1
|
Jeong JH, Jeon EY, Hwang MK, Song YJ, Kim JY. Development of super-infective ternary vector systems for enhancing the Agrobacterium-mediated plant transformation and genome editing efficiency. HORTICULTURE RESEARCH 2024; 11:uhae187. [PMID: 39247884 PMCID: PMC11377189 DOI: 10.1093/hr/uhae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/01/2024] [Indexed: 09/10/2024]
Abstract
Agrobacterium-mediated transformation remains a cornerstone of plant biology, fueling advancements in molecular genetics, new genomic techniques (NGTs), and the biotech industry. However, recalcitrant crops and technical hurdles persist as bottlenecks. The goal was to develop super-infective ternary vector systems that integrate a novel salicylic acid-degrading enzyme, GABA, and ethylene-degrading enzymes, targeting the transformation of crops by neutralizing plant defense system on Agrobacterium. Firstly, both the effect and activity of introducing enzymes were validated in EHA105, an important Agrobacterium strain. Our study demonstrates that all ternary vector (Tv) system variants significantly enhance reporter expression in transient assays with Nicotiana benthamiana and Cannabis sativa. Specifically, incorporating a constitutive virG mutation with novel enzyme combinations increased GFP and RUBY expression in C. sativa by >5-fold and 13-fold, respectively. The Tv system, combined with a geminivirus replicon, markedly boosted GUS gene expression in tomato, enhancing genome editing efficiency. Notably, compared to controls, Tv-VS demonstrated up to 18-fold and 4.5-fold increases in genome editing efficiency in C. sativa and tomato, respectively. Additionally, stable transformation rates in tomato and Arabidopsis improved significantly, with Tv-VS showing a remarkable 2.5-fold increase in transformation efficiency compared to control strains. The research marks notable progress in Agrobacterium-mediated plant transformation. The innovative ternary vectors overcome plant defense mechanisms, enabling genetic manipulation in previously challenging plant species. This development is anticipated to broaden the applications of plant genetic engineering, contributing to advancements in crop genome editing.
Collapse
Affiliation(s)
- Jin-Hee Jeong
- Nulla Bio Inc., 501 Jinjudaero, Jinju 660-701, Republic of Korea
- Division of Applied Life Science (BK21 Four program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Eun-Young Jeon
- Nulla Bio Inc., 501 Jinjudaero, Jinju 660-701, Republic of Korea
- Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Min Ki Hwang
- Division of Applied Life Science (BK21 Four program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Young Jong Song
- Division of Applied Life Science (BK21 Four program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Jae-Yean Kim
- Nulla Bio Inc., 501 Jinjudaero, Jinju 660-701, Republic of Korea
- Division of Applied Life Science (BK21 Four program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
- Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| |
Collapse
|
2
|
Shivhare R, Asif MH, Lata C. Comparative transcriptome analysis reveals the genes and pathways involved in terminal drought tolerance in pearl millet. PLANT MOLECULAR BIOLOGY 2020; 103:639-652. [PMID: 32430635 DOI: 10.1007/s11103-020-01015-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/11/2020] [Indexed: 05/09/2023]
Affiliation(s)
- Radha Shivhare
- CSIR- National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mehar H Asif
- CSIR- National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Charu Lata
- CSIR- National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- CSIR-National Institute of Science Communication and Information Resources, 14 Satsang Vihar Marg, New Delhi, 110067, India.
| |
Collapse
|
3
|
Ethylene is Involved in Symptom Development and Ribosomal Stress of Tomato Plants upon Citrus Exocortis Viroid Infection. PLANTS 2020; 9:plants9050582. [PMID: 32370199 PMCID: PMC7285140 DOI: 10.3390/plants9050582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 01/17/2023]
Abstract
Citrus exocortis viroid (CEVd) is known to cause different symptoms in citrus trees, and its mechanism of infection has been studied in tomato as an experimental host, producing ribosomal stress on these plants. Some of the symptoms caused by CEVd in tomato plants resemble those produced by the phytohormone ethylene. The present study is focused on elucidating the relationship between CEVd infection and ethylene on disease development. To this purpose, the ethylene insensitive Never ripe (Nr) tomato mutants were infected with CEVd, and several aspects such as susceptibility to infection, defensive response, ethylene biosynthesis and ribosomal stress were studied. Phenotypic characterization revealed higher susceptibility to CEVd in these mutants, which correlated with higher expression levels of both defense and ethylene biosynthesis genes, as well as the ribosomal stress marker SlNAC082. In addition, Northern blotting revealed compromised ribosome biogenesis in all CEVd infected plants, particularly in Nr mutants. Our results indicate a higher ethylene biosynthesis in Nr mutants and suggest an important role of this phytohormone in disease development and ribosomal stress caused by viroid infection.
Collapse
|
4
|
Ullrich CI, Aloni R, Saeed MEM, Ullrich W, Efferth T. Comparison between tumors in plants and human beings: Mechanisms of tumor development and therapy with secondary plant metabolites. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:153081. [PMID: 31568956 DOI: 10.1016/j.phymed.2019.153081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Human tumors are still a major threat to human health and plant tumors negatively affect agricultural yields. Both areas of research are developing largely independent of each other. Treatment of both plant and human tumors remains unsatisfactory and novel therapy options are urgently needed. HYPOTHESIS The concept of this paper is to compare cellular and molecular mechanisms of tumor development in plants and human beings and to explore possibilities to develop novel treatment strategies based on bioactive secondary plant metabolites. The interdisciplinary discourse may unravel commonalities and differences in the biology of plant and human tumors as basis for rational drug development. RESULTS Plant tumors and galls develop upon infection by bacteria (e.g. Agrobacterium tumefaciens and A. vitis, which harbor oncogenic T-DNA) and by insects (e.g. gall wasps, aphids). Plant tumors are benign, i.e. they usually do not ultimately kill their host, but they can lead to considerable economic damage due to reduced crop yields of cultivated plants. Human tumors develop by biological carcinogenesis (i.e. viruses and other infectious agents), chemical carcinogenesis (anthropogenic and non-anthropogenic environmental toxic xenobiotics) and physical carcinogenesis (radioactivity, UV-radiation). The majority of human tumors are malignant with lethal outcome. Although treatments for both plant and human tumors are available (antibiotics and apathogenic bacterial strains for plant tumors, cytostatic drugs for human tumors), treatment successes are non-satisfactory, because of drug resistance and the severe adverse side effects. In human beings, attacks by microbes are repelled by cellular immunity (i.e. innate and acquired immune systems). Plants instead display chemical defense mechanisms, whereby constitutively expressed phytoanticipin compounds compare to the innate human immune system, the acquired human immune system compares to phytoalexins, which are induced by appropriate biotic or abiotic stressors. Some chemical weapons of this armory of secondary metabolites are also active against plant galls. There is a mutual co-evolution between plant defense and animals/human beings, which was sometimes referred to as animal plant warfare. As a consequence, hepatic phase I-III metabolization and excretion developed in animals and human beings to detoxify harmful phytochemicals. On the other hand, plants invented "pro-drugs" during evolution, which are activated and toxified in animals by this hepatic biotransformation system. Recent efforts focus on phytochemicals that specifically target tumor-related mechanisms and proteins, e.g. angiogenic or metastatic inhibitors, stimulators of the immune system to improve anti-tumor immunity, specific cell death or cancer stem cell inhibitors, inhibitors of DNA damage and epigenomic deregulation, specific inhibitors of driver genes of carcinogenesis (e.g. oncogenes), inhibitors of multidrug resistance (i.e. ABC transporter efflux inhibitors), secondary metabolites against plant tumors. CONCLUSION The exploitation of bioactive secondary metabolites to treat plant or human tumors bears a tremendous therapeutic potential. Although there are fundamental differences between human and plant tumors, either isolated phytochemicals and their (semi)synthetic derivatives or chemically defined and standardized plant extracts may offer new therapy options to decrease human tumor incidence and mortality as well as to increase agricultural yields by fighting crown galls.
