1
|
Bekki S, Suetsugu K, Kobayashi K. Chlorophyll fluorescence responses to CO 2 availability reveal crassulacean acid metabolism in epiphytic orchids. JOURNAL OF PLANT RESEARCH 2024:10.1007/s10265-024-01608-2. [PMID: 39718758 DOI: 10.1007/s10265-024-01608-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024]
Abstract
Crassulacean acid metabolism (CAM), a specialized mode of photosynthetic carbon assimilation characterized by nocturnal fixation of atmospheric CO2 and vacuolar malic acid storage, is found in a wide variety of vascular plant species, mainly those inhabiting water-limited environments. Identifying and characterizing diverse CAM species enhances our understanding of the physiological, ecological, and evolutionary significance of CAM photosynthesis. In this study, we examined the effect of CO2 elimination on chlorophyll fluorescence-based photosynthetic parameters in two constitutive CAM Kalanchoe species and six orchids. In CAM-performing Kalanchoe species, the effective quantum yield of photosystem II showed no change in response to CO2 elimination during the daytime but decreased with CO2 elimination at dusk. We applied this method to reveal the photosynthetic mode of epiphytic orchids and found that Gastrochilus japonicus, Oberonia japonica, and Bulbophyllum inconspicuum, but not B. drymoglossum, are constitutive CAM plants, which were also confirmed by malate determination. Our data propose a novel approach to identify and characterize CAM plants without labor-intensive experimental procedures. Although B. drymoglossum leaves had relatively high malate content, they did not depend on it to perform photosynthesis even under water-deficient or increased light conditions. Anatomical comparisons revealed a notable difference in leaf structure between B. drymoglossum and B. inconspicuum; B. drymoglossum leaves possess large water storage tissue internally, unlike B. inconspicuum leaves, which develop pseudobulbs. Our findings suggest different evolutionary adaptations to water deficit between closely related B. drymoglossum and B. inconspicuum.
Collapse
Affiliation(s)
- Sae Bekki
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan
- The Institute for Advanced Research, Kobe University, 1-1Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Koichi Kobayashi
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
- Faculty of Liberal Arts, Science and Global Education, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
2
|
Dang T, Piro L, Pasini C, Santelia D. Starch metabolism in guard cells: At the intersection of environmental stimuli and stomatal movement. PLANT PHYSIOLOGY 2024; 196:1758-1777. [PMID: 39115378 PMCID: PMC11531838 DOI: 10.1093/plphys/kiae414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/19/2024] [Indexed: 11/05/2024]
Abstract
Starch metabolism in guard cells plays a central role in regulating stomatal movement in response to light, elevated ambient CO2 and potentially other abiotic and biotic factors. Here, we discuss how various guard cell signal transduction pathways converge to promote rearrangements in guard cell starch metabolism for efficient stomatal responses, an essential physiological process that sustains plant productivity and stress tolerance. We suggest manipulation of guard cell starch dynamics as a previously overlooked strategy to improve stomatal behavior under changing environmental conditions.
Collapse
Affiliation(s)
- Trang Dang
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Lucia Piro
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Carlo Pasini
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Diana Santelia
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
3
|
McElwain JC, Matthaeus WJ, Barbosa C, Chondrogiannis C, O' Dea K, Jackson B, Knetge AB, Kwasniewska K, Nair R, White JD, Wilson JP, Montañez IP, Buckley YM, Belcher CM, Nogué S. Functional traits of fossil plants. THE NEW PHYTOLOGIST 2024; 242:392-423. [PMID: 38409806 DOI: 10.1111/nph.19622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/19/2023] [Indexed: 02/28/2024]
Abstract
A minuscule fraction of the Earth's paleobiological diversity is preserved in the geological record as fossils. What plant remnants have withstood taphonomic filtering, fragmentation, and alteration in their journey to become part of the fossil record provide unique information on how plants functioned in paleo-ecosystems through their traits. Plant traits are measurable morphological, anatomical, physiological, biochemical, or phenological characteristics that potentially affect their environment and fitness. Here, we review the rich literature of paleobotany, through the lens of contemporary trait-based ecology, to evaluate which well-established extant plant traits hold the greatest promise for application to fossils. In particular, we focus on fossil plant functional traits, those measurable properties of leaf, stem, reproductive, or whole plant fossils that offer insights into the functioning of the plant when alive. The limitations of a trait-based approach in paleobotany are considerable. However, in our critical assessment of over 30 extant traits we present an initial, semi-quantitative ranking of 26 paleo-functional traits based on taphonomic and methodological criteria on the potential of those traits to impact Earth system processes, and for that impact to be quantifiable. We demonstrate how valuable inferences on paleo-ecosystem processes (pollination biology, herbivory), past nutrient cycles, paleobiogeography, paleo-demography (life history), and Earth system history can be derived through the application of paleo-functional traits to fossil plants.
Collapse
Affiliation(s)
- Jennifer C McElwain
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - William J Matthaeus
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Catarina Barbosa
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | | | - Katie O' Dea
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Bea Jackson
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Antonietta B Knetge
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Kamila Kwasniewska
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Richard Nair
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Joseph D White
- Department of Biology, Baylor University, Waco, 76798-7388, TX, USA
| | - Jonathan P Wilson
- Department of Environmental Studies, Haverford College, Haverford, Pennsylvania, 19041, PA, USA
| | - Isabel P Montañez
- UC Davis Institute of the Environment, University of California, Davis, CA, 95616, USA
- Department of Earth and Planetary Sciences, University of California, Davis, CA, 95616, USA
| | - Yvonne M Buckley
- School of Natural Sciences, Zoology, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | | | - Sandra Nogué
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193, Catalonia, Spain
- CREAF, Bellaterra (Cerdanyola del Vallès), 08193, Catalonia, Spain
| |
Collapse
|
4
|
Ludwig M, Hartwell J, Raines CA, Simkin AJ. The Calvin-Benson-Bassham cycle in C 4 and Crassulacean acid metabolism species. Semin Cell Dev Biol 2024; 155:10-22. [PMID: 37544777 DOI: 10.1016/j.semcdb.2023.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/03/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
The Calvin-Benson-Bassham (CBB) cycle is the ancestral CO2 assimilation pathway and is found in all photosynthetic organisms. Biochemical extensions to the CBB cycle have evolved that allow the resulting pathways to act as CO2 concentrating mechanisms, either spatially in the case of C4 photosynthesis or temporally in the case of Crassulacean acid metabolism (CAM). While the biochemical steps in the C4 and CAM pathways are known, questions remain on their integration and regulation with CBB cycle activity. The application of omic and transgenic technologies is providing a more complete understanding of the biochemistry of C4 and CAM species and will also provide insight into the CBB cycle in these plants. As the global population increases, new solutions are required to increase crop yields and meet demands for food and other bioproducts. Previous work in C3 species has shown that increasing carbon assimilation through genetic manipulation of the CBB cycle can increase biomass and yield. There may also be options to improve photosynthesis in species using C4 photosynthesis and CAM through manipulation of the CBB cycle in these plants. This is an underexplored strategy and requires more basic knowledge of CBB cycle operation in these species to enable approaches for increased productivity.
Collapse
Affiliation(s)
- Martha Ludwig
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia.
| | - James Hartwell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | | | - Andrew J Simkin
- University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK; School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| |
Collapse
|
5
|
Chang H, Chen YT, Huang HE, Ger MJ. Overexpressing plant ferredoxin-like protein enhances photosynthetic efficiency and carbohydrates accumulation in Phalaenopsis. Transgenic Res 2023; 32:547-560. [PMID: 37851307 DOI: 10.1007/s11248-023-00370-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
Crassulacean acid metabolism (CAM) is one of three major models of carbon dioxide assimilation pathway with better water-use efficiency and slower photosynthetic efficiency in photosynthesis. Previous studies indicated that the gene of sweet pepper plant ferredoxin-like protein (PFLP) shows high homology to the ferredoxin-1(Fd-1) family that belongs to photosynthetic type Fd and involves in photosystem I. It is speculated that overexpressing pflp in the transgenic plant may enhance photosynthetic efficiency through the electron transport chain (ETC). To reveal the function of PFLP in photosynthetic efficiency, pflp transgenic Phalaenopsis, a CAM plant, was generated to analyze photosynthetic markers. Transgenic plants exhibited 1.2-folds of electron transport rate than that of wild type (WT), and higher CO2 assimilation rates up to 1.6 and 1.5-folds samples at 4 pm and 10 pm respectively. Enzyme activity of phosphoenolpyruvate carboxylase (PEPC) was increased to 5.9-folds in Phase III, and NAD+-linked malic enzyme (NAD+-ME) activity increased 1.4-folds in Phase IV in transgenic plants. The photosynthesis products were analyzed between transgenic plants and WT. Soluble sugars contents such as glucose, fructose, and sucrose were found to significantly increase to 1.2, 1.8, and 1.3-folds higher in transgenic plants. The starch grains were also accumulated up to 1.4-folds in transgenic plants than that of WT. These results indicated that overexpressing pflp in transgenic plants increases carbohydrates accumulation by enhancing electron transport flow during photosynthesis. This is the first evidence for the PFLP function in CAM plants. Taken altogether, we suggest that pflp is an applicable gene for agriculture application that enhances electron transport chain efficiency during photosynthesis.
Collapse
Affiliation(s)
- Hsiang Chang
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, 30015, Taiwan
| | - Yen-Ting Chen
- Institute of Biotechnology, National University of Kaohsiung, Kaohsiung, 81148, Taiwan
| | - Hsiang-En Huang
- Department of Life Sciences, National Taitung University, Taitung, 95002, Taiwan
| | - Mang-Jye Ger
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| |
Collapse
|
6
|
Chomthong M, Griffiths H. Prospects and perspectives: inferring physiological and regulatory targets for CAM from molecular and modelling approaches. ANNALS OF BOTANY 2023; 132:583-596. [PMID: 37742290 PMCID: PMC10799989 DOI: 10.1093/aob/mcad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND AND SCOPE This review summarizes recent advances in our understanding of Crassulacean Acid Metabolism (CAM) by integrating evolutionary, ecological, physiological, metabolic and molecular perspectives. A number of key control loops which moderate the expression of CAM phases, and their metabolic and molecular control, are explored. These include nocturnal stomatal opening, activation of phosphoenolpyruvate carboxylase by a specific protein kinase, interactions with circadian clock control, as well as daytime decarboxylation and activation of Rubisco. The vacuolar storage and release of malic acid and the interplay between the supply and demand for carbohydrate reserves are also key metabolic control points. FUTURE OPPORTUNITIES We identify open questions and opportunities, with experimentation informed by top-down molecular modelling approaches allied with bottom-up mechanistic modelling systems. For example, mining transcriptomic datasets using high-speed systems approaches will help to identify targets for future genetic manipulation experiments to define the regulation of CAM (whether circadian or metabolic control). We emphasize that inferences arising from computational approaches or advanced nuclear sequencing techniques can identify potential genes and transcription factors as regulatory targets. However, these outputs then require systematic evaluation, using genetic manipulation in key model organisms over a developmental progression, combining gene silencing and metabolic flux analysis and modelling to define functionality across the CAM day-night cycle. From an evolutionary perspective, the origins and function of CAM succulents and responses to water deficits are set against the mesophyll and hydraulic limitations imposed by cell and tissue succulence in contrasting morphological lineages. We highlight the interplay between traits across shoots (3D vein density, mesophyll conductance and cell shrinkage) and roots (xylem embolism and segmentation). Thus, molecular, biophysical and biochemical processes help to curtail water losses and exploit rapid rehydration during restorative rain events. In the face of a changing climate, we hope such approaches will stimulate opportunities for future research.
