1
|
Guo JE, Wang H. Suppression of SlHDT1 expression increases fruit yield and decreases drought and salt tolerance in tomato. PLANT MOLECULAR BIOLOGY 2024; 114:101. [PMID: 39312030 DOI: 10.1007/s11103-024-01503-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024]
Abstract
Histone deacetylation, one of most important types of post-translational modification, plays multiple indispensable roles in plant growth and development and abiotic stress responses. However, little information about the roles of histone deacetylase in regulating inflorescence architecture, fruit yield, and stress responses is available in tomato. Functional characterization revealed that SlHDT1 participated in the control of inflorescence architecture and fruit yield by regulating auxin signalling, and influenced tolerance to drought and salt stresses by governing abscisic acid (ABA) signalling. More inflorescence branches and higher fruit yield, which were influenced by auxin signalling, were observed in SlHDT1-RNAi transgenic plants. Moreover, tolerance to drought and salt stresses was decreased in SlHDT1-RNAi transgenic lines compared with the wild type (WT). Changes in parameters related to the stress response, including decreases in survival rate, chlorophyll content, relative water content (RWC), proline content, catalase (CAT) activity and ABA content and an increase in malonaldehyde (MDA) content, were observed in SlHDT1-RNAi transgenic lines. In addition, the RNA-seq analysis revealed varying degrees of downregulation for genes such as the stress-related genes SlABCC10 and SlGAME6 and the pathogenesis-related protein P450 gene SlCYP71A1, and upregulation of the pathogenesis-related protein P450 genes SlCYP94B1, SlCYP734A7 and SlCYP94A2 in SlHDT1-RNAi transgenic plants, indicating that SlHDT1 plays an important role in the response to biotic and abiotic stresses by mediating stress-related gene expression. In summary, the data suggest that SlHDT1 plays essential roles in the regulation of inflorescence architecture and fruit yield and in the response to drought and salt stresses.
Collapse
Affiliation(s)
- Jun-E Guo
- Laboratory of Molecular Biology of Tomato, Department of Biology Science and Food Engineering, Lu Liang University, Lvliang, 033000, People's Republic of China.
| | - Huihui Wang
- Laboratory of Molecular Biology of Tomato, Department of Biology Science and Food Engineering, Lu Liang University, Lvliang, 033000, People's Republic of China
| |
Collapse
|
2
|
Zhang Z, Zeng Y, Hou J, Li L. Advances in understanding the roles of plant HAT and HDAC in non-histone protein acetylation and deacetylation. PLANTA 2024; 260:93. [PMID: 39264431 DOI: 10.1007/s00425-024-04518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
MAIN CONCLUSION This review focuses on HATs and HDACs that modify non-histone proteins, summarizes functional mechanisms of non-histone acetylation as well as the roles of HATs and HDACs in rice and Arabidopsis. The growth and development of plants, as well as their responses to biotic and abiotic stresses, are governed by intricate gene and protein regulatory networks, in which epigenetic modifying enzymes play a crucial role. Histone lysine acetylation levels, modulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), are well-studied in the realm of transcriptional regulation. However, the advent of advanced proteomics has unveiled that non-histone proteins also undergo acetylation, with its underlying mechanisms now being clarified. Indeed, non-histone acetylation influences protein functionality through diverse pathways, such as modulating protein stability, adjusting enzymatic activity, steering subcellular localization, influencing interactions with other post-translational modifications, and managing protein-protein and protein-DNA interactions. This review delves into the recent insights into the functional mechanisms of non-histone acetylation in plants. We also provide a summary of the roles of HATs and HDACs in rice and Arabidopsis, and explore their potential involvement in the regulation of non-histone proteins.
Collapse
Affiliation(s)
- Zihan Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan Zeng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jiaqi Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
3
|
Lv Y, Li J, Wang Z, Liu Y, Jiang Y, Li Y, Lv Z, Huang X, Peng X, Cao Y, Yang H. Polycomb proteins RING1A/B promote H2A monoubiquitination to regulate female gametophyte development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4822-4836. [PMID: 38717070 DOI: 10.1093/jxb/erae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/07/2024] [Indexed: 08/29/2024]
Abstract
A functional female gametophyte is the basis of successful sexual reproduction in flowering plants. During female gametophyte development, the megaspore mother cell (MMC), which differentiates from a single subepidermal somatic cell in the nucellus, undergoes meiosis to produce four megaspores; only the one at the chalazal end, referred to as the functional megaspore (FM), then undergoes three rounds of mitosis and develops into a mature embryo sac. Here, we report that RING1A and RING1B (RING1A/B), two functionally redundant Polycomb proteins in Arabidopsis, are critical for female gametophyte development. Mutations of RING1A/B resulted in defects in the specification of the MMC and the FM, and in the subsequent mitosis of the FM, thereby leading to aborted ovules. Detailed analysis revealed that several genes essential for female gametophyte development were ectopically expressed in the ring1a ring1b mutant, including Argonaute (AGO) family genes and critical transcription factors. Furthermore, RING1A/B bound to some of these genes to promote H2A monoubiquitination (H2Aub). Taken together, our study shows that RING1A/B promote H2Aub modification at key genes for female gametophyte development, suppressing their expression to ensure that the development progresses correctly.
Collapse
Affiliation(s)
- Yanfang Lv
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jian Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Zheng Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Yue Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yili Jiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yanzhuo Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhaopeng Lv
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiaoyi Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ying Cao
- College of Life Sciences, RNA Center, Capital Normal University, Beijing 100048, China
| | - Hongchun Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- RNA Institute, Wuhan University, Wuhan 430072, China
| |
Collapse
|
4
|
Chu Y, Duan R, Song H, Zhang W, Zhou Y, Ma Y, Yin X, Tian L, Ausin I, Han Z. AtHD2D is involved in regulating lateral root development and participates in abiotic stress response in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2024; 297:154242. [PMID: 38614048 DOI: 10.1016/j.jplph.2024.154242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/15/2024]
Abstract
Roots are essential to terrestrial plants, as their growth and morphology are crucial for plant development. The growth of the roots is affected and regulated by several internal and external environmental signals and metabolic pathways. Among them, chromatin modification plays an important regulatory role. In this study, we explore the potential roles of the histone deacetylase AtHD2D in root development and lay the foundation for further research on the biological processes and molecular mechanisms of AtHD2D in the future. Our study indicates that AtHD2D affects the root tip microenvironment homeostasis by affecting the gene transcription levels required to maintain the root tip microenvironment. In addition, we confirmed that AtHD2D is involved in regulating Arabidopsis lateral root development and further explained the possible role of AtHD2D in auxin-mediated lateral root development. AtHD2D can effectively enhance the resistance of Arabidopsis thaliana to abiotic stress. We believe that AtHD2D is involved in coping with abiotic stress by promoting the development of lateral roots. Overexpression of AtHD2D promotes the accumulation of reactive oxygen species (ROS) in roots, indicating that AtHD2D is also involved in developing lateral roots mediated by ROS. Previous studies have shown that the overexpression of AtHD2D can effectively enhance the resistance of Arabidopsis thaliana to abiotic stress. Based on our data, we believe that AtHD2D participates in the response to abiotic stress by promoting the development of lateral roots. AtHD2D-mediated lateral root development provides new ideas for studying the mechanism of HDAC protein in regulating root development.
Collapse
Affiliation(s)
- Yueyang Chu
- College of Life Science, Northwest A & F University, Yangling, Shanxi, 712100, China
| | - Ruochen Duan
- College of Life Science, Northwest A & F University, Yangling, Shanxi, 712100, China
| | - Haoran Song
- College of Life Science, Northwest A & F University, Yangling, Shanxi, 712100, China
| | - Wenshuo Zhang
- College of Life Science, Northwest A & F University, Yangling, Shanxi, 712100, China
| | - Yuxuan Zhou
- College of Life Science, Northwest A & F University, Yangling, Shanxi, 712100, China
| | - Yutong Ma
- College of Life Science, Northwest A & F University, Yangling, Shanxi, 712100, China
| | - Xiaotong Yin
- College of Life Science, Northwest A & F University, Yangling, Shanxi, 712100, China
| | - Lining Tian
- London Research and Development Centre, Agriculture and Agri-food Canada, London, Ontario, N5V 4T3, Canada
| | - Israel Ausin
- College of Life Science, Northwest A & F University, Yangling, Shanxi, 712100, China
| | - Zhaofen Han
- College of Life Science, Northwest A & F University, Yangling, Shanxi, 712100, China.
| |
Collapse
|
5
|
Chen Y, Guo P, Dong Z. The role of histone acetylation in transcriptional regulation and seed development. PLANT PHYSIOLOGY 2024; 194:1962-1979. [PMID: 37979164 DOI: 10.1093/plphys/kiad614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/09/2023] [Accepted: 10/29/2023] [Indexed: 11/20/2023]
Abstract
Histone acetylation is highly conserved across eukaryotes and has been linked to gene activation since its discovery nearly 60 years ago. Over the past decades, histone acetylation has been evidenced to play crucial roles in plant development and response to various environmental cues. Emerging data indicate that histone acetylation is one of the defining features of "open chromatin," while the role of histone acetylation in transcription remains controversial. In this review, we briefly describe the discovery of histone acetylation, the mechanism of histone acetylation regulating transcription in yeast and mammals, and summarize the research progress of plant histone acetylation. Furthermore, we also emphasize the effect of histone acetylation on seed development and its potential use in plant breeding. A comprehensive knowledge of histone acetylation might provide new and more flexible research perspectives to enhance crop yield and stress resistance.
Collapse
Affiliation(s)
- Yan Chen
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Peiguo Guo
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Zhicheng Dong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
6
|
Saharan K, Baral S, Shaikh NH, Vasudevan D. Structure-function analyses reveal Arabidopsis thaliana HDA7 to be an inactive histone deacetylase. Curr Res Struct Biol 2024; 7:100136. [PMID: 38463934 PMCID: PMC10920125 DOI: 10.1016/j.crstbi.2024.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
Histone deacetylases (HDACs), responsible for the removal of acetyl groups from histone tails, are important epigenetic factors. They play a critical role in the regulation of gene expression and are significant in the context of plant growth and development. The Rpd3/Hda1 family of HDACs is reported to regulate key biological processes in plants, such as stress response, seed, embryonic, and floral development. Here, we characterized Arabidopsis thaliana HDA7, a Class I, Rpd3/Hda1 family HDAC. SAXS and AUC results show that the recombinantly expressed and purified histone deacetylase domain of AtHDA7 exists as a monomer in solution. Further, the crystal structure showed AtHDA7 to fold into the typical α/β arginase fold, characteristic of Rpd3/Hda1 family HDACs. Sequence analysis revealed that the Asp and His residues of the catalytic 'XDXH' motif present in functional Rpd3/Hda1 family HDACs are mutated to Gly and Pro, respectively, in AtHDA7, suggesting that it might be catalytically inactive. The Asp and His residues are important for Zn2+-binding. Not surprisingly, the crystal structure did not have Zn2+ bound in the catalytic pocket, which is essential for the HDAC activity. Further, our in vitro activity assay revealed AtHDA7 to be inactive as an HDAC. A search in the sequence databases suggested that homologs of AtHDA7 are found exclusively in the Brassicaceae family to which Arabidopsis belongs. It is possible that HDA7 descended from HDA6 through whole genome duplication and triplication events during evolution, as suggested in a previous phylogenetic study.
Collapse
Affiliation(s)
- Ketul Saharan
- Structural Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, 751023, India
- Regional Centre for Biotechnology (RCB), Faridabad, 121001, India
| | - Somanath Baral
- Structural Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, 751023, India
| | - Nausad Hossain Shaikh
- Structural Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, 751023, India
| | - Dileep Vasudevan
- Structural Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, 751023, India
- Structural Biology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, India
| |
Collapse
|
7
|
Temmerman A, De Keyser A, Boyer FD, Struk S, Goormachtig S. Histone Deacetylases Regulate MORE AXILLARY BRANCHED 2-Dependent Germination of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2023; 64:1008-1020. [PMID: 37279553 DOI: 10.1093/pcp/pcad047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/21/2023] [Accepted: 05/29/2023] [Indexed: 06/08/2023]
Abstract
Under specific conditions, the germination of Arabidopsis thaliana is dependent on the activation of the KARRIKIN INSENSITIVE 2 (KAI2) signaling pathway by the KAI2-dependent perception of karrikin or the artificial strigolactone analogue, rac-GR24. To regulate the induction of germination, the KAI2 signaling pathway relies on MORE AXILLARY BRANCHED 2- (MAX2-)dependent ubiquitination and proteasomal degradation of the repressor protein SUPPRESSOR OF MAX2 1 (SMAX1). It is not yet known how the degradation of SMAX1 proteins eventually results in the regulation of seed germination, but it has been hypothesized that SMAX1-LIKE generally functions as transcriptional repressors through the recruitment of co-repressors TOPLESS (TPL) and TPL-related, which in turn interact with histone deacetylases. In this article, we show the involvement of histone deacetylases HDA6, HDA9, HDA19 and HDT1 in MAX2-dependent germination of Arabidopsis, and more specifically, that HDA6 is required for the induction of DWARF14-LIKE2 expression in response to rac-GR24 treatment.
