1
|
Enrichment of glucosinolate and carotenoid contents of mustard sprouts by using green elicitors during germination. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
2
|
Wang Y, Liu M, Ge D, Akhter Bhat J, Li Y, Kong J, Liu K, Zhao T. Hydroperoxide lyase modulates defense response and confers lesion-mimic leaf phenotype in soybean (Glycine max (L.) Merr.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1315-1333. [PMID: 32996255 DOI: 10.1111/tpj.15002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 05/20/2023]
Abstract
Allene oxide synthase (AOS) and hydroperoxide lyase (HPL) are two important members of P450 enzymes metabolizing hydroperoxy fatty acid to produce jasmonates and aldehydes respectively, which function in response to diverse environmental and developmental stimuli. However, their exact roles in soybean have not been clarified. In present study, we identified a lesion-mimic mutant in soybean named NT302, which exhibits etiolated phenotype together with chlorotic and spontaneous lesions on leaves at R3 podding stage. The underlying gene was identified as GmHPL encoding hydroperoxide lyase by map-based cloning strategy. Sequence analysis demonstrated that a single nucleotide mutation created a premature termination codon (Gln20-Ter), which resulted in a truncated GmHPL protein in NT302. GmHPL RNA was significantly reduced in NT302 mutant, while genes in AOS branch of the 13-LOX pathway were up-regulated in NT302. The mutant exhibited higher susceptibility to bacterial leaf pustule (BLP) disease, but increased resistance against common cutworm (CCW) pest. GmHPL was significantly induced in response to MeJA, wounding, and CCW in wild type soybean. Virus induced gene silencing (VIGS) of GhHPL genes gave rise to similar lesion-mimic leaf phenotypes in upland cotton, coupled with upregulation of the expression of JA biosynthesis and JA-induced genes. Our study provides evidence that competition exist between HPL and AOS branches in 13-LOX pathway of the oxylipin metabolism in soybean, thereby plays essential roles in modulation of plant development and defense.
Collapse
Affiliation(s)
- Yaqi Wang
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, National Center for Soybean Improvement (Ministry of Agriculture), Nanjing Agricultural University, Nanjing, 210095, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meifeng Liu
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, National Center for Soybean Improvement (Ministry of Agriculture), Nanjing Agricultural University, Nanjing, 210095, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dongdong Ge
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Javaid Akhter Bhat
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, National Center for Soybean Improvement (Ministry of Agriculture), Nanjing Agricultural University, Nanjing, 210095, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yawei Li
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, National Center for Soybean Improvement (Ministry of Agriculture), Nanjing Agricultural University, Nanjing, 210095, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiejie Kong
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, National Center for Soybean Improvement (Ministry of Agriculture), Nanjing Agricultural University, Nanjing, 210095, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kang Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tuanjie Zhao
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, National Center for Soybean Improvement (Ministry of Agriculture), Nanjing Agricultural University, Nanjing, 210095, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
3
|
D'Alessandro S, Beaugelin I, Havaux M. Tanned or Sunburned: How Excessive Light Triggers Plant Cell Death. MOLECULAR PLANT 2020; 13:1545-1555. [PMID: 32992028 DOI: 10.1016/j.molp.2020.09.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/23/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Plants often encounter light intensities exceeding the capacity of photosynthesis (excessive light) mainly due to biotic and abiotic factors, which lower CO2 fixation and reduce light energy sinks. Under excessive light, the photosynthetic electron transport chain generates damaging molecules, hence leading to photooxidative stress and eventually to cell death. In this review, we summarize the mechanisms linking the excessive absorption of light energy in chloroplasts to programmed cell death in plant leaves. We highlight the importance of reactive carbonyl species generated by lipid photooxidation, their detoxification, and the integrating role of the endoplasmic reticulum in the adoption of phototolerance or cell-death pathways. Finally, we invite the scientific community to standardize the conditions of excessive light treatments.
Collapse
Affiliation(s)
- Stefano D'Alessandro
- Aix-Marseille University, CEA, CNRS, UMR7265, BIAM, Institute of Biosciences and Biotechnologies of Aix Marseille, 13108 Saint-Paul-lez-Durance, France.
| | - Inès Beaugelin
- Singapore-CEA Alliance for Research in Circular Economy (SCARCE), School of Chemical and Biomedical Engineering, 62 Nanyang Drive, Singapore 637459, Republic of Singapore
| | - Michel Havaux
- Aix-Marseille University, CEA, CNRS, UMR7265, BIAM, Institute of Biosciences and Biotechnologies of Aix Marseille, 13108 Saint-Paul-lez-Durance, France.
| |
Collapse
|
4
|
Nuñez-Gómez V, Baenas N, Navarro-González I, García-Alonso J, Moreno DA, González-Barrio R, Periago-Castón MJ. Seasonal Variation of Health-Promoting Bioactives in Broccoli and Methyl-Jasmonate Pre-Harvest Treatments to Enhance Their Contents. Foods 2020; 9:E1371. [PMID: 32993199 PMCID: PMC7599945 DOI: 10.3390/foods9101371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022] Open
Abstract
Broccoli is a source of bioactive compounds that provide an important nutritional value. The content of these compounds can vary depending on agronomic and environmental conditions, as well as on elicitation. In this study, three crop trials were carried out to evaluate the effects of the cultivation season, the application of different dosages of methyl-jasmonate (MeJA) on the overall quality and on the total content of bioactive compounds of 'Parthenon' broccoli cultivated under the field conditions of southeastern Spain. Color parameters, chlorophyll content, total phenolic compounds, total flavonoids and antioxidant activity were measured to evaluate the overall quality. Moreover, individual carotenoids, phenolic compounds and glucosinolates were evaluated by high performance liquid chromatography with diode array detection (HPLC-DAD) and high performance liquid chromatography equipped with diode array detector coupled to mass spectrometer using electro spray ionization (HPLC-DAD-ESI/MSn). The content of total carotenoids, phenolic compounds and glucosinolates were higher in autumn compared with spring, showing increases of 2.8-fold, 2-fold and 1.2-fold, respectively. Moreover, a double application of MeJA increased the contents of total carotenoids, phenolic compounds and glucosinolates by 22%, 32% and 39%, respectively, relative to the untreated samples. Considering our results, the controlled and timely application of 250 µM MeJA to the aerial parts of the plants four days before harvest, on two consecutive days, seems to be a valid agronomic strategy to improve the health-promoting capacity of Parthenon broccoli, without compromising its overall quality.