Collapse
Affiliation(s)
- Cornelia I Ullrich
- Department of Biology, Darmstadt University of Technology, Schnittspahnstr. 3-5, Darmstadt 64287, Germany
| | - Roni Aloni
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mohamed E M Saeed
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz 55128, Germany
| | - Wolfram Ullrich
- Department of Biology, Darmstadt University of Technology, Schnittspahnstr. 3-5, Darmstadt 64287, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz 55128, Germany.
| |
Collapse
|
5
|
Chandrasekaran M, Lee JM, Ye BM, Jung SM, Kim J, Kim JW, Chun SC. Isolation and Characterization of Avirulent and Virulent Strains of Agrobacterium tumefaciens from Rose Crown Gall in Selected Regions of South Korea. PLANTS (BASEL, SWITZERLAND) 2019; 8:E452. [PMID: 31731525 PMCID: PMC6918265 DOI: 10.3390/plants8110452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/18/2019] [Accepted: 10/24/2019] [Indexed: 01/22/2023]
Abstract
Agrobacterium tumefaciens is a plant pathogen that causes crown gall disease in various hosts across kingdoms. In the present study, five regions (Wonju, Jincheon, Taean, Suncheon, and Kimhae) of South Korea were chosen to isolate A. tumefaciens strains on roses and assess their opine metabolism (agrocinopine, nopaline, and octopine) genes based on PCR amplification. These isolated strains were confirmed as Agrobacterium using morphological, biochemical, and 16S rDNA analyses; and pathogenicity tests, including the growth characteristics of the white colony appearance on ammonium sulfate glucose minimal media, enzyme activities, 16S rDNA sequence alignment, and pathogenicity on tomato (Solanum lycopersicum). Carbon utilization, biofilm formation, tumorigenicity, and motility assays were performed to demarcate opine metabolism genes. Of 87 isolates, 18 pathogenic isolates were affirmative for having opine plasmid genes. Most of these isolates showed the presence of an agrocinopine type of carbon utilization. Two isolates showed nopaline types. However, none of these isolates showed octopine metabolic genes. The objectives of the present study were to isolate and confirm virulent strains from rose crown galls grown in the different regions of Korea and characterize their physiology and opine types. This is the first report to describe the absence of the octopine type inciting the crown gall disease of rose in South Korea.
Collapse
Affiliation(s)
- Murugesan Chandrasekaran
- Department of Food Science and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Korea;
| | - Jong Moon Lee
- Department of Environmental Health Science, Konkuk University, Gwangjin-gu, Seoul-143 701, Korea; (J.M.L.); (B.-M.Y.); (S.M.J.)
| | - Bee-Moon Ye
- Department of Environmental Health Science, Konkuk University, Gwangjin-gu, Seoul-143 701, Korea; (J.M.L.); (B.-M.Y.); (S.M.J.)
| | - So Mang Jung
- Department of Environmental Health Science, Konkuk University, Gwangjin-gu, Seoul-143 701, Korea; (J.M.L.); (B.-M.Y.); (S.M.J.)
| | - Jinwoo Kim
- Institute of Agriculture & Life Science and Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea;
| | - Jin-Won Kim
- Department of Environmental Horticulture, University of Seoul, Seoul 02504, Korea;
| | - Se Chul Chun
- Department of Environmental Health Science, Konkuk University, Gwangjin-gu, Seoul-143 701, Korea; (J.M.L.); (B.-M.Y.); (S.M.J.)
| |
Collapse
|
6
|
Meyer T, Thiour-Mauprivez C, Wisniewski-Dyé F, Kerzaon I, Comte G, Vial L, Lavire C. Ecological Conditions and Molecular Determinants Involved in Agrobacterium Lifestyle in Tumors. FRONTIERS IN PLANT SCIENCE 2019; 10:978. [PMID: 31417593 PMCID: PMC6683767 DOI: 10.3389/fpls.2019.00978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/11/2019] [Indexed: 05/07/2023]
Abstract
The study of pathogenic agents in their natural niches allows for a better understanding of disease persistence and dissemination. Bacteria belonging to the Agrobacterium genus are soil-borne and can colonize the rhizosphere. These bacteria are also well known as phytopathogens as they can cause tumors (crown gall disease) by transferring a DNA region (T-DNA) into a wide range of plants. Most reviews on Agrobacterium are focused on virulence determinants, T-DNA integration, bacterial and plant factors influencing the efficiency of genetic transformation. Recent research papers have focused on the plant tumor environment on the one hand, and genetic traits potentially involved in bacterium-plant interactions on the other hand. The present review gathers current knowledge about the special conditions encountered in the tumor environment along with the Agrobacterium genetic determinants putatively involved in bacterial persistence inside a tumor. By integrating recent metabolomic and transcriptomic studies, we describe how tumors develop and how Agrobacterium can maintain itself in this nutrient-rich but stressful and competitive environment.
Collapse
Affiliation(s)
- Thibault Meyer
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| | - Clémence Thiour-Mauprivez
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
- Biocapteurs-Analyses-Environment, Universite de Perpignan Via Domitia, Perpignan, France
- Laboratoire de Biodiversite et Biotechnologies Microbiennes, USR 3579 Sorbonne Universites (UPMC) Paris 6 et CNRS Observatoire Oceanologique, Paris, France
| | | | - Isabelle Kerzaon
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| | - Gilles Comte
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| | - Ludovic Vial
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| | - Céline Lavire
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| |
Collapse
|
7
|
Dolzblasz A, Banasiak A, Vereecke D. Neovascularization during leafy gall formation on Arabidopsis thaliana upon Rhodococcus fascians infection. PLANTA 2018; 247:215-228. [PMID: 28942496 DOI: 10.1007/s00425-017-2778-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
Extensive de novo vascularization of leafy galls emerging upon Rhodococcus fascians infection is achieved by fascicular/interfascicular cambium activity and transdifferentiation of parenchyma cells correlated with increased auxin signaling. A leafy gall consisting of fully developed yet growth-inhibited shoots, induced by the actinomycete Rhodococcus fascians, differs in structure compared to the callus-like galls induced by other bacteria. To get insight into the vascular development accompanying the emergence of the leafy gall, the anatomy of infected axillary regions of the inflorescence stem of wild-type Arabidopsis thaliana accession Col-0 plants and the auxin response in pDR5:GUS-tagged plants were followed in time. Based on our observations, three phases can be discerned during vascularization of the symptomatic tissue. First, existing fascicular cambium becomes activated and interfascicular cambium is formed giving rise to secondary vascular elements in a basipetal direction below the infection site in the main stem and in an acropetal direction in the entire side branch. Then, parenchyma cells in the region between both stems transdifferentiate acropetally towards the surface of the developing symptomatic tissue leading to the formation of xylem and vascularize the hyperplasia as they expand. Finally, parenchyma cells in the developing gall also transdifferentiate to vascular elements without any specific direction resulting in excessive vasculature disorderly distributed in the leafy gall. Prior to any apparent anatomical changes, a strong auxin response is mounted, implying that auxin is the signal that controls the vascular differentiation induced by the infection. To conclude, we propose the "sidetracking gall hypothesis" as we discuss the mechanisms driving the formation of superfluous vasculature of the emerging leafy gall.
Collapse
Affiliation(s)
- Alicja Dolzblasz
- Department of Plant Developmental Biology, Faculty of Biological Sciences, Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland.
| | - Alicja Banasiak
- Department of Plant Developmental Biology, Faculty of Biological Sciences, Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | - Danny Vereecke
- Department of Applied Biosciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
8
|
Melnyk CW. Connecting the plant vasculature to friend or foe. THE NEW PHYTOLOGIST 2017; 213:1611-1617. [PMID: 27716935 DOI: 10.1111/nph.14218] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/13/2016] [Indexed: 05/26/2023]
Abstract
Contents 1611 I. 1611 II. 1612 III. 1612 IV. 1614 V. 1614 VI. 1614 VII. 1615 VIII. 1616 1616 References 1616 SUMMARY: The plant vasculature transports water, sugars, hormones, RNAs and proteins. Such critical functions need to be protected from attack by pests and pathogens or from damage by wounding. Plants have developed mechanisms to repair vasculature when such protections fail and to even initiate new vascular connections to tissues supporting symbionts. The developmental phenomena underlying vascular repair and rewiring are therefore critical for horticultural grafting, for plant infection and for mutualist associations with rhizosphere microbes. Despite the biological and economic interest, we are only beginning to understand how plants connect and reconnect their vasculature to a wide variety of organisms. Here, I discuss recent work and future prospects for this emerging field.