Collapse
Affiliation(s)
- Arne Temmerman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Gent 9052, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 71, Gent 9052, Belgium
| | - Annick De Keyser
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Gent 9052, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 71, Gent 9052, Belgium
| | - François-Didier Boyer
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, UPR2301, Université Paris-Sud, Université Paris-Saclay, Aveue de la Terrasse 1, Gif-sur-Yvette 91198, France
| | - Sylwia Struk
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Gent 9052, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 71, Gent 9052, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Gent 9052, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 71, Gent 9052, Belgium
| |
Collapse
|
8
|
Wang J, Jiang X, Bai H, Liu C. Genome-wide identification, classification and expression analysis of the JmjC domain-containing histone demethylase gene family in Jatropha curcas L. Sci Rep 2022; 12:6543. [PMID: 35449230 PMCID: PMC9023485 DOI: 10.1038/s41598-022-10584-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/05/2022] [Indexed: 12/20/2022] Open
Abstract
JmjC domain-containing proteins, an important family of histone lysine demethylase, play significant roles in maintaining the homeostasis of histone methylation. In this study, we comprehensively analyzed the JmjC domain-containing gene family in Jatropha curcas and found 20 JmjC domain-containing genes (JcJMJ genes). Phylogenetic analysis revealed that these JcJMJ genes can be classified into five major subgroups, and genes in each subgroup had similar motif and domain composition. Cis-regulatory element analysis showed that the number and types of cis-regulatory elements owned by the promoter of JcJMJ genes in different subgroup were significantly different. Moreover, miRNA target prediction result revealed a complicated miRNA-mediated post-transcriptional regulatory network, in which JcJMJ genes were regulated by different numbers and types of miRNAs. Further analysis of the tissue and stress expression profiles showed that many JcJMJ genes had tissue and stress expression specificity. All these results provided valuable information for understanding the evolution of JcJMJ genes and the complex transcriptional and post transcriptional regulation involved, and laid the foundation for further functional analysis of JcJMJ genes.
Collapse
Affiliation(s)
- Jie Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoke Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanrui Bai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
- College of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, MenglaYunnan, 666303, China.
| |
Collapse
|
9
|
Morończyk J, Brąszewska A, Wójcikowska B, Chwiałkowska K, Nowak K, Wójcik AM, Kwaśniewski M, Gaj MD. Insights into the Histone Acetylation-Mediated Regulation of the Transcription Factor Genes That Control the Embryogenic Transition in the Somatic Cells of Arabidopsis. Cells 2022; 11:863. [PMID: 35269485 PMCID: PMC8909028 DOI: 10.3390/cells11050863] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 02/01/2023] Open
Abstract
Somatic embryogenesis (SE), which is a process that involves the in vitro-induced embryogenic reprogramming of plant somatic cells, requires dynamic changes in the cell transcriptome. These changes are fine-tuned by many genetic and epigenetic factors, including posttranslational histone modifications such as histone acetylation. Antagonistically acting enzymes, histone acetyltransferases (HATs) and deacetylases (HDACs), which control histone acetylation in many developmental processes, are believed to control SE. However, the function of specific HAT/HDACs and the genes that are subjected to histone acetylation-mediated regulation during SE have yet to be revealed. Here, we present the global and gene-specific changes in histone acetylation in Arabidopsis explants that are undergoing SE. In the TSA (trichostatin A)-induced SE, we demonstrate that H3 and H4 acetylation might control the expression of the critical transcription factor (TF) genes of a vital role in SE, including LEC1, LEC2 (LEAFY COTYLEDON 1; 2), FUS3 (FUSCA 3) and MYB118 (MYB DOMAIN PROTEIN 118). Within the HATs and HDACs, which mainly positively regulate SE, we identified HDA19 as negatively affecting SE by regulating LEC1, LEC2 and BBM. Finally, we provide some evidence on the role of HDA19 in the histone acetylation-mediated regulation of LEC2 during SE. Our results reveal an essential function of histone acetylation in the epigenetic mechanisms that control the TF genes that play critical roles in the embryogenic reprogramming of plant somatic cells. The results implicate the complexity of Hac-related gene regulation in embryogenic induction and point to differences in the regulatory mechanisms that are involved in auxin- and TSA-induced SE.
Collapse
Affiliation(s)
- Joanna Morończyk
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland; (J.M.); (A.B.); (B.W.); (K.N.); (A.M.W.)
| | - Agnieszka Brąszewska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland; (J.M.); (A.B.); (B.W.); (K.N.); (A.M.W.)
| | - Barbara Wójcikowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland; (J.M.); (A.B.); (B.W.); (K.N.); (A.M.W.)
| | - Karolina Chwiałkowska
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, 15-269 Bialystok, Poland; (K.C.); (M.K.)
| | - Katarzyna Nowak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland; (J.M.); (A.B.); (B.W.); (K.N.); (A.M.W.)
| | - Anna M. Wójcik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland; (J.M.); (A.B.); (B.W.); (K.N.); (A.M.W.)
| | - Mirosław Kwaśniewski
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, 15-269 Bialystok, Poland; (K.C.); (M.K.)
| | - Małgorzata D. Gaj
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland; (J.M.); (A.B.); (B.W.); (K.N.); (A.M.W.)
| |
Collapse
|
10
|
Ding X, Jia X, Xiang Y, Jiang W. Histone Modification and Chromatin Remodeling During the Seed Life Cycle. FRONTIERS IN PLANT SCIENCE 2022; 13:865361. [PMID: 35548305 PMCID: PMC9083068 DOI: 10.3389/fpls.2022.865361] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/21/2022] [Indexed: 05/16/2023]
Abstract
Seeds are essential for the reproduction and dispersion of spermatophytes. The seed life cycle from seed development to seedling establishment proceeds through a series of defined stages regulated by distinctive physiological and biochemical mechanisms. The role of histone modification and chromatin remodeling in seed behavior has been intensively studied in recent years. In this review, we summarize progress in elucidating the regulatory network of these two kinds of epigenetic regulation during the seed life cycle, especially in two model plants, rice and Arabidopsis. Particular emphasis is placed on epigenetic effects on primary tissue formation (e.g., the organized development of embryo and endosperm), pivotal downstream gene expression (e.g., transcription of DOG1 in seed dormancy and repression of seed maturation genes in seed-to-seedling transition), and environmental responses (e.g., seed germination in response to different environmental cues). Future prospects for understanding of intricate interplay of epigenetic pathways and the epigenetic mechanisms in other commercial species are also proposed.
Collapse
Affiliation(s)
- Xiali Ding
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Xuhui Jia
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yong Xiang
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Wenhui Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
- *Correspondence: Wenhui Jiang,
| |
Collapse
|
11
|
Meng X, Baine JM, Yan T, Wang S. Comprehensive Analysis of Lysine Lactylation in Rice ( Oryza sativa) Grains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8287-8297. [PMID: 34264677 DOI: 10.1021/acs.jafc.1c00760] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein lysine lactylation is a new post-translational modification (PTM) prevalently found in fungi and mammalian cells that directly stimulates gene transcription and regulates the glycolytic flux. However, lysine lactylation sites and regulations remain largely unexplored, especially in cereal crops. Herein, we report the first global lactylome profile in rice, which effectively identified 638 lysine lactylation sites across 342 proteins in rice grains. Functional annotations demonstrated that lysine lactylation was enriched in proteins associated with central carbon metabolism and protein biosynthesis. We also observed that proteins serving as nutrition reservoirs in rice grains were frequently targeted by lactylation. Homology analyses indicated that lactylation was conserved on both histone and nonhistone proteins across plants, human cells, and fungi. In addition to lactylation, additional types of acylations could co-occur in many proteins at identical lysine residues, indicating potential cross-talks between these modifications. Our study provided a comprehensive profile of protein lysine lactylation in cereal crop grains.
Collapse
Affiliation(s)
- Xiaoxi Meng
- Department of Horticultural Science, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Jonathan M Baine
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Tingcai Yan
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Shu Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| |
Collapse
|
12
|
Yruela I, Moreno-Yruela C, Olsen CA. Zn 2+-Dependent Histone Deacetylases in Plants: Structure and Evolution. TRENDS IN PLANT SCIENCE 2021; 26:741-757. [PMID: 33461867 DOI: 10.1016/j.tplants.2020.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Zn2+-dependent histone deacetylases are widely distributed in archaea, bacteria, and eukaryotes. Through deacetylation of histones and other biomolecules, these enzymes regulate mammalian gene expression, microtubule stability, and polyamine metabolism. In plants, they play essential roles in development and stress response, but little is known about their biochemistry. We provide here a holistic revision of plant histone deacetylase (HDA) phylogeny and translate recent lessons from other organisms. HDA evolution correlates with a gain of structural ductility/disorder, as observed for other proteins. We also highlight two recently identified Brassicaceae-specific HDAs, as well as unprecedented key mutations that would affect the catalytic activity of individual HDAs. This revised phylogeny will contextualize future studies and illuminate research on plant development and adaptation.
Collapse
Affiliation(s)
- Inmaculada Yruela
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain; Group of Biochemistry, Biophysics, and Computational Biology (GBsC), Institute for Biocomputation and Physics of Complex Systems (BIFI) and Universidad de Zaragoza (UNIZAR) Joint Unit to CSIC, Zaragoza, Spain.
| | - Carlos Moreno-Yruela
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
13
|
Kumar V, Thakur JK, Prasad M. Histone acetylation dynamics regulating plant development and stress responses. Cell Mol Life Sci 2021; 78:4467-4486. [PMID: 33638653 PMCID: PMC11072255 DOI: 10.1007/s00018-021-03794-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
Crop productivity is directly dependent on the growth and development of plants and their adaptation during different environmental stresses. Histone acetylation is an epigenetic modification that regulates numerous genes essential for various biological processes, including development and stress responses. Here, we have mainly discussed the impact of histone acetylation dynamics on vegetative growth, flower development, fruit ripening, biotic and abiotic stress responses. Besides, we have also emphasized the information gaps which are obligatory to be examined for understanding the complete role of histone acetylation dynamics in plants. A comprehensive knowledge about the histone acetylation dynamics will ultimately help to improve stress resistance and reduce yield losses in different crops due to climate changes.
Collapse
Affiliation(s)
- Verandra Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitendra K Thakur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
14
|
Su L, Liu S, Liu X, Zhang B, Li M, Zeng L, Li L. Transcriptome profiling reveals histone deacetylase 1 gene overexpression improves flavonoid, isoflavonoid, and phenylpropanoid metabolism in Arachis hypogaea hairy roots. PeerJ 2021; 9:e10976. [PMID: 33777524 PMCID: PMC7977374 DOI: 10.7717/peerj.10976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/29/2021] [Indexed: 11/20/2022] Open
Abstract
Background The peanut (Arachis hypogaea) is a crop plant of high economic importance, but the epigenetic regulation of its root growth and development has not received sufficient attention. Research on Arabidopsis thaliana has shown that histone deacetylases (HDACs) are involved in cell growth, cell differentiation, and stress response. Few studies have focused on the role of HDACs in the root development of other plants, particularly crop plants. In earlier studies, we found large accumulations of A. hypogaea histone deacetylase 1 (AhHDA1) mRNA in peanut roots. However, we did not explore the role of AhHDA1 in peanut root development. Methods In this paper, we investigated the role of the peanut AhHDA1 gene and focused on the effect of altered AhHDA1 expression in hairy roots at both the phenotypic and transcriptional levels. We analyzed the transformation of A. hypogaea hairy roots using Agrobacterium rhizogenes and RNA sequencing to identify differentially expressed genes that were assigned to specific metabolic pathways. Transgenic hairy roots were used as experimental material to analyze the downstream genes expression and histone acetylation levels. To thoroughly understand AhHDA1 function, we also simultaneously screened the AhHDA1-interacting proteins using a yeast two-hybrid system. Results AhHDA1-overexpressing hairy roots were growth-retarded after 20 d in vitro cultivation, and they had a greater accumulation of superoxide anions and hydrogen peroxide than the control and RNAi groups. AhHDA1 overexpression in hairy roots accelerated flux through various secondary synthetic metabolic pathways, as well as inhibited the primary metabolism process. AhHDA1 overexpression also caused a significant upregulation of genes encoding the critical enzyme chalcone synthase (Araip.B8TJ0, CHS) in the flavonoid biosynthesis pathway, hydroxyisoflavanone synthase (Araip.0P3RJ) in the isoflavonoid biosynthesis pathway, and caffeoyl-CoA O-methyltransferase (Aradu.M62BY, CCoAOMT) in the phenylpropanoid biosynthesis pathway. In contrast, ferredoxin 1 (Araip.327XS), the polypeptide of the oxygen-evolving complex of photosystem II (Araip.N6ZTJ), and ribulose bisphosphate carboxylase (Aradu.5IY98) in the photosynthetic pathway were significantly downregulated by AhHDA1 overexpression. The expression levels of these genes had a positive correlation with histone acetylation levels. Conclusion Our results revealed that the relationship between altered gene metabolism activities and AhHDA1 overexpression was mainly reflected in flavonoid, isoflavonoid, and phenylpropanoid metabolism. AhHDA1 overexpression retarded the growth of transgenic hairy roots and may be associated with cell metabolism status. Future studies should focus on the function of AhHDA1-interacting proteins and their effect on root development.
