1
|
Nykiel M, Gietler M, Fidler J, Prabucka B, Rybarczyk-Płońska A, Graska J, Boguszewska-Mańkowska D, Muszyńska E, Morkunas I, Labudda M. Signal Transduction in Cereal Plants Struggling with Environmental Stresses: From Perception to Response. PLANTS (BASEL, SWITZERLAND) 2022; 11:1009. [PMID: 35448737 PMCID: PMC9026486 DOI: 10.3390/plants11081009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 05/13/2023]
Abstract
Cereal plants under abiotic or biotic stressors to survive unfavourable conditions and continue growth and development, rapidly and precisely identify external stimuli and activate complex molecular, biochemical, and physiological responses. To elicit a response to the stress factors, interactions between reactive oxygen and nitrogen species, calcium ions, mitogen-activated protein kinases, calcium-dependent protein kinases, calcineurin B-like interacting protein kinase, phytohormones and transcription factors occur. The integration of all these elements enables the change of gene expression, and the release of the antioxidant defence and protein repair systems. There are still numerous gaps in knowledge on these subjects in the literature caused by the multitude of signalling cascade components, simultaneous activation of multiple pathways and the intersection of their individual elements in response to both single and multiple stresses. Here, signal transduction pathways in cereal plants under drought, salinity, heavy metal stress, pathogen, and pest attack, as well as the crosstalk between the reactions during double stress responses are discussed. This article is a summary of the latest discoveries on signal transduction pathways and it integrates the available information to better outline the whole research problem for future research challenges as well as for the creative breeding of stress-tolerant cultivars of cereals.
Collapse
Affiliation(s)
- Małgorzata Nykiel
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | - Marta Gietler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | - Justyna Fidler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | - Beata Prabucka
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | - Anna Rybarczyk-Płońska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | - Jakub Graska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | | | - Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland;
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland;
| | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| |
Collapse
|
2
|
Correia TG, Vieira VARO, de Moraes Narcizo A, Zampieri RA, Floeter-Winter LM, Moreira RG. Endocrine disruption caused by the aquatic exposure to aluminum and manganese in Astyanax altiparanae (Teleostei: Characidae) females during the final ovarian maturation. Comp Biochem Physiol C Toxicol Pharmacol 2021; 249:109132. [PMID: 34246795 DOI: 10.1016/j.cbpc.2021.109132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/16/2021] [Accepted: 07/04/2021] [Indexed: 12/19/2022]
Abstract
Aluminum (Al) and manganese (Mn) can be toxic to aquatic biota and cause endocrine disruption in fish, affecting reproduction. This study evaluates the physiological responses of the ray-finned teleost fish Astyanax altiparanae vitellogenic females after acute exposure (96 h) to Al and Mn (alone and combined) in acid pH followed by the same period of exposure to metal-free water in neutral pH. The aim of this second period of exposure was to assess the recovery capacity from the toxic effects these metals. Five experimental groups were established: a control in neutral pH (Ctrl), and acidic pH (Ac), aluminum (Al), manganese (Mn), and Al + Mn groups, maintaining the acidic pH in the groups to which metals were added. The following biological parameters were evaluated: metal tissue concentration, relative fecundity (RF: absolute fecundity/body mass). Plasma levels of cortisol (proxy for stress) and 17α hydroxyprogesterone (17α-OHP), and gene expression of pituitary lhβ mRNA (proxies for final maturation) were measured to evaluate endocrine disruption. In the synchronic exposure, the presence of Mn potentiated the accumulation of Al in gills. The females from acidic pH and Al groups showed a reduced RF. Exposure to Al and Mn triggered an endocrine disruption response, evidenced by a decrease in the plasma concentration of 17α-OHP and cortisol. Despite this anti-steroidogenic effect, no changes occurred in the pituitary gene expression of lhβ. The endocrine changes and the metal accumulation were temporary, while the impacts on RF under the experimental conditions suggest permanent impairment in the reproduction of this species.
Collapse
Affiliation(s)
- Tiago Gabriel Correia
- Instituto de Biociências, Departamento de Fisiologia, Universidade de São Paulo (USP), São Paulo, SP, Brazil.
| | | | - Amanda de Moraes Narcizo
- Instituto de Biociências, Departamento de Fisiologia, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Ricardo Andrade Zampieri
- Instituto de Biociências, Departamento de Fisiologia, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Lucile Maria Floeter-Winter
- Instituto de Biociências, Departamento de Fisiologia, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Renata Guimarães Moreira
- Instituto de Biociências, Departamento de Fisiologia, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
3
|
Cao H, Amin R, Niu L, Song Z, Dong B, Li H, Wang L, Meng D, Yang Q, Fu Y. Multidimensional analysis of actin depolymerising factor family in pigeon pea under different environmental stress revealed specific response genes in each subgroup. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:180-194. [PMID: 32970987 DOI: 10.1071/fp20190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Actin depolymerising factor (ADF) is an actin binding protein that is ubiquitous in animal and plant cells. It plays an important role in plant growth and development, as well as resistance to biotic and abiotic stress. The research of plant ADF family has been restricted to Arabidopsis thaliana (L.) Heynh. and some herb crops, but no woody cash crops have been reported to date. All members of the Cajanus cajan (L.) Millsp. ADF (CcADF) family were identified from the pigeon pea genome, and distributed among the four subfamilies by phylogenetic analysis. CcADFs were relatively conservative in gene structure evolution, protein structure and functional expression, and different CcADFs showed specific expression patterns under different treatments. The expression characteristics of several key CcADFs were revealed by analysing the stress response pattern of CcADFs and the time series RNA-seq of aluminium stress. Among them, CcADF9 in the first subgroup specifically responded to aluminium stress in the roots; CcADF3 in the second subgroup intensively responded to fungal infection in the leaves; and CcADF2 in the fourth subgroup positively responded to various stress treatments in different tissues. This study extended the relationship between plant ADF family and aluminium tolerance, as well as adding to the understanding of CcADF family in woody crops.
Collapse
Affiliation(s)
- Hongyan Cao
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China
| | - Rohul Amin
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China
| | - Lili Niu
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing 100083, PR China
| | - Zhihua Song
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China
| | - Biying Dong
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China
| | - Hanghang Li
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China
| | - Litao Wang
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China
| | - Dong Meng
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China; and Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing 100083, PR China
| | - Qing Yang
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China; and Corresponding authors. ;
| | - Yujie Fu
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China; and Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing 100083, PR China; and Key Laboratory of Forestry Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; and Corresponding authors. ;
| |
Collapse
|
4
|
Han R, Wei Y, Xie Y, Liu L, Jiang C, Yu Y. Quantitative phosphoproteomic analysis provides insights into the aluminum-responsiveness of Tamba black soybean. PLoS One 2020; 15:e0237845. [PMID: 32813721 PMCID: PMC7437914 DOI: 10.1371/journal.pone.0237845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/04/2020] [Indexed: 01/01/2023] Open
Abstract
Aluminum (Al3+) toxicity is one of the most important limitations to agricultural production worldwide. The overall response of plants to Al3+ stress has been documented, but the contribution of protein phosphorylation to Al3+ detoxicity and tolerance in plants is unclear. Using a combination of tandem mass tag (TMT) labeling, immobilized metal affinity chromatography (IMAC) enrichment and liquid chromatography-tandem mass spectrometry (LC-MS/MS), Al3+-induced phosphoproteomic changes in roots of Tamba black soybean (TBS) were investigated in this study. The Data collected in this study are available via ProteomeXchange with the identifier PXD019807. After the Al3+ treatment, 189 proteins harboring 278 phosphosites were significantly changed (fold change > 1.2 or < 0.83, p < 0.05), with 88 upregulated, 96 downregulated and 5 up-/downregulated. Enrichment and protein interaction analyses revealed that differentially phosphorylated proteins (DPPs) under the Al3+ treatment were mainly related to G-protein-mediated signaling, transcription and translation, transporters and carbohydrate metabolism. Particularly, DPPs associated with root growth inhibition or citric acid synthesis were identified. The results of this study provide novel insights into the molecular mechanisms of TBS post-translational modifications in response to Al3+ stress.
Collapse
Affiliation(s)
- Rongrong Han
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, China
| | - Yunmin Wei
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, China
| | - Yonghong Xie
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, China
| | - Lusheng Liu
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, China
| | - Caode Jiang
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, China
| | - Yongxiong Yu
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, China
| |
Collapse
|
5
|
Sun C, Lv T, Huang L, Liu X, Jin C, Lin X. Melatonin ameliorates aluminum toxicity through enhancing aluminum exclusion and reestablishing redox homeostasis in roots of wheat. J Pineal Res 2020; 68:e12642. [PMID: 32092171 DOI: 10.1111/jpi.12642] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/10/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022]
Abstract
Melatonin is a universal regulator modulating plant development and responses to abiotic stresses. The alteration and potential roles of melatonin in mediating aluminum (Al) tolerance were investigated in two wheat genotypes differing in Al resistance. Using the high-resolution mass spectrometry, we observed that melatonin contents in Xi Aimai-1 were 1.7-fold higher than that in Yangmai-5. Application of melatonin conferred Al resistance in both genotypes. Melatonin treatment scavenged reactive oxygen species (ROS) accumulation and alleviated Al-induced oxidative damage to lipids and proteins by stimulating antioxidant enzymes and augmenting antioxidants. Additionally, melatonin treatment decreased root tip-Al contents by 19.0% and 15.5% in Xi Aimai-1 and Yangmai-5, respectively. Malate efflux, however, was not altered by melatonin under Al stress. The amount of cell wall polysaccharide and pectin methylesterase activity was significantly increased by Al treatment; but suppressed by melatonin. Melatonin synthesis inhibitor, p-CPA, significantly increased the amount of the Al binding in cell walls of the tolerant genotype, whereas exogenous melatonin decreased cell wall Al content in the sensitive genotype. These results suggest that melatonin alleviated Al toxicity through augmenting antioxidants and inducing antioxidant enzymes to control ROS and enhancing exclusion of Al from root apex by altering cell wall polysaccharides in wheat.
