for leaf rolling trait under moisture stress condition revealed 12 QTLs on chromosomes 1B, 2A, 2B, 2D, 3A, 4A, 4B, 5D, and 6B. A stable QTL Qlr.nhv-5D.2 was identified on 5D chromosome flanked by SNP marker interval AX-94892575–AX-95124447 (5D:338665301–5D:410952987). Genetic and physical map integration in the confidence intervals of Qlr.nhv-5D.2 revealed 14 putative candidate genes for drought tolerance which was narrowed down to six genes based on in-silico analysis. Comparative study of leaf rolling genes in rice viz., NRL1, OsZHD1, Roc5, and OsHB3 on wheat genome revealed five genes on chromosome 5D. Out of the identified genes, TraesCS5D02G253100 falls exactly in the QTL Qlr.nhv-5D.2 interval and showed 96.9% identity with OsZHD1. Two genes similar to OsHB3 viz. TraesCS5D02G052300 and TraesCS5D02G385300 exhibiting 85.6% and 91.8% identity; one gene TraesCS5D02G320600 having 83.9% identity with Roc5 gene; and one gene TraesCS5D02G102600 showing 100% identity with NRL1 gene were also identified, however, these genes are located outside Qlr.nhv-5D.2 interval. Hence, TraesCS5D02G253100 could be the best potential candidate gene for leaf rolling and can be utilized for improving drought tolerance in wheat.
Collapse
|
40
|
Matsumoto H, Yasui Y, Ohmori Y, Tanaka W, Ishikawa T, Numa H, Shirasawa K, Taniguchi Y, Tanaka J, Suzuki Y, Hirano H. CURLED LATER1 encoding the largest subunit of the Elongator complex has a unique role in leaf development and meristem function in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:351-364. [PMID: 32652697 PMCID: PMC7689840 DOI: 10.1111/tpj.14925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 05/12/2023]
Abstract
The Elongator complex, which is conserved in eukaryotes, has multiple roles in diverse organisms. In Arabidopsis thaliana, Elongator is shown to be involved in development, hormone action and environmental responses. However, except for Arabidopsis, our knowledge of its function is poor in plants. In this study, we initially carried out a genetic analysis to characterize a rice mutant with narrow and curled leaves, termed curled later1 (cur1). The cur1 mutant displayed a heteroblastic change, whereby the mutant leaf phenotype appeared specifically at a later adult phase of vegetative development. The shoot apical meristem (SAM) was small and the leaf initiation rate was low, suggesting that the activity of the SAM seemed to be partially reduced in cur1. We then revealed that CUR1 encodes a yeast ELP1-like protein, the largest subunit of Elongator. Furthermore, disruption of OsELP3 encoding the catalytic subunit of Elongator resulted in phenotypes similar to those of cur1, including the timing of the appearance of mutant phenotypes. Thus, Elongator activity seems to be specifically required for leaf development at the late vegetative phase. Transcriptome analysis showed that genes involved in protein quality control were highly upregulated in the cur1 shoot apex at the later vegetative phase, suggesting the restoration of impaired proteins probably produced by partial defects in translational control due to the loss of function of Elongator. The differences in the mutant phenotype and gene expression profile between CUR1 and its Arabidopsis ortholog suggest that Elongator has evolved to play a unique role in rice development.
