1
|
Huang WRH, Braam C, Kretschmer C, Villanueva SL, Liu H, Ferik F, van der Burgh AM, Boeren S, Wu J, Zhang L, Nürnberger T, Wang Y, Seidl MF, Evangelisti E, Stuttmann J, Joosten MHAJ. Receptor-like cytoplasmic kinases of different subfamilies differentially regulate SOBIR1/BAK1-mediated immune responses in Nicotiana benthamiana. Nat Commun 2024; 15:4339. [PMID: 38773116 PMCID: PMC11109355 DOI: 10.1038/s41467-024-48313-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/26/2024] [Indexed: 05/23/2024] Open
Abstract
Cell-surface receptors form the front line of plant immunity. The leucine-rich repeat (LRR)-receptor-like kinases SOBIR1 and BAK1 are required for the functionality of the tomato LRR-receptor-like protein Cf-4, which detects the secreted effector Avr4 of the pathogenic fungus Fulvia fulva. Here, we show that the kinase domains of SOBIR1 and BAK1 directly phosphorylate each other and that residues Thr522 and Tyr469 of the kinase domain of Nicotiana benthamiana SOBIR1 are required for its kinase activity and for interacting with signalling partners, respectively. By knocking out multiple genes belonging to different receptor-like cytoplasmic kinase (RLCK)-VII subfamilies in N. benthamiana:Cf-4, we show that members of RLCK-VII-6, -7, and -8 differentially regulate the Avr4/Cf-4-triggered biphasic burst of reactive oxygen species. In addition, members of RLCK-VII-7 play an essential role in resistance against the oomycete pathogen Phytophthora palmivora. Our study provides molecular evidence for the specific roles of RLCKs downstream of SOBIR1/BAK1-containing immune complexes.
Collapse
Affiliation(s)
- Wen R H Huang
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom.
| | - Ciska Braam
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Carola Kretschmer
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
| | - Sergio Landeo Villanueva
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Huan Liu
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Filiz Ferik
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
| | - Aranka M van der Burgh
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Teaching and Learning Centre, Wageningen University & Research, Droevendaalsesteeg 4, 6708 PB, Wageningen, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, the Netherlands
| | - Jinbin Wu
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lisha Zhang
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen, Auf der Morgenstelle 32, D-72076, Tübingen, Germany
| | - Thorsten Nürnberger
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen, Auf der Morgenstelle 32, D-72076, Tübingen, Germany
| | - Yulu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Michael F Seidl
- Theoretical Biology & Bioinformatics, Department of Biology, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Edouard Evangelisti
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Université Côte d'Azur, INRAE UMR 1355, CNRS UMR 7254, Institut Sophia Agrobiotech (ISA), 06903, Sophia Antipolis, France
| | - Johannes Stuttmann
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
- Aix Marseille University, CEA, CNRS, BIAM, UMR7265, LEMiRE (Microbial Ecology of the Rhizosphere), 13115, Saint‑Paul lez Durance, France
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
2
|
Simoni EB, Oliveira CC. The Split-Luciferase Complementation Assay to Detect and Quantify Protein-Protein Interactions in Planta. Methods Mol Biol 2024; 2724:247-255. [PMID: 37987911 DOI: 10.1007/978-1-0716-3485-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Protein-protein interactions play a critical role in plant viral infection and defense responses against pathogens. This protocol provides a detailed and reliable methodology for investigating protein-protein interactions using a luciferase-based complementation assay that includes easy luminescence-based normalization within a single plate. The protocol includes step-by-step procedures, reagent lists, and considerations for data interpretation, ensuring robust and reproducible results. By following this protocol, researchers can advance on understanding of the crucial role of protein-protein interactions in plant viral infection and defense responses to other pathogen attacks.
Collapse
Affiliation(s)
- Eduardo Bassi Simoni
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Molecular Biology/Bioagro, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Célio Cabral Oliveira
- Brazilian Center for Research in Energy and Materials, Brazilian Biorenewables National Laboratory, Campinas, SP, Brazil.
| |
Collapse
|
3
|
Bai J, Zhou Y, Sun J, Chen K, Han Y, Wang R, Zou Y, Du M, Lu D. BIK1 protein homeostasis is maintained by the interplay of different ubiquitin ligases in immune signaling. Nat Commun 2023; 14:4624. [PMID: 37532719 PMCID: PMC10397244 DOI: 10.1038/s41467-023-40364-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
Pathogen-associated molecular patterns (PAMPs) trigger plant innate immunity that acts as the first line of inducible defense against pathogen infection. A receptor-like cytoplasmic kinase BOTRYTIS-INDUCED KINASE 1 (BIK1) functions as a signaling hub immediately downstream of multiple pattern recognition receptors (PRRs). It is known that PLANT U-BOX PROTEIN 25 (PUB25) and PUB26 ubiquitinate BIK1 and mediate BIK1 degradation. However, how BIK1 homeostasis is maintained is not fully understood. Here, we show that two closely related ubiquitin ligases, RING DOMAIN LIGASE 1 (RGLG1) and RGLG2, preferentially associate with the hypo-phosphorylated BIK1 and promote the association of BIK1 with the co-receptor for several PRRs, BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1). PUB25 interacts with RGLG2 and mediates its degradation. In turn, RGLG2 represses the ubiquitin ligase activity of PUB25. RGLG1/2 suppress PUB25-mediated BIK1 degradation, promote BIK1 protein accumulation, and positively regulate immune signaling in a ubiquitin ligase activity-dependent manner. Our work reveals how BIK1 homeostasis is maintained by the interplay of different ubiquitin ligases.
Collapse
Affiliation(s)
- Jiaojiao Bai
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, Jiangxi, 332000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Zhou
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhang Sun
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kexin Chen
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufang Han
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ranran Wang
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanmin Zou
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China
| | - Mingshuo Du
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongping Lu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
4
|
Fang J, Chai Z, Huang R, Huang C, Ming Z, Chen B, Yao W, Zhang M. Receptor-like cytoplasmic kinase ScRIPK in sugarcane regulates disease resistance and drought tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1191449. [PMID: 37304725 PMCID: PMC10248867 DOI: 10.3389/fpls.2023.1191449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/26/2023] [Indexed: 06/13/2023]
Abstract
Introduction Receptor-like cytoplastic kinases (RLCKs) are known in many plants to be involved in various processes of plant growth and development and regulate plant immunity to pathogen infection. Environmental stimuli such as pathogen infection and drought restrict the crop yield and interfere with plant growth. However, the function of RLCKs in sugarcane remains unclear. Methods and results In this study, a member of the RLCK VII subfamily, ScRIPK, was identified in sugarcane based on sequence similarity to the rice and Arabidopsis RLCKs. ScRIPK was localized to the plasma membrane, as predicted, and the expression of ScRIPK was responsive to polyethylene glycol treatment and Fusarium sacchari infection. Overexpression of ScRIPK in Arabidopsis enhanced drought tolerance and disease susceptibility of seedlings. Moreover, the crystal structure of the ScRIPK kinase domain (ScRIPK KD) and the mutant proteins (ScRIPK-KD K124R and ScRIPK-KD S253A|T254A) were characterized in order to determine the activation mechanism. We also identified ScRIN4 as the interacting protein of ScRIPK. Discussion Our work identified a RLCK in sugarcane, providing a potential target for sugarcane responses to disease infection and drought, and a structural basis for kinase activation mechanisms.
Collapse
Affiliation(s)
- Jinlan Fang
- College of Agricultural, Guangxi University, Nanning, China
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Zhe Chai
- College of Agricultural, Guangxi University, Nanning, China
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Run Huang
- College of Agricultural, Guangxi University, Nanning, China
| | - Cuilin Huang
- College of Agricultural, Guangxi University, Nanning, China
| | - Zhenhua Ming
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Wei Yao
- College of Agricultural, Guangxi University, Nanning, China
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Muqing Zhang
- College of Agricultural, Guangxi University, Nanning, China
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| |
Collapse
|
5
|
Vuong UT, Iswanto ABB, Nguyen Q, Kang H, Lee J, Moon J, Kim SH. Engineering plant immune circuit: walking to the bright future with a novel toolbox. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:17-45. [PMID: 36036862 PMCID: PMC9829404 DOI: 10.1111/pbi.13916] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Plant pathogens destroy crops and cause severe yield losses, leading to an insufficient food supply to sustain the human population. Apart from relying on natural plant immune systems to combat biological agents or waiting for the appropriate evolutionary steps to occur over time, researchers are currently seeking new breakthrough methods to boost disease resistance in plants through genetic engineering. Here, we summarize the past two decades of research in disease resistance engineering against an assortment of pathogens through modifying the plant immune components (internal and external) with several biotechnological techniques. We also discuss potential strategies and provide perspectives on engineering plant immune systems for enhanced pathogen resistance and plant fitness.
Collapse
Affiliation(s)
- Uyen Thi Vuong
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Arya Bagus Boedi Iswanto
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Quang‐Minh Nguyen
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Hobin Kang
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Jihyun Lee
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Jiyun Moon
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Sang Hee Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
- Division of Life ScienceGyeongsang National UniversityJinjuRepublic of Korea
| |
Collapse
|
6
|
Liang X, Zhang J. Regulation of plant responses to biotic and abiotic stress by receptor-like cytoplasmic kinases. STRESS BIOLOGY 2022; 2:25. [PMID: 37676353 PMCID: PMC10441961 DOI: 10.1007/s44154-022-00045-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/09/2022] [Indexed: 09/08/2023]
Abstract
As sessile organisms, plants have to cope with environmental change and numerous biotic and abiotic stress. Upon perceiving environmental cues and stress signals using different types of receptors, plant cells initiate immediate and complicated signaling to regulate cellular processes and respond to stress. Receptor-like cytoplasmic kinases (RLCKs) transduce signals from receptors to cellular components and play roles in diverse biological processes. Recent studies have revealed the hubbing roles of RLCKs in plant responses to biotic stress. Emerging evidence indicates the important regulatory roles of RLCKs in plant responses to abiotic stress, growth, and development. As a pivot of cellular signaling, the activity and stability of RLCKs are dynamically and tightly controlled. Here, we summarize the current understanding of how RLCKs regulate plant responses to biotic and abiotic stress.