Collapse
Affiliation(s)
- Charles W Melnyk
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK
| |
Collapse
|
9
|
Jung SM, Hur YY, Preece JE, Fiehn O, Kim YH. Profiling of Disease-Related Metabolites in Grapevine Internode Tissues Infected with Agrobacterium vitis. THE PLANT PATHOLOGY JOURNAL 2016; 32:489-499. [PMID: 27904455 PMCID: PMC5117857 DOI: 10.5423/ppj.ft.08.2016.0163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 06/06/2023]
Abstract
Green shoot cuttings of 10 different grapevine species were inoculated with Agrobacterium vitis to find disease-related metabolites in the grapevine. Crown galls formed 60 days after inoculation varied in gall severity (GS) evaluated by gall incidence (GI) and gall diameter (GD), which were classified into three response types as RR (low GI and small GD), SR (high GI and small GD), and SS (high GI and large GD), corresponding to resistant, moderately resistant, and susceptible responses, respectively. In this, 4, 4, and 2 Vitis species were classified into RR, SR, and SS, respectively. Gas chromatography mass spectrometry (GC-MS) analysis of the grapevine stem metabolites with A. vitis infection showed 134 metabolites in various compound classes critically occurred, which were differentially clustered with the response types by the principal component analysis. Multivariate analysis of the metabolite profile revealed that 11 metabolites increased significantly in relation to the response types, mostly at post-inoculation stages, more prevalently (8 metabolites) at two days after inoculation than other stages, and more related to SS (7 metabolites) than RR (3 metabolites) or SR (one metabolite). This suggests most of the disease-related metabolites may be rarely pre-existing but mostly induced by pathogen infection largely for facilitating gall development except stilbene compound resveratrol, a phytoalexin that may be involved in the resistance response. All of these aspects may be used for the selection of resistant grapevine cultivars and their rootstocks for the control of the crown gall disease of the grapevine.
Collapse
Affiliation(s)
- Sung-Min Jung
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365,
Korea
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Youn-Young Hur
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365,
Korea
| | - John E. Preece
- National Clonal Germplasm Repository, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Davis, CA 95616,
USA
| | - Oliver Fiehn
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, CA 95616,
USA
| | - Young-Ho Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
10
|
Nonaka S, Ezura H. Plant-Agrobacterium interaction mediated by ethylene and super-Agrobacterium conferring efficient gene transfer. FRONTIERS IN PLANT SCIENCE 2014; 5:681. [PMID: 25520733 PMCID: PMC4253739 DOI: 10.3389/fpls.2014.00681] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/15/2014] [Indexed: 05/23/2023]
Abstract
Agrobacterium tumefaciens has a unique ability to transfer genes into plant genomes. This ability has been utilized for plant genetic engineering. However, the efficiency is not sufficient for all plant species. Several studies have shown that ethylene decreased the Agrobacterium-mediated transformation frequency. Thus, A. tumefaciens with an ability to suppress ethylene evolution would increase the efficiency of Agrobacterium-mediated transformation. Some studies showed that plant growth-promoting rhizobacteria (PGPR) can reduce ethylene levels in plants through 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, which cleaves the ethylene precursor ACC into α-ketobutyrate and ammonia, resulting in reduced ethylene production. The whole genome sequence data showed that A. tumefaciens does not possess an ACC deaminase gene in its genome. Therefore, providing ACC deaminase activity to the bacteria would improve gene transfer. As expected, A. tumefaciens with ACC deaminase activity, designated as super-Agrobacterium, could suppress ethylene evolution and increase the gene transfer efficiency in several plant species. In this review, we summarize plant-Agrobacterium interactions and their applications for improving Agrobacterium-mediated genetic engineering techniques via super-Agrobacterium.
Collapse
Affiliation(s)
| | - Hiroshi Ezura
- *Correspondence: Hiroshi Ezura, Gene Research Center, Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan e-mail:
| |
Collapse
|
11
|
Mouekouba LDO, Zhang L, Guan X, Chen X, Chen H, Zhang J, Zhang J, Li J, Yang Y, Wang A. Analysis of Clonostachys rosea-induced resistance to tomato gray mold disease in tomato leaves. PLoS One 2014; 9:e102690. [PMID: 25061981 PMCID: PMC4111289 DOI: 10.1371/journal.pone.0102690] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/22/2014] [Indexed: 11/17/2022] Open
Abstract
Tomato gray mold disease, caused by Botrytis cinerea, is a serious disease in tomato. Clonostachys rosea is an antagonistic microorganism to B. cinerea. To investigate the induced resistance mechanism of C. rosea, we examined the effects of these microorganisms on tomato leaves, along with changes in the activities of three defense enzymes (PAL, PPO, GST), second messengers (NO, H2O2, O2(-)) and phytohormones (IAA, ABA, GA3, ZT, MeJA, SA and C2H4). Compared to the control, all treatments induced higher levels of PAL, PPO and GST activity in tomato leaves and increased NO, SA and GA3 levels. The expression of WRKY and MAPK, two important transcription factors in plant disease resistance, was upregulated in C. rosea- and C. rosea plus B. cinerea-treated samples. Two-dimensional gel electrophoresis analysis showed that two abundant proteins were present in the C. rosea plus B. cinerea-treated samples but not in the other samples. These proteins were determined (by mass spectrum analysis) to be LEXYL2 (β-xylosidase) and ATP synthase CF1 alpha subunit. Therefore, C. rosea plus B. cinerea treatment induces gray mold resistance in tomato. This study provides a basis for elucidating the mechanism of C. rosea as a biocontrol agent.
Collapse
Affiliation(s)
- Liana Dalcantara Ongouya Mouekouba
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, PR China
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
- College of Life Sciences, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Lili Zhang
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Xin Guan
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Xiuling Chen
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Hongyu Chen
- College of Life Sciences, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Jian Zhang
- Alberta Innovates-Technology Futures, Vegreville, Alberta, Canada
| | - Junfeng Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Jingfu Li
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Yijun Yang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Aoxue Wang
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
- College of Life Sciences, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| |
Collapse
|
12
|
Gohlke J, Deeken R. Plant responses to Agrobacterium tumefaciens and crown gall development. FRONTIERS IN PLANT SCIENCE 2014; 5:155. [PMID: 24795740 PMCID: PMC4006022 DOI: 10.3389/fpls.2014.00155] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/02/2014] [Indexed: 05/17/2023]
Abstract
Agrobacterium tumefaciens causes crown gall disease on various plant species by introducing its T-DNA into the genome. Therefore, Agrobacterium has been extensively studied both as a pathogen and an important biotechnological tool. The infection process involves the transfer of T-DNA and virulence proteins into the plant cell. At that time the gene expression patterns of host plants differ depending on the Agrobacterium strain, plant species and cell-type used. Later on, integration of the T-DNA into the plant host genome, expression of the encoded oncogenes, and increase in phytohormone levels induce a fundamental reprogramming of the transformed cells. This results in their proliferation and finally formation of plant tumors. The process of reprogramming is accompanied by altered gene expression, morphology and metabolism. In addition to changes in the transcriptome and metabolome, further genome-wide ("omic") approaches have recently deepened our understanding of the genetic and epigenetic basis of crown gall tumor formation. This review summarizes the current knowledge about plant responses in the course of tumor development. Special emphasis is placed on the connection between epigenetic, transcriptomic, metabolomic, and morphological changes in the developing tumor. These changes not only result in abnormally proliferating host cells with a heterotrophic and transport-dependent metabolism, but also cause differentiation and serve as mechanisms to balance pathogen defense and adapt to abiotic stress conditions, thereby allowing the coexistence of the crown gall and host plant.
Collapse
Affiliation(s)
- Jochen Gohlke
- School of Plant Sciences, University of ArizonaTucson, AZ, USA
| | - Rosalia Deeken
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of WuerzburgWuerzburg, Germany
- *Correspondence: Rosalia Deeken, Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, Julius-von-Sachs-Platz 2, 97082 Wuerzburg, Germany e-mail:
| |
Collapse
|
13
|
Aloni R. Role of hormones in controlling vascular differentiation and the mechanism of lateral root initiation. PLANTA 2013; 238:819-30. [PMID: 23835810 DOI: 10.1007/s00425-013-1927-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 06/28/2013] [Indexed: 05/21/2023]
Abstract
The vascular system in plants is induced and controlled by streams of inductive hormonal signals. Auxin produced in young leaves is the primary controlling signal in vascular differentiation. Its polar and non-polar transport pathways and major controlling mechanisms are clarified. Ethylene produced in differentiating protoxylem vessels is the signal that triggers lateral root initiation, while tumor-induced ethylene is a limiting and controlling factor of crown gall development and its vascular differentiation. Gibberellin produced in mature leaves moves non-polarly and promotes elongation, regulates cambium activity and induces long fibers. Cytokinin from the root cap moves upward to promote cambial activity and stimulate shoot growth and branching, while strigolactone from the root inhibits branching. Furthermore, the role of the hormonal signals in controlling the type of differentiating vascular elements and gradients of conduit size and density, and how they regulate plant adaptation and have shaped wood evolution are elucidated.