Collapse
Affiliation(s)
- Hikari Matsumoto
- School of ScienceThe University of TokyoHongo, Bunkyo‐kuTokyo113‐8654Japan
| | - Yukiko Yasui
- School of ScienceThe University of TokyoHongo, Bunkyo‐kuTokyo113‐8654Japan
- Present address:
Graduate School of BiostudiesKyoto UniversitySakyo‐ku, Kyoto606‐8502Japan
| | - Yoshihiro Ohmori
- Graduate School of Agricultural and Life SciencesThe University of TokyoYayoi, Bunkyo‐kuTokyo113‐8657Japan
| | - Wakana Tanaka
- School of ScienceThe University of TokyoHongo, Bunkyo‐kuTokyo113‐8654Japan
- Present address:
Graduate School of Integrated Sciences for LifeHiroshima UniversityKagamiyama, Higashi‐Hiroshima739‐8528Japan
| | | | | | - Kenta Shirasawa
- NAROKannondai 2‐1‐2Tsukuba305‐8518Japan
- Present address:
Kazusa DNA Research InstituteKazusa‐KamatariKisarazu, Chiba292‐0818Japan
| | | | | | | | - Hiro‐Yuki Hirano
- School of ScienceThe University of TokyoHongo, Bunkyo‐kuTokyo113‐8654Japan
| |
Collapse
|
41
|
Joshi RK, Bharat SS, Mishra R. Engineering drought tolerance in plants through CRISPR/Cas genome editing. 3 Biotech 2020; 10:400. [PMID: 32864285 PMCID: PMC7438458 DOI: 10.1007/s13205-020-02390-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Drought stress is primarily responsible for heavy yield losses and productivity in major crops and possesses the greatest threat to the global food security. While conventional and molecular breeding approaches along with genetic engineering techniques have been instrumental in developing drought-tolerant crop varieties, these methods are cumbersome, time consuming and the genetically modified varieties are not widely accepted due to regulatory concerns. Plant breeders are now increasingly centring towards the recently available genome-editing tools for improvement of agriculturally important traits. The advent of multiple sequence-specific nucleases has facilitated precise gene modification towards development of novel climate ready crop variants. Amongst the available genome-editing platforms, the clustered regularly interspaced short palindromic repeat-Cas (CRISPR/Cas) system has emerged as a revolutionary tool for its simplicity, adaptability, flexibility and wide applicability. In this review, we focus on understanding the molecular mechanism of drought response in plants and the application of CRISPR/Cas genome-editing system towards improved tolerance to drought stress.
Collapse
Affiliation(s)
- Raj Kumar Joshi
- Department of Biotechnology, Rama Devi Women’s University, Vidya Vihar, Bhubaneswar, Odisha India
| | - Suhas Sutar Bharat
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081 China
| | - Rukmini Mishra
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha India
| |
Collapse
|
42
|
The Temperature-Dependent Retention of Introns in GPI8 Transcripts Contributes to a Drooping and Fragile Shoot Phenotype in Rice. Int J Mol Sci 2019; 21:ijms21010299. [PMID: 31906256 PMCID: PMC6982220 DOI: 10.3390/ijms21010299] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/25/2019] [Accepted: 12/30/2019] [Indexed: 12/22/2022] Open
Abstract
Attachment of glycosylphosphatidylinositols (GPIs) to the C-termini of proteins is one of the most common posttranslational modifications in eukaryotic cells. GPI8/PIG-K is the catalytic subunit of the GPI transamidase complex catalyzing the transfer en bloc GPI to proteins. In this study, a T-DNA insertional mutant of rice with temperature-dependent drooping and fragile (df) shoots phenotype was isolated. The insertion site of the T-DNA fragment was 879 bp downstream of the stop codon of the OsGPI8 gene, which caused introns retention in the gene transcripts, especially at higher temperatures. A complementation test confirmed that this change in the OsGPI8 transcripts was responsible for the mutant phenotype. Compared to control plants, internodes of the df mutant showed a thinner shell with a reduced cell number in the transverse direction, and an inhomogeneous secondary wall layer in bundle sheath cells, while many sclerenchyma cells at the tops of the main veins of df leaves were shrunken and their walls were thinner. The df plants also displayed a major reduction in cellulose and lignin content in both culms and leaves. Our data indicate that GPI anchor proteins play important roles in biosynthesis and accumulation of cell wall material, cell shape, and cell division in rice.