Collapse
Affiliation(s)
- Xiangxiu Liang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Offor BC, Mhlongo MI, Dubery IA, Piater LA. Plasma Membrane-Associated Proteins Identified in Arabidopsis Wild Type, lbr2-2 and bak1-4 Mutants Treated with LPSs from Pseudomonas syringae and Xanthomonas campestris. MEMBRANES 2022; 12:membranes12060606. [PMID: 35736313 PMCID: PMC9230897 DOI: 10.3390/membranes12060606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 02/01/2023]
Abstract
Plants recognise bacterial microbe-associated molecular patterns (MAMPs) from the environment via plasma membrane (PM)-localised pattern recognition receptor(s) (PRRs). Lipopolysaccharides (LPSs) are known as MAMPs from gram-negative bacteria that are most likely recognised by PRRs and trigger defence responses in plants. The Arabidopsis PRR(s) and/or co-receptor(s) complex for LPS and the associated defence signalling remains elusive. As such, proteomic identification of LPS receptors and/or co-receptor complexes will help to elucidate the molecular mechanisms that underly LPS perception and defence signalling in plants. The Arabidopsis LPS-binding protein (LBP) and bactericidal/permeability-increasing protein (BPI)-related-2 (LBR2) have been shown to recognise LPS and trigger defence responses while brassinosteroid insensitive 1 (BRI1)-associated receptor kinase 1 (BAK1) acts as a co-receptor for several PRRs. In this study, Arabidopsis wild type (WT) and T-DNA knock out mutants (lbr2-2 and bak1-4) were treated with LPS chemotypes from Pseudomonas syringae pv. tomato DC3000 (Pst) and Xanthomonas campestris pv. campestris 8004 (Xcc) over a 24 h period. The PM-associated protein fractions were separated by liquid chromatography and analysed by tandem mass spectrometry (LC-MS/MS) followed by data analysis using ByonicTM software. Using Gene Ontology (GO) for molecular function and biological processes, significant LPS-responsive proteins were grouped according to defence and stress response, perception and signalling, membrane transport and trafficking, metabolic processes and others. Venn diagrams demarcated the MAMP-responsive proteins that were common and distinct to the WT and mutant lines following treatment with the two LPS chemotypes, suggesting contributions from differential LPS sub-structural moieties and involvement of LBR2 and BAK1 in the LPS-induced MAMP-triggered immunity (MTI). Moreover, the identification of RLKs and RLPs that participate in other bacterial and fungal MAMP signalling proposes the involvement of more than one receptor and/or co-receptor for LPS perception as well as signalling in Arabidopsis defence responses.
Collapse
|
8
|
Liu X, Zhou Y, Du M, Liang X, Fan F, Huang G, Zou Y, Bai J, Lu D. The calcium-dependent protein kinase CPK28 is targeted by the ubiquitin ligases ATL31 and ATL6 for proteasome-mediated degradation to fine-tune immune signaling in Arabidopsis. THE PLANT CELL 2022; 34:679-697. [PMID: 34599338 PMCID: PMC8774090 DOI: 10.1093/plcell/koab242] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/22/2021] [Indexed: 05/28/2023]
Abstract
Immune responses are triggered when pattern recognition receptors recognize microbial molecular patterns. The Arabidopsis (Arabidopsis thaliana) receptor-like cytoplasmic kinase BOTRYTIS-INDUCED KINASE1 (BIK1) acts as a signaling hub of plant immunity. BIK1 homeostasis is maintained by a regulatory module in which CALCIUM-DEPENDENT PROTEIN KINASE28 (CPK28) regulates BIK1 turnover via the activities of two E3 ligases. Immune-induced alternative splicing of CPK28 attenuates CPK28 function. However, it remained unknown whether CPK28 is under proteasomal control. Here, we demonstrate that CPK28 undergoes ubiquitination and 26S proteasome-mediated degradation, which is enhanced by flagellin treatment. Two closely related ubiquitin ligases, ARABIDOPSIS TÓXICOS EN LEVADURA31 (ATL31) and ATL6, specifically interact with CPK28 at the plasma membrane; this association is enhanced by flagellin elicitation. ATL31/6 directly ubiquitinate CPK28, resulting in its proteasomal degradation. Furthermore, ATL31/6 promotes the stability of BIK1 by mediating CPK28 degradation. Consequently, ATL31/6 positively regulate BIK1-mediated immunity. Our findings reveal another mechanism for attenuating CPK28 function to maintain BIK1 homeostasis and enhance immune responses.
Collapse
Affiliation(s)
- Xiaotong Liu
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Yuanyuan Zhou
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingshuo Du
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Hebei Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijiazhuang 050024, China
| | - Xuelian Liang
- Hebei Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijiazhuang 050024, China
| | - Fenggui Fan
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Guozhong Huang
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Yanmin Zou
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Jiaojiao Bai
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongping Lu
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
- Hebei Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
9
|
He W, Zhu Y, Leng Y, Yang L, Zhang B, Yang J, Zhang X, Lan H, Tang H, Chen J, Gao S, Tan J, Kang J, Deng L, Li Y, He Y, Rong T, Cao M. Transcriptomic Analysis Reveals Candidate Genes Responding Maize Gray Leaf Spot Caused by Cercospora zeina. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112257. [PMID: 34834621 PMCID: PMC8625984 DOI: 10.3390/plants10112257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 05/27/2023]
Abstract
Gray leaf spot (GLS), caused by the fungal pathogen Cercospora zeina (C. zeina), is one of the most destructive soil-borne diseases in maize (Zea mays L.), and severely reduces maize production in Southwest China. However, the mechanism of resistance to GLS is not clear and few resistant alleles have been identified. Two maize inbred lines, which were shown to be resistant (R6) and susceptible (S8) to GLS, were injected by C. zeina spore suspensions. Transcriptome analysis was carried out with leaf tissue at 0, 6, 24, 144, and 240 h after inoculation. Compared with 0 h of inoculation, a total of 667 and 419 stable common differentially expressed genes (DEGs) were found in the resistant and susceptible lines across the four timepoints, respectively. The DEGs were usually enriched in 'response to stimulus' and 'response to stress' in GO term analysis, and 'plant-pathogen interaction', 'MAPK signaling pathways', and 'plant hormone signal transduction' pathways, which were related to maize's response to GLS, were enriched in KEGG analysis. Weighted-Genes Co-expression Network Analysis (WGCNA) identified two modules, while twenty hub genes identified from these indicated that plant hormone signaling, calcium signaling pathways, and transcription factors played a central role in GLS sensing and response. Combing DEGs and QTL mapping, five genes were identified as the consensus genes for the resistance of GLS. Two genes, were both putative Leucine-rich repeat protein kinase family proteins, specifically expressed in R6. In summary, our results can provide resources for gene mining and exploring the mechanism of resistance to GLS in maize.
Collapse
Affiliation(s)
- Wenzhu He
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.); (H.L.); (S.G.); (T.R.)
| | - Yonghui Zhu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Yifeng Leng
- College of Agricultural Sciences, Xichang University, Xichang 615000, China;
| | - Lin Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Biao Zhang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Junpin Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Xiao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.); (H.L.); (S.G.); (T.R.)
| | - Hai Lan
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.); (H.L.); (S.G.); (T.R.)
| | - Haitao Tang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Jie Chen
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Shibin Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.); (H.L.); (S.G.); (T.R.)
| | - Jun Tan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Jiwei Kang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Luchang Deng
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Yan Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Yuanyuan He
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Tingzhao Rong
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.); (H.L.); (S.G.); (T.R.)
| | - Moju Cao
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.); (H.L.); (S.G.); (T.R.)
| |
Collapse
|
10
|
Pruitt RN, Locci F, Wanke F, Zhang L, Saile SC, Joe A, Karelina D, Hua C, Fröhlich K, Wan WL, Hu M, Rao S, Stolze SC, Harzen A, Gust AA, Harter K, Joosten MHAJ, Thomma BPHJ, Zhou JM, Dangl JL, Weigel D, Nakagami H, Oecking C, Kasmi FE, Parker JE, Nürnberger T. The EDS1-PAD4-ADR1 node mediates Arabidopsis pattern-triggered immunity. Nature 2021; 598:495-499. [PMID: 34497423 DOI: 10.1038/s41586-021-03829-0] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 07/16/2021] [Indexed: 02/08/2023]
Abstract
Plants deploy cell-surface and intracellular leucine rich-repeat domain (LRR) immune receptors to detect pathogens1. LRR receptor kinases and LRR receptor proteins at the plasma membrane recognize microorganism-derived molecules to elicit pattern-triggered immunity (PTI), whereas nucleotide-binding LRR proteins detect microbial effectors inside cells to confer effector-triggered immunity (ETI). Although PTI and ETI are initiated in different host cell compartments, they rely on the transcriptional activation of similar sets of genes2, suggesting pathway convergence upstream of nuclear events. Here we report that PTI triggered by the Arabidopsis LRR receptor protein RLP23 requires signalling-competent dimers of the lipase-like proteins EDS1 and PAD4, and of ADR1 family helper nucleotide-binding LRRs, which are all components of ETI. The cell-surface LRR receptor kinase SOBIR1 links RLP23 with EDS1, PAD4 and ADR1 proteins, suggesting the formation of supramolecular complexes containing PTI receptors and transducers at the inner side of the plasma membrane. We detected similar evolutionary patterns in LRR receptor protein and nucleotide-binding LRR genes across Arabidopsis accessions; overall higher levels of variation in LRR receptor proteins than in LRR receptor kinases are consistent with distinct roles of these two receptor families in plant immunity. We propose that the EDS1-PAD4-ADR1 node is a convergence point for defence signalling cascades, activated by both surface-resident and intracellular LRR receptors, in conferring pathogen immunity.
Collapse
Affiliation(s)
- Rory N Pruitt
- Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Federica Locci
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Friederike Wanke
- Department of Plant Physiology, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Lisha Zhang
- Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Svenja C Saile
- Department of Plant Physiology, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Anna Joe
- Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Darya Karelina
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Chenlei Hua
- Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Katja Fröhlich
- Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Wei-Lin Wan
- Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Meijuan Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Shaofei Rao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Sara C Stolze
- Proteomics Group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Anne Harzen
- Proteomics Group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Andrea A Gust
- Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Klaus Harter
- Department of Plant Physiology, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | | | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands.,Cluster of Excellence on Plant Sciences (CEPLAS), Cologne University, Cologne, Germany
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jeffery L Dangl
- Department of Biology, Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Hirofumi Nakagami
- Proteomics Group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Claudia Oecking
- Department of Plant Physiology, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Farid El Kasmi
- Department of Plant Physiology, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany. .,Cluster of Excellence on Plant Sciences (CEPLAS), Cologne University, Cologne, Germany.
| | - Thorsten Nürnberger
- Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany. .,Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa.
| |
Collapse
|
11
|
Chai N, Xu J, Zuo R, Sun Z, Cheng Y, Sui S, Li M, Liu D. Metabolic and Transcriptomic Profiling of Lilium Leaves Infected With Botrytis elliptica Reveals Different Stages of Plant Defense Mechanisms. FRONTIERS IN PLANT SCIENCE 2021; 12:730620. [PMID: 34630478 PMCID: PMC8493297 DOI: 10.3389/fpls.2021.730620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/27/2021] [Indexed: 05/17/2023]
Abstract
Botrytis elliptica, the causal agent of gray mold disease, poses a major threat to commercial Lilium production, limiting its ornamental value and yield. The molecular and metabolic regulation mechanisms of Lilium's defense response to B. elliptica infection have not been completely elucidated. Here, we performed transcriptomic and metabolomic analyses of B. elliptica resistant Lilium oriental hybrid "Sorbonne" to understand the molecular basis of gray mold disease resistance in gray mold disease. A total of 115 differentially accumulated metabolites (DAMs) were detected by comparing the different temporal stages of pathogen infection. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed the differentially expressed genes (DEGs) and DAMs were enriched in the phenylpropanoid and flavonoid pathways at all stages of infection, demonstrating the prominence of these pathways in the defense response of "Sorbonne" to B. elliptica. Network analysis revealed high interconnectivity of the induced defense response. Furthermore, time-course analysis of the transcriptome and a weighted gene coexpression network analysis (WGCNA) led to the identification of a number of hub genes at different stages, revealing that jasmonic acid (JA), salicylic acid (SA), brassinolide (BR), and calcium ions (Ca2+) play a crucial role in the response of "Sorbonne" to fungal infection. Our work provides a comprehensive perspective on the defense response of Lilium to B. elliptica infection, along with a potential transcriptional regulatory network underlying the defense response, thereby offering gene candidates for resistance breeding and metabolic engineering of Lilium.