Collapse
Affiliation(s)
- Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Ting Lv
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Lin Huang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoxia Liu
- Zhejiang Provincial Cultivated Land Quality and Fertilizer Administration Station, Hangzhou, China
| | - Chongwei Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Du H, Huang Y, Qu M, Li Y, Hu X, Yang W, Li H, He W, Ding J, Liu C, Gao S, Cao M, Lu Y, Zhang S. A Maize ZmAT6 Gene Confers Aluminum Tolerance via Reactive Oxygen Species Scavenging. FRONTIERS IN PLANT SCIENCE 2020; 11:1016. [PMID: 33013942 PMCID: PMC7509383 DOI: 10.3389/fpls.2020.01016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/22/2020] [Indexed: 05/20/2023]
Abstract
Aluminum (Al) toxicity is the primary limiting factor that affects crop yields in acid soil. However, the genes that contribute to the Al tolerance process in maize are still poorly understood. Previous studies have predicted that ZmAT6 is a novel protein which could be upregulated under Al stress condition. Here, we found that ZmAT6 is expressed in many tissues and organs and can be dramatically induced by Al in both the roots and shoots but particularly in the shoots. The overexpression of ZmAT6 in maize and Arabidopsis plants increased their root growth and reduced the accumulation of Al, suggesting the contribution of ZmAT6 to Al tolerance. Moreover, the ZmAT6 transgenic maize plants had lower contents of malondialdehyde and reactive oxygen species (ROS), but much higher proline content and even lower Evans blue absorption in the roots compared with the wild type. Furthermore, the activity of several enzymes of the antioxidant system, such as peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX), increased in ZmAT6 transgenic maize plants, particularly SOD. Consistently, the expression of ZmSOD in transgenic maize was predominant upregulated by Al stress. Taken together, these findings revealed that ZmAT6 could at least partially confer enhanced tolerance to Al toxicity by scavenging ROS in maize.
Collapse
Affiliation(s)
- Hanmei Du
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ying Huang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Min Qu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yihong Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaoqi Hu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Yang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hongjie Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wenzhu He
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Jianzhou Ding
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chan Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shibin Gao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Moju Cao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yanli Lu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Suzhi Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Suzhi Zhang,
| |
Collapse
|
7
|
Ojeda-Rivera JO, Oropeza-Aburto A, Herrera-Estrella L. Dissection of Root Transcriptional Responses to Low pH, Aluminum Toxicity and Iron Excess Under Pi-Limiting Conditions in Arabidopsis Wild-Type and stop1 Seedlings. FRONTIERS IN PLANT SCIENCE 2020; 11:01200. [PMID: 33133111 PMCID: PMC7550639 DOI: 10.3389/fpls.2020.01200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/23/2020] [Indexed: 05/10/2023]
Abstract
Acidic soils constrain plant growth and development in natural and agricultural ecosystems because of the combination of multiple stress factors including high levels of Fe3+, toxic levels of Al3+, low phosphate (Pi) availability and proton rhizotoxicity. The transcription factor SENSITIVE TO PROTON RHIZOTOXICITY (STOP1) has been reported to underlie root adaptation to low pH, Al3+ toxicity and low Pi availability by activating the expression of genes involved in organic acid exudation, regulation of pH homeostasis, Al3+ detoxification and root architecture remodeling in Arabidopsis thaliana. However, the mechanisms by which STOP1 integrates these environmental signals to trigger adaptive responses to variable conditions in acidic soils remain to be unraveled. It is unknown whether STOP1 activates the expression of a single set of genes that enables root adaptation to acidic soils or multiple gene sets depending on the combination of different types of stress present in acidic soils. Previous transcriptomic studies of stop1 mutants and wild-type plants analyzed the effect of individual types of stress prevalent in acidic soils. An integrative study of the transcriptional regulation pathways that are activated by STOP1 under the combination of major stresses common in acidic soils is lacking. Using RNA-seq, we performed a transcriptional dissection of wild-type and stop1 root responses, individually or in combination, to toxic levels of Al3+, low Pi availability, low pH and Fe excess. We show that the level of STOP1 is post-transcriptionally and coordinately upregulated in the roots of seedlings exposed to single or combined stress factors. The accumulation of STOP1 correlates with the transcriptional activation of stress-specific and common gene sets that are activated in the roots of wild-type seedlings but not in stop1. Our data indicate that perception of low Pi availability, low pH, Fe excess and Al toxicity converges at two levels via STOP1 signaling: post-translationally through the regulation of STOP1 turnover, and transcriptionally, via the activation of STOP1-dependent gene expression that enables the root to better adapt to abiotic stress factors present in acidic soils.
Collapse
Affiliation(s)
- Jonathan Odilón Ojeda-Rivera
- Laboratorio Nacional de Genómica para la Biodiversidad (UGA) del Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, México
| | - Araceli Oropeza-Aburto
- Laboratorio Nacional de Genómica para la Biodiversidad (UGA) del Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, México
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad (UGA) del Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, México
- Plant and Soil Science Department, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, United States
- *Correspondence: Luis Herrera-Estrella, ;
| |
Collapse
|
8
|
Yang JL, Fan W, Zheng SJ. Mechanisms and regulation of aluminum-induced secretion of organic acid anions from plant roots. J Zhejiang Univ Sci B 2019; 20:513-527. [PMID: 31090277 DOI: 10.1631/jzus.b1900188] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Aluminum (Al) is the most abundant metal element in the earth's crust. On acid soils, at pH 5.5 or lower, part of insoluble Al-containing minerals become solubilized into soil solution, with resultant highly toxic effects on plant growth and development. Nevertheless, some plants have developed Al-tolerance mechanisms that enable them to counteract this Al toxicity. One such well-documented mechanism is the Al-induced secretion of organic acid anions, including citrate, malate, and oxalate, from plant roots. Once secreted, these anions chelate external Al ions, thus protecting the secreting plant from Al toxicity. Genes encoding the citrate and malate transporters responsible for secretion have been identified and characterized, and accumulating evidence indicates that regulation of the expression of these transporter genes is critical for plant Al tolerance. In this review, we outline the recent history of research into plant Al-tolerance mechanisms, with special emphasis on the physiology of Al-induced secretion of organic acid anions from plant roots. In particular, we summarize the identification of genes encoding organic acid transporters and review current understanding of genes regulating organic acid secretion. We also discuss the possible signaling pathways regulating the expression of organic acid transporter genes.
Collapse
Affiliation(s)
- Jian-Li Yang
- Institute of Plant Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Fan
- Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Shao-Jian Zheng
- Institute of Plant Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Wang X, Cheng Y, Yang C, Yang C, Mu Y, Xia Q, Ma Q. QTL mapping for aluminum tolerance in RIL population of soybean (Glycine max L.) by RAD sequencing. PLoS One 2019; 14:e0223674. [PMID: 31661499 PMCID: PMC6818782 DOI: 10.1371/journal.pone.0223674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/25/2019] [Indexed: 11/23/2022] Open
Abstract
Aluminum (Al3+) toxicity is a typical abiotic stress that severely limits crop production in acidic soils. In this study, an RIL (recombinant inbred line, F12) population derived from the cross of Zhonghuang 24 (ZH 24) and Huaxia 3 (HX 3) (160 lines) was tested using hydroponic cultivation. Relative root elongation (RRE) and apical Al3+ content (AAC) were evaluated for each line, and a significant negative correlation was detected between the two indicators. Based on a high-density genetic linkage map, the phenotypic data were used to identify quantitative trait loci (QTLs) associated with these traits. With composite interval mapping (CIM) of the linkage map, five QTLs that explained 39.65% of RRE and AAC variation were detected on chromosomes (Chrs) Gm04, Gm16, Gm17 and Gm19. Two new QTLs, qRRE_04 and qAAC_04, were located on the same region of bin93-bin94 on Chr Gm04, which explained 7.09% and 8.98% phenotypic variation, respectively. Furthermore, the results of the expression analysis of candidate genes in the five genetic regions of the QTLs showed that six genes (Glyma.04g218700, Glyma.04g212800, Glyma.04g213300, Glyma.04g217400, Glyma.04g216100 and Glyma.04g220600) exhibited significant differential expression between the Al3+ treatment and the control of two parents. The results of qRT-PCR analysis indicated that Glyma.04g218700 was upregulated by Al3+ treatment with the hundreds-fold increased expression level and may be a candidate gene with potential roles in the response to aluminum stress. Therefore, our efforts will enable future functional analysis of candidate genes and will contribute to the strategies for improvement of aluminum tolerance in soybean.
Collapse
Affiliation(s)
- Xinxin Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ce Yang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Cunyi Yang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yinghui Mu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qiuju Xia
- The Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Wu L, Sadhukhan A, Kobayashi Y, Ogo N, Tokizawa M, Agrahari RK, Ito H, Iuchi S, Kobayashi M, Asai A, Koyama H. Involvement of phosphatidylinositol metabolism in aluminum-induced malate secretion in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3329-3342. [PMID: 30977815 DOI: 10.1093/jxb/erz179] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/03/2019] [Indexed: 05/27/2023]
Abstract
To identify the upstream signaling of aluminum-induced malate secretion through aluminum-activated malate transporter 1 (AtALMT1), a pharmacological assay using inhibitors of human signal transduction pathways was performed. Early aluminum-induced transcription of AtALMT1 and other aluminum-responsive genes was significantly suppressed by phosphatidylinositol 4-kinase (PI4K) and phospholipase C (PLC) inhibitors, indicating that the PI4K-PLC metabolic pathway activates early aluminum signaling. Inhibitors of phosphatidylinositol 3-kinase (PI3K) and PI4K reduced aluminum-activated malate transport by AtALMT1, suggesting that both the PI3K and PI4K metabolic pathways regulate this process. These results were validated using T-DNA insertion mutants of PI4K and PI3K-RNAi lines. A human protein kinase inhibitor, putatively inhibiting homologous calcineurin B-like protein-interacting protein kinase and/or Ca-dependent protein kinase in Arabidopsis, suppressed late-phase aluminum-induced expression of AtALMT1, which was concomitant with the induction of an AtALMT1 repressor, WRKY46, and suppression of an AtALMT1 activator, Calmodulin-binding transcription activator 2 (CAMTA2). In addition, a human deubiquitinase inhibitor suppressed aluminum-activated malate transport, suggesting that deubiquitinases can regulate this process. We also found a reduction of aluminum-induced citrate secretion in tobacco by applying inhibitors of PI3K and PI4K. Taken together, our results indicated that phosphatidylinositol metabolism regulates organic acid secretion in plants under aluminum stress.
Collapse
Affiliation(s)
- Liujie Wu
- Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Ayan Sadhukhan
- Applied Biological Sciences, Gifu University, Gifu, Japan
| | | | - Naohisa Ogo
- Graduate Division of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | | | | | - Hiroki Ito
- Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Satoshi Iuchi
- Experimental Plant Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Masatomo Kobayashi
- Experimental Plant Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Akira Asai
- Graduate Division of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | | |
Collapse
|
11
|
Liu W, Xu F, Lv T, Zhou W, Chen Y, Jin C, Lu L, Lin X. Spatial responses of antioxidative system to aluminum stress in roots of wheat (Triticum aestivum L.) plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:462-469. [PMID: 29426169 DOI: 10.1016/j.scitotenv.2018.01.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/03/2018] [Accepted: 01/03/2018] [Indexed: 05/20/2023]
Abstract
Aluminum (Al) toxicity associated with acid soils represents one of the biggest limitations to crop production worldwide. The root apex of plants is the major perception site of Al toxicity. In Al stressed wheat primary roots, Al accumulation and loss of plasma membrane integrity were highest in the root apex (0-5mm), and decreased along the root axis (5-25mm). To further understand these responses in wheat, spatial profiles of antioxidant responses to Al along the 0-25mm root tip of two wheat genotypes differing in Al tolerance were analyzed. Under Al stress, the lowest root elongation was in the 0-5mm root tip, and more severe inhibition was observed in Al-sensitive genotype than Al-tolerant genotype. The highest increase of Al and hydrogen peroxide (H2O2) was in the 0-5mm zone, with the most pronounced increase of malondialdehyde content and Evans blue uptake after Al exposure, especially in Al-sensitive genotype. The activities of superoxides dismutase (SOD), ascrobate peroxidase (APX), catalase (CAT) and peroxidase (POD) and levels of antioxidants (ascorbic acid, reduced glutathione, dehydroascorbate, glutathione disulfide) were significantly increased along the root tip under Al stress, with the 0-5mm region again being the most active zone. In the same zone, the activities of CAT, APX and contents of antioxidants were higher in Al-tolerant genotype while SOD and POD activities were lower. Our results indicate that Al-induced changes in H2O2 production and antioxidative system in root tip are regulated in a spatially-specific manner, suggesting that this response may play an important role in wheat adaptation to Al toxicity.