Collapse
Affiliation(s)
- Roni Aloni
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, 69978, Tel Aviv, Israel,
| |
Collapse
|
14
|
Gohlke J, Scholz CJ, Kneitz S, Weber D, Fuchs J, Hedrich R, Deeken R. DNA methylation mediated control of gene expression is critical for development of crown gall tumors. PLoS Genet 2013; 9:e1003267. [PMID: 23408907 PMCID: PMC3567176 DOI: 10.1371/journal.pgen.1003267] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 12/04/2012] [Indexed: 11/19/2022] Open
Abstract
Crown gall tumors develop after integration of the T-DNA of virulent Agrobacterium tumefaciens strains into the plant genome. Expression of the T-DNA-encoded oncogenes triggers proliferation and differentiation of transformed plant cells. Crown gall development is known to be accompanied by global changes in transcription, metabolite levels, and physiological processes. High levels of abscisic acid (ABA) in crown galls regulate expression of drought stress responsive genes and mediate drought stress acclimation, which is essential for wild-type-like tumor growth. An impact of epigenetic processes such as DNA methylation on crown gall development has been suggested; however, it has not yet been investigated comprehensively. In this study, the methylation pattern of Arabidopsis thaliana crown galls was analyzed on a genome-wide scale as well as at the single gene level. Bisulfite sequencing analysis revealed that the oncogenes Ipt, IaaH, and IaaM were unmethylated in crown galls. Nevertheless, the oncogenes were susceptible to siRNA-mediated methylation, which inhibited their expression and subsequently crown gall growth. Genome arrays, hybridized with methylated DNA obtained by immunoprecipitation, revealed a globally hypermethylated crown gall genome, while promoters were rather hypomethylated. Mutants with reduced non-CG methylation developed larger tumors than the wild-type controls, indicating that hypermethylation inhibits plant tumor growth. The differential methylation pattern of crown galls and the stem tissue from which they originate correlated with transcriptional changes. Genes known to be transcriptionally inhibited by ABA and methylated in crown galls became promoter methylated upon treatment of A. thaliana with ABA. This suggests that the high ABA levels in crown galls may mediate DNA methylation and regulate expression of genes involved in drought stress protection. In summary, our studies provide evidence that epigenetic processes regulate gene expression, physiological processes, and the development of crown gall tumors.
Collapse
Affiliation(s)
- Jochen Gohlke
- Julius-von-Sachs-Institute, Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | - Claus-Juergen Scholz
- IZKF Laboratory for Microarray Applications, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Susanne Kneitz
- Physiological Chemistry I, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Dana Weber
- Julius-von-Sachs-Institute, Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | - Joerg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Rainer Hedrich
- Julius-von-Sachs-Institute, Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | - Rosalia Deeken
- Julius-von-Sachs-Institute, Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
- * E-mail:
| |
Collapse
|
15
|
|
16
|
Hao Y, Charles TC, Glick BR. ACC deaminase activity in avirulentAgrobacterium tumefaciensD3. Can J Microbiol 2011; 57:278-86. [PMID: 21491979 DOI: 10.1139/w11-006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Some plant-growth-promoting bacteria encode the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, which breaks down ACC, the direct precursor of ethylene biosynthesis in all higher plants, into ammonia and α-ketobutyrate and, as a result, reduces stress ethylene levels in plants caused by a wide range of biotic and abiotic stresses. It was previously shown that ACC deaminase can inhibit crown gall development induced by Agrobacterium tumefaciens and can partially protect plants from this disease. Agrobacterium tumefaciens D3 has been previously reported to contain a putative ACC deaminase structural gene (acdS) and a regulatory gene (acdR = lrpL). In the present study, it was found that A. tumefaciens D3 is an avirulent strain. ACC deaminase activity and its regulation were also characterized. Under gnotobiotic conditions, wild-type A. tumefaciens D3 was shown to be able to promote plant root elongation, while the acdS and lrpL double mutant strain A. tumefaciens D3-1 lost that ability. When co-inoculated with the virulent strain, A. tumefaciens C58, in wounded castor bean plants, both the wild-type A. tumefaciens D3 and the mutant A. tumefaciens D3-1 were found to be able to significantly inhibit crown gall development induced by A. tumefaciens C58.
Collapse
Affiliation(s)
- Youai Hao
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo,ON N2L 3G1, Canada
| | - Trevor C. Charles
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo,ON N2L 3G1, Canada
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo,ON N2L 3G1, Canada
| |
Collapse
|
17
|
Loivamäki M, Stührwohldt N, Deeken R, Steffens B, Roitsch T, Hedrich R, Sauter M. A role for PSK signaling in wounding and microbial interactions in Arabidopsis. PHYSIOLOGIA PLANTARUM 2010; 139:348-357. [PMID: 20403122 DOI: 10.1111/j.1399-3054.2010.01371.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
PSK-alpha is a disulfated peptide that acts as a growth factor in plants. PSK-alpha is derived from preproproteins which are encoded by five PSK precursor genes in Arabidopsis thaliana (L.) Heynh and is perceived by leucine-rich repeat receptor kinases. Arabidopsis has two PSK receptor genes, PSKR1 and PSKR2. Although ligand and receptor are well characterized, the biological functions of PSK signaling are not well understood. Using reporter lines and receptor knockout mutants of Arabidopsis, a role for PSK signaling in biotic interactions and in wounding was analyzed. Treatment of Arabidopsis leaves with the fungal elicitor E-Fol, or the fungal pathogens Alternaria brassicicola and Sclerotinia sclerotiorum resulted in induction of PSK2 and PSKR1 as shown by promoter:GUS analysis. Wounding of hypocotyls or leaves induced PSK3:GUS, PSK5:GUS and PSKR1:GUS expression indicating that PSK precursor genes are differentially regulated in response to specific stresses. The receptor knockout lines pskr1-3 and pskr2-1 showed significantly reduced photosynthesis in response to the fungal elicitor E-Fol which indicates that fungal defence is impaired. pskr1-3 plants further showed reduced growth of crown galls after infection with Agrobacterium tumefaciens. A role for PSK signaling in Agrobacterium tumefaciens tumor growth was supported by the finding that PSK precursor genes and PSKR1 are expressed in crown galls. Overall, the results indicate that PSK signaling may play a previously undescribed role in pathogen or herbivore interactions and is crucial for Agrobacterium-induced cell proliferation in crown gall formation.
Collapse
Affiliation(s)
- Maaria Loivamäki
- Pharmaceutical Biology, Julius-von-Sachs-Institute for Biosciences, University of Würzburg, 97082 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Lee CW, Efetova M, Engelmann JC, Kramell R, Wasternack C, Ludwig-Müller J, Hedrich R, Deeken R. Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana. THE PLANT CELL 2009; 21:2948-62. [PMID: 19794116 PMCID: PMC2768927 DOI: 10.1105/tpc.108.064576] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 09/02/2009] [Accepted: 09/10/2009] [Indexed: 05/18/2023]
Abstract
Agrobacterium tumefaciens causes crown gall disease by transferring and integrating bacterial DNA (T-DNA) into the plant genome. To examine the physiological changes and adaptations during Agrobacterium-induced tumor development, we compared the profiles of salicylic acid (SA), ethylene (ET), jasmonic acid (JA), and auxin (indole-3-acetic acid [IAA]) with changes in the Arabidopsis thaliana transcriptome. Our data indicate that host responses were much stronger toward the oncogenic strain C58 than to the disarmed strain GV3101 and that auxin acts as a key modulator of the Arabidopsis-Agrobacterium interaction. At initiation of infection, elevated levels of IAA and ET were associated with the induction of host genes involved in IAA, but not ET signaling. After T-DNA integration, SA as well as IAA and ET accumulated, but JA did not. This did not correlate with SA-controlled pathogenesis-related gene expression in the host, although high SA levels in mutant plants prevented tumor development, while low levels promoted it. Our data are consistent with a scenario in which ET and later on SA control virulence of agrobacteria, whereas ET and auxin stimulate neovascularization during tumor formation. We suggest that crosstalk among IAA, ET, and SA balances pathogen defense launched by the host and tumor growth initiated by agrobacteria.