Collapse
Affiliation(s)
- Vanesa Nuñez-Gómez
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital “Virgen de la Arrixaca”, University of Murcia, Espinardo, 30100 Murcia, Spain; (V.N.-G.); (N.B.); (I.N.-G.); (J.G.-A.); (M.J.P.-C.)
| | - Nieves Baenas
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital “Virgen de la Arrixaca”, University of Murcia, Espinardo, 30100 Murcia, Spain; (V.N.-G.); (N.B.); (I.N.-G.); (J.G.-A.); (M.J.P.-C.)
| | - Inma Navarro-González
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital “Virgen de la Arrixaca”, University of Murcia, Espinardo, 30100 Murcia, Spain; (V.N.-G.); (N.B.); (I.N.-G.); (J.G.-A.); (M.J.P.-C.)
| | - Javier García-Alonso
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital “Virgen de la Arrixaca”, University of Murcia, Espinardo, 30100 Murcia, Spain; (V.N.-G.); (N.B.); (I.N.-G.); (J.G.-A.); (M.J.P.-C.)
| | - Diego A. Moreno
- Phytochemistry and Healthy Foods Lab, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo-25, E-30100 Murcia, Spain;
| | - Rocío González-Barrio
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital “Virgen de la Arrixaca”, University of Murcia, Espinardo, 30100 Murcia, Spain; (V.N.-G.); (N.B.); (I.N.-G.); (J.G.-A.); (M.J.P.-C.)
| | - Mª Jesús Periago-Castón
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital “Virgen de la Arrixaca”, University of Murcia, Espinardo, 30100 Murcia, Spain; (V.N.-G.); (N.B.); (I.N.-G.); (J.G.-A.); (M.J.P.-C.)
| |
Collapse
|
5
|
Zhang Z, Gong J, Wang B, Li X, Ding Y, Yang B, Zhu C, Liu M, Zhang W. Regrowth strategies of Leymus chinensis in response to different grazing intensities. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02113. [PMID: 32112460 DOI: 10.1002/eap.2113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/07/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
In temperate grassland ecosystems, grazing can affect plant growth by foraging, trampling, and excretion. The ability of dominant plant species to regrow after grazing is critical, since it allows the regeneration of photosynthetic tissues to support growth. We conducted a field experiment to evaluate the effects of different grazing intensities (control, light, medium, and heavy) on the physiological and biochemical responses of Leymus chinensis and the carbon (C) sources utilized during regrowth. Light grazing promoted regrowth and photoassimilate storage of L. chinensis, by increasing the net photosynthetic rate (Pn ), photosynthetic quenching, light interception, sugar accumulation, sucrose synthase activities, and fructose supply from stems. At medium grazing intensity, L. chinensis had low Pn , light interception, and sugar accumulation, but higher expression of a sucrose transporter gene (LcSUT1) and water-use efficiency, which reflected a tendency to store C in belowground to promote survival. This strategy was associated with regulation by abscisic acid (ABA), jasmonate, and salicylic acid (SA) signaling. However, L. chinensis tolerated heavy grazing by increased ABA and jasmonate-induced promotion of C assimilation and osmotic adjustment, combined with photoprotection against photo-oxidation, suggesting a strategy based on regrowth. In addition, stems were the main C source organs and energy supply rather than roots. Simultaneously, SA represented a weaker defense than ABA and jasmonate. Therefore, L. chinensis adopted different strategies for regrowth under different grazing intensities, and light grazing promoted regrowth the most. Our results demonstrate the regulation of C reserves utilization by phytohormones, and this regulation provides an explanation for recent results about grazing responses.
Collapse
Affiliation(s)
- Zihe Zhang
- Key Laboratory of Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Jirui Gong
- Key Laboratory of Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Biao Wang
- Key Laboratory of Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Xiaobing Li
- Key Laboratory of Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Yong Ding
- Grassland Research Institute of Chinese Academic of Agricultural Science, Hohhot, Inner Mongolia, 010021, China
| | - Bo Yang
- Key Laboratory of Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Chenchen Zhu
- Key Laboratory of Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Min Liu
- Key Laboratory of Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Wei Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
6
|
Methyl Jasmonate Affects Photosynthesis Efficiency, Expression of HvTIP Genes and Nitrogen Homeostasis in Barley. Int J Mol Sci 2020; 21:ijms21124335. [PMID: 32570736 PMCID: PMC7352393 DOI: 10.3390/ijms21124335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022] Open
Abstract
Jasmonates modulate many growth and developmental processes and act as stress hormones that play an important role in plant tolerance to biotic and abiotic stresses. Therefore, there is a need to identify the genes that are regulated through the jasmonate signalling pathway. Aquaporins, and among them the Tonoplast Intrinsic Proteins (TIPs), form the channels in cell membranes that are responsible for the precise regulation of the movement of water and other substrates between cell compartments. We identified the cis-regulatory motifs for the methyl jasmonate (MeJA)-induced genes in the promoter regions of all the HvTIP genes, which are active in barley seedlings, and thus we hypothesised that the HvTIP expression could be a response to jasmonate signalling. In the presented study, we determined the effect of methyl jasmonate on the growth parameters and photosynthesis efficiency of barley seedlings that had been exposed to different doses of MeJA (15–1000 µM × 120 h) in a hydroponic solution. All of the applied MeJA concentrations caused a significant reduction of barley seedling growth, which was most evident in the length of the first leaf sheath and dry leaf weight. The observed decrease of the PSII parameters after the exposure to high doses of MeJA (500 µM or higher) was associated with the downregulation of HvPsbR gene encoding one of the extrinsic proteins of the Oxygen Evolving Complex. The reduced expression of HvPsbR might lead to the impairment of the OEC action, manifested by the occurrence of the K-band in an analysis of fluorescence kinetics after MeJA treatment as well as reduced photosynthesis efficiency. Furthermore, methyl jasmonate treatment caused a decrease in the nitrogen content in barley leaves, which was associated with an increased expression the four tonoplast aquaporin genes (HvTIP1;2, HvTIP2;2, HvTIP4;1 and HvTIP4;2) predicted to transport the nitrogen compounds from the vacuole to the cytosol. The upregulation of the nitrogen-transporting HvTIPs might suggest their involvement in the vacuolar unloading of ammonia and urea, which both could be remobilised when the nitrogen content in the leaves decreases. Our research provides tips on physiological role of the individual TIP subfamily members of aquaporins under methyl jasmonate action.
Collapse
|
7
|
Chatterjee P, Kanagendran A, Samaddar S, Pazouki L, Sa TM, Niinemets Ü. Influence of Brevibacterium linens RS16 on foliage photosynthetic and volatile emission characteristics upon heat stress in Eucalyptus grandis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134453. [PMID: 31670196 DOI: 10.1016/j.scitotenv.2019.134453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Heat stress induces secondary metabolic changes in plants, channeling photosynthetic carbon and energy, away from primary metabolic processes, including, growth. Use of ACC (1-aminocyclopropane-1-carboxylate) deaminase containing plant growth promoting bacteria (PGPB) in conferring heat resistance in plants and the role of PGPB, in altering net carbon assimilation, constitutive and stress volatile emissions has not been studied yet. We exposed leaves of Eucalyptus grandis inoculated and non-inoculated with PGPB Brevibacterium linens RS16 to two levels of heat stress (37 °C and 41 °C for 5 min) and quantified temporal changes in foliage photosynthetic characteristics and volatile emission rates at 0.5 h, day 1 and day 5 after the stress application. Heat stress resulted in immediate reductions in dark-adapted photosystem II (PSII) quantum yield (Fv/Fm), net assimilation rate (A), stomatal conductance to water vapor (gs), and enhancement of stress volatile emissions, including enhanced emissions of green leaf volatiles (GLV), mono- and sesquiterpenes, light weight oxygenated volatile organic compounds (LOC), geranyl-geranyl diphosphate pathway volatiles (GGDP), saturated aldehydes, and benzenoids, with partial recovery by day 5. Changes in stress-induced volatiles were always less in leaves inoculated with B. linens RS16. However, net assimilation rate was enhanced by bacterial inoculation only in the 37 °C treatment and overall reduction of isoprene emissions was observed in bacterially-treated leaves. Principal component analysis (PCA), correlation analysis and partial least squares discriminant analysis (PLS-DA) indicated that different stress applications influenced specific volatile organic compounds. In addition, changes in the expression analysis of heat shock protein 70 gene (DnaK) gene in B. linens RS16 upon exposure to higher temperatures further indicated that B. linens RS16 has developed its own heat resistance mechanism to survive under higher temperature regimes. Taken together, this study demonstrates that foliar application of ACC deaminase containing PGPB can ameliorate heat stress effects in realistic biological settings.