Collapse
Affiliation(s)
- Wenjing Liu
- MoEKey Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Fangjie Xu
- MoEKey Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Ting Lv
- MoEKey Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Weiwei Zhou
- MoEKey Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yao Chen
- MoEKey Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Chongwei Jin
- MoEKey Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Key Laboratory of Subtropical Soil Science and Plant Nutrition, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Lingli Lu
- MoEKey Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Key Laboratory of Subtropical Soil Science and Plant Nutrition, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xianyong Lin
- MoEKey Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Key Laboratory of Subtropical Soil Science and Plant Nutrition, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
12
|
|
13
|
Jalmi SK, Bhagat PK, Verma D, Noryang S, Tayyeba S, Singh K, Sharma D, Sinha AK. Traversing the Links between Heavy Metal Stress and Plant Signaling. FRONTIERS IN PLANT SCIENCE 2018; 9:12. [PMID: 29459874 PMCID: PMC5807407 DOI: 10.3389/fpls.2018.00012] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 01/03/2018] [Indexed: 05/17/2023]
Abstract
Plants confront multifarious environmental stresses widely divided into abiotic and biotic stresses, of which heavy metal stress represents one of the most damaging abiotic stresses. Heavy metals cause toxicity by targeting crucial molecules and vital processes in the plant cell. One of the approaches by which heavy metals act in plants is by over production of reactive oxygen species (ROS) either directly or indirectly. Plants act against such overdose of metal in the environment by boosting the defense responses like metal chelation, sequestration into vacuole, regulation of metal intake by transporters, and intensification of antioxidative mechanisms. This response shown by plants is the result of intricate signaling networks functioning in the cell in order to transmit the extracellular stimuli into an intracellular response. The crucial signaling components involved are calcium signaling, hormone signaling, and mitogen activated protein kinase (MAPK) signaling that are discussed in this review. Apart from signaling components other regulators like microRNAs and transcription factors also have a major contribution in regulating heavy metal stress. This review demonstrates the key role of MAPKs in synchronously controlling the other signaling components and regulators in metal stress. Further, attempts have been made to focus on metal transporters and chelators that are regulated by MAPK signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alok K. Sinha
- Plant Signaling, National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
14
|
Pan CL, Yao SC, Xiong WJ, Luo SZ, Wang YL, Wang AQ, Xiao D, Zhan J, He LF. Nitric Oxide Inhibits Al-Induced Programmed Cell Death in Root Tips of Peanut ( Arachis hypogaea L.) by Affecting Physiological Properties of Antioxidants Systems and Cell Wall. Front Physiol 2017; 8:1037. [PMID: 29311970 PMCID: PMC5742856 DOI: 10.3389/fphys.2017.01037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022] Open
Abstract
It has been reported that nitric oxide (NO) is a negative regulator of aluminum (Al)-induced programmed cell death (PCD) in peanut root tips. However, the inhibiting mechanism of NO on Al-induced PCD is unclear. In order to investigate the mechanism by which NO inhibits Al-induced PCD, the effects of co-treatment Al with the exogenous NO donor or the NO-specific scavenger on peanut root tips, the physiological properties of antioxidants systems and cell wall (CW) in root tip cells of NO inhibiting Al-induced PCD were studied with two peanut cultivars. The results showed that Al exposure induced endogenous NO accumulation, and endogenous NO burst increased antioxidant enzyme activity in response to Al stress. The addition of NO donor sodium nitroprusside (SNP) relieved Al-induced root elongation inhibition, cell death and Al adsorption in CW, as well as oxidative damage and ROS accumulation. Furthermore, co-treatment with the exogenous NO donor decreased MDA content, LOX activity and pectin methylesterase (PME) activity, increased xyloglucan endotransglucosylase (XET) activity and relative expression of the xyloglucan endotransglucosylase/hydrolase (XTH-32) gene. Taken together, exogenous NO alleviated Al-induced PCD by inhibiting Al adsorption in CW, enhancing antioxidant defense and reducing peroxidation of membrane lipids, alleviating the inhibition of Al on root elongation by maintaining the extensibility of CW, decreasing PME activity, and increasing XET activity and relative XTH-32 expression of CW.
Collapse
Affiliation(s)
- Chun-Liu Pan
- College of Agronomy, Guangxi University, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi Colleges and Universities, Nanning, China
| | - Shao-Chang Yao
- College of Agronomy, Guangxi University, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi Colleges and Universities, Nanning, China
| | | | - Shu-Zhen Luo
- College of Agronomy, Guangxi University, Nanning, China
| | - Ya-Lun Wang
- College of Agronomy, Guangxi University, Nanning, China
| | - Ai-Qin Wang
- College of Agronomy, Guangxi University, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi Colleges and Universities, Nanning, China
| | - Dong Xiao
- College of Agronomy, Guangxi University, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi Colleges and Universities, Nanning, China
| | - Jie Zhan
- College of Agronomy, Guangxi University, Nanning, China
| | - Long-Fei He
- College of Agronomy, Guangxi University, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi Colleges and Universities, Nanning, China
| |
Collapse
|
15
|
Kopittke PM, McKenna BA, Karunakaran C, Dynes JJ, Arthur Z, Gianoncelli A, Kourousias G, Menzies NW, Ryan PR, Wang P, Green K, Blamey FPC. Aluminum Complexation with Malate within the Root Apoplast Differs between Aluminum Resistant and Sensitive Wheat Lines. FRONTIERS IN PLANT SCIENCE 2017; 8:1377. [PMID: 28824696 PMCID: PMC5541250 DOI: 10.3389/fpls.2017.01377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/24/2017] [Indexed: 05/14/2023]
Abstract
In wheat (Triticum aestivum), it is commonly assumed that Al is detoxified by the release of organic anions into the rhizosphere, but it is also possible that detoxification occurs within the apoplast and symplast of the root itself. Using Al-resistant (ET8) and Al-sensitive (ES8) near-isogenic lines of wheat, we utilized traditional and synchrotron-based approaches to provide in situ analyses of the distribution and speciation of Al within root tissues. Some Al appeared to be complexed external to the root, in agreement with the common assumption. However, root apical tissues of ET8 accumulated four to six times more Al than ES8 when exposed to Al concentrations that reduce root elongation rate by 50% (3.5 μM Al for ES8 and 50 μM for ET8). Furthermore, in situ analyses of ET8 root tissues indicated the likely presence of Al-malate and other forms of Al, predominantly within the apoplast. To our knowledge, this is the first time that X-ray absorption near edge structure analyses have been used to examine the speciation of Al within plant tissues. The information obtained in the present study is important in developing an understanding of the underlying physiological mode of action for improved root growth in systems with elevated soluble Al.
Collapse
Affiliation(s)
- Peter M. Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, BrisbaneQLD, Australia
| | - Brigid A. McKenna
- School of Agriculture and Food Sciences, The University of Queensland, BrisbaneQLD, Australia
| | | | | | | | | | | | - Neal W. Menzies
- School of Agriculture and Food Sciences, The University of Queensland, BrisbaneQLD, Australia
| | | | - Peng Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural UniversityNanjing, China
- Centre for Soil and Environmental Research, School of Agriculture and Food Sciences, The University of Queensland, BrisbaneQLD, Australia
| | - Kathryn Green
- Centre for Microscopy and Microanalysis, The University of Queensland, BrisbaneQLD, Australia
| | - F. P. C. Blamey
- School of Agriculture and Food Sciences, The University of Queensland, BrisbaneQLD, Australia
| |
Collapse
|
16
|
Xu JM, Fan W, Jin JF, Lou HQ, Chen WW, Yang JL, Zheng SJ. Transcriptome Analysis of Al-Induced Genes in Buckwheat ( Fagopyrum esculentum Moench) Root Apex: New Insight into Al Toxicity and Resistance Mechanisms in an Al Accumulating Species. FRONTIERS IN PLANT SCIENCE 2017; 8:1141. [PMID: 28702047 PMCID: PMC5487443 DOI: 10.3389/fpls.2017.01141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/14/2017] [Indexed: 05/06/2023]
Abstract
Relying on Al-activated root oxalate secretion, and internal detoxification and accumulation of Al, buckwheat is highly Al resistant. However, the molecular mechanisms responsible for these processes are still poorly understood. It is well-known that root apex is the critical region of Al toxicity that rapidly impairs a series of events, thus, resulting in inhibition of root elongation. Here, we carried out transcriptome analysis of the buckwheat root apex (0-1 cm) with regards to early response (first 6 h) to Al stress (20 μM), which is crucial for identification of both genes and processes involved in Al toxicity and tolerance mechanisms. We obtained 34,469 unigenes with 26,664 unigenes annotated in the NCBI database, and identified 589 up-regulated and 255 down-regulated differentially expressed genes (DEGs) under Al stress. Functional category analysis revealed that biological processes differ between up- and down-regulated genes, although 'metabolic processes' were the most affected category in both up- and down-regulated DEGs. Based on the data, it is proposed that Al stress affects a variety of biological processes that collectively contributes to the inhibition of root elongation. We identified 30 transporter genes and 27 transcription factor (TF) genes induced by Al. Gene homology analysis highlighted candidate genes encoding transporters associated with Al uptake, transport, detoxification, and accumulation. We also found that TFs play critical role in transcriptional regulation of Al resistance genes in buckwheat. In addition, gene duplication events are very common in the buckwheat genome, suggesting a possible role for gene duplication in the species' high Al resistance. Taken together, the transcriptomic analysis of buckwheat root apex shed light on the processes that contribute to the inhibition of root elongation. Furthermore, the comprehensive analysis of both transporter genes and TF genes not only deep our understanding on the responses of buckwheat roots to Al toxicity but provide a good start for functional characterization of genes critical for Al tolerance.