Collapse
Affiliation(s)
- Chil-Woo Lee
- Julius-von-Sachs-Institute, Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, D-97082 Wuerzburg, Germany
| | - Marina Efetova
- Julius-von-Sachs-Institute, Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, D-97082 Wuerzburg, Germany
| | - Julia C Engelmann
- Theodor-Boveri-Institute, Department of Bioinformatics, University of Wuerzburg, D-97074 Wuerzburg, Germany
| | - Robert Kramell
- Department of Natural Product Biotechnology, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| | - Claus Wasternack
- Department of Natural Product Biotechnology, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| | - Jutta Ludwig-Müller
- Institute of Botany, Dresden University of Technology, D-01062 Dresden, Germany
| | - Rainer Hedrich
- Julius-von-Sachs-Institute, Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, D-97082 Wuerzburg, Germany
| | - Rosalia Deeken
- Julius-von-Sachs-Institute, Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, D-97082 Wuerzburg, Germany
- Address correspondence to
| |
Collapse
|
19
|
Lima JE, Benedito VA, Figueira A, Peres LEP. Callus, shoot and hairy root formation in vitro as affected by the sensitivity to auxin and ethylene in tomato mutants. PLANT CELL REPORTS 2009; 28:1169-1177. [PMID: 19484241 DOI: 10.1007/s00299-009-0718-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Accepted: 05/13/2009] [Indexed: 05/27/2023]
Abstract
We analyzed the impact of ethylene and auxin disturbances on callus, shoots and Agrobacterium rhizogenes-induced hairy root formation in tomato (Solanum lycopersicum L.). The auxin low-sensitivity dgt mutation showed little hairy root initiation, whereas the ethylene low-sensitivity Nr mutation did not differ from the control Micro-Tom cultivar. Micro-Tom and dgt hairy roots containing auxin sensitivity/biosynthesis rol and aux genes formed prominent callus onto media supplemented with cytokinin. Under the same conditions, Nr hairy roots did not form callus. Double mutants combining Rg1, a mutation conferring elevated shoot formation capacity, with either dgt or Nr produced explants that formed shoots with little callus proliferation. The presence of rol + aux genes in Rg1 hairy roots prevented shoot formation. Taken together, the results suggest that although ethylene does not affect hairy root induction, as auxin does, it may be necessary for auxin-induced callus formation in tomato. Moreover, excess auxin prevents shoot formation in Rg1.
Collapse
Affiliation(s)
- Joni Esrom Lima
- Centro de Energia Nuclear na Agricultura, USP, Av. Centenário, 303, Piracicaba, SP, 13400-970, Brazil
| | | | | | | |
Collapse
|
20
|
Mantelin S, Bhattarai KK, Kaloshian I. Ethylene contributes to potato aphid susceptibility in a compatible tomato host. THE NEW PHYTOLOGIST 2009; 183:444-456. [PMID: 19496947 DOI: 10.1111/j.1469-8137.2009.02870.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Resistance to potato aphid (Macrosiphum euphorbiae) in tomato (Solanum lycopersicum) is conferred by Mi-1. Early during both compatible and incompatible interactions, potato aphid feeding induces the expression of ethylene (ET) biosynthetic genes. Here, we used genetic and pharmacologic approaches to investigate the role of ET signaling in basal defense and Mi-1-mediated resistance to potato aphid in tomato. The effect of potato aphid infestation on ET biosynthesis in susceptible and resistant plants was assessed. Aphid bioassays were performed using plants impaired in ET biosynthesis or perception using virus-induced gene silencing, the Never ripe (Nr) mutant, and 1-methylcyclopropene (MCP) treatment. A burst of ET was observed after aphid feeding in both resistant and susceptible plants, correlated with an increase in the expression of ET biosynthetic genes. However, impairing ET signaling or biosynthesis did not compromise Mi-1-mediated resistance but it did decrease susceptibility to potato aphid in a compatible host. ET may not play a significant role in Mi-1-mediated resistance to potato aphids in tomato but modulates the host basal defense, enhancing its susceptibility to the aphid.
Collapse
Affiliation(s)
- Sophie Mantelin
- Department of Nematology, University of California, Riverside, CA 92521, USA
| | - Kishor K Bhattarai
- Department of Nematology, University of California, Riverside, CA 92521, USA
| | - Isgouhi Kaloshian
- Department of Nematology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
21
|
Kim HJ, Lynch JP, Brown KM. Ethylene insensitivity impedes a subset of responses to phosphorus deficiency in tomato and petunia. PLANT, CELL & ENVIRONMENT 2008; 31:1744-55. [PMID: 18771572 DOI: 10.1111/j.1365-3040.2008.01886.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The role of ethylene in growth and developmental responses to low phosphorus stress was evaluated using ethylene-insensitive 'Never-ripe' (Nr) tomato and etr1 petunia plants. Low phosphorus increased adventitious root formation in 'Pearson' (wild-type) tomato plants, but not in Nr, supporting a role for ethylene in adventitious root development and showing that ethylene is important for this aspect of phosphorus response. Low phosphorus reduced ethylene production by adventitious roots of both genotypes, suggesting that ethylene perception--not production--regulates carbon allocation to adventitious roots at the expense of other roots under low phosphorus stress. With the exception of its effect on adventitious rooting, Nr had positive effects on growth and biomass accumulation in tomato whereas etr1 tended to have negative effects on petunia. This was particularly evident during the recovery from transplanting, when the effective quantum yield of photosystem II of etr1 petunia grown with low phosphorus was significantly lower than 'Mitchell Diploid', suggesting that etr1 petunia plants may undergo more severe post-transplant stress at low phosphorus availability. Our results demonstrate that ethylene mediates adventitious root formation in response to phosphorus stress and plays an important role for quick recovery of plants exposed to multiple environmental stresses, i.e. transplanting and low phosphorus.
Collapse
Affiliation(s)
- Hye-Ji Kim
- Department of Horticulture, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
22
|
Yuan ZC, Haudecoeur E, Faure D, Kerr KF, Nester EW. Comparative transcriptome analysis of Agrobacterium tumefaciens in response to plant signal salicylic acid, indole-3-acetic acid and gamma-amino butyric acid reveals signalling cross-talk and Agrobacterium--plant co-evolution. Cell Microbiol 2008; 10:2339-54. [PMID: 18671824 DOI: 10.1111/j.1462-5822.2008.01215.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Agrobacterium has evolved sophisticated strategies to perceive and transduce plant-derived cues. Recent studies have found that numerous plant signals, including salicylic acid (SA), indole-3-acetic acid (IAA) and gamma-amino butyric acid (GABA), profoundly affect Agrobacterium-plant interactions. Here we determine and compare the transcriptome profiles of Agrobacterium in response to these three plant signals. Collectively, the transcription of 103, 115 and 95 genes was significantly altered by SA, IAA and GABA respectively. Both distinct cellular responses and overlapping signalling pathways were elicited by these three plant signals. Interestingly, these three plant compounds function additively to shut off the Agrobacterium virulence programme and activate the quorum-quenching machinery. Moreover, the repression of the virulence programme by SA and IAA and the inactivation of quorum-sensing signals by SA and GABA are regulated through independent pathways. Our data indicate that these plant signals, while cross-talk in plant signalling networks, also act as cross-kingdom signals and play redundant roles in tailoring Agrobacterium regulatory pathways, resulting in intensive signalling cross-talk in Agrobacterium. Our results support the notion that Agrobacterium has evolved the ability to hijack plant signals for its own benefit. The complex signalling interplay between Agrobacterium and its plant hosts reflects an exquisite co-evolutionary balance.
Collapse
Affiliation(s)
- Ze-Chun Yuan
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
23
|
Balaji V, Mayrose M, Sherf O, Jacob-Hirsch J, Eichenlaub R, Iraki N, Manulis-Sasson S, Rechavi G, Barash I, Sessa G. Tomato transcriptional changes in response to Clavibacter michiganensis subsp. michiganensis reveal a role for ethylene in disease development. PLANT PHYSIOLOGY 2008; 146:1797-809. [PMID: 18245454 PMCID: PMC2287351 DOI: 10.1104/pp.107.115188] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Clavibacter michiganensis subsp. michiganensis (Cmm) is a gram-positive actinomycete, causing bacterial wilt and canker disease in tomato (Solanum lycopersicum). Host responses to gram-positive bacteria and molecular mechanisms associated with the development of disease symptoms caused by Cmm in tomato are largely unexplored. To investigate plant responses activated during this compatible interaction, we used microarray analysis to monitor changes in host gene expression during disease development. This analysis was performed at 4 d postinoculation, when bacteria were actively multiplying and no wilt symptoms were yet visible; and at 8 d postinoculation, when bacterial growth approached saturation and typical wilt symptoms were observed. Of the 9,254 tomato genes represented on the array, 122 were differentially expressed in Cmm-infected plants, compared with mock-inoculated plants. Functional classification of Cmm-responsive genes revealed that Cmm activated typical basal defense responses in the host, including induction of defense-related genes, production and scavenging of free oxygen radicals, enhanced protein turnover, and hormone synthesis. Cmm infection also induced a subset of host genes involved in ethylene biosynthesis and response. After inoculation with Cmm, Never ripe (Nr) mutant plants, impaired in ethylene perception, and transgenic plants with reduced ethylene synthesis showed significant delay in the appearance of wilt symptoms, compared with wild-type plants. The retarded wilting in Nr plants was a specific effect of ethylene insensitivity, and was not due to altered expression of defense-related genes, reduced bacterial populations, or decreased ethylene synthesis. Taken together, our results indicate that host-derived ethylene plays an important role in regulation of the tomato susceptible response to Cmm.