Collapse
|
43
|
Machine Learning Enables High-Throughput Phenotyping for Analyses of the Genetic Architecture of Bulliform Cell Patterning in Maize. G3-GENES GENOMES GENETICS 2019; 9:4235-4243. [PMID: 31645422 PMCID: PMC6893188 DOI: 10.1534/g3.119.400757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bulliform cells comprise specialized cell types that develop on the adaxial (upper) surface of grass leaves, and are patterned to form linear rows along the proximodistal axis of the adult leaf blade. Bulliform cell patterning affects leaf angle and is presumed to function during leaf rolling, thereby reducing water loss during temperature extremes and drought. In this study, epidermal leaf impressions were collected from a genetically and anatomically diverse population of maize inbred lines. Subsequently, convolutional neural networks were employed to measure microscopic, bulliform cell-patterning phenotypes in high-throughput. A genome-wide association study, combined with RNAseq analyses of the bulliform cell ontogenic zone, identified candidate regulatory genes affecting bulliform cell column number and cell width. This study is the first to combine machine learning approaches, transcriptomics, and genomics to study bulliform cell patterning, and the first to utilize natural variation to investigate the genetic architecture of this microscopic trait. In addition, this study provides insight toward the improvement of macroscopic traits such as drought resistance and plant architecture in an agronomically important crop plant.
Collapse
|
44
|
CRISPR/Cas9-Induced Mutagenesis of Semi-Rolled Leaf1,2 Confers Curled Leaf Phenotype and Drought Tolerance by Influencing Protein Expression Patterns and ROS Scavenging in Rice (Oryza sativa L.). AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9110728] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Rice leaf morphology is an essential agronomic trait to develop drought-tolerant genotypes for adequate and stable crop production in drought-prone areas. Here, rolled leaf mutant plants were acquired by CRISPR/Cas9-based mutagenesis of Semi-rolled leaf1,2 (SRL1 and SRL2) genes, and isobaric tags for relative and absolute quantification (iTRAQ) based proteomic analysis was performed to analyze the subsequent proteomic regulation events. Homozygous mutants exhibit decreased chlorophyll content, transpiration rate, stomatal conductance, vascular bundles (VB), stomatal number, and agronomic traits with increased panicle number and bulliform cells (BCs). Under drought stress, mutant plants displayed lower malondialdehyde (MDA) content while higher survival rate, abscisic acid (ABA) content, superoxide dismutase (SOD), catalase (CAT) activities, and grain filling percentage compare with their wild type (WT). Proteomic results revealed that 270 proteins were significantly downregulated, and 107 proteins were upregulated in the mutant line compared with WT. Proteins related to lateral organ boundaries’ (LOB) domain (LBD) were downregulated, whereas abiotic stress-responsive proteins were upregulated in the CRISPR mutant. LBD proteins (Q5KQR7, Q6K713, Q7XGL4, Q8LQH4), probable indole-3-acetic acid-amido synthetase (Q60EJ6), putative auxin transporter-like protein 4 (Q53JG7), Monoculm 1 (Q84MM9) and AP2 (Apetala2) domain-containing protein (Q10A97) were found to be hub-proteins. The hybrids developed from mutant restorers showed a semi-rolled leaf phenotype with increased panicle number, grain number per panicle, and yield per plant. Our findings reveal the intrinsic value of genome editing and expand the knowledge about the network of proteins for leaf rolling and drought avoidance in rice.
Collapse
|
45
|
Direct Production of Difructose Anhydride IV from Sucrose by Co-fermentation of Recombinant Yeasts. Sci Rep 2019; 9:15980. [PMID: 31685897 PMCID: PMC6828762 DOI: 10.1038/s41598-019-52373-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/11/2019] [Indexed: 12/02/2022] Open
Abstract
A functional sweetener, difructose anhydride IV (DFA IV), is enzymatically produced from sucrose via levan by levansucrase (LSRase) followed by levan fructotransferase (LFTase). Here, we have demonstrated a consolidated production system for the direct conversion of DFA IV from sucrose using the co-culture of two recombinant yeast strains secreting LSRase from Bacillus subtilis and LFTase from Arthrobacter ureafaciens, respectively. To ensure secretory production of the enzymes, target protein-specific translational fusion partners (TFP) were employed, and the selected strains produced 3.8 U/mL of LSRase and 16.0 U/mL LFTase activity into the fermentation broth. To optimise the direct production, sucrose concentration and cell ratios were investigated. In the optimised conditions, 64.3 g/L crude DFA IV was directly produced from 244.7 g/L sucrose using co-fermentation of recombinant yeasts. These results promise an efficient production titre, yield, and DFA IV productivity in an industrially applicable method.