Collapse
Affiliation(s)
- Jia Meng Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang UniversityHangzhou, China
| | - Wei Fan
- College of Resources and Environment, Yunnan Agricultural UniversityKunming, China
| | - Jian Feng Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang UniversityHangzhou, China
| | - He Qiang Lou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang UniversityHangzhou, China
| | - Wei Wei Chen
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
- Global Institute for Food Security, University of Saskatchewan, SaskatoonSK, Canada
| | - Jian Li Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang UniversityHangzhou, China
- Global Institute for Food Security, University of Saskatchewan, SaskatoonSK, Canada
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang UniversityHangzhou, China
| |
Collapse
|
17
|
Liu X, Lin Y, Liu D, Wang C, Zhao Z, Cui X, Liu Y, Yang Y. MAPK-mediated auxin signal transduction pathways regulate the malic acid secretion under aluminum stress in wheat (Triticum aestivum L.). Sci Rep 2017; 7:1620. [PMID: 28487539 PMCID: PMC5431644 DOI: 10.1038/s41598-017-01803-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/05/2017] [Indexed: 01/17/2023] Open
Abstract
An isobaric tags for relative and absolute quantitative (iTRAQ)-based quantitative proteomic approach was used to screen the differentially expressed proteins during control treatment (CK), aluminum (Al) and Al+ indole-3-acetic acid (IAA) treatment of wheat lines ET8 (Al-tolerant). Further, the the expression levels of auxin response factor (ARF), Aux/IAA, Mitogen activated protein kinase (MAPK) 2c, and MAPK1a were analyzed. Results showed that 16 proteins were determined to be differentially expressed in response to Al and IAA co-treatment compared with Al alone. Among them, MAPK2c and MAPK1a proteins displayed markedly differential expression during the processes. The expression of ARF2 was upregulated and Aux/IAA was downregulated by Al, while both in concentration- and time-dependent manners. Western-blot detection of MAPK2c and MAPK1a indicated that Al upregulated MAPK2c and downregulated MAPK1a in both concentration- and time-dependent manners. Exogenous IAA could promote the expression of MAPK2c, but inhibit the expression of MAPK1a in the presence/absence of Al. These findings indicated that IAA acted as one of the key signaling molecule controls the response mechanism of wheat malic acid efflux to Al stress through the suppression/activation of Aux/IAA and ARFs, and the activity of MAPK2c and MAPK1a were positively or negatively regulated.
Collapse
Affiliation(s)
- Xinwei Liu
- Yunnan Provincial Key Laboratory of Panax notoginseng, Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.,Centre for Microelement Research of Huazhong Agricultural University, Wuhan, 430070, China
| | - Yameng Lin
- Yunnan Provincial Key Laboratory of Panax notoginseng, Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.,Centre for Microelement Research of Huazhong Agricultural University, Wuhan, 430070, China
| | - Diqiu Liu
- Yunnan Provincial Key Laboratory of Panax notoginseng, Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Chengxiao Wang
- Yunnan Provincial Key Laboratory of Panax notoginseng, Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhuqing Zhao
- Centre for Microelement Research of Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiuming Cui
- Yunnan Provincial Key Laboratory of Panax notoginseng, Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ying Liu
- Yunnan Provincial Key Laboratory of Panax notoginseng, Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Ye Yang
- Yunnan Provincial Key Laboratory of Panax notoginseng, Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
18
|
Ligaba-Osena A, Fei Z, Liu J, Xu Y, Shaff J, Lee SC, Luan S, Kudla J, Kochian L, Piñeros M. Loss-of-function mutation of the calcium sensor CBL1 increases aluminum sensitivity in Arabidopsis. THE NEW PHYTOLOGIST 2017; 214:830-841. [PMID: 28150888 DOI: 10.1111/nph.14420] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/01/2016] [Indexed: 05/11/2023]
Abstract
Despite the physiological importance of aluminum (Al) phytotoxicity for plants, it remained unknown if, and how, calcineurin B-like calcium sensors (CBLs) and CBL-interacting protein kinases (CIPKs) are involved in Al resistance. We performed a comparative physiological and whole transcriptome investigation of an Arabidopsis CBL1 mutant (cbl1) and the wild-type (WT). cbl1 plants exudated less Al-chelating malate, accumulated more Al, and displayed a severe root growth reduction in response to Al. Genes involved in metabolism, transport, cell wall modification, transcription and oxidative stress were differentially regulated between the two lines, under both control and Al stress treatments. Exposure to Al resulted in up-regulation of a large set of genes only in WT and not cbl1 shoots, while a different set of genes were down-regulated in cbl1 but not in WT roots. These differences allowed us, for the first time, to define a calcium-regulated/dependent transcriptomic network for Al stress responses. Our analyses reveal not only the fundamental role of CBL1 in the adjustment of central transcriptomic networks involved in maintaining adequate physiological homeostasis processes, but also that a high shoot-root dynamics is required for the proper deployment of Al resistance responses in the root.
Collapse
Affiliation(s)
- Ayalew Ligaba-Osena
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA
| | - Jiping Liu
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
| | - Yimin Xu
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA
| | - Jon Shaff
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
| | - Sung-Chul Lee
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Jörg Kudla
- Westfälische Wilhelms-Universität Münster, Institut für Biologie und Biotechnologie der Pflanzen, Schlossplatz 7, 48149, Münster, Germany
| | - Leon Kochian
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
| | - Miguel Piñeros
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
19
|
Qian L, Chen B, Chen M. Novel Alleviation Mechanisms of Aluminum Phytotoxicity via Released Biosilicon from Rice Straw-Derived Biochars. Sci Rep 2016; 6:29346. [PMID: 27385598 PMCID: PMC4935849 DOI: 10.1038/srep29346] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/17/2016] [Indexed: 11/15/2022] Open
Abstract
Replacing biosilicon and biocarbon in soil via biochar amendment is a novel approach for soil amelioration and pollution remediation. The unique roles of silicon (Si)-rich biochar in aluminum (Al) phytotoxicity alleviation have not been discovered. In this study, the alleviation of Al phytotoxicity to wheat plants (root tips cell death) by biochars fabricated from rice straw pyrolyzed at 400 and 700 °C (RS400 and RS700) and the feedstock (RS100) were studied using a slurry system containing typical acidic soils for a 15-day exposure experiment. The distributions of Al and Si in the slurry solution, soil and plant root tissue were monitored by staining methods, chemical extractions and SEM-EDS observations. We found that the biological sourced silicon in biochars served dual roles in Al phytotoxicity alleviation in acidic soil slurry. On one hand, the Si particles reduced the amount of soil exchangeable Al and prevented the migration of Al to the plant. More importantly, the Si released from biochars synchronously absorbed by the plants and coordinated with Al to form Al-Si compounds in the epidermis of wheat roots, which is a new mechanism for Al phytotoxicity alleviation in acidic soil slurry by biochar amendment. In addition, the steady release of Si from the rice straw-derived biochars was a sustainable Si source for aluminosilicate reconstruction in acidic soil.
Collapse
Affiliation(s)
- Linbo Qian
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Mengfang Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, China
| |
Collapse
|
20
|
Sasaki T, Tsuchiya Y, Ariyoshi M, Ryan PR, Yamamoto Y. A chimeric protein of aluminum-activated malate transporter generated from wheat and Arabidopsis shows enhanced response to trivalent cations. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1858:1427-35. [PMID: 27039280 DOI: 10.1016/j.bbamem.2016.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 03/16/2016] [Accepted: 03/29/2016] [Indexed: 11/19/2022]
Abstract
TaALMT1 from wheat (Triticum aestivum) and AtALMT1 from Arabidopsis thaliana encode aluminum (Al)-activated malate transporters, which confer acid-soil tolerance by releasing malate from roots. Chimeric proteins from TaALMT1 and AtALMT1 (Ta::At, At::Ta) were previously analyzed in Xenopus laevis oocytes. Those studies showed that Al could activate malate efflux from the Ta::At chimera but not from At::Ta. Here, functions of TaALMT1, AtALMT1 and the chimeric protein Ta::At were compared in cultured tobacco BY-2 cells. We focused on the sensitivity and specificity of their activation by trivalent cations. The activation of malate efflux by Al was at least two-fold greater in the chimera than the native proteins. All proteins were also activated by lanthanides (erbium, ytterbium, gadolinium, and lanthanum), but the chimera again released more malate than TaALMT1 or AtALMT1. In Xenopus oocytes, Al, ytterbium, and erbium activated inward currents from the native TaALMT1 and the chimeric protein, but gadolinium only activated currents from the chimera. Lanthanum inhibited currents from both proteins. These results demonstrated that function of the chimera protein was altered compared to the native proteins and was more responsive to a range of trivalent cations when expressed in plant cells.
Collapse
Affiliation(s)
- Takayuki Sasaki
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama 710-0046, Japan.
| | - Yoshiyuki Tsuchiya
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama 710-0046, Japan
| | - Michiyo Ariyoshi
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama 710-0046, Japan
| | - Peter R Ryan
- CSIRO Agriculture, GPO Box 1600, Canberra, ACT, 2601, Australia
| | - Yoko Yamamoto
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
21
|
Sun C, Lu L, Yu Y, Liu L, Hu Y, Ye Y, Jin C, Lin X. Decreasing methylation of pectin caused by nitric oxide leads to higher aluminium binding in cell walls and greater aluminium sensitivity of wheat roots. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:979-89. [PMID: 26663393 PMCID: PMC4737084 DOI: 10.1093/jxb/erv514] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nitric oxide (NO) is an important bioactive molecule involved in cell wall metabolism, which has been recognized as a major target of aluminium (Al) toxicity. We have investigated the effects of Al-induced NO production on cell wall composition and the subsequent Al-binding capacity in roots of an Al-sensitive cultivar of wheat (Triticum aestivum L. cv. Yang-5). We found that Al exposure induced NO accumulation in the root tips. Eliminating NO production with an NO scavenger (cPTIO) significantly alleviated the Al-induced inhibition of root growth and thus reduced Al accumulation. Elimination of NO, however, did not significantly affect malate efflux or rhizosphere pH changes under Al exposure. Levels of cell wall polysaccharides (pectin, hemicelluloses 1, and hemicelluloses 2) and pectin methylesterase activity, as well as pectin demethylation in the root apex, significantly increased under Al treatment. Exogenous cPTIO application significantly decreased pectin methylesterase activity and increased the degree of methylation of pectin in the root cell wall, thus decreasing the Al-binding capacity of pectin. These results suggest that the Al-induced enhanced production of NO decreases cell wall pectin methylation, thus increasing the Al-binding capacity of pectin and negatively regulating Al tolerance in wheat.
Collapse
Affiliation(s)
- Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Lingli Lu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yan Yu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Lijuan Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yan Hu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yiquan Ye
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Chongwei Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, PR China Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, PR China Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
22
|
Fan W, Lou HQ, Yang JL, Zheng SJ. The roles of STOP1-like transcription factors in aluminum and proton tolerance. PLANT SIGNALING & BEHAVIOR 2016; 11:e1131371. [PMID: 26689896 PMCID: PMC4883824 DOI: 10.1080/15592324.2015.1131371] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 05/18/2023]
Abstract
Aluminum (Al) and proton (H(+)) are 2 coexisting rhizotoxicities limiting plant growth in acid soils. Sensitive to Proton Rhizotoxicity (STOP) 1-like zinc finger transcription factors play important roles in regulating expression of downstream genes involved in tolerance mechanism of either stress. In this mini-review, we summarized recent advances in characterizing STOP1-like proteins with respect to plant Al and H(+) tolerance. The possible involvement of structure-function of STOP1-like proteins in differential regulation of Al and H(+) tolerance are discussed. In addition, we also direct research in this area to protein phosphorylation.
