1
|
Abbas HMM, Rais U, Sultan H, Tahir A, Bahadur S, Shah A, Iqbal A, Li Y, Khan MN, Nie L. Residual Effect of Microbial-Inoculated Biochar with Nitrogen on Rice Growth and Salinity Reduction in Paddy Soil. PLANTS (BASEL, SWITZERLAND) 2024; 13:2804. [PMID: 39409674 PMCID: PMC11478880 DOI: 10.3390/plants13192804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024]
Abstract
Increasing soil and water salinity threatens global agriculture, particularly affecting rice. This study investigated the residual effects of microbial biochar and nitrogen fertilizer in mitigating salt stress in paddy soil and regulating the biochemical characteristics of rice plants. Two rice varieties, Shuang Liang You 138 (SLY138), a salt-tolerant, and Jing Liang You 534 (JLY534), a salt-sensitive, were grown under 0.4 ds/m EC (S0) and 6.84 ds/m EC (S1) in a glass house under controlled conditions. Three types of biochar-rice straw biochar (BC), fungal biochar (BF), and bacterial biochar (BB)-were applied alongside two nitrogen (N) fertilizer rates (60 kg ha-1 and 120 kg ha-1) in a previous study. The required salinity levels were maintained in respective pots through the application of saline irrigation water. Results showed that residual effects of microbial biochars (BF and BB) had higher salt mitigation efficiency than sole BC. The combination of BB and N fertilizer (BB + N120) significantly decreased soil pH by 23.45% and Na+ levels by 46.85%, creating a more conducive environment for rice growth by enhancing beneficial microbial abundance and decreasing pathogenic fungi in saline soil. Microbial biochars (BF and BB) positively improved soil properties (physicochemical) and biochemical and physiological properties of plants, ultimately rice growth. SLY138 significantly had a less severe response to salt stress compared to JLY534. The mitigation effects of BB + N120 kg ha-1 were particularly favorable for SLY138. In summary, the combined residual effect of BF and BB with N120 kg ha-1, especially bacterial biochar (BB), played a positive role in alleviating salt stress on rice growth, suggesting its potential utility for enhancing rice yield in paddy fields.
Collapse
Affiliation(s)
- Hafiz Muhammad Mazhar Abbas
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572000, China; (H.M.M.A.); (H.S.); (A.S.); (Y.L.)
| | - Ummah Rais
- Department of Zoology, The Islamiyah University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Haider Sultan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572000, China; (H.M.M.A.); (H.S.); (A.S.); (Y.L.)
| | - Ashar Tahir
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
| | - Saraj Bahadur
- College of Forestry, Hainan University, Haikou 570228, China;
| | - Asad Shah
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572000, China; (H.M.M.A.); (H.S.); (A.S.); (Y.L.)
| | - Asim Iqbal
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 37000, Pakistan;
| | - Yusheng Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572000, China; (H.M.M.A.); (H.S.); (A.S.); (Y.L.)
| | - Mohammad Nauman Khan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572000, China; (H.M.M.A.); (H.S.); (A.S.); (Y.L.)
| | - Lixiao Nie
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572000, China; (H.M.M.A.); (H.S.); (A.S.); (Y.L.)
| |
Collapse
|
2
|
Sheikhalipour M, Mohammadi SA, Esmaielpour B, Spanos A, Mahmoudi R, Mahdavinia GR, Milani MH, Kahnamoei A, Nouraein M, Antoniou C, Kulak M, Gohari G, Fotopoulos V. Seedling nanopriming with selenium-chitosan nanoparticles mitigates the adverse effects of salt stress by inducing multiple defence pathways in bitter melon plants. Int J Biol Macromol 2023; 242:124923. [PMID: 37211072 DOI: 10.1016/j.ijbiomac.2023.124923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/23/2023]
Abstract
Advances in the nanotechnology fields provided crucial applications in plant sciences, contributing to the plant performance and health under stress and stress-free conditions. Amid the applications, selenium (Se), chitosan and their conjugated forms as nanoparticles (Se-CS NPs) have been revealed to have potential of alleviating the harmful effects of the stress on several crops and subsequently enhancing the growth and productivity. The present study was addressed to assay the potential effects of Se-CS NPs in reversing or buffering the harmful effects of salt stress on growth, photosynthesis, nutrient concentration, antioxidant system and defence transcript levels in bitter melon )Momordica charantia(. In addition, some secondary metabolite-related genes were explicitly examined. In this regard, the transcriptional levels of WRKY1, SOS1, PM H+-ATPase, SKOR, Mc5PTase7, SOAR1, MAP30, α-MMC, polypeptide-P and PAL were quantified. Our results demonstrated that Se-CS NPs increased growth parameters, photosynthesis parameters (SPAD, Fv/Fm, Y(II)), antioxidant enzymatic activity (POD, SOD, CAT) and nutrient homeostasis (Na+/K+, Ca2+, and Cl-) and induced the expression of genes in bitter melon plants under salt stress (p ≤ 0.05). Therefore, applying Se-CS NPs might be a simple and effective way of improving crop plants' overall health and yield under salt stress conditions.
Collapse
Affiliation(s)
- Morteza Sheikhalipour
- Department of Horticulture, Faculty of Horticulture, University of Mohagheh Ardabili, Ardabil, Iran; Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Seyed Abolghasem Mohammadi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran; Center for Cell Pathology, Department of Life Sciences, Khazar University, Baku, Azerbaijan
| | - Behrooz Esmaielpour
- Department of Horticulture, Faculty of Horticulture, University of Mohagheh Ardabili, Ardabil, Iran
| | - Alexandros Spanos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology Limassol, Cyprus
| | - Roghayeh Mahmoudi
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Gholam Reza Mahdavinia
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | | | - Amir Kahnamoei
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Mojtaba Nouraein
- Department of Plant Genetics and Production, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Chrystalla Antoniou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology Limassol, Cyprus
| | - Muhittin Kulak
- Department of Herbal and Animal Production, Vocational School of Technical Sciences, Igdir University, Türkiye
| | - Gholamreza Gohari
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology Limassol, Cyprus; Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, Iran.
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology Limassol, Cyprus.
| |
Collapse
|
3
|
Li Y, Han S, Sun X, Khan NU, Zhong Q, Zhang Z, Zhang H, Ming F, Li Z, Li J. Variations in OsSPL10 confer drought tolerance by directly regulating OsNAC2 expression and ROS production in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:918-933. [PMID: 36401566 DOI: 10.1111/jipb.13414] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Drought is a major factor restricting the production of rice (Oryza sativa L.). The identification of natural variants for drought stress-related genes is an important step toward developing genetically improved rice varieties. Here, we characterized a member of the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) family, OsSPL10, as a transcription factor involved in the regulation of drought tolerance in rice. OsSPL10 appears to play a vital role in drought tolerance by controlling reactive oxygen species (ROS) production and stomatal movements. Haplotype and allele frequency analyses of OsSPL10 indicated that most upland rice and improved lowland rice varieties harbor the OsSPL10Hap1 allele, whereas the OsSPL10Hap2 allele was mainly present in lowland and landrace rice varieties. Importantly, we demonstrated that the varieties with the OsSPL10Hap1 allele showed low expression levels of OsSPL10 and its downstream gene, OsNAC2, which decreases the expression of OsAP37 and increases the expression of OsCOX11, thus preventing ROS accumulation and programmed cell death (PCD). Furthermore, the knockdown or knockout of OsSPL10 induced fast stomatal closure and prevented water loss, thereby improving drought tolerance in rice. Based on these observations, we propose that OsSPL10 confers drought tolerance by regulating OsNAC2 expression and that OsSPL10Hap1 could be a valuable haplotype for the genetic improvement of drought tolerance in rice.