Collapse
Affiliation(s)
- Nan Chai
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Jie Xu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Rumeng Zuo
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Zhengqiong Sun
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Yulin Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Shunzhao Sui
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Mingyang Li
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Daofeng Liu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| |
Collapse
|
12
|
Naeem M, Iqbal M, Ul-Allah S, Chaudhary HJ, Nazeer W, Ashraf J, Baloch FS. Expression studies of stress responsive genes in cotton Gossypium hirsutum L. Mol Biol Rep 2021; 48:7077-7085. [PMID: 34535835 DOI: 10.1007/s11033-021-06696-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/30/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Cotton is the world's richest source of natural fiber. Meanwhile cotton plant is top ranked stress sensitive plant thereby affecting its yield and fiber quality. But, in climate change scenario, fiber yield and quality are being affected due to environmental stresses, especially heat, drought and salinity. Present study is aimed to identify cotton genotype harboring prominently expressed stress responsive genes. METHODS Four cotton genotypes (IUB-13, IUB-222, IUB-09 and MM-58) were evaluated under drought and salinity stress for yield traits and expression of different stress responsive genes (GhWRKY3, GhDREB2 and GhRDR6). RESULTS Pronounced expression of GhWRKY3, GhDREB2and GhRDR6 was observed in cotton variety IUB-13 in stress condition (drought and salinity) as compared to control followed by IUB-222 which revealed that these genotypes might possess substantial potential to cope with environmental hazards encountered in growing season CONCLUSION: Utilization of cotton genotypes i.e., IUB-13 and IUB-222 in cotton breeding program can be very much fruitful for developing cotton genotypes adoptable to climate change.
Collapse
Affiliation(s)
- Muhammad Naeem
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Muhammad Iqbal
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sami Ul-Allah
- College of Agriculture, Bahadur Sub Campus Layyah, Bahauddin Zakariya University, Multan, Pakistan
| | - Hassan Javed Chaudhary
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Wajad Nazeer
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Javeria Ashraf
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Faheem Shahzad Baloch
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey.
| |
Collapse
|
13
|
Watkins JM, Ross-Elliott TJ, Shan X, Lou F, Dreyer B, Tunc-Ozdemir M, Jia H, Yang J, Oliveira CC, Wu L, Trusov Y, Schwochert TD, Krysan P, Jones AM. Differential regulation of G protein signaling in Arabidopsis through two distinct pathways that internalize AtRGS1. Sci Signal 2021; 14:14/695/eabe4090. [PMID: 34376571 DOI: 10.1126/scisignal.abe4090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In animals, endocytosis of a seven-transmembrane GPCR is mediated by arrestins to propagate or arrest cytoplasmic G protein-mediated signaling, depending on the bias of the receptor or ligand, which determines how much one transduction pathway is used compared to another. In Arabidopsis thaliana, GPCRs are not required for G protein-coupled signaling because the heterotrimeric G protein complex spontaneously exchanges nucleotide. Instead, the seven-transmembrane protein AtRGS1 modulates G protein signaling through ligand-dependent endocytosis, which initiates derepression of signaling without the involvement of canonical arrestins. Here, we found that endocytosis of AtRGS1 initiated from two separate pools of plasma membrane: sterol-dependent domains and a clathrin-accessible neighborhood, each with a select set of discriminators, activators, and candidate arrestin-like adaptors. Ligand identity (either the pathogen-associated molecular pattern flg22 or the sugar glucose) determined the origin of AtRGS1 endocytosis. Different trafficking origins and trajectories led to different cellular outcomes. Thus, in this system, compartmentation with its associated signalosome architecture drives biased signaling.
Collapse
Affiliation(s)
- Justin M Watkins
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Timothy J Ross-Elliott
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiaoyi Shan
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Fei Lou
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bernd Dreyer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Meral Tunc-Ozdemir
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haiyan Jia
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jing Yang
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Celio Cabral Oliveira
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Biochemistry and Molecular Biology/Bioagro, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Luguang Wu
- School of Agriculture and Food Science, University of Queensland, St. Lucia, Queensland Q4072, Australia
| | - Yuri Trusov
- School of Agriculture and Food Science, University of Queensland, St. Lucia, Queensland Q4072, Australia
| | - Timothy D Schwochert
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patrick Krysan
- Department of Horticulture, University of Wisconsin Madison, Madison, WI 53706, USA
| | - Alan M Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. .,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
Doroodian P, Hua Z. The Ubiquitin Switch in Plant Stress Response. PLANTS (BASEL, SWITZERLAND) 2021; 10:246. [PMID: 33514032 PMCID: PMC7911189 DOI: 10.3390/plants10020246] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 12/20/2022]
Abstract
Ubiquitin is a 76 amino acid polypeptide common to all eukaryotic organisms. It functions as a post-translationally modifying mark covalently linked to a large cohort of yet poorly defined protein substrates. The resulting ubiquitylated proteins can rapidly change their activities, cellular localization, or turnover through the 26S proteasome if they are no longer needed or are abnormal. Such a selective modification is essential to many signal transduction pathways particularly in those related to stress responses by rapidly enhancing or quenching output. Hence, this modification system, the so-called ubiquitin-26S proteasome system (UPS), has caught the attention in the plant research community over the last two decades for its roles in plant abiotic and biotic stress responses. Through direct or indirect mediation of plant hormones, the UPS selectively degrades key components in stress signaling to either negatively or positively regulate plant response to a given stimulus. As a result, a tightly regulated signaling network has become of much interest over the years. The ever-increasing changes of the global climate require both the development of new crops to cope with rapid changing environment and new knowledge to survey the dynamics of ecosystem. This review examines how the ubiquitin can switch and tune plant stress response and poses potential avenues to further explore this system.
Collapse
Affiliation(s)
- Paymon Doroodian
- Department of Environment and Plant Biology, Ohio University, Athens, OH 45701, USA;
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
| | - Zhihua Hua
- Department of Environment and Plant Biology, Ohio University, Athens, OH 45701, USA;
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
15
|
Wang Z, Wan L, Zhang X, Xin Q, Song Y, Hong D, Sun Y, Yang G. Interaction between Brassica napus polygalacturonase inhibition proteins and Sclerotinia sclerotiorum polygalacturonase: implications for rapeseed resistance to fungal infection. PLANTA 2021; 253:34. [PMID: 33459878 DOI: 10.1007/s00425-020-03556-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
BnPGIPs interacted with Sclerotinia sclerotiorum PGs to improve rapeseed SSR resistance at different levels; the BnPGIP-overexpression lines did not affect plant morphology or seed quality traits. Plant polygalacturonase-inhibiting proteins (PGIPs) play a crucial role in plant defence against phytopathogenic fungi by inhibiting fungal polygalacturonase (PG) activity. We overexpressed BnPGIP2, BnPGIP5, and BnPGIP10 genes in an inbred line 7492 of rapeseed (Brassica napus). Compared with 7492WT, the overexpression of BnPGIP2 lines significantly increased Sclerotinia sclerotiorum resistance in both seedlings and adult plants. BnPGIP5 overexpression lines exhibited decreased S. sclerotiorum disease symptoms in seedlings only, whereas BnPGIP10 overexpression lines did not improve Sclerotinia resistance for seedlings or adult plants. Quantitative real-time PCR analysis of S. sclerotiorum PG1, SsPG3, SsPG5, and SsPG6 genes in overexpressing BnPGIP lines showed that these pathogenic genes in the Sclerotinia resistance transgenic lines exhibited low expression in stem tissues. Split-luciferase complementation experiments confirmed the following: BnPGIP2 interacts with SsPG1 and SsPG6 but not with SsPG3 or SsPG5; BnPGIP5 interacts with SsPG3 and SsPG6 but not with SsPG1 or SsPG5; and BnPGIP10 interacts with SsPG1 but not SsPG3, SsPG5, or SsPG6. Leaf crude protein extracts from BnPGIP2 and BnPGIP5 transgenic lines displayed high inhibitory activity against the SsPG crude protein. BnPGIP-overexpression lines with Sclerotinia resistance displayed a lower accumulation of H2O2 and higher expression of the H2O2-removing gene BnAPX (ascorbate peroxidase) than 7492WT, as well as elevated expression of defence response genes including jasmonic acid/ethylene and salicylic acid pathways after S. sclerotiorum infection. The plants overexpressing BnPGIP exhibited no difference in either agronomic traits or grain yield from 7492WT. This study provides potential target genes for developing S. sclerotiorum resistance in rapeseed.
Collapse
Affiliation(s)
- Zhuanrong Wang
- Institute of Crops, Wuhan Academy of Agricultural Sciences, Wuhan, 430065, Hubei, China
| | - Lili Wan
- Institute of Crops, Wuhan Academy of Agricultural Sciences, Wuhan, 430065, Hubei, China.
| | - Xiaohui Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qiang Xin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yixian Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yuhong Sun
- Institute of Crops, Wuhan Academy of Agricultural Sciences, Wuhan, 430065, Hubei, China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
16
|
Association of differentially expressed R-gene candidates with leaf spot resistance in peanut (Arachis hypogaea L.). Mol Biol Rep 2021; 48:323-334. [PMID: 33403558 PMCID: PMC7884587 DOI: 10.1007/s11033-020-06049-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/28/2020] [Indexed: 01/17/2023]
Abstract
Early leaf spot (ELS) and late leaf spot (LLS) are major fungal diseases of peanut that can severely reduce yield and quality. Development of acceptable genetic resistance has been difficult due to a strong environmental component and many major and minor QTLs. Resistance genes (R-genes) are an important component of plant immune system and have been identified in peanut. Association of specific R-genes to leaf spot resistance will provide molecular targets for marker-assisted breeding strategies. In this study, advanced breeding lines from different pedigrees were evaluated for leaf spot resistance and 76 candidate R-genes expression study was applied to susceptible and resistant lines. Thirty-six R-genes were differentially expressed and significantly correlated with resistant lines, of which a majority are receptor like kinases (RLKs) and receptor like proteins (RLPs) that sense the presence of pathogen at the cell surface and initiate protection response. The largest group was receptor-like cytoplasmic kinases (RLCKs) VII that are involved in pattern-triggered kinase signaling resulting in the production reactive oxygen species (ROS). Four R-genes were homologous to TMV resistant protein N which has shown to confer resistance against tobacco mosaic virus (TMV). When mapped to peanut genomes, 36 R-genes were represented in most chromosomes except for A09 and B09. Low levels of gene-expression in resistant lines suggest expression is tightly controlled to balance the cost of R-gene expression to plant productively. Identification and association of R-genes involved in leaf spot resistance will facilitate genetic selection of leaf spot resistant lines with good agronomic traits.