Collapse
Affiliation(s)
- Wei Fan
- a College of Resources and Environment, Yunnan Agricultural University , Kunming 650201 , China
- b State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou 310058 , China
| | - He Qiang Lou
- b State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou 310058 , China
| | - Jian Li Yang
- b State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou 310058 , China
| | - Shao Jian Zheng
- b State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
23
|
Maurino VG, Engqvist MKM. 2-Hydroxy Acids in Plant Metabolism. THE ARABIDOPSIS BOOK 2015; 13:e0182. [PMID: 26380567 PMCID: PMC4568905 DOI: 10.1199/tab.0182] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Glycolate, malate, lactate, and 2-hydroxyglutarate are important 2-hydroxy acids (2HA) in plant metabolism. Most of them can be found as D- and L-stereoisomers. These 2HA play an integral role in plant primary metabolism, where they are involved in fundamental pathways such as photorespiration, tricarboxylic acid cycle, glyoxylate cycle, methylglyoxal pathway, and lysine catabolism. Recent molecular studies in Arabidopsis thaliana have helped elucidate the participation of these 2HA in in plant metabolism and physiology. In this chapter, we summarize the current knowledge about the metabolic pathways and cellular processes in which they are involved, focusing on the proteins that participate in their metabolism and cellular/intracellular transport in Arabidopsis.
Collapse
Affiliation(s)
- Veronica G. Maurino
- institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich Heine University, Universitätsstraße 1, and Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| | - Martin K. M. Engqvist
- institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich Heine University, Universitätsstraße 1, and Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| |
Collapse
|
24
|
Sun C, Liu L, Yu Y, Liu W, Lu L, Jin C, Lin X. Nitric oxide alleviates aluminum-induced oxidative damage through regulating the ascorbate-glutathione cycle in roots of wheat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:550-61. [PMID: 25319364 DOI: 10.1111/jipb.12298] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 10/12/2014] [Indexed: 05/21/2023]
Abstract
The possible association with nitric oxide (NO) and ascorbate-glutathione (AsA-GSH) cycle in regulating aluminum (Al) tolerance of wheat (Triticum aestivum L.) was investigated using two genotypes with different Al resistance. Exposure to Al inhibited root elongation, and triggered lipid peroxidation and oxidation of AsA to dehydroascorbate and GSH to glutathione disulfide in wheat roots. Exogenous NO significantly increased endogenous NO levels, and subsequently alleviated Al-induced inhibition of root elongation and oxidation of AsA and GSH to maintain the redox molecules in the reduced form in both wheat genotypes. Under Al stress, significantly increased activities and gene transcriptional levels of ascorbate peroxidase, glutathione reductase, and dehydroascorbate reductase, were observed in the root tips of the Al-tolerant genotype Jian-864. Nitric oxide application enhanced the activity and gene transcriptional level of these enzymes in both wheat genotypes. γ-Glutamylcysteine synthetase was not significantly affected by Al or NO, but NO treatments increased the activity of glutathione peroxidase and glutathione S-transferase to a greater extent than the Al-treated wheat seedlings. Proline was significantly decreased by Al, while it was not affected by NO. These results clearly suggest that NO protects wheat root against Al-induced oxidative stress, possibly through its regulation of the AsA-GSH cycle.
Collapse
Affiliation(s)
- Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lijuan Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan Yu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenjing Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lingli Lu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chongwei Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
25
|
Matsumoto H, Riechers DE, Lygin AV, Baluška F, Sivaguru M. Aluminum Signaling and Potential Links with Safener-Induced Detoxification in Plants. ALUMINUM STRESS ADAPTATION IN PLANTS 2015. [DOI: 10.1007/978-3-319-19968-9_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
26
|
Kochian LV, Piñeros MA, Liu J, Magalhaes JV. Plant Adaptation to Acid Soils: The Molecular Basis for Crop Aluminum Resistance. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:571-98. [PMID: 25621514 DOI: 10.1146/annurev-arplant-043014-114822] [Citation(s) in RCA: 491] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Aluminum (Al) toxicity in acid soils is a significant limitation to crop production worldwide, as approximately 50% of the world's potentially arable soil is acidic. Because acid soils are such an important constraint to agriculture, understanding the mechanisms and genes conferring resistance to Al toxicity has been a focus of intense research interest in the decade since the last article on crop acid soil tolerance was published in this journal. An impressive amount of progress has been made during that time that has greatly increased our understanding of the diversity of Al resistance genes and mechanisms, how resistance gene expression is regulated and triggered by Al and Al-induced signals, and how the proteins encoded by these genes function and are regulated. This review examines the state of our understanding of the physiological, genetic, and molecular bases for crop Al tolerance, looking at the novel Al resistance genes and mechanisms that have been identified over the past ten years. Additionally, it examines how the integration of molecular and genetic analyses of crop Al resistance is starting to be exploited for the improvement of crop plants grown on acid soils via both molecular-assisted breeding and biotechnology approaches.
Collapse
Affiliation(s)
- Leon V Kochian
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, New York 14853; , ,
| | | | | | | |
Collapse
|
27
|
Wulff-Zottele C, Hesse H, Fisahn J, Bromke M, Vera-Villalobos H, Li Y, Frenzel F, Giavalisco P, Ribera-Fonseca A, Zunino L, Caruso I, Stohmann E, Mora MDLL. Sulphate fertilization ameliorates long-term aluminum toxicity symptoms in perennial ryegrass (Lolium perenne). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 83:88-99. [PMID: 25123423 DOI: 10.1016/j.plaphy.2014.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 07/21/2014] [Indexed: 06/03/2023]
Abstract
Effects of the oxanion sulphate on plant aluminum (Al(3+)) detoxification mechanisms are not well understood. Therefore, holistic physiological and biochemical modifications induced by progressively increased doses of sulphate fertilization in the presence of long-term Al(3+) stress were investigated in the aluminum sensitive perennial ryegrass (Lolium perenne L. cvJumbo). Plant growth inhibition induced by Al(3+) was decreased in response to increasing doses of sulphate supply. Aluminum concentrations measured in roots of perennial ryegrass by atomic absorption spectrometry declined significantly with increasing sulphate concentrations. In parallel, we determined a rise of sulphur in shoots and roots of perennial ryegrass. Inclusion of up to 360 μM of sulphate enhanced cysteine and glutathione biosynthesis in Al(3+) (1.07 μM) treated plants. This increase of thiol-containing compounds favored all modifications in the glutathione redox balance, declining lipid peroxidation, decreasing the activity of superoxide dismutase, and modifying the expression of proteins involved in the diminution of Al(3+) toxicity in roots. In particular, proteome analysis by 1D-SDS-PAGE and LC-MS/MS allowed to identify up (e.g. vacuolar proton ATPase, proteosome β subunit, etc) and down (Glyoxilase I, Ascorbate peroxidase, etc.) regulated proteins induced by Al(3+) toxicity symptoms in roots. Although, sulphate supply up to 480 μM caused a reduction in Al(3+) toxicity symptoms, it was not as efficient as compared to 360 μM sulphate fertilization. These results suggest that sulphate fertilization ameliorates Al(3+) toxicity responses in an intracellular specific manner within Lolium perenne.
Collapse
Affiliation(s)
- Cristian Wulff-Zottele
- Unidad de Biología Celular y Molecular, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Av. Angamos 601, Antofagasta, Chile.
| | - Holger Hesse
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam/Golm, Germany
| | - Joachim Fisahn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam/Golm, Germany
| | - Mariusz Bromke
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam/Golm, Germany
| | - Hernán Vera-Villalobos
- Unidad de Biología Celular y Molecular, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Av. Angamos 601, Antofagasta, Chile
| | - Yan Li
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam/Golm, Germany
| | - Falko Frenzel
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam/Golm, Germany
| | - Patrick Giavalisco
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam/Golm, Germany
| | - Alejandra Ribera-Fonseca
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Ligia Zunino
- Doctoral Program in Science of Natural Resources, Universidad de La Frontera, Temuco, Chile
| | - Immcolata Caruso
- Department of Soil, Plant, Environmental and Animal Productions Sciences, Section of Agricultural-Chemistry Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Naples, Italy
| | - Evelyn Stohmann
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Maria de la Luz Mora
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
28
|
Tian Q, Zhang X, Ramesh S, Gilliham M, Tyerman SD, Zhang WH. Ethylene negatively regulates aluminium-induced malate efflux from wheat roots and tobacco cells transformed with TaALMT1. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2415-26. [PMID: 24668874 PMCID: PMC4036508 DOI: 10.1093/jxb/eru123] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
An important mechanism for Al(3+) tolerance in wheat is exudation of malate anions from the root apex through activation of malate-permeable TaALMT1 channels. Here, the effect of ethylene on Al(3+)-activated efflux of malate was investigated using Al(3+)-tolerant wheat genotype ET8, which has high expression of TaALMT1. Exposure of ET8 plants to Al(3+) enhanced ethylene evolution in root apices. Treatment with the ethylene synthesis precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and ethylene gas suppressed Al(3+)-induced malate efflux from root apices, whereas the intracellular malate concentrations in roots were not affected. Malate efflux from root apices was enhanced in the presence of Al(3+) by two antagonists of ethylene biosynthesis, aminoethoxyvinylglycine (AVG) and 2-aminoisobutyric acid (AIB). An increase in Al accumulation in root apices was observed when treated with ACC, whereas AVG and AIB suppressed Al accumulation in root apices. Al(3+)-induced inhibition of root elongation was ameliorated by pretreatment with AIB. In addition, ethylene donor (Ethrel) also inhibited Al(3+)-induced malate efflux from tobacco cells transformed with TaALMT1. ACC and the anion-channel blocker niflumate had a similar and non-additive effect on Al-induced malate efflux from root apices. Treatment of ET8 plants with ACC enhanced expression of TaALMT1, suggesting that the inhibitory effect of ethylene on Al-induced malate efflux is unlikely to occur at the transcriptional level. These findings indicate that ethylene may behave as a negative regulator of Al(3+)-induced malate efflux by targeting TaALMT1-mediated malate efflux by an unknown mechanism.