Collapse
Affiliation(s)
- Poulami Chatterjee
- Department of Environmental and Biological Chemistry, Chungbuk National University Cheongju, Chungbuk 28644, Republic of Korea; Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616, USA
| | - Arooran Kanagendran
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia; FARCE Lab, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Sandipan Samaddar
- Department of Environmental and Biological Chemistry, Chungbuk National University Cheongju, Chungbuk 28644, Republic of Korea; Department of Land, Air, and Water Resources, University of California, Davis, California 95616, USA
| | - Leila Pazouki
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia; Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Tong-Min Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University Cheongju, Chungbuk 28644, Republic of Korea.
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia; Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia.
| |
Collapse
|
8
|
Kanagendran A, Chatterjee P, Liu B, Sa T, Pazouki L, Niinemets Ü. Foliage inoculation by Burkholderia vietnamiensis CBMB40 antagonizes methyl jasmonate-mediated stress in Eucalyptus grandis. JOURNAL OF PLANT PHYSIOLOGY 2019; 242:153032. [PMID: 31491672 PMCID: PMC6863749 DOI: 10.1016/j.jplph.2019.153032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 05/21/2023]
Abstract
Methyl jasmonate (MeJA) is widely used as a model chemical to study hypersensitive responses to biotic stress impacts in plants. Elevated levels of methyl jasmonate induce jasmonate-dependent defense responses, associated with a decline in primary metabolism and enhancement of secondary metabolism of plants. However, there is no information of how stress resistance of plants, and accordingly the sensitivity to exogenous MeJA can be decreased by endophytic plant growth promoting rhizobacteria (PGPR) harboring ACC (1-aminocyclopropane-1-carboxylate) deaminase. In this study, we estimated stress alleviating potential of endophytic PGPR against MeJA-induced plant perturbations through assessing photosynthetic traits and stress volatile emissions. We used mild (5 mM) to severe (20 mM) MeJA and endophytic plant growth promoting rhizobacteria Burkholderia vietnamiensis CBMB40 and studied how MeJA and B. vietnamiensis treatments influenced temporal changes in photosynthetic characteristics and stress volatile emissions. Separate application of MeJA markedly decreased photosynthetic characteristics and increased lipoxygenase pathway (LOX) volatiles, volatile isoprenoids, saturated aldehydes, lightweight oxygenated compounds (LOC), geranyl-geranyl diphosphate pathway (GGDP) volatiles, and benzenoids. However, MeJA-treated leaves inoculated by endophytic bacteria B. vietnamiensis had substantially increased photosynthetic characteristics and decreased emissions of LOX, volatile isoprenoids and other stress volatiles compared with non-inoculated MeJA treatments, especially at later stages of recovery. In addition, analysis of leaf terpenoid contents demonstrated that several mono- and sesquiterpenes were de novo synthesized upon MeJA and B. vietnamiensis applications. This study demonstrates that foliar application of endophytic bacteria B. vietnamiensis can potentially enhance resistance to biotic stresses and contribute to the maintenance of the integrity of plant metabolic activity.
Collapse
Affiliation(s)
- Arooran Kanagendran
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia; Faculty of Science, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| | - Poulami Chatterjee
- Department of Environmental and Biological Chemistry, Chungbuk National University, Chungbuk 28644, Republic of Korea; Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Bin Liu
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia
| | - Tongmin Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University, Chungbuk 28644, Republic of Korea
| | - Leila Pazouki
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia; Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia; Estonian Academy of Sciences, Kohtu 6, Tallinn 10130, Estonia
| |
Collapse
|
9
|
Timerbaev V, Dolgov S. Functional characterization of a strong promoter of the early light-inducible protein gene from tomato. PLANTA 2019; 250:1307-1323. [PMID: 31270599 DOI: 10.1007/s00425-019-03227-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
The tomato ELIP gene promoter is mainly active in the ripening fruit. Considering its high activity, the promoter could be used for molecular breeding of plants in the future. The ability to obtain new varieties of transgenic plants with economically valuable traits relies on a high level of target gene expression, which is largely controlled by a gene promoter. Hence, research aimed at finding and characterizing new tissue-specific promoters that direct gene expression in specific plant tissues or at certain developmental stages has become the most important field of plant biotechnology. Here, we cloned and characterized the promoter of the early light-inducible protein (ELIP) gene from tomato (Solanum lycopersicum cv. Yalf). ELIPs are produced in the presence of light and putatively function in the chloroplast-to-chromoplast conversion, playing a photorepairing role in the photosynthetic system. Analysis of the promoter sequence revealed multiple cis-acting elements related to light responsiveness, and other motifs involved in plant hormone response and circadian control. To determine the functionality of the promoter, seven 5'-deletion variants were fused with the β-glucuronidase (GUS) reporter gene and introduced into tomato. Histochemical analysis of transgenic tomato plants revealed different levels of GUS activity in most analyzed tissues, depending on the promoter fragment used. The intensity of staining was considerably higher in ripening fruits than in unripe and non-fruit tissues. Quantitative analysis indicated that the level of GUS activity with the longest (full-length) version of the ELIP promoter in ripened fruits was comparable to that in plants expressing the constitutive CaMV35S promoter. Further, the location of both negative and positive regulatory motifs was identified. The described ELIP promoter is a potential tool for various applications in plant biotechnology.
Collapse
Affiliation(s)
- Vadim Timerbaev
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, 142290, Russia.
- Nikita Botanical Gardens-National Scientific Center, Russian Academy of Sciences, Yalta, 298648, Russia.
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, 127550, Russia.