Collapse
Affiliation(s)
- Methawi Chomthong
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| |
Collapse
|
7
|
Sage RF, Gilman IS, Smith JAC, Silvera K, Edwards EJ. Atmospheric CO2 decline and the timing of CAM plant evolution. ANNALS OF BOTANY 2023; 132:753-770. [PMID: 37642245 PMCID: PMC10799994 DOI: 10.1093/aob/mcad122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND AND AIMS CAM photosynthesis is hypothesized to have evolved in atmospheres of low CO2 concentration in recent geological time because of its ability to concentrate CO2 around Rubisco and boost water use efficiency relative to C3 photosynthesis. We assess this hypothesis by compiling estimates of when CAM clades arose using phylogenetic chronograms for 73 CAM clades. We further consider evidence of how atmospheric CO2 affects CAM relative to C3 photosynthesis. RESULTS Where CAM origins can be inferred, strong CAM is estimated to have appeared in the past 30 million years in 46 of 48 examined clades, after atmospheric CO2 had declined from high (near 800 ppm) to lower (<450 ppm) values. In turn, 21 of 25 clades containing CAM species (but where CAM origins are less certain) also arose in the past 30 million years. In these clades, CAM is probably younger than the clade origin. We found evidence for repeated weak CAM evolution during the higher CO2 conditions before 30 million years ago, and possible strong CAM origins in the Crassulaceae during the Cretaceous period prior to atmospheric CO2 decline. Most CAM-specific clades arose in the past 15 million years, in a similar pattern observed for origins of C4 clades. CONCLUSIONS The evidence indicates strong CAM repeatedly evolved in reduced CO2 conditions of the past 30 million years. Weaker CAM can pre-date low CO2 and, in the Crassulaceae, strong CAM may also have arisen in water-limited microsites under relatively high CO2. Experimental evidence from extant CAM species demonstrates that elevated CO2 reduces the importance of nocturnal CO2 fixation by increasing the contribution of C3 photosynthesis to daily carbon gain. Thus, the advantage of strong CAM would be reduced in high CO2, such that its evolution appears less likely and restricted to more extreme environments than possible in low CO2.
Collapse
Affiliation(s)
- Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Ian S Gilman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - J Andrew C Smith
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Katia Silvera
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
8
|
Hurtado-Castano N, Atkins E, Barnes J, Boxall SF, Dever LV, Kneřová J, Hartwell J, Cushman JC, Borland AM. The starch-deficient plastidic PHOSPHOGLUCOMUTASE mutant of the constitutive crassulacean acid metabolism (CAM) species Kalanchoë fedtschenkoi impacts diel regulation and timing of stomatal CO2 responsiveness. ANNALS OF BOTANY 2023; 132:881-894. [PMID: 36661206 PMCID: PMC10799981 DOI: 10.1093/aob/mcad017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIMS Crassulacean acid metabolism (CAM) is a specialized type of photosynthesis characterized by a diel pattern of stomatal opening at night and closure during the day, which increases water-use efficiency. Starch degradation is a key regulator of CAM, providing phosphoenolpyruvate as a substrate in the mesophyll for nocturnal assimilation of CO2. Growing recognition of a key role for starch degradation in C3 photosynthesis guard cells for mediating daytime stomatal opening presents the possibility that starch degradation might also impact CAM by regulating the provision of energy and osmolytes to increase guard cell turgor and drive stomatal opening at night. In this study, we tested the hypothesis that the timing of diel starch turnover in CAM guard cells has been reprogrammed during evolution to enable nocturnal stomatal opening and daytime closure. METHODS Biochemical and genetic characterization of wild-type and starch-deficient RNAi lines of Kalanchoë fedtschenkoi with reduced activity of plastidic phosphoglucomutase (PGM) constituted a preliminary approach for the understanding of starch metabolism and its implications for stomatal regulation in CAM plants. KEY RESULTS Starch deficiency reduced nocturnal net CO2 uptake but had negligible impact on nocturnal stomatal opening. In contrast, daytime stomatal closure was reduced in magnitude and duration in the starch-deficient rPGM RNAi lines, and their stomata were unable to remain closed in response to elevated concentrations of atmospheric CO2 administered during the day. Curtailed daytime stomatal closure was linked to higher soluble sugar contents in the epidermis and mesophyll. CONCLUSIONS Nocturnal stomatal opening is not reliant upon starch degradation, but starch biosynthesis is an important sink for carbohydrates, ensuring daytime stomatal closure in this CAM species.
Collapse
Affiliation(s)
- Natalia Hurtado-Castano
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Elliott Atkins
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Jerry Barnes
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Susanna F Boxall
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 72B, UK
| | - Louisa V Dever
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 72B, UK
| | - Jana Kneřová
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 72B, UK
| | - James Hartwell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 72B, UK
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557-0330, USA
| | - Anne M Borland
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| |
Collapse
|
9
|
Nguyen TBA, Lefoulon C, Nguyen TH, Blatt MR, Carroll W. Engineering stomata for enhanced carbon capture and water-use efficiency. TRENDS IN PLANT SCIENCE 2023; 28:1290-1309. [PMID: 37423785 DOI: 10.1016/j.tplants.2023.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 07/11/2023]
Abstract
Stomatal pores facilitate gaseous exchange between the inner air spaces of the leaf and the atmosphere. As gatekeepers that balance CO2 entry for photosynthesis against transpirational water loss, they are a focal point for efforts to improve crop performance, especially in the efficiency of water use, within the changing global environment. Until recently, engineering strategies had focused on stomatal conductance in the steady state. These strategies are limited by the physical constraints of CO2 and water exchange such that gains in water-use efficiency (WUE) commonly come at a cost in carbon assimilation. Attention to stomatal speed and responsiveness circumvents these constraints and offers alternatives to enhancing WUE that also promise increases in carbon assimilation in the field.
Collapse
Affiliation(s)
- Thu Binh-Anh Nguyen
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Cecile Lefoulon
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Thanh-Hao Nguyen
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - William Carroll
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
10
|
Pérez-López AV, Lim SD, Cushman JC. Tissue succulence in plants: Carrying water for climate change. JOURNAL OF PLANT PHYSIOLOGY 2023; 289:154081. [PMID: 37703768 DOI: 10.1016/j.jplph.2023.154081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023]
Abstract
Tissue succulence in plants involves the storage of water in one or more organs or tissues to assist in maintaining water potentials on daily or seasonal time scales. This drought-avoidance or drought-resistance strategy allows plants to occupy diverse environments including arid regions, regions with rocky soils, epiphytic habitats, and saline soils. Climate-resilient strategies are of increasing interest in the context of the global climate crisis, which is leading to hotter and drier conditions in many regions throughout the globe. Here, we describe a short history of succulent plants, the basic concepts of tissue succulence, the anatomical diversity of succulent morphologies and associated adaptive traits, the evolutionary, phylogenetic, and biogeographical diversity of succulent plants, extinction risks to succulents due to poaching from their natural environments, and the myriad uses and applications of economically important succulent species and the products derived from them. Lastly, we discuss current prospects for engineering tissue succulence to improve salinity and drought tolerance in crops.
Collapse
Affiliation(s)
- Arely V Pérez-López
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557-0330, USA.
| | - Sung Don Lim
- Department of Plant Life and Resource Science, Sangji University, Gangwon-do, 26339, South Korea.
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557-0330, USA.
| |
Collapse
|
11
|
Wang Y, Smith JAC, Zhu XG, Long SP. Rethinking the potential productivity of crassulacean acid metabolism by integrating metabolic dynamics with shoot architecture, using the example of Agave tequilana. THE NEW PHYTOLOGIST 2023; 239:2180-2196. [PMID: 37537720 DOI: 10.1111/nph.19128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/04/2023] [Indexed: 08/05/2023]
Abstract
Terrestrial CAM plants typically occur in hot semiarid regions, yet can show high crop productivity under favorable conditions. To achieve a more mechanistic understanding of CAM plant productivity, a biochemical model of diel metabolism was developed and integrated with 3-D shoot morphology to predict the energetics of light interception and photosynthetic carbon assimilation. Using Agave tequilana as an example, this biochemical model faithfully simulated the four diel phases of CO2 and metabolite dynamics during the CAM rhythm. After capturing the 3-D form over an 8-yr production cycle, a ray-tracing method allowed the prediction of the light microclimate across all photosynthetic surfaces. Integration with the biochemical model thereby enabled the simulation of plant and stand carbon uptake over daily and annual courses. The theoretical maximum energy conversion efficiency of Agave spp. is calculated at 0.045-0.049, up to 7% higher than for C3 photosynthesis. Actual light interception, and biochemical and anatomical limitations, reduced this to 0.0069, or 15.6 Mg ha-1 yr-1 dry mass annualized over an 8-yr cropping cycle, consistent with observation. This is comparable to the productivity of many C3 crops, demonstrating the potential of CAM plants in climates where little else may be grown while indicating strategies that could raise their productivity.
Collapse
Affiliation(s)
- Yu Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Dr., Urbana, IL, 61801, USA
| | - J Andrew C Smith
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Xin-Guang Zhu
- Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular, Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Stephen P Long
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Dr., Urbana, IL, 61801, USA
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
- Departments of Plant Biology and of Crop Sciences, University of Illinois at Urbana-Champaign, 505 South Goodwin Avenue, Urbana, IL, 61801, USA
| |
Collapse
|
12
|
Dopp IJ, Kalac K, Mackenzie SA. Hydrogen peroxide sensor HyPer7 illuminates tissue-specific plastid redox dynamics. PLANT PHYSIOLOGY 2023; 193:217-228. [PMID: 37226328 DOI: 10.1093/plphys/kiad307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/26/2023]
Abstract
The visualization of photosynthesis-derived reactive oxygen species has been experimentally limited to pH-sensitive probes, unspecific redox dyes, and whole-plant phenotyping. Recent emergence of probes that circumvent these limitations permits advanced experimental approaches to investigate in situ plastid redox properties. Despite growing evidence of heterogeneity in photosynthetic plastids, investigations have not addressed the potential for spatial variation in redox and/or reactive oxygen dynamics. To study the dynamics of H2O2 in distinct plastid types, we targeted the pH-insensitive, highly specific probe HyPer7 to the plastid stroma in Arabidopsis (Arabidopsis thaliana). Using HyPer7 and glutathione redox potential (EGSH) probe for redox-active green fluorescent protein 2 genetically fused to the redox enzyme human glutaredoxin-1 with live cell imaging and optical dissection of cell types, we report heterogeneities in H2O2 accumulation and redox buffering within distinct epidermal plastids in response to excess light and hormone application. Our observations suggest that plastid types can be differentiated by their physiological redox features. These data underscore the variation in photosynthetic plastid redox dynamics and demonstrate the need for cell-type-specific observations in future plastid phenotyping.