Collapse
Affiliation(s)
- Qiuying Tian
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xinxin Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Sunita Ramesh
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Matthew Gilliham
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Stephen D Tyerman
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Wen-Hao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China Research Network of Global Change Biology, Beijing Institutes of Life Science, The Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
29
|
Effect of Aluminum Treatment on Proteomes of Radicles of Seeds Derived from Al-Treated Tomato Plants. Proteomes 2014; 2:169-190. [PMID: 28250376 PMCID: PMC5302739 DOI: 10.3390/proteomes2020169] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/04/2014] [Accepted: 03/06/2014] [Indexed: 12/20/2022] Open
Abstract
Aluminum (Al) toxicity is a major constraint to plant growth and crop yield in acid soils. Tomato cultivars are especially susceptible to excessive Al3+ accumulated in the root zone. In this study, tomato plants were grown in a hydroponic culture system supplemented with 50 µM AlK(SO4)2. Seeds harvested from Al-treated plants contained a significantly higher Al content than those grown in the control hydroponic solution. In this study, these Al-enriched tomato seeds (harvested from Al-treated tomato plants) were germinated in 50 µM AlK(SO4)2 solution in a homopiperazine-1,4-bis(2-ethanesulfonic acid) buffer (pH 4.0), and the control solution which contained the buffer only. Proteomes of radicles were analyzed quantitatively by mass spectrometry employing isobaric tags for relative and absolute quantitation (iTRAQ®). The proteins identified were assigned to molecular functional groups and cellular metabolic pathways using MapMan. Among the proteins whose abundance levels changed significantly were: a number of transcription factors; proteins regulating gene silencing and programmed cell death; proteins in primary and secondary signaling pathways, including phytohormone signaling and proteins for enhancing tolerance to abiotic and biotic stress. Among the metabolic pathways, enzymes in glycolysis and fermentation and sucrolytic pathways were repressed. Secondary metabolic pathways including the mevalonate pathway and lignin biosynthesis were induced. Biological reactions in mitochondria seem to be induced due to an increase in the abundance level of mitochondrial ribosomes and enzymes in the TCA cycle, electron transport chains and ATP synthesis.
Collapse
|
30
|
Sun C, Lu L, Liu L, Liu W, Yu Y, Liu X, Hu Y, Jin C, Lin X. Nitrate reductase-mediated early nitric oxide burst alleviates oxidative damage induced by aluminum through enhancement of antioxidant defenses in roots of wheat (Triticum aestivum). THE NEW PHYTOLOGIST 2014; 201:1240-1250. [PMID: 24237306 DOI: 10.1111/nph.12597] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 10/09/2013] [Indexed: 05/03/2023]
Abstract
• Nitric oxide (NO) is an important signaling molecule involved in the physiological processes of plants. The role of NO release in the tolerance strategies of roots of wheat (Triticum aestivum) under aluminum (Al) stress was investigated using two genotypes with different Al resistances. • An early NO burst at 3 h was observed in the root tips of the Al-tolerant genotype Jian-864, whereas the Al-sensitive genotype Yang-5 showed no NO accumulation at 3 h but an extremely high NO concentration after 12 h. Stimulating NO production at 3 h in the root tips of Yang-5 with the NO donor relieved Al-induced root inhibition and callose production, as well as oxidative damage and ROS accumulation, while elimination of the early NO burst by NO scavenger aggravated root inhibition in Jian-864. • Synthesis of early NO in roots of Jian-864 was mediated through nitrate reductase (NR) but not through NO synthase. Elevated antioxidant enzyme activities were induced by Al stress in both wheat genotypes and significantly enhanced by NO donor, but suppressed by NO scavenger or NR inhibitor. • These results suggest that an NR-mediated early NO burst plays an important role in Al resistance of wheat through modulating enhanced antioxidant defense to adapt to Al stress.
Collapse
Affiliation(s)
- Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lingli Lu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lijuan Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenjing Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan Yu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoxia Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan Hu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chongwei Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
31
|
Mohammed YSA, Eltayeb AE, Tsujimoto H. Enhancement of aluminum tolerance in wheat by addition of chromosomes from the wild relative Leymus racemosus. BREEDING SCIENCE 2013; 63:407-416. [PMID: 24399913 PMCID: PMC3859352 DOI: 10.1270/jsbbs.63.407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/27/2013] [Indexed: 06/03/2023]
Abstract
Aluminum (Al) toxicity is the key factor limiting wheat production in acid soils. Soil liming has been used widely to increase the soil pH, but due to its high cost, breeding tolerant cultivars is more cost-effective mean to mitigate the problem. Tolerant cultivars could be developed by traditional breeding, genetic transformation or introgression of genes from wild relatives. We used 30 wheat alien chromosome addition lines to identify new genetic resources to improve wheat tolerance to Al and to identify the chromosomes harboring the tolerance genes. We evaluated these lines and their wheat background Chinese Spring for Al tolerance in hydroponic culture at various Al concentrations. We also investigated Al uptake, oxidative stress and cell membrane integrity. The L. racemosus chromosomes A and E significantly enhanced the Al tolerance of the wheat in term of relative root growth. At the highest Al concentration tested (200 μM), line E had the greatest tolerance. The introgressed chromosomes did not affect Al uptake of the tolerant lines. We attribute the improved tolerance conferred by chromosome E to improved cell membrane integrity. Chromosome engineering with these two lines could produce Al-tolerant wheat cultivars.
Collapse
|
32
|
Effect of salicylic acid on the attenuation of aluminum toxicity in Coffea arabica L. suspension cells: A possible protein phosphorylation signaling pathway. J Inorg Biochem 2013; 128:188-95. [PMID: 23953991 DOI: 10.1016/j.jinorgbio.2013.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/02/2013] [Accepted: 07/07/2013] [Indexed: 11/21/2022]
Abstract
The protective effect of salicylic acid (SA) on aluminum (Al) toxicity was studied in suspension cells of Coffea arabica L. The results showed that SA does not produce any effect on cell growth and that the growth inhibition produced by aluminum is restored during simultaneous treatment of the cells with Al and SA. In addition, the cells exposed to both compounds, Al and SA, showed evident morphological signals of recovery from the toxic state produced in the presence of Al. The cells treated with SA showed a lower accumulation of Al, which was linked to restoration from Al toxicity because the concentration of Al(3+) outside the cells, measured as the Al(3+)-morin complex, was not modified by the presence of SA. Additionally, the inhibition of phospholipase C by Al treatment was restored during the exposure of the cells to SA and Al. The involvement of protein phosphorylation in the protective effect of SA on Al-toxicity was suggested because staurosporine, a protein kinase inhibitor, reverted the stimulatory effect of the combination of Al and SA on protein kinase activity. These results suggest that SA attenuates aluminum toxicity by affecting a signaling pathway linked to protein phosphorylation.
Collapse
|
33
|
Liu MY, Chen WW, Xu JM, Fan W, Yang JL, Zheng SJ. The role of VuMATE1 expression in aluminium-inducible citrate secretion in rice bean (Vigna umbellata) roots. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1795-804. [PMID: 23408830 PMCID: PMC3638816 DOI: 10.1093/jxb/ert039] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Aluminium (Al)-activated citrate secretion plays an important role in Al resistance in a number of plant species, such as rice bean (Vigna umbellata). This study further characterized the regulation of VuMATE1, an aluminium-activated citrate transporter. Al stress induced VuMATE1 expression, followed by the secretion of citrate. Citrate secretion was specific to Al stress, whereas VuMATE1 expression was not, which could be explained by a combined regulation of VuMATE1 expression and Al-specific activation of VuMATE1 protein. Pre-treatment with a protein translation inhibitor suppressed VuMATE1 expression, indicating that de novo biosynthesis of proteins is required for gene expression. Furthermore, post-treatment with a protein translation inhibitor inhibited citrate secretion, indicating that post-transcriptional regulation of VuMATE1 is critical for citrate secretion. Protein kinase and phosphatase inhibitor studies showed that reversible phosphorylation was important not only for transcriptional regulation of VuMATE1 expression but also for post-translational regulation of VuMATE1 protein activity. These results suggest that citrate secretion is dependent on both transcriptional and post-transcriptional regulation of VuMATE1. Additionally, VuMATE1 promoter-β-glucuronidase fusion lines revealed that VuMATE1 expression was restricted to the root apex and was entirely Al induced, indicating the presence of cis-acting elements regulating root tip-specific and Al-inducible gene expression, which will be an important resource for genetic improvement of plant Al resistance.
Collapse
Affiliation(s)
- Mei Ya Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
- * These authors contributed equally to this work
| | - Wei Wei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China
- * These authors contributed equally to this work
| | - Jia Meng Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Wei Fan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jian Li Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
- To whom correspondence should be addressed.
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
34
|
Arunakumara KKIU, Walpola BC, Yoon MH. Aluminum toxicity and tolerance mechanism in cereals and legumes — A review. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s13765-012-2314-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
Wang CY, Shen RF, Wang C, Wang W. Root protein profile changes induced by Al exposure in two rice cultivars differing in Al tolerance. J Proteomics 2013; 78:281-93. [DOI: 10.1016/j.jprot.2012.09.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/17/2012] [Accepted: 09/26/2012] [Indexed: 11/27/2022]
|
36
|
Yang LT, Qi YP, Jiang HX, Chen LS. Roles of organic acid anion secretion in aluminium tolerance of higher plants. BIOMED RESEARCH INTERNATIONAL 2012; 2013:173682. [PMID: 23509687 PMCID: PMC3591170 DOI: 10.1155/2013/173682] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 10/04/2012] [Accepted: 10/30/2012] [Indexed: 01/28/2023]
Abstract
Approximately 30% of the world's total land area and over 50% of the world's potential arable lands are acidic. Furthermore, the acidity of the soils is gradually increasing as a result of the environmental problems including some farming practices and acid rain. At mildly acidic or neutral soils, aluminium (Al) occurs primarily as insoluble deposits and is essentially biologically inactive. However, in many acidic soils throughout the tropics and subtropics, Al toxicity is a major factor limiting crop productivity. The Al-induced secretion of organic acid (OA) anions, mainly citrate, oxalate, and malate, from roots is the best documented mechanism of Al tolerance in higher plants. Increasing evidence shows that the Al-induced secretion of OA anions may be related to the following several factors, including (a) anion channels or transporters, (b) internal concentrations of OA anions in plant tissues, (d) temperature, (e) root plasma membrane (PM) H(+)-ATPase, (f) magnesium (Mg), and (e) phosphorus (P). Genetically modified plants and cells with higher Al tolerance by overexpressing genes for the secretion and the biosynthesis of OA anions have been obtained. In addition, some aspects needed to be further studied are also discussed.