Collapse
Affiliation(s)
- Vasudevan Balaji
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hao Y, Charles TC, Glick BR. ACC deaminase from plant growth-promoting bacteria affects crown gall development. Can J Microbiol 2007; 53:1291-9. [PMID: 18059561 DOI: 10.1139/w07-099] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In addition to the well-known roles of indoleacetic acid and cytokinin in crown gall formation, the plant hormone ethylene also plays an important role in this process. Many plant growth-promoting bacteria (PGPB) encode the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which can degrade ACC, the immediate precursor of ethylene in plants, to α-ketobutyrate and ammonia and thereby lower plant ethylene levels. To study the effect of ACC deaminase on crown gall development, an ACC deaminase gene from the PGPB Pseudomonas putida UW4 was introduced into Agrobacterium tumefaciens C58, so that the effect of ACC deaminase activity on tumour formation in tomato and castor bean plants could be assessed. Plants were also coinoculated with A. tumefaciens C58 and P. putida UW4 or P. putida UW4-acdS– (an ACC deaminase minus mutant strain). In both types of experiments, it was observed that the presence of ACC deaminase generally inhibited tumour development on both tomato and castor bean plants.
Collapse
Affiliation(s)
- Youai Hao
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Trevor C. Charles
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
25
|
Efetova M, Zeier J, Riederer M, Lee CW, Stingl N, Mueller M, Hartung W, Hedrich R, Deeken R. A central role of abscisic acid in drought stress protection of Agrobacterium-induced tumors on Arabidopsis. PLANT PHYSIOLOGY 2007; 145:853-62. [PMID: 17827272 PMCID: PMC2048785 DOI: 10.1104/pp.107.104851] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 08/09/2007] [Indexed: 05/17/2023]
Abstract
Crown gall tumors induced by Agrobacterium tumefaciens represent a sink that has to be provided with nutrients and water by the host plant. The lack of an intact epidermis or cuticle results in uncontrolled loss of water. However, neither the tumor nor the host plant displays wilting. This phenomenon points to drought adaptation in both tumors and the crown gall host plant. To understand the underlying molecular mechanisms of protection against desiccation the gene expression pattern of Arabidopsis (Arabidopsis thaliana) tumors was integrated with the profile of stress metabolites: Arabidopsis tumors accumulated high amounts of abscisic acid (ABA), the ethylene precursor aminocyclopropyl carboxylic acid, osmoprotectants, and form a suberized periderm-like protective layer. Suberization of the outer tumor cell layers most likely is mediated by ABA since external application of ABA induced suberization of Arabidopsis roots. However, the expression level of the classical marker genes, known to respond to drought stress and/or ABA, was lower in tumors. Instead another set of drought and/or ABA-inducible genes was more highly transcribed. Elevated transcription of several ABA-dependent aquaporin genes might indicate that ABA controls the water balance of the tumor. The retarded tumor growth on abi and aba mutant plants underlined the importance of a tumor-specific ABA signaling pathway. Taken together, we propose that ABA is an important signal for protection of tumors against desiccation and thus supports tumor development.
Collapse
Affiliation(s)
- Marina Efetova
- Department of Molecular Plant Physiology and Biophysics , Biocenter, Julius-von-Sachs-Institute, University of Wuerzburg, D-97082 Wuerzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lei H, Qi J, Song J, Yang D, Wang Y, Zhang Y, Yang J. Biosynthesis and bioactivity of trichosanthin in cultured crown gall tissues of Trichosanthes kirilowii Maximowicz. PLANT CELL REPORTS 2006; 25:1205-12. [PMID: 16758196 DOI: 10.1007/s00299-006-0187-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 05/04/2006] [Accepted: 05/19/2006] [Indexed: 05/10/2023]
Abstract
Trichosanthin (TCS) from Trichosanthes kirilowii Maximowicz (T. kirilowii) can be used to treat choriocarcinoma. In this work, we established a novel system to produce TCS in crown gall tissues of T. kirilowii infected by Agrobacterium tumefaciens C58 (A. tumefaciens). In the crown gall tissues, a nopaline synthase (NOS) gene of A. tumefaciens was identified by polymerase chain reaction (PCR), and nopaline accumulation was confirmed by a high-voltage filter paper electrophoresis. Furthermore, we optimized conditions to culture the crown gall tissues able to grow fast and produce TCS in an auxin-free medium, and found that a fungal elicitor of Armillaria mellea was capable of stimulation of TCS secretion into the medium. Moreover, we identified that the TCS purified from the crown gall tissues could induce gastric cancer cell death. These data underscore the usefulness of our system as an inexpensive and virtually unlimited source of TCS.
Collapse
Affiliation(s)
- Hetian Lei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Xi-Bei-Wang, Hai-Dian District, Beijing, 100094, PR China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Chalupowicz L, Barash I, Schwartz M, Aloni R, Manulis S. Comparative anatomy of gall development on Gypsophila paniculata induced by bacteria with different mechanisms of pathogenicity. PLANTA 2006; 224:429-37. [PMID: 16477460 DOI: 10.1007/s00425-006-0229-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2005] [Accepted: 01/13/2006] [Indexed: 05/06/2023]
Abstract
Galls induced on Gypsophila paniculata by Pantoea agglomerans pv. gypsophilae (Pag) and Agrobacterium tumefaciens (At), bacteria with different mechanisms of pathogenicity, were compared morphologically and anatomically. The pathogenicity of Pag is dependent on the presence of an indigenous plasmid that harbors hrp gene cluster, genes encoding Hop virulence proteins and biosynthetic genes for auxin (IAA) and cytokinins (CKs), whereas that of At involves host transformation. The Pag-induced gall was rough, brittle and exhibited limited growth, in contrast to the smooth, firm appearance and continuous growth of the At-induced gall. Anatomical analysis revealed the presence of cells with enlarged nuclei and multiple nucleoli, giant cells and suberin deposition in Pag that were absent from At-induced galls. Although circular vessels were observed in both gall types, they were more numerous and the vascular system was more organized in At. An aerenchymal tissue was observed in the upper part of the galls. Ethylene emission from Pag galls, recorded 6 days after inoculation, was eight times as great as that from non-infected controls. In contrast, a significant decrease in ethylene production was observed in Gypsophila cuttings infected with Pag mutants deficient in IAA and CK production. The results presented are best accounted for by the two pathogens having distinct pathogenicity mechanisms that lead to their differential recognition by the host as non-self (Pag) and self (At).
Collapse
Affiliation(s)
- L Chalupowicz
- Department of Plant Pathology and Weed Research, ARO, Volcani Center, 50250, Bet Dagan, Israel
| | | | | | | | | |
Collapse
|
28
|
Aloni R, Aloni E, Langhans M, Ullrich CI. Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. ANNALS OF BOTANY 2006; 97:883-93. [PMID: 16473866 PMCID: PMC2803412 DOI: 10.1093/aob/mcl027] [Citation(s) in RCA: 294] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 09/12/2005] [Accepted: 11/30/2005] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS Development and architecture of plant roots are regulated by phytohormones. Cytokinin (CK), synthesized in the root cap, promotes cytokinesis, vascular cambium sensitivity, vascular differentiation and root apical dominance. Auxin (indole-3-acetic acid, IAA), produced in young shoot organs, promotes root development and induces vascular differentiation. Both IAA and CK regulate root gravitropism. The aims of this study were to analyse the hormonal mechanisms that induce the root's primary vascular system, explain how differentiating-protoxylem vessels promote lateral root initiation, propose the concept of CK-dependent root apical dominance, and visualize the CK and IAA regulation of root gravitropiosm. KEY ISSUES The hormonal analysis and proposed mechanisms yield new insights and extend previous concepts: how the radial pattern of the root protoxylem vs. protophloem strands is induced by alternating polar streams of high IAA vs. low IAA concentrations, respectively; how differentiating-protoxylem vessel elements stimulate lateral root initiation by auxin-ethylene-auxin signalling; and how root apical dominance is regulated by the root-cap-synthesized CK, which gives priority to the primary root in competition with its own lateral roots. CONCLUSIONS CK and IAA are key hormones that regulate root development, its vascular differentiation and root gravitropism; these two hormones, together with ethylene, regulate lateral root initiation.