Collapse
|
46
|
Gao L, Yang G, Li Y, Fan N, Li H, Zhang M, Xu R, Zhang M, Zhao A, Ni Z, Zhang Y. Fine mapping and candidate gene analysis of a QTL associated with leaf rolling index on chromosome 4 of maize (Zea mays L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:3047-3062. [PMID: 31399756 DOI: 10.1007/s00122-019-03405-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/21/2019] [Indexed: 05/19/2023]
Abstract
One QTL qLRI4 controlling leaf rolling index on chromosome 4 was finely mapped, and ZmOCL5, a member of the HD-Zip class IV genes, is likely a candidate. Leaf rolling is an important agronomic trait related to plant architecture that can change the light condition and photosynthetic efficiency of the population. Here, we isolated one EMS-induced mutant in Chang7-2 background with extreme abaxial rolling leaf, named abrl1. Histological analysis showed that the increased number and area of bulliform cells may contribute to abaxial rolling leaf in abrl1. The F2 and F2:3 populations derived from Wu9086 with flat leaves and abrl1 were developed to map abrl1. Non-Mendelian segregation of phenotypic variation was observed in these populations and five genomic regions controlling the leaf rolling index (LRI) were identified, which could be due to the phenotypic difference between Chang7-2 and Wu9086. Moreover, one major QTL qLRI4 on chromosome 4 was further validated and finely mapped to a genetic interval between InDel13 and InDel10, with a physical distance of approximately 277 kb using NIL populations, among which one 602-bp insertion was identified in the promoter region of HD-Zip class IV gene Zm00001d049443 (named as ZmOCL5) of abrl1 compared with wild-type Chang7-2. Remarkably, the 602-bp InDel was associated with LRI in an F2 population developed by crossing abrl1 mutant and its wild-type. In addition, the 602-bp insertion increased ZmOCL5 promoter activity and expression. Haplotype analysis demonstrated that the 602-bp insertion was a rare mutation event. Taken together, we propose that the rolled leaf in the abrl1 mutant may be partially attributed to the 602-bp insertion, which may be an attractive target for the genetic improvement of LRI in maize.
Collapse
Affiliation(s)
- Lulu Gao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Guanghui Yang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Yufeng Li
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Nannan Fan
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Maize Improvement Centre of China, China Agricultural University, Beijing, China
| | - Hongjian Li
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Ming Zhang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Ruibin Xu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Mingyi Zhang
- Dryland Agricultural Research Centre, Shanxi Academy of Agricultural Sciences, Taiyuan, 030031, China
| | - Aiju Zhao
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Hebei Crop Genetic Breeding Laboratory, Shijiazhuang, 050035, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Yirong Zhang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
- National Maize Improvement Centre of China, China Agricultural University, Beijing, China.