Collapse
Affiliation(s)
- Isaac J Dopp
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Plant Biology Graduate Program, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kylie Kalac
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sally A Mackenzie
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
13
|
Soto Acosta ME, Perea M, Ruiz AI, Hilal M, Albornoz PL, Isla MI. Adaptative Strategies in Gymnocalycium Species (Cactaceae) and the Presence of Ectomycorrhizae Associated with Survival in Arid Environments. PLANTS (BASEL, SWITZERLAND) 2023; 12:2774. [PMID: 37570927 PMCID: PMC10420829 DOI: 10.3390/plants12152774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023]
Abstract
The Cactaceae family makes use of different strategies, both physiological and biochemical, for anatomical adjustments that allow them to grow and reproduce in arid environments. Morphological studies of Gymnocalycium have been scarce, and the anatomy and phytochemistry are still largely unknown. The aim of the present work was to analyze the structural, physiological, and biochemical features of Gymnocalycium marianae and G. oenanthemum, two endemic species of arid regions in Argentina. The anatomic structure, biomass, and photosynthetic pigments, as well as phenolic compound contents, were analyzed in the stem, spine, and root of both species. G. marianae showed stems with deeper substomatal chambers and a more developed photosynthetic tissue than G. oenanthemum. The spines of G. oenanthemum showed higher biomass, thicker epidermal and subepidermal cell walls, and a higher content of phenolic compounds than those of G. marianae. Ectomycorrhizae were observed for the first time in roots in both species. Roots of G. marianae showed high colonization, biomass, and content of phenolic compounds. Both species showed abundant mucilaginous fibers in the stem and root. Finally, these results show the strategies associated with the survival in xeric environments of two cacti species at risk of extinction. They could be useful for the development of ex situ conservation programs.
Collapse
Affiliation(s)
- María E. Soto Acosta
- CEVIR and Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Av. Belgrano 300, San Fernando del Valle de Catamarca K4700CTK, Catamarca, Argentina; (M.E.S.A.); (M.P.)
- Instituto de Bioprospección y Fisiología Vegetal (IBIOFIV, UNT-CONICET), Facultad de Ciencias Naturales e IML, San Lorenzo 1469, San Miguel de Tucumán T4000CBG, Tucumán, Argentina
| | - Mario Perea
- CEVIR and Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Av. Belgrano 300, San Fernando del Valle de Catamarca K4700CTK, Catamarca, Argentina; (M.E.S.A.); (M.P.)
| | - Ana I. Ruiz
- Instituto de Morfología Vegetal, Fundación M. Lillo, Miguel Lillo 251, San Miguel de Tucumán T4000JFE, Tucumán, Argentina;
| | - Mirna Hilal
- CEVIR and Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Av. Belgrano 300, San Fernando del Valle de Catamarca K4700CTK, Catamarca, Argentina; (M.E.S.A.); (M.P.)
- Instituto de Bioprospección y Fisiología Vegetal (IBIOFIV, UNT-CONICET), Facultad de Ciencias Naturales e IML, San Lorenzo 1469, San Miguel de Tucumán T4000CBG, Tucumán, Argentina
| | - Patricia L. Albornoz
- Instituto de Morfología Vegetal, Fundación M. Lillo, Miguel Lillo 251, San Miguel de Tucumán T4000JFE, Tucumán, Argentina;
- Cátedra de Anatomía Vegetal, Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, San Miguel de Tucumán T4000JFE, Tucumán, Argentina
| | - María I. Isla
- Instituto de Bioprospección y Fisiología Vegetal (IBIOFIV, UNT-CONICET), Facultad de Ciencias Naturales e IML, San Lorenzo 1469, San Miguel de Tucumán T4000CBG, Tucumán, Argentina
| |
Collapse
|
14
|
Xu W, Jian S, Li J, Wang Y, Zhang M, Xia K. Genomic Identification of CCCH-Type Zinc Finger Protein Genes Reveals the Role of HuTZF3 in Tolerance of Heat and Salt Stress of Pitaya (Hylocereus polyrhizus). Int J Mol Sci 2023; 24:ijms24076359. [PMID: 37047333 PMCID: PMC10094633 DOI: 10.3390/ijms24076359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Pitaya (Hylocereus polyrhizus) is cultivated in a broad ecological range, due to its tolerance to drought, heat, and poor soil. The zinc finger proteins regulate gene expression at the transcriptional and post-transcriptional levels, by interacting with DNA, RNA, and proteins, to play roles in plant growth and development, and stress response. Here, a total of 81 CCCH-type zinc finger protein genes were identified from the pitaya genome. Transcriptomic analysis showed that nine of them, including HuTZF3, responded to both salt and heat stress. RT-qPCR results showed that HuTZF3 is expressed in all tested organs of pitaya, with a high level in the roots and stems, and confirmed that expression of HuTZF3 is induced by salt and heat stress. Subcellular localization showed that HuTZF3 is targeted in the processing bodies (PBs) and stress granules (SGs). Heterologous expression of HuTZF3 could improve both salt and heat tolerance in Arabidopsis, reduce oxidative stress, and improve the activity of catalase and peroxidase. Therefore, HuTZF3 may be involved in post-transcriptional regulation via localizing to PBs and SGs, contributing to both salt and heat tolerance in pitaya.
Collapse
Affiliation(s)
- Weijuan Xu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuguang Jian
- South China National Botanical Garden, Guangzhou 510650, China
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jianyi Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yusang Wang
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mingyong Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- Correspondence: (M.Z.); (K.X.); Tel./Fax: +86-20-37252891 (M.Z.)
| | - Kuaifei Xia
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- Correspondence: (M.Z.); (K.X.); Tel./Fax: +86-20-37252891 (M.Z.)
| |
Collapse
|
15
|
Grey KA, Foden WB, Midgley GF. Bioclimatic controls of CO2 assimilation near range limits of the CAM succulent tree Aloidendron dichotomum. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7434-7449. [PMID: 36066187 DOI: 10.1093/jxb/erac343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Aloidendron dichotomum appears to be undergoing the early stages of a range shift in response to anthropogenic climate change in south-western Africa. High mortality has been recorded in warmer populations, while population expansions have been recorded in cooler poleward parts of its range. This study aimed to determine the key environmental controls on A. dichotomum photosynthesis in areas of population expansion, to inform the potential attribution of directional population expansion to anthropogenic warming. Nocturnal acid accumulation and CO2 assimilation were measured in individuals growing under a range of temperature and watering treatments in a greenhouse experiment. In addition, nocturnal acid accumulation and phosphoenolpyruvate carboxylase activity were quantified in two wild populations at the most southerly and south-easterly range extents. Multiple lines of evidence confirmed that A. dichotomum performs Crassulacean acid metabolism. Total nocturnal acid accumulation was highest at night-time temperatures of ~21.5 °C, regardless of soil water availability, and night-time CO2 assimilation rates increased with leaf temperature, suggesting a causal link to the cool southern range limit. Leaf acidity at the start of the dark period was highly predictive of nocturnal acid accumulation in all individuals, implicating light availability during the day as an important determinant of nocturnal acid accumulation.
Collapse
Affiliation(s)
- Kerry-Anne Grey
- Global Change Biology Group, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
- School for Climate Studies, Stellenbosch University, Stellenbosch, South Africa
| | - Wendy B Foden
- Global Change Biology Group, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
- South African National Parks, Cape Town, South Africa
- Climate Change Specialist Group, Species Survival Commission, International Union for Conservation of Nature, Gland, Switzerland
| | - Guy F Midgley
- Global Change Biology Group, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
- School for Climate Studies, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
16
|
Heyduk K. Evolution of Crassulacean acid metabolism in response to the environment: past, present, and future. PLANT PHYSIOLOGY 2022; 190:19-30. [PMID: 35748752 PMCID: PMC9434201 DOI: 10.1093/plphys/kiac303] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Crassulacean acid metabolism (CAM) is a mode of photosynthesis that evolved in response to decreasing CO2 levels in the atmosphere some 20 million years ago. An elevated ratio of O2 relative to CO2 caused many plants to face increasing stress from photorespiration, a process exacerbated for plants living under high temperatures or in water-limited environments. Today, our climate is again rapidly changing and plants' ability to cope with and adapt to these novel environments is critical for their success. This review focuses on CAM plant responses to abiotic stressors likely to dominate in our changing climate: increasing CO2 levels, increasing temperatures, and greater variability in drought. Empirical studies that have assessed CAM responses are reviewed, though notably these are concentrated in relatively few CAM lineages. Other aspects of CAM biology, including the effects of abiotic stress on the light reactions and the role of leaf succulence, are also considered in the context of climate change. Finally, more recent studies using genomic techniques are discussed to link physiological changes in CAM plants with the underlying molecular mechanism. Together, the body of work reviewed suggests that CAM plants will continue to thrive in certain environments under elevated CO2. However, how CO2 interacts with other environmental factors, how those interactions affect CAM plants, and whether all CAM plants will be equally affected remain outstanding questions regarding the evolution of CAM on a changing planet.
Collapse
|
17
|
Reyna-Llorens I, Aubry S. As right as rain: deciphering drought-related metabolic flexibility in the C4-CAM Portulaca. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4615-4619. [PMID: 35950459 PMCID: PMC9366322 DOI: 10.1093/jxb/erac179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This article comments on: Ferrari RC, Kawabata AB, Ferreira SS, Hartwell J, Freschi L. 2022. A matter of time: regulatory events behind the synchronization of C4 and crassulacean acid metabolism gene expression in Portulaca oleracea. Journal of Experimental Botany 73,4867–4885.
Collapse
|
18
|
Toro-Tobón G, Alvarez-Flórez F, Mariño-Blanco HD, Melgarejo LM. Foliar Functional Traits of Resource Island-Forming Nurse Tree Species from a Semi-Arid Ecosystem of La Guajira, Colombia. PLANTS 2022; 11:plants11131723. [PMID: 35807675 PMCID: PMC9269082 DOI: 10.3390/plants11131723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 01/05/2023]
Abstract
Semi-arid environments characterized by low rainfall are subject to soil desertification processes. These environments have heterogeneous landscapes with patches of vegetation known as resource islands that are generated by nurse species that delay the desertification process because they increase the availability of water and nutrients in the soil. The study aimed to characterize some foliar physiological, biochemical, and anatomical traits of three nurse tree species that form resource islands in the semi-arid environment of La Guajira, Colombia, i.e., Haematoxylum brasiletto, Pithecellobium dulce, and Pereskia guamacho. The results showed that H. brasiletto and P. dulce have sclerophyllous strategies, are thin (0.2 and 0.23 mm, respectively), and have a high leaf dry matter content (364.8 and 437.47 mg/g). Moreover, both species have a high photochemical performance, reaching Fv/Fm values of 0.84 and 0.82 and PIABS values of 5.84 and 4.42, respectively. These results agree with the OJIP curves and JIP parameters. Both species had a compact leaf with a similar dorsiventral mesophyll. On the other hand, P. guamacho has a typical succulent, equifacial leaf with a 97.78% relative water content and 0.81 mm thickness. This species had the lowest Fv/Fm (0.73) and PIABS (1.16) values and OJIP curve but had the highest energy dissipation value (DIo/RC).
Collapse
|
19
|
Burgos A, Miranda E, Vilaprinyo E, Meza-Canales ID, Alves R. CAM Models: Lessons and Implications for CAM Evolution. FRONTIERS IN PLANT SCIENCE 2022; 13:893095. [PMID: 35812979 PMCID: PMC9260309 DOI: 10.3389/fpls.2022.893095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The evolution of Crassulacean acid metabolism (CAM) by plants has been one of the most successful strategies in response to aridity. On the onset of climate change, expanding the use of water efficient crops and engineering higher water use efficiency into C3 and C4 crops constitute a plausible solution for the problems of agriculture in hotter and drier environments. A firm understanding of CAM is thus crucial for the development of agricultural responses to climate change. Computational models on CAM can contribute significantly to this understanding. Two types of models have been used so far. Early CAM models based on ordinary differential equations (ODE) reproduced the typical diel CAM features with a minimal set of components and investigated endogenous day/night rhythmicity. This line of research brought to light the preponderant role of vacuolar malate accumulation in diel rhythms. A second wave of CAM models used flux balance analysis (FBA) to better understand the role of CO2 uptake in flux distribution. They showed that flux distributions resembling CAM metabolism emerge upon constraining CO2 uptake by the system. We discuss the evolutionary implications of this and also how CAM components from unrelated pathways could have integrated along evolution.