Collapse
Affiliation(s)
- Liangchen Su
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou, Guangdong, China.,Department of Bioengineering, Zunyi Medical University, Zhuhai, Guangdong, China
| | - Shuai Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou, Guangdong, China
| | - Xing Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou, Guangdong, China
| | - Baihong Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou, Guangdong, China
| | - Meijuan Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou, Guangdong, China
| | - Lidan Zeng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou, Guangdong, China
| | - Ling Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
The Interplay between Toxic and Essential Metals for Their Uptake and Translocation Is Likely Governed by DNA Methylation and Histone Deacetylation in Maize. Int J Mol Sci 2020; 21:ijms21186959. [PMID: 32971934 PMCID: PMC7555519 DOI: 10.3390/ijms21186959] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/20/2022] Open
Abstract
The persistent nature of lead (Pb) and cadmium (Cd) in the environment severely affects plant growth and yield. Conversely, plants acquire zinc (Zn) from the soil for their vital physiological and biochemical functions. However, the interplay and coordination between essential and toxic metals for their uptake and translocation and the putative underlying epigenetic mechanisms have not yet been investigated in maize. Here, we report that the presence of Zn facilitates the accumulation and transport of Pb and Cd in the aerial parts of the maize plants. Moreover, the Zn, Pb, and Cd interplay specifically interferes with the uptake and translocation of other divalent metals, such as calcium and magnesium. Zn, Pb, and Cd, individually and in combinations, differentially regulate the expression of DNA methyltransferases, thus alter the DNA methylation levels at the promoter of Zinc-regulated transporters, Iron-regulated transporter-like Protein (ZIP) genes to regulate their expression. Furthermore, the expression of histone deacetylases (HDACs) varies greatly in response to individual and combined metals, and HDACs expression showed a negative correlation with ZIP transporters. Our study highlights the implication of DNA methylation and histone acetylation in regulating the metal stress tolerance dynamics through Zn transporters and warns against the excessive use of Zn fertilizers in metal contaminated soils.
Collapse
|
16
|
Zhang J, Wu A, Wei H, Hao P, Zhang Q, Tian M, Yang X, Cheng S, Fu X, Ma L, Wang H, Yu S. Genome-wide identification and expression patterns analysis of the RPD3/HDA1 gene family in cotton. BMC Genomics 2020; 21:643. [PMID: 32948145 PMCID: PMC7501681 DOI: 10.1186/s12864-020-07069-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 09/14/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Histone deacetylases (HDACs) catalyze histone deacetylation and suppress gene transcription during various cellular processes. Within the superfamily of HDACs, RPD3/HDA1-type HDACs are the most studied, and it is reported that RPD3 genes play crucial roles in plant growth and physiological processes. However, there is a lack of systematic research on the RPD3/HDA1 gene family in cotton. RESULTS In this study, genome-wide analysis identified 9, 9, 18, and 18 RPD3 genes in Gossypium raimondii, G. arboreum, G. hirsutum, and G. barbadense, respectively. This gene family was divided into 4 subfamilies through phylogenetic analysis. The exon-intron structure and conserved motif analysis revealed high conservation in each branch of the cotton RPD3 genes. Collinearity analysis indicated that segmental duplication was the primary driving force during the expansion of the RPD3 gene family in cotton. There was at least one presumed cis-element related to plant hormones in the promoter regions of all GhRPD3 genes, especially MeJA- and ABA-responsive elements, which have more members than other hormone-relevant elements. The expression patterns showed that most GhRPD3 genes had relatively high expression levels in floral organs and performed higher expression in early-maturity cotton compared with late-maturity cotton during flower bud differentiation. In addition, the expression of GhRPD3 genes could be significantly induced by one or more abiotic stresses as well as exogenous application of MeJA or ABA. CONCLUSIONS Our findings reveal that GhRPD3 genes may be involved in flower bud differentiation and resistance to abiotic stresses, which provides a basis for further functional verification of GhRPD3 genes in cotton development and a foundation for breeding better early-maturity cotton cultivars in the future.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Aimin Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Pengbo Hao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Qi Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Miaomiao Tian
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xu Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Shuaishuai Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiaokang Fu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Liang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
17
|
Leng X, Thomas Q, Rasmussen SH, Marquardt S. A G(enomic)P(ositioning)S(ystem) for Plant RNAPII Transcription. TRENDS IN PLANT SCIENCE 2020; 25:744-764. [PMID: 32673579 DOI: 10.1016/j.tplants.2020.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/24/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Post-translational modifications (PTMs) of histone residues shape the landscape of gene expression by modulating the dynamic process of RNA polymerase II (RNAPII) transcription. The contribution of particular histone modifications to the definition of distinct RNAPII transcription stages remains poorly characterized in plants. Chromatin immunoprecipitation combined with next-generation sequencing (ChIP-seq) resolves the genomic distribution of histone modifications. Here, we review histone PTM ChIP-seq data in Arabidopsis thaliana and find support for a Genomic Positioning System (GPS) that guides RNAPII transcription. We review the roles of histone PTM 'readers', 'writers', and 'erasers', with a focus on the regulation of gene expression and biological functions in plants. The distinct functions of RNAPII transcription during the plant transcription cycle may rely, in part, on the characteristic histone PTM profiles that distinguish transcription stages.
Collapse
Affiliation(s)
- Xueyuan Leng
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark
| | - Quentin Thomas
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark
| | - Simon Horskjær Rasmussen
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark
| | - Sebastian Marquardt
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark.
| |
Collapse
|
18
|
Zhang M, Li W, Feng J, Gong Z, Yao Y, Zheng C. Integrative transcriptomics and proteomics analysis constructs a new molecular model for ovule abortion in the female-sterile line of Pinus tabuliformis Carr. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 294:110462. [PMID: 32234230 DOI: 10.1016/j.plantsci.2020.110462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
Abstract
Ovule development is critical to plant reproduction and free nuclear mitosis of megagametophyte (FNMM) is vital for ovule development. However, most results of ovule development were based on the studies in angiosperms, and its molecular regulation remained largely unknown in gymnosperms, particularly, during FNMM. In this context, we studied the genome-wide difference between sterile line (SL) and fertile line (FL) ovules using transcriptomics and proteomics approaches in Pinus tabuliformis Carr. Comparative analyses revealed that genes involved in DNA replication, DNA damage repair, Cell cycle, Apoptosis and Energy metabolism were highlighted. Further results showed the low expressions of MCM 2-7, RRM1, etc. perhaps led to abnormal DNA replication and damage repair, and the significantly different expressions of PARP2, CCs1, CCs3, etc. implied that the accumulated DNA double-stranded breaks were failed to be repaired and the cell cycle was arrested at G2/M in SL ovules, potentially resulting in the occurrence of apoptosis. Moreover, the deficiency of ETF-QO might hinder FNMM. Consequently, FNMM stopped and ovule aborted in SL ovules. Our results suggested a selective regulatory mechanism led to FNMM half-stop and ovule abortion in P. tabuliformis and these insights could be exploited to investigate the molecular regulations of ovule development in woody gymnosperms.
Collapse
Affiliation(s)
- Min Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, 100083, China
| | - Wenhai Li
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, 100083, China
| | - Jun Feng
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, 100083, China
| | - Zaixin Gong
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, 100083, China
| | - Yang Yao
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, 100083, China
| | - Caixia Zheng
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, 100083, China.
| |
Collapse
|
19
|
Baek D, Shin G, Kim MC, Shen M, Lee SY, Yun DJ. Histone Deacetylase HDA9 With ABI4 Contributes to Abscisic Acid Homeostasis in Drought Stress Response. FRONTIERS IN PLANT SCIENCE 2020; 11:143. [PMID: 32158458 PMCID: PMC7052305 DOI: 10.3389/fpls.2020.00143] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/30/2020] [Indexed: 05/18/2023]
Abstract
Drought stress, a major environmental factor, significantly affects plant growth and reproduction. Plants have evolved complex molecular mechanisms to tolerate drought stress. In this study, we investigated the function of the Arabidopsis thaliana RPD3-type HISTONE DEACETYLASE 9 (HDA9) in response to drought stress. The loss-of-function mutants hda9-1 and hda9-2 were insensitive to abscisic acid (ABA) and sensitive to drought stress. The ABA content in the hda9-1 mutant was reduced in wild type (WT) plant. Most histone deacetylases in animals and plants form complexes with other chromatin-remodeling components, such as transcription factors. In this study, we found that HDA9 interacts with the ABA INSENSITIVE 4 (ABI4) transcription factor using a yeast two-hybrid assay and coimmunoprecipitation. The expression of CYP707A1 and CYP707A2, which encode (+)-ABA 8'-hydroxylases, key enzymes in ABA catabolic pathways, was highly induced in hda9-1, hda9-2, abi4, and hda9-1 abi4 mutants upon drought stress. Chromatin immunoprecipitation and quantitative PCR showed that the HDA9 and ABI4 complex repressed the expression of CYP707A1 and CYP707A2 by directly binding to their promoters in response to drought stress. Taken together, these data suggest that HDA9 and ABI4 form a repressive complex to regulate the expression of CYP707A1 and CYP707A2 in response to drought stress in Arabidopsis.
Collapse
Affiliation(s)
- Dongwon Baek
- Division of Applied Life Science (BK21plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Gilok Shin
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Min Chul Kim
- Division of Applied Life Science (BK21plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, South Korea
| | - Mingzhe Shen
- Division of Applied Life Science (BK21plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
- *Correspondence: Dae-Jin Yun,
| |
Collapse
|
20
|
Zhang Z, Wang B, Wang S, Lin T, Yang L, Zhao Z, Zhang Z, Huang S, Yang X. Genome-wide Target Mapping Shows Histone Deacetylase Complex1 Regulates Cell Proliferation in Cucumber Fruit. PLANT PHYSIOLOGY 2020; 182:167-184. [PMID: 31378719 PMCID: PMC6945849 DOI: 10.1104/pp.19.00532] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/22/2019] [Indexed: 05/13/2023]
Abstract
Histone deacetylase (HDAC) proteins participate in diverse and tissue-specific developmental processes by forming various corepressor complexes with different regulatory subunits. An important HDAC machinery hub, the Histone Deacetylase Complex1 (HDC1) protein, participates in multiple protein-protein interactions and regulates organ size in plants. However, the mechanistic basis for this regulation remains unclear. Here, we identified a cucumber (Cucumis sativus) short-fruit mutant (sf2) with a phenotype that includes repressed cell proliferation. SF2 encodes an HDC1 homolog, and its expression is enriched in meristematic tissues, consistent with a role in regulating cell proliferation through the HDAC complex. A weak sf2 allele impairs HDAC targeting to chromatin, resulting in elevated levels of histone acetylation. Genome-wide mapping revealed that SF2 directly targets and promotes histone deacetylation associated with key genes involved in multiple phytohormone pathways and cell cycle regulation, by either directly repressing or activating their expression. We further show that SF2 controls fruit cell proliferation through targeting the biosynthesis and metabolism of cytokinin and polyamines. Our findings reveal a complex regulatory network of fruit cell proliferation mediated by HDC1 and elucidate patterns of HDC1-mediated regulation of gene expression.
Collapse
Affiliation(s)
- Zhen Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Bowen Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Sino-Dutch Joint Lab of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- China Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Shenhao Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Tao Lin
- College of Horticulture, China Agricultural University, Beijing 100094, China
| | - Li Yang
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
| | - Zunlian Zhao
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Zhonghua Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Sino-Dutch Joint Lab of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sanwen Huang
- China Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xueyong Yang
- College of Horticulture, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Sino-Dutch Joint Lab of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
21
|
Chen X, Ding AB, Zhong X. Functions and mechanisms of plant histone deacetylases. SCIENCE CHINA-LIFE SCIENCES 2019; 63:206-216. [PMID: 31879846 DOI: 10.1007/s11427-019-1587-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022]
Abstract
Lysine acetylation, one of the major types of post-translational modifications, plays critical roles in regulating gene expression and protein function. Histone deacetylases (HDACs) are responsible for removing acetyl groups from lysines of both histone and non-histone proteins. While tremendous progress has been made in understanding the function and mechanism of HDACs in animals in the past two decades, nearly half of the HDAC studies in plants were reported within the past five years. In this review, we summarize the major findings on plant HDACs, with a focus on the model plant Arabidopsis thaliana, and highlight the components, regulatory mechanisms, and biological functions of HDAC complexes.