| |
Collapse
|
47
|
Xiao Y, You S, Kong W, Tang Q, Bai W, Cai Y, Zheng H, Wang C, Jiang L, Wang C, Zhao Z, Wan J. A GARP transcription factor anther dehiscence defected 1 (OsADD1) regulates rice anther dehiscence. PLANT MOLECULAR BIOLOGY 2019; 101:403-414. [PMID: 31420780 DOI: 10.1007/s11103-019-00911-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/12/2019] [Indexed: 05/18/2023]
Abstract
Anther dehiscence, one of the essential steps in pollination and double fertilization, is regulated by a complex signaling pathway encompassing hormones and environmental factors. However, key components underlying the signaling pathway that regulate anther dehiscence remain largely elusive. Here, we isolated a rice mutant anther dehiscence defected 1 (Osadd1) that exhibited defects in anther dehiscence and glume open. Map-based cloning revealed that OsADD1 encoded a GARP (Golden2, ARR-B and Psr1) transcription factor. Sequence analysis showed that a single base deletion in Osadd1 mutant resulted in pre-termination of the GARP domain. OsADD1 was constitutively expressed in various tissues, with more abundance in the panicles. The major genes associated with anther dehiscence were affected in the Osadd1 mutant, and the expression level of the cellulose synthase-like D sub-family 4 (OsCSLD4) was significantly decreased. We demonstrate that OsADD1 regulated the expression of OsCSLD4 by binding to its promoter, and affects rice anther dehiscence.
Collapse
Affiliation(s)
- Yanjia Xiao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shimin You
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiyi Kong
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qianying Tang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenting Bai
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yue Cai
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hai Zheng
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chaolong Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunming Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhigang Zhao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianmin Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China.
| |
Collapse
|
48
|
Li Y, Yang Y, Liu Y, Li D, Zhao Y, Li Z, Liu Y, Jiang D, Li J, Zhou H, Chen J, Zhuang C, Liu Z. Overexpression of OsAGO1b Induces Adaxially Rolled Leaves by Affecting Leaf Abaxial Sclerenchymatous Cell Development in Rice. RICE (NEW YORK, N.Y.) 2019; 12:60. [PMID: 31396773 PMCID: PMC6687834 DOI: 10.1186/s12284-019-0323-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 08/02/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND ARGONAUTE 1 (AGO1) proteins can recruit small RNAs to regulate gene expression, involving several growth and development processes in Arabidopsis. Rice genome contains four AGO1 genes, OsAGO1a to OsAGO1d. However, the regulatory functions to rice growth and development of each AGO1 gene are still unknown. RESULTS We obtained overexpression and RNAi transgenic lines of each OsAGO1 gene. However, only up- and down-regulation of OsAGO1b caused multiple abnormal phenotypic changes in rice, indicating that OsAGO1b is the key player in rice growth and organ development compared with other three OsAGO1s. qRT-PCR assays showed that OsAGO1b was almost unanimously expressed in leaves at different developmental stages, and strongly expressed in spikelets at S1 to S3 stages. OsAGO1b is a typical AGO protein, and co-localized in both the nucleus and cytoplasm simultaneously. Overexpression of OsAGO1b caused adaxially rolled leaves and a series of abnormal phenotypes, such as the reduced tiller number and plant height. Knockdown lines of OsAGO1b showed almost normal leaves, but the seed setting percentage was significantly reduced accompanied by the disturbed anther patterning and reduced pollen fertility. Further anatomical observation revealed that OsAGO1b overexpression plants showed the partially defective development of sclerenchymatous cells on the abaxial side of leaves. In situ hybridization showed OsAGO1b mRNA was uniformly accumulated in P1 to P3 primordia without polarity property, suggesting OsAGO1b did not regulate the adaxial-abaxial polarity development directly. The expression levels of several genes related to leaf polarity development and vascular bundle differentiation were observably changed. Notably, the accumulation of miR166 and TAS3-siRNA was decreased, and their targeted OSHBs and OsARFs were significantly up-regulated. The mRNA distribution patterns of OSHB3 and OsARF4 in leaves remained almost unchanged between ZH11 and OsAGO1b overexpression lines, but their expression levels were enhanced at the regions of vascular bundles and sclerenchymatous cell differentiation. CONCLUSIONS In summary, we demonstrated OsAGO1b is the leading player among four OsAGO1s in rice growth and development. We propose that OsAGO1b may regulate the abaxial sclerenchymatous cell differentiation by affecting the expression of OSHBs in rice.