Collapse
Affiliation(s)
- Asdrubal Burgos
- Laboratorio de Biotecnología, CUCBA, Universidad de Guadalajara, Guadalajara, Mexico
| | - Enoc Miranda
- Laboratorio de Biotecnología, CUCBA, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ester Vilaprinyo
- Institute of Biomedical Research of Lleida, IRBLleida, Lleida, Spain
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | - Iván David Meza-Canales
- Departamento de Ecología Aplicada, CUCBA, Universidad de Guadalajara, Guadalajara, Mexico
- Unidad de Biología Molecular, Genómica y Proteómica, ITRANS-CUCEI, Universidad de Guadalajara, Guadalajara, Mexico
| | - Rui Alves
- Institute of Biomedical Research of Lleida, IRBLleida, Lleida, Spain
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| |
Collapse
|
20
|
Clark JW, Harris BJ, Hetherington AJ, Hurtado-Castano N, Brench RA, Casson S, Williams TA, Gray JE, Hetherington AM. The origin and evolution of stomata. Curr Biol 2022; 32:R539-R553. [PMID: 35671732 DOI: 10.1016/j.cub.2022.04.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The acquisition of stomata is one of the key innovations that led to the colonisation of the terrestrial environment by the earliest land plants. However, our understanding of the origin, evolution and the ancestral function of stomata is incomplete. Phylogenomic analyses indicate that, firstly, stomata are ancient structures, present in the common ancestor of land plants, prior to the divergence of bryophytes and tracheophytes and, secondly, there has been reductive stomatal evolution, especially in the bryophytes (with complete loss in the liverworts). From a review of the evidence, we conclude that the capacity of stomata to open and close in response to signals such as ABA, CO2 and light (hydroactive movement) is an ancestral state, is present in all lineages and likely predates the divergence of the bryophytes and tracheophytes. We reject the hypothesis that hydroactive movement was acquired with the emergence of the gymnosperms. We also conclude that the role of stomata in the earliest land plants was to optimise carbon gain per unit water loss. There remain many other unanswered questions concerning the evolution and especially the origin of stomata. To address these questions, it will be necessary to: find more fossils representing the earliest land plants, revisit the existing early land plant fossil record in the light of novel phylogenomic hypotheses and carry out more functional studies that include both tracheophytes and bryophytes.
Collapse
Affiliation(s)
- James W Clark
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK.
| | - Brogan J Harris
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Alexander J Hetherington
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Natalia Hurtado-Castano
- Plants, Photosynthesis and Soils, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Robert A Brench
- Plants, Photosynthesis and Soils, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Stuart Casson
- Plants, Photosynthesis and Soils, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Julie E Gray
- Plants, Photosynthesis and Soils, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Alistair M Hetherington
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
21
|
Delatorre-Castillo JP, Delatorre-Herrera J, Lay KS, Arenas-Charlín J, Sepúlveda-Soto I, Cardemil L, Ostria-Gallardo E. Preconditioning to Water Deficit Helps Aloe vera to Overcome Long-Term Drought during the Driest Season of Atacama Desert. PLANTS 2022; 11:plants11111523. [PMID: 35684295 PMCID: PMC9183172 DOI: 10.3390/plants11111523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
Throughout evolution, plants have developed different strategies of responses and adaptations that allow them to survive in different conditions of abiotic stress. Aloe vera (L.) Burm.f. is a succulent CAM plant that can grow in warm, semi-arid, and arid regions. Here, we tested the effects of preconditioning treatments of water availability (100, 50, and 25% of soil field capacity, FC) on the response of A. vera to prolonged drought growing in the hyper-arid core of the Atacama Desert. We studied leaf biomass, biochemical traits, and photosynthetic traits to assess, at different intervals of time, the effects of the preconditioning treatments on the response of A. vera to seven months of water deprivation. As expected, prolonged drought has deleterious effects on plant growth (a decrease of 55–65% in leaf thickness) and photosynthesis (a decrease of 54–62% in Emax). There were differences in the morphophysiological responses to drought depending on the preconditioning treatment, the 50% FC pretreatment being the threshold to better withstand prolonged drought. A diurnal increase in the concentration of malic acid (20–30 mg mg−1) in the points where the dark respiration increased was observed, from which it can be inferred that A. vera switches its C3-CAM metabolism to a CAM idling mode. Strikingly, all A. vera plants stayed alive after seven months without irrigation. Possible mechanisms under an environmental context are discussed. Overall, because of a combination of morphophysiological traits, A. vera has the remarkable capacity to survive under severe and long-term drought, and further holistic research on this plant may serve to produce biotechnological solutions for crop production under the current scenario of climatic emergency.
Collapse
Affiliation(s)
- José P. Delatorre-Castillo
- Faculty of Renewable Natural Resources, Desert Agriculture Area, Universidad Arturo Prat, Iquique 1100000, Chile; (J.P.D.-C.); (J.D.-H.); (K.S.L.); (J.A.-C.); (I.S.-S.)
| | - José Delatorre-Herrera
- Faculty of Renewable Natural Resources, Desert Agriculture Area, Universidad Arturo Prat, Iquique 1100000, Chile; (J.P.D.-C.); (J.D.-H.); (K.S.L.); (J.A.-C.); (I.S.-S.)
| | - Kung Sang Lay
- Faculty of Renewable Natural Resources, Desert Agriculture Area, Universidad Arturo Prat, Iquique 1100000, Chile; (J.P.D.-C.); (J.D.-H.); (K.S.L.); (J.A.-C.); (I.S.-S.)
| | - Jorge Arenas-Charlín
- Faculty of Renewable Natural Resources, Desert Agriculture Area, Universidad Arturo Prat, Iquique 1100000, Chile; (J.P.D.-C.); (J.D.-H.); (K.S.L.); (J.A.-C.); (I.S.-S.)
| | - Isabel Sepúlveda-Soto
- Faculty of Renewable Natural Resources, Desert Agriculture Area, Universidad Arturo Prat, Iquique 1100000, Chile; (J.P.D.-C.); (J.D.-H.); (K.S.L.); (J.A.-C.); (I.S.-S.)
| | - Liliana Cardemil
- Plant Molecular Biology Center, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago de Chile 7800003, Chile;
| | - Enrique Ostria-Gallardo
- Laboratory of Plant Physiology, Center of Advanced Studies in Arid Zones (CEAZA), La Serena 1710088, Chile
- Correspondence: ; Tel.: +56-51-2204378
| |
Collapse
|
22
|
Venkat A, Muneer S. Role of Circadian Rhythms in Major Plant Metabolic and Signaling Pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:836244. [PMID: 35463437 PMCID: PMC9019581 DOI: 10.3389/fpls.2022.836244] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/23/2022] [Indexed: 05/10/2023]
Abstract
Plants require an endogenous regulatory network and mechanism to cope with diurnal environmental changes and compensate for their sessile nature. Plants use the circadian clock to anticipate diurnal changes. Circadian rhythm predicts a 24-h cycle with 16 h of light and 8 h of darkness in response to abiotic and biotic factors as well as the appropriate temperature. For a plant's fitness, proper growth, and development, these rhythms synchronize the diurnal photoperiodic changes. Input pathway, central oscillator, and output pathway are the three components that make up the endogenous clock. There are also transcriptional and translational feedback loops (TTFLs) in the clock, which are dependent on the results of gene expression. Several physiological processes, such as stress acclimatization, hormone signaling, morphogenesis, carbon metabolism, and defense response, are currently being investigated for their interactions with the circadian clock using phenotypic, genomic, and metabolic studies. This review examines the role of circadian rhythms in the regulation of plant metabolic pathways, such as photosynthesis and carbon metabolism, as well as developmental and degenerative processes, such as flowering and senescence. Furthermore, we summarized signaling pathways related to circadian rhythms, such as defense response and gene regulatory pathways.
Collapse
Affiliation(s)
- Ajila Venkat
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sowbiya Muneer
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
23
|
García-Caparrós P, De Filippis L, Gul A, Hasanuzzaman M, Ozturk M, Altay V, Lao MT. Oxidative Stress and Antioxidant Metabolism under Adverse Environmental Conditions: a Review. THE BOTANICAL REVIEW 2021; 87:421-466. [PMID: 0 DOI: 10.1007/s12229-020-09231-1] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 05/25/2023]
|
24
|
van Tongerlo E, Trouwborst G, Hogewoning SW, van Ieperen W, Dieleman JA, Marcelis LFM. Crassulacean acid metabolism species differ in the contribution of C 3 and C 4 carboxylation to end of day CO 2 fixation. PHYSIOLOGIA PLANTARUM 2021; 172:134-145. [PMID: 33305855 PMCID: PMC8246577 DOI: 10.1111/ppl.13312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Crassulacean acid metabolism (CAM) is a photosynthetic pathway that temporally separates the nocturnal CO2 uptake, via phosphoenolpyruvate carboxylase (PEPC, C4 carboxylation), from the diurnal refixation by Rubisco (C3 carboxylation). At the end of the day (CAM-Phase IV), when nocturnally stored CO2 has depleted, stomata reopen and allow additional CO2 uptake, which can be fixed by Rubisco or by PEPC. This work examined the CO2 uptake via C3 and C4 carboxylation in phase IV in the CAM species Phalaenopsis "Sacramento" and Kalanchoe blossfeldiana "Saja." Short blackout periods during phase IV caused a sharp drop in CO2 uptake in K. blossfeldiana but not in Phalaenopsis, indicating strong Rubisco activity only in K. blossfeldiana. Chlorophyll fluorescence revealed a progressive decrease in ΦPSII in Phalaenopsis, implying decreasing Rubisco activity, while ΦPSII remained constant in phase IV in K. blossfeldiana. However, short switching to 2% O2 indicated the presence of photorespiration and thus Rubisco activity in both species throughout phase IV. Lastly, in Phalaenopsis, accumulation of starch in phase IV occurred. These results indicate that in Phalaenopsis, PEPC was the main carboxylase in phase IV, although Rubisco remained active throughout the whole phase. This will lead to double carboxylation (futile cycling) but may help to avoid photoinhibition.
Collapse
Affiliation(s)
- Evelien van Tongerlo
- Horticulture and Product Physiology, Department of Plant SciencesWageningen University and ResearchWageningenThe Netherlands
| | | | | | - Wim van Ieperen
- Horticulture and Product Physiology, Department of Plant SciencesWageningen University and ResearchWageningenThe Netherlands
| | - Janneke A. Dieleman
- Greenhouse HorticultureWageningen University and ResearchWageningenThe Netherlands
| | - Leo F. M. Marcelis
- Horticulture and Product Physiology, Department of Plant SciencesWageningen University and ResearchWageningenThe Netherlands
| |
Collapse
|
25
|
Hogewoning SW, van den Boogaart SAJ, van Tongerlo E, Trouwborst G. CAM-physiology and carbon gain of the orchid Phalaenopsis in response to light intensity, light integral and CO 2. PLANT, CELL & ENVIRONMENT 2021; 44:762-774. [PMID: 33244775 DOI: 10.1111/pce.13960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
The regulation of photosynthesis and carbon gain of crassulacean acid metabolism (CAM) plants has not yet been disclosed to the extent of C3-plants. In this study, the tropical epiphyte Phalaenopsis cv. "Sacramento" was subjected to different lighting regimes. Photosynthesis and biochemical measuring techniques were used to address four specific questions: (1) the response of malate decarboxylation to light intensity, (2) the malate carboxylation pathway in phase IV, (3) the response of diel carbon gain to the light integral and (4) the response of diel carbon gain to CO2 . The four CAM-phases were clearly discernable. The length of phase III and the malate decarboxylation rate responded directly to light intensity. In phase IV, CO2 was initially mainly carboxylated via Rubisco. However, at daylength of 16 h, specifically beyond ±12 h, it was mainly phosphoenolpyruvate carboxylase (PEP-C) carboxylating CO2 . Diel carbon gain appeared to be controlled by the light integral during phase III rather than the total daily light integral. Elevated CO2 further enhanced carbon gain both in phase IV and phase I. This establishes that neither malate storage capacity, nor availability of PEP as substrate for nocturnal CO2 carboxylation were limiting factors for carbon gain enhancement. These results advance our understanding of CAM-plants and are also of practical importance for growers.
Collapse
Affiliation(s)
| | | | - Evelien van Tongerlo
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | | |
Collapse
|
26
|
Ochieno DMW, Karoney EM, Muge EK, Nyaboga EN, Baraza DL, Shibairo SI, Naluyange V. Rhizobium-Linked Nutritional and Phytochemical Changes Under Multitrophic Functional Contexts in Sustainable Food Systems. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2020.604396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rhizobia are bacteria that exhibit both endophytic and free-living lifestyles. Endophytic rhizobial strains are widely known to infect leguminous host plants, while some do infect non-legumes. Infection of leguminous roots often results in the formation of root nodules. Associations between rhizobia and host plants may result in beneficial or non-beneficial effects. Such effects are linked to various biochemical changes that have far-reaching implications on relationships between host plants and the dependent multitrophic biodiversity. This paper explores relationships that exist between rhizobia and various plant species. Emphasis is on nutritional and phytochemical changes that occur in rhizobial host plants, and how such changes affect diverse consumers at different trophic levels. The purpose of this paper is to bring into context various aspects of such interactions that could improve knowledge on the application of rhizobia in different fields. The relevance of rhizobia in sustainable food systems is addressed in context.
Collapse
|
27
|
Hartzell S, Bartlett MS, Inglese P, Consoli S, Yin J, Porporato A. Modelling nonlinear dynamics of Crassulacean acid metabolism productivity and water use for global predictions. PLANT, CELL & ENVIRONMENT 2021; 44:34-48. [PMID: 33073369 DOI: 10.1111/pce.13918] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/06/2020] [Accepted: 10/02/2020] [Indexed: 05/25/2023]
Abstract
Crassulacean acid metabolism (CAM) crops are important agricultural commodities in water-limited environments across the globe, yet modelling of CAM productivity lacks the sophistication of widely used C3 and C4 crop models, in part due to the complex responses of the CAM cycle to environmental conditions. This work builds on recent advances in CAM modelling to provide a framework for estimating CAM biomass yield and water use efficiency from basic principles. These advances, which integrate the CAM circadian rhythm with established models of carbon fixation, stomatal conductance and the soil-plant-atmosphere continuum, are coupled to models of light attenuation, plant respiration and biomass partitioning. Resulting biomass yield and transpiration for Opuntia ficus-indica and Agave tequilana are validated against field data and compared with predictions of CAM productivity obtained using the empirically based environmental productivity index. By representing regulation of the circadian state as a nonlinear oscillator, the modelling approach captures the diurnal dynamics of CAM stomatal conductance, allowing the prediction of CAM transpiration and water use efficiency for the first time at the plot scale. This approach may improve estimates of CAM productivity under light-limiting conditions when compared with previous methods.
Collapse
Affiliation(s)
- Samantha Hartzell
- Department of Civil and Environmental Engineering, Portland State University, Portland, OR, USA
| | - Mark S Bartlett
- Stantec, New York, NY, USA
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
| | - Paolo Inglese
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Simona Consoli
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università degli Studi di Catania, Catania, Italy
| | - Jun Yin
- School of Hydrology and Water Resources Engineering, Nanjing University of Information Science and Technology, Nanjing, Italy
| | - Amilcare Porporato
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA
- Princeton Environmental Institute, Princeton University, Princeton, NJ, USA
| |
Collapse
|
28
|
Santos MG, Davey PA, Hofmann TA, Borland A, Hartwell J, Lawson T. Stomatal Responses to Light, CO 2, and Mesophyll Tissue in Vicia faba and Kalanchoë fedtschenkoi. FRONTIERS IN PLANT SCIENCE 2021; 12:740534. [PMID: 34777422 PMCID: PMC8579043 DOI: 10.3389/fpls.2021.740534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/22/2021] [Indexed: 05/14/2023]
Abstract
The responses of stomatal aperture to light intensity and CO2 concentration were studied in both Vicia faba (C3) and Kalanchoë fedtschenkoi (Crassulacean acid metabolism; CAM), in material sampled from both light and dark periods. Direct comparison was made between intact leaf segments, epidermises grafted onto exposed mesophyll, and isolated epidermal peels, including transplantations between species and between diel periods. We reported the stomatal opening in response to darkness in isolated CAM peels from the light period, but not from the dark. Furthermore, we showed that C3 mesophyll has stimulated CAM stomata in transplanted peels to behave as C3 in response to light and CO2. By using peels and mesophyll from plants sampled in the dark and the light period, we provided clear evidence that CAM stomata behaved differently from C3. This might be linked to stored metabolites/ions and signalling pathway components within the guard cells, and/or a mesophyll-derived signal. Overall, our results provided evidence for both the involvement of guard cell metabolism and mesophyll signals in stomatal responses in both C3 and CAM species.
Collapse
Affiliation(s)
- Mauro G. Santos
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, United Kingdom
| | - Phillip A. Davey
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, United Kingdom
| | | | - Anne Borland
- School of Natural and Environmental Sciences, Devonshire Building, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - James Hartwell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, United Kingdom
- *Correspondence: Tracy Lawson
| |
Collapse
|
29
|
Genome Survey Sequencing of In Vivo Mother Plant and In Vitro Plantlets of Mikania cordata. PLANTS 2020; 9:plants9121665. [PMID: 33261119 PMCID: PMC7759884 DOI: 10.3390/plants9121665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022]
Abstract
Mikania cordata, the only native congener of the invasive weed Mikania micrantha in China, is an ideal species for comparative study to reveal the invasion mechanism. However, its genome resources are lagging far behind its congener, which limits the comparative genomic analysis. Our goal is to characterize the genome of M. cordata by next-generation sequencing and propose a scheme for long-read genome sequencing. Previous studies have shown that the genomic resources of the host plant would be affected by the endophytic microbial DNA. An aseptic sample of M. cordata will ensure the proper genome in downstream analysis. Because endophytes are ubiquitous in the greenhouse-grown M. cordata, the in vitro culture with cefotaxime or timentin treatment was undertaken to obtain the aseptic plantlets. The in vivo mother plant and in vitro plantlets were used to survey the genome. The microbial contamination in M. cordata was recognized by blast search and eliminated from the raw reads. The decontaminated sequencing reads were used to predict the genome size, heterozygosity, and repetitive rate. The in vivo plant was so contaminated that microbes occupied substantial sequencing resources and misled the scaffold assembly. Compared with cefotaxime, treatment with timentin performed better in cultivating robust in vitro plantlets. The survey result from the in vitro plantlets was more accurate due to low levels of contamination. The genome size was estimated to be 1.80 Gb with 0.50% heterozygosity and 78.35% repetitive rate. Additionally, 289,831 SSRs were identified in the genome. The genome is heavily contaminated and repetitive; therefore, the in vitro culture technique and long-read sequencing technology are recommended to generate a high-quality and highly contiguous genome.
Collapse
|
30
|
Yuan G, Hassan MM, Liu D, Lim SD, Yim WC, Cushman JC, Markel K, Shih PM, Lu H, Weston DJ, Chen JG, Tschaplinski TJ, Tuskan GA, Yang X. Biosystems Design to Accelerate C 3-to-CAM Progression. BIODESIGN RESEARCH 2020; 2020:3686791. [PMID: 37849902 PMCID: PMC10521703 DOI: 10.34133/2020/3686791] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/21/2020] [Indexed: 10/19/2023] Open
Abstract
Global demand for food and bioenergy production has increased rapidly, while the area of arable land has been declining for decades due to damage caused by erosion, pollution, sea level rise, urban development, soil salinization, and water scarcity driven by global climate change. In order to overcome this conflict, there is an urgent need to adapt conventional agriculture to water-limited and hotter conditions with plant crop systems that display higher water-use efficiency (WUE). Crassulacean acid metabolism (CAM) species have substantially higher WUE than species performing C3 or C4 photosynthesis. CAM plants are derived from C3 photosynthesis ancestors. However, it is extremely unlikely that the C3 or C4 crop plants would evolve rapidly into CAM photosynthesis without human intervention. Currently, there is growing interest in improving WUE through transferring CAM into C3 crops. However, engineering a major metabolic plant pathway, like CAM, is challenging and requires a comprehensive deep understanding of the enzymatic reactions and regulatory networks in both C3 and CAM photosynthesis, as well as overcoming physiometabolic limitations such as diurnal stomatal regulation. Recent advances in CAM evolutionary genomics research, genome editing, and synthetic biology have increased the likelihood of successful acceleration of C3-to-CAM progression. Here, we first summarize the systems biology-level understanding of the molecular processes in the CAM pathway. Then, we review the principles of CAM engineering in an evolutionary context. Lastly, we discuss the technical approaches to accelerate the C3-to-CAM transition in plants using synthetic biology toolboxes.
Collapse
Affiliation(s)
- Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Md. Mahmudul Hassan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Degao Liu
- Department of Genetics, Cell Biology and Development, Center for Precision Plant Genomics, and Center for Genome Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Sung Don Lim
- Department of Applied Plant Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Won Cheol Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - John C. Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Kasey Markel
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
| | - Patrick M. Shih
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
| | - Haiwei Lu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - David J. Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
31
|
Abraham PE, Hurtado Castano N, Cowan-Turner D, Barnes J, Poudel S, Hettich R, Flütsch S, Santelia D, Borland AM. Peeling back the layers of crassulacean acid metabolism: functional differentiation between Kalanchoë fedtschenkoi epidermis and mesophyll proteomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:869-888. [PMID: 32314451 DOI: 10.1111/tpj.14757] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/18/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that offers the potential to engineer improved water-use efficiency (WUE) and drought resilience in C3 plants while sustaining productivity in the hotter and drier climates that are predicted for much of the world. CAM species show an inverted pattern of stomatal opening and closing across the diel cycle, which conserves water and provides a means of maintaining growth in hot, water-limited environments. Recent genome sequencing of the constitutive model CAM species Kalanchoë fedtschenkoi provides a platform for elucidating the ensemble of proteins that link photosynthetic metabolism with stomatal movement, and that protect CAM plants from harsh environmental conditions. We describe a large-scale proteomics analysis to characterize and compare proteins, as well as diel changes in their abundance in guard cell-enriched epidermis and mesophyll cells from leaves of K. fedtschenkoi. Proteins implicated in processes that encompass respiration, the transport of water and CO2 , stomatal regulation, and CAM biochemistry are highlighted and discussed. Diel rescheduling of guard cell starch turnover in K. fedtschenkoi compared with that observed in Arabidopsis is reported and tissue-specific localization in the epidermis and mesophyll of isozymes implicated in starch and malate turnover are discussed in line with the contrasting roles for these metabolites within the CAM mesophyll and stomatal complex. These data reveal the proteins and the biological processes enriched in each layer and provide key information for studies aiming to adapt plants to hot and dry environments by modifying leaf physiology for improved plant sustainability.
Collapse
Affiliation(s)
- Paul E Abraham
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Natalia Hurtado Castano
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Daniel Cowan-Turner
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Jeremy Barnes
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Suresh Poudel
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Robert Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | | | - Diana Santelia
- Institute of Integrative Biology, ETH, Zürich, Switzerland
| | - Anne M Borland
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
32
|
Boxall SF, Kadu N, Dever LV, Kneřová J, Waller JL, Gould PJD, Hartwell J. Kalanchoë PPC1 Is Essential for Crassulacean Acid Metabolism and the Regulation of Core Circadian Clock and Guard Cell Signaling Genes. THE PLANT CELL 2020; 32:1136-1160. [PMID: 32051209 PMCID: PMC7145507 DOI: 10.1105/tpc.19.00481] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/28/2020] [Accepted: 02/09/2020] [Indexed: 05/21/2023]
Abstract
Unlike C3 plants, Crassulacean acid metabolism (CAM) plants fix CO2 in the dark using phosphoenolpyruvate carboxylase (PPC; EC 4.1.1.31). PPC combines phosphoenolpyruvate with CO2 (as HCO3 -), forming oxaloacetate. The oxaloacetate is converted to malate, leading to malic acid accumulation in the vacuole, which peaks at dawn. During the light period, malate decarboxylation concentrates CO2 around Rubisco for secondary fixation. CAM mutants lacking PPC have not been described. Here, we employed RNA interference to silence the CAM isogene PPC1 in Kalanchoë laxiflora Line rPPC1-B lacked PPC1 transcripts, PPC activity, dark period CO2 fixation, and nocturnal malate accumulation. Light period stomatal closure was also perturbed, and the plants displayed reduced but detectable dark period stomatal conductance and arrhythmia of the CAM CO2 fixation circadian rhythm under constant light and temperature free-running conditions. By contrast, the rhythm of delayed fluorescence was enhanced in plants lacking PPC1 Furthermore, a subset of gene transcripts within the central circadian oscillator was upregulated and oscillated robustly in this line. The regulation of guard cell genes involved in controlling stomatal movements was also perturbed in rPPC1-B These findings provide direct evidence that the regulatory patterns of key guard cell signaling genes are linked with the characteristic inverse pattern of stomatal opening and closing during CAM.
Collapse
Affiliation(s)
- Susanna F Boxall
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Nirja Kadu
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Louisa V Dever
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Jana Kneřová
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Jade L Waller
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Peter J D Gould
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - James Hartwell
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| |
Collapse
|
33
|
Guan Q, Tan B, Kelley TM, Tian J, Chen S. Physiological Changes in Mesembryanthemum crystallinum During the C 3 to CAM Transition Induced by Salt Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:283. [PMID: 32256510 PMCID: PMC7090145 DOI: 10.3389/fpls.2020.00283] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/25/2020] [Indexed: 05/27/2023]
Abstract
Salt stress impedes plant growth and development, and leads to yield loss. Recently, a halophyte species Mesembryanthemum crystallinum has become a model to study plant photosynthetic responses to salt stress. It has an adaptive mechanism of shifting from C3 photosynthesis to crassulacean acid metabolism (CAM) photosynthesis under stresses, which greatly enhances water usage efficiency and stress tolerance. In this study, we focused on investigating the morphological and physiological changes [e.g., leaf area, stomatal movement behavior, gas exchange, leaf succulence, and relative water content (RWC)] of M. crystallinum during the C3 to CAM photosynthetic transition under salt stress. Our results showed that in M. crystallinum seedlings, CAM photosynthesis was initiated after 6 days of salt treatment, the transition takes place within a 3-day period, and plants became mostly CAM in 2 weeks. This result defined the transition period of a facultative CAM plant, laid a foundation for future studies on identifying the molecular switches responsible for the transition from C3 to CAM, and contributed to the ultimate goal of engineering CAM characteristics into C3 crops.
Collapse
Affiliation(s)
- Qijie Guan
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| | - Bowen Tan
- Department of Biology, University of Florida, Gainesville, FL, United States
| | - Theresa M. Kelley
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| | - Jingkui Tian
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Zhejiang-Malaysia Joint Research Center for Traditional Medicine, Zhejiang University, Hangzhou, China
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| |
Collapse
|
34
|
Chomthong M, Griffiths H. Model approaches to advance crassulacean acid metabolism system integration. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:951-963. [PMID: 31943394 DOI: 10.1111/tpj.14691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
This review summarises recent progress in understanding crassulacean acid metabolism (CAM) systems and the integration of internal and external stimuli to maximise water-use efficiency. Complex CAM traits have been reduced to their minimum and captured as computational models, which can now be refined using recently available data from transgenic manipulations and large-scale omics studies. We identify three key areas in which an appropriate choice of modelling tool could help capture relevant comparative molecular data to address the evolutionary drivers and plasticity of CAM. One focus is to identify the environmental and internal signals that drive inverse stomatal opening at night. Secondly, it is important to identify the regulatory processes required to orchestrate the diel pattern of carbon fluxes within mesophyll layers. Finally, the limitations imposed by contrasting succulent systems and associated hydraulic conductance components should be compared in the context of water-use and evolutionary strategies. While network analysis of transcriptomic data can provide insights via co-expression modules and hubs, alternative forms of computational modelling should be used iteratively to define the physiological significance of key components and informing targeted functional gene manipulation studies. We conclude that the resultant improvements of bottom-up, mechanistic modelling systems can enhance progress towards capturing the physiological controls for phylogenetically diverse CAM systems in the face of the recent surge of information in this omics era.
Collapse
Affiliation(s)
- Methawi Chomthong
- Department of Plant Sciences, University of Cambridge, Downing street, Cambridge, CB2 3EA, UK
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Downing street, Cambridge, CB2 3EA, UK
| |
Collapse
|
35
|
Sara HC, René GH, Rosa UC, Angela KG, Clelia DLP. Agave angustifolia albino plantlets lose stomatal physiology function by changing the development of the stomatal complex due to a molecular disruption. Mol Genet Genomics 2020; 295:787-805. [PMID: 31925511 DOI: 10.1007/s00438-019-01643-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/24/2019] [Indexed: 12/31/2022]
Abstract
Stomatal development is regulated by signaling pathways that function in multiple cellular programs, including cell fate and cell division. However, recent studies suggest that molecular signals are affected by CO2 concentration, light intensity, and water pressure deficit, thereby modifying distribution patterns and stomatic density and likely other foliar features as well. Here, we show that in addition to lacking chloroplasts, the albino somaclonal variants of Agave angustifolia Haw present an irregular epidermal development and morphological abnormalities of the stomatal complex, affecting the link between the stomatal conductance, transpiration and photosynthesis, as well as the development of the stoma in the upper part of the leaves. In addition, we show that changes in the transcriptional levels of SPEECHLESS (SPCH), TOO MANY MOUTHS (TMM), MITOGEN-ACTIVATED PROTEIN KINASE 4 and 6 (MAPK4 and MAPK6) and FOUR LIPS (FLP), all from the meristematic tissue and leaf, differentially modulate the stomatal function between the green, variegated and albino in vitro plantlets of A. angustifolia. Likewise, we highlight the conservation of microRNAs miR166 and miR824 as part of the regulation of AGAMOUS-LIKE16 (AGL16), recently associated with the control of cell divisions that regulate the development of the stomatal complex. We propose that molecular alterations happening in albino cells formed from the meristematic base can lead to different anomalies during the transition and specification of the stomatal cell state in leaf development of albino plantlets. We conclude that the molecular alterations in the meristematic cells in albino plants might be the main variable associated with stoma distribution in this phenotype.
Collapse
Affiliation(s)
- Hernández-Castellano Sara
- Centro de Investigación Científica de Yucatán A.C., Unidad de Biotecnología, Calle 43 N°130 x 32 y 34, Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - Garruña-Hernández René
- CONACYT-Instituto Tecnológico de Conkal, Avenida Tecnológico s/n Conkal, 97345, Mérida, Yucatán, Mexico
| | - Us-Camas Rosa
- Centro de Investigación Científica de Yucatán A.C., Unidad de Biotecnología, Calle 43 N°130 x 32 y 34, Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - Kú-Gonzalez Angela
- Centro de Investigación Científica de Yucatán A.C., Unidad de Bioquímica y Biología Molecular de Plantas, Calle 43 N° 130 x 32 y 34, Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - De-la-Peña Clelia
- Centro de Investigación Científica de Yucatán A.C., Unidad de Biotecnología, Calle 43 N°130 x 32 y 34, Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico.
| |
Collapse
|
36
|
Chen LY, Xin Y, Wai CM, Liu J, Ming R. The role of cis-elements in the evolution of crassulacean acid metabolism photosynthesis. HORTICULTURE RESEARCH 2020; 7:5. [PMID: 31908808 PMCID: PMC6938490 DOI: 10.1038/s41438-019-0229-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 05/30/2023]
Abstract
Crassulacean acid metabolism (CAM) photosynthesis is an innovation of carbon concentrating mechanism that is characterized by nocturnal CO2 fixation. Recent progresses in genomics, transcriptomics, proteomics, and metabolomics of CAM species yielded new knowledge and abundant genomic resources. In this review, we will discuss the pattern of cis-elements in stomata movement-related genes and CAM CO2 fixation genes, and analyze the expression dynamic of CAM related genes in green leaf tissues. We propose that CAM photosynthesis evolved through the re-organization of existing enzymes and associated membrane transporters in central metabolism and stomatal movement-related genes, at least in part by selection of existing circadian clock cis-regulatory elements in their promoter regions. Better understanding of CAM evolution will help us to design crops that can thrive in arid or semi-arid regions, which are likely to expand due to global climate change.
Collapse
Affiliation(s)
- Li-Yu Chen
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
| | - Yinghui Xin
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Ching Man Wai
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Juan Liu
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
| | - Ray Ming
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| |
Collapse
|
37
|
Liu D, Chen M, Mendoza B, Cheng H, Hu R, Li L, Trinh CT, Tuskan GA, Yang X. CRISPR/Cas9-mediated targeted mutagenesis for functional genomics research of crassulacean acid metabolism plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6621-6629. [PMID: 31562521 PMCID: PMC6883263 DOI: 10.1093/jxb/erz415] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/29/2019] [Indexed: 05/17/2023]
Abstract
Crassulacean acid metabolism (CAM) is an important photosynthetic pathway in diverse lineages of plants featuring high water-use efficiency and drought tolerance. A big challenge facing the CAM research community is to understand the function of the annotated genes in CAM plant genomes. Recently, a new genome editing technology using CRISPR/Cas9 has become a more precise and powerful tool than traditional approaches for functional genomics research in C3 and C4 plants. In this study, we explore the potential of CRISPR/Cas9 to characterize the function of CAM-related genes in the model CAM species Kalanchoë fedtschenkoi. We demonstrate that CRISPR/Cas9 is effective in creating biallelic indel mutagenesis to reveal previously unknown roles of blue light receptor phototropin 2 (KfePHOT2) in the CAM pathway. Knocking out KfePHOT2 reduced stomatal conductance and CO2 fixation in late afternoon and increased stomatal conductance and CO2 fixation during the night, indicating that blue light signaling plays an important role in the CAM pathway. Lastly, we provide a genome-wide guide RNA database targeting 45 183 protein-coding transcripts annotated in the K. fedtschenkoi genome.
Collapse
Affiliation(s)
- Degao Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- DOE-Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Mei Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Brian Mendoza
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Hua Cheng
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Rongbin Hu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Linling Li
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Cong T Trinh
- DOE-Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- DOE-Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- DOE-Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
38
|
Liu D, Chen M, Mendoza B, Cheng H, Hu R, Li L, Trinh CT, Tuskan GA, Yang X. CRISPR/Cas9-mediated targeted mutagenesis for functional genomics research of crassulacean acid metabolism plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6621-6629. [PMID: 31562521 DOI: 10.5061/dryad.3qk1303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/29/2019] [Indexed: 05/28/2023]
Abstract
Crassulacean acid metabolism (CAM) is an important photosynthetic pathway in diverse lineages of plants featuring high water-use efficiency and drought tolerance. A big challenge facing the CAM research community is to understand the function of the annotated genes in CAM plant genomes. Recently, a new genome editing technology using CRISPR/Cas9 has become a more precise and powerful tool than traditional approaches for functional genomics research in C3 and C4 plants. In this study, we explore the potential of CRISPR/Cas9 to characterize the function of CAM-related genes in the model CAM species Kalanchoë fedtschenkoi. We demonstrate that CRISPR/Cas9 is effective in creating biallelic indel mutagenesis to reveal previously unknown roles of blue light receptor phototropin 2 (KfePHOT2) in the CAM pathway. Knocking out KfePHOT2 reduced stomatal conductance and CO2 fixation in late afternoon and increased stomatal conductance and CO2 fixation during the night, indicating that blue light signaling plays an important role in the CAM pathway. Lastly, we provide a genome-wide guide RNA database targeting 45 183 protein-coding transcripts annotated in the K. fedtschenkoi genome.
Collapse
Affiliation(s)
- Degao Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- DOE-Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Mei Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Brian Mendoza
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Hua Cheng
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Rongbin Hu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Linling Li
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Cong T Trinh
- DOE-Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- DOE-Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- DOE-Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
39
|
Zheng L, Ceusters J, Van Labeke MC. Light quality affects light harvesting and carbon sequestration during the diel cycle of crassulacean acid metabolism in Phalaenopsis. PHOTOSYNTHESIS RESEARCH 2019; 141:195-207. [PMID: 30756292 DOI: 10.1007/s11120-019-00620-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/23/2019] [Indexed: 05/14/2023]
Abstract
Crassulacean acid metabolism (CAM) is a specialized photosynthetic pathway present in a variety of genera including many epiphytic orchids. CAM is under circadian control and can be subdivided into four discrete phases during a diel cycle. Inherent to this specific mode of metabolism, carbohydrate availability is a limiting factor for nocturnal CO2 uptake and biomass production. To evaluate the effects of light quality on the photosynthetic performance and diel changes in carbohydrates during the CAM cycle. Phalaenopsis plants were grown under four different light qualities (red, blue, red + blue and full spectrum white light) at a fluence of 100 µmol m-2 s-1 and a photoperiod of 12 h for 8 weeks. In contrast to monochromatic blue light, plants grown under monochromatic red light showed already a significant decline of the quantum efficiency (ΦPSII) after 5 days and of the maximum quantum yield (Fv/Fm) after 10 days under this treatment. This was also reflected in a compromised chlorophyll and carotenoid content and total diel CO2 uptake under red light in comparison with monochromatic blue and full spectrum white light. In particular, CO2 uptake during nocturnal phase I was affected under red illumination resulting in a reduced amount of vacuolar malate. In addition, red light caused the rate of decarboxylation of malate during the day to be consistently lower and malic acid breakdown persisted until 4 h after dusk. Because the intrinsic activity of PEPC was not affected, the restricted availability of storage carbohydrates such as starch was likely to cause these adverse effects under red light. Addition of blue to the red light spectrum restored the diel fluxes of carbohydrates and malate and resulted in a significant enhancement of the daily CO2 uptake, pigment concentration and biomass formation.
Collapse
Affiliation(s)
- Liang Zheng
- Department of Plants and Crops, Ghent University, Coupure links 653, 9000, Ghent, Belgium
- College of Water Resource and Civil Engineering, China Agricultural University, Qinghua east road 17, Beijing, 10083, People's Republic of China
| | - Johan Ceusters
- Department of Biosystems, Division of Crop Biotechnics, Research group for Sustainable Crop Production & Protection, KU Leuven, Campus Geel, Kleinhoefstraat 4, 2440, Geel, Belgium
- Centre for Environmental Sciences, Environmental Biology, UHasselt, Campus Diepenbeek, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | | |
Collapse
|
40
|
Niechayev NA, Pereira PN, Cushman JC. Understanding trait diversity associated with crassulacean acid metabolism (CAM). CURRENT OPINION IN PLANT BIOLOGY 2019; 49:74-85. [PMID: 31284077 DOI: 10.1016/j.pbi.2019.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that exploits a temporal CO2 pump with nocturnal CO2 uptake and concentration to reduce photorespiration, improve water-use efficiency (WUE), and optimize the adaptability of plants to climates with seasonal or intermittent water limitations. CAM plants display a plastic continuum in the extent to which species engage in net nocturnal CO2 uptake that ranges from 0 to 100%. CAM plants also display diverse enzyme and organic acid and carbohydrate storage systems, which likely reflect the multiple, independent evolutionary origins of CAM. CAM is often accompanied by a diverse set of anatomical traits, such as tissue succulence and water-storage and water-capture strategies to attenuate drought. Other co-adaptive traits, such as thick cuticles, epicuticular wax, low stomatal density, high stomatal responsiveness, and shallow rectifier-like roots limit water loss under conditions of water deficit. Recommendations for future research efforts to better explore and understand the diversity of traits associated with CAM and CAM Biodesign efforts are presented.
Collapse
Affiliation(s)
- Nicholas A Niechayev
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557-0330, United States
| | - Paula N Pereira
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557-0330, United States
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557-0330, United States.
| |
Collapse
|
41
|
Cheng Y, He D, He J, Niu G, Gao R. Effect of Light/Dark Cycle on Photosynthetic Pathway Switching and CO 2 Absorption in Two Dendrobium Species. FRONTIERS IN PLANT SCIENCE 2019; 10:659. [PMID: 31178881 PMCID: PMC6538687 DOI: 10.3389/fpls.2019.00659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/02/2019] [Indexed: 05/26/2023]
Abstract
Many Dendrobium species are both ornamental and medicinal plants in China. Several wild species have been exploited to near extinction, and facility cultivation has become an important way to meet the great market demand. Most Dendrobium species have evolved into crassulacean acid metabolism (CAM) pathways in adapting to harsh epiphytic environment, leading to low daily net CO2 absorption. Photosynthetic pathways of many facultative CAM plants are regulated by various environmental factors. Light/dark cycle plays an important role in regulating the photosynthetic pathway of several CAM species. The aims of this study were to investigate whether the photosynthetic pathway of Dendrobium species could be regulated between C3 and CAM by changing light/dark cycles and the daily net CO2 absorption could be enhanced by shortening light/dark cycle. In this study, net CO2 exchange rates of D. officinale and D. primulinum were monitored continuously during two different light/dark cycles conversion compared to Kalanchoe daigremontiana as an obligate CAM plant. The net CO2 exchange pattern and stomatal behavior of D. officinale and D. primulinum were switched from CAM to C3-like by changing the light/dark cycle from 12/12 h to 4/4 h. However, this switching was not completely reversible. Compared to the original 12/12 h light/dark cycle, the dark, light, and daily net CO2 exchange amount of D. officinale were significantly increased after the light/dark cycle was changed from 4/4 h to 12/12 h, but those in D. primulinum was opposite and those in K. daigremontiana was not affected. Daily net CO2 exchange amount of D. officinale increased by 47% after the light/dark cycle was changed from 12/12 h to 4/4 h, due to the sharp increase of light net CO2 exchange amount. However, the large decrease of dark net CO2 exchange amount could not be offset by increased light net CO2 exchange amount, leading to reduced daily net CO2 exchange amount of D. primulinum. In conclusion, the 4/4 h light/dark cycle can induce the photosynthetic pathway of D. officinale and D. primulinum to C3-like, and improve the daily CO2 absorption of D. officinale.
Collapse
Affiliation(s)
- Yongsan Cheng
- Key Laboratory Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Dongxian He
- Key Laboratory Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Jie He
- National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Genhua Niu
- Texas A&M AgriLife Research at El Paso, Texas A&M University System, El Paso, TX, United States
| | - Rongfu Gao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
42
|
Bai Y, Dai X, Li Y, Wang L, Li W, Liu Y, Cheng Y, Qin Y. Identification and characterization of pineapple leaf lncRNAs in crassulacean acid metabolism (CAM) photosynthesis pathway. Sci Rep 2019; 9:6658. [PMID: 31040312 PMCID: PMC6491598 DOI: 10.1038/s41598-019-43088-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 04/11/2019] [Indexed: 01/08/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have been identified in many mammals and plants and are known to play crucial roles in multiple biological processes. Pineapple is an important tropical fruit and a good model for studying the plant evolutionary adaptation to the dry environment and the crassulacean acid metabolism (CAM) photosynthesis strategy; however, the lncRNAs involved in CAM pathway remain poorly characterized. Here, we analyzed the available RNA-seq data sets derived from 26 pineapple leaf samples at 13 time points and identified 2,888 leaf lncRNAs, including 2,046 long intergenic noncoding RNAs (lincRNAs) and 842 long noncoding natural antisense transcripts (lncNATs). Pineapple leaf lncRNAs are expressed in a highly tissue-specific manner. Co-expression analysis of leaf lncRNA and mRNA revealed that leaf lncRNAs are preferentially associated with photosynthesis genes. We further identified leaf lncRNAs that potentially function as competing endogenous RNAs (ceRNAs) of two CAM photosynthesis pathway genes, PPCK and PEPC, and revealed their diurnal expression pattern in leaves. Moreover, we found that 48% of lncRNAs exhibit diurnal expression patterns in leaves, suggesting their important roles in CAM. This study conducted a comprehensive genome-wide analysis of leaf lncRNAs and identified their role in gene expression regulation of the CAM photosynthesis pathway in pineapple.
Collapse
Affiliation(s)
- Youhuang Bai
- College of life science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaozhuan Dai
- College of life science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yi Li
- College of life science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lulu Wang
- College of life science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weimin Li
- College of life science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanhui Liu
- College of life science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yan Cheng
- College of life science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuan Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
43
|
Fricke W. Night-Time Transpiration - Favouring Growth? TRENDS IN PLANT SCIENCE 2019; 24:311-317. [PMID: 30770287 DOI: 10.1016/j.tplants.2019.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 05/16/2023]
Abstract
Plants grow and transpire water during the day and night. Recent work highlights the idea that night-time transpirational water loss is a consequence of allowing respiratory CO2 to escape at sufficiently high rates through stomata. Respiration fuels night-time leaf expansion and requires carbohydrates produced during the day. As carbohydrate availability and growth are under the control of the plants' internal clock, so is night-time transpiration. The cost of night-time transpiration is that water is lost without carbon being gained, the benefit is a higher efficiency of taken up water for use in leaf expansion. This could provide a stress acclimation process.
Collapse
Affiliation(s)
- Wieland Fricke
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland; https://people.ucd.ie/wieland.fricke.
| |
Collapse
|
44
|
Hatfield JL, Dold C. Water-Use Efficiency: Advances and Challenges in a Changing Climate. FRONTIERS IN PLANT SCIENCE 2019; 10:103. [PMID: 30838006 PMCID: PMC6390371 DOI: 10.3389/fpls.2019.00103] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/23/2019] [Indexed: 05/20/2023]
Abstract
Water use efficiency (WUE) is defined as the amount of carbon assimilated as biomass or grain produced per unit of water used by the crop. One of the primary questions being asked is how plants will respond to a changing climate with changes in temperature, precipitation, and carbon dioxide (CO2) that affect their WUE At the leaf level, increasing CO2 increases WUE until the leaf is exposed to temperatures exceeded the optimum for growth (i.e., heat stress) and then WUE begins to decline. Leaves subjected to water deficits (i.e., drought stress) show varying responses in WUE. The response of WUE at the leaf level is directly related to the physiological processes controlling the gradients of CO2 and H2O, e.g., leaf:air vapor pressure deficits, between the leaf and air surrounding the leaf. There a variety of methods available to screen genetic material for enhanced WUE under scenarios of climate change. When we extend from the leaf to the canopy, then the dynamics of crop water use and biomass accumulation have to consider soil water evaporation rate, transpiration from the leaves, and the growth pattern of the crop. Enhancing WUE at the canopy level can be achieved by adopting practices that reduce the soil water evaporation component and divert more water into transpiration which can be through crop residue management, mulching, row spacing, and irrigation. Climate change will affect plant growth, but we have opportunities to enhance WUE through crop selection and cultural practices to offset the impact of a changing climate.
Collapse
Affiliation(s)
- Jerry L. Hatfield
- National Laboratory for Agriculture and the Environment, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | | |
Collapse
|
45
|
Moseley RC, Tuskan GA, Yang X. Comparative Genomics Analysis Provides New Insight Into Molecular Basis of Stomatal Movement in Kalanchoë fedtschenkoi. FRONTIERS IN PLANT SCIENCE 2019; 10:292. [PMID: 30930922 PMCID: PMC6425862 DOI: 10.3389/fpls.2019.00292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/22/2019] [Indexed: 05/03/2023]
Abstract
CO2 uptake and water loss in plants are regulated by microscopic pores on the surface of leaves, called stomata. This enablement of gas exchange by the opening and closing of stomata is one of the most essential processes in plant photosynthesis and transpiration, affecting water-use efficiency (WUE) and thus drought susceptibility. In plant species with crassulacean acid metabolism (CAM) photosynthesis, diel stomatal movement pattern is inverted relative to C3 and C4 photosynthesis species, resulting in much higher WUE and drought tolerance. However, little is known about the molecular basis of stomatal movement in CAM species. The goal of this study is to identify candidate genes that could play a role in stomatal movement in an obligate CAM species, Kalanchoë fedtschenkoi. By way of a text-mining approach, proteins were identified in various plant species, spanning C3, C4, and CAM photosynthetic types, which are orthologous to proteins known to be involved in stomatal movement. A comparative analysis of diel time-course gene expression data was performed between K. fedtschenkoi and two C3 species (i.e., Arabidopsis thaliana and Solanum lycopersicum) to identify differential gene expression between the dusk and dawn phases of the 24-h cycle. A rescheduled catalase gene known to be involved in stomatal movement was identified, suggesting a role for H2O2 in CAM-like stomatal movement. Overall, these results provide new insights into the molecular regulation of stomatal movement in CAM plants, facilitating genetic improvement of drought resistance in agricultural crops through manipulation of stomata-related genes.
Collapse
Affiliation(s)
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville, Knoxville, TN, United States
- *Correspondence: Xiaohan Yang,
| |
Collapse
|
46
|
Batke S, Holohan A, Hayden R, Fricke W, Porter AS, Evans-Fitz.Gerald CM. The Pressure Is On - Epiphyte Water-Relations Altered Under Elevated CO 2. FRONTIERS IN PLANT SCIENCE 2018; 9:1758. [PMID: 30538718 PMCID: PMC6277575 DOI: 10.3389/fpls.2018.01758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Vascular epiphytes are a major biomass component of forests across the globe and they contribute to 9% of global vascular plant diversity. To improve our understanding of the whole-plant response of epiphytes to future climate change, we investigated for the first time both individual and combined effects of elevated CO2 (560 ppm) and light on the physiology and growth of two epiphyte species [Tillandsia brachycaulos (CAM) and Phlebodium aureum (C3)] grown for 272 days under controlled conditions. We found that under elevated CO2 the difference in water loss between the light (650 μmol m-2s-1) and shade (130 μmol m-2s-1) treatment was strongly reduced. Stomatal conductance (g s) decreased under elevated CO2, resulting in an approximate 40-45% reduction in water loss over a 24 h day/night period under high light and high CO2 conditions. Under lower light conditions water loss was reduced by approximately 20% for the CAM bromeliad under elevated CO2 and increased by approximately 126% for the C3 fern. Diurnal changes in leaf turgor and water loss rates correlated strong positively under ambient CO2 (400 ppm) and high light conditions. Future predicted increases in atmospheric CO2 are likely to alter plant water-relations in epiphytes, thus reducing the canopy cooling potential of epiphytes to future increases in temperature.
Collapse
Affiliation(s)
- Sven Batke
- Department of Biology, Edge Hill University, Ormskirk, United Kingdom
- School of Biology and Environmental Science, Earth Institute, University College Dublin, Dublin, Ireland
| | - Aidan Holohan
- School of Biology and Environmental Science, Earth Institute, University College Dublin, Dublin, Ireland
| | - Roisin Hayden
- School of Biology and Environmental Science, Earth Institute, University College Dublin, Dublin, Ireland
| | - Wieland Fricke
- School of Biology and Environmental Science, Earth Institute, University College Dublin, Dublin, Ireland
| | - Amanda Sara Porter
- School of Biology and Environmental Science, Earth Institute, University College Dublin, Dublin, Ireland
- Botany Department, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
47
|
Tamayo‐Ordóñez MC, Ayil‐Gutiérrez BA, Tamayo‐Ordóñez YJ, Rodríguez‐Zapata LC, Monforte‐González M, De la Cruz‐Arguijo EA, García‐Castillo MJ, Sánchez‐Teyer LF. Review and in silico analysis of fermentation, bioenergy, fiber, and biopolymer genes of biotechnological interest in
Agave
L. for genetic improvement and biocatalysis. Biotechnol Prog 2018; 34:1314-1334. [DOI: 10.1002/btpr.2689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/04/2018] [Accepted: 06/26/2018] [Indexed: 12/17/2022]
Affiliation(s)
- M. C. Tamayo‐Ordóñez
- Unidad de Biotecnología. Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná de Hidalgo, CP. 97200, Mérida Yucatán Mexico
| | - B. A. Ayil‐Gutiérrez
- CONACYT‐ Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro, s/n, Esq. Elías Piña Reynosa 88710 Mexico
| | - Y. J. Tamayo‐Ordóñez
- Unidad de Biotecnología. Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná de Hidalgo, CP. 97200, Mérida Yucatán Mexico
| | - L. C. Rodríguez‐Zapata
- Unidad de Biotecnología. Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná de Hidalgo, CP. 97200, Mérida Yucatán Mexico
| | - M. Monforte‐González
- Unidad de Bioquímica Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná de Hidalgo, CP. 97200, Mérida Yucatán Mexico
| | - E. A. De la Cruz‐Arguijo
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro, s/n, Esq. Elías Piña Reynosa 88710 Mexico
| | - M. J. García‐Castillo
- Unidad de Biotecnología. Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná de Hidalgo, CP. 97200, Mérida Yucatán Mexico
| | - L. F. Sánchez‐Teyer
- Unidad de Biotecnología. Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná de Hidalgo, CP. 97200, Mérida Yucatán Mexico
| |
Collapse
|
48
|
Xu M, Chen F, Qi S, Zhang L, Wu S. Loss or duplication of key regulatory genes coincides with environmental adaptation of the stomatal complex in Nymphaea colorata and Kalanchoe laxiflora. HORTICULTURE RESEARCH 2018; 5:42. [PMID: 30083357 PMCID: PMC6068134 DOI: 10.1038/s41438-018-0048-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 04/22/2018] [Accepted: 04/26/2018] [Indexed: 05/27/2023]
Abstract
The stomatal complex is critical for gas and water exchange between plants and the atmosphere. Originating over 400 million years ago, the structure of the stomata has evolved to facilitate the adaptation of plants to various environments. Although the molecular mechanism of stomatal development in Arabidopsis has been widely studied, the evolution of stomatal structure and its molecular regulators in different species remains to be answered. In this study, we examined stomatal development and the orthologues of Arabidopsis stomatal genes in a basal angiosperm plant, Nymphaea colorata, and a member of the eudicot CAM family, Kalanchoe laxiflora, which represent the adaptation to aquatic and drought environments, respectively. Our results showed that despite the conservation of core stomatal regulators, a number of critical genes were lost in the N. colorata genome, including EPF2, MPK6, and AP2C3 and the polarity regulators BASL and POLAR. Interestingly, this is coincident with the loss of asymmetric divisions during the stomatal development of N. colorata. In addition, we found that the guard cell in K. laxiflora is surrounded by three or four small subsidiary cells in adaxial leaf surfaces. This type of stomatal complex is formed via repeated asymmetric cell divisions and cell state transitions. This may result from the doubled or quadrupled key genes controlling stomatal development in K. laxiflora. Our results show that loss or duplication of key regulatory genes is associated with environmental adaptation of the stomatal complex.
Collapse
Affiliation(s)
- Meizhi Xu
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fei Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shilian Qi
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liangsheng Zhang
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuang Wu
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
49
|
Males J. Concerted anatomical change associated with crassulacean acid metabolism in the Bromeliaceae. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:681-695. [PMID: 32291044 DOI: 10.1071/fp17071] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 01/05/2018] [Indexed: 06/11/2023]
Abstract
Crassulacean acid metabolism (CAM) is a celebrated example of convergent evolution in plant ecophysiology. However, many unanswered questions surround the relationships among CAM, anatomy and morphology during evolutionary transitions in photosynthetic pathway. An excellent group in which to explore these issues is the Bromeliaceae, a diverse monocot family from the Neotropics in which CAM has evolved multiple times. Progress in the resolution of phylogenetic relationships among the bromeliads is opening new and exciting opportunities to investigate how evolutionary changes in leaf structure has tracked, or perhaps preceded, photosynthetic innovation. This paper presents an analysis of variation in leaf anatomical parameters across 163C3 and CAM bromeliad species, demonstrating a clear divergence in the fundamental aspects of leaf structure in association with the photosynthetic pathway. Most strikingly, the mean volume of chlorenchyma cells of CAM species is 22 times higher than that of C3 species. In two bromeliad subfamilies (Pitcairnioideae and Tillandsioideae), independent transitions from C3 to CAM are associated with increased cell succulence, whereas evolutionary trends in tissue thickness and leaf air space content differ between CAM origins. Overall, leaf anatomy is clearly and strongly coupled with the photosynthetic pathway in the Bromeliaceae, where the independent origins of CAM have involved significant anatomical restructuring.
Collapse
Affiliation(s)
- Jamie Males
- Department of Plant Sciences, University of Cambridge, Cambridge, UK. Email
| |
Collapse
|
50
|
Ceusters J, Van de Poel B. Ethylene Exerts Species-Specific and Age-Dependent Control of Photosynthesis. PLANT PHYSIOLOGY 2018; 176:2601-2612. [PMID: 29438047 PMCID: PMC5884594 DOI: 10.1104/pp.17.01706] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/25/2018] [Indexed: 05/18/2023]
Abstract
Ethylene regulates many different aspects of photosynthesis in an age-dependent and species-specific manner.
Collapse
Affiliation(s)
- Johan Ceusters
- KU Leuven, Department of Microbial and Molecular Systems, Bioengineering Technology TC, Campus Geel, 2440 Geel, Belgium
- UHasselt, Centre for Environmental Sciences, Environmental Biology, Campus Diepenbeek, 3590 Diepenbeek, Belgium
| | | |
Collapse
|