Collapse
Affiliation(s)
- Yingxiu Li
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shichen Han
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xingming Sun
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Najeeb Ullah Khan
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Qun Zhong
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhanying Zhang
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hongliang Zhang
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Feng Ming
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zichao Li
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Jinjie Li
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
4
|
Yao XC, Meng LF, Zhao WL, Mao GL. Changes in the morphology traits, anatomical structure of the leaves and transcriptome in Lycium barbarum L. under salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1090366. [PMID: 36890891 PMCID: PMC9987590 DOI: 10.3389/fpls.2023.1090366] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Salt stress directly affects the growth of plants. The limitation of leaf grow is among the earliest visible effects of salt stress. However, the regulation mechanism of salt treatments on leaf shape has not been fully elucidated. We measured the morphological traits and anatomical structure. In combination with transcriptome analysis, we analyzed differentially expressed genes (DEGs) and verified the RNA-seq data by qRT-PCR. Finally, we analyzed correlation between leaf microstructure parameters and expansin genes. We show that the leaf thickness, the width, and the leaf length significantly increased at elevated salt concentrations after salt stress for 7 days. Low salt mainly promoted the increase in leaves length and width, but high salt concentration accelerated the leaf thickness. The anatomical structure results indicated that palisade mesophyll tissues contribute more to leaf thickness than spongy mesophyll tissues, which possibly contributed to the increase in leaf expansion and thickness. Moreover, a total of 3,572 DEGs were identified by RNA-seq. Notably, six of the DEGs among 92 identified genes concentrated on cell wall synthesis or modification were involved in cell wall loosening proteins. More importantly, we demonstrated that there was a strong positive correlation between the upregulated EXLA2 gene and the thickness of the palisade tissue in L. barbarum leaves. These results suggested that salt stress possibly induced the expression of EXLA2 gene, which in turn increased the thickness of L. barbarum leaves by promoting the longitudinal expansion of cells of the palisade tissue. This study lays a solid knowledge for revealing the underlying molecular mechanisms of leaf thickening in L. barbarum in response to salt stresses.
Collapse
|
5
|
Sheikhalipour M, Mohammadi SA, Esmaielpour B, Zareei E, Kulak M, Ali S, Nouraein M, Bahrami MK, Gohari G, Fotopoulos V. Exogenous melatonin increases salt tolerance in bitter melon by regulating ionic balance, antioxidant system and secondary metabolism-related genes. BMC PLANT BIOLOGY 2022; 22:380. [PMID: 35907823 PMCID: PMC9338570 DOI: 10.1186/s12870-022-03728-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/01/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND Melatonin is a multi-functional molecule widely employed in order to mitigate abiotic stress factors, in general and salt stress in particular. Even though previous reports revealed that melatonin could exhibit roles in promoting seed germination and protecting plants during various developmental stages of several plant species under salt stress, no reports are available with respect to the regulatory acts of melatonin on the physiological and biochemical status as well as the expression levels of defense- and secondary metabolism-related related transcripts in bitter melon subjected to the salt stress. RESULTS Herewith the present study, we performed a comprehensive analysis of the physiological and ion balance, antioxidant system, as well as transcript analysis of defense-related genes (WRKY1, SOS1, PM H+-ATPase, SKOR, Mc5PTase7, and SOAR1) and secondary metabolism-related gene expression (MAP30, α-MMC, polypeptide-P, and PAL) in salt-stressed bitter melon (Momordica charantia L.) plants in response to melatonin treatment. In this regard, different levels of melatonin (0, 75 and 150 µM) were applied to mitigate salinity stress (0, 50 and 100 mM NaCl) in bitter melon. Accordingly, present findings revealed that 100 mM salinity stress decreased growth and photosynthesis parameters (SPAD, Fv/Fo, Y(II)), RWC, and some nutrient elements (K+, Ca2+, and P), while it increased Y(NO), Y(NPQ), proline, Na+, Cl-, H2O2, MDA, antioxidant enzyme activity, and lead to the induction of the examined genes. However, prsiming with 150 µM melatonin increased SPAD, Fv/Fo, Y(II)), RWC, and K+, Ca2+, and P concentration while decreased Y(NO), Y(NPQ), Na+, Cl-, H2O2, and MDA under salt stress. In addition, the antioxidant system and gene expression levels were increased by melatonin (150 µM). CONCLUSIONS Overall, it can be postulated that the application of melatonin (150 µM) has effective roles in alleviating the adverse impacts of salinity through critical modifications in plant metabolism.
Collapse
Affiliation(s)
- Morteza Sheikhalipour
- Department of Horticulture, Faculty of Horticulture, University of Mohagheh Ardebili, Ardebil, Iran
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Seyed Abolghasem Mohammadi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
- Center for Cell Pathology, Department of Life Sciences, Khazar University, Baku, Azerbaijan
| | - Behrooz Esmaielpour
- Department of Horticulture, Faculty of Horticulture, University of Mohagheh Ardebili, Ardebil, Iran
| | - Elnaz Zareei
- Department of Horticultural Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Muhittin Kulak
- Department of Herbal and Animal Production, Vocational School of Technical Sciences, Igdir University, Igdir, Türkiye
| | - Sajid Ali
- Department of Horticulture, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Mojtaba Nouraein
- Department of Plant Genetics and Production, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | | | - Gholamreza Gohari
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran.
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology Limassol, Limassol, Cyprus
| |
Collapse
|
6
|
Vignesh P, Mahadevaiah C, Parimalan R, Valarmathi R, Dharshini S, Nisha S, Suresha GS, Swathi S, Mahadeva Swamy HK, Sreenivasa V, Mohanraj K, Hemaprabha G, Bakshi R, Appunu C. Comparative de novo transcriptome analysis identifies salinity stress responsive genes and metabolic pathways in sugarcane and its wild relative Erianthus arundinaceus [Retzius] Jeswiet. Sci Rep 2021; 11:24514. [PMID: 34972826 PMCID: PMC8720094 DOI: 10.1038/s41598-021-03735-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/08/2021] [Indexed: 11/09/2022] Open
Abstract
Erianthus arundinaceus [Retzius] Jeswiet, a wild relative of sugarcane has a high biomass production potential and a reservoir of many genes for superior agronomic traits and tolerance to biotic and abiotic stresses. A comparative physiological, anatomical and root transcriptome analysis were carried out to identify the salt-responsive genes and metabolic pathways associated with salt-tolerant E. arundinaceus genotype IND99-907 and salinity-sensitive sugarcane genotype Co 97010. IND99-907 recorded growth of young leaves, higher proline content, higher relative water content, intact root anatomical structures and lower Na+/K+, Ca2+/K+ and Mg2+/K+ ratio as compared to the sugarcane genotype Co 97010. We have generated four de novo transcriptome assemblies between stressed and control root samples of IND99-907 and Co 97010. A total of 649 and 501 differentially expressed genes (FDR<0.01) were identified from the stressed and control libraries of IND99-907 and Co 97010 respectively. Genes and pathways related to early stress-responsive signal transduction, hormone signalling, cytoskeleton organization, cellular membrane stabilization, plasma membrane-bound calcium and proton transport, sodium extrusion, secondary metabolite biosynthesis, cellular transporters related to plasma membrane-bound trafficking, nucleobase transporter, clathrin-mediated endocytosis were highly enriched in IND99-907. Whereas in Co 97010, genes related to late stress-responsive signal transduction, electron transport system, senescence, protein degradation and programmed cell death, transport-related genes associated with cellular respiration and mitochondrial respiratory chain, vesicular trafficking, nitrate transporter and fewer secondary metabolite biosynthetic genes were highly enriched. A total of 27 pathways, 24 biological processes, three molecular functions and one cellular component were significantly enriched (FDR≤ 0.05) in IND99-907 as compared to 20 pathways, two biological processes without any significant molecular function and cellular components in Co 97010, indicates the unique and distinct expression pattern of genes and metabolic pathways in both genotypes. The genomic resources developed from this study is useful for sugarcane crop improvement through development of genic SSR markers and genetic engineering approaches.