| | - Sergey Dolgov
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, 142290, Russia
- Nikita Botanical Gardens-National Scientific Center, Russian Academy of Sciences, Yalta, 298648, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, 127550, Russia
| |
Collapse
|
10
|
Benevenuto RF, Seldal T, Hegland SJ, Rodriguez-Saona C, Kawash J, Polashock J. Transcriptional profiling of methyl jasmonate-induced defense responses in bilberry (Vaccinium myrtillus L.). BMC PLANT BIOLOGY 2019; 19:70. [PMID: 30755189 PMCID: PMC6373060 DOI: 10.1186/s12870-019-1650-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 01/14/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Bilberry (Vaccinium myrtillus L.) is one of the most abundant wild berries in the Northern European ecosystems. This species plays an important ecological role as a food source for many vertebrate and invertebrate herbivores. It is also well-recognized for its bioactive compounds, particularly substances involved in natural defenses against herbivory. These defenses are known to be initiated by leaf damage (e.g. chewing by insects) and mediated by activation of the jasmonic acid (JA) signaling pathway. This pathway can be activated by exogenous application of methyl jasmonate (MeJA), the volatile derivative of JA, which is often used to stimulate plant defense responses in studies of plant-herbivore interactions at ecological, biochemical, and molecular organismal levels. As a proxy for herbivore damage, wild V. myrtillus plants were treated in the field with MeJA and changes in gene expression were compared to untreated plants. RESULTS The de novo transcriptome assembly consisted of 231,887 unigenes. Nearly 71% of the unigenes were annotated in at least one of the databases interrogated. Differentially expressed genes (DEGs), between MeJA-treated and untreated control bilberry plants were identified using DESeq. A total of 3590 DEGs were identified between the treated and control plants, with 2013 DEGs upregulated and 1577 downregulated. The majority of the DEGs identified were associated with primary and secondary metabolism pathways in plants. DEGs associated with growth (e.g. those encoding photosynthesis-related components) and reproduction (e.g. flowering control genes) were frequently down-regulated while those associated with defense (e.g. encoding enzymes involved in biosynthesis of flavonoids, lignin compounds, and deterrent/repellent volatile organic compounds) were up-regulated in the MeJA treated plants. CONCLUSIONS Ecological studies are often limited by controlled conditions to reduce the impact of environmental effects. The results from this study support the hypothesis that bilberry plants, growing in natural conditions, shift resources from growth and reproduction to defenses while in a MeJA-induced state, as when under insect attack. This study highlights the occurrence of this trade-off at the transcriptional level in a realistic field scenario and supports published field observations wherein plant growth is retarded and defenses are upregulated.
Collapse
Affiliation(s)
- Rafael Fonseca Benevenuto
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Sogndal, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Tarald Seldal
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Sogndal, Norway
| | - Stein Joar Hegland
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Sogndal, Norway
| | - Cesar Rodriguez-Saona
- Rutgers, Department of Entomology, Philip E. Marucci Center for Blueberry and Cranberry Research, The State University of New Jersey, Chatsworth, NJ USA
| | - Joseph Kawash
- Genetic Improvement of Fruits and Vegetables Lab, Philip E. Marucci Center for Blueberry and Cranberry Research, United States Department of Agriculture-Agricultural Research Service, Chatsworth, NJ USA
| | - James Polashock
- Genetic Improvement of Fruits and Vegetables Lab, Philip E. Marucci Center for Blueberry and Cranberry Research, United States Department of Agriculture-Agricultural Research Service, Chatsworth, NJ USA
| |
Collapse
|
11
|
Moreira-Rodríguez M, Nair V, Benavides J, Cisneros-Zevallos L, Jacobo-Velázquez DA. UVA, UVB Light, and Methyl Jasmonate, Alone or Combined, Redirect the Biosynthesis of Glucosinolates, Phenolics, Carotenoids, and Chlorophylls in Broccoli Sprouts. Int J Mol Sci 2017; 18:E2330. [PMID: 29113068 PMCID: PMC5713299 DOI: 10.3390/ijms18112330] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/25/2017] [Accepted: 10/31/2017] [Indexed: 12/17/2022] Open
Abstract
Broccoli sprouts contain health-promoting phytochemicals that can be enhanced by applying ultraviolet light (UV) or phytohormones. The separate and combined effects of methyl jasmonate (MJ), UVA, or UVB lights on glucosinolate, phenolic, carotenoid, and chlorophyll profiles were assessed in broccoli sprouts. Seven-day-old broccoli sprouts were exposed to UVA (9.47 W/m²) or UVB (7.16 W/m²) radiation for 120 min alone or in combination with a 25 µM MJ solution, also applied to sprouts without UV supplementation. UVA + MJ and UVB + MJ treatments increased the total glucosinolate content by ~154% and ~148%, respectively. MJ induced the biosynthesis of indole glucosinolates, especially neoglucobrassicin (~538%), showing a synergistic effect with UVA stress. UVB increased the content of aliphatic and indole glucosinolates, such as glucoraphanin (~78%) and 4-methoxy-glucobrassicin (~177%). UVA increased several phenolics such as gallic acid (~57%) and a kaempferol glucoside (~25.4%). MJ treatment decreased most phenolic levels but greatly induced accumulation of 5-sinapoylquinic acid (~239%). MJ treatments also reduced carotenoid and chlorophyll content, while UVA increased lutein (~23%), chlorophyll b (~31%), neoxanthin (~34%), and chlorophyll a (~67%). Results indicated that UV- and/or MJ-treated broccoli sprouts redirect the carbon flux to the biosynthesis of specific glucosinolates, phenolics, carotenoids, and chlorophylls depending on the type of stress applied.
Collapse
Affiliation(s)
- Melissa Moreira-Rodríguez
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, N.L., México.
| | - Vimal Nair
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA.
| | - Jorge Benavides
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, N.L., México.
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA.
| | - Daniel A Jacobo-Velázquez
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, N.L., México.
| |
Collapse
|
12
|
Savchenko T, Yanykin D, Khorobrykh A, Terentyev V, Klimov V, Dehesh K. The hydroperoxide lyase branch of the oxylipin pathway protects against photoinhibition of photosynthesis. PLANTA 2017; 245:1179-1192. [PMID: 28303390 DOI: 10.1007/s00425-017-2674-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
This study describes a new role for hydroperoxide lyase branch of oxylipin biosynthesis pathway in protecting photosynthetic apparatus under high light conditions. Lipid-derived signaling molecules, oxylipins, produced by a multi-branch pathway are central in regulation of a wide range of functions. The two most known branches, allene oxide synthase (AOS) and 13-hydroperoxide lyase (HPL) pathways, are best recognized as producers of defense compounds against biotic challenges. In the present work, we examine the role of these two oxylipin branches in plant tolerance to the abiotic stress, namely excessive light. Towards this goal, we have analyzed variable chlorophyll fluorescence parameters of intact leaves of Arabidopsis thaliana genotypes with altered oxylipin profile, followed by examining the impact of exogenous application of selected oxylipins on functional activity of photosynthetic apparatus in intact leaves and isolated thylakoid membranes. Our findings unequivocally bridge the function of oxylipins to photosynthetic processes. Specifically, HPL overexpressing lines display enhanced adaptability in response to high light treatment as evidenced by lower rate constant of photosystem 2 (PS2) photoinhibition and higher rate constant of PS2 recovery after photoinhibition. In addition, exogenous application of linolenic acid, 13-hydroperoxy linolenic acid, 12-oxophytodienoic acid, and methyl jasmonate individually, suppresses photochemical activity of PS2 in intact plants and isolated thylakoid membranes, while application of HPL-branch metabolites-does not. Collectively these data implicate function of HPL branch of oxylipin biosynthesis pathway in guarding PS2 under high light conditions, potentially exerted through tight regulation of free linolenic acid and 13-hydroperoxy linolenic acid levels, as well as competition with production of metabolites by AOS-branch of the oxylipin pathway.
Collapse
Affiliation(s)
- Tatyana Savchenko
- Institute of Basic Biological Problems, RAS, Institutskaya st., 2, Pushchino, 142290, Moscow Region, Russia.
- All-Russian Research Institute of Phytopathology, Institute st., 5, Odintsovo District, B. Vyazyomy, 143050, Moscow Region, Russia.
| | - Denis Yanykin
- Institute of Basic Biological Problems, RAS, Institutskaya st., 2, Pushchino, 142290, Moscow Region, Russia
- All-Russian Research Institute of Phytopathology, Institute st., 5, Odintsovo District, B. Vyazyomy, 143050, Moscow Region, Russia
| | - Andrew Khorobrykh
- Institute of Basic Biological Problems, RAS, Institutskaya st., 2, Pushchino, 142290, Moscow Region, Russia
| | - Vasily Terentyev
- Institute of Basic Biological Problems, RAS, Institutskaya st., 2, Pushchino, 142290, Moscow Region, Russia
| | - Vyacheslav Klimov
- Institute of Basic Biological Problems, RAS, Institutskaya st., 2, Pushchino, 142290, Moscow Region, Russia
| | - Katayoon Dehesh
- Institute for Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
13
|
Ge F, Luo X, Huang X, Zhang Y, He X, Liu M, Lin H, Peng H, Li L, Zhang Z, Pan G, Shen Y. Genome-wide analysis of transcription factors involved in maize embryonic callus formation. PHYSIOLOGIA PLANTARUM 2016; 158:452-462. [PMID: 27194582 DOI: 10.1111/ppl.12470] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/21/2016] [Accepted: 04/22/2016] [Indexed: 05/20/2023]
Abstract
In this study, a maize inbred line with a strong capacity to induce embryonic callus, 18-599R, was used to analyze the transcription factors expressed during embryonic callus formation. A total of 1180 transcription factors were found to be expressed during three key stages of callus induction. Of these, compared with control, 361, 346 and 328 transcription factors were significantly downregulated during stages I, II and III, respectively. In contrast, 355, 372 and 401 transcription factors (TFs) were upregulated during the respective stages. We constructed a transcription factor-mediated regulatory network and found that plant hormone signal transduction was the pathway most significantly enriched among TFs. This pathway includes 48 TFs regulating cell enlargement, cell differentiation, cell division and cell dedifferentiation via the response to plant hormones. Through real-time polymerase chain reaction (PCR) and degradome sequencing, we identified 23 transcription factors that are regulated by miRNA. Through further analysis, ZmMYB138, a member of the MYB transcription factor family localized in the nucleus, was verified to promote embryonic callus formation in the maize embryo through GA signal transduction.
Collapse
Affiliation(s)
- Fei Ge
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xu Luo
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xing Huang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanling Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiujing He
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Min Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Haijian Lin
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Huanwei Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an 625014, China
| | - Lujiang Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiming Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangtang Pan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yaou Shen
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
14
|
Savchenko TV, Zastrijnaja OM, Klimov VV. Oxylipins and plant abiotic stress resistance. BIOCHEMISTRY (MOSCOW) 2015; 79:362-75. [PMID: 24910209 DOI: 10.1134/s0006297914040051] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Oxylipins are signaling molecules formed enzymatically or spontaneously from unsaturated fatty acids in all aerobic organisms. Oxylipins regulate growth, development, and responses to environmental stimuli of organisms. The oxylipin biosynthesis pathway in plants includes a few parallel branches named after first enzyme of the corresponding branch as allene oxide synthase, hydroperoxide lyase, divinyl ether synthase, peroxygenase, epoxy alcohol synthase, and others in which various biologically active metabolites are produced. Oxylipins can be formed non-enzymatically as a result of oxygenation of fatty acids by free radicals and reactive oxygen species. Spontaneously formed oxylipins are called phytoprostanes. The role of oxylipins in biotic stress responses has been described in many published works. The role of oxylipins in plant adaptation to abiotic stress conditions is less studied; there is also obvious lack of available data compilation and analysis in this area of research. In this work we analyze data on oxylipins functions in plant adaptation to abiotic stress conditions, such as wounding, suboptimal light and temperature, dehydration and osmotic stress, and effects of ozone and heavy metals. Modern research articles elucidating the molecular mechanisms of oxylipins action by the methods of biochemistry, molecular biology, and genetics are reviewed here. Data on the role of oxylipins in stress signal transduction, stress-inducible gene expression regulation, and interaction of these metabolites with other signal transduction pathways in cells are described. In this review the general oxylipin-mediated mechanisms that help plants to adjust to a broad spectrum of stress factors are considered, followed by analysis of more specific responses regulated by oxylipins only under certain stress conditions. New approaches to improvement of plant resistance to abiotic stresses based on the induction of oxylipin-mediated processes are discussed.
Collapse
Affiliation(s)
- T V Savchenko
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | |
Collapse
|
15
|
JIP60-mediated, jasmonate- and senescence-induced molecular switch in translation toward stress and defense protein synthesis. Proc Natl Acad Sci U S A 2014; 111:14181-6. [PMID: 25225401 DOI: 10.1073/pnas.1415690111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Two closely related genes encoding the jasmonate-induced protein 60 (JIP60) were identified in the barley genome. The gene on chromosome arm 4HL encodes the previously identified protein encoded by the cDNA X66376.1. This JIP60 protein is characterized here and shown to consist of two domains: an NH2-terminal domain related to ribosome-inactivating proteins and a COOH-terminal domain, which displays similarity to eukaryotic translation initiation factor 4E (eIF4E). JIP60 undergoes processing in vivo, as a result of which JIP60's COOH-terminal eIF4E domain is released and functions in recruiting a subset of cellular messengers for translation. This effect was observed for both MeJA-treated and naturally senescing plants. Because the JIP60 gene is in close proximity to several quantitative trait loci for both biotic and abiotic stress resistance, our results identify a unique target for future breeding programs.
Collapse
|
16
|
Huot B, Yao J, Montgomery BL, He SY. Growth-defense tradeoffs in plants: a balancing act to optimize fitness. MOLECULAR PLANT 2014; 7:1267-1287. [PMID: 24777989 PMCID: PMC4168297 DOI: 10.1093/mp/ssu049] [Citation(s) in RCA: 880] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Growth-defense tradeoffs are thought to occur in plants due to resource restrictions, which demand prioritization towards either growth or defense, depending on external and internal factors. These tradeoffs have profound implications in agriculture and natural ecosystems, as both processes are vital for plant survival, reproduction, and, ultimately, plant fitness. While many of the molecular mechanisms underlying growth and defense tradeoffs remain to be elucidated, hormone crosstalk has emerged as a major player in regulating tradeoffs needed to achieve a balance. In this review, we cover recent advances in understanding growth-defense tradeoffs in plants as well as what is known regarding the underlying molecular mechanisms. Specifically, we address evidence supporting the growth-defense tradeoff concept, as well as known interactions between defense signaling and growth signaling. Understanding the molecular basis of these tradeoffs in plants should provide a foundation for the development of breeding strategies that optimize the growth-defense balance to maximize crop yield to meet rising global food and biofuel demands.
Collapse
Affiliation(s)
- Bethany Huot
- Department of Energy Plant Research Laboratory, Michigan State University, MI 48824, USA; Cell and Molecular Biology Program, Michigan State University, MI 48824, USA
| | - Jian Yao
- Department of Energy Plant Research Laboratory, Michigan State University, MI 48824, USA
| | - Beronda L Montgomery
- Department of Energy Plant Research Laboratory, Michigan State University, MI 48824, USA; Cell and Molecular Biology Program, Michigan State University, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA
| | - Sheng Yang He
- Department of Energy Plant Research Laboratory, Michigan State University, MI 48824, USA; Cell and Molecular Biology Program, Michigan State University, MI 48824, USA; Department of Plant Biology, Michigan State University, MI 48824, USA; Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Michigan State University, MI 48933, USA.
| |
Collapse
|
17
|
Sivakumar G, Jeong K, Lay JO. Biomass and RRR-α-tocopherol production in Stichococcus bacillaris strain siva2011 in a balloon bioreactor. Microb Cell Fact 2014; 13:79. [PMID: 24893720 PMCID: PMC4055361 DOI: 10.1186/1475-2859-13-79] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/30/2014] [Indexed: 12/16/2022] Open
Abstract
Background Green microalgae represent a renewable natural source of vitamin E. Its most bioactive form is the naturally occurring RRR-α-tocopherol which is biosynthesized in photosynthetic organisms as a single stereoisomer. It is noteworthy that the natural and synthetic α-tocopherols are different biomolecular entities. This article focuses on RRR-α-tocopherol production in Stichococcus bacillaris strain siva2011 biomass in a bioreactor culture with methyl jasmonate (MeJa) elicitor. Additionally, a nonlinear mathematical model was used to quantitatively scale-up and predict the biomass production in a 20 L balloon bioreactor with dual variables such as time and volume. Results Approximately 0.6 mg/g dry weight (DW) of RRR-α-tocopherol was enhanced in S. bacillaris strain siva2011 biomass with the MeJa 50 μL/L for 24 hrs elicitations when compared to the control. The R2 value from the nonlinear model was enhanced up to 95% when compared to the linear model which significantly improved the accuracy for estimating S. bacillaris strain siva2011 biomass production in a balloon bioreactor. Conclusions S. bacillaris strain siva2011 is a new green microalga which biosynthesizes significant amounts of RRR-α-tocopherol. Systematically validated dual variable empirical data should provide key insights to multivariable or fourth order modeling for algal biomass scale-up. This bioprocess engineering should provide valuable information for industrial production of RRR-α-tocopherol from green cells.
Collapse
Affiliation(s)
- Ganapathy Sivakumar
- Arkansas Biosciences Institute and College of Agriculture and Technology, Arkansas State University, PO Box 639, Jonesboro, AR 72401, USA.
| | | | | |
Collapse
|
18
|
Rosa BA, Zhang J, Major IT, Qin W, Chen J. Optimal timepoint sampling in high-throughput gene expression experiments. Bioinformatics 2012; 28:2773-81. [PMID: 22923305 DOI: 10.1093/bioinformatics/bts511] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Bruce A Rosa
- Biorefining Research Institute and Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Canada ON P7B 5E1
| | | | | | | | | |
Collapse
|
19
|
Liao HL, Burns JK. Gene expression in Citrus sinensis fruit tissues harvested from huanglongbing-infected trees: comparison with girdled fruit. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3307-19. [PMID: 22407645 PMCID: PMC3350938 DOI: 10.1093/jxb/ers070] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 02/08/2012] [Accepted: 02/13/2012] [Indexed: 05/19/2023]
Abstract
Distribution of viable Candidatus Liberibacter asiaticus (CaLas) in sweet orange fruit and leaves ('Hamlin' and 'Valencia') and transcriptomic changes associated with huanglongbing (HLB) infection in fruit tissues are reported. Viable CaLas was present in most fruit tissues tested in HLB trees, with the highest titre detected in vascular tissue near the calyx abscission zone. Transcriptomic changes associated with HLB infection were analysed in flavedo (FF), vascular tissue (VT), and juice vesicles (JV) from symptomatic (SY), asymptomatic (AS), and healthy (H) fruit. In SY 'Hamlin', HLB altered the expression of more genes in FF and VT than in JV, whereas in SY 'Valencia', the number of genes whose expression was changed by HLB was similar in these tissues. The expression of more genes was altered in SY 'Valencia' JV than in SY 'Hamlin' JV. More genes were also affected in AS 'Valencia' FF and VT than in AS 'Valencia' JV. Most genes whose expression was changed by HLB were classified as transporters or involved in carbohydrate metabolism. Physiological characteristics of HLB-infected and girdled fruit were compared to differentiate between HLB-specific and carbohydrate metabolism-related symptoms. SY and girdled fruit were smaller than H and ungirdled fruit, respectively, with poor juice quality. However, girdling did not cause misshapen fruit or differential peel coloration. Quantitative PCR analysis indicated that many selected genes changed their expression significantly in SY flavedo but not in girdled flavedo. Mechanisms regulating development of HLB symptoms may lie in the host disease response rather than being a direct consequence of carbohydrate starvation.
Collapse
Affiliation(s)
| | - Jacqueline K. Burns
- University of Florida, IFAS, Horticultural Sciences Department, Citrus Research and Education Center, 700 Experiment Station Road, Lake Alfred, FL 33850-2299, USA
| |
Collapse
|
20
|
Iñigo S, Alvarez MJ, Strasser B, Califano A, Cerdán PD. PFT1, the MED25 subunit of the plant Mediator complex, promotes flowering through CONSTANS dependent and independent mechanisms in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:601-12. [PMID: 21985558 DOI: 10.1111/j.1365-313x.2011.04815.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Two aspects of light are very important for plant development: the length of the light phase or photoperiod and the quality of incoming light. Photoperiod detection allows plants to anticipate the arrival of the next season, whereas light quality, mainly the red to far-red ratio (R:FR), is an early signal of competition by neighbouring plants. phyB represses flowering by antagonising CO at the transcriptional and post-translational levels. A low R:FR decreases active phyB and consequently increases active CO, which in turn activates the expression of FT, the plant florigen. Other phytochromes like phyD and phyE seem to have redundant roles with phyB. PFT1, the MED25 subunit of the plant Mediator complex, has been proposed to act in the light-quality pathway that regulates flowering time downstream of phyB. However, whether PFT1 signals through CO and its specific mechanism are unclear. Here we show that CO-dependent and -independent mechanisms operate downstream of phyB, phyD and phyE to promote flowering, and that PFT1 is equally able to promote flowering by modulating both CO-dependent and -independent pathways. Our data are consistent with the role of PFT1 as an activator of CO transcription, and also of FT transcription, in a CO-independent manner. Our transcriptome analysis is also consistent with CO and FT genes being the most important flowering targets of PFT1. Furthermore, comparison of the pft1 transcriptome with transcriptomes after fungal and herbivore attack strongly suggests that PFT1 acts as a hub, integrating a variety of interdependent environmental stimuli, including light quality and jasmonic acid-dependent defences.
Collapse
Affiliation(s)
- Sabrina Iñigo
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
21
|
Wakuta S, Hamada S, Ito H, Matsuura H, Nabeta K, Matsui H. Identification of a beta-glucosidase hydrolyzing tuberonic acid glucoside in rice (Oryza sativa L.). PHYTOCHEMISTRY 2010; 71:1280-1288. [PMID: 20570296 DOI: 10.1016/j.phytochem.2010.04.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 03/01/2010] [Accepted: 04/27/2010] [Indexed: 05/29/2023]
Abstract
Tuberonic acid (TA) and its glucoside (TAG) have been isolated from potato (Solanum tuberosum L.) leaflets and shown to exhibit tuber-inducing properties. These compounds were reported to be biosynthesized from jasmonic acid (JA) by hydroxylation and subsequent glycosylation, and to be contained in various plant species. Here we describe the in vivo hydrolytic activity of TAG in rice. In this study, the TA resulting from TAG was not converted into JA. Tuberonic acid glucoside (TAG)-hydrolyzing beta-glucosidase, designated OsTAGG1, was purified from rice by six purification steps with an approximately 4300-fold purification. The purified enzyme migrated as a single band on native PAGE, but as two bands with molecular masses of 42 and 26 kDa on SDS-PAGE. Results from N-terminal sequencing and peptide mass fingerprinting of both polypeptides suggested that both bands were derived from a single polypeptide, which is a member of the glycosyl hydrolase family 1. In the native enzyme, the K(m) and V(max) values of TAG were 31.7 microM and 0.25 microkatal/mg protein, OsTAGG1 preferentially hydrolyzed TAG and methyl TAG. Here we report that OsTAGG1 is a specific beta-glucosidase hydrolyzing TAG, which releases the physiologically active TA.
Collapse
Affiliation(s)
- Shinji Wakuta
- Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Kita-Ku, Sapporo 060-8589, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Osipenkova OV, Odintsova MS, Yurina NP. The influence of light, hormonal, and carbohydrate signal systems on ELIP gene expression in gun-mutants Arabidopsis thaliana. APPL BIOCHEM MICRO+ 2010. [DOI: 10.1134/s0003683810030142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Youssef A, Laizet Y, Block MA, Maréchal E, Alcaraz JP, Larson TR, Pontier D, Gaffé J, Kuntz M. Plant lipid-associated fibrillin proteins condition jasmonate production under photosynthetic stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:436-45. [PMID: 19906042 DOI: 10.1111/j.1365-313x.2009.04067.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The role of a subfamily of lipid globule-associated proteins, referred to as plant fibrillins (FIB1a, -1b, -2), was determined using a RNA interference (RNAi) strategy. We show that Arabidopsis plants with reduced levels of these plastid structural proteins are impaired in long-term acclimation to environmental constraint, namely photooxidative stress imposed by high light combined with cold. As a result, their photosynthetic apparatus is inefficiently protected. This leads to the prevalence of an abnormal granal and stromal membrane arrangement, as well as higher photosystem II photoinhibition under stress. The visible phenotype of FIB1-2 RNAi lines also includes retarded shoot growth and a deficit in anthocyanin accumulation under stress. All examined phenotypic effects of lower FIB levels are abolished by jasmonate (JA) treatment. An atypical expression pattern of several JA-induced genes was observed in RNAi plants. A JA-deficient mutant was found to share similar stress phenotypic characteristics with FIB RNAi plants. We conclude a new physiological role for JA, namely acclimation of chloroplasts, and that light/cold stress-related JA biosynthesis is conditioned by the accumulation of plastoglobule-associated FIB1-2 proteins. Consistent correlative data suggest that this FIB effect is mediated by plastoglobule (and triacylglycerol) accumulation as the potential site for initiating the chloroplast stress-related JA biosynthesis.
Collapse
Affiliation(s)
- Abir Youssef
- Laboratory Plastes et Différenciation Cellulaire, CNRS/Université Joseph Fourier, Grenoble, France
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Barrero JM, Talbot MJ, White RG, Jacobsen JV, Gubler F. Anatomical and transcriptomic studies of the coleorhiza reveal the importance of this tissue in regulating dormancy in barley. PLANT PHYSIOLOGY 2009; 150:1006-21. [PMID: 19386806 PMCID: PMC2689963 DOI: 10.1104/pp.109.137901] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 04/17/2009] [Indexed: 05/19/2023]
Abstract
The decay of seed dormancy during after-ripening is not well understood, but elucidation of the mechanisms involved may be important for developing strategies for modifying dormancy in crop species and, for example, addressing the problem of preharvest sprouting in cereals. We have studied the germination characteristics of barley (Hordeum vulgare 'Betzes') embryos, including a description of anatomical changes in the coleorhiza and the enclosed seminal roots. The changes that occur correlate with abscisic acid (ABA) contents of embryo tissues. To understand the molecular mechanisms involved in dormancy loss, we compared the transcriptome of dormant and after-ripened barley embryos using a tissue-specific microarray approach. Our results indicate that in the coleorhiza, ABA catabolism is promoted and ABA sensitivity is reduced and that this is associated with differential regulation by after-ripening of ABA 8'-hydroxylase and of the LIPID PHOSPHATE PHOSPHATASE gene family and ABI3-INTERACTING PROTEIN2, respectively. We also identified other processes, including jasmonate responses, cell wall modification, nitrate and nitrite reduction, mRNA stability, and blue light sensitivity, that were affected by after-ripening in the coleorhiza that may be downstream of ABA signaling. Based on these results, we propose that the coleorhiza plays a major role in causing dormancy by acting as a barrier to root emergence and that after-ripening potentiates molecular changes related to ABA metabolism and sensitivity that ultimately lead to degradation of the coleorhiza, root emergence, and germination.
Collapse
Affiliation(s)
- José M Barrero
- Plant Industry, Commonwealth Scientific and Industrial Research Organisation, Canberra, Australian Capital Territory 2601, Australia
| | | | | | | | | |
Collapse
|
25
|
Osipenkova OV, Ermokhina OV, Belkina GG, Oleskina YP, Fattakhov SG, Yurina NP. Effect of melaphene on expression of Elip1 and Elip2 genes encoding chloroplast light-induced stress proteins in barley. APPL BIOCHEM MICRO+ 2008. [DOI: 10.1134/s0003683808060136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Zhang L, Xing D. Methyl jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death. PLANT & CELL PHYSIOLOGY 2008; 49:1092-111. [PMID: 18535010 DOI: 10.1093/pcp/pcn086] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Methyl jasmonate (MeJa) is a well-known plant stress hormone. Upon exposure to stress, MeJa is produced and causes activation of programmed cell death (PCD) and defense mechanisms in plants. However, the early events and the signaling mechanisms of MeJa-induced cell death have yet to be fully elucidated. To obtain some insights into the early events of this cell death process, we investigated mitochondrial dynamics, chloroplast morphology and function, production and localization of reactive oxygen species (ROS) at the single-cell level as well as photosynthetic capacity at the whole-seedling level under MeJa stimulation. Our results demonstrated that MeJa induction of ROS production, which first occurred in mitochondria after 1 h of MeJa treatment and subsequently in chloroplasts by 3 h of treatment, caused a series of alterations in mitochondrial dynamics including the cessation of mitochondrial movement, the loss of mitochondrial transmembrane potential (MPT), and the morphological transition and aberrant distribution of mitochondria. Thereafter, photochemical efficiency dramatically declined before obvious distortion in chloroplast morphology, which is prior to MeJa-induced cell death in protoplasts or intact seedlings. Moreover, treatment of protoplasts with ascorbic acid or catalase prevented ROS production, organelle change, photosynthetic dysfunction and subsequent cell death. The permeability transition pore inhibitor cyclosporin A gave significant protection against MPT loss, mitochondrial swelling and subsequent cell death. These results suggested that MeJa induces ROS production and alterations of mitochondrial dynamics as well as subsequent photosynthetic collapse, which occur upstream of cell death and are necessary components of the cell death process.
Collapse
Affiliation(s)
- Lingrui Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, PR China
| | | |
Collapse
|
27
|
Kim HJ, Fonseca JM, Choi JH, Kubota C. Effect of methyl jasmonate on phenolic compounds and carotenoids of romaine lettuce (Lactuca sativa L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:10366-72. [PMID: 17990849 DOI: 10.1021/jf071927m] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The effect of exogenous methyl jasmonate (MeJA) on antioxidative compounds of romaine lettuce ( Lactuca sativa L.) was investigated. Lettuces were treated with various MeJA solutions (0, 0.05, 0.1, 0.25, and 0.5 mM) before harvest. Total phenolic compounds content and antioxidant capacity of romaine lettuce significantly increased after MeJA treatments (0.1, 0.25, and 0.5 mM). The total content of phenolic compounds of the romaine lettuce treated with 0.5 mM MeJA (31.6 microg of gallic acid equivalents/mg of dry weight) was 35% higher than that of the control. The increase in phenolic compound content was attributed to a caffeic acid derivative and an unknown phenolic compound, which also contributed to increased antioxidant capacity. The induction of phenylalanine ammonia-lyase (PAL) activity by the MeJA treatment indicated that phenolic compounds were altered due to the activation of the phenylpropandoid pathway. Total content of carotenoids, including lutein and beta-carotene, of the MeJA-treated lettuce did not change after 8 days of treatment, whereas the content of the control without MeJA decreased after 8 days. This research indicated that preharvest application of MeJA could increase the nutritional value of romaine lettuce under determined conditions discussed in this work.
Collapse
Affiliation(s)
- Hyun-Jin Kim
- Department of Plant Sciences, The University of Arizona, Yuma 85364, USA.
| | | | | | | |
Collapse
|
28
|
Kubicka E, Zadernowski R. Enhanced jasmonate biosynthesis in plants and possible implications for food quality. ACTA ALIMENTARIA 2007. [DOI: 10.1556/aalim.36.2007.4.8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Zhai Q, Li CB, Zheng W, Wu X, Zhao J, Zhou G, Jiang H, Sun J, Lou Y, Li C. Phytochrome chromophore deficiency leads to overproduction of jasmonic acid and elevated expression of jasmonate-responsive genes in Arabidopsis. PLANT & CELL PHYSIOLOGY 2007; 48:1061-71. [PMID: 17567636 DOI: 10.1093/pcp/pcm076] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
An Arabidopsis mutant line named hy1-101 was isolated because it shows stunted root growth on medium containing low concentrations of jasmonic acid (JA). Subsequent investigation indicated that even in the absence of JA, hy1-101 plants exhibit shorter roots and express higher levels of a group of JA-inducible defense genes. Here, we show that the hy1-101 mutant has increased production of JA and its jasmonate-related phenotype is suppressed by the coi1-1 mutation that interrupts JA signaling. Gene cloning and genetic complementation analyses revealed that the hy1-101 mutant contains a mutation in the HY1 gene, which encodes a heme oxygenase essential for phytochrome chromophore biosynthesis. These results support a hypothesis that phytochrome chromophore deficiency leads to overproduction of JA and activates COI1-dependent JA responses. Indeed, we show that, like hy1-101, independent alleles of the phytochrome chromophore-deficient mutants, including hy1-100 and hy2 (CS68), also show elevated JA levels and constant expression of JA-inducible defense genes. We further provide evidence showing that, on the other hand, JA inhibits the expression of a group of light-inducible and photosynthesis-related genes. Together, these data imply that the JA-signaled defense pathway and phytochrome chromophore-mediated light signaling might have antagonistic effects on each other.
Collapse
Affiliation(s)
- Qingzhe Zhai
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
ADAMS WILLIAMW, ZARTER CRYAN, EBBERT VOLKER, DEMMIG-ADAMS BARBARA. Photoprotective Strategies of Overwintering Evergreens. Bioscience 2004. [DOI: 10.1641/0006-3568(2004)054[0041:psooe]2.0.co;2] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
31
|
Wasternack C, Hause B. Jasmonates and octadecanoids: signals in plant stress responses and development. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 72:165-221. [PMID: 12206452 DOI: 10.1016/s0079-6603(02)72070-9] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Plants are sessile organisms. Consequently they have to adapt constantly to fluctuations in the environment. Some of these changes involve essential factors such as nutrients, light, and water. Plants have evolved independent systems to sense nutrients such as phosphate and nitrogen. However, many of the environmental factors may reach levels which represent stress for the plant. The fluctuations can range between moderate and unfavorable, and the factors can be of biotic or abiotic origin. Among the biotic factors influencing plant life are pathogens and herbivores. In case of bacteria and fungi, symbiotic interactions such as nitrogen-fixating nodules and mycorrhiza, respectively, may be established. In case of insects, a tritrophic interaction of herbivores, carnivores, and plants may occur mutualistically or parasitically. Among the numerous abiotic factors are low temperature, frost, heat, high light conditions, ultraviolet light, darkness, oxidation stress, hypoxia, wind, touch, nutrient imbalance, salt stress, osmotic adjustment, water deficit, and desiccation. In the last decade jasmonates were recognized as being signals in plant responses to most of these biotic and abiotic factors. Signaling via jasmonates was found to occur intracellularly, intercellularly, and systemically as well as interorganismically. Jasmonates are a group of ubiquitously occurring plant growth regulators originally found as the major constituents in the etheric oil of jasmine, and were first suggested to play a role in senescence due to a strong senescence-promoting effect. Subsequently, numerous developmental processes were described in which jasmonates exhibited hormone-like properties. Recent knowledge is reviewed here on jasmonates and their precursors, the octadecanoids. After discussing occurrence and biosynthesis, emphasis is placed upon the signal transduction pathways in plant stress responses in which jasmonates act as a signal. Finally, examples are described on the role of jasmonates in developmental processes.
Collapse
|
32
|
Oztur ZN, Talamé V, Deyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ. Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. PLANT MOLECULAR BIOLOGY 2002; 48:551-73. [PMID: 11999834 DOI: 10.1023/a:1014875215580] [Citation(s) in RCA: 273] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Responses to drought and salinity in barley (Hordeum vulgare L. cv. Tokak) were monitored by microarray hybridization of 1463 DNA elements derived from cDNA libraries of 6 and 10 h drought-stressed plants. Functional identities indicated that many cDNAs in these libraries were associated with drought stress. About 38% of the transcripts were novel and functionally unknown. Hybridization experiments were analyzed for drought- and salinity-regulated sequences, with significant changes defined as a deviation from the control exceeding 2.5-fold. Responses of transcripts showed stress-dependent expression patterns and time courses. Nearly 15% of all transcripts were either up- or down-regulated under drought stress, while NaCl led to a change in 5% of the transcripts (24 h, 150 mM NaCl). Transcripts that showed significant up-regulation under drought stress are exemplified by jasmonate-responsive, metallothionein-like, late-embryogenesis-abundant (LEA) and ABA-responsive proteins. Most drastic down-regulation in a category was observed for photosynthesis-related functions. Up-regulation under both drought and salt stress was restricted to ESTs for metallothionein-like and LEA proteins, while increases in ubiquitin-related transcripts characterized salt stress. A number of functionally unknown transcripts from cDNA libraries of drought-stressed plants showed up-regulation by drought but down-regulation by salt stress, documenting how precisely transcript profiles report different growth conditions and environments.
Collapse
Affiliation(s)
- Z Neslihan Oztur
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Biosciences West, Tucson 85721-0088, USA
| | | | | | | | | | | | | | | |
Collapse
|