1
|
Ihnatowicz A, Siwinska J, Perkowska I, Grosjean J, Hehn A, Bourgaud F, Lojkowska E, Olry A. Genes to specialized metabolites: accumulation of scopoletin, umbelliferone and their glycosides in natural populations of Arabidopsis thaliana. BMC PLANT BIOLOGY 2024; 24:806. [PMID: 39187756 PMCID: PMC11348552 DOI: 10.1186/s12870-024-05491-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Scopoletin and umbelliferone belong to coumarins, which are plant specialized metabolites with potent and wide biological activities, the accumulation of which is induced by various environmental stresses. Coumarins have been detected in various plant species, including medicinal plants and the model organism Arabidopsis thaliana. In recent years, key role of coumarins in maintaining iron (Fe) homeostasis in plants has been demonstrated, as well as their significant impact on the rhizosphere microbiome through exudates secreted into the soil environment. Several mechanisms underlying these processes require clarification. Previously, we demonstrated that Arabidopsis is an excellent model for studying genetic variation and molecular basis of coumarin accumulation in plants. RESULTS Here, through targeted metabolic profiling and gene expression analysis, the gene-metabolite network of scopoletin and umbelliferone accumulation was examined in more detail in selected Arabidopsis accessions (Col-0, Est-1, Tsu-1) undergoing different culture conditions and characterized by variation in coumarin content. The highest accumulation of coumarins was detected in roots grown in vitro liquid culture. The expression of 10 phenylpropanoid genes (4CL1, 4CL2, 4CL3, CCoAOMT1, C3'H, HCT, F6'H1, F6'H2,CCR1 and CCR2) was assessed by qPCR in three genetic backgrounds, cultured in vitro and in soil, and in two types of tissues (leaves and roots). We not only detected the expected variability in gene expression and coumarin accumulation among Arabidopsis accessions, but also found interesting polymorphisms in the coding sequences of the selected genes through in silico analysis and resequencing. CONCLUSIONS To the best of our knowledge, this is the first study comparing accumulation of simple coumarins and expression of phenylpropanoid-related genes in Arabidopsis accessions grown in soil and in liquid cultures. The large variations we detected in the content of coumarins and gene expression are genetically determined, but also tissue and culture dependent. It is particularly important considering that growing plants in liquid media is a widely used technology that provides a large amount of root tissue suitable for metabolomics. Research on differential accumulation of coumarins and related gene expression will be useful in future studies aimed at better understanding the physiological role of coumarins in roots and the surrounding environments.
Collapse
Affiliation(s)
- Anna Ihnatowicz
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, Gdansk, 80-307, Poland.
| | - Joanna Siwinska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, Gdansk, 80-307, Poland
| | - Izabela Perkowska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, Gdansk, 80-307, Poland
| | | | - Alain Hehn
- Université de Lorraine-INRAE, LAE, Nancy, F-54000, France
| | | | - Ewa Lojkowska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, Gdansk, 80-307, Poland
| | - Alexandre Olry
- Université de Lorraine-INRAE, LAE, Nancy, F-54000, France.
| |
Collapse
|
2
|
Wang X, Zhang J, Lu X, Bai Y, Wang G. Two diversities meet in the rhizosphere: root specialized metabolites and microbiome. J Genet Genomics 2024; 51:467-478. [PMID: 37879496 DOI: 10.1016/j.jgg.2023.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/15/2023] [Accepted: 10/15/2023] [Indexed: 10/27/2023]
Abstract
Plants serve as rich repositories of diverse chemical compounds collectively referred to as specialized metabolites. These compounds are of importance for adaptive processes, including interactions with various microbes both beneficial and harmful. Considering microbes as bioreactors, the chemical diversity undergoes dynamic changes when root-derived specialized metabolites (RSMs) and microbes encounter each other in the rhizosphere. Recent advancements in sequencing techniques and molecular biology tools have not only accelerated the elucidation of biosynthetic pathways of RSMs but also unveiled the significance of RSMs in plant-microbe interactions. In this review, we provide a comprehensive description of the effects of RSMs on microbe assembly in the rhizosphere and the influence of corresponding microbial changes on plant health, incorporating the most up-to-date information available. Additionally, we highlight open questions that remain for a deeper understanding of and harnessing the potential of RSM-microbe interactions to enhance plant adaptation to the environment. Finally, we propose a pipeline for investigating the intricate associations between root exometabolites and the rhizomicrobiome.
Collapse
Affiliation(s)
- Xiaochen Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingying Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Xinjun Lu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Yang Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China; College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Wang J, Chen P, Zhao T, Huang X, Zong J, Luo Q, Peng C, Wu X, Qiu F, Zhao D, Xiang L, Zhang Y, Yang C, Zhang F, Liao Z, Fu Y, Zeng J. Biosynthesis of Scopoletin in Sweet Potato Confers Resistance against Fusarium oxysporum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7749-7764. [PMID: 38537104 DOI: 10.1021/acs.jafc.3c09389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Fusarium wilt is a severe fungal disease caused by Fusarium oxysporum in sweet potato. We conducted transcriptome analysis to explore the resistance mechanism of sweet potato against F. oxysporum. Our findings highlighted the role of scopoletin, a hydroxycoumarin, in enhancing resistance. In vitro experiments confirmed that scopoletin and umbelliferone had inhibitory effects on the F. oxysporum growth. We identified hydroxycoumarin synthase genes IbF6'H2 and IbCOSY that are responsible for scopoletin production in sweet potatoes. The co-overexpression of IbF6'H2 and IbCOSY in tobacco plants produced the highest scopoletin levels and disease resistance. This study provides insights into the molecular basis of sweet potato defense against Fusarium wilt and identifies valuable genes for breeding wilt-resistant cultivars.
Collapse
Affiliation(s)
- Jing Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Peitao Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Tengfei Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xianhui Huang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jikai Zong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qingqing Luo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Chao Peng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoyan Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Fei Qiu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Dongchao Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Lien Xiang
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Yan Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Chunxian Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Fangyuan Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhihua Liao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yufan Fu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Junlan Zeng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Gracheva M, Klencsár Z, Homonnay Z, Solti Á, Péter L, Machala L, Novak P, Kovács K. Revealing the nuclearity of iron citrate complexes at biologically relevant conditions. Biometals 2024; 37:461-475. [PMID: 38110781 PMCID: PMC11006783 DOI: 10.1007/s10534-023-00562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/09/2023] [Indexed: 12/20/2023]
Abstract
Citric acid plays an ubiquitous role in the complexation of essential metals like iron and thus it has a key function making them biologically available. For this, iron(III) citrate complexes are considered among the most significant coordinated forms of ferric iron that take place in biochemical processes of all living organisms. Although these systems hold great biological relevance, their coordination chemistry has not been fully elucidated yet. The current study aimed to investigate the speciation of iron(III) citrate using Mössbauer and electron paramagnetic resonance spectroscopies. Our aim was to gain insights into the structure and nuclearity of the complexes depending on the pH and iron to citrate ratio. By applying the frozen solution technique, the results obtained directly reflect the iron speciation present in the aqueous solution. At 1:1 iron:citrate molar ratio, polynuclear species prevailed forming most probably a trinuclear structure. In the case of citrate excess, the coexistence of several monoiron species with different coordination environments was confirmed. The stability of the polynuclear complexes was checked in the presence of organic solvents.