Collapse
Affiliation(s)
- R Aloni
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | | | | | |
Collapse
|
29
|
Schwalm K, Aloni R, Langhans M, Heller W, Stich S, Ullrich CI. Flavonoid-related regulation of auxin accumulation in Agrobacterium tumefaciens-induced plant tumors. PLANTA 2003; 218:163-78. [PMID: 14523649 DOI: 10.1007/s00425-003-1104-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2003] [Accepted: 07/15/2003] [Indexed: 05/23/2023]
Abstract
Agrobacterium tumefaciens-induced plant tumors accumulate considerable concentrations of free auxin. To determine possible mechanisms by which high auxin concentrations are maintained, we examined the pattern of auxin and flavonoid distribution in plant tumors. Tumors were induced in transformants of Trifolium repens (L.), containing the beta-glucuronidase ( GUS)-fused auxin-responsive promoter ( GH3) or chalcone synthase ( CHS2) genes, and in transformants of Arabidopsis thaliana (L.) Heynh., containing the GUS-fused synthetic auxin response element DR5. Expression of GH3::GUS and DR5::GUS was strong in proliferating metabolically active tumors, thus suggesting high free-auxin concentrations. Immunolocalization of total auxin with indole-3-acetic acid antibodies was consistent with GH3::GUS expression indicating the highest auxin concentration in the tumor periphery. By in situ staining with diphenylboric acid 2-aminoethyl ester, by thin-layer chromatography, reverse-phase high-performance liquid chromatography, and two-photon laser-scanning microscopy spectrometry, tumor-specific flavones, isoflavones and pterocarpans were detected, namely 7,4'-dihydroxyflavone (DHF), formononetin, and medicarpin. DHF was the dominant flavone in high free-auxin-accumulating stipules of Arabidopsis leaf primordia. Flavonoids were localized at the sites of strongest auxin-inducible CHS2::GUS expression in the tumor that was differentially modulated by auxin in the vascular tissue. CHS mRNA expression changes corresponded to the previously analyzed auxin concentration profile in tumors and roots of tumorized Ricinus plants. Application of DHF to stems, apically pretreated with alpha-naphthaleneacetic acid, inhibited GH3::GUS expression in a fashion similar to 1-N-naphthyl-phthalamic acid. Tumor, root and shoot growth was poor in inoculated tt4(85) flavonoid-deficient CHS mutants of Arabidopsis. It is concluded that CHS-dependent flavonoid aglycones are possibly endogenous regulators of the basipetal auxin flux, thereby leading to free-auxin accumulation in A. tumefaciens-induced tumors. This, in turn, triggers vigorous proliferation and vascularization of the tumor tissues and suppresses their further differentiation.
Collapse
Affiliation(s)
- Katja Schwalm
- Institut für Botanik, Technische Universität, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Wächter R, Langhans M, Aloni R, Götz S, Weilmünster A, Koops A, Temguia L, Mistrik I, Pavlovkin J, Rascher U, Schwalm K, Koch KE, Ullrich CI. Vascularization, high-volume solution flow, and localized roles for enzymes of sucrose metabolism during tumorigenesis by Agrobacterium tumefaciens. PLANT PHYSIOLOGY 2003; 133:1024-37. [PMID: 14526106 PMCID: PMC281599 DOI: 10.1104/pp.103.028142] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2003] [Revised: 07/14/2003] [Accepted: 07/27/2003] [Indexed: 05/20/2023]
Abstract
Vascular differentiation and epidermal disruption are associated with establishment of tumors induced by Agrobacterium tumefaciens. Here, we address the relationship of these processes to the redirection of nutrient-bearing water flow and carbohydrate delivery for tumor growth within the castor bean (Ricinus communis) host. Treatment with aminoethoxyvinyl-glycine showed that vascular differentiation and epidermal disruption were central to ethylene-dependent tumor establishment. CO2 release paralleled tumor growth, but water flow increased dramatically during the first 3 weeks. However, tumor water loss contributed little to water flow to host shoots. Tumor water loss was followed by accumulation of the osmoprotectants, sucrose (Suc) and proline, in the tumor periphery, shifting hexose-to-Suc balance in favor of sugar signals for maturation and desiccation tolerance. Concurrent activities and sites of action for enzymes of Suc metabolism changed: Vacuolar invertase predominated during initial import of Suc into the symplastic continuum, corresponding to hexose concentrations in expanding tumors. Later, Suc synthase (SuSy) and cell wall invertase rose in the tumor periphery to modulate both Suc accumulation and descending turgor for import by metabolization. Sites of abscisic acid immunolocalization correlated with both central vacuolar invertase and peripheral cell wall invertase. Vascular roles were indicated by SuSy immunolocalization in xylem parenchyma for inorganic nutrient uptake and in phloem, where resolution allowed SuSy identification in sieve elements and companion cells, which has widespread implications for SuSy function in transport. Together, data indicate key roles for ethylene-dependent vascularization and cuticular disruption in the redirection of water flow and carbohydrate transport for successful tumor establishment.
Collapse
Affiliation(s)
- Rebecca Wächter
- Institute of Botany, Darmstadt University of Technology, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Twenty-six years ago it was found that the common soil bacterium Agrobacterium tumefaciens is capable of extraordinary feats of interkingdom genetic transfer. Since this discovery, A. tumefaciens has served as a model system for the study of type IV bacterial secretory systems, horizontal gene transfer and bacterial-plant signal exchange. It has also been modified for controlled genetic transformation of plants, a core technology of plant molecular biology. These areas have often overshadowed its role as a serious, widespread phytopathogen - the primary driver of the first 80 years of Agrobacterium research. Now, the diverse areas of A. tumefaciens research are again converging because new discoveries in transformation biology and the use of A. tumefaciens vectors are allowing the development of novel, effective biotechnology-based strategies for the control of crown gall disease.
Collapse
Affiliation(s)
- Matthew A Escobar
- Department of Cell and Organism Biology, Lund University, Sölvegatan 35, Lund, SE-22362, Sweden
| | | |
Collapse
|
32
|
Dorchin N, Freidberg A, Aloni R. Morphogenesis of stem gall tissues induced by larvae of two cecidomyiid species (Diptera: Cecidomyiidae) on Suaeda monoica (Chenopodiaceae). ACTA ACUST UNITED AC 2002. [DOI: 10.1139/b02-104] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Izeniola obesula Dorchin and Stefaniola defoliata Dorchin (Diptera: Cecidomyiidae: Lasiopterini) are monophagous gall midges each inducing a unique kind of gall on stems of the salt marsh plant Suaeda monoica Gmelin (Chenopodiaceae). The morphogenesis of these two types of galls was studied in relation to the life history of the midges as observed both in the field and the laboratory. Izeniola obesula larvae penetrate the pith parenchyma through the growing shoot apex, causing intensive cell proliferation and inducing differentiation of novel vascular tissues and a sclerenchyma sheath around their chambers. Vascular differentiation in this gall originates from the larval chamber, a phenomenon attributed to local stimulation by the larva. It is suggested that the sclerenchyma layer in these galls is also induced by insect activity. Stefaniola defoliata larvae penetrate the stem laterally and reside inside the primary phloem, causing proliferation of phloem parenchyma, and are later encapsulated by secondary xylem tissue. Both galls are associated with a symbiotic fungus that grows along the inner walls of the larval chambers. The possible hormonal mechanisms controlling morphogenesis of the galls are discussed.Key words: gall morphogenesis, phytohormones, sclerenchyma, vascular differentiation.
Collapse
|
33
|
Klee H, Tieman D. The tomato ethylene receptor gene family: Form and function. PHYSIOLOGIA PLANTARUM 2002; 115:336-341. [PMID: 12081525 DOI: 10.1034/j.1399-3054.2002.1150302.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Phytohormones are essential for integrating many aspects of plant development and responses to the environment. Regulation of hormonally controlled events occurs at multiple levels: synthesis, catabolism and perception (Trewavas 1983, Bradford and Trewavas 1994). At the level of perception, sensitivity to hormones can be regulated both spatially and temporally during the life cycle. An example of spatial regulation is the differential response to a hormone that occurs during organ abscission. Temporally, sensitivity of an organ to a hormone may change during maturation, as occurs during fruit ripening. In this review, we will focus on the initial event in recognition of one hormone, ethylene. The ethylene receptor was the first plant hormone receptor to be unambiguously identified. Over the last few years, great progress has been made in elucidating the genes involved in ethylene action. Nonetheless, the mechanisms of signal transduction remain to be established. Here, we will address the status of the tomato receptor gene family and the evidence that regulation of receptor gene expression can influence the response of the plant to the hormone.