Collapse
Affiliation(s)
- Youhan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
- Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223 China
| | - Yiqi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Ye Liu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223 China
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026 China
| | - Dexia Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Yahuan Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Zhijie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Ying Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Dagang Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Jing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Jianghua Chen
- Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223 China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
49
|
Kumar K, Neelam K, Singh G, Mathan J, Ranjan A, Brar DS, Singh K. Production and cytological characterization of a synthetic amphiploid derived from a cross between Oryza sativa and Oryza punctata. Genome 2019; 62:705-714. [PMID: 31330117 DOI: 10.1139/gen-2019-0062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oryza punctata Kotschy ex Steud. (BB, 2n = 24) is a wild species of rice that has many useful agronomic traits. An interspecific hybrid (AB, 2n = 24) was produced by crossing O. punctata and Oryza sativa variety Punjab Rice 122 (PR122, AA, 2n = 24) to broaden the narrow genetic base of cultivated rice. Cytological analysis of the pollen mother cells (PMCs) of the interspecific hybrids confirmed that they have 24 chromosomes. The F1 hybrids showed the presence of 19-20 univalents and 1-3 bivalents. The interspecific hybrid was treated with colchicine to produce a synthetic amphiploid (AABB, 2n = 48). Pollen fertility of the synthetic amphiploid was found to be greater than 50% and partial seed set was observed. Chromosome numbers in the PMCs of the synthetic amphiploid were 24II, showing normal pairing. Flow cytometric analysis also confirmed doubled genomic content in the synthetic amphiploid. Leaf morphological and anatomical studies of the synthetic amphiploid showed higher chlorophyll content and enlarged bundle sheath cells as compared with both of its parents. The synthetic amphiploid was backcrossed with PR122 to develop a series of addition and substitution lines for the transfer of useful genes from O. punctata with least linkage drag.
Collapse
Affiliation(s)
- Kishor Kumar
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.,Faculty Centre on Integrated Rural Development and Management, Ramakrishna Mission Vivekanada Educational and Research Institute, Narendrapur, Kolkata, 700103, India
| | - Kumari Neelam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Gurpreet Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Jyotirmaya Mathan
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Aashish Ranjan
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Darshan Singh Brar
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Kuldeep Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.,ICAR-National Bureau of Plant Genetic Resources, PUSA, New Delhi, 110012, India
| |
Collapse
|
50
|
Mutations in the Rice OsCHR4 Gene, Encoding a CHD3 Family Chromatin Remodeler, Induce Narrow and Rolled Leaves with Increased Cuticular Wax. Int J Mol Sci 2019; 20:ijms20102567. [PMID: 31130602 PMCID: PMC6566577 DOI: 10.3390/ijms20102567] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/27/2022] Open
Abstract
Leaf blade width, curvature, and cuticular wax are important agronomic traits of rice. Here, we report the rice Oschr4-5 mutant characterized by pleiotropic phenotypes, including narrow and rolled leaves, enhanced cuticular wax deposition and reduced plant height and tiller number. The reduced leaf width is caused by a reduced number of longitudinal veins and increased auxin content. The cuticular wax content was significantly higher in the Oschr4-5 mutant, resulting in reduced water loss rate and enhanced drought tolerance. Molecular characterization reveals that a single-base deletion results in a frame-shift mutation from the second chromodomain of OsCHR4, a CHD3 (chromodomain helicase DNA-binding) family chromatin remodeler, in the Oschr4-5 mutant. Expressions of seven wax biosynthesis genes (GL1-4, WSL4, OsCER7, LACS2, LACS7, ROC4 and BDG) and four auxin biosynthesis genes (YUC2, YUC3, YUC5 and YUC6) was up-regulated in the Oschr4-5 mutant. Chromatin immunoprecipitation assays revealed that the transcriptionally active histone modification H3K4me3 was increased, whereas the repressive H3K27me3 was reduced in the upregulated genes in the Oschr4-5 mutant. Therefore, OsCHR4 regulates leaf morphogenesis and cuticle wax formation by epigenetic modulation of auxin and wax biosynthetic genes expression.
Collapse
|