Collapse
|
17
|
Zhang J, Coaker G, Zhou JM, Dong X. Plant Immune Mechanisms: From Reductionistic to Holistic Points of View. MOLECULAR PLANT 2020; 13:1358-1378. [PMID: 32916334 PMCID: PMC7541739 DOI: 10.1016/j.molp.2020.09.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 05/19/2023]
Abstract
After three decades of the amazing progress made on molecular studies of plant-microbe interactions (MPMI), we have begun to ask ourselves "what are the major questions still remaining?" as if the puzzle has only a few pieces missing. Such an exercise has ultimately led to the realization that we still have many more questions than answers. Therefore, it would be an impossible task for us to project a coherent "big picture" of the MPMI field in a single review. Instead, we provide our opinions on where we would like to go in our research as an invitation to the community to join us in this exploration of new MPMI frontiers.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricutural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gitta Coaker
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Jian-Min Zhou
- CAS Center for Excellence in Biotic Interactions, College of Advanced Agricutural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinnian Dong
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, PO Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
18
|
Mariotti R, Belaj A, De La Rosa R, Leòn L, Brizioli F, Baldoni L, Mousavi S. EST-SNP Study of Olea europaea L. Uncovers Functional Polymorphisms between Cultivated and Wild Olives. Genes (Basel) 2020; 11:E916. [PMID: 32785094 PMCID: PMC7465833 DOI: 10.3390/genes11080916] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The species Olea europaea includes cultivated varieties (subsp. europaea var. europaea), wild plants (subsp. europaea var. sylvestris), and five other subspecies spread over almost all continents. Single nucleotide polymorphisms in the expressed sequence tag able to underline intra-species differentiation are not yet identified, beyond a few plastidial markers. METHODS In the present work, more than 1000 transcript-specific SNP markers obtained by the genotyping of 260 individuals were studied. These genotypes included cultivated, oleasters, and samples of subspecies guanchica, and were analyzed in silico, in order to identify polymorphisms on key genes distinguishing different Olea europaea forms. RESULTS Phylogeny inference and principal coordinate analysis allowed to detect two distinct clusters, clearly separating wilds and guanchica samples from cultivated olives, meanwhile the structure analysis made possible to differentiate these three groups. Sequences carrying the polymorphisms that distinguished wild and cultivated olives were analyzed and annotated, allowing to identify 124 candidate genes that have a functional role in flower development, stress response, or involvement in important metabolic pathways. Signatures of selection that occurred during olive domestication, were detected and reported. CONCLUSION This deep EST-SNP analysis provided important information on the genetic and genomic diversity of the olive complex, opening new opportunities to detect gene polymorphisms with potential functional and evolutionary roles, and to apply them in genomics-assisted breeding, highlighting the importance of olive germplasm conservation.
Collapse
Affiliation(s)
- Roberto Mariotti
- CNR—Institute of Biosciences and Bioresources, Via Madonna Alta 130, 06128 Perugia, Italy; (R.M.); (F.B.); (S.M.)
| | - Angjelina Belaj
- IFAPA—Centro Alameda del Obispo, Avda Menendez Pidal, s/n, E-14004 Cordoba, Spain; (A.B.); (R.D.L.R.); (L.L.)
| | - Raul De La Rosa
- IFAPA—Centro Alameda del Obispo, Avda Menendez Pidal, s/n, E-14004 Cordoba, Spain; (A.B.); (R.D.L.R.); (L.L.)
| | - Lorenzo Leòn
- IFAPA—Centro Alameda del Obispo, Avda Menendez Pidal, s/n, E-14004 Cordoba, Spain; (A.B.); (R.D.L.R.); (L.L.)
| | - Federico Brizioli
- CNR—Institute of Biosciences and Bioresources, Via Madonna Alta 130, 06128 Perugia, Italy; (R.M.); (F.B.); (S.M.)
| | - Luciana Baldoni
- CNR—Institute of Biosciences and Bioresources, Via Madonna Alta 130, 06128 Perugia, Italy; (R.M.); (F.B.); (S.M.)
| | - Soraya Mousavi
- CNR—Institute of Biosciences and Bioresources, Via Madonna Alta 130, 06128 Perugia, Italy; (R.M.); (F.B.); (S.M.)
| |
Collapse
|
19
|
Characterization of Atypical Protein Tyrosine Kinase (PTK) Genes and Their Role in Abiotic Stress Response in Rice. PLANTS 2020; 9:plants9050664. [PMID: 32456239 PMCID: PMC7284356 DOI: 10.3390/plants9050664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 02/02/2023]
Abstract
Tyrosine phosphorylation constitutes up to 5% of the total phophoproteome. However, only limited studies are available on protein tyrosine kinases (PTKs) that catalyze protein tyrosine phosphorylation in plants. In this study, domain analysis of the 27 annotated PTK genes in rice genome led to the identification of 18 PTKs with tyrosine kinase domain. The kinase domain of rice PTKs shared high homology with that of dual specificity kinase BRASSINOSTEROID-INSENSITIVE 1 (BRI1) of Arabidopsis. In phylogenetic analysis, rice PTKs clustered with receptor-like cytoplasmic kinases-VII (RLCKs-VII) of Arabidopsis. mRNAseq analysis using Genevestigator revealed that rice PTKs except PTK9 and PTK16 express at moderate to high level in most tissues. PTK16 expression was highly abundant in panicle at flowering stage. mRNAseq data analysis led to the identification of drought, heat, salt, and submergence stress regulated PTK genes in rice. PTK14 was upregulated under all stresses. qRT-PCR analysis also showed that all PTKs except PTK10 were significantly upregulated in root under osmotic stress. Tissue specificity and abiotic stress mediated differential regulation of PTKs suggest their potential role in development and stress response of rice. The candidate dual specificity PTKs identified in this study paves way for molecular analysis of tyrosine phosphorylation in rice.
Collapse
|
20
|
Lee D, Lal NK, Lin ZJD, Ma S, Liu J, Castro B, Toruño T, Dinesh-Kumar SP, Coaker G. Regulation of reactive oxygen species during plant immunity through phosphorylation and ubiquitination of RBOHD. Nat Commun 2020; 11:1838. [PMID: 32296066 PMCID: PMC7160206 DOI: 10.1038/s41467-020-15601-5] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 03/09/2020] [Indexed: 01/08/2023] Open
Abstract
Production of reactive oxygen species (ROS) is critical for successful activation of immune responses against pathogen infection. The plant NADPH oxidase RBOHD is a primary player in ROS production during innate immunity. However, how RBOHD is negatively regulated remains elusive. Here we show that RBOHD is regulated by C-terminal phosphorylation and ubiquitination. Genetic and biochemical analyses reveal that the PBL13 receptor-like cytoplasmic kinase phosphorylates RBOHD's C-terminus and two phosphorylated residues (S862 and T912) affect RBOHD activity and stability, respectively. Using protein array technology, we identified an E3 ubiquitin ligase PIRE (PBL13 interacting RING domain E3 ligase) that interacts with both PBL13 and RBOHD. Mimicking phosphorylation of RBOHD (T912D) results in enhanced ubiquitination and decreased protein abundance. PIRE and PBL13 mutants display higher RBOHD protein accumulation, increased ROS production, and are more resistant to bacterial infection. Thus, our study reveals an intricate post-translational network that negatively regulates the abundance of a conserved NADPH oxidase.
Collapse
Affiliation(s)
- DongHyuk Lee
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA
| | - Neeraj K Lal
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| | - Zuh-Jyh Daniel Lin
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA.,Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Shisong Ma
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California, Davis, CA, 95616, USA.,School of Life Sciences, University of Science and Technology of China, 230027, Hefei, China
| | - Jun Liu
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA.,Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Bardo Castro
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA
| | - Tania Toruño
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| | - Gitta Coaker
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
21
|
Kimura S, Hunter K, Vaahtera L, Tran HC, Citterico M, Vaattovaara A, Rokka A, Stolze SC, Harzen A, Meißner L, Wilkens MMT, Hamann T, Toyota M, Nakagami H, Wrzaczek M. CRK2 and C-terminal Phosphorylation of NADPH Oxidase RBOHD Regulate Reactive Oxygen Species Production in Arabidopsis. THE PLANT CELL 2020; 32:1063-1080. [PMID: 32034035 PMCID: PMC7145479 DOI: 10.1105/tpc.19.00525] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 01/13/2020] [Accepted: 02/06/2020] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) are important messengers in eukaryotic organisms, and their production is tightly controlled. Active extracellular ROS production by NADPH oxidases in plants is triggered by receptor-like protein kinase-dependent signaling networks. Here, we show that CYSTEINE-RICH RLK2 (CRK2) kinase activity is required for plant growth and CRK2 exists in a preformed complex with the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD) in Arabidopsis (Arabidopsis thaliana). Functional CRK2 is required for the full elicitor-induced ROS burst, and consequently the crk2 mutant is impaired in defense against the bacterial pathogen Pseudomonas syringae pv tomato DC3000. Our work demonstrates that CRK2 regulates plant innate immunity. We identified in vitro CRK2-dependent phosphorylation sites in the C-terminal region of RBOHD. Phosphorylation of S703 RBOHD is enhanced upon flg22 treatment, and substitution of S703 with Ala reduced ROS production in Arabidopsis. Phylogenetic analysis suggests that phospho-sites in the C-terminal region of RBOHD are conserved throughout the plant lineage and between animals and plants. We propose that regulation of NADPH oxidase activity by phosphorylation of the C-terminal region might be an ancient mechanism and that CRK2 is an important element in regulating microbe-associated molecular pattern-triggered ROS production.
Collapse
Affiliation(s)
- Sachie Kimura
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Kerri Hunter
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Lauri Vaahtera
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Huy Cuong Tran
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Matteo Citterico
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Aleksia Vaattovaara
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Anne Rokka
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku FI-20520, Finland
| | - Sara Christina Stolze
- Protein Mass Spectrometry Group, Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Anne Harzen
- Protein Mass Spectrometry Group, Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Lena Meißner
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Maya Melina Tabea Wilkens
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Thorsten Hamann
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama 338-8570, Japan
- Department of Botany, University of Wisconsin, Madison, WI 53593, USA
| | - Hirofumi Nakagami
- Protein Mass Spectrometry Group, Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Michael Wrzaczek
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| |
Collapse
|
22
|
Albert I, Hua C, Nürnberger T, Pruitt RN, Zhang L. Surface Sensor Systems in Plant Immunity. PLANT PHYSIOLOGY 2020; 182:1582-1596. [PMID: 31822506 PMCID: PMC7140916 DOI: 10.1104/pp.19.01299] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/21/2019] [Indexed: 05/04/2023]
Abstract
Protein complexes at the cell surface facilitate the detection of danger signals from diverse pathogens and initiate a series of complex intracellular signaling events that result in various immune responses.
Collapse
Affiliation(s)
- Isabell Albert
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University, D-72076 Tübingen, Germany
| | - Chenlei Hua
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University, D-72076 Tübingen, Germany
| | - Thorsten Nürnberger
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University, D-72076 Tübingen, Germany
- Department of Biochemistry, University of Johannesburg, Johannesburg 2001, South Africa
| | - Rory N Pruitt
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University, D-72076 Tübingen, Germany
| | - Lisha Zhang
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University, D-72076 Tübingen, Germany
| |
Collapse
|
23
|
Sitonik C, Suresh LM, Beyene Y, Olsen MS, Makumbi D, Oliver K, Das B, Bright JM, Mugo S, Crossa J, Tarekegne A, Prasanna BM, Gowda M. Genetic architecture of maize chlorotic mottle virus and maize lethal necrosis through GWAS, linkage analysis and genomic prediction in tropical maize germplasm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2381-2399. [PMID: 31098757 PMCID: PMC6647133 DOI: 10.1007/s00122-019-03360-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/08/2019] [Indexed: 05/21/2023]
Abstract
KEY MESSAGE Analysis of the genetic architecture of MCMV and MLN resistance in maize doubled-haploid populations revealed QTLs with major effects on chromosomes 3 and 6 that were consistent across genetic backgrounds and environments. Two major-effect QTLs, qMCMV3-108/qMLN3-108 and qMCMV6-17/qMLN6-17, were identified as conferring resistance to both MCMV and MLN. Maize lethal necrosis (MLN) is a serious threat to the food security of maize-growing smallholders in sub-Saharan Africa. The ability of the maize chlorotic mottle virus (MCMV) to interact with other members of the Potyviridae causes severe yield losses in the form of MLN. The objective of the present study was to gain insights and validate the genetic architecture of resistance to MCMV and MLN in maize. We applied linkage mapping to three doubled-haploid populations and a genome-wide association study (GWAS) on 380 diverse maize lines. For all the populations, phenotypic variation for MCMV and MLN was significant, and heritability was moderate to high. Linkage mapping revealed 13 quantitative trait loci (QTLs) for MCMV resistance and 12 QTLs conferring MLN resistance. One major-effect QTL, qMCMV3-108/qMLN3-108, was consistent across populations for both MCMV and MLN resistance. Joint linkage association mapping (JLAM) revealed 18 and 21 main-effect QTLs for MCMV and MLN resistance, respectively. Another major-effect QTL, qMCMV6-17/qMLN6-17, was detected for both MCMV and MLN resistance. The GWAS revealed a total of 54 SNPs (MCMV-13 and MLN-41) significantly associated (P ≤ 5.60 × 10-05) with MCMV and MLN resistance. Most of the GWAS-identified SNPs were within or adjacent to the QTLs detected through linkage mapping. The prediction accuracy for within populations as well as the combined populations is promising; however, the accuracy was low across populations. Overall, MCMV resistance is controlled by a few major and many minor-effect loci and seems more complex than the genetic architecture for MLN resistance.
Collapse
Affiliation(s)
- Chelang'at Sitonik
- International Maize and Wheat Improvement Center (CIMMYT), P.O. Box 1041-00621, Village Market, Nairobi, 00621, Kenya
- Department of Plant Breeding and Biotechnology, University of Eldoret (UoE), P.O. Box 1125, Eldoret, 30100, Kenya
| | - L M Suresh
- International Maize and Wheat Improvement Center (CIMMYT), P.O. Box 1041-00621, Village Market, Nairobi, 00621, Kenya
| | - Yoseph Beyene
- International Maize and Wheat Improvement Center (CIMMYT), P.O. Box 1041-00621, Village Market, Nairobi, 00621, Kenya
| | - Michael S Olsen
- International Maize and Wheat Improvement Center (CIMMYT), P.O. Box 1041-00621, Village Market, Nairobi, 00621, Kenya
| | - Dan Makumbi
- International Maize and Wheat Improvement Center (CIMMYT), P.O. Box 1041-00621, Village Market, Nairobi, 00621, Kenya
| | - Kiplagat Oliver
- Department of Plant Breeding and Biotechnology, University of Eldoret (UoE), P.O. Box 1125, Eldoret, 30100, Kenya
| | - Biswanath Das
- International Maize and Wheat Improvement Center (CIMMYT), P.O. Box 1041-00621, Village Market, Nairobi, 00621, Kenya
| | - Jumbo M Bright
- International Maize and Wheat Improvement Center (CIMMYT), P.O. Box 1041-00621, Village Market, Nairobi, 00621, Kenya
| | - Stephen Mugo
- International Maize and Wheat Improvement Center (CIMMYT), P.O. Box 1041-00621, Village Market, Nairobi, 00621, Kenya
| | - Jose Crossa
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, DF, Mexico
| | - Amsal Tarekegne
- International Maize and Wheat Improvement Center (CIMMYT), 12.5 km Peg Mazowe Road, Mount Pleasant, P.O. Box MP163, Harare, Zimbabwe
| | - Boddupalli M Prasanna
- International Maize and Wheat Improvement Center (CIMMYT), P.O. Box 1041-00621, Village Market, Nairobi, 00621, Kenya.
| | - Manje Gowda
- International Maize and Wheat Improvement Center (CIMMYT), P.O. Box 1041-00621, Village Market, Nairobi, 00621, Kenya.
| |
Collapse
|
24
|
Bastedo DP, Khan M, Martel A, Seto D, Kireeva I, Zhang J, Masud W, Millar D, Lee JY, Lee AHY, Gong Y, Santos-Severino A, Guttman DS, Desveaux D. Perturbations of the ZED1 pseudokinase activate plant immunity. PLoS Pathog 2019; 15:e1007900. [PMID: 31269090 PMCID: PMC6634424 DOI: 10.1371/journal.ppat.1007900] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/16/2019] [Accepted: 06/08/2019] [Indexed: 11/19/2022] Open
Abstract
The Pseudomonas syringae acetyltransferase HopZ1a is delivered into host cells by the type III secretion system to promote bacterial growth. However, in the model plant host Arabidopsis thaliana, HopZ1a activity results in an effector-triggered immune response (ETI) that limits bacterial proliferation. HopZ1a-triggered immunity requires the nucleotide-binding, leucine-rich repeat domain (NLR) protein, ZAR1, and the pseudokinase, ZED1. Here we demonstrate that HopZ1a can acetylate members of a family of ‘receptor-like cytoplasmic kinases’ (RLCK family VII; also known as PBS1-like kinases, or PBLs) and promote their interaction with ZED1 and ZAR1 to form a ZAR1-ZED1-PBL ternary complex. Interactions between ZED1 and PBL kinases are determined by the pseudokinase features of ZED1, and mutants designed to restore ZED1 kinase motifs can (1) bind to PBLs, (2) recruit ZAR1, and (3) trigger ZAR1-dependent immunity in planta, all independently of HopZ1a. A ZED1 mutant that mimics acetylation by HopZ1a also triggers immunity in planta, providing evidence that effector-induced perturbations of ZED1 also activate ZAR1. Overall, our results suggest that interactions between these two RLCK families are promoted by perturbations of structural features that distinguish active from inactive kinase domain conformations. We propose that effector-induced interactions between ZED1/ZRK pseudokinases (RLCK family XII) and PBL kinases (RLCK family VII) provide a sensitive mechanism for detecting perturbations of either kinase family to activate ZAR1-mediated ETI. All plants must ward off potentially infectious microbes, and those grown in large-scale crop operations are especially vulnerable to the rapid spread of disease by successful pathogens. Although many bacteria and fungi can supress plant immune responses by producing specialized virulence proteins called ‘effectors’, these effectors can also trigger immune responses that render plants resistant to infection. We studied the molecular mechanisms underlying one such effector-triggered immune response elicited by the bacterial effector HopZ1a in the model plant host Arabidopsis thaliana. We have shown that HopZ1a promotes binding between a ZED1, a ‘pseudokinase’ required for HopZ1a-triggered immunity, and several ‘true kinases’ (known as PBLs) that are likely targets of HopZ1a activity in planta. HopZ1a-induced ZED1-PBL interactions also recruit ZAR1, an Arabidopsis ‘resistance protein’ previously implicated in HopZ1a-triggered immunity. Importantly, ZED1 mutants that restore degenerate kinase motifs can bridge interactions between PBLs and ZAR1 (independently of HopZ1a) and trigger immunity in planta. Our results suggest that equilibria between active and inactive kinase domain conformations regulate ZED1-PBL interactions and formation of ternary complexes with ZAR1. Improved models describing molecular interactions between immunity determinants, effectors and effector targets will inform efforts to exploit natural diversity for development of crops with enhanced disease resistance.
Collapse
Affiliation(s)
- D. Patrick Bastedo
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Madiha Khan
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Alexandre Martel
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Derek Seto
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Inga Kireeva
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - Jianfeng Zhang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Wardah Masud
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - David Millar
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jee Yeon Lee
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - Amy Huei-Yi Lee
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yunchen Gong
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - André Santos-Severino
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - David S. Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (DSG); (DD)
| | - Darrell Desveaux
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (DSG); (DD)
| |
Collapse
|
25
|
Giska F, Martin GB. PP2C phosphatase Pic1 negatively regulates the phosphorylation status of Pti1b kinase, a regulator of flagellin-triggered immunity in tomato. Biochem J 2019; 476:1621-1635. [PMID: 31097490 DOI: 10.1042/bcj20190299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/17/2023]
Abstract
Plant immune responses, including the production of reactive oxygen species (ROS), are triggered when pattern recognition receptors (PRRs) become activated upon detection of microbe-associated molecular patterns (MAMPs). Receptor-like cytoplasmic kinases are key components of PRR-dependent signaling pathways. In tomato, two such kinases, Pti1a and Pti1b, are important positive regulators of the plant immune response. However, it is unknown how these kinases control plant immunity at the molecular level and how their activity is regulated. To investigate these issues, we used mass spectrometry to search for interactors of Pti1b in Nicotiana benthamiana leaves and identified a PP2C protein phosphatase, referred to as Pic1. An in vitro pull-down assay and in vivo split-luciferase complementation assay verified this interaction. Pti1b was found to autophosphorylate on threonine-233, and this phosphorylation was abolished in the presence of Pic1. An arginine-to-cysteine substitution at position 240 in the Arabidopsis MARIS kinase was previously reported to convert it into a constitutive-active form. The analogous substitution in Pti1b made it resistant to Pic1 phosphatase activity, although it still interacted with Pic1. Treatment of N. benthamiana leaves with the MAMP flg22 induced threonine phosphorylation of Pti1b. The expression of Pic1, but not a phosphatase-inactive variant of this protein, in N. benthamiana leaves greatly reduced ROS production in response to treatment with MAMPs flg22 or csp22. The results indicate that Pic1 acts as a negative regulator by dephosphorylating the Pti1b kinase, thereby interfering with its ability to activate plant immune responses.
Collapse
Affiliation(s)
- Fabian Giska
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A.
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| |
Collapse
|
26
|
Gomez MA, Lin ZD, Moll T, Chauhan RD, Hayden L, Renninger K, Beyene G, Taylor NJ, Carrington JC, Staskawicz BJ, Bart RS. Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:421-434. [PMID: 30019807 PMCID: PMC6335076 DOI: 10.1111/pbi.12987] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/27/2018] [Indexed: 05/02/2023]
Abstract
Cassava brown streak disease (CBSD) is a major constraint on cassava yields in East and Central Africa and threatens production in West Africa. CBSD is caused by two species of positive-sense RNA viruses belonging to the family Potyviridae, genus Ipomovirus: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). Diseases caused by the family Potyviridae require the interaction of viral genome-linked protein (VPg) and host eukaryotic translation initiation factor 4E (eIF4E) isoforms. Cassava encodes five eIF4E proteins: eIF4E, eIF(iso)4E-1, eIF(iso)4E-2, novel cap-binding protein-1 (nCBP-1), and nCBP-2. Protein-protein interaction experiments consistently found that VPg proteins associate with cassava nCBPs. CRISPR/Cas9-mediated genome editing was employed to generate ncbp-1, ncbp-2, and ncbp-1/ncbp-2 mutants in cassava cultivar 60444. Challenge with CBSV showed that ncbp-1/ncbp-2 mutants displayed delayed and attenuated CBSD aerial symptoms, as well as reduced severity and incidence of storage root necrosis. Suppressed disease symptoms were correlated with reduced virus titre in storage roots relative to wild-type controls. Our results demonstrate the ability to modify multiple genes simultaneously in cassava to achieve tolerance to CBSD. Future studies will investigate the contribution of remaining eIF4E isoforms on CBSD and translate this knowledge into an optimized strategy for protecting cassava from disease.
Collapse
Affiliation(s)
- Michael A. Gomez
- Department of Plant and Microbial Biology and Innovative Genomics InstituteUniversity of CaliforniaBerkeleyCAUSA
| | | | | | | | - Luke Hayden
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | | | - Getu Beyene
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | | | | | - Brian J. Staskawicz
- Department of Plant and Microbial Biology and Innovative Genomics InstituteUniversity of CaliforniaBerkeleyCAUSA
| | | |
Collapse
|
27
|
Zhang M, Chiang YH, Toruño TY, Lee D, Ma M, Liang X, Lal NK, Lemos M, Lu YJ, Ma S, Liu J, Day B, Dinesh-Kumar SP, Dehesh K, Dou D, Zhou JM, Coaker G. The MAP4 Kinase SIK1 Ensures Robust Extracellular ROS Burst and Antibacterial Immunity in Plants. Cell Host Microbe 2018; 24:379-391.e5. [PMID: 30212650 PMCID: PMC6279242 DOI: 10.1016/j.chom.2018.08.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 06/01/2018] [Accepted: 07/17/2018] [Indexed: 11/18/2022]
Abstract
Microbial patterns are recognized by cell-surface receptors to initiate pattern-triggered immunity (PTI) in plants. Receptor-like cytoplasmic kinases (RLCKs), such as BIK1, and calcium-dependent protein kinases (CPKs) are engaged during PTI to activate the NADPH oxidase RBOHD for reactive oxygen species (ROS) production. It is unknown whether protein kinases besides CPKs and RLCKs participate in RBOHD regulation. We screened mutants in all ten Arabidopsis MAP4 kinases (MAP4Ks) and identified the conserved MAP4K SIK1 as a positive regulator of PTI. sik1 mutants were compromised in their ability to elicit the ROS burst in response to microbial features and exhibited compromised PTI to bacterial infection. SIK1 directly interacts with, phosphorylates, and stabilizes BIK1 in a kinase activity-dependent manner. Furthermore, SIK1 directly interacts with and phosphorylates RBOHD upon flagellin perception. Thus, SIK1 positively regulates immunity by stabilizing BIK1 and activating RBOHD to promote the extracellular ROS burst.
Collapse
Affiliation(s)
- Meixiang Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Yi-Hsuan Chiang
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Tania Y Toruño
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - DongHyuk Lee
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Miaomiao Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangxiu Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Neeraj K Lal
- Department of Plant Biology and the Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Mark Lemos
- Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA; Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Yi-Ju Lu
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Shisong Ma
- Department of Plant Biology and the Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Jun Liu
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and the Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Katayoon Dehesh
- Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA; Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
28
|
Rao S, Zhou Z, Miao P, Bi G, Hu M, Wu Y, Feng F, Zhang X, Zhou JM. Roles of Receptor-Like Cytoplasmic Kinase VII Members in Pattern-Triggered Immune Signaling. PLANT PHYSIOLOGY 2018; 177:1679-1690. [PMID: 29907700 PMCID: PMC6084675 DOI: 10.1104/pp.18.00486] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/04/2018] [Indexed: 05/19/2023]
Abstract
Pattern-recognition receptors (PRRs), which consist of receptor kinases (RKs) and receptor-like proteins, sense microbe- and host-derived molecular patterns associated with pathogen infection to trigger immune responses in plants. Several kinases of the 46-member Arabidopsis (Arabidopsis thaliana) receptor-like cytoplasmic kinase (RLCK) subfamily VII play important roles in pattern-triggered immunity, but it is unclear whether different RLCK VII members act specifically or redundantly in immune signaling. Here, we constructed nine higher order mutants of this subfamily (named rlck vii-1 to rlck vii-9) and systematically characterized their immune phenotypes. The mutants rlck vii-5, -7, and -8 had compromised reactive oxygen species production in response to all patterns tested, indicating that the corresponding members are broadly required for the signaling of multiple PRRs. However, rlck vii-4 was defective specifically in chitin-induced reactive oxygen species production, suggesting that RCLK VII-4 members mediate the signaling of specific PRRs. Furthermore, RLCK VII-4 members were required for the chitin-triggered activation of MAPK, demonstrating that these kinases link a PRR to MAPK activation. Moreover, we found that RLCK VII-6 and -8 also were required for RK-mediated root growth. Together, these results show that numerous RLCK VII members are involved in pattern-triggered immune signaling and uncover both common and specific roles of these kinases in plant development and immunity mediated by various RKs.
Collapse
Affiliation(s)
- Shaofei Rao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Zhaoyang Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Pei Miao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Guozhi Bi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Man Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Ying Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Feng Feng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Xiaojuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| |
Collapse
|
29
|
Samad AFA, Nazaruddin N, Murad AMA, Jani J, Zainal Z, Ismail I. Deep sequencing and in silico analysis of small RNA library reveals novel miRNA from leaf Persicaria minor transcriptome. 3 Biotech 2018; 8:136. [PMID: 29479512 DOI: 10.1007/s13205-018-1164-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 02/08/2018] [Indexed: 01/25/2023] Open
Abstract
In current era, majority of microRNA (miRNA) are being discovered through computational approaches which are more confined towards model plants. Here, for the first time, we have described the identification and characterization of novel miRNA in a non-model plant, Persicaria minor (P. minor) using computational approach. Unannotated sequences from deep sequencing were analyzed based on previous well-established parameters. Around 24 putative novel miRNAs were identified from 6,417,780 reads of the unannotated sequence which represented 11 unique putative miRNA sequences. PsRobot target prediction tool was deployed to identify the target transcripts of putative novel miRNAs. Most of the predicted target transcripts (mRNAs) were known to be involved in plant development and stress responses. Gene ontology showed that majority of the putative novel miRNA targets involved in cellular component (69.07%), followed by molecular function (30.08%) and biological process (0.85%). Out of 11 unique putative miRNAs, 7 miRNAs were validated through semi-quantitative PCR. These novel miRNAs discoveries in P. minor may develop and update the current public miRNA database.
Collapse
Affiliation(s)
- Abdul Fatah A Samad
- 1School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - Nazaruddin Nazaruddin
- 1School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
- 3Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Syiah Kuala, Darussalam, Banda Aceh, 23111 Indonesia
| | - Abdul Munir Abdul Murad
- 1School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - Jaeyres Jani
- BioEasy Sdn. Bhd. and ScienceVision Sdn. Bhd., Setia Alam, Seksyen U13, 40170 Shah Alam, Selangor Malaysia
| | - Zamri Zainal
- 1School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
- 2Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - Ismanizan Ismail
- 1School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
- 2Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| |
Collapse
|
30
|
Arafa RA, Rakha MT, Soliman NEK, Moussa OM, Kamel SM, Shirasawa K. Rapid identification of candidate genes for resistance to tomato late blight disease using next-generation sequencing technologies. PLoS One 2017; 12:e0189951. [PMID: 29253902 PMCID: PMC5734779 DOI: 10.1371/journal.pone.0189951] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/05/2017] [Indexed: 11/19/2022] Open
Abstract
Tomato late blight caused by Phytophthora infestans (Mont.) de Bary, also known as the Irish famine pathogen, is one of the most destructive plant diseases. Wild relatives of tomato possess useful resistance genes against this disease, and could therefore be used in breeding to improve cultivated varieties. In the genome of a wild relative of tomato, Solanum habrochaites accession LA1777, we identified a new quantitative trait locus for resistance against blight caused by an aggressive Egyptian isolate of P. infestans. Using double-digest restriction site-associated DNA sequencing (ddRAD-Seq) technology, we determined 6,514 genome-wide SNP genotypes of an F2 population derived from an interspecific cross. Subsequent association analysis of genotypes and phenotypes of the mapping population revealed that a 6.8 Mb genome region on chromosome 6 was a candidate locus for disease resistance. Whole-genome resequencing analysis revealed that 298 genes in this region potentially had functional differences between the parental lines. Among of them, two genes with missense mutations, Solyc06g071810.1 and Solyc06g083640.3, were considered to be potential candidates for disease resistance. SNP and SSR markers linking to this region can be used in marker-assisted selection in future breeding programs for late blight disease, including introgression of new genetic loci from wild species. In addition, the approach developed in this study provides a model for identification of other genes for attractive agronomical traits.
Collapse
Affiliation(s)
- Ramadan A. Arafa
- Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Mohamed T. Rakha
- Department of Horticulture, Faculty of Agriculture, University of Kafrelsheikh, Kafr El-Sheikh, Egypt
| | - Nour Elden K. Soliman
- Department of Plant Pathology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Olfat M. Moussa
- Department of Plant Pathology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Said M. Kamel
- Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Kenta Shirasawa
- Department of Frontier Science, Kazusa DNA Research Institute, Chiba, Japan
| |
Collapse
|
31
|
Yu X, Feng B, He P, Shan L. From Chaos to Harmony: Responses and Signaling upon Microbial Pattern Recognition. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:109-137. [PMID: 28525309 PMCID: PMC6240913 DOI: 10.1146/annurev-phyto-080516-035649] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs) are detected as nonself by host pattern recognition receptors (PRRs) and activate pattern-triggered immunity (PTI). Microbial invasions often trigger the production of host-derived endogenous signals referred to as danger- or damage-associated molecular patterns (DAMPs), which are also perceived by PRRs to modulate PTI responses. Collectively, PTI contributes to host defense against infections by a broad range of pathogens. Remarkable progress has been made toward demonstrating the cellular and physiological responses upon pattern recognition, elucidating the molecular, biochemical, and genetic mechanisms of PRR activation, and dissecting the complex signaling networks that orchestrate PTI responses. In this review, we present an update on the current understanding of how plants recognize and respond to nonself patterns, a process from which the seemingly chaotic responses form into a harmonic defense.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Plant Pathology and Microbiology and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843;
| | - Baomin Feng
- Department of Biochemistry and Biophysics and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | - Ping He
- Department of Biochemistry and Biophysics and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | - Libo Shan
- Department of Plant Pathology and Microbiology and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843;
| |
Collapse
|
32
|
Michelmore R, Coaker G, Bart R, Beattie G, Bent A, Bruce T, Cameron D, Dangl J, Dinesh-Kumar S, Edwards R, Eves-van den Akker S, Gassmann W, Greenberg JT, Hanley-Bowdoin L, Harrison RJ, Harvey J, He P, Huffaker A, Hulbert S, Innes R, Jones JDG, Kaloshian I, Kamoun S, Katagiri F, Leach J, Ma W, McDowell J, Medford J, Meyers B, Nelson R, Oliver R, Qi Y, Saunders D, Shaw M, Smart C, Subudhi P, Torrance L, Tyler B, Valent B, Walsh J. Foundational and Translational Research Opportunities to Improve Plant Health. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:515-516. [PMID: 28398839 PMCID: PMC5810936 DOI: 10.1094/mpmi-01-17-0010-cr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Reader Comments | Submit a Comment The white paper reports the deliberations of a workshop focused on biotic challenges to plant health held in Washington, D.C. in September 2016. Ensuring health of food plants is critical to maintaining the quality and productivity of crops and for sustenance of the rapidly growing human population. There is a close linkage between food security and societal stability; however, global food security is threatened by the vulnerability of our agricultural systems to numerous pests, pathogens, weeds, and environmental stresses. These threats are aggravated by climate change, the globalization of agriculture, and an over-reliance on nonsustainable inputs. New analytical and computational technologies are providing unprecedented resolution at a variety of molecular, cellular, organismal, and population scales for crop plants as well as pathogens, pests, beneficial microbes, and weeds. It is now possible to both characterize useful or deleterious variation as well as precisely manipulate it. Data-driven, informed decisions based on knowledge of the variation of biotic challenges and of natural and synthetic variation in crop plants will enable deployment of durable interventions throughout the world. These should be integral, dynamic components of agricultural strategies for sustainable agriculture.
Collapse
Affiliation(s)
- Richard Michelmore
- 1 The Genome Center and Departments of Plant Sciences, Molecular & Cellular Biology, and Medical Microbiology & Immunology, University of California, Davis, CA, U.S.A
| | - Gitta Coaker
- 2 Department of Plant Pathology, University of California, Davis, CA, U.S.A
| | | | | | - Andrew Bent
- 5 University of Wisconsin, Madison, WI, U.S.A
| | | | | | - Jeffery Dangl
- 8 University of North Carolina, Chapel Hill, NC, U.S.A
| | | | - Rob Edwards
- 10 University of Newcastle, Newcastle upon Tyne, U.K
| | | | | | | | | | | | | | - Ping He
- 17 Texas A&M University, College Station, TX, U.S.A
| | | | - Scot Hulbert
- 19 Washington State University, Pullman, WA, U.S.A
| | - Roger Innes
- 20 Indiana University, Bloomigton, IN, U.S.A
| | | | | | | | | | - Jan Leach
- 24 Colorado State University, Fort Collins, CO, U.S.A
| | - Wenbo Ma
- 22 University of California, Riverside, CA, U.S.A
| | | | | | | | | | | | - Yiping Qi
- 29 East Carolina University, Greenville, NC, U.S.A
| | | | | | | | | | - Lesley Torrance
- 33 University of St. Andrews and James Hutton Institute, Fife, U.K
| | - Bret Tyler
- 34 Oregon State University, Corvallis, OR, U.S.A.; and
| | | | - John Walsh
- 35 University of Warwick, Wellesbourne, U.K
| |
Collapse
|
33
|
Furlan G, Nakagami H, Eschen-Lippold L, Jiang X, Majovsky P, Kowarschik K, Hoehenwarter W, Lee J, Trujillo M. Changes in PUB22 Ubiquitination Modes Triggered by MITOGEN-ACTIVATED PROTEIN KINASE3 Dampen the Immune Response. THE PLANT CELL 2017; 29:726-745. [PMID: 28280093 PMCID: PMC5435422 DOI: 10.1105/tpc.16.00654] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 02/17/2017] [Accepted: 03/03/2017] [Indexed: 05/11/2023]
Abstract
Crosstalk between posttranslational modifications, such as ubiquitination and phosphorylation, play key roles in controlling the duration and intensity of signaling events to ensure cellular homeostasis. However, the molecular mechanisms underlying the regulation of negative feedback loops remain poorly understood. Here, we uncover a pathway in Arabidopsis thaliana by which a negative feedback loop involving the E3 ubiquitin ligase PUB22 that dampens the immune response is triggered by MITOGEN-ACTIVATED PROTEIN KINASE3 (MPK3), best known for its function in the activation of signaling. PUB22's stability is controlled by MPK3-mediated phosphorylation of residues localized in and adjacent to the E2 docking domain. We show that phosphorylation is critical for stabilization by inhibiting PUB22 oligomerization and, thus, autoubiquitination. The activity switch allows PUB22 to dampen the immune response. This regulatory mechanism also suggests that autoubiquitination, which is inherent to most single unit E3s in vitro, can function as a self-regulatory mechanism in vivo.
Collapse
Affiliation(s)
- Giulia Furlan
- Independent Junior Research Group-Ubiquitination in Immunity, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
- ScienceCampus Halle-Plant-Based Bioeconomy, D-06120 Halle (Saale), Germany
| | - Hirofumi Nakagami
- RIKEN Center for Sustainable Resource Science, Plant Proteomics Research Unit, Yokohama 230-0045, Japan
- Max-Planck-Institute for Plant Breeding Research, Protein Mass Spectrometry Service, Cologne 50829, Germany
| | - Lennart Eschen-Lippold
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Xiyuan Jiang
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Petra Majovsky
- Proteome Analytics, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Kathrin Kowarschik
- Independent Junior Research Group-Ubiquitination in Immunity, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
- ScienceCampus Halle-Plant-Based Bioeconomy, D-06120 Halle (Saale), Germany
| | - Wolfgang Hoehenwarter
- Proteome Analytics, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Justin Lee
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Marco Trujillo
- Independent Junior Research Group-Ubiquitination in Immunity, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
- ScienceCampus Halle-Plant-Based Bioeconomy, D-06120 Halle (Saale), Germany
| |
Collapse
|
34
|
Tang D, Wang G, Zhou JM. Receptor Kinases in Plant-Pathogen Interactions: More Than Pattern Recognition. THE PLANT CELL 2017; 29:618-637. [PMID: 28302675 PMCID: PMC5435430 DOI: 10.1105/tpc.16.00891] [Citation(s) in RCA: 436] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/17/2017] [Accepted: 03/16/2017] [Indexed: 05/18/2023]
Abstract
Receptor-like kinases (RLKs) and Receptor-like proteins (RLPs) play crucial roles in plant immunity, growth, and development. Plants deploy a large number of RLKs and RLPs as pattern recognition receptors (PRRs) that detect microbe- and host-derived molecular patterns as the first layer of inducible defense. Recent advances have uncovered novel PRRs, their corresponding ligands, and mechanisms underlying PRR activation and signaling. In general, PRRs associate with other RLKs and function as part of multiprotein immune complexes at the cell surface. Innovative strategies have emerged for the rapid identification of microbial patterns and their cognate PRRs. Successful pathogens can evade or block host recognition by secreting effector proteins to "hide" microbial patterns or inhibit PRR-mediated signaling. Furthermore, newly identified pathogen effectors have been shown to manipulate RLKs controlling growth and development by mimicking peptide hormones of host plants. The ongoing studies illustrate the importance of diverse plant RLKs in plant disease resistance and microbial pathogenesis.
Collapse
Affiliation(s)
- Dingzhong Tang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guoxun Wang
- The State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Min Zhou
- The State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
35
|
Kimura S, Waszczak C, Hunter K, Wrzaczek M. Bound by Fate: The Role of Reactive Oxygen Species in Receptor-Like Kinase Signaling. THE PLANT CELL 2017; 29:638-654. [PMID: 28373519 PMCID: PMC5435433 DOI: 10.1105/tpc.16.00947] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/08/2017] [Accepted: 03/29/2017] [Indexed: 05/19/2023]
Abstract
In plants, receptor-like kinases (RLKs) and extracellular reactive oxygen species (ROS) contribute to the communication between the environment and the interior of the cell. Apoplastic ROS production is a frequent result of RLK signaling in a multitude of cellular processes; thus, by their nature, these two signaling components are inherently linked. However, it is as yet unclear how ROS signaling downstream of receptor activation is executed. In this review, we provide a broad view of the intricate connections between RLKs and ROS signaling and describe the regulatory events that control and coordinate extracellular ROS production. We propose that concurrent initiation of ROS-dependent and -independent signaling linked to RLKs might be a critical element in establishing cellular responses. Furthermore, we discuss the possible ROS sensing mechanisms in the context of the biochemical environment in the apoplast. We suggest that RLK-dependent modulation of apoplastic and intracellular conditions facilitates ROS perception and signaling. Based on data from plant and animal models, we argue that specific RLKs could be components of the ROS sensing machinery or ROS sensors. The importance of the crosstalk between RLK and ROS signaling is discussed in the context of stomatal immunity. Finally, we highlight challenges in the understanding of these signaling processes and provide perspectives for future research.
Collapse
Affiliation(s)
- Sachie Kimura
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland
| | - Cezary Waszczak
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland
| | - Kerri Hunter
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland
| | - Michael Wrzaczek
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
36
|
Li Y, Ruperao P, Batley J, Edwards D, Davidson J, Hobson K, Sutton T. Genome Analysis Identified Novel Candidate Genes for Ascochyta Blight Resistance in Chickpea Using Whole Genome Re-sequencing Data. FRONTIERS IN PLANT SCIENCE 2017; 8:359. [PMID: 28367154 PMCID: PMC5355423 DOI: 10.3389/fpls.2017.00359] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/01/2017] [Indexed: 05/19/2023]
Abstract
Ascochyta blight (AB) is a fungal disease that can significantly reduce chickpea production in Australia and other regions of the world. In this study, 69 chickpea genotypes were sequenced using whole genome re-sequencing (WGRS) methods. They included 48 Australian varieties differing in their resistance ranking to AB, 16 advanced breeding lines from the Australian chickpea breeding program, four landraces, and one accession representing the wild chickpea species Cicer reticulatum. More than 800,000 single nucleotide polymorphisms (SNPs) were identified. Population structure analysis revealed relatively narrow genetic diversity amongst recently released Australian varieties and two groups of varieties separated by the level of AB resistance. Several regions of the chickpea genome were under positive selection based on Tajima's D test. Both Fst genome- scan and genome-wide association studies (GWAS) identified a 100 kb region (AB4.1) on chromosome 4 that was significantly associated with AB resistance. The AB4.1 region co-located to a large QTL interval of 7 Mb∼30 Mb identified previously in three different mapping populations which were genotyped at relatively low density with SSR or SNP markers. The AB4.1 region was validated by GWAS in an additional collection of 132 advanced breeding lines from the Australian chickpea breeding program, genotyped with approximately 144,000 SNPs. The reduced level of nucleotide diversity and long extent of linkage disequilibrium also suggested the AB4.1 region may have gone through selective sweeps probably caused by selection of the AB resistance trait in breeding. In total, 12 predicted genes were located in the AB4.1 QTL region, including those annotated as: NBS-LRR receptor-like kinase, wall-associated kinase, zinc finger protein, and serine/threonine protein kinases. One significant SNP located in the conserved catalytic domain of a NBS-LRR receptor-like kinase led to amino acid substitution. Transcriptional analysis using qPCR showed that some predicted genes were significantly induced in resistant lines after inoculation compared to non-inoculated plants. This study demonstrates the power of combining WGRS data with relatively simple traits to rapidly develop "functional makers" for marker-assisted selection and genomic selection.
Collapse
Affiliation(s)
- Yongle Li
- School of Agriculture, Food and Wine, University of Adelaide, AdelaideSA, Australia
| | - Pradeep Ruperao
- School of Agriculture and Food Sciences, University of Queensland, BrisbaneQLD, Australia
| | - Jacqueline Batley
- School of Plant Biology and Institute of Agriculture, University of Western Australia, CrawleyWA, Australia
| | - David Edwards
- School of Plant Biology and Institute of Agriculture, University of Western Australia, CrawleyWA, Australia
| | - Jenny Davidson
- South Australian Research and Development Institute, UrrbraeSA, Australia
| | - Kristy Hobson
- New South Wales Department of Primary Industries, TamworthNSW, Australia
| | - Tim Sutton
- School of Agriculture, Food and Wine, University of Adelaide, AdelaideSA, Australia
- South Australian Research and Development Institute, UrrbraeSA, Australia
| |
Collapse
|
37
|
Yadeta KA, Elmore JM, Creer AY, Feng B, Franco JY, Rufian JS, He P, Phinney B, Coaker G. A Cysteine-Rich Protein Kinase Associates with a Membrane Immune Complex and the Cysteine Residues Are Required for Cell Death. PLANT PHYSIOLOGY 2017; 173:771-787. [PMID: 27852951 PMCID: PMC5210739 DOI: 10.1104/pp.16.01404] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/11/2016] [Indexed: 05/19/2023]
Abstract
Membrane-localized proteins perceive and respond to biotic and abiotic stresses. We performed quantitative proteomics on plasma membrane-enriched samples from Arabidopsis (Arabidopsis thaliana) treated with bacterial flagellin. We identified multiple receptor-like protein kinases changing in abundance, including cysteine (Cys)-rich receptor-like kinases (CRKs) that are up-regulated upon the perception of flagellin. CRKs possess extracellular Cys-rich domains and constitute a gene family consisting of 46 members in Arabidopsis. The single transfer DNA insertion lines CRK28 and CRK29, two CRKs induced in response to flagellin perception, did not exhibit robust alterations in immune responses. In contrast, silencing of multiple bacterial flagellin-induced CRKs resulted in enhanced susceptibility to pathogenic Pseudomonas syringae, indicating functional redundancy in this large gene family. Enhanced expression of CRK28 in Arabidopsis increased disease resistance to P. syringae Expression of CRK28 in Nicotiana benthamiana induced cell death, which required intact extracellular Cys residues and a conserved kinase active site. CRK28-mediated cell death required the common receptor-like protein kinase coreceptor BAK1. CRK28 associated with BAK1 as well as the activated FLAGELLIN-SENSING2 (FLS2) immune receptor complex. CRK28 self-associated as well as associated with the closely related CRK29. These data support a model where Arabidopsis CRKs are synthesized upon pathogen perception, associate with the FLS2 complex, and coordinately act to enhance plant immune responses.
Collapse
Affiliation(s)
- Koste A Yadeta
- Department of Plant Pathology (K.A.Y., J.M.E., A.Y.C., J.Y.F., G.C., J.S.R.) and Genome Center Proteomics Core Facility (B.P.), University of California, Davis, California 95616; and
- Department of Biochemistry and Biophysics and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843 (B.F.)
| | - James M Elmore
- Department of Plant Pathology (K.A.Y., J.M.E., A.Y.C., J.Y.F., G.C., J.S.R.) and Genome Center Proteomics Core Facility (B.P.), University of California, Davis, California 95616; and
- Department of Biochemistry and Biophysics and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843 (B.F.)
| | - Athena Y Creer
- Department of Plant Pathology (K.A.Y., J.M.E., A.Y.C., J.Y.F., G.C., J.S.R.) and Genome Center Proteomics Core Facility (B.P.), University of California, Davis, California 95616; and
- Department of Biochemistry and Biophysics and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843 (B.F.)
| | - Baomin Feng
- Department of Plant Pathology (K.A.Y., J.M.E., A.Y.C., J.Y.F., G.C., J.S.R.) and Genome Center Proteomics Core Facility (B.P.), University of California, Davis, California 95616; and
- Department of Biochemistry and Biophysics and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843 (B.F.)
| | - Jessica Y Franco
- Department of Plant Pathology (K.A.Y., J.M.E., A.Y.C., J.Y.F., G.C., J.S.R.) and Genome Center Proteomics Core Facility (B.P.), University of California, Davis, California 95616; and
- Department of Biochemistry and Biophysics and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843 (B.F.)
| | - Jose Sebastian Rufian
- Department of Plant Pathology (K.A.Y., J.M.E., A.Y.C., J.Y.F., G.C., J.S.R.) and Genome Center Proteomics Core Facility (B.P.), University of California, Davis, California 95616; and
- Department of Biochemistry and Biophysics and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843 (B.F.)
| | - Ping He
- Department of Plant Pathology (K.A.Y., J.M.E., A.Y.C., J.Y.F., G.C., J.S.R.) and Genome Center Proteomics Core Facility (B.P.), University of California, Davis, California 95616; and
- Department of Biochemistry and Biophysics and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843 (B.F.)
| | - Brett Phinney
- Department of Plant Pathology (K.A.Y., J.M.E., A.Y.C., J.Y.F., G.C., J.S.R.) and Genome Center Proteomics Core Facility (B.P.), University of California, Davis, California 95616; and
- Department of Biochemistry and Biophysics and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843 (B.F.)
| | - Gitta Coaker
- Department of Plant Pathology (K.A.Y., J.M.E., A.Y.C., J.Y.F., G.C., J.S.R.) and Genome Center Proteomics Core Facility (B.P.), University of California, Davis, California 95616; and
- Department of Biochemistry and Biophysics and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843 (B.F.)
| |
Collapse
|
38
|
Xing S, Wallmeroth N, Berendzen KW, Grefen C. Techniques for the Analysis of Protein-Protein Interactions in Vivo. PLANT PHYSIOLOGY 2016; 171:727-58. [PMID: 27208310 PMCID: PMC4902627 DOI: 10.1104/pp.16.00470] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/19/2016] [Indexed: 05/20/2023]
Abstract
Identifying key players and their interactions is fundamental for understanding biochemical mechanisms at the molecular level. The ever-increasing number of alternative ways to detect protein-protein interactions (PPIs) speaks volumes about the creativity of scientists in hunting for the optimal technique. PPIs derived from single experiments or high-throughput screens enable the decoding of binary interactions, the building of large-scale interaction maps of single organisms, and the establishment of cross-species networks. This review provides a historical view of the development of PPI technology over the past three decades, particularly focusing on in vivo PPI techniques that are inexpensive to perform and/or easy to implement in a state-of-the-art molecular biology laboratory. Special emphasis is given to their feasibility and application for plant biology as well as recent improvements or additions to these established techniques. The biology behind each method and its advantages and disadvantages are discussed in detail, as are the design, execution, and evaluation of PPI analysis. We also aim to raise awareness about the technological considerations and the inherent flaws of these methods, which may have an impact on the biological interpretation of PPIs. Ultimately, we hope this review serves as a useful reference when choosing the most suitable PPI technique.
Collapse
Affiliation(s)
- Shuping Xing
- University of Tübingen, ZMBP Developmental Genetics (S.X., N.W., C.G.) and ZMBP Central Facilities (K.W.B.), D-72076 Tuebingen, Germany
| | - Niklas Wallmeroth
- University of Tübingen, ZMBP Developmental Genetics (S.X., N.W., C.G.) and ZMBP Central Facilities (K.W.B.), D-72076 Tuebingen, Germany
| | - Kenneth W Berendzen
- University of Tübingen, ZMBP Developmental Genetics (S.X., N.W., C.G.) and ZMBP Central Facilities (K.W.B.), D-72076 Tuebingen, Germany
| | - Christopher Grefen
- University of Tübingen, ZMBP Developmental Genetics (S.X., N.W., C.G.) and ZMBP Central Facilities (K.W.B.), D-72076 Tuebingen, Germany
| |
Collapse
|