Collapse
Affiliation(s)
- Harry Klee
- University of Florida, Department of Horticultural Sciences, PO Box 110690, Gainesville, FL 32611 USA
| | | |
Collapse
|
34
|
Díaz J, ten Have A, van Kan JAL. The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea. PLANT PHYSIOLOGY 2002; 129:1341-51. [PMID: 12114587 PMCID: PMC166527 DOI: 10.1104/pp.001453] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ethylene, jasmonate, and salicylate play important roles in plant defense responses to pathogens. To investigate the contributions of these compounds in resistance of tomato (Lycopersicon esculentum) to the fungal pathogen Botrytis cinerea, three types of experiments were conducted: (a) quantitative disease assays with plants pretreated with ethylene, inhibitors of ethylene perception, or salicylate; (b) quantitative disease assays with mutants or transgenes affected in the production of or the response to either ethylene or jasmonate; and (c) expression analysis of defense-related genes before and after inoculation of plants with B. cinerea. Plants pretreated with ethylene showed a decreased susceptibility toward B. cinerea, whereas pretreatment with 1-methylcyclopropene, an inhibitor of ethylene perception, resulted in increased susceptibility. Ethylene pretreatment induced expression of several pathogenesis-related protein genes before B. cinerea infection. Proteinase inhibitor I expression was repressed by ethylene and induced by 1-methylcyclopropene. Ethylene also induced resistance in the mutant Never ripe. RNA analysis showed that Never ripe retained some ethylene sensitivity. The mutant Epinastic, constitutively activated in a subset of ethylene responses, and a transgenic line producing negligible ethylene were also tested. The results confirmed that ethylene responses are important for resistance of tomato to B. cinerea. The mutant Defenseless, impaired in jasmonate biosynthesis, showed increased susceptibility to B. cinerea. A transgenic line with reduced prosystemin expression showed similar susceptibility as Defenseless, whereas a prosystemin-overexpressing transgene was highly resistant. Ethylene and wound signaling acted independently on resistance. Salicylate and ethylene acted synergistically on defense gene expression, but antagonistically on resistance.
Collapse
Affiliation(s)
- José Díaz
- Wageningen University Plant Sciences, Laboratory of Phytopathology, Binnenhaven 5, P.O. Box 8025, 6700 EE, Wageningen, The Netherlands
| | | | | |
Collapse
|
35
|
Ullrich CI, Aloni R. Vascularization is a general requirement for growth of plant and animal tumours. JOURNAL OF EXPERIMENTAL BOTANY 2000; 51:1951-1960. [PMID: 11141169 DOI: 10.1093/jexbot/51.353.1951] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Solid-tumour growth in animals as in humans depends on angiogenesis. Tumours that fail to induce the formation of new blood vessels do not enlarge beyond a few millimetres in diameter. Plant tumours induced by Agrobacterium tumefaciens can reach diameters of more than 100 mm, thus raising the question of how they are sufficiently supplied with nutrients and water. Until recently, these rapidly growing tumours were considered unorganized or partly organized masses. However, in analogy to animal and human tumours, growth of leaf and stem tumours depends on neovascularization. Plant tumour cells induce the formation of a sophisticated vascular network consisting of water-conducting vessels and assimilate-transporting sieve elements. Similar to animal and human tumours that overexpress angiogenic growth factors, plant tumours overexpress the T-DNA-encoded vascularization-promoting growth factors auxin and cytokinin upon AGROBACTERIUM: infection. High auxin levels induce ethylene emission from the tumours, which has a strong impact on tumour and host stem, as well as on root structure and function. Ethylene apparently stimulates abscisic acid synthesis in the leaves above the tumour, which reduces transpiration and thus protects the host plant from rapid wilting. Hence, for the elucidation of phytohormone-dependent vascular development in plants, such tumours are regarded as an excellent model system. The comparison of analogous requirement of neovascularization for tumour growth in plants, as in animals and humans, is discussed in terms of interdisciplinary strategies of possible prevention and therapy.
Collapse
Affiliation(s)
- C I Ullrich
- Institut für Botanik, Technische Universität, D-64287 Darmstadt, Germany.
| | | |
Collapse
|
36
|
Llop-Tous I, Barry CS, Grierson D. Regulation of ethylene biosynthesis in response to pollination in tomato flowers. PLANT PHYSIOLOGY 2000; 123:971-8. [PMID: 10889245 PMCID: PMC59059 DOI: 10.1104/pp.123.3.971] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/1999] [Accepted: 04/06/2000] [Indexed: 05/19/2023]
Abstract
Pollination of many flowers leads to an increase in ethylene synthesis and flower senescence. We have investigated the regulation of pollination-induced ethylene synthesis in tomato (Lycopersicon esculentum) using flowers of the dialytic (dl) mutant, in which pollination can be manipulated experimentally, with the aim of developing a model system to study tomato flower senescence. Ethylene synthesis increased rapidly in dl pistils following pollination, leading to accelerated petal senescence, and was delayed in ethylene-insensitive Never-ripe (Nr) pistils. However, Nr pistils eventually produced more ethylene than dl pistils, suggesting the presence of negative feedback regulation of ethylene synthesis following pollination. LEACS1A expression correlated well with increased ethylene production in pollinated dl pistils, and expression in Nr revealed that regulation is via an ethylene-independent mechanism. In contrast, the induction of the 1-aminocyclopropane-1-carboxylic acid oxidases, LEACO1 and LEACO3, following pollination is ethylene dependent. In addition, the expression profiles of ACS and ACO genes were determined during petal senescence and a hypothesis proposed that translocated 1-aminocyclopropane-1-carboxylic acid from the pistil may be important for regulating the initial burst of ethylene production during petal senescence. These results are discussed and differences between tomato and the ornamental species previously studied are highlighted.
Collapse
Affiliation(s)
- I Llop-Tous
- Plant Science Division, School of Biological Sciences, The University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
| | | | | |
Collapse
|
37
|
Chang C, Shockey JA. The ethylene-response pathway: signal perception to gene regulation. CURRENT OPINION IN PLANT BIOLOGY 1999; 2:352-358. [PMID: 10508761 DOI: 10.1016/s1369-5266(99)00004-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Tremendous strides have been made in the past year toward elucidating the ethylene-response pathway. Ethylene is perceived by a family of histidine kinase-like receptors, which negatively regulate ethylene responses. Binding of ethylene requires a copper cofactor, and proper receptor function relies on a copper transporter. Downstream, EIN2 is a structurally novel protein containing an integral membrane domain. In the nucleus, the EIN3 family of DNA-binding proteins regulates transcription in response to ethylene, and an immediate target of EIN3 is a DNA-binding protein of the AP2/EREBP family.
Collapse
Affiliation(s)
- C Chang
- Department of Cell Biology and Molecular Genetics, Maryland Agricultural Experiment Station, HJ Patterson Hall, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|
38
|
Aloni R, Wolf A, Feigenbaum P, Avni A, Klee HJ. The never ripe mutant provides evidence that tumor-induced ethylene controls the morphogenesis of agrobacterium tumefaciens-induced crown galls on tomato stems. PLANT PHYSIOLOGY 1998; 117:841-9. [PMID: 9662526 PMCID: PMC34938 DOI: 10.1104/pp.117.3.841] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/1997] [Accepted: 04/15/1998] [Indexed: 05/19/2023]
Abstract
We confirm the hypothesis that Agrobacterium tumefaciens-induced galls produce ethylene that controls vessel differentiation in the host stem of tomato (Lycopersicon esculentum Mill.). Using an ethylene-insensitive mutant, Never ripe (Nr), and its isogenic wild-type parent we show that infection by A. tumefaciens results in high rates of ethylene evolution from the developing crown galls. Ethylene evolution from isolated internodes carrying galls was up to 50-fold greater than from isolated internodes of control plants when measured 21 and 28 d after infection. Tumor-induced ethylene substantially decreased vessel diameter in the host tissues beside the tumor in wild-type stems but had a very limited effect in the Nr stems. Ethylene promoted the typical unorganized callus shape of the gall, which maximized the tumor surface in wild-type stems, whereas the galls on the Nr stems had a smooth surface. The combination of decreased vessel diameter in the host and increased tumor surface ensured water-supply priority to the growing gall over the host shoot. These results indicate that in addition to the well-defined roles of auxin and cytokinin, there is a critical role for ethylene in determining crown-gall morphogenesis.
Collapse
|