Collapse
Affiliation(s)
- Xiangsong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Adeline B Ding
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Xuehua Zhong
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.
| |
Collapse
|
22
|
Han Q, Bartels A, Cheng X, Meyer A, An YQC, Hsieh TF, Xiao W. Epigenetics Regulates Reproductive Development in Plants. PLANTS 2019; 8:plants8120564. [PMID: 31810261 PMCID: PMC6963493 DOI: 10.3390/plants8120564] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/23/2019] [Accepted: 11/27/2019] [Indexed: 12/20/2022]
Abstract
Seed, resulting from reproductive development, is the main nutrient source for human beings, and reproduction has been intensively studied through genetic, molecular, and epigenetic approaches. However, how different epigenetic pathways crosstalk and integrate to regulate seed development remains unknown. Here, we review the recent progress of epigenetic changes that affect chromatin structure, such as DNA methylation, polycomb group proteins, histone modifications, and small RNA pathways in regulating plant reproduction. In gametogenesis of flowering plants, epigenetics is dynamic between the companion cell and gametes. Cytosine DNA methylation occurs in CG, CHG, CHH contexts (H = A, C, or T) of genes and transposable elements, and undergoes dynamic changes during reproduction. Cytosine methylation in the CHH context increases significantly during embryogenesis, reaches the highest levels in mature embryos, and decreases as the seed germinates. Polycomb group proteins are important transcriptional regulators during seed development. Histone modifications and small RNA pathways add another layer of complexity in regulating seed development. In summary, multiple epigenetic pathways are pivotal in regulating seed development. It remains to be elucidated how these epigenetic pathways interplay to affect dynamic chromatin structure and control reproduction.
Collapse
Affiliation(s)
- Qiang Han
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA (A.B.); (X.C.)
| | - Arthur Bartels
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA (A.B.); (X.C.)
| | - Xi Cheng
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA (A.B.); (X.C.)
| | - Angela Meyer
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA (A.B.); (X.C.)
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Yong-Qiang Charles An
- US Department of Agriculture, Agricultural Research Service, Midwest Area, Plant Genetics Research Unit, Donald Danforth Plant Science Center, MO 63132, USA;
| | - Tzung-Fu Hsieh
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA;
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Wenyan Xiao
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA (A.B.); (X.C.)
- Correspondence: ; Tel.: +1-314-977-2547
| |
Collapse
|
23
|
Zhang Y, Yin B, Zhang J, Cheng Z, Liu Y, Wang B, Guo X, Liu X, Liu D, Li H, Lu H. Histone Deacetylase HDT1 is Involved in Stem Vascular Development in Arabidopsis. Int J Mol Sci 2019; 20:E3452. [PMID: 31337083 PMCID: PMC6678272 DOI: 10.3390/ijms20143452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/28/2019] [Accepted: 07/11/2019] [Indexed: 11/30/2022] Open
Abstract
Histone acetylation and deacetylation play essential roles in eukaryotic gene regulation. HD2 (HD-tuins) proteins were previously identified as plant-specific histone deacetylases. In this study, we investigated the function of the HDT1 gene in the formation of stem vascular tissue in Arabidopsis thaliana. The height and thickness of the inflorescence stems in the hdt1 mutant was lower than that of wild-type plants. Paraffin sections showed that the cell number increased compared to the wild type, while transmission electron microscopy showed that the size of individual tracheary elements and fiber cells significantly decreased in the hdt1 mutant. In addition, the cell wall thickness of tracheary elements and fiber cells increased. We also found that the lignin content in the stem of the hdt1 mutants increased compared to that of the wild type. Transcriptomic data revealed that the expression levels of many biosynthetic genes related to secondary wall components, including cellulose, lignin biosynthesis, and hormone-related genes, were altered, which may lead to the altered phenotype in vascular tissue of the hdt1 mutant. These results suggested that HDT1 is involved in development of the vascular tissue of the stem by affecting cell proliferation and differentiation.
Collapse
Affiliation(s)
- Yongzhuo Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Bin Yin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jiaxue Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Ziyi Cheng
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yadi Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Bing Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaorui Guo
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiatong Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Di Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hui Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China.
| | - Hai Lu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
24
|
Lee K, Mas P, Seo PJ. The EC-HDA9 complex rhythmically regulates histone acetylation at the TOC1 promoter in Arabidopsis. Commun Biol 2019; 2:143. [PMID: 31044168 PMCID: PMC6478914 DOI: 10.1038/s42003-019-0377-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 03/06/2019] [Indexed: 12/13/2022] Open
Abstract
Circadian clocks are conserved time-keeper mechanisms in some prokaryotes and higher eukaryotes. Chromatin modification is emerging as key regulatory mechanism for refining core clock gene expression. Rhythmic changes in histone marks are closely associated to the TIMING OF CAB EXPRESSION 1 (TOC1) Arabidopsis clock gene. However, the chromatin-related modifiers responsible for these marks remain largely unknown. Here, we uncover that the chromatin modifier HISTONE DEACETYLASE 9 (HDA9) and the Evening complex (EC) component EARLY FLOWERING 3 (ELF3) directly interact to regulate the declining phase of TOC1 after its peak expression. We found that HDA9 specifically binds to the TOC1 promoter through the interaction with ELF3. The EC-HDA9 complex promotes H3 deacetylation at the TOC1 locus, contributing to suppressing TOC1 expression during the night, the time of EC function. Therefore, we have identified the mechanism by which the circadian clock intertwines with chromatin-related components to shape the circadian waveforms of gene expression in Arabidopsis.
Collapse
Affiliation(s)
- Kyounghee Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - Paloma Mas
- Center for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Parc de Recerca Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Pil Joon Seo
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419 Republic of Korea
- Department of Chemistry, Seoul National University, Seoul, 08826 Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
25
|
Erbasol Serbes I, Palovaara J, Groß-Hardt R. Development and function of the flowering plant female gametophyte. Curr Top Dev Biol 2019; 131:401-434. [DOI: 10.1016/bs.ctdb.2018.11.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Abstract
Multicellular organisms, such as plants, fungi, and animals, develop organs with specialized functions. Major challenges in developing such structures include establishment of polarity along three axes (apical-basal, medio-lateral, and dorso-ventral/abaxial-adaxial), specification of tissue types and their coordinated growth, and maintenance of communication between the organ and the entire organism. The gynoecium of the model plant Arabidopsis thaliana embodies the female reproductive organ and has proven an excellent model system for studying organ establishment and development, given its division into different regions with distinct symmetries and highly diverse tissue types. Upon pollination, the gynoecium undergoes dramatic changes in morphology and developmental programming to form the seed-containing fruit. In this review, we wish to provide a detailed overview of the molecular and genetic mechanisms that are known to guide gynoecium and fruit development in A. thaliana. We describe networks of key genetic regulators and their interactions with hormonal dynamics in driving these developmental processes. The discoveries made to date clearly demonstrate that conclusions drawn from studying gynoecium and fruit development in flowering plants can be used to further our general understanding of organ formation across the plant kingdom. Importantly, this acquired knowledge is increasingly being used to improve fruit and seed crops, facilitated by the recent profound advances in genomics, cloning, and gene-editing technologies.
Collapse
Affiliation(s)
- Sara Simonini
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Lars Østergaard
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom.
| |
Collapse
|
27
|
Yang C, Shen W, Chen H, Chu L, Xu Y, Zhou X, Liu C, Chen C, Zeng J, Liu J, Li Q, Gao C, Charron JB, Luo M. Characterization and subcellular localization of histone deacetylases and their roles in response to abiotic stresses in soybean. BMC PLANT BIOLOGY 2018; 18:226. [PMID: 30305032 PMCID: PMC6180487 DOI: 10.1186/s12870-018-1454-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 10/01/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Histone deacetylases (HDACs) function as key epigenetic factors in repressing the expression of genes in multiple aspects of plant growth, development and plant response to abiotic or biotic stresses. To date, the molecular function of HDACs is well described in Arabidopsis thaliana, but no systematic analysis of this gene family in soybean (Glycine max) has been reported. RESULTS In this study, 28 HDAC genes from soybean genome were identified, which were asymmetrically distributed on 12 chromosomes. Phylogenetic analysis demonstrated that GmHDACs fall into three major groups previously named RPD3/HDA1, SIR2, and HD2. Subcellular localization analysis revealed that YFP-tagged GmSRT4, GmHDT2 and GmHDT4 were predominantly localized in the nucleus, whereas GmHDA6, GmHDA13, GmHDA14 and GmHDA16 were found in both the cytoplasm and nucleus. Real-time quantitative PCR showed that GmHDA6, GmHDA13, GmHDA14, GmHDA16 and GmHDT4 were broadly expressed across plant tissues, while GmHDA8, GmSRT2, GmSRT4 and GmHDT2 showed differential expression across various tissues. Interestingly, we measured differential changes in GmHDACs transcripts accumulation in response to several abiotic cues, indicating that these epigenetic modifiers could potentially be part of a dynamic transcriptional response to stress in soybean. Finally, we show that the levels of histone marks previously reported to be associated with plant HDACs are modulated by cold and heat in this legume. CONCLUSION We have identified and classified 28 HDAC genes in soybean. Our data provides insights into the evolution of the HDAC gene family and further support the hypothesis that these genes are important for the plant responses to environmental stress.
Collapse
Affiliation(s)
- Chao Yang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Hongfeng Chen
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Liutian Chu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yingchao Xu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaochen Zhou
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Chuanliang Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Chunmiao Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Jiahui Zeng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Jin Liu
- Institute for Food and Bioresource Engineering, Department of Energy and Resources Engineering and BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Qianfeng Li
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009 China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Jean-Benoit Charron
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| |
Collapse
|
28
|
Kumar V, Singh B, Singh SK, Rai KM, Singh SP, Sable A, Pant P, Saxena G, Sawant SV. Role of GhHDA5 in H3K9 deacetylation and fiber initiation in Gossypium hirsutum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:1069-1083. [PMID: 29952050 DOI: 10.1111/tpj.14011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 05/28/2023]
Abstract
Cotton fibers are single-celled trichomes that initiate from the epidermal cells of the ovules at or before anthesis. Here, we identified that the histone deacetylase (HDAC) activity is essential for proper cotton fiber initiation. We further identified 15 HDACs homoeologs in each of the A- and D-subgenomes of Gossypium hirsutum. Few of these HDAC homoeologs expressed preferentially during the early stages of fiber development [-1, 0 and 6 days post-anthesis (DPA)]. Among them, GhHDA5 expressed significantly at the time of fiber initiation (-1 and 0 DPA). The in vitro assay for HDAC activity indicated that GhHDA5 primarily deacetylates H3K9 acetylation marks. Moreover, the reduced expression of GhHDA5 also suppresses fiber initiation and lint yield in the RNA interference (RNAi) lines. The 0 DPA ovules of GhHDA5RNAi lines also showed alterations in reactive oxygen species homeostasis and elevated autophagic cell death in the developing fibers. The differentially expressed genes (DEGs) identified through RNA-seq of RNAi line (DEP12) and their pathway analysis showed that GhHDA5 modulates expression of many stress and development-related genes involved in fiber development. The reduced expression of GhHDA5 in the RNAi lines also resulted in H3K9 hyper-acetylation on the promoter region of few DEGs assessed by chromatin immunoprecipitation assay. The positively co-expressed genes with GhHDA5 showed cumulative higher expression during fiber initiation, and gene ontology annotation suggests their involvement in fiber development. Furthermore, the predicted protein interaction network in the positively co-expressed genes indicates HDA5 modulates fiber initiation-specific gene expression through a complex involving reported repressors.