Collapse
Affiliation(s)
- Maria Gracheva
- Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány P. s. 1/A, 1117, Budapest, Hungary
- Nuclear Analysis and Radiography Department, Centre for Energy Research, Konkoly-Thege Miklós út. 29-33, 1121, Budapest, Hungary
| | - Zoltán Klencsár
- Nuclear Analysis and Radiography Department, Centre for Energy Research, Konkoly-Thege Miklós út. 29-33, 1121, Budapest, Hungary
| | - Zoltán Homonnay
- Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány P. s. 1/A, 1117, Budapest, Hungary
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter s. 1/C, 1117, Budapest, Hungary
| | - László Péter
- Department of Complex Fluids, Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Konkoly-Thege Miklós út 29-33, 1121, Budapest, Hungary
| | - Libor Machala
- Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Petr Novak
- Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Krisztina Kovács
- Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány P. s. 1/A, 1117, Budapest, Hungary.
| |
Collapse
|
5
|
Paffrath V, Tandron Moya YA, Weber G, von Wirén N, Giehl RFH. A major role of coumarin-dependent ferric iron reduction in strategy I-type iron acquisition in Arabidopsis. THE PLANT CELL 2024; 36:642-664. [PMID: 38016103 PMCID: PMC10896297 DOI: 10.1093/plcell/koad279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/16/2023] [Indexed: 11/30/2023]
Abstract
Many non-graminaceous species release various coumarins in response to iron (Fe) deficiency. However, the physiological relevance of these coumarins remains poorly understood. Here, we show that the three enzymes leading to sideretin biosynthesis co-exist in Arabidopsis (Arabidopsis thaliana) epidermal and cortical cells and that the shift to fraxetin at alkaline pH depends on MYB72-mediated repression of CYTOCHROME P450, FAMILY 82, SUBFAMILY C, POLYPEPTIDE 4 (CYP82C4). In vitro, only fraxetin and sideretin can reduce part of the Fe(III) that they mobilize. We demonstrate that coumarin-mediated Fe(III) reduction is critical under acidic conditions, as fraxetin and sideretin can complement the Fe(III)-chelate reductase mutant ferric reduction oxidase 2 (fro2), and disruption of coumarin biosynthesis in fro2 plants impairs Fe acquisition similar to in the Fe(II) uptake-deficient mutant iron-regulated transporter 1 (irt1). Disruption of sideretin biosynthesis in a fro2 cyp82C4-1 double mutant revealed that sideretin is the dominant chemical reductant that functions with FRO2 to mediate Fe(II) formation for root uptake. At alkaline pH, Fe(III) reduction by coumarins becomes almost negligible but fraxetin still sustains high Fe(III) mobilization, suggesting that its main function is to provide chelated Fe(III) for FRO2. Our study indicates that strategy-I plants link sideretin and fraxetin biosynthesis and secretion to external pH to recruit distinct coumarin chemical activities to maximize Fe acquisition according to prevailing soil pH conditions.
Collapse
Affiliation(s)
- Vanessa Paffrath
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstr 3, 06466 Seeland, Germany
| | - Yudelsy A Tandron Moya
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstr 3, 06466 Seeland, Germany
| | - Günther Weber
- Leibniz-Institut für Analytische Wissenschaften (ISAS) e.V., Bunsen-Kirchhoff-Str 11, 44139 Dortmund, Germany
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstr 3, 06466 Seeland, Germany
| | - Ricardo F H Giehl
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstr 3, 06466 Seeland, Germany
| |
Collapse
|
6
|
Clúa J, Montpetit J, Jimenez-Sandoval P, Naumann C, Santiago J, Poirier Y. A CYBDOM protein impacts iron homeostasis and primary root growth under phosphate deficiency in Arabidopsis. Nat Commun 2024; 15:423. [PMID: 38212368 PMCID: PMC10784552 DOI: 10.1038/s41467-023-43911-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 11/23/2023] [Indexed: 01/13/2024] Open
Abstract
Arabidopsis primary root growth response to phosphate (Pi) deficiency is mainly controlled by changes in apoplastic iron (Fe). Upon Pi deficiency, apoplastic Fe deposition in the root apical meristem activates pathways leading to the arrest of meristem maintenance and inhibition of cell elongation. Here, we report that a member of the uncharacterized cytochrome b561 and DOMON domain (CYBDOM) protein family, named CRR, promotes iron reduction in an ascorbate-dependent manner and controls apoplastic iron deposition. Under low Pi, the crr mutant shows an enhanced reduction of primary root growth associated with increased apoplastic Fe in the root meristem and a reduction in meristematic cell division. Conversely, CRR overexpression abolishes apoplastic Fe deposition rendering primary root growth insensitive to low Pi. The crr single mutant and crr hyp1 double mutant, harboring a null allele in another member of the CYDOM family, shows increased tolerance to high-Fe stress upon germination and seedling growth. Conversely, CRR overexpression is associated with increased uptake and translocation of Fe to the shoot and results in plants highly sensitive to Fe excess. Our results identify a ferric reductase implicated in Fe homeostasis and developmental responses to abiotic stress, and reveal a biological role for CYBDOM proteins in plants.
Collapse
Affiliation(s)
- Joaquín Clúa
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015, Lausanne, Switzerland
| | - Jonatan Montpetit
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015, Lausanne, Switzerland
| | - Pedro Jimenez-Sandoval
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015, Lausanne, Switzerland
| | - Christin Naumann
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Germany
| | - Julia Santiago
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015, Lausanne, Switzerland
| | - Yves Poirier
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
7
|
Avoscan L, Lurthy T, Lherminier J, Arnould C, Loria PM, Wu TD, Guerquin-Kern JL, Pivato B, Lemaître JP, Lemanceau P, Mazurier S. Iron status and root cell morphology of Arabidopsis thaliana as modified by a bacterial ferri-siderophore. PHYSIOLOGIA PLANTARUM 2024; 176:e14223. [PMID: 38383937 DOI: 10.1111/ppl.14223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
We previously provided evidence for the contribution of pyoverdine to the iron nutrition of Arabidopsis. In the present article, we further analyze the mechanisms and physiology of the adaptations underlying plant iron nutrition through Fe(III)-pyoverdine (Fe(III)-pvd). An integrated approach combining microscopy and nanoscale secondary ion mass spectrometry (NanoSIMS) on plant samples was adopted to localize pyoverdine in planta and assess the impact of this siderophore on the plant iron status and root cellular morphology. The results support a possible plant uptake mechanism of the Fe(III)-pvd complex by epidermal root cells via a non-reductive process associated with the presence of more vesicles. Pyoverdine was transported to the central cylinder via the symplastic and/or trans-cellular pathway(s), suggesting a possible root-to-shoot translocation. All these processes led to enhanced plant iron nutrition, as previously shown. Overall, these findings suggest that bacterial siderophores contribute to plant iron uptake and homeostasis.
Collapse
Affiliation(s)
- Laure Avoscan
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
- Agroécologie, Plateforme DimaCell, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Tristan Lurthy
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Jeannine Lherminier
- Agroécologie, Plateforme DimaCell, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Christine Arnould
- Agroécologie, Plateforme DimaCell, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Pierre-Manuel Loria
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Ting-Di Wu
- Institut Curie, PSL University, Université Paris-Saclay, CNRS UAR2016, Inserm US43, Multimodal Imaging Center, Orsay, France
| | - Jean-Luc Guerquin-Kern
- Institut Curie, PSL University, Université Paris-Saclay, CNRS UAR2016, Inserm US43, Multimodal Imaging Center, Orsay, France
| | - Barbara Pivato
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Jean-Paul Lemaître
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Philippe Lemanceau
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Sylvie Mazurier
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
8
|
Kang K, Schenkeveld WDC, Weber G, Kraemer SM. Stability of Coumarins and Determination of the Net Iron Oxidation State of Iron-Coumarin Complexes: Implications for Examining Plant Iron Acquisition Mechanisms. ACS EARTH & SPACE CHEMISTRY 2023; 7:2339-2352. [PMID: 38148994 PMCID: PMC10749481 DOI: 10.1021/acsearthspacechem.3c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 12/28/2023]
Abstract
Coumarins are exuded into the soil environment by plant roots in response to iron (Fe) deficiency. Previous studies have shown that coumarins can increase the Fe solubility upon interaction with sparsely soluble Fe(III) (hydr)oxide. However, the chemical mechanisms of Fe(III) (hydr)oxide dissolution by coumarins remain unclear. The high redox instability of dissolved coumarins and the interference of coumarins in determining the Fe redox state hinder the quantitative and mechanistic investigation of coumarin-induced Fe mobilization. In this study, we investigated the oxidative stability of three coumarins that have been found in root exudates, esculetin, scopoletin, and fraxetin, over a broad pH range under oxic and anoxic conditions. Our results show that the oxidation of coumarins is irreversible under oxic conditions and that oxidative degradation rates increased with increasing pH under both oxic and anoxic conditions. However, the complexation of Fe protects coumarins from degradation in the circumneutral pH range even under oxic conditions. Furthermore, we observed that Ferrozine, which is commonly used for establishing Fe redox speciation, can facilitate the reduction of Fe(III) complexed by coumarins, even at circumneutral pH. Reduction rates increased with decreasing pH and were larger for fraxetin than for scopoletin and esculetin. Based on these observations, we optimized the Ferrozine method for determining the redox state of Fe complexed by coumarins. Understanding the stability of dissolved coumarins and using a precise analytical method to determine the redox state of Fe in the presence of coumarins are critical for investigating the mechanisms by which coumarins enhance the availability of Fe in the rhizosphere.