Collapse
Affiliation(s)
- Lin-Tong Yang
- Department of Agricultural Resources and Environmental Sciences, College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Huan-Xin Jiang
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Life Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li-Song Chen
- Department of Agricultural Resources and Environmental Sciences, College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Horticulture, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
37
|
Zhou Y, Xu XY, Chen LQ, Yang JL, Zheng SJ. Nitric oxide exacerbates Al-induced inhibition of root elongation in rice bean by affecting cell wall and plasma membrane properties. PHYTOCHEMISTRY 2012; 76:46-51. [PMID: 22230427 DOI: 10.1016/j.phytochem.2011.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 11/24/2011] [Accepted: 12/08/2011] [Indexed: 05/10/2023]
Abstract
Aluminum (Al) toxicity is one of the most widespread problems for crop production on acid soils, and nitric oxide (NO) is a key signaling molecule involved in the mediation of various biotic and abiotic stresses in plants. Here we found that exogenous application of the NO donor sodium nitroprusside (SNP) exacerbated the inhibition of Al-induced root growth in rice bean [Vigna umbellata (Thunb.) Ohwi & Ohashi 'Jiangnan', Fabaceae]. This was accompanied by an increased accumulation of Al in the root apex. However, Al treatments had no effect on endogenous NO concentrations in root apices. These results indicate that a change in NO concentration is not the cause of Al-induced root growth inhibition and the adverse effect of SNP on Al-induced root growth inhibition should result from increased Al accumulation. Al could significantly induce citrate efflux but SNP had no effects on citrate efflux either in the absence or presence of Al. On the other hand, SNP pretreatment significantly increased Al-induced malondialdehyde accumulation and Evans Blue staining, indicating an intensification of the disruption of plasma membrane integrity. Furthermore, SNP pretreatment also caused greater induction of pectin methylesterase activity by Al, which could be the cause of the increased Al accumulation. Taken together, it is concluded that NO exacerbates Al-induced root growth inhibition by affecting cell wall and plasma membrane properties.
Collapse
Affiliation(s)
- Yuan Zhou
- Key Laboratory of Conservation Biology for Endangered Wildlife, Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, China.
| | | | | | | | | |
Collapse
|
38
|
Physiological and transcriptional analysis of the effects of aluminum stress on Cryptococcus humicola. World J Microbiol Biotechnol 2012; 28:2319-29. [DOI: 10.1007/s11274-012-1039-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 03/07/2012] [Indexed: 11/27/2022]
|
39
|
You J, Zhang H, Liu N, Gao L, Kong L, Yang Z. Transcriptomic responses to aluminum stress in soybean roots. Genome 2011; 54:923-33. [PMID: 22040275 DOI: 10.1139/g11-060] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aluminum (Al) toxicity is the primary limitation to crop production and plant growth in acid soils. Soybean has multiple mechanisms of Al resistance including the complexing and exclusion of Al in root apices by Al-induced citrate secretion. Microarray analysis is available for the identification of genes in soybean. In the present study, Affymetrix soybean genome array was used to identify the Al-induced differentially expressed genes in Al-resistant genotype Jiyu 70. With a cutoff of > 2.0-fold (p < 0.05) between non Al-treated and Al-treated root apices, 561 genes were upregulated and 78 genes were downregulated when roots were exposed to 30 μmol/L AlCl(3) for 4 h. Quantitative real-time PCR was used to test the microarray data. The analysis showed that nearly half of the Al-responsive genes were of unknown biological function. A higher proportion of genes related to transcription regulation and cell wall processes were observed in Al-induced up- and downregulated genes, respectively. Some genes homologous to the citrate transporter MATE family gene or C(2)H(2) family transcription factor gene, STOP1, were detected in our analysis. Some genes related to lignin deposition were upregulated, which might be related to Al-induced root elongation inhibition.
Collapse
Affiliation(s)
- Jiangfeng You
- Agriculture Ecology and Environment laboratory, College of Plant Science, Jilin University, Changchun 130062, PR China
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Plant anion channels allow the efflux of anions from cells. They are involved in turgor pressure control, changes in membrane potential, organic acid excretion, tolerance to salinity and inorganic anion nutrition. The recent molecular identification of anion channel genes in guard cells and in roots allows a better understanding of their function and of the mechanisms that control their activation.
Collapse
Affiliation(s)
- Hannes Kollist
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | | | | | |
Collapse
|
41
|
Poot-Poot W, Teresa Hernandez-Sotomayor SM. Aluminum stress and its role in the phospholipid signaling pathway in plants and possible biotechnological applications. IUBMB Life 2011; 63:864-72. [DOI: 10.1002/iub.550] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 07/06/2011] [Indexed: 11/08/2022]
|
42
|
Yang JL, Zhu XF, Peng YX, Zheng C, Ming F, Zheng SJ. Aluminum regulates oxalate secretion and plasma membrane H+-ATPase activity independently in tomato roots. PLANTA 2011; 234:281-91. [PMID: 21424534 DOI: 10.1007/s00425-011-1402-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 03/01/2011] [Indexed: 05/08/2023]
Abstract
We demonstrated that aluminum (Al)-induced oxalate secretion and plasma membrane (PM) H(+)-ATPase activity in tomato (Lycopersicon esculentum 'Hezuo903') roots were poorly correlated. In addition, vanadate, an inhibitor of PM H(+)-ATPase, had no effect on Al-induced oxalate secretion, but significantly inhibited enzyme activity. An anion channel inhibitor phenylglyoxal inhibited oxalate secretion, but not PM H(+)-ATPase activity. Exposure of tomato roots to 10 μM LaCl(3) also stimulated PM H(+)-ATPase activity; however, La failed to induce oxalate secretion. Furthermore, Al-induced changes of PM H(+)-ATPase activity were not associated with oxalate secretion in two tomato cultivars differing in the ability to secrete oxalate under Al stress. These results indicate that Al independently regulates oxalate secretion and PM H(+)-ATPase activity in tomato roots. Analysis of expression levels of PM H(+)-ATPase genes by real-time reverse transcription-PCR and protein by Western blot and immunodetection revealed that the regulation of PM H(+)-ATPase in response to Al was subjected to transcriptional and posttranscriptional control. However, since neither transcriptional level of genes nor translational level of proteins directly relate to the enzyme activity, posttranslational modification of PM H(+)-ATPase under Al stress likely contributes to changes in activity of this protein.
Collapse
Affiliation(s)
- Jian Li Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
43
|
Ryan PR, Tyerman SD, Sasaki T, Furuichi T, Yamamoto Y, Zhang WH, Delhaize E. The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:9-20. [PMID: 20847099 DOI: 10.1093/jxb/erq272] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Acid soils restrict plant production around the world. One of the major limitations to plant growth on acid soils is the prevalence of soluble aluminium (Al(3+)) ions which can inhibit root growth at micromolar concentrations. Species that show a natural resistance to Al(3+) toxicity perform better on acid soils. Our understanding of the physiology of Al(3+) resistance in important crop plants has increased greatly over the past 20 years, largely due to the application of genetics and molecular biology. Fourteen genes from seven different species are known to contribute to Al(3+) tolerance and resistance and several additional candidates have been identified. Some of these genes account for genotypic variation within species and others do not. One mechanism of resistance which has now been identified in a range of species relies on the efflux of organic anions such as malate and citrate from roots. The genes controlling this trait are members of the ALMT and MATE families which encode membrane proteins that facilitate organic anion efflux across the plasma membrane. Identification of these and other resistance genes provides opportunities for enhancing the Al(3+) resistance of plants by marker-assisted breeding and through biotechnology. Most attempts to enhance Al(3+) resistance in plants with genetic engineering have targeted genes that are induced by Al(3+) stress or that are likely to increase organic anion efflux. In the latter case, studies have either enhanced organic anion synthesis or increased organic anion transport across the plasma membrane. Recent developments in this area are summarized and the structure-function of the TaALMT1 protein from wheat is discussed.
Collapse
Affiliation(s)
- P R Ryan
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia.
| | | | | | | | | | | | | |
Collapse
|
44
|
Osawa H, Endo I, Hara Y, Matsushima Y, Tange T. Transient proliferation of proanthocyanidin-accumulating cells on the epidermal apex contributes to highly aluminum-resistant root elongation in camphor tree. PLANT PHYSIOLOGY 2011; 155:433-46. [PMID: 21045123 PMCID: PMC3075795 DOI: 10.1104/pp.110.166967] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 10/26/2010] [Indexed: 05/22/2023]
Abstract
Aluminum (Al) is a harmful element that rapidly inhibits the elongation of plant roots in acidic soils. The release of organic anions explains Al resistance in annual crops, but the mechanisms that are responsible for superior Al resistance in some woody plants remain unclear. We examined cell properties at the surface layer of the root apex in the camphor tree (Cinnamomum camphora) to understand its high Al resistance mechanism. Exposure to 500 μm Al for 8 d, more than 20-fold higher concentration and longer duration than what soybean (Glycine max) can tolerate, only reduced root elongation in the camphor tree to 64% of the control despite the slight induction of citrate release. In addition, Al content in the root apices was maintained at low levels. Histochemical profiling revealed that proanthocyanidin (PA)-accumulating cells were present at the adjacent outer layer of epidermis cells at the root apex, having distinctive zones for cell division and the early phase of cell expansion. Then the PA cells were gradually detached off the root, leaving thin debris behind, and the root surface was replaced with the elongating epidermis cells at the 3- to 4-mm region behind the tip. Al did not affect the proliferation of PA cells or epidermis cells, except for the delay in the start of expansion and the accelerated detachment of the former. In soybean roots, the innermost lateral root cap cells were absent in both PA accumulation and active cell division and failed to protect the epidermal cell expansion at 25 μm Al. These results suggest that transient proliferation and detachment of PA cells may facilitate the expansion of epidermis cells away from Al during root elongation in camphor tree.
Collapse
Affiliation(s)
- Hiroki Osawa
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | | | |
Collapse
|
45
|
Furuichi T, Sasaki T, Tsuchiya Y, Ryan PR, Delhaize E, Yamamoto Y. An extracellular hydrophilic carboxy-terminal domain regulates the activity of TaALMT1, the aluminum-activated malate transport protein of wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:47-55. [PMID: 20663086 DOI: 10.1111/j.1365-313x.2010.04309.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Al³+ -resistant cultivars of wheat (Triticum aestivum L.) release malate through the Al³+ -activated anion transport protein Triticum aestivum aluminum-activated malate transporter 1 (TaALMT1). Expression of TaALMT1 in Xenopus oocytes and tobacco suspension cells enhances the basal transport activity (inward and outward currents present in the absence of external Al³+, and generates the same Al³+ -activated currents (reflecting the Al³+-dependent transport function) as observed in wheat cells. We investigated the amino acid residues involved in this Al³+-dependent transport activity by generating a series of mutations to the TaALMT1 protein. We targeted the acidic residues on the hydrophilic C-terminal domain of TaALMT1 and changed them to uncharged residues by site-directed mutagenesis. These mutant proteins were expressed in Xenopus oocytes and their transport activity was measured before and after Al³+ addition. Three mutations (E274Q, D275N and E284Q) abolished the Al³+-activated transport activity without affecting the basal transport activity. Truncation of the hydrophilic C-terminal domain abolished both basal and Al³+-activated transport activities. Al³+-dependent transport activity was recovered by fusing the N-terminal region of TaALMT1 with the C-terminal region of AtALMT1, a homolog from Arabidopsis. These findings demonstrate that the extracellular C-terminal domain is required for both basal and Al³+-dependent TaALMT1 activity. Furthermore, we identified three acidic amino acids within this domain that are specifically required for the activation of transport function by external Al³+.