Collapse
Affiliation(s)
- Verandra Kumar
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Lucknow, India
- Department of Botany, University of Lucknow, Lucknow, India
| | - Babita Singh
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NBRI, Lucknow, India
| | - Sunil K Singh
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Lucknow, India
| | - Krishan M Rai
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Lucknow, India
| | - Surendra P Singh
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Lucknow, India
- Department of Botany, University of Lucknow, Lucknow, India
| | - Anshulika Sable
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Lucknow, India
| | - Poonam Pant
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NBRI, Lucknow, India
| | - Gauri Saxena
- Department of Botany, University of Lucknow, Lucknow, India
| | - Samir V Sawant
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NBRI, Lucknow, India
| |
Collapse
|
29
|
Zhao ML, Wang W, Nie H, Cao SS, Du LF. In silico structure prediction and inhibition mechanism studies of AtHDA14 as revealed by homology modeling, docking, molecular dynamics simulation. Comput Biol Chem 2018; 75:120-130. [PMID: 29775968 DOI: 10.1016/j.compbiolchem.2018.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 12/14/2022]
Abstract
Histone deacetylases (HDACs) play a significant role in the epigenetic mechanism by catalyzing deacetylation of lysine on histone in both animals and plants. HDACs involved in growth, development and response to stresses in plants. Arabidopsis thaliana histone deacetylase 14 (AtHDA14) is found to localize in the mitochondria and chloroplasts, and it involved in photosynthesis and melatonin biosynthesis. However, its mechanism of action was still unknowns so far. Therefore, in this study, we constructed AtHDA14 protein model using homology modeling method, validated using PROCHECK and presented using Ramachandran plots. We also performed virtual screening of AtHDA14 by docking with small molecule drugs and predicted their ADMET properties to select representative inhibitors. MD simulation for representative AtHDA14-ligand complexes was carried out to further research and reveal their stability and inhibition mechanism. Meanwhile, MM/PBSA method was utilized to obtain more valuable information about the residues energy contribution. Moreover, compared with four candidate inhibitors, we also found that compound 645533 and 6918837 might be a more potent AtHDA14 inhibitor than TSA (444732) and SAHA (5311). Therefore, compound 6445533 and 6918837 was anticipated to be a promising drug candidate for inhibition of AtHDA14.
Collapse
Affiliation(s)
- Ming-Lang Zhao
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Wang Wang
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Hu Nie
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Sha-Sha Cao
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Lin-Fang Du
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
30
|
Forestan C, Farinati S, Rouster J, Lassagne H, Lauria M, Dal Ferro N, Varotto S. Control of Maize Vegetative and Reproductive Development, Fertility, and rRNAs Silencing by HISTONE DEACETYLASE 108. Genetics 2018; 208:1443-1466. [PMID: 29382649 DOI: 10.1534/genetics.117.300625/-/dc1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/28/2018] [Indexed: 05/28/2023] Open
Abstract
Histone deacetylases (HDACs) catalyze the removal of acetyl groups from acetylated histone tails that consequently interact more closely with DNA, leading to chromatin state refractory to transcription. Zea mays HDA108 belongs to the Rpd3/HDA1 HDAC family and is ubiquitously expressed during development. The newly isolated hda108/hda108 insertional mutant exhibited many developmental defects: significant reduction in plant height, alterations of shoot and leaf development, and alterations of inflorescence patterning and fertility. Western blot analyses and immunolocalization experiments revealed an evident increase in histone acetylation, accompanied by a marked reduction in H3K9 dimethylation, in mutant nuclei. The DNA methylation status, in the CHG sequence context, and the transcript level of ribosomal sequences were also affected in hda108 mutants, while enrichment in H3 and H4 acetylation characterizes both repetitive and nonrepetitive transcriptional up-regulated loci. RNA-Seq of both young leaf and anthers indicated that transcription factor expression is highly affected and that the pollen developmental program is disrupted in hda108 mutants. Crosses between hda108/hda108 and epiregulator mutants did not produce any double mutant progeny indicating possible genetic interactions of HDA108 with distinct epigenetic pathways. Our findings indicate that HDA108 is directly involved in regulation of maize development, fertility, and epigenetic regulation of genome activity.
Collapse
Affiliation(s)
- Cristian Forestan
- Department of Agronomy Food Natural Resources, Animals and Environment (DAFNAE) Agripolis, University of Padova, 35020 Legnaro (PD), Italy
| | - Silvia Farinati
- Department of Agronomy Food Natural Resources, Animals and Environment (DAFNAE) Agripolis, University of Padova, 35020 Legnaro (PD), Italy
| | - Jacques Rouster
- GM Trait Cereals, Biogemma, Centre de Research de Chappes, 63720 Chappes, France
| | - Hervé Lassagne
- GM Trait Cereals, Biogemma, Centre de Research de Chappes, 63720 Chappes, France
| | - Massimiliano Lauria
- The Institute of Agricultural Biology and Biotechnology (IBBA), Consiglio Nazionale delle Ricerche (CNR), 20133 Milano, Italy
| | - Nicola Dal Ferro
- Department of Agronomy Food Natural Resources, Animals and Environment (DAFNAE) Agripolis, University of Padova, 35020 Legnaro (PD), Italy
| | - Serena Varotto
- Department of Agronomy Food Natural Resources, Animals and Environment (DAFNAE) Agripolis, University of Padova, 35020 Legnaro (PD), Italy
| |
Collapse
|
31
|
Jiang W, Wei D, Zhou W, Wang Z, Tang Q. HDA9 interacts with the promoters of SOC1 and AGL24 involved in flowering time control in Brassica juncea. Biochem Biophys Res Commun 2018; 499:519-523. [PMID: 29596826 DOI: 10.1016/j.bbrc.2018.03.180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 03/23/2018] [Indexed: 11/28/2022]
Abstract
HDA9 (a RPD3-like histone deacetylase) belongs to the histone deacetylase family which is involved in flowering time control through repression of AGL19 and FT, but it is still elusive that whether and how HDA9 directly interacts with flowering signal integrators of SOC1 and AGL24 in Brassica juncea. In this study, BjuHDA9 (a homologous HDA9) was cloned from B. juncea and ubiquitously expressed in root, stem, cauline leaf, flower bud and opening flower. BjuHDA9 was highly induced by short-day photoperiod. Yeast two-hybrid and pull-down assays demonstrated that BjuHDA9 could not interact with BjuSOC1 and BjuAGL24 proteins. Whereas, BjuHDA9 directly interacted with promoters of BjuSOC1 and BjuAGL24 via yeast one-hybrid and Dual-Glo® Luciferase assays. It suggested that the histone deacetylase BjuHDA9 was probably involved in flowering time control by binding to promoter regions of BjuSOC1 and BjuAGL24. This study will provide valuable information for elucidating the molecular mechanism of BjuHDA9 in regulating flowering time.
Collapse
Affiliation(s)
- Wei Jiang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Dayong Wei
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
| | - Wenwen Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Zhimin Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
| | - Qinglin Tang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China.
| |
Collapse
|
32
|
Control of Maize Vegetative and Reproductive Development, Fertility, and rRNAs Silencing by HISTONE DEACETYLASE 108. Genetics 2018; 208:1443-1466. [PMID: 29382649 PMCID: PMC5887141 DOI: 10.1534/genetics.117.300625] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/28/2018] [Indexed: 12/27/2022] Open
Abstract
Histone deacetylases (HDACs) catalyze the removal of acetyl groups from acetylated histone tails that consequently interact more closely with DNA, leading to chromatin state refractory to transcription. Zea mays HDA108 belongs to the Rpd3/HDA1 HDAC family and is ubiquitously expressed during development. The newly isolated hda108/hda108 insertional mutant exhibited many developmental defects: significant reduction in plant height, alterations of shoot and leaf development, and alterations of inflorescence patterning and fertility. Western blot analyses and immunolocalization experiments revealed an evident increase in histone acetylation, accompanied by a marked reduction in H3K9 dimethylation, in mutant nuclei. The DNA methylation status, in the CHG sequence context, and the transcript level of ribosomal sequences were also affected in hda108 mutants, while enrichment in H3 and H4 acetylation characterizes both repetitive and nonrepetitive transcriptional up-regulated loci. RNA-Seq of both young leaf and anthers indicated that transcription factor expression is highly affected and that the pollen developmental program is disrupted in hda108 mutants. Crosses between hda108/hda108 and epiregulator mutants did not produce any double mutant progeny indicating possible genetic interactions of HDA108 with distinct epigenetic pathways. Our findings indicate that HDA108 is directly involved in regulation of maize development, fertility, and epigenetic regulation of genome activity.
Collapse
|
33
|
Suzuki M, Shinozuka N, Hirakata T, Nakata MT, Demura T, Tsukaya H, Horiguchi G. OLIGOCELLULA1/ HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES15 Promotes Cell Proliferation With HISTONE DEACETYLASE9 and POWERDRESS During Leaf Development in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:580. [PMID: 29774040 PMCID: PMC5943563 DOI: 10.3389/fpls.2018.00580] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/13/2018] [Indexed: 05/18/2023]
Abstract
Organ size regulation is dependent on the precise spatial and temporal regulation of cell proliferation and cell expansion. A number of transcription factors have been identified that play a key role in the determination of aerial lateral organ size, but their functional relationship to various chromatin modifiers has not been well understood. To understand how leaf size is regulated, we previously isolated the oligocellula1 (oli1) mutant of Arabidopsis thaliana that develops smaller first leaves than the wild type (WT) mainly due to a reduction in the cell number. In this study, we further characterized oli1 leaf phenotypes and identified the OLI1 gene as well as interaction partners of OLI1. Detailed characterizations of leaf development suggested that the cell proliferation rate in oli1 leaf primordia is lower than that in the WT. In addition, oli1 was associated with a slight delay of the progression from the juvenile to adult phases of leaf traits. A classical map-based approach demonstrated that OLI1 is identical to HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES15 (HOS15). HOS15/OLI1 encodes a homolog of human transducin β-like protein1 (TBL1). TBL1 forms a transcriptional repression complex with the histone deacetylase (HDAC) HDAC3 and either nuclear receptor co-repressor (N-CoR) or silencing mediator for retinoic acid and thyroid receptor (SMRT). We found that mutations in HISTONE DEACETYLASE9 (HDA9) and a switching-defective protein 3, adaptor 2, N-CoR, and transcription factor IIIB-domain protein gene, POWERDRESS (PWR), showed a small-leaf phenotype similar to oli1. In addition, hda9 and pwr did not further enhance the oli1 small-leaf phenotype, suggesting that these three genes act in the same pathway. Yeast two-hybrid assays suggested physical interactions, wherein PWR probably bridges HOS15/OLI1 and HDA9. Earlier studies suggested the roles of HOS15, HDA9, and PWR in transcriptional repression. Consistently, transcriptome analyses showed several genes commonly upregulated in the three mutants. From these findings, we propose a possibility that HOS15/OLI1, PWR, and HDA9 form an evolutionary conserved transcription repression complex that plays a positive role in the regulation of final leaf size.
Collapse
Affiliation(s)
- Marina Suzuki
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Nanae Shinozuka
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Tomohiro Hirakata
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Miyuki T. Nakata
- Research Center for Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Taku Demura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Okazaki Institute for Integrative Bioscience, Okazaki, Japan
| | - Gorou Horiguchi
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
- Research Center for Life Science, College of Science, Rikkyo University, Tokyo, Japan
- *Correspondence: Gorou Horiguchi,
| |
Collapse
|
34
|
Guo JE, Hu Z, Yu X, Li A, Li F, Wang Y, Tian S, Chen G. A histone deacetylase gene, SlHDA3, acts as a negative regulator of fruit ripening and carotenoid accumulation. PLANT CELL REPORTS 2018; 37:125-135. [PMID: 28932910 DOI: 10.1007/s00299-017-2211-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/12/2017] [Indexed: 05/04/2023]
Abstract
SlHDA3 functions as an inhibitor and regulates tomato fruit ripening and carotenoid accumulation. Post-translational modifications, including histones acetylation, play a pivotal role in the changes of chromatin structure dynamic modulation and gene activity. The regulation of histone acetylation is achieved by the action of histone acetyltransferases and deacetylases, which play crucial roles in the regulation of transcription activation. There is an increasing research focus on histone deacetylation in crops, but the role of histone deacetylase genes (HDACs) in tomato has not been elucidated. With the aim of characterizing the tomato RPD3/HDA1 family histone deacetylase genes, SlHDA3 was isolated and its RNA interference (RNAi) lines was obtained. The fruit of SlHDA3 RNAi lines exhibited accelerated ripening process along with short shelf life characteristics. The accumulation of carotenoid was increased due to the alteration of the carotenoid pathway flux. Climacteric ethylene production also stimulated along with significantly up-regulated expression of ethylene biosynthetic genes (ACS2, ACS4, ACO1 and ACO3) and fruit ripening-associated genes (RIN, E4, E8, PG, Pti4, LOXB, Cnr and TAGL1) in SlHDA3 RNAi lines. Besides, fruit cell wall metabolism-associated genes (HEX, MAN, TBG4, XTH5 and XYL) were enhanced in transgenic lines. Relative to wild type (WT) plants, SlHDA3 RNAi seedlings displayed shorter hypocotyls and more sensitivity to ACC (1-aminocyclopropane-1-carboxylate). These results indicated that SlHDA3 is involved in the regulation of fruit ripening by affecting ethylene biosynthesis and carotenoid accumulation.