Collapse
Affiliation(s)
- Kyounglim Kang
- Environmental
Geochemistry, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Vienna, Austria
| | - Walter D. C. Schenkeveld
- Soil
Chemistry and Chemical Soil Quality, Environmental Sciences, Wageningen University, 6708 PB, Wageningen 6700 AA, The Netherlands
| | - Guenther Weber
- Leibniz-Institut
für Analytische Wissenschaften − ISAS, 44227 Dortmund, Germany
| | - Stephan M. Kraemer
- Environmental
Geochemistry, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
9
|
Xu F, Yu F. Sensing and regulation of plant extracellular pH. TRENDS IN PLANT SCIENCE 2023; 28:1422-1437. [PMID: 37596188 DOI: 10.1016/j.tplants.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/03/2023] [Accepted: 06/19/2023] [Indexed: 08/20/2023]
Abstract
In plants, pH determines nutrient acquisition and sensing, and triggers responses to osmotic stress, whereas pH homeostasis protects the cellular machinery. Extracellular pH (pHe) controls the chemistry and rheology of the cell wall to adjust its elasticity and regulate cell expansion in space and time. Plasma membrane (PM)-localized proton pumps, cell-wall components, and cell wall-remodeling enzymes jointly maintain pHe homeostasis. To adapt to their environment and modulate growth and development, plant cells must sense subtle changes in pHe caused by the environment or neighboring cells. Accumulating evidence indicates that PM-localized cell-surface peptide-receptor pairs sense pHe. We highlight recent advances in understanding how plants perceive and maintain pHe, and discuss future perspectives.
Collapse
Affiliation(s)
- Fan Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, PR China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
10
|
Wang R, Fei Y, Pan Y, Zhou P, Adegoke JO, Shen R, Lan P. IMA peptides function in iron homeostasis and cadmium resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111868. [PMID: 37722507 DOI: 10.1016/j.plantsci.2023.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
Iron (Fe), an essential micronutrient, participates in photosynthesis, respiration, and many other enzymatic reactions. Cadmium (Cd), by contrast, is a toxic element to virtually all living organisms. Both Fe deficiency and Cd toxicity severally impair crop growth and productivity, finally leading to human health issues. Understanding how plants control the uptake and homeostasis of Fe and combat Cd toxicity thus is mandatory to develop Fe-enriched but Cd-cleaned germplasms for human beings. Recent studies in Arabidopsis and rice have revealed that IRON MAN (IMA) peptides stand out as a key regulator to respond to Fe deficiency by competitively interacting with a ubiquitin E3 ligase, thus inhibiting the degradation of IVc subgroup bHLH transcription factors (TFs), mediated by 26 S proteasome. Elevated expression of IMA confers tolerance to Cd stress in both Arabidopsis and wheat by activating the iron deficiency response. Here, we discuss recent breakthroughs that IMA peptides function in the Fe-deficiency response to attain Fe homeostasis and combat Cd toxicity as a potential candidate for phytoremediation.
Collapse
Affiliation(s)
- Ruonan Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchen Fei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilin Pan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peijun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Julius Oluwaseun Adegoke
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Li X, Cao H, Yu D, Xu K, Zhang Y, Shangguan X, Zheng X, Yang Z, Li C, Pan X, Cui Y, Zhang Z, Han M, Zhang Y, Sun Q, Guo H, Zhao J, Li L, Li C. SlbHLH152, a bHLH transcription factor positively regulates iron homeostasis in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111821. [PMID: 37558055 DOI: 10.1016/j.plantsci.2023.111821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
The maintain of iron (Fe) homeostasis is essential for plant survival. In tomato, few transcription factors have been identified as regulators of Fe homeostasis, among which SlbHLH068 induced by iron deficiency, plays an important role. However, the upstream regulator(s) responsible for activating the expression of SlbHLH068 remain(s) unknown. In this study, the bHLH (basic helix-loop-helix) transcription factor SlbHLH152 was identified as an upstream regulator of SlbHLH068 using yeast one-hybrid screening. Deletion of SlbHLH152 led to a significant decline in Fe concentration, which was accompanied by reduced expression of Fe-deficiency-responsive genes. In contrast, SlbHLH152 overexpression plants displayed tolerance to iron deficiency, increased Fe accumulation, and elevated expression of Fe-deficiency-responsive genes. Further analysis indicated that SlbHLH152 directly activates the transcription of SlbHLH068. Taken together, our results suggest that SlbHLH152 may be involved in the regulation of iron homeostasis by directly activating the transcription of SlbHLH068 in tomato.
Collapse
Affiliation(s)
- Xiaoli Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Haohao Cao
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Deshui Yu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Kedong Xu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Yi Zhang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Xinxin Shangguan
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Xiaohong Zheng
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Zhongzhou Yang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Chaoqiong Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Xingchen Pan
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Yiming Cui
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Zhiqing Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Mengru Han
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Yiqing Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Qimeng Sun
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Huiling Guo
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Jingyi Zhao
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Lili Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China; College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China.
| | - Chengwei Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China; College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
12
|
González-Guerrero M, Navarro-Gómez C, Rosa-Núñez E, Echávarri-Erasun C, Imperial J, Escudero V. Forging a symbiosis: transition metal delivery in symbiotic nitrogen fixation. THE NEW PHYTOLOGIST 2023; 239:2113-2125. [PMID: 37340839 DOI: 10.1111/nph.19098] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
Symbiotic nitrogen fixation carried out by the interaction between legumes and rhizobia is the main source of nitrogen in natural ecosystems and in sustainable agriculture. For the symbiosis to be viable, nutrient exchange between the partners is essential. Transition metals are among the nutrients delivered to the nitrogen-fixing bacteria within the legume root nodule cells. These elements are used as cofactors for many of the enzymes controlling nodule development and function, including nitrogenase, the only known enzyme able to convert N2 into NH3 . In this review, we discuss the current knowledge on how iron, zinc, copper, and molybdenum reach the nodules, how they are delivered to nodule cells, and how they are transferred to nitrogen-fixing bacteria within.
Collapse
Affiliation(s)
- Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Cristina Navarro-Gómez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - Elena Rosa-Núñez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - Carlos Echávarri-Erasun
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| |
Collapse
|
13
|
Mai HJ, Baby D, Bauer P. Black sheep, dark horses, and colorful dogs: a review on the current state of the Gene Ontology with respect to iron homeostasis in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1204723. [PMID: 37554559 PMCID: PMC10406446 DOI: 10.3389/fpls.2023.1204723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/04/2023] [Indexed: 08/10/2023]
Abstract
Cellular homeostasis of the micronutrient iron is highly regulated in plants and responsive to nutrition, stress, and developmental signals. Genes for iron management encode metal and other transporters, enzymes synthesizing chelators and reducing substances, transcription factors, and several types of regulators. In transcriptome or proteome datasets, such iron homeostasis-related genes are frequently found to be differentially regulated. A common method to detect whether a specific cellular pathway is affected in the transcriptome data set is to perform Gene Ontology (GO) enrichment analysis. Hence, the GO database is a widely used resource for annotating genes and identifying enriched biological pathways in Arabidopsis thaliana. However, iron homeostasis-related GO terms do not consistently reflect gene associations and levels of evidence in iron homeostasis. Some genes in the existing iron homeostasis GO terms lack direct evidence of involvement in iron homeostasis. In other aspects, the existing GO terms for iron homeostasis are incomplete and do not reflect the known biological functions associated with iron homeostasis. This can lead to potential errors in the automatic annotation and interpretation of GO term enrichment analyses. We suggest that applicable evidence codes be used to add missing genes and their respective ortholog/paralog groups to make the iron homeostasis-related GO terms more complete and reliable. There is a high likelihood of finding new iron homeostasis-relevant members in gene groups and families like the ZIP, ZIF, ZIFL, MTP, OPT, MATE, ABCG, PDR, HMA, and HMP. Hence, we compiled comprehensive lists of genes involved in iron homeostasis that can be used for custom enrichment analysis in transcriptomic or proteomic studies, including genes with direct experimental evidence, those regulated by central transcription factors, and missing members of small gene families or ortholog/paralog groups. As we provide gene annotation and literature alongside, the gene lists can serve multiple computational approaches. In summary, these gene lists provide a valuable resource for researchers studying iron homeostasis in A. thaliana, while they also emphasize the importance of improving the accuracy and comprehensiveness of the Gene Ontology.
Collapse
Affiliation(s)
- Hans-Jörg Mai
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
| | - Dibin Baby
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
- Heinrich Heine University, Center of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| |
Collapse
|
14
|
Bailey M, Hsieh EJ, Tsai HH, Ravindran A, Schmidt W. Alkalinity modulates a unique suite of genes to recalibrate growth and pH homeostasis. FRONTIERS IN PLANT SCIENCE 2023; 14:1100701. [PMID: 37457359 PMCID: PMC10348880 DOI: 10.3389/fpls.2023.1100701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Alkaline soils pose a conglomerate of constraints to plants, restricting the growth and fitness of non-adapted species in habitats with low active proton concentrations. To thrive under such conditions, plants have to compensate for a potential increase in cytosolic pH and restricted softening of the cell wall to invigorate cell elongation in a proton-depleted environment. To discern mechanisms that aid in the adaptation to external pH, we grew plants on media with pH values ranging from 5.5 to 8.5. Growth was severely restricted above pH 6.5 and associated with decreasing chlorophyll levels at alkaline pH. Bicarbonate treatment worsened plant performance, suggesting effects that differ from those exerted by pH as such. Transcriptional profiling of roots subjected to short-term transfer from optimal (pH 5.5) to alkaline (pH 7.5) media unveiled a large set of differentially expressed genes that were partially congruent with genes affected by low pH, bicarbonate, and nitrate, but showed only a very small overlap with genes responsive to the availability of iron. Further analysis of selected genes disclosed pronounced responsiveness of their expression over a wide range of external pH values. Alkalinity altered the expression of various proton/anion co-transporters, possibly to recalibrate cellular proton homeostasis. Co-expression analysis of pH-responsive genes identified a module of genes encoding proteins with putative functions in the regulation of root growth, which appears to be conserved in plants subjected to low pH or bicarbonate. Our analysis provides an inventory of pH-sensitive genes and allows comprehensive insights into processes that are orchestrated by external pH.
Collapse
Affiliation(s)
- Mitylene Bailey
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - En-Jung Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Huei-Hsuan Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Arya Ravindran
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Vélez-Bermúdez IC, Schmidt W. pH sensors in the plant apoplast: a sine qua non of phenotypic plasticity. FRONTIERS IN PLANT SCIENCE 2023; 14:1227279. [PMID: 37426990 PMCID: PMC10324574 DOI: 10.3389/fpls.2023.1227279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023]
Affiliation(s)
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
16
|
Mankotia S, Singh D, Monika K, Kalra M, Meena H, Meena V, Yadav RK, Pandey AK, Satbhai SB. ELONGATED HYPOCOTYL 5 regulates BRUTUS and affects iron acquisition and homeostasis in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1267-1284. [PMID: 36920240 DOI: 10.1111/tpj.16191] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 06/17/2023]
Abstract
Iron (Fe) is an essential micronutrient for both plants and animals. Fe-limitation significantly reduces crop yield and adversely impacts on human nutrition. Owing to limited bioavailability of Fe in soil, plants have adapted different strategies that not only regulate Fe-uptake and homeostasis but also bring modifications in root system architecture to enhance survival. Understanding the molecular mechanism underlying the root growth responses will have critical implications for plant breeding. Fe-uptake is regulated by a cascade of basic helix-loop-helix (bHLH) transcription factors (TFs) in plants. In this study, we report that HY5 (Elongated Hypocotyl 5), a member of the basic leucine zipper (bZIP) family of TFs, plays an important role in the Fe-deficiency signaling pathway in Arabidopsis thaliana. The hy5 mutant failed to mount optimum Fe-deficiency responses, and displayed root growth defects under Fe-limitation. Our analysis revealed that the induction of the genes involved in Fe-uptake pathway (FIT-FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR, FRO2-FERRIC REDUCTION OXIDASE 2 and IRT1-IRON-REGULATED TRANSPORTER1) is reduced in the hy5 mutant as compared with the wild-type plants under Fe-deficiency. Moreover, we also found that the expression of coumarin biosynthesis genes is affected in the hy5 mutant under Fe-deficiency. Our results also showed that HY5 negatively regulates BRUTUS (BTS) and POPEYE (PYE). Chromatin immunoprecipitation followed by quantitative polymerase chain reaction revealed direct binding of HY5 to the promoters of BTS, FRO2 and PYE. Altogether, our results showed that HY5 plays an important role in the regulation of Fe-deficiency responses in Arabidopsis.
Collapse
Affiliation(s)
- Samriti Mankotia
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Mohali, Punjab, 140306, India
| | - Dhriti Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Mohali, Punjab, 140306, India
| | - Kumari Monika
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Mohali, Punjab, 140306, India
| | - Muskan Kalra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Mohali, Punjab, 140306, India
| | - Himani Meena
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Mohali, Punjab, 140306, India
| | - Varsha Meena
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar, 140306, India
| | - Ram Kishor Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Mohali, Punjab, 140306, India
| | - Ajay Kumar Pandey
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar, 140306, India
| | - Santosh B Satbhai
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Mohali, Punjab, 140306, India
| |
Collapse
|
17
|
Roriz M, Pereira SI, Castro PM, Carvalho SM, Vasconcelos MW. Impact of soybean-associated plant growth-promoting bacteria on plant growth modulation under alkaline soil conditions. Heliyon 2023; 9:e14620. [PMID: 37180927 PMCID: PMC10172870 DOI: 10.1016/j.heliyon.2023.e14620] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 05/16/2023] Open
Abstract
Conventional strategies to manage iron (Fe) deficiency still present drawbacks, and more eco-sustainable solutions are needed. Knowledge on soybean-specific diversity and functional traits of their plant growth-promoting bacteria (PGPB) potentiates their applicability as bioinoculants to foster soybean performance under calcareous soil conditions. This work aimed to assess the efficacy of PGPB, retrieved from soybean tissues/rhizosphere, in enhancing plant growth and development as well as crop yield under alkaline soil conditions. Seventy-six bacterial strains were isolated from shoots (18%), roots (53%), and rhizosphere (29%) of soybean. Twenty-nine genera were identified, with Bacillus and Microbacterium being the most predominant. Based on distinct plant growth-promoting traits, the endophyte Bacillus licheniformis P2.3 and the rhizobacteria Bacillus aerius S2.14 were selected as bioinoculants. In vivo tests showed that soybean photosynthetic parameters, chlorophyll content, total fresh weight, and Fe concentrations were not significantly affected by bioinoculation. However, inoculation with B. licheniformis P2.3 increased pod number (33%) and the expression of Fe-related genes (FRO2, IRT1, F6'H1, bHLH38, and FER4), and decreased FC-R activity (45%). Moreover, bioinoculation significantly affected Mn, Zn, and Ca accumulation in plant tissues. Soybean harbors several bacterial strains in their tissues and in the rhizosphere with capacities related to Fe nutrition and plant growth promotion. The strain B. licheniformis P2.3 showed the best potential to be incorporated in bioinoculant formulations for enhancing soybean performance under alkaline soil conditions.
Collapse
Affiliation(s)
- Mariana Roriz
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
- Corresponding author.
| | - Sofia I.A. Pereira
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Paula M.L. Castro
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Susana M.P. Carvalho
- GreenUPorto – Research Centre on Sustainable Agrifood Production / Inov4Agro & DGAOT, Faculty of Sciences, University of Porto, Campus de Vairão, Rua da Agrária 747, 4485-646, Vairão, Portugal
| | - Marta W. Vasconcelos
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| |
Collapse
|
18
|
Song H, Geng Q, Wu X, Hu M, Ye M, Yu X, Chen Y, Xu J, Jiang L, Cao S. The transcription factor MYC1 interacts with FIT to negatively regulate iron homeostasis in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:193-208. [PMID: 36721966 DOI: 10.1111/tpj.16130] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/29/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Iron (Fe) is an indispensable trace mineral element for the normal growth of plants, and it is involved in different biological processes; Fe shortage in plants can induce chlorosis and yield loss. The objective of this research is to identify novel genes that participated in the regulation of Fe-deficiency stress in Arabidopsis thaliana. A basic helix-loop-helix (bHLH) transcription factor (MYC1) was identified to be interacting with the FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) using a yeast-two-hybrid assay. Transcript-level analysis showed that there was a decrease in MYC1 expression in Arabidopsis to cope with Fe-deficiency stress. Functional deficiency of MYC1 in Arabidopsis leads to an increase in Fe-deficiency tolerance and Fe-accumulation, whereas MYC1-overexpressing plants have an enhanced sensitivity to Fe-deficiency stress. Additionally, MYC1 inhibited the formation of FIT and bHLH38/39 heterodimers, which suppressed the expressed level for Fe acquisition genes FRO2 and IRT1 during Fe-deficiency stress. These results showed that MYC1 functions as a negative modulator of the Fe-deficiency stress response by inhibiting the formation of FIT and bHLH38/39 heterodimers, thereby suppressing the binding of FIT and bHLH38/39 heterodimers to the promoters of FRO2 and IRT1 to modulate Fe intake during Fe-deficiency stress. Overall, the findings of this study elucidated the role of MYC1 in coping with Fe-deficiency stress, and provided potential targets for the developing of crop varieties resistant to Fe-deficiency stress.
Collapse
Affiliation(s)
- Hui Song
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Qingliu Geng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xi Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Min Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Min Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xin Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yifan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jiena Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Li Jiang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shuqing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
19
|
Vélez-Bermúdez IC, Schmidt W. Iron sensing in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1145510. [PMID: 36968364 PMCID: PMC10032465 DOI: 10.3389/fpls.2023.1145510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The ease of accepting or donating electrons is the raison d'être for the pivotal role iron (Fe) plays in a multitude of vital processes. In the presence of oxygen, however, this very property promotes the formation of immobile Fe(III) oxyhydroxides in the soil, which limits the concentration of Fe that is available for uptake by plant roots to levels well below the plant's demand. To adequately respond to a shortage (or, in the absence of oxygen, a possible surplus) in Fe supply, plants have to perceive and decode information on both external Fe levels and the internal Fe status. As a further challenge, such cues have to be translated into appropriate responses to satisfy (but not overload) the demand of sink (i.e., non-root) tissues. While this seems to be a straightforward task for evolution, the multitude of possible inputs into the Fe signaling circuitry suggests diversified sensing mechanisms that concertedly contribute to govern whole plant and cellular Fe homeostasis. Here, we review recent progress in elucidating early events in Fe sensing and signaling that steer downstream adaptive responses. The emerging picture suggests that Fe sensing is not a central event but occurs in distinct locations linked to distinct biotic and abiotic signaling networks that together tune Fe levels, Fe uptake, root growth, and immunity in an interwoven manner to orchestrate and prioritize multiple physiological readouts.
Collapse
Affiliation(s)
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| |
Collapse
|
20
|
Vargas J, Gómez I, Vidal EA, Lee CP, Millar AH, Jordana X, Roschzttardtz H. Growth Developmental Defects of Mitochondrial Iron Transporter 1 and 2 Mutants in Arabidopsis in Iron Sufficient Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:1176. [PMID: 36904036 PMCID: PMC10007191 DOI: 10.3390/plants12051176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/25/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Iron is the most abundant micronutrient in plant mitochondria, and it has a crucial role in biochemical reactions involving electron transfer. It has been described in Oryza sativa that Mitochondrial Iron Transporter (MIT) is an essential gene and that knockdown mutant rice plants have a decreased amount of iron in their mitochondria, strongly suggesting that OsMIT is involved in mitochondrial iron uptake. In Arabidopsis thaliana, two genes encode MIT homologues. In this study, we analyzed different AtMIT1 and AtMIT2 mutant alleles, and no phenotypic defects were observed in individual mutant plants grown in normal conditions, confirming that neither AtMIT1 nor AtMIT2 are individually essential. When we generated crosses between the Atmit1 and Atmit2 alleles, we were able to isolate homozygous double mutant plants. Interestingly, homozygous double mutant plants were obtained only when mutant alleles of Atmit2 with the T-DNA insertion in the intron region were used for crossings, and in these cases, a correctly spliced AtMIT2 mRNA was generated, although at a low level. Atmit1 Atmit2 double homozygous mutant plants, knockout for AtMIT1 and knockdown for AtMIT2, were grown and characterized in iron-sufficient conditions. Pleiotropic developmental defects were observed, including abnormal seeds, an increased number of cotyledons, a slow growth rate, pinoid stems, defects in flower structures, and reduced seed set. A RNA-Seq study was performed, and we could identify more than 760 genes differentially expressed in Atmit1 Atmit2. Our results show that Atmit1 Atmit2 double homozygous mutant plants misregulate genes involved in iron transport, coumarin metabolism, hormone metabolism, root development, and stress-related response. The phenotypes observed, such as pinoid stems and fused cotyledons, in Atmit1 Atmit2 double homozygous mutant plants may suggest defects in auxin homeostasis. Unexpectedly, we observed a possible phenomenon of T-DNA suppression in the next generation of Atmit1 Atmit2 double homozygous mutant plants, correlating with increased splicing of the AtMIT2 intron containing the T-DNA and the suppression of the phenotypes observed in the first generation of the double mutant plants. In these plants with a suppressed phenotype, no differences were observed in the oxygen consumption rate of isolated mitochondria; however, the molecular analysis of gene expression markers, AOX1a, UPOX, and MSM1, for mitochondrial and oxidative stress showed that these plants express a degree of mitochondrial perturbation. Finally, we could establish by a targeted proteomic analysis that a protein level of 30% of MIT2, in the absence of MIT1, is enough for normal plant growth under iron-sufficient conditions.
Collapse
Affiliation(s)
- Joaquín Vargas
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Isabel Gómez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Elena A. Vidal
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Chun Pong Lee
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Bayliss Building M316, Crawley, WA 6009, Australia
| | - A. Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Bayliss Building M316, Crawley, WA 6009, Australia
| | - Xavier Jordana
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Hannetz Roschzttardtz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| |
Collapse
|
21
|
Rodrigues WFC, Lisboa ABP, Lima JE, Ricachenevsky FK, Del-Bem LE. Ferrous iron uptake via IRT1/ZIP evolved at least twice in green plants. THE NEW PHYTOLOGIST 2023; 237:1951-1961. [PMID: 36626937 DOI: 10.1111/nph.18661] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Iron (Fe) is essential for virtually all organisms, being irreplaceable because of its electrochemical properties that enable many biochemical processes, including photosynthesis. Besides its abundance, Fe is generally found in the poorly soluble form of ferric iron (Fe3+ ), while most plants uptake the soluble form Fe2+ . The model angiosperm Arabidopsis thaliana, for example, captures Fe through a mechanism that lowers rhizosphere pH through proton pumping that increases Fe3+ solubility, which is then reduced by a membrane-bound reductase and transported into the cell by the zinc-regulated, iron-regulated transporter-like protein (ZIP) family protein AtIRT1. ZIP proteins are transmembrane transporters of divalent metals such as Fe2+ , Zn2+ , Mn2+ , and Cd2+ . In this work, we investigated the evolution of functional homologs of IRON-REGULATED TRANSPORTER 1/ZIP in the supergroup Archaeplastida (Viridiplantae + Rhodophyta + Glaucophyta) using 51 genomes of diverse lineages. Our analyses suggest that Fe is acquired through deeply divergent ZIP proteins in land plants and chlorophyte green algae, indicating that Fe2+ uptake by ZIP proteins evolved independently at least twice throughout green plant evolution. Our results indicate that the archetypical IRON-REGULATED TRANSPORTER (IRT) proteins from angiosperms likely emerged before the origin of land plants during early streptophyte algae terrestrialization, a process that required the evolution of Fe acquisition in terrestrial subaerial settings.
Collapse
Affiliation(s)
- Wenderson Felipe Costa Rodrigues
- Graduate Program in Bioinformatics, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), 31270-901, Belo Horizonte, Brazil
- Graduate Program in Plant Biology, Department of Botany, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), 31270-901, Belo Horizonte, Brazil
- Del-Bem Lab, Department of Botany, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), 31270-901, Belo Horizonte, Brazil
| | - Ayrton Breno P Lisboa
- Graduate Program in Bioinformatics, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), 31270-901, Belo Horizonte, Brazil
- Del-Bem Lab, Department of Botany, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), 31270-901, Belo Horizonte, Brazil
| | - Joni Esrom Lima
- Department of Botany, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), 31270-901, Belo Horizonte, Brazil
| | - Felipe Klein Ricachenevsky
- Department of Botany, Institute of Biosciences (IB), Federal University of Rio Grande do Sul (UFRGS), 91501-900, Porto Alegre, Brazil
- Graduate Program in Cellular and Molecular Biology, Center for Biotechnology, Federal University of Rio Grande do Sul (UFRGS), 91501-900, Porto Alegre, Brazil
| | - Luiz-Eduardo Del-Bem
- Graduate Program in Bioinformatics, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), 31270-901, Belo Horizonte, Brazil
- Del-Bem Lab, Department of Botany, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), 31270-901, Belo Horizonte, Brazil
- Department of Botany, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), 31270-901, Belo Horizonte, Brazil
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
22
|
Tao M, Liu S, Li Y, Liu A, Tian J, Liu Y, Fu H, Zhu W. Molecular characterization of a feruloyl-CoA 6'-hydroxylase involved in coumarin biosynthesis in Clematis terniflora DC. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:162-170. [PMID: 36709578 DOI: 10.1016/j.plaphy.2023.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/05/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Coumarin is an important secondary metabolite that affects plant physiology. It is a lactone of cis-o-hydroxycinnamic acid and widely exists in medicinal plants. Clematis terniflora DC. is a plant belonging to Ranunculaceae and is rich in variety of coumarins. Feruloyl-CoA 6'-hydroxylase has been reported as a key enzyme in the formation of coumarin basic skeleton only in some common plants, however, its evidence in other species is still lacking especially for the biosynthesis of coumarins in C. terniflora. In the present study, we identified a feruloyl-CoA 6'-hydroxylase CtF6'H in C. terniflora, and functional characterization indicated that CtF6'H could hydroxylate feruloyl-CoA to 6-hydroxyferuloyl-CoA. Furthermore, the expression level of CtF6'H was differed among different tissues in C. terniflora, while under UV-B radiation, the level of CtF6'H was increased in the leaves. Biochemical characteristics and subcellular location showed that CtF6'H was mainly present in the cytosol. The crystal structure of CtF6'H was simulated by homology modeling to predict the potential residues affecting enzyme activity. This study provides the additional evidence of feruloyl-CoA 6'-hydroxylase in different plant species and enriches our understanding of biosynthetic mechanism of coumarin in C. terniflora.
Collapse
Affiliation(s)
- Minglei Tao
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China; College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Shengzhi Liu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Yaohan Li
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Amin Liu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Jingkui Tian
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yuchang Liu
- International Center of Zhejiang Fuyang High School, Hangzhou, 311400, China
| | - Hongwei Fu
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Wei Zhu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
23
|
Identification of a Novel Coumarins Biosynthetic Pathway in the Endophytic Fungus Fusarium oxysporum GU-7 with Antioxidant Activity. Appl Environ Microbiol 2023; 89:e0160122. [PMID: 36598487 PMCID: PMC9888266 DOI: 10.1128/aem.01601-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Coumarins are generally considered to be produced by natural plants. Fungi have been reported to produce coumarins, but their biosynthetic pathways are still unknown. In this study, Fusarium oxysporum GU-7 and GU-60 were isolated from Glycyrrhiza uralensis, and their antioxidant activities were determined to be significantly different. Abundant dipeptide, phenolic acids, and the plant-derived coumarins fraxetin and scopoletin were identified in GU-7 by untargeted metabolomics, and these compounds may account for its stronger antioxidant activity compared to GU-60. Combined with metabolome and RNA sequencing analysis, we identified 24 potentially key genes involved in coumarin biosynthesis and 6 intermediate metabolites. Interestingly, the best hit of S8H, a key gene involved in hydroxylation at the C-8 position of scopoletin to yield fraxetin, belongs to a plant species. Additionally, nondestructive infection of G. uralensis seeds with GU-7 significantly improved the antioxidant activity of seedlings compared to the control group. This antioxidant activity may depend on the biological characteristics of endophytes themselves, as we observed a positive correlation between the antioxidant activity of endophytic fungi and that of their nondestructively infected seedlings. IMPORTANCE Plant-produced coumarins have been shown to play an important role in assembly of the plant microbiomes and iron acquisition. Coumarins can also be produced by some microorganisms. However, studies on coumarin biosynthesis in microorganisms are still lacking. We report for the first time that fraxetin and scopoletin were simultaneously produced by F. oxysporum GU-7 with strong free radical scavenging abilities. Subsequently, we identified intermediate metabolites and key genes in the biosynthesis of these two coumarins. This is the first report on the coumarin biosynthesis pathway in nonplant species, providing new strategies and perspectives for coumarin production and expanding research on new ways for plants to obtain iron.
Collapse
|
24
|
Singh G, Agrawal H, Bednarek P. Specialized metabolites as versatile tools in shaping plant-microbe associations. MOLECULAR PLANT 2023; 16:122-144. [PMID: 36503863 DOI: 10.1016/j.molp.2022.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Plants are rich repository of a large number of chemical compounds collectively referred to as specialized metabolites. These compounds are of importance for adaptive processes including responses against changing abiotic conditions and interactions with various co-existing organisms. One of the strikingly affirmed functions of these specialized metabolites is their involvement in plants' life-long interactions with complex multi-kingdom microbiomes including both beneficial and harmful microorganisms. Recent developments in genomic and molecular biology tools not only help to generate well-curated information about regulatory and structural components of biosynthetic pathways of plant specialized metabolites but also to create and screen mutant lines defective in their synthesis. In this review, we have comprehensively surveyed the function of these specialized metabolites and discussed recent research findings demonstrating the responses of various microbes on tested mutant lines having defective biosynthesis of particular metabolites. In addition, we attempt to provide key clues about the impact of these metabolites on the assembly of the plant microbiome by summarizing the major findings of recent comparative metagenomic analyses of available mutant lines under customized and natural microbial niches. Subsequently, we delineate benchmark initiatives that aim to engineer or manipulate the biosynthetic pathways to produce specialized metabolites in heterologous systems but also to diversify their immune function. While denoting the function of these metabolites, we also discuss the critical bottlenecks associated with understanding and exploiting their function in improving plant adaptation to the environment.
Collapse
Affiliation(s)
- Gopal Singh
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Himani Agrawal
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| |
Collapse
|
25
|
Hsu SH, Stassen MJJ, Pieterse CMJ, Stringlis IA. Techniques to Study Common Root Responses to Beneficial Microbes and Iron Deficiency. Methods Mol Biol 2023; 2665:47-62. [PMID: 37166592 DOI: 10.1007/978-1-0716-3183-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Iron (Fe) plays a central role in the vital processes of a plant. The Fe status of a plant influences growth and immunity, but it also dictates interactions of roots with soil microbiota through the production of Fe mobilizing, antimicrobial fluorescent phenolic compounds called coumarins. To adapt to low Fe availability in the soil, plants deploy an efficient Fe deficiency response. Interestingly, this Fe deficiency response is hijacked by root-colonizing microbes in the root microbiome to establish a mutually beneficial relationship. In this chapter, we describe how we cultivate plants and microbes to study the interaction between plants, beneficial rhizobacteria, and the plant's Fe deficiency response. We describe (a) how we study activity and localization of these responses by assessing gene-specific promoter activities using GUS assays, (b) how we visualize root-secreted coumarins in response to Fe deficiency and colonization by beneficial rhizobacteria, and (c) how we prepare our samples for metabolite extraction and reverse-transcriptase quantitative PCR to analyze the expression of marker genes.
Collapse
Affiliation(s)
- Shu-Hua Hsu
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Max J J Stassen
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Ioannis A Stringlis
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
26
|
Robe K, Conjero G, Dubos C. The Use of Spectral Imaging to Follow the Iron and pH-Dependent Accumulation of Fluorescent Coumarins. Methods Mol Biol 2023; 2665:23-30. [PMID: 37166589 DOI: 10.1007/978-1-0716-3183-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Plants challenged with iron deficiency produce in their roots and secrete into the rhizosphere several small molecules named coumarins that derive from the phenylpropanoid pathway. Coumarins are biosynthesized in different root cell types and transported to the root epidermis prior to their secretion in the surrounding media. Taking advantage of the natural fluorescence of most coumarins glycosides when exposed to UV light, we developed a method to uncover their individual cellular localization and accumulation. This approach couples spectral imaging acquisition and linear unmixing analysis. In this protocol, we describe guidelines, experimental setup, and conditions for the analysis of coumarins localization and accumulation in Arabidopsis thaliana root seedlings grown in control and iron deficiency conditions, at both acidic and alkaline pH.
Collapse
Affiliation(s)
- Kevin Robe
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Geneviève Conjero
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Christian Dubos
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
27
|
Kabir AH, Ela EJ, Bagchi R, Rahman MA, Peiter E, Lee KW. Nitric oxide acts as an inducer of Strategy-I responses to increase Fe availability and mobilization in Fe-starved broccoli (Brassica oleracea var. oleracea). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:182-192. [PMID: 36423388 DOI: 10.1016/j.plaphy.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Iron (Fe) deficiency causes reduced growth and yield in broccoli. This study elucidates how sodium nitroprusside (SNP), known as nitric oxide (NO) donor, mitigates the retardation caused by Fe deficiency in broccoli. The SNP caused substantial nitric oxide accumulation in the roots of Fe-deficient plants, which resulted in a significant improvement in chlorophyll levels, photosynthetic efficiency, and morphological growth parameters, showing that it has a favorable influence on recovering broccoli health. Ferric reductase activity and the expression of BoFRO1 (ferric chelate reductase) gene in roots were consistently increased by SNP under Fe deficiency, which likely resulted in increased Fe mobilization. Furthermore, proton (H+) extrusion and BoHA2 (H+-ATPase 2) expression were significantly increased, suggesting that they may be involved in lowering rhizospheric pH to restore Fe mobilization in roots of bicarbonate-treated broccoli plants. The levels of Fe in root and shoot tissues and the expression of BoIRT1 (Fe-regulated transporter) both increased dramatically after SNP supplementation under Fe deprivation. Furthermore, SNP-induced increase in citrate and malate concentrations suggested a role of NO in improved Fe chelation in Fe-deficient broccoli. A NO scavenger (cPTIO) ceased the elevated FCR activity and IAA (indole-3-acetic acid) concentration in Fe-starved plants treated with SNP. These findings suggest that SNP may play a role in initiating Fe availability by elevated IAA concentration and BoEIR1 (auxin efflux carrier) expression in the roots of broccoli during Fe shortage. Therefore, SNP may improve Fe availability and mobilization by increasing Strategy-I Fe uptake pathways, which may help broccoli tolerate Fe deficiency.
Collapse
Affiliation(s)
- Ahmad Humayan Kabir
- Department of Genetics, University of Georgia, GA 30602, USA; Molecular Plant Physiology Laboratory, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Esrat Jahan Ela
- Molecular Plant Physiology Laboratory, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Ruby Bagchi
- Molecular Plant Physiology Laboratory, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Atikur Rahman
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ki-Won Lee
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| |
Collapse
|
28
|
Okada S, Lei GJ, Yamaji N, Huang S, Ma JF, Mochida K, Hirayama T. FE UPTAKE-INDUCING PEPTIDE1 maintains Fe translocation by controlling Fe deficiency response genes in the vascular tissue of Arabidopsis. PLANT, CELL & ENVIRONMENT 2022; 45:3322-3337. [PMID: 35993196 DOI: 10.1111/pce.14424] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
FE UPTAKE-INDUCING PEPTIDE1 (FEP1), also named IRON MAN3 (IMA3) is a short peptide involved in the iron deficiency response in Arabidopsis thaliana. Recent studies uncovered its molecular function, but its physiological function in the systemic Fe response is not fully understood. To explore the physiological function of FEP1 in iron homoeostasis, we performed a transcriptome analysis using the FEP1 loss-of-function mutant fep1-1 and a transgenic line with oestrogen-inducible expression of FEP1. We determined that FEP1 specifically regulates several iron deficiency-responsive genes, indicating that FEP1 participates in iron translocation rather than iron uptake in roots. The iron concentration in xylem sap under iron-deficient conditions was lower in the fep1-1 mutant and higher in FEP1-induced transgenic plants compared with the wild type (WT). Perls staining revealed a greater accumulation of iron in the cortex of fep1-1 roots than in the WT root cortex, although total iron levels in roots were comparable in the two genotypes. Moreover, the fep1-1 mutation partially suppressed the iron overaccumulation phenotype in the leaves of the oligopeptide transporter3-2 (opt3-2) mutant. These data suggest that FEP1 plays a pivotal role in iron movement and in maintaining the iron quota in vascular tissues in Arabidopsis.
Collapse
Affiliation(s)
- Satoshi Okada
- Group of Environmental Stress Response Systems, Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Gui J Lei
- Group of Plant Stress Physiology, Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Naoki Yamaji
- Group of Plant Stress Physiology, Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Sheng Huang
- Group of Plant Stress Physiology, Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Jian F Ma
- Group of Plant Stress Physiology, Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Keiichi Mochida
- Crop Design Research Team, Institute of Plant Science and Resources, Okayama University, Okayama, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Japan
- School of Information and Data Sciences, Nagasaki University, Nagasaki, Japan
| | - Takashi Hirayama
- Group of Environmental Stress Response Systems, Institute of Plant Science and Resources, Okayama University, Okayama, Japan
- Crop Design Research Team, Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| |
Collapse
|
29
|
Kabir AH, Rahman MA, Rahman MM, Brailey‐Jones P, Lee K, Bennetzen JL. Mechanistic assessment of tolerance to iron deficiency mediated by Trichoderma harzianum in soybean roots. J Appl Microbiol 2022; 133:2760-2778. [PMID: 35665578 PMCID: PMC9796762 DOI: 10.1111/jam.15651] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/24/2022] [Accepted: 05/31/2022] [Indexed: 01/07/2023]
Abstract
AIMS Iron (Fe) deficiency in soil is a continuing problem for soybean (Glycine max L.) production, partly as a result of continuing climate change. This study elucidates how Trichoderma harzianum strain T22 (TH) mitigates growth retardation associated with Fe-deficiency in a highly sensitive soybean cultivar. METHODS AND RESULTS Soil TH supplementation led to mycelial colonization and the presence of UAOX1 gene in roots that caused substantial improvement in chlorophyll score, photosynthetic efficiency and morphological parameters, indicating a positive influence on soybean health. Although rhizosphere acidification was found to be a common feature of Fe-deficient soybean, the upregulation of Fe-reductase activity (GmFRO2) and total phenol secretion were two of the mechanisms that substantially increased the Fe availability by TH. Heat-killed TH applied to soil caused no improvement in photosynthetic attributes and Fe-reductase activity, confirming the active role of TH in mitigating Fe-deficiency. Consistent increases in tissue Fe content and increased Fe-transporter (GmIRT1, GmNRAMP2a, GmNRAMP2b and GmNRAMP7) mRNA levels in roots following TH supplementation were observed only under Fe-deprivation. Root cell death, electrolyte leakage, superoxide (O2 •- ) and hydrogen peroxide (H2 O2 ) substantially declined due to TH in Fe-deprived plants. Further, the elevation of citrate and malate concentration along with the expression of citrate synthase (GmCs) and malate synthase (GmMs) caused by TH suggest improved chelation of Fe in Fe-deficient plants. Results also suggest that TH has a role in triggering antioxidant defence by increasing the activity of glutathione reductase (GR) along with elevated S-metabolites (glutathione and methionine) to stabilize redox status under Fe-deficiency. CONCLUSIONS TH increases the availability and mobilization of Fe by inducing Fe-uptake pathways, which appears to help provide resistance to oxidative stress associated with Fe-shortage in soybean. SIGNIFICANCE AND IMPACT OF THE STUDY These findings indicate that while Fe deficiency does not affect the rate or degree of TH hyphal association in soybean roots, the beneficial effects of TH alone may be Fe deficiency-dependent.
Collapse
Affiliation(s)
- Ahmad Humayan Kabir
- Molecular Plant Physiology Laboratory, Department of BotanyUniversity of RajshahiRajshahiBangladesh
- Department of GeneticsUniversity of GeorgiaAthensGAUSA
| | - Md Atikur Rahman
- Grassland and Forage Division, National Institute of Animal ScienceRural Development AdministrationCheonanRepublic of Korea
| | - Md Mostafizur Rahman
- Molecular Plant Physiology Laboratory, Department of BotanyUniversity of RajshahiRajshahiBangladesh
| | - Philip Brailey‐Jones
- Grassland and Forage Division, National Institute of Animal ScienceRural Development AdministrationCheonanRepublic of Korea
| | - Ki‐Won Lee
- Department of GeneticsUniversity of GeorgiaAthensGAUSA
| | - Jeffrey L. Bennetzen
- Grassland and Forage Division, National Institute of Animal ScienceRural Development AdministrationCheonanRepublic of Korea
| |
Collapse
|
30
|
Peng F, Li C, Lu C, Li Y, Xu P, Liang G. IRONMAN peptide interacts with OsHRZ1 and OsHRZ2 to maintain Fe homeostasis in rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6463-6474. [PMID: 35789265 DOI: 10.1093/jxb/erac299] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
IRONMAN (IMA) is a family of small peptides which positively regulate plant responses under Fe deficiency. However, the molecular mechanism by which OsIMA1 and OsIMA2 regulate Fe homeostasis in rice is unclear. Here, we reveal that OsIMA1 and OsIMA2 interact with the potential Fe sensors, OsHRZ1 (HAEMERYTHRIN MOTIF-CONTAINING REALLY INTERESTING NEW GENE (RING) AND ZINC-FINGER PROTEIN 1) and OsHRZ2. OsIMA1 and OsIMA2 contain a conserved 17 amino acid C-terminal region which is responsible for the interactions with OsHRZ1 and OsHRZ2. Plants overexpressing OsIMA1 (OsIMA1ox) show increased Fe concentration in seeds and reduced fertility, as observed in the hrz1-2 loss-of-function mutant plants. Moreover, the expression patterns of Fe deficiency inducible genes in the OsIMA1ox plants are the same as those in hrz1-2. Co-expression assays suggest that OsHRZ1 and OsHRZ2 promote the degradation of OsIMA1 proteins. As the interaction partners of OsHRZ1, the OsPRI (POSITIVE REGULATOR OF IRON HOMEOSTASIS) proteins also interact with OsHRZ2. The conserved C-terminal region of four OsPRIs contributes to the interactions with OsHRZ1 and OsHRZ2. An artificial IMA (aIMA) derived from the C-terminal of OsPRI1 can be also degraded by OsHRZ1. Moreover, aIMA overexpressing rice plants accumulate more Fe without reduction of fertility. This work establishes the link between OsIMAs and OsHRZs, and develops a new strategy for Fe fortification in rice.
Collapse
Affiliation(s)
- Feng Peng
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, The Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chenyang Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, The Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengkai Lu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, The Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, The Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peng Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, The Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, The Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Wu J, Zhu W, Shan X, Liu J, Zhao L, Zhao Q. Glycoside-specific metabolomics combined with precursor isotopic labeling for characterizing plant glycosyltransferases. MOLECULAR PLANT 2022; 15:1517-1532. [PMID: 35996753 DOI: 10.1016/j.molp.2022.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Glycosylation by uridine diphosphate-dependent glycosyltransferases (UGTs) in plants contributes to the complexity and diversity of secondary metabolites. UGTs are generally promiscuous in their use of acceptors, making it challenging to reveal the function of UGTs in vivo. Here, we described an approach that combined glycoside-specific metabolomics and precursor isotopic labeling analysis to characterize UGTs in Arabidopsis. We revisited the UGT72E cluster, which has been reported to catalyze the glycosylation of monolignols. Glycoside-specific metabolomics analysis reduced the number of differentially accumulated metabolites in the ugt72e1e2e3 mutant by at least 90% compared with that from traditional untargeted metabolomics analysis. In addition to the two previously reported monolignol glycosides, a total of 62 glycosides showed reduced accumulation in the ugt72e1e2e3 mutant, 22 of which were phenylalanine-derived glycosides, including 5-OH coniferyl alcohol-derived and lignan-derived glycosides, as confirmed by isotopic tracing of [13C6]-phenylalanine precursor. Our method revealed that UGT72Es could use coumarins as substrates, and genetic evidence showed that UGT72Es endowed plants with enhanced tolerance to low iron availability under alkaline conditions. Using the newly developed method, the function of UGT78D2 was also evaluated. These case studies suggest that this method can substantially contribute to the characterization of UGTs and efficiently investigate glycosylation processes, the complexity of which have been highly underestimated.
Collapse
Affiliation(s)
- Jie Wu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaotong Shan
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jinyue Liu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lingling Zhao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qiao Zhao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
32
|