Collapse
Affiliation(s)
- Takuya Furuichi
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama 710-0046, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Bose J, Babourina O, Shabala S, Rengel Z. Aluminium-induced ion transport in Arabidopsis: the relationship between Al tolerance and root ion flux. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3163-75. [PMID: 20497972 PMCID: PMC2892157 DOI: 10.1093/jxb/erq143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/19/2010] [Accepted: 05/04/2010] [Indexed: 05/18/2023]
Abstract
Aluminium (Al) rhizotoxicity coincides with low pH; however, it is unclear whether plant tolerance to these two factors is controlled by the same mechanism. To address this question, the Al-resistant alr104 mutant, two Al-sensitive mutants (als3 and als5), and wild-type Arabidopsis thaliana were compared in long-term exposure (solution culture) and in short-term exposure experiments (H(+) and K(+) fluxes, rhizosphere pH, and plasma membrane potential, E(m)). Based on biomass accumulation, als5 and alr104 showed tolerance to low pH, whereas alr104 was tolerant to the combined low-pH/Al treatment. The sensitivity of the als5 and als3 mutants to the Al stress was similar. The Al-induced decrease in H(+) influx at the distal elongation zone (DEZ) and Al-induced H(+) efflux at the mature zone (MZ) were higher in the Al-sensitive mutants (als3 and als5) than in the wild type and the alr104 mutant. Under combined low-pH/Al treatment, alr104 and the wild type had depolarized plasma membranes for the entire 30 min measurement period, whereas in the Al-sensitive mutants (als3 and als5), initial depolarization to around -60 mV became hyperpolarization at -110 mV after 20 min. At the DEZ, the E(m) changes corresponded to the changes in K(+) flux: K(+) efflux was higher in alr104 and the wild type than in the als3 and als5 mutants. In conclusion, Al tolerance in the alr104 mutant correlated with E(m) depolarization, higher K(+) efflux, and higher H(+) influx, which led to a more alkaline rhizosphere under the combined low-pH/Al stress. Low-pH tolerance (als5) was linked to higher H(+) uptake under low-pH stress, which was abolished by Al exposure.
Collapse
Affiliation(s)
- Jayakumar Bose
- School of Earth and Environment, the University of Western Australia, Crawley WA 6009, Australia
| | - Olga Babourina
- School of Earth and Environment, the University of Western Australia, Crawley WA 6009, Australia
| | - Sergey Shabala
- School of Agricultural Science and Tasmanian Institute of Agricultural Research, University of Tasmania, Hobart TAS 7001, Australia
| | - Zed Rengel
- School of Earth and Environment, the University of Western Australia, Crawley WA 6009, Australia
| |
Collapse
|
47
|
Ligaba A, Kochian L, Piñeros M. Phosphorylation at S384 regulates the activity of the TaALMT1 malate transporter that underlies aluminum resistance in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:411-23. [PMID: 19563436 DOI: 10.1111/j.1365-313x.2009.03964.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In this study we examined the role of protein phosphorylation/dephosphorylation in the transport properties of the wheat (Triticum aestivum) root malate efflux transporter underlying Al resistance, TaALMT1. Pre-incubation of Xenopus laevis oocytes expressing TaALMT1 with protein kinase inhibitors (K252a and staurosporine) strongly inhibited both basal and Al(3+)-enhanced TaALMT1-mediated inward currents (malate efflux). Pre-incubation with phosphatase inhibitors (okadaic acid and cyclosporine A) resulted in a modest inhibition of the TaALMT1-mediated currents. Exposure to the protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate (PMA), enhanced TaALMT1-mediated inward currents. Since these observations suggest that TaALMT1 transport activity is regulated by PKC-mediated phosphorylation, we proceeded to modify candidate amino acids in the TaALMT1 protein in an effort to identify structural motifs underlying the process regulating phosphorylation. The transport properties of eight single point mutations (S56A, S183A, S324A, S337A, S351-352A, S384A, T323A and Y184F) generated in amino acid residues predicted to be phosphorylation sites and examined electrophysiologically. The basic transport properties of mutants S56A, S183A, S324A, S337A, S351-352A, T323A and Y184F were not altered relative to the wild-type TaALMT1. Likewise the sensitivity of these mutants to staurosporine resembled that observed for the wild-type transporter. However, the mutation S384A was noticeable, as in oocytes expressing this mutant protein TaALMT1-mediated basal and Al-enhanced currents were significantly inhibited, and the currents were insensitive to staurosporine or PMA. These findings indicate that S384 is an essential residue regulating TaALMT1 activity via direct protein phosphorylation, which precedes Al(3+) enhancement of transport activity.
Collapse
Affiliation(s)
- Ayalew Ligaba
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Tower Road, Cornell University, Ithaca, NY 14853-2901, USA
| | | | | |
Collapse
|
48
|
Shabala S, Pang J, Zhou M, Shabala L, Cuin TA, Nick P, Wegner LH. Electrical signalling and cytokinins mediate effects of light and root cutting on ion uptake in intact plants. PLANT, CELL & ENVIRONMENT 2009; 32:194-207. [PMID: 19021884 DOI: 10.1111/j.1365-3040.2008.01914.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nutrient acquisition in the mature root zone is under systemic control by the shoot and the root tip. In maize, exposure of the shoot to light induces short-term (within 1-2 min) effects on net K+ and H+ transport at the root surface. H+ efflux decreased (from -18 to -12 nmol m(-2) s(-1)) and K+ uptake (approximately 2 nmol m(-2) s(-1)) reverted to efflux (approximately -3 nmol m(-2) s(-1)). Xylem probing revealed that the trans-root (electrical) potential drop between xylem vessels and an external electrode responded within seconds to a stepwise increase in light intensity; xylem pressure started to decrease after a approximately 3 min delay, favouring electrical as opposed to hydraulic signalling. Cutting of maize and barley roots at the base reduced H+ efflux and stopped K+ influx in low-salt medium; xylem pressure rapidly increased to atmospheric levels. With 100 mm NaCl added to the bath, the pressure jump upon cutting was more dramatic, but fluxes remained unaffected, providing further evidence against hydraulic regulation of ion uptake. Following excision of the apical part of barley roots, influx changed to large efflux (-50 nmol m(-2) s(-1)). Kinetin (2-4 microM), a synthetic cytokinin, reversed this effect. Regulation of ion transport by root-tip-synthesized cytokinins is discussed.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | | | | | | | | | | | | |
Collapse
|
49
|
Sun QB, Shen RF, Zhao XQ, Chen RF, Dong XY. Phosphorus enhances Al resistance in Al-resistant Lespedeza bicolor but not in Al-sensitive L. cuneata under relatively high Al stress. ANNALS OF BOTANY 2008; 102:795-804. [PMID: 18757448 PMCID: PMC2712389 DOI: 10.1093/aob/mcn166] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 05/22/2008] [Accepted: 07/09/2008] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS Aluminium (Al) toxicity and phosphorus (P) deficiency often co-exist in acidic soils and limit crop production worldwide. Lespedeza bicolor is a leguminous forage species that grows very well in infertile, acidic soils. The objective of this study was to investigate the effects of Al and P interactions on growth of Lespedeza and the distributions of Al and P in two different Al-resistant species, and to explore whether P can ameliorate the toxic effect of Al in the two species. METHODS Two species, Lespedeza bicolor and L. cuneata, were grown for 30 d with alternate Al and P treatments in a hydroponics system. Harvested roots were examined using a root-system scanner, and the contents of Al, P and other nutrient elements in the plants were determined using inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Haematoxylin staining was used to observe the distribution of Al in the roots of seedlings. After pre-culture with or without P application, organic acids in the exudates of roots exposed to Al were held in an anion-exchange resin, eluted with 2 m HCl and then analysed using high-performance liquid chromatography (HPLC). KEY RESULTS Lespedeza bicolor exhibited a stronger Al resistance than did L. cuneata; Al exclusion mechanisms may mainly be responsible for resistance. P application alleviated the toxic effect of Al on root growth in L. bicolor, while no obvious effects were observed in L. cuneata. Much less Al was accumulated in roots of L. bicolor than in L. cuneata after P application, and the P contents in both roots and shoots increased much more for L. bicolor than for L. cuneata. Lespedeza bicolor showed a higher P/Al ratio in roots and shoots than did L. cuneata. P application decreased the Al accumulation in root tips of L. bicolor but not in L. cuneata. The amount of Al-induced organic acid (citrate and malate) exudation from roots pre-cultured with P was much less than from roots without P application; no malate and citrate exudation was detected in L. cuneata. CONCLUSIONS P enhanced Al resistance in the Al-resistant L. bicolor species but not in the Al-sensitive L. cuneata under relatively high Al stress, although P in L. cuneata might also possess an alleviative potential. Enhancement of Al resistance by P in the resistant species might be associated with its more efficient P accumulation and translocation to shoots and greater Al exclusion from root tips after P application, but not with an increased exudation of organic acids from roots.
Collapse
Affiliation(s)
- Qing Bin Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xue Qiang Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Rong Fu Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiao Ying Dong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
50
|
Piñeros MA, Cançado GMA, Maron LG, Lyi SM, Menossi M, Kochian LV. Not all ALMT1-type transporters mediate aluminum-activated organic acid responses: the case of ZmALMT1 - an anion-selective transporter. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:352-67. [PMID: 18069943 DOI: 10.1111/j.1365-313x.2007.03344.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The phytotoxic effects of aluminum (Al) on root systems of crop plants constitute a major agricultural problem in many areas of the world. Root exudation of Al-chelating molecules such as low-molecular-weight organic acids has been shown to be an important mechanism of plant Al tolerance/resistance. Differences observed in the physiology and electrophysiology of root function for two maize genotypes with contrasting Al tolerance revealed an association between rates of Al-activated root organic acid release and Al tolerance. Using these genotypes, we cloned ZmALMT1, a maize gene homologous to the wheat ALMT1 and Arabidopsis AtALMT1 genes that have recently been described as encoding functional, Al-activated transporters that play a role in tolerance by mediating Al-activated organic acid exudation in roots. The ZmALMT1 cDNA encodes a 451 amino acid protein containing six transmembrane helices. Transient expression of a ZmALMT1::GFP chimera confirmed that the protein is targeted to the plant cell plasma membrane. We addressed whether ZmALMT1 might underlie the Al-resistance response (i.e. Al-activated citrate exudation) observed in the roots of the Al-tolerant genotype. The physiological, gene expression and functional data from this study confirm that ZmALMT1 is a plasma membrane transporter that is capable of mediating elective anion efflux and influx. However, gene expression data as well as biophysical transport characteristics obtained from Xenopus oocytes expressing ZmALMT1 indicate that this transporter is implicated in the selective transport of anions involved in mineral nutrition and ion homeostasis processes, rather than mediating a specific Al-activated citrate exudation response at the rhizosphere of maize roots.
Collapse
Affiliation(s)
- Miguel A Piñeros
- United States Plant, Soil, and Nutrition Laboratory, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, NY 14853-2901, USA.
| | | | | | | | | | | |
Collapse
|