Collapse
Affiliation(s)
- Jun-E Guo
- Room 523, Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Zongli Hu
- Room 523, Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Xiaohui Yu
- Room 523, Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Anzhou Li
- Room 523, Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Fenfen Li
- Room 523, Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Yunshu Wang
- Room 523, Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Shibing Tian
- The Institute of Vegetable Research, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, People's Republic of China
| | - Guoping Chen
- Room 523, Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China.
| |
Collapse
|
35
|
Ye LS, Zhang Q, Pan H, Huang C, Yang ZN, Yu QB. EMB2738, which encodes a putative plastid-targeted GTP-binding protein, is essential for embryogenesis and chloroplast development in higher plants. PHYSIOLOGIA PLANTARUM 2017; 161:414-430. [PMID: 28675462 DOI: 10.1111/ppl.12603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
In higher plants, chloroplasts carry out many important functions, and normal chloroplast development is required for embryogenesis. Numerous chloroplast-targeted proteins involved in embryogenesis have been identified. Nevertheless, their functions remain unclear. In this study, a chloroplast-localized protein, EMB2738, was reported to be involved in Arabidopsis embryogenesis. EMB2738 knockout led to defective embryos, and the embryo development in emb2738 was interrupted after the globular stage. Complementation experiments identified the AT3G12080 locus as EMB2738. Cellular observation indicated that severely impaired chloroplast development was observed in these aborted embryos. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis showed that chloroplast-encoded photosynthetic genes, which are transcribed by plastid-encoded RNA polymerase (PEP), are predominantly decreased in defective embryogenesis, compared with those in the wild-type. In contrast, genes encoding PEP core subunits, which are transcribed by nucleus-encoded RNA polymerase (NEP), were increased. These results suggested that the knockout of EMB2738 strongly blocked chloroplast-encoded photosynthesis gene expression in embryos. Silencing of the EMB2738 orthologue in tobacco through a virus-induced genome silencing technique resulted in an albinism phenotype, vacuolated chloroplasts and decreased PEP-dependent plastid transcription. These results suggested that NtEMB2738 might be involved in plastid gene expression. Nevertheless, genetic analysis showed that the NtEMB2738 coding sequence could not fully rescue the defective embryogenesis of the emb2738 mutant, which suggested functional divergence between NtEMB2738 and EMB2738 in embryogenesis. Taken together, these results indicated that both EMB2738 and NtEMB2738 are involved in the expression of plastid genes in higher plants, and there is a functional divergence between NtEMB2738 and EMB2738 in embryogenesis.
Collapse
Affiliation(s)
- Lin-Shan Ye
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
- College of Tourism, Shanghai Normal University, Shanghai 200234, China
| | - Qin Zhang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Hui Pan
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Chao Huang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhong-Nan Yang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
- College of Tourism, Shanghai Normal University, Shanghai 200234, China
| | - Qing-Bo Yu
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
36
|
Hartl M, Füßl M, Boersema PJ, Jost JO, Kramer K, Bakirbas A, Sindlinger J, Plöchinger M, Leister D, Uhrig G, Moorhead GB, Cox J, Salvucci ME, Schwarzer D, Mann M, Finkemeier I. Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in Arabidopsis. Mol Syst Biol 2017; 13:949. [PMID: 29061669 PMCID: PMC5658702 DOI: 10.15252/msb.20177819] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Histone deacetylases have central functions in regulating stress defenses and development in plants. However, the knowledge about the deacetylase functions is largely limited to histones, although these enzymes were found in diverse subcellular compartments. In this study, we determined the proteome‐wide signatures of the RPD3/HDA1 class of histone deacetylases in Arabidopsis. Relative quantification of the changes in the lysine acetylation levels was determined on a proteome‐wide scale after treatment of Arabidopsis leaves with deacetylase inhibitors apicidin and trichostatin A. We identified 91 new acetylated candidate proteins other than histones, which are potential substrates of the RPD3/HDA1‐like histone deacetylases in Arabidopsis, of which at least 30 of these proteins function in nucleic acid binding. Furthermore, our analysis revealed that histone deacetylase 14 (HDA14) is the first organellar‐localized RPD3/HDA1 class protein found to reside in the chloroplasts and that the majority of its protein targets have functions in photosynthesis. Finally, the analysis of HDA14 loss‐of‐function mutants revealed that the activation state of RuBisCO is controlled by lysine acetylation of RuBisCO activase under low‐light conditions.
Collapse
Affiliation(s)
- Markus Hartl
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich, Martinsried, Germany.,Mass Spectrometry Facility, Max F. Perutz Laboratories (MFPL), Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
| | - Magdalena Füßl
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich, Martinsried, Germany.,Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Paul J Boersema
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Jan-Oliver Jost
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Katharina Kramer
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ahmet Bakirbas
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Julia Sindlinger
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Magdalena Plöchinger
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Glen Uhrig
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Greg Bg Moorhead
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Jürgen Cox
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Michael E Salvucci
- US Department of Agriculture, Agricultural Research Service, Arid-Land Agricultural Research Center, Maricopa, AZ, USA
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Matthias Mann
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Iris Finkemeier
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Cologne, Germany .,Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich, Martinsried, Germany.,Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| |
Collapse
|
37
|
Uhrig RG, Schläpfer P, Mehta D, Hirsch-Hoffmann M, Gruissem W. Genome-scale analysis of regulatory protein acetylation enzymes from photosynthetic eukaryotes. BMC Genomics 2017; 18:514. [PMID: 28679357 PMCID: PMC5499015 DOI: 10.1186/s12864-017-3894-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/21/2017] [Indexed: 12/30/2022] Open
Abstract
Background Reversible protein acetylation occurring on Lys-Ne has emerged as a key regulatory post-translational modification in eukaryotes. It is mediated by two groups of enzymes: lysine acetyltransferases (KATs) and lysine deacetylases (KDACs) that catalyze the addition and removal of acetyl groups from target proteins. Estimates indicate that protein acetylation is second to protein phosphorylation in abundance, with thousands of acetylated sites now identified in different subcellular compartments. Considering the important regulatory role of protein phosphorylation, elucidating the diversity of KATs and KDACs across photosynthetic eukaryotes is essential in furthering our understanding of the impact of reversible protein acetylation on plant cell processes. Results We report a genome-scale analysis of lysine acetyltransferase (KAT)- and lysine deacetylase (KDAC)-families from 53 photosynthetic eukaryotes. KAT and KDAC orthologs were identified in sequenced genomes ranging from glaucophytes and algae to land plants and then analyzed for evolutionary relationships. Based on consensus molecular phylogenetic and subcellular localization data we found new sub-classes of enzymes in established KAT- and KDAC-families. Specifically, we identified a non-photosynthetic origin of the HD-tuin family KDACs, a new monocot-specific Class I HDA-family sub-class, and a phylogenetically distinct Class II algal/heterokont sub-class which maintains an ankyrin domain not conserved in land plant Class II KDACs. Protein structure analysis showed that HDA- and SRT-KDACs exist as bare catalytic subunits with highly conserved median protein length, while all KATs maintained auxiliary domains, with CBP- and TAFII250-KATs displaying protein domain gain and loss over the course of photosynthetic eukaryote evolution in addition to variable protein length. Lastly, promoter element enrichment analyses across species revealed conserved cis-regulatory sequences that support KAT and KDAC involvement in the regulation of plant development, cold/drought stress response, as well as cellular processes such as the circadian clock. Conclusions Our results reveal new evolutionary, structural, and biological insights into the KAT- and KDAC-families of photosynthetic eukaryotes, including evolutionary parallels to protein kinases and protein phosphatases. Further, we provide a comprehensive annotation framework through our extensive phylogenetic analysis, from which future research investigating aspects of protein acetylation in plants can use to position new findings in a broader context. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3894-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- R Glen Uhrig
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, Universitätstrasse 2, 8092, Zurich, Switzerland.
| | - Pascal Schläpfer
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, Universitätstrasse 2, 8092, Zurich, Switzerland.,Plant Biology Department, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Devang Mehta
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, Universitätstrasse 2, 8092, Zurich, Switzerland
| | - Matthias Hirsch-Hoffmann
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, Universitätstrasse 2, 8092, Zurich, Switzerland
| | - Wilhelm Gruissem
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, Universitätstrasse 2, 8092, Zurich, Switzerland
| |
Collapse
|
38
|
D'Ippólito S, Arias LA, Casalongué CA, Pagnussat GC, Fiol DF. The DC1-domain protein VACUOLELESS GAMETOPHYTES is essential for development of female and male gametophytes in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:261-275. [PMID: 28107777 DOI: 10.1111/tpj.13486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/06/2017] [Accepted: 01/11/2017] [Indexed: 06/06/2023]
Abstract
In this work we identified VACUOLELESS GAMETOPHYTES (VLG) as a DC1 domain-containing protein present in the endomembrane system and essential for development of both female and male gametophytes. VLG was originally annotated as a gene coding for a protein of unknown function containing DC1 domains. DC1 domains are cysteine- and histidine-rich zinc finger domains found exclusively in the plant kingdom that have been named on the basis of similarity with the C1 domain present in protein kinase C (PKC). In Arabidopsis, both male and female gametophytes are characterized by the formation of a large vacuole early in development; this is absent in vlg mutant plants. As a consequence, development is arrested in embryo sacs and pollen grains at the first mitotic division. VLG is specifically located in multivesicular bodies or pre-vacuolar compartments, and our results suggest that vesicular fusion is affected in the mutants, disrupting vacuole formation. Supporting this idea, AtPVA12 - a member of the SNARE vesicle-associated protein family and previously related to a sterol-binding protein, was identified as a VLG interactor. A role for VLG is proposed mediating vesicular fusion in plants as part of the sterol trafficking machinery required for vacuole biogenesis in plants.
Collapse
Affiliation(s)
- Sebastián D'Ippólito
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar del Plata, Funes 3250 Cuarto Nivel, 7600, Mar del Plata, Argentina
| | - Leonardo Agustín Arias
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar del Plata, Funes 3250 Cuarto Nivel, 7600, Mar del Plata, Argentina
| | - Claudia Anahí Casalongué
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar del Plata, Funes 3250 Cuarto Nivel, 7600, Mar del Plata, Argentina
| | - Gabriela Carolina Pagnussat
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar del Plata, Funes 3250 Cuarto Nivel, 7600, Mar del Plata, Argentina
| | - Diego Fernando Fiol
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar del Plata, Funes 3250 Cuarto Nivel, 7600, Mar del Plata, Argentina
| |
Collapse
|
39
|
Di Fino LM, D'Ambrosio JM, Tejos R, van Wijk R, Lamattina L, Munnik T, Pagnussat GC, Laxalt AM. Arabidopsis phosphatidylinositol-phospholipase C2 (PLC2) is required for female gametogenesis and embryo development. PLANTA 2017; 245:717-728. [PMID: 27999988 DOI: 10.1007/s00425-016-2634-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/02/2016] [Indexed: 05/20/2023]
Abstract
AtPLC2 is an essential gene in Arabidopsis, since it is required for female gametogenesis and embryo development. AtPLC2 might play a role in cell division during embryo-sac development and early embryogenesis. Phosphoinositide-specific phospholipase C (PI-PLC) plays an important role in signal transduction during plant development and in the response to various biotic- and abiotic stresses. The Arabidopsis PI-PLC gene family is composed of nine members, named PLC1 to PLC9. Here, we report that PLC2 is involved in female gametophyte development and early embryogenesis. Using two Arabidopsis allelic T-DNA insertion lines with different phenotypic penetrations, we observed both female gametophytic defects and aberrant embryos. For the plc2-1 mutant (Ws background), no homozygous plants could be recovered in the offspring from self-pollinated plants. Nonetheless, plc2-1 hemizygous mutants are affected in female gametogenesis, showing embryo sacs arrested at early developmental stages. Allelic hemizygous plc2-2 mutant plants (Col-0 background) present reduced seed set and embryos arrested at the pre-globular stage with abnormal patterns of cell division. A low proportion (0.8%) of plc2-2 homozygous mutants was found to escape lethality and showed morphological defects and disrupted megagametogenesis. PLC2-promoter activity was observed during early megagametogenesis, and after fertilization in the embryo proper. Immunolocalization studies in early stage embryos revealed that PLC2 is restricted to the plasma membrane. Altogether, these results establish a role for PLC2 in both reproductive- and embryo development, presumably by controlling mitosis and/or the formation of cell-division planes.
Collapse
Affiliation(s)
- Luciano M Di Fino
- Instituto de Investigaciones Biológicas IIB-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina
| | - Juan Martín D'Ambrosio
- Instituto de Investigaciones Biológicas IIB-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina
| | - Ricardo Tejos
- Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, 111093, Iquique, Chile
- Centro de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, 7800003, Santiago, Chile
| | - Ringo van Wijk
- Swammerdam Institute for Life Sciences, Section Plant Cell Biology, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas IIB-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina
| | - Teun Munnik
- Swammerdam Institute for Life Sciences, Section Plant Cell Biology, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Gabriela C Pagnussat
- Instituto de Investigaciones Biológicas IIB-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina.
| | - Ana M Laxalt
- Instituto de Investigaciones Biológicas IIB-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina.
| |
Collapse
|
40
|
Tang Y, Liu X, Liu X, Li Y, Wu K, Hou X. Arabidopsis NF-YCs Mediate the Light-Controlled Hypocotyl Elongation via Modulating Histone Acetylation. MOLECULAR PLANT 2017; 10:260-273. [PMID: 27876642 DOI: 10.1016/j.molp.2016.11.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 05/20/2023]
Abstract
Light is a crucial environmental signal that promotes photomorphogenesis, the developmental process with a series of light-dependent alterations for plants to adapt various external challenges. Chromatin modification has been proposed to be involved in such light-mediated growth, but the underlying mechanism is still elusive. In this study, we identified four Arabidopsis thaliana Nuclear Factor-YC homologs, NF-YC1, NF-YC3, NF-YC4, and NF-YC9 (NF-YCs), which function redundantly as repressors of light-controlled hypocotyl elongation via histone deacetylation. Obvious etiolation phenotypes are observed in NF-YCs loss-of-function mutant seedlings grown under light conditions, including significant elongated hypocotyls and fewer opened cotyledons. We found that NF-YCs interact with histone deacetylase HDA15 in the light, co-target the promoters of a set of hypocotyl elongation-related genes, and modulate the levels of histone H4 acetylation on the associated chromatins, thus repressing gene expression. In contrast, NF-YC-HDA15 complex is dismissed from the target genes in the dark, resulting in increased level of H4 acetylation and consequent etiolated growth. Further analyses revealed that transcriptional repression activity of NF-YCs on the light-controlled hypocotyl elongation partially depends on the deacetylation activity of HDA15, and loss of HDA15 function could rescue the short-hypocotyl phenotype of NF-YCs overexpression plants. Taken together, our results indicate that NF-YC1, NF-YC3, NF-YC4, and NF-YC9 function as transcriptional co-repressors by interacting with HDA15 to inhibit hypocotyl elongation in photomorphogenesis during the early seedling stage. Our findings highlight that NF-YCs can modulate plant development in response to environmental cues via epigenetic regulation.
Collapse
Affiliation(s)
- Yang Tang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xuncheng Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xu Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yuge Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Keqiang Wu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei
| | - Xingliang Hou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
41
|
Farinati S, Rasori A, Varotto S, Bonghi C. Rosaceae Fruit Development, Ripening and Post-harvest: An Epigenetic Perspective. FRONTIERS IN PLANT SCIENCE 2017; 8:1247. [PMID: 28769956 PMCID: PMC5511831 DOI: 10.3389/fpls.2017.01247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/30/2017] [Indexed: 05/06/2023]
Abstract
Rosaceae is a family with an extraordinary spectrum of fruit types, including fleshy peach, apple, and strawberry that provide unique contributions to a healthy diet for consumers, and represent an excellent model for studying fruit patterning and development. In recent years, many efforts have been made to unravel regulatory mechanism underlying the hormonal, transcriptomic, proteomic and metabolomic changes occurring during Rosaceae fruit development. More recently, several studies on fleshy (tomato) and dry (Arabidopsis) fruit model have contributed to a better understanding of epigenetic mechanisms underlying important heritable crop traits, such as ripening and stress response. In this context and summing up the results obtained so far, this review aims to collect the available information on epigenetic mechanisms that may provide an additional level in gene transcription regulation, thus influencing and driving the entire Rosaceae fruit developmental process. The whole body of information suggests that Rosaceae fruit could become also a model for studying the epigenetic basis of economically important phenotypes, allowing for their more efficient exploitation in plant breeding.
Collapse
Affiliation(s)
- Silvia Farinati
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova AgripolisLegnaro, Italy
| | - Angela Rasori
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova AgripolisLegnaro, Italy
| | - Serena Varotto
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova AgripolisLegnaro, Italy
- Centro Interdipartimentale per la Ricerca in Viticoltura e Enologia, University of PadovaConegliano, Italy
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova AgripolisLegnaro, Italy
- Centro Interdipartimentale per la Ricerca in Viticoltura e Enologia, University of PadovaConegliano, Italy
- *Correspondence: Claudio Bonghi,
| |
Collapse
|
42
|
POWERDRESS and HDA9 interact and promote histone H3 deacetylation at specific genomic sites in Arabidopsis. Proc Natl Acad Sci U S A 2016; 113:14858-14863. [PMID: 27930340 DOI: 10.1073/pnas.1618618114] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Histone acetylation is a major epigenetic control mechanism that is tightly linked to the promotion of gene expression. Histone acetylation levels are balanced through the opposing activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Arabidopsis HDAC genes (AtHDACs) compose a large gene family, and distinct phenotypes among AtHDAC mutants reflect the functional specificity of individual AtHDACs However, the mechanisms underlying this functional diversity are largely unknown. Here, we show that POWERDRESS (PWR), a SANT (SWI3/DAD2/N-CoR/TFIII-B) domain protein, interacts with HDA9 and promotes histone H3 deacetylation, possibly by facilitating HDA9 function at target regions. The developmental phenotypes of pwr and hda9 mutants were highly similar. Three lysine residues (K9, K14, and K27) of H3 retained hyperacetylation status in both pwr and hda9 mutants. Genome-wide H3K9 and H3K14 acetylation profiling revealed elevated acetylation at largely overlapping sets of target genes in the two mutants. Highly similar gene-expression profiles in the two mutants correlated with the histone H3 acetylation status in the pwr and hda9 mutants. In addition, PWR and HDA9 modulated flowering time by repressing AGAMOUS-LIKE 19 expression through histone H3 deacetylation in the same genetic pathway. Finally, PWR was shown to physically interact with HDA9, and its SANT2 domain, which is homologous to that of subunits in animal HDAC complexes, showed specific binding affinity to acetylated histone H3. We therefore propose that PWR acts as a subunit in a complex with HDA9 to result in lysine deacetylation of histone H3 at specific genomic targets.
Collapse
|
43
|
Yang L, Wu Y, Yu M, Mao B, Zhao B, Wang J. Genome-wide transcriptome analysis of female-sterile rice ovule shed light on its abortive mechanism. PLANTA 2016; 244:1011-1028. [PMID: 27357232 DOI: 10.1007/s00425-016-2563-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/23/2016] [Indexed: 05/03/2023]
Abstract
The comprehensive transcriptome analysis of rice female-sterile line and wild-type line ovule provides an important clue for exploring the regulatory network of the formation of rice fertile female gametophyte. Ovules are the female reproductive tissues of rice (Oryza sativa L.) and play a major role in sexual reproduction. To investigate the potential mechanism of rice female gametophyte fertility, we used RNA sequencing, combined with genetic subtraction, to compare the transcriptome of the ovules of a high-frequency female-sterile line (fsv1) and a rice wild-type line (Gui 99) during ovule development. Ovules were harvested at three developmental stages: ovule containing megaspore mother cell in meiosis process (stage 1), ovule containing functional megaspore in mitosis process (stage 2), and ovule containing mature female gametophyte (stage 3). Six cDNA libraries generated a total of 42.2 million high-quality clean reads that aligned with 30,204 genes. The comparison between the fsv1 and Gui 99 ovules identified a large number of differentially expressed genes (DEGs), i.e., 45, 495, and 932 DEGs at the three ovule developmental stages, respectively. From the comparison of the two rice lines, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and MapMan analyses indicated that a large number of DEGs associated with starch and sucrose metabolism, plant hormone signal transduction, protein modification and degradation, oxidative phosphorylation, and receptor kinase. These DEGs might play roles in ovule development and fertile female gametophyte formation. Many transcription factor genes and epigenetic-related genes also exhibit different expression patterns and significantly different expression levels in two rice lines during ovule development, which might provide important information regarding the abortive mechanism of the female gametophyte in rice.
Collapse
Affiliation(s)
- Liyu Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ya Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Meiling Yu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bigang Mao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Bingran Zhao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China.
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
44
|
Hand ML, de Vries S, Koltunow AMG. A Comparison of In Vitro and In Vivo Asexual Embryogenesis. Methods Mol Biol 2016; 1359:3-23. [PMID: 26619856 DOI: 10.1007/978-1-4939-3061-6_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In plants, embryogenesis generally occurs through the sexual process of double fertilization, which involves a haploid sperm cell fusing with a haploid egg cell to ultimately give rise to a diploid embryo. Embryogenesis can also occur asexually in the absence of fertilization, both in vitro and in vivo. Somatic or gametic cells are able to differentiate into embryos in vitro following the application of plant growth regulators or stress treatments. Asexual embryogenesis also occurs naturally in some plant species in vivo, from either ovule cells as part of a process defined as apomixis, or from somatic leaf tissue in other species. In both in vitro and in vivo asexual embryogenesis, the embryo precursor cells must attain an embryogenic fate without the act of fertilization. This review compares the processes of in vitro and in vivo asexual embryogenesis including what is known regarding the genetic and epigenetic regulation of each process, and considers how the precursor cells are able to change fate and adopt an embryogenic pathway.
Collapse
Affiliation(s)
- Melanie L Hand
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture, Waite Campus, Urrbrae, South Australia
| | - Sacco de Vries
- Department of Biochemistry, University of Wageningen, Wageningen, 6703 HA, The Netherlands
| | - Anna M G Koltunow
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture, Waite Campus, Urrbrae, South Australia.
| |
Collapse
|
45
|
Abstract
Reversible histone acetylation and deacetylation at the N-terminus of histone tails play a crucial role in regulation of gene activity. Hyperacetylation of histones relaxes chromatin structure and is associated with transcriptional activation, whereas hypoacetylation of histones induces chromatin compaction and gene repression. Histone acetylation and deacetylation are catalyzed by histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. Emerging evidences revealed that plant HATs and HDACs play essential roles in regulation of gene expression in plant development and plant responses to environmental stresses. Furthermore, HATs and HDACs were shown to interact with various chromatin-remodeling factors and transcription factors involved in transcriptional regulation of multiple developmental processes.
Collapse
Affiliation(s)
- X Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - S Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - C-W Yu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - C-Y Chen
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - K Wu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
46
|
Zhang S, Zhan X, Xu X, Cui P, Zhu JK, Xia Y, Xiong L. Two domain-disrupted hda6 alleles have opposite epigenetic effects on transgenes and some endogenous targets. Sci Rep 2015; 5:17832. [PMID: 26666962 PMCID: PMC4678874 DOI: 10.1038/srep17832] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/06/2015] [Indexed: 12/22/2022] Open
Abstract
HDA6 is a RPD3-like histone deacetylase. In Arabidopsis, it mediates transgene and some endogenous target transcriptional gene silencing (TGS) via histone deacetylation and DNA methylation. Here, we characterized two hda6 mutant alleles that were recovered as second-site suppressors of the DNA demethylation mutant ros1-1. Although both alleles derepressed 35S::NPTII and RD29A::LUC in the ros1-1 background, they had distinct effects on the expression of these two transgenes. In accordance to expression profiles of two transgenes, the alleles have distinct opposite methylation profiles on two reporter gene promoters. Furthermore, both alleles could interact in vitro and in vivo with the DNA methyltransferase1 with differential interactive strength and patterns. Although these alleles accumulated different levels of repressive/active histone marks, DNA methylation but not histone modifications in the two transgene promoters was found to correlate with the level of derepression of the reporter genes between the two had6 alleles. Our study reveals that mutations in different domains of HDA6 convey different epigenetic status that in turn controls the expression of the transgenes as well as some endogenous loci.
Collapse
Affiliation(s)
- Shoudong Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China.,Division of Biological and Environmental Sciences &Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xiangqiang Zhan
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoming Xu
- College of life sciences, Nanjing Agricultural University, Nanjing, China
| | - Peng Cui
- Division of Biological and Environmental Sciences &Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China.,Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Yiji Xia
- Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Liming Xiong
- Division of Biological and Environmental Sciences &Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
47
|
Li C, Shen Y, Meeley R, McCarty DR, Tan BC. Embryo defective 14 encodes a plastid-targeted cGTPase essential for embryogenesis in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:785-799. [PMID: 26771182 DOI: 10.1111/tpj.13045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/24/2015] [Indexed: 06/05/2023]
Abstract
The embryo defective (emb) mutants in maize genetically define a unique class of loci that is required for embryogenesis but not endosperm development, allowing dissection of two developmental processes of seed formation. Through characterization of the emb14 mutant, we report here that Emb14 gene encodes a circular permuted, YqeH class GTPase protein that likely functions in 30S ribosome formation in plastids. Loss of Emb14 function in the null mutant arrests embryogenesis at the early transition stage. Emb14 was cloned by transposon tagging and was confirmed by analysis of four alleles. Subcellular localization indicated that the EMB14 is targeted to chloroplasts. Recombinant EMB14 is shown to hydrolyze GTP in vitro (Km = 2.42 ± 0.3 μm). Emb14 was constitutively expressed in all tissues examined and high level of expression was found in transition stage embryos. Comparison of emb14 and WT indicated that loss of EMB14 function severely impairs accumulation of 16S rRNA and several plastid encoded ribosomal genes. We show that an EMB14 transgene complements the pale green, slow growth phenotype conditioned by mutations in AtNOA1, a closely related YqeH GTPase of Arabidopsis. Taken together, we propose that the EMB14/AtNOA1/YqeH class GTPases function in assembly of the 30S subunit of the chloroplast ribosome, and that this function is essential to embryogenesis in plants.
Collapse
Affiliation(s)
- Cuiling Li
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Yun Shen
- State Key Lab of Agrobiotechnology, Institute of Plant Molecular Biology and Agrobiotechnology, School of Life Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Robert Meeley
- DuPont Pioneer AgBiotech Research, Johnston, Iowa, 50131-1004, USA
| | - Donald R McCarty
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Bao-Cai Tan
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
- State Key Lab of Agrobiotechnology, Institute of Plant Molecular Biology and Agrobiotechnology, School of Life Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
48
|
Xing J, Wang T, Liu Z, Xu J, Yao Y, Hu Z, Peng H, Xin M, Yu F, Zhou D, Ni Z. GENERAL CONTROL NONREPRESSED PROTEIN5-Mediated Histone Acetylation of FERRIC REDUCTASE DEFECTIVE3 Contributes to Iron Homeostasis in Arabidopsis. PLANT PHYSIOLOGY 2015; 168:1309-20. [PMID: 26002909 PMCID: PMC4528745 DOI: 10.1104/pp.15.00397] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/15/2015] [Indexed: 05/19/2023]
Abstract
Iron homeostasis is essential for plant growth and development. Here, we report that a mutation in GENERAL CONTROL NONREPRESSED PROTEIN5 (GCN5) impaired iron translocation from the root to the shoot in Arabidopsis (Arabidopsis thaliana). Illumina high-throughput sequencing revealed 879 GCN5-regulated candidate genes potentially involved in iron homeostasis. Chromatin immunoprecipitation assays indicated that five genes (At3G08040, At2G01530, At2G39380, At2G47160, and At4G05200) are direct targets of GCN5 in iron homeostasis regulation. Notably, GCN5-mediated acetylation of histone 3 lysine 9 and histone 3 lysine 14 of FERRIC REDUCTASE DEFECTIVE3 (FRD3) determined the dynamic expression of FRD3. Consistent with the function of FRD3 as a citrate efflux protein, the iron retention defect in gcn5 was rescued and fertility was partly restored by overexpressing FRD3. Moreover, iron retention in gcn5 roots was significantly reduced by the exogenous application of citrate. Collectively, these data suggest that GCN5 plays a critical role in FRD3-mediated iron homeostasis. Our results provide novel insight into the chromatin-based regulation of iron homeostasis in Arabidopsis.
Collapse
Affiliation(s)
- Jiewen Xing
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement (J.Xi., T.W., Z.L., Y.Y., Z.H., H.P., M.X., Z.N.), and College of Resources and Environmental Sciences (J.Xu, F.Y.), China Agricultural University, Beijing 100193, China;National Plant Gene Research Centre, Beijing 100193, China (J.Xi., T.W., Z.L., Y.Y., Z.H., H.P., M.X., Z.N.); andInstitut de Biologie des Plantes, Unité Mixte de Recherche 8618, Université Paris Sud, 91405 Orsay, France (D.Z.)
| | - Tianya Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement (J.Xi., T.W., Z.L., Y.Y., Z.H., H.P., M.X., Z.N.), and College of Resources and Environmental Sciences (J.Xu, F.Y.), China Agricultural University, Beijing 100193, China;National Plant Gene Research Centre, Beijing 100193, China (J.Xi., T.W., Z.L., Y.Y., Z.H., H.P., M.X., Z.N.); andInstitut de Biologie des Plantes, Unité Mixte de Recherche 8618, Université Paris Sud, 91405 Orsay, France (D.Z.)
| | - Zhenshan Liu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement (J.Xi., T.W., Z.L., Y.Y., Z.H., H.P., M.X., Z.N.), and College of Resources and Environmental Sciences (J.Xu, F.Y.), China Agricultural University, Beijing 100193, China;National Plant Gene Research Centre, Beijing 100193, China (J.Xi., T.W., Z.L., Y.Y., Z.H., H.P., M.X., Z.N.); andInstitut de Biologie des Plantes, Unité Mixte de Recherche 8618, Université Paris Sud, 91405 Orsay, France (D.Z.)
| | - Jianqin Xu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement (J.Xi., T.W., Z.L., Y.Y., Z.H., H.P., M.X., Z.N.), and College of Resources and Environmental Sciences (J.Xu, F.Y.), China Agricultural University, Beijing 100193, China;National Plant Gene Research Centre, Beijing 100193, China (J.Xi., T.W., Z.L., Y.Y., Z.H., H.P., M.X., Z.N.); andInstitut de Biologie des Plantes, Unité Mixte de Recherche 8618, Université Paris Sud, 91405 Orsay, France (D.Z.)
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement (J.Xi., T.W., Z.L., Y.Y., Z.H., H.P., M.X., Z.N.), and College of Resources and Environmental Sciences (J.Xu, F.Y.), China Agricultural University, Beijing 100193, China;National Plant Gene Research Centre, Beijing 100193, China (J.Xi., T.W., Z.L., Y.Y., Z.H., H.P., M.X., Z.N.); andInstitut de Biologie des Plantes, Unité Mixte de Recherche 8618, Université Paris Sud, 91405 Orsay, France (D.Z.)
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement (J.Xi., T.W., Z.L., Y.Y., Z.H., H.P., M.X., Z.N.), and College of Resources and Environmental Sciences (J.Xu, F.Y.), China Agricultural University, Beijing 100193, China;National Plant Gene Research Centre, Beijing 100193, China (J.Xi., T.W., Z.L., Y.Y., Z.H., H.P., M.X., Z.N.); andInstitut de Biologie des Plantes, Unité Mixte de Recherche 8618, Université Paris Sud, 91405 Orsay, France (D.Z.)
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement (J.Xi., T.W., Z.L., Y.Y., Z.H., H.P., M.X., Z.N.), and College of Resources and Environmental Sciences (J.Xu, F.Y.), China Agricultural University, Beijing 100193, China;National Plant Gene Research Centre, Beijing 100193, China (J.Xi., T.W., Z.L., Y.Y., Z.H., H.P., M.X., Z.N.); andInstitut de Biologie des Plantes, Unité Mixte de Recherche 8618, Université Paris Sud, 91405 Orsay, France (D.Z.)
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement (J.Xi., T.W., Z.L., Y.Y., Z.H., H.P., M.X., Z.N.), and College of Resources and Environmental Sciences (J.Xu, F.Y.), China Agricultural University, Beijing 100193, China;National Plant Gene Research Centre, Beijing 100193, China (J.Xi., T.W., Z.L., Y.Y., Z.H., H.P., M.X., Z.N.); andInstitut de Biologie des Plantes, Unité Mixte de Recherche 8618, Université Paris Sud, 91405 Orsay, France (D.Z.)
| | - Futong Yu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement (J.Xi., T.W., Z.L., Y.Y., Z.H., H.P., M.X., Z.N.), and College of Resources and Environmental Sciences (J.Xu, F.Y.), China Agricultural University, Beijing 100193, China;National Plant Gene Research Centre, Beijing 100193, China (J.Xi., T.W., Z.L., Y.Y., Z.H., H.P., M.X., Z.N.); andInstitut de Biologie des Plantes, Unité Mixte de Recherche 8618, Université Paris Sud, 91405 Orsay, France (D.Z.)
| | - Daoxiu Zhou
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement (J.Xi., T.W., Z.L., Y.Y., Z.H., H.P., M.X., Z.N.), and College of Resources and Environmental Sciences (J.Xu, F.Y.), China Agricultural University, Beijing 100193, China;National Plant Gene Research Centre, Beijing 100193, China (J.Xi., T.W., Z.L., Y.Y., Z.H., H.P., M.X., Z.N.); andInstitut de Biologie des Plantes, Unité Mixte de Recherche 8618, Université Paris Sud, 91405 Orsay, France (D.Z.)
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement (J.Xi., T.W., Z.L., Y.Y., Z.H., H.P., M.X., Z.N.), and College of Resources and Environmental Sciences (J.Xu, F.Y.), China Agricultural University, Beijing 100193, China;National Plant Gene Research Centre, Beijing 100193, China (J.Xi., T.W., Z.L., Y.Y., Z.H., H.P., M.X., Z.N.); andInstitut de Biologie des Plantes, Unité Mixte de Recherche 8618, Université Paris Sud, 91405 Orsay, France (D.Z.)
| |
Collapse
|
49
|
Schmidt A, Schmid MW, Grossniklaus U. Plant germline formation: common concepts and developmental flexibility in sexual and asexual reproduction. Development 2015; 142:229-41. [PMID: 25564620 DOI: 10.1242/dev.102103] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The life cycle of flowering plants alternates between two heteromorphic generations: a diploid sporophytic generation and a haploid gametophytic generation. During the development of the plant reproductive lineages - the germlines - typically, single sporophytic (somatic) cells in the flower become committed to undergo meiosis. The resulting spores subsequently develop into highly polarized and differentiated haploid gametophytes that harbour the gametes. Recent studies have provided insights into the genetic basis and regulatory programs underlying cell specification and the acquisition of reproductive fate during both sexual reproduction and asexual (apomictic) reproduction. As we review here, these recent advances emphasize the importance of transcriptional, translational and post-transcriptional regulation, and the role of epigenetic regulatory pathways and hormonal activity.
Collapse
Affiliation(s)
- Anja Schmidt
- Institute of Plant Biology and Zürich-Basel Plant Science Centre, University of Zürich, Zollikerstrasse 107, Zürich CH-8008, Switzerland
| | - Marc W Schmid
- Institute of Plant Biology and Zürich-Basel Plant Science Centre, University of Zürich, Zollikerstrasse 107, Zürich CH-8008, Switzerland
| | - Ueli Grossniklaus
- Institute of Plant Biology and Zürich-Basel Plant Science Centre, University of Zürich, Zollikerstrasse 107, Zürich CH-8008, Switzerland
| |
Collapse
|
50
|
Xu J, Xu H, Liu Y, Wang X, Xu Q, Deng X. Genome-wide identification of sweet orange (Citrus sinensis) histone modification gene families and their expression analysis during the fruit development and fruit-blue mold infection process. FRONTIERS IN PLANT SCIENCE 2015; 6:607. [PMID: 26300904 PMCID: PMC4525380 DOI: 10.3389/fpls.2015.00607] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/23/2015] [Indexed: 05/20/2023]
Abstract
In eukaryotes, histone acetylation and methylation have been known to be involved in regulating diverse developmental processes and plant defense. These histone modification events are controlled by a series of histone modification gene families. To date, there is no study regarding genome-wide characterization of histone modification related genes in citrus species. Based on the two recent sequenced sweet orange genome databases, a total of 136 CsHMs (Citrus sinensis histone modification genes), including 47 CsHMTs (histone methyltransferase genes), 23 CsHDMs (histone demethylase genes), 50 CsHATs (histone acetyltransferase genes), and 16 CsHDACs (histone deacetylase genes) were identified. These genes were categorized to 11 gene families. A comprehensive analysis of these 11 gene families was performed with chromosome locations, phylogenetic comparison, gene structures, and conserved domain compositions of proteins. In order to gain an insight into the potential roles of these genes in citrus fruit development, 42 CsHMs with high mRNA abundance in fruit tissues were selected to further analyze their expression profiles at six stages of fruit development. Interestingly, a numbers of genes were expressed highly in flesh of ripening fruit and some of them showed the increasing expression levels along with the fruit development. Furthermore, we analyzed the expression patterns of all 136 CsHMs response to the infection of blue mold (Penicillium digitatum), which is the most devastating pathogen in citrus post-harvest process. The results indicated that 20 of them showed the strong alterations of their expression levels during the fruit-pathogen infection. In conclusion, this study presents a comprehensive analysis of the histone modification gene families in sweet orange and further elucidates their behaviors during the fruit development and the blue mold infection responses.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiuxin Deng
- *Correspondence: Xiuxin Deng, Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China,
| |
Collapse
|