Collapse
Affiliation(s)
- P Vignesh
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - C Mahadevaiah
- ICAR-Sugarcane Breeding Institute, Coimbatore, India.
| | - R Parimalan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia
| | - R Valarmathi
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - S Dharshini
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - Singh Nisha
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, 14853, USA
| | - G S Suresha
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - S Swathi
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | | | - V Sreenivasa
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - K Mohanraj
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - G Hemaprabha
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - Ram Bakshi
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - C Appunu
- ICAR-Sugarcane Breeding Institute, Coimbatore, India.
| |
Collapse
|
7
|
Pitann B, Bakhat HF, Fatima A, Hanstein S, Schubert S. Silicon-mediated growth promotion in maize (Zea mays L.) occurs via a mechanism that does not involve activation of the plasma membrane H +-ATPase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:1121-1130. [PMID: 34328870 DOI: 10.1016/j.plaphy.2021.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Silicon (Si)-mediated growth promotion of various grasses is well documented. In the present study, Si-induced changes in maize shoot growth and its underlying mechanisms were studied. Maize plants were grown with various concentrations of Si (0-3 mM) in the nutrient solution. Silicon nutrition improved plant expansion growth. Silicon-supplied maize plants (0.8 and 1.2 mM) showed higher plant height and leaf area compared to no-Si amended plants. It was assumed that Si-induced expansion growth was due to positive Si effects on plasma membrane (PM) H+-ATPase. In this context, western blot analysis revealed an increase in PM H+-ATPase abundance by 77% under Si nutrition. However, in vitro measurements of enzyme activities showed no significant effect on apoplast pH, proton pumping, passive H+ efflux and enzyme kinetics such as Km, Vmax, and activation energy. Further, these results were confirmed by in vivo ratiometric analysis of apoplastic pH, which showed non-significant changes upon Si supply. In contrast, 1 mM Si altered the relative transcripts of specific PM H+-ATPase isoforms. Silicon application resulted in a significant decrease of MHA3, and this decrease in transcription seems to be compensated by an increased concentration of H+-ATPase protein. From these results, it can be concluded that changes in cell wall composition and PM H+-ATPase may be responsible for Si-mediated growth improvement in maize.
Collapse
Affiliation(s)
- Britta Pitann
- Institute of Plant Nutrition (iFZ) Justus Liebig University Giessen, Heinrich Buff-Ring 26-32, 35392, Giessen, Germany
| | - Hafiz Faiq Bakhat
- Institute of Plant Nutrition (iFZ) Justus Liebig University Giessen, Heinrich Buff-Ring 26-32, 35392, Giessen, Germany.
| | - Ammara Fatima
- Institute of Plant Nutrition (iFZ) Justus Liebig University Giessen, Heinrich Buff-Ring 26-32, 35392, Giessen, Germany
| | - Stefan Hanstein
- Institute of Plant Nutrition (iFZ) Justus Liebig University Giessen, Heinrich Buff-Ring 26-32, 35392, Giessen, Germany
| | - Sven Schubert
- Institute of Plant Nutrition (iFZ) Justus Liebig University Giessen, Heinrich Buff-Ring 26-32, 35392, Giessen, Germany
| |
Collapse
|
8
|
Toscano S, Branca F, Romano D, Ferrante A. An Evaluation of Different Parameters to Screen Ornamental Shrubs for Salt Spray Tolerance. BIOLOGY 2020; 9:biology9090250. [PMID: 32867318 PMCID: PMC7564769 DOI: 10.3390/biology9090250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022]
Abstract
In the context of seaside landscaping, one of the greatest challenges for practitioners and scientists is to select suitable species that are able to tolerate salt spray. This is the key aspect for a wide number of potentially suitable species. The objectives of this study were (1) to identify plant traits associated with species tolerance to salt stress and (2) to evaluate the responses of different shrub species to salt spray. For this purpose, a study was conducted to determine the effects of salt spray on twenty-four ornamental shrubs using rapid and easy-to-use methodology. The species were subjected twice a week to nebulization treatment with simulated seawater solution for 60 days. Every 20 days, net photosynthesis, stomatal conductance, transpiration rate, and chlorophyll a fluorescence were determined. Furthermore, dry biomass of the different organographic portions, leaf number, leaf area, Specific Leaf Area, chlorophyll content, and leaf damage were determined at the end of the experiment. The species exposed to seawater solution showed different physiological and morphological responses. Based on the above indices, these ornamental shrubs were screened and categorized as tolerant, moderately tolerant, or susceptible. The results suggest that Convolvulus, Ceratonia, and Ligustrum are more tolerant to salt spray than numerous other genotypes; L. langmaniae, Cascabela, and L. frutescens, conversely, are more sensitive. Among the plant traits, the morphological parameters thoroughly characterized the effects of the salt spray, but they were destructive, with the only exception being the leaf damage percentage. This last non-destructive parameter is interesting considering the aesthetic value that ornamental plants must have. The physiological parameters, and in particular photosynthesis activity, can instead be used as a non-destructive screening method to select species suitable for ornamental green spaces near the sea.
Collapse
Affiliation(s)
- Stefania Toscano
- Department of Agriculture, Food and Environment (Di3A), Università degli Studi di Catania, Via Valdisavoia 5, 95123 Catania, Italy; (S.T.); (F.B.)
| | - Ferdinando Branca
- Department of Agriculture, Food and Environment (Di3A), Università degli Studi di Catania, Via Valdisavoia 5, 95123 Catania, Italy; (S.T.); (F.B.)
| | - Daniela Romano
- Department of Agriculture, Food and Environment (Di3A), Università degli Studi di Catania, Via Valdisavoia 5, 95123 Catania, Italy; (S.T.); (F.B.)
- Correspondence:
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Via Celoria 2, 1-20133 Milan, Italy;
| |
Collapse
|
9
|
Pailles Y, Awlia M, Julkowska M, Passone L, Zemmouri K, Negrão S, Schmöckel SM, Tester M. Diverse Traits Contribute to Salinity Tolerance of Wild Tomato Seedlings from the Galapagos Islands. PLANT PHYSIOLOGY 2020; 182:534-546. [PMID: 31653717 PMCID: PMC6945843 DOI: 10.1104/pp.19.00700] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/10/2019] [Indexed: 05/03/2023]
Abstract
Traits of modern crops have been heavily selected in agriculture, leaving commercial lines often more susceptible to harsh conditions compared with their wild relatives. Understanding the mechanisms of stress tolerance in wild relatives can enhance crop performance under stress conditions such as high salinity. In this study, we investigated salinity tolerance of two species of wild tomato endemic to the Galapagos Islands, Solanum cheesmaniae and Solanum galapagense Since these tomatoes grow well despite being constantly splashed with seawater, they represent a valuable genetic resource for improving salinity tolerance in commercial tomatoes. To explore their potential, we recorded over 20 traits reflecting plant growth, physiology, and ion content in 67 accessions and two commercial tomato lines of Solanum lycopersicum. Salt treatments were applied for 10 d using supported hydroponics. The Galapagos tomatoes displayed greater tolerance to salt stress than the commercial lines and showed substantial natural variation in their responses. The accessions LA0317, LA1449, and LA1403 showed particularly high salinity tolerance based on growth under salinity stress. Therefore, Galapagos tomatoes should be further explored to identify the genes underlying their high tolerance and be used as a resource for increasing the salinity tolerance of commercial tomatoes. The generated data, along with useful analysis tools, have been packaged and made publicly available via an interactive online application (https://mmjulkowska.shinyapps.io/La_isla_de_tomato/) to facilitate trait selection and the use of Galapagos tomatoes for the development of salt-tolerant commercial tomatoes.
Collapse
Affiliation(s)
- Yveline Pailles
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Mariam Awlia
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Magdalena Julkowska
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Luca Passone
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences and Engineering (PSE), Thuwal, 23955-6900, Saudi Arabia
| | - Khadija Zemmouri
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Sónia Negrão
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Sandra M Schmöckel
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Mark Tester
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
10
|
Physiological and Proteomic Responses of Mulberry Trees ( Morus alba. L.) to Combined Salt and Drought Stress. Int J Mol Sci 2019; 20:ijms20102486. [PMID: 31137512 PMCID: PMC6566768 DOI: 10.3390/ijms20102486] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023] Open
Abstract
Intensive investigations have been conducted on the effect of sole drought or salinity stress on the growth of plants. However, there is relatively little knowledge on how plants, particularly woody species, respond to a combination of these two stresses although these stresses can simultaneously occur in the field. In this study, mulberry, an economically important resource for traditional medicine, and the sole food of domesticated silkworms was subjected to a combination of salt and drought stress and analyzed by physiological methods and TMT-based proteomics. Stressed mulberry exhibited significant alteration in physiological parameters, including root/shoot ratio, chlorophyll fluorescence, total carbon, and ion reallocation. A total of 577 and 270 differentially expressed proteins (DEPs) were identified from the stressed leaves and roots, respectively. Through KEGG analysis, these DEPs were assigned to multiple pathways, including carbon metabolism, photosynthesis, redox, secondary metabolism, and hormone metabolism. Among these pathways, the sucrose related metabolic pathway was distinctly enriched in both stressed leaves and roots, indicating an important contribution in mulberry under stress condition. The results provide a comprehensive understanding of the adaptive mechanism of mulberry in response to salt and drought stress, which will facilitate further studies on innovations in terms of crop performance.
Collapse
|
11
|
Tahjib-Ul-Arif M, Roy PR, Al Mamun Sohag A, Afrin S, Rady MM, Hossain MA. Exogenous Calcium Supplementation Improves Salinity Tolerance in BRRI Dhan28; a Salt-Susceptible High-Yielding Oryza Sativa Cultivar. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s12892-018-0098-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Salt stress tolerance of transgenic rice (Oryza sativa L.) expressing AtDREB1A gene under inducible or constitutive promoters. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0010-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Geilfus CM, Tenhaken R, Carpentier SC. Transient alkalinization of the leaf apoplast stiffens the cell wall during onset of chloride salinity in corn leaves. J Biol Chem 2017; 292:18800-18813. [PMID: 28972176 DOI: 10.1074/jbc.m117.799866] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/11/2017] [Indexed: 12/13/2022] Open
Abstract
During chloride salinity, the pH of the leaf apoplast (pHapo) transiently alkalizes. There is an ongoing debate about the physiological relevance of these stress-induced pHapo changes. Using proteomic analyses of expanding leaves of corn (Zea mays L.), we show that this transition in pHapo conveys functionality by (i) adjusting protein abundances and (ii) affecting the rheological properties of the cell wall. pHapo was monitored in planta via microscopy-based ratio imaging, and the leaf-proteomic response to the transient leaf apoplastic alkalinization was analyzed via ultra-high performance liquid chromatography-MS. This analysis identified 1459 proteins, of which 44 exhibited increased abundance specifically through the chloride-induced transient rise in pHapo These elevated protein abundances did not directly arise from high tissue concentrations of Cl- or Na+ but were due to changes in the pHapo Most of these proteins functioned in growth-relevant processes and in the synthesis of cell wall-building components such as arabinose. Measurements with a linear-variable differential transducer revealed that the transient alkalinization rigidified (i.e. stiffened) the cell wall during the onset of chloride salinity. A decrease in t-coumaric and t-ferulic acids indicates that the wall stiffening arises from cross-linkage to cell wall polymers. We conclude that the pH of the apoplast represents a dynamic factor that is mechanistically coupled to cellular responses to chloride stress. By hardening the wall, the increased pH abrogates wall loosening required for cell expansion and growth. We conclude that the transient alkalinization of the leaf apoplast is related to salinity-induced growth reduction.
Collapse
Affiliation(s)
- Christoph-Martin Geilfus
- From SYBIOMA, Proteomics Core Facility, KU Leuven, O&N II Herestraat 49, bus 901, B-3000 Leuven, Belgium, .,the Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Albrecht-Thaer-Weg 1, 14195 Berlin, Germany
| | - Raimund Tenhaken
- the Department of Cell Biology, Division of Plant Physiology, University of Salzburg, Salzburg, Austria, and
| | - Sebastien Christian Carpentier
- From SYBIOMA, Proteomics Core Facility, KU Leuven, O&N II Herestraat 49, bus 901, B-3000 Leuven, Belgium.,the Department of Biosystems, Division of Crop Biotechnics, KU Leuven, Willem de Croylaan 42, Box 2455, B-3001 Leuven, Belgium
| |
Collapse
|
14
|
Sprangers K, Avramova V, Beemster GTS. Kinematic Analysis of Cell Division and Expansion: Quantifying the Cellular Basis of Growth and Sampling Developmental Zones in Zea mays Leaves. J Vis Exp 2016:54887. [PMID: 28060300 PMCID: PMC5226352 DOI: 10.3791/54887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Growth analyses are often used in plant science to investigate contrasting genotypes and the effect of environmental conditions. The cellular aspect of these analyses is of crucial importance, because growth is driven by cell division and cell elongation. Kinematic analysis represents a methodology to quantify these two processes. Moreover, this technique is easy to use in non-specialized laboratories. Here, we present a protocol for performing a kinematic analysis in monocotyledonous maize (Zea mays) leaves. Two aspects are presented: (1) the quantification of cell division and expansion parameters, and (2) the determination of the location of the developmental zones. This could serve as a basis for sampling design and/or could be useful for data interpretation of biochemical and molecular measurements with high spatial resolution in the leaf growth zone. The growth zone of maize leaves is harvested during steady-state growth. Individual leaves are used for meristem length determination using a DAPI stain and cell-length profiles using DIC microscopy. The protocol is suited for emerged monocotyledonous leaves harvested during steady-state growth, with growth zones spanning at least several centimeters. To improve the understanding of plant growth regulation, data on growth and molecular studies must be combined. Therefore, an important advantage of kinematic analysis is the possibility to correlate changes at the molecular level to well-defined stages of cellular development. Furthermore, it allows for a more focused sampling of specified developmental stages, which is useful in case of limited budget or time.
Collapse
|
15
|
Hu T, Zhang XZ, Sun JM, Li HY, Fu JM. Leaf functional trait variation associated with salt tolerance in perennial ryegrass. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:107-116. [PMID: 23590346 DOI: 10.1111/plb.12012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/05/2013] [Indexed: 06/02/2023]
Abstract
Salinity is one of major environmental stresses that dramatically threaten plant growth, and variations in genetic structure and functional traits have important effects on the salt tolerance of perennial ryegrass (Lolium perenne L.). The objectives of this study were to: (i) assess the inter-clonal variation of functional traits of accessions among geographic groups or between wild and commercial groups in response to salt stress; (ii) develop a mathematical model to effectively assess salt tolerance of perennial ryegrass accessions originating from different geographic populations; and (iii) determine the relation between spatial genetic structure and salt tolerance in perennial ryegrass. Wide variations were found among the accessions for seven functional traits. One regression model (F = 0.49 × F1 + 0.303 × F2 + 0.207 × F3) was established to ascertain salt tolerance of each accession. The highest variation of the traits and salt tolerance were obtained for accessions from the European group. Wild accessions exhibited more variation in functional traits and salt tolerance than commercial cultivars. Both molecular marker techniques and functional traits were used to conduct phylogenetic analysis, and the majority of accessions from the same or adjacent regions were clustered into the same group or subgroup. The perennial ryegrass accessions with similar salt tolerance had a close phylogenetic background. The patterns in functional trait variations associated with salt tolerance might allow acceleration of the process for improving salt stress resistance in perennial ryegrass.
Collapse
Affiliation(s)
- T Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, Hubei, China
| | - X Z Zhang
- Department of Crop and Soil Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - J M Sun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, Hubei, China
| | - H Y Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, Hubei, China
| | - J M Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, Hubei, China
| |
Collapse
|
16
|
Hu T, Hu L, Zhang X, Zhang P, Zhao Z, Fu J. Differential responses of CO2 assimilation, carbohydrate allocation and gene expression to NaCl stress in perennial ryegrass with different salt tolerance. PLoS One 2013; 8:e66090. [PMID: 23799072 PMCID: PMC3682948 DOI: 10.1371/journal.pone.0066090] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/01/2013] [Indexed: 11/19/2022] Open
Abstract
Little is known about the effects of NaCl stress on perennial ryegrass (Lolium perenne L.) photosynthesis and carbohydrate flux. The objective of this study was to understand the carbohydrate metabolism and identify the gene expression affected by salinity stress. Seventy-four days old seedlings of two perennial ryegrass accessions (salt-sensitive 'PI 538976' and salt-tolerant 'Overdrive') were subjected to three levels of salinity stress for 5 days. Turf quality in all tissues (leaves, stems and roots) of both grass accessions negatively and significantly correlated with GFS (Glu+Fru+Suc) content, except for 'Overdrive' stems. Relative growth rate (RGR) in leaves negatively and significantly correlated with GFS content in 'Overdrive' (P<0.01) and 'PI 538976' (P<0.05) under salt stress. 'Overdrive' had higher CO2 assimilation and Fv/Fm than 'PI 538976'. Intercellular CO2 concentration, however, was higher in 'PI 538976' treated with 400 mM NaCl relative to that with 200 mM NaCl. GFS content negatively and significantly correlated with RGR in 'Overdrive' and 'PI 538976' leaves and in 'PI 538976' stems and roots under salt stress. In leaves, carbohydrate allocation negatively and significantly correlated with RGR (r(2) = 0.83, P<0.01) and turf quality (r(2) = 0.88, P<0.01) in salt-tolerant 'Overdrive', however, the opposite trend for salt-sensitive 'PI 538976' (r(2) = 0.71, P<0.05 for RGR; r(2) = 0.62, P>0.05 for turf quality). A greater up-regulation in the expression of SPS, SS, SI, 6-SFT gene was observed in 'Overdrive' than 'PI 538976'. A higher level of SPS and SS expression in leaves was found in 'PI 538976' relative to 'Overdrive'. Accumulation of hexoses in roots, stems and leaves can induce a feedback repression to photosynthesis in salt-stressed perennial ryegrass and the salt tolerance may be changed with the carbohydrate allocation in leaves and stems.
Collapse
Affiliation(s)
- Tao Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Science, Wuhan, China
| | - Longxing Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Science, Wuhan, China
| | - Xunzhong Zhang
- Virginia Polytechnic Institute and State University, Blacksburg, United States of America
| | - Pingping Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Science, Wuhan, China
| | - Zhuangjun Zhao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Science, Wuhan, China
| | - Jinmin Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Science, Wuhan, China
| |
Collapse
|
17
|
Kravchik M, Bernstein N. Effects of salinity on the transcriptome of growing maize leaf cells point at cell-age specificity in the involvement of the antioxidative response in cell growth restriction. BMC Genomics 2013; 14:24. [PMID: 23324477 PMCID: PMC3599246 DOI: 10.1186/1471-2164-14-24] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 12/18/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Salinity inhibits growth and development of most plants. The response to salinity is complex and varies between plant organs and stages of development. It involves challenges of ion toxicities and deficiencies as well as osmotic and oxidative stresses. The range of functions affected by the stress is reflected in elaborate changes to the transcriptome. The mechanisms involved in the developmental-stage specificity of the inhibitory responses are not fully understood. The present study took advantage of the well characterized developmental progression that exists along the maize leaf, for identification of salinity induced, developmentally-associated changes to the transcriptome. Differential subtraction screening was conducted for cells of two developmental stages: from the center of the growth zone where the expansion rate is highest, and from older cells at a more distal location of the growing zone where the expansion rate is lower and the salinity restrictive effects are more pronounced. Real-Time PCR analysis was used for validation of the expression of selected genes. RESULTS The salinity-induced changes demonstrated an age-related response of the growing tissue, with elevation of salinity-damages with increased age. Growth reduction, similar to the elevation of percentage dry matter (%DM), and Na and Cl concentrations were more pronounced in the older cells. The differential subtraction screening identified genes encoding to proteins involved in antioxidant defense, electron transfer and energy, structural proteins, transcription factors and photosynthesis proteins. Of special interest is the higher induced expression of genes involved in antioxidant protection in the young compared to older cells, which was accompanied by suppressed levels of reactive oxygen species (H2O2 and O2-). This was coupled with heightened expression in the older cells of genes that enhance cell-wall rigidity, which points at reduced potential for cell expansion. CONCLUSIONS The results demonstrate a cell-age specificity in the salinity response of growing cells, and point at involvement of the antioxidative response in cell growth restriction. Processes involved in reactive oxygen species (ROS) scavenging are more pronounced in the young cells, while the higher growth sensitivity of older cells is suggested to involve effects on cell-wall rigidity and lower protein protection.
Collapse
Affiliation(s)
- Michael Kravchik
- Institute of Soil Water and Environmental Sciences, Volcani Center, POB 6, 50-250, Bet-Dagan, Israel
| | - Nirit Bernstein
- Institute of Soil Water and Environmental Sciences, Volcani Center, POB 6, 50-250, Bet-Dagan, Israel
| |
Collapse
|
18
|
Shoresh M, Spivak M, Bernstein N. Involvement of calcium-mediated effects on ROS metabolism in the regulation of growth improvement under salinity. Free Radic Biol Med 2011; 51:1221-34. [PMID: 21466848 DOI: 10.1016/j.freeradbiomed.2011.03.036] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 03/19/2011] [Accepted: 03/28/2011] [Indexed: 10/18/2022]
Abstract
Salinity reduces Ca(2+) availability, transport, and mobility to growing regions of the plant and supplemental Ca(2+) is known to reduce salinity damages. This study was undertaken to unravel some of the ameliorative mechanisms of Ca(2+) on salt stress at the cellular and tissue levels. Zea mays L. plants were grown in nutrient solution containing 1 or 80 mM NaCl with various Ca(2+) levels. Measurements of growth and physiological parameters, such as ion imbalance, indicated that the Ca(2+)-induced alleviation mechanisms differed between plant organs. Under salinity, H(2)O(2) levels increased in the leaf-growing tissue with increasing levels of supplemental Ca(2+) and reached the levels of control plants, whereas superoxide levels remained low at all Ca(2+) levels, indicating that Ca(2+) affected growth by increasing H(2)O(2) but not superoxide levels. Salinity completely abolished apoplastic peroxidase activity. Supplemental Ca(2+) increased its activity only slightly. However, under salinity, polyamine oxidase (PAO) activity was shifted toward the leaf base probably as an adaptive mechanism aimed at restoring normal levels of reactive oxygen species (ROS) at the expansion zone where NADPH oxidase could no longer provide the required ROS for growth. Interestingly, addition of Ca(2+) shifted the PAO-activity peak back to its original location in addition to its enhancement. The increase in PAO activity in conjunction with low levels of apoplastic peroxidase is supportive of cellular growth via nonenzymatic wall loosening derived by the increase in H(2)O(2) and less supportive of the peroxidase-mediated cross-linking of wall material. Thus extracellular Ca(2+) can modulate ROS levels at specific tissue localization and developmental stages thereby affecting cellular extension.
Collapse
Affiliation(s)
- Michal Shoresh
- Institute of Soil, Water, and Environmental Sciences, Agricultural Research Organization, The Volcani Center, Bet-Dagan 50–250, Israel
| | | | | |
Collapse
|
19
|
Wakeel A, Hanstein S, Pitann B, Schubert S. Hydrolytic and pumping activity of H+-ATPase from leaves of sugar beet (Beta vulgaris L.) as affected by salt stress. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:725-31. [PMID: 20189265 DOI: 10.1016/j.jplph.2009.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 05/21/2023]
Abstract
Cell wall extensibility plays an important role in plant growth. According to the acid-growth theory, lower apoplastic pH allows extension growth by affecting cell wall extensibility. A lowered apoplastic pH is presumed to activate wall-loosening enzymes that control plant growth. Plasma membrane (PM) H(+)-ATPases play a major role in the apoplastic acidification by H(+) transport from cytosol to the apoplast. A salt-induced decrease in H(+)-pumping activity of plasma membrane H(+)-ATPases in salt-sensitive maize plants has previously been found. This led us to formulate the hypothesis that salt-resistant plant species such as sugar beet (Beta vulgaris L.) may have a mechanism to eliminate the effect of higher salt concentrations on plasma membrane H(+)-ATPase activity. In the present study, sugar beet plants were grown in 1mM NaCl (control) or 150 mM NaCl in hydroponics. H(+)-ATPase hydrolytic and pumping activities were measured in plasma membrane vesicles isolated from sugar beet shoots. We found that plasma membrane H(+)-ATPase hydrolytic and pumping activities were not affected by application of 150 mM NaCl. Moreover, apoplastic pH was also not affected under salt stress. However, a decrease in plant growth was observed. We assume that growth reduction was not due to a decrease in PM-H(+)-ATPase activity, but that other factors may be responsible for growth inhibition of sugar beet plants under salt stress.
Collapse
Affiliation(s)
- Abdul Wakeel
- Institute of Plant Nutrition, Interdisciplinary Research Center (IFZ), Justus Liebig University, Giessen, Germany.
| | | | | | | |
Collapse
|
20
|
Rodríguez AA, Maiale SJ, Menéndez AB, Ruiz OA. Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:4249-62. [PMID: 19717530 DOI: 10.1093/jxb/erp256] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The possible involvement of apoplastic reactive oxygen species produced by the oxidation of free polyamines in the leaf growth of salinized maize has been studied here. Salt treatment increased the apoplastic spermine and spermidine levels, mainly in the leaf blade elongation zone. The total activity of polyamine oxidase was up to 20-fold higher than that of the copper-containing amine oxidase. Measurements of H(2)O(2), *O(2)(-), and HO* production in the presence or absence of the polyamine oxidase inhibitors 1,19-bis-(ethylamine)-5,10,15 triazanonadecane and 1,8-diamino-octane suggest that, in salinized plants, the oxidation of free apoplastic polyamines by polyamine oxidase by would be the main source of reactive oxygen species in the elongation zone of maize leaf blades. This effect is probably due to increased substrate availability. Incubation with 200 microM spermine doubled segment elongation, whereas the addition of 1,19-bis-(ethylamine)-5,10,15 triazanonadecane and 1,8-diamino-octane to 200 microM spermine attenuated and reversed the last effect, respectively. Similarly, the addition of MnCl(2) (an *O(2)(-) dismutating agent) or the HO* scavenger sodium benzoate along with spermine, annulled the elongating effect of the polyamine on the salinized segments. As a whole, the results obtained here demonstrated that, under salinity, polyamine oxidase activity provides a significant production of reactive oxygen species in the apoplast which contributes to 25-30% of the maize leaf blade elongation.
Collapse
Affiliation(s)
- Andrés Alberto Rodríguez
- Unidad de Biotecnología 1, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús/Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (IIB-INTECH/CONICET-UNSAM), Camino de Circunvalación Laguna, Chascomús, Argentina.
| | | | | | | |
Collapse
|
21
|
Taleisnik E, Rodríguez AA, Bustos D, Erdei L, Ortega L, Senn ME. Leaf expansion in grasses under salt stress. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:1123-40. [PMID: 19467732 DOI: 10.1016/j.jplph.2009.03.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 03/29/2009] [Accepted: 03/29/2009] [Indexed: 05/18/2023]
Abstract
Restriction of leaf growth is among the earliest visible effects of many stress conditions, including salinity. Because leaves determine radiation interception and are the main photosynthetic organs, salinity effects on leaf expansion and function are directly related to yield constraints under saline conditions. The expanding zone of leaf blades spans from the meristem to the region in which cells reach their final length. Kinematic methods are used to describe cell division and cell expansion activities. Analyses of this type have indicated that the reduction in leaf expansion by salinity may be exerted through effects on both cell division and expansion. In turn, the components of vacuole-driven cell expansion may be differentially affected by salinity, and examination of salinity effects on osmotic and mechanical constraints to cell expansion have gradually led to the identification of the gene products involved in such control. The study of how reactive oxygen species affect cell expansion is an emerging topic in the study of salinity's regulation of leaf growth.
Collapse
Affiliation(s)
- Edith Taleisnik
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina), Argentina.
| | | | | | | | | | | |
Collapse
|
22
|
Pitann B, Kranz T, Mühling KH. The apoplastic pH and its significance in adaptation to salinity in maize (Zea mays L.): Comparison of fluorescence microscopy and pH-sensitive microelectrodes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2009; 176:497-504. [PMID: 26493139 DOI: 10.1016/j.plantsci.2009.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 01/05/2009] [Accepted: 01/12/2009] [Indexed: 05/02/2023]
Abstract
The apoplastic ionic milieu contains essential determinants for cell expansion and plant growth. Since pH is a multifunctional basic component of this extracellular space, the knowledge of its behaviour during stress situations is of major importance. In detached leaves of maize (Zea mays L. cvs. Pioneer 3906 and SR 03) the effect of salinity on apoplastic pH was measured to investigate its adaptive role to salt stress applying two different methods: an optical approach using pH-sensitive fluorescent dyes (fluorescein isothiocyanate-dextran (FITC), fluorescein tetramethylrhodamine-dextran (FTMR) and Oregon Green(®) 488), and an electrophysiological technique, pH-sensitive microelectrodes. Both approaches yielded similar results. In the presence of 100mM NaCl, which was added to the growth medium, apoplastic pH of the salt-sensitive maize genotype Pioneer 3906 leaves increased in maximum by 0.4 units (pH microelectrodes) and by 0.3 units (fluorescent dyes); the salt-resistant SR 03 hardly responded. The same treatment reduced leaf growth by 60% in Pioneer 3906, but only by 40% in SR 03. Since according to acid growth considerations apoplastic pH is an important factor in elongation growth, we suggest that this pH increase is a main cause for reduced leaf growth under salt stress conditions.
Collapse
Affiliation(s)
- Britta Pitann
- Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Hermann-Rodewald-Str. 2, 24118 Kiel, Germany
| | - Thorsten Kranz
- Institute of Plant Nutrition, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Karl H Mühling
- Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Hermann-Rodewald-Str. 2, 24118 Kiel, Germany; Institute of Plant Nutrition, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| |
Collapse
|
23
|
A homolog of human ski-interacting protein in rice positively regulates cell viability and stress tolerance. Proc Natl Acad Sci U S A 2009; 106:6410-5. [PMID: 19339499 DOI: 10.1073/pnas.0901940106] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abiotic stresses are major limiting factors for growth, development, and productivity of crop plants. Here, we report on OsSKIPa, a rice homolog of human Ski-interacting protein (SKIP) that can complement the lethal defect of the knockout mutant of SKIP homolog in yeast and positively modulate cell viability and stress tolerance of rice. Suppression of OsSKIPa in rice resulted in growth arrest and reduced cell viability. The expression OsSKIPa is induced by various abiotic stresses and phytohormone treatments. Transgenic rice overexpressing OsSKIPa exhibited significantly improved growth performance in the medium containing stress agents (abscisic acid, salt, or mannitol) and drought resistance at both the seedling and reproductive stages. The OsSKIPa-overexpressing rice showed significantly increased reactive oxygen species-scavenging ability and transcript levels of many stress-related genes, including SNAC1 and rice homologs of CBF2, PP2C, and RD22, under drought stress conditions. More than 30 OsSKIPa-interacting proteins were identified, but most of these proteins have no matches with the reported SKIP-interacting proteins in animals and yeast. Together, these data suggest that OsSKIPa has evolved a specific function in positive modulation of stress resistance through transcriptional regulation of diverse stress-related genes in rice.
Collapse
|
24
|
Potters G, Pasternak TP, Guisez Y, Jansen MAK. Different stresses, similar morphogenic responses: integrating a plethora of pathways. PLANT, CELL & ENVIRONMENT 2009; 32:158-69. [PMID: 19021890 DOI: 10.1111/j.1365-3040.2008.01908.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Exposure of plants to mild chronic stress can cause induction of specific, stress-induced morphogenic responses (SIMRs). These responses are characterized by a blockage of cell division in the main meristematic tissues, an inhibition of elongation and a redirected outgrowth of lateral organs. Key elements in the ontogenesis of this phenotype appear to be stress-affected gradients of reactive oxygen species (ROS), antioxidants, auxin and ethylene. These gradients are present at the the organismal level, but are integrated on the cellular level, affecting cell division, cell elongation and/or cell differentiation. Our analysis of the literature indicates that stress-induced modulation of plant growth is mediated by a plethora of molecular interactions, whereby different environmental signals can trigger similar morphogenic responses. At least some of the molecular interactions that underlie morphogenic responses appear to be interchangeable. We speculate that this complexity can be viewed in terms of a thermodynamic model, in which not the specific pathway, but the achieved metabolic state is biologically conserved.
Collapse
Affiliation(s)
- Geert Potters
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | | | | | | |
Collapse
|
25
|
Hu Y, Schmidhalter U. Spatial and temporal quantitative analysis of cell division and elongation rate in growing wheat leaves under saline conditions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:76-83. [PMID: 18666954 DOI: 10.1111/j.1744-7909.2007.00379.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Leaf growth in grasses is determined by the cell division and elongation rates, with the duration of cell elongation being one of the processes that is the most sensitive to salinity. Our objective was to investigate the distribution profiles of cell production, cell length and the duration of cell elongation in the growing zone of the wheat leaf during the steady growth phase. Plants were grown in loamy soil with or without 120 mmol/L NaCl in a growth chamber, and harvested at day 3 after leaf 4 emerged. Results show that the elongation rate of leaf 4 was reduced by 120 mmol/L NaCl during the steady growth phase. The distribution profile of the lengths of abaxial epidermal cells of leaf 4 during the steady growth stage shows a sigmoidal pattern along the leaf axis for both treatments. Although salinity did not affect or even increased the length of the epidermal cells in some locations in the growth zone compared to the control treatment, the final length of the epidermal cells was reduced by 14% at 120 mmol/L NaCl. Thus, we concluded that the observed reduction in the leaf elongation rate derived in part from the reduced cell division rate and either the shortened cell elongation zone or shortened duration of cell elongation. This suggests that more attention should be paid to the effects of salinity on those properties of cell production and the period of cell maturation that are related to the properties of cell wall.
Collapse
Affiliation(s)
- Yuncai Hu
- Technical University of Munich, Freising D-85350, Germany.
| | | |
Collapse
|
26
|
Bernstein N, Sela S, Pinto R, Ioffe M. Evidence for internalization of Escherichia coli into the aerial parts of maize via the root system. J Food Prot 2007; 70:471-5. [PMID: 17340885 DOI: 10.4315/0362-028x-70.2.471] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Escherichia coli introduced into the hydroponic growing medium of maize plants was detected 48 h later in the shoot. Decapitation of root tips or severing of the plant root system at the root-shoot junction enhanced bacterial internalization. The density of the bacteria in shoots of plants with damaged roots or removed root systems was 27.8 and 23.9 times higher than that in plants with intact roots, respectively. The concentration of viable cells in the hydroponic solution decreased over time from 9.3 x 10(6) CFU/ml at the time of inoculation to 8.5 x 10(1) CFU/ml 4 days thereafter. The number of E. coli cells associated with the roots also decreased with time, but a significant decline appeared only at 4 days postinoculation. At the time of sampling for E. coli presence in the shoot, 10(2) CFU/ml was present in the nutrient solution and 8 x 10(3) CFU/g was associated with the roots. The present study is the first to demonstrate internalization of E. coli via the root in a monocotyledonous plant.
Collapse
Affiliation(s)
- Nirit Bernstein
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel.
| | | | | | | |
Collapse
|
27
|
Hu Y, Fricke W, Schmidhalter U. Salinity and the growth of non-halophytic grass leaves: the role of mineral nutrient distribution. FUNCTIONAL PLANT BIOLOGY : FPB 2005; 32:973-985. [PMID: 32689193 DOI: 10.1071/fp05080] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 07/27/2005] [Indexed: 06/11/2023]
Abstract
Salinity is increasingly limiting the production of graminaceous crops constituting the main sources of staple food (rice, wheat, barley, maize and sorghum), primarily through reductions in the expansion and photosynthetic yield of the leaves. In the present review, we summarise current knowledge of the characteristics of the spatial distribution patterns of the mineral elements along the growing grass leaf and of the impact of salinity on these patterns. Although mineral nutrients have a wide range of functions in plant tissues, their functions may differ between growing and non-growing parts of the grass leaf. To identify the physiological processes by which salinity affects leaf elongation in non-halophytic grasses, patterns of mineral nutrient deposition related to developmental and anatomical gradients along the growing grass leaf are discussed. The hypothesis that a causal link exists between ion deficiency and / or toxicity and the inhibition of leaf growth of grasses in a saline environment is tested.
Collapse
Affiliation(s)
- Yuncai Hu
- Chair of Plant Nutrition, Department of Plant Sciences, Technical University of Munich, D-85350 Freising, Germany
| | - Wieland Fricke
- Division of Biology, University of Paisley, Paisley PA1 2BE, Scotland, UK
| | - Urs Schmidhalter
- Chair of Plant Nutrition, Department of Plant Sciences, Technical University of Munich, D-85350 Freising, Germany
| |
Collapse
|
28
|
Neves-Piestun BG, Bernstein N. Salinity-induced changes in the nutritional status of expanding cells may impact leaf growth inhibition in maize. FUNCTIONAL PLANT BIOLOGY : FPB 2005; 32:141-152. [PMID: 32689118 DOI: 10.1071/fp04113] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Accepted: 10/28/2004] [Indexed: 05/27/2023]
Abstract
Salinity-induced excess or deficiency of specific nutrients are often hypothesised to operate as causes of growth inhibition and to trigger primary responses, which directly affect growth. Information concerning salinity effects on microelement nutrition in the growing cells is limited. In this study, salinity-(80 mm NaCl) inflicted alterations in spatial profiles of essential elements (N, P, K, S, Ca, Mg, Fe, Zn, Mn, Cu) and the salinity source (Na and Cl) were studied along the growing zone of leaf 4 of maize (Zea mays L.). Correlations between spatial profiles of growth and nutritional status of the tissue were tested for evaluation of the hypothesis that a disturbance of specific mineral nutritional factors in the growing cells might serve as causes of salt-induced growth inhibition. Examined nutritional elements exhibited unique distribution patterns, all of which were disturbed by salinity. With the exception of Na, Cl and Fe, the deposition rates of all the studied mineral elements were reduced by salinity throughout the elongating tissue. Localised contents of Ca, K and Fe in the growing tissue of the salt-stressed leaf were highly correlated with the intensity of localised tissue volumetric expansion, suggesting reduced levels of Ca and K, and toxic levels of Fe as possible causes of growth inhibition. Na and Cl accumulation were not correlated with growth inhibition under salinity.
Collapse
Affiliation(s)
- Beatriz G Neves-Piestun
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, The Volcani Center, PO Box 6, Bet-Dagan 50-250, Israel
| | - Nirit Bernstein
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, The Volcani Center, PO Box 6, Bet-Dagan 50-250, Israel
| |
Collapse
|
29
|
Fan L, Neumann PM. The spatially variable inhibition by water deficit of maize root growth correlates with altered profiles of proton flux and cell wall pH. PLANT PHYSIOLOGY 2004; 135:2291-300. [PMID: 15286291 PMCID: PMC520798 DOI: 10.1104/pp.104.041426] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2004] [Revised: 04/23/2004] [Accepted: 04/27/2004] [Indexed: 05/18/2023]
Abstract
Growth of elongating primary roots of maize (Zea mays) seedlings was approximately 50% inhibited after 48 h in aerated nutrient solution under water deficit induced by polyethylene glycol 6000 at -0.5 MPa water potential. Proton flux along the root elongation zone was assayed by high resolution analyses of images of acid diffusion around roots contacted for 5 min with pH indicator gel. Profiles of root segmental elongation correlated qualitatively and quantitatively (r(2) = 0.74) with proton flux along the surface of the elongation zone from water-deficit and control treatments. Proton flux and segmental elongation in roots under water deficit were remarkably well maintained in the region 0 to 3 mm behind the root tip and were inhibited from 3 to 10 mm behind the tip. Associated changes in apoplastic pH inside epidermal cell walls were measured in three defined regions along the root elongation zone by confocal laser scanning microscopy using a ratiometric method. Finally, external acidification of roots was shown to specifically induce a partial reversal of growth inhibition by water deficit in the central region of the elongation zone. These new findings, plus evidence in the literature concerning increases induced by acid pH in wall-extensibility parameters, lead us to propose that the apparently adaptive maintenance of growth 0 to 3 mm behind the tip in maize primary roots under water deficit and the associated inhibition of growth further behind the tip are related to spatially variable changes in proton pumping into expanding cell walls.
Collapse
Affiliation(s)
- Ling Fan
- Plant Physiology Laboratory, Department of Environmental, Water and Agricultural Engineering, Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
30
|
Fan L, Neumann PM. The spatially variable inhibition by water deficit of maize root growth correlates with altered profiles of proton flux and cell wall pH. PLANT PHYSIOLOGY 2004. [PMID: 15286291 DOI: 10.1104/pp.104.041426.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Growth of elongating primary roots of maize (Zea mays) seedlings was approximately 50% inhibited after 48 h in aerated nutrient solution under water deficit induced by polyethylene glycol 6000 at -0.5 MPa water potential. Proton flux along the root elongation zone was assayed by high resolution analyses of images of acid diffusion around roots contacted for 5 min with pH indicator gel. Profiles of root segmental elongation correlated qualitatively and quantitatively (r(2) = 0.74) with proton flux along the surface of the elongation zone from water-deficit and control treatments. Proton flux and segmental elongation in roots under water deficit were remarkably well maintained in the region 0 to 3 mm behind the root tip and were inhibited from 3 to 10 mm behind the tip. Associated changes in apoplastic pH inside epidermal cell walls were measured in three defined regions along the root elongation zone by confocal laser scanning microscopy using a ratiometric method. Finally, external acidification of roots was shown to specifically induce a partial reversal of growth inhibition by water deficit in the central region of the elongation zone. These new findings, plus evidence in the literature concerning increases induced by acid pH in wall-extensibility parameters, lead us to propose that the apparently adaptive maintenance of growth 0 to 3 mm behind the tip in maize primary roots under water deficit and the associated inhibition of growth further behind the tip are related to spatially variable changes in proton pumping into expanding cell walls.
Collapse
Affiliation(s)
- Ling Fan
- Plant Physiology Laboratory, Department of Environmental, Water and Agricultural Engineering, Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
31
|
Rodríguez AA, Córdoba AR, Ortega L, Taleisnik E. Decreased reactive oxygen species concentration in the elongation zone contributes to the reduction in maize leaf growth under salinity. JOURNAL OF EXPERIMENTAL BOTANY 2004; 55:1383-1390. [PMID: 15155779 DOI: 10.1093/jxb/erh148] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Reactive oxygen species (ROS) in the apoplast of cells in the growing zone of grass leaves are required for elongation growth. This work evaluates whether salinity-induced reductions in leaf elongation are related to altered ROS production. Studies were performed in actively growing segments (SEZ) obtained from leaf three of 14-d-old maize (Zea mays L.) seedlings gradually salinized to 150 mM NaCl. Salinity reduced elongation rates and the length of the leaf growth zone. When SEZ obtained from the elongation zone of salinized plants (SEZs) were incubated in 100 mM NaCl, the concentration where growth inhibition was approximately 50%, O2*- production, measured as NBT formazan staining, was lower in these than in similar segments obtained from control plants. The NaCl effect was salt-specific, and not osmotic, as incubation in 200 mM sorbitol did not reduce formazan staining intensity. SEZs elongation rates were higher in 200 mM sorbitol than in 100 mM NaCl, but the difference could be cancelled by scavenging or inhibiting O2*- production with 10 mM MgCl2 or 200 microM diphenylene iodonium, respectively. The actual ROS believed to stimulate growth is *OH, a product of O2*- metabolism in the apoplast. SEZ(s) elongation in 100 mM NaCl was stimulated by a *OH-generating medium. Fusicoccin, an ATPase stimulant, and acetate buffer pH 4, could also enhance elongation in these segments, although both failed to increase ROS activity. These results show that decreased ROS production contributes to the salinity-associated reduction in grass leaf elongation, acting through a mechanism not associated with pH changes.
Collapse
|
32
|
Philippar K, Büchsenschutz K, Abshagen M, Fuchs I, Geiger D, Lacombe B, Hedrich R. The K+ channel KZM1 mediates potassium uptake into the phloem and guard cells of the C4 grass Zea mays. J Biol Chem 2003; 278:16973-81. [PMID: 12611901 DOI: 10.1074/jbc.m212720200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In search of K(+) channel genes expressed in the leaf of the C(4) plant Zea mays, we isolated the cDNA of KZM1 (for K(+) channel Zea mays 1). KZM1 showed highest similarity to the Arabidopsis K(+) channels KAT1 and KAT2, which are localized in guard cells and phloem. When expressed in Xenopus oocytes, KZM1 exhibited the characteristic features of an inward-rectifying, potassium-selective channel. In contrast to KAT1- and KAT2-type K(+) channels, however, KZM1 currents were insensitive to external pH changes. Northern blot analyses identified the leaf, nodes, and silks as sites of KZM1 expression. Following the separation of maize leaves into epidermal, mesophyll, and vascular fractions, quantitative real-time reverse transcriptase-PCR allowed us to localize KZM1 transcripts predominantly in vascular strands and the epidermis. Cell tissue separation and KZM1 localization were followed with marker genes such as the bundle sheath-specific ribulose-1,5-bisphosphate carboxylase, the phloem K(+) channel ZMK2, and the putative sucrose transporter ZmSUT1. When expressed in Xenopus oocytes, ZmSUT1 mediated proton-coupled sucrose symport. Coexpression of ZmSUT1 with the phloem K(+) channels KZM1 and ZMK2 revealed that ZMK2 is able to stabilize the membrane potential during phloem loading/unloading processes and KZM1 to mediate K(+) uptake. During leaf development, sink-source transitions, and diurnal changes, KZM1 is constitutively expressed, pointing to a housekeeping function of this channel in K(+) homeostasis of the maize leaf. Therefore, the voltage-dependent K(+)-uptake channel KZM1 seems to mediate K(+) retrieval and K(+) loading into the phloem as well as K(+)-dependent stomatal opening.
Collapse
Affiliation(s)
- Katrin Philippar
- Julius-von-Sachs-Institut, Lehrstuhl Molekulare Pflanzenphysiologie und Biophysik, Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Rodríguez AA, Grunberg KA, Taleisnik EL. Reactive oxygen species in the elongation zone of maize leaves are necessary for leaf extension. PLANT PHYSIOLOGY 2002; 129:1627-32. [PMID: 12177475 PMCID: PMC166750 DOI: 10.1104/pp.001222] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2001] [Revised: 02/20/2002] [Accepted: 04/26/2002] [Indexed: 05/18/2023]
Abstract
The production and role of reactive oxygen species (ROS) in the expanding zone of maize (Zea mays) leaf blades were investigated. ROS release along the leaf blade was evaluated by embedding intact seedlings in 2',7'-dichlorofluorescein-containing agar and examining the distribution of 2',7'-dichlorofluorescein fluorescence along leaf 4, which was exposed by removing the outer leaves before embedding the seedling. Fluorescence was high in the expanding region, becoming practically non-detectable beyond 65 mm from the ligule, indicating high ROS production in the expansion zone. Segments obtained from the elongation zone of leaf 4 were used to assess the role of ROS in leaf elongation. The distribution of cerium perhydroxide deposits in electron micrographs indicated hydrogen peroxide (H(2)O(2)) presence in the apoplast. 2',7'-Dichlorofluorescein fluorescence and apoplastic H(2)O(2) accumulation were inhibited with diphenyleneiodonium (DPI), which also inhibited O*(2)(-) generation, suggesting a flavin-containing enzyme activity such as NADPH oxidase was involved in ROS production. Segments from the elongation zone incubated in water grew 8% in 2 h. KI treatments, which scavenged H(2)O(2) but did not inhibit O*(2)(-) production, did not modify growth. DPI significantly inhibited segment elongation, and the addition of H(2)O(2) (50 or 500 microM) to the incubation medium partially reverted the inhibition caused by DPI. These results indicate that a certain concentration of H(2)O(2) is necessary for leaf elongation, but it could not be distinguished whether H(2)O(2), or other ROS, are the actual active agents.
Collapse
Affiliation(s)
- Andrés A Rodríguez
- Instituto de Fitopatologia y Fisiologia Vegetal-Instituto Nacional de Tecnología Agropecuaria, Camino a 60 Cuadras Km 5 1/2, 5119 Córdoba, Argentina
| | | | | |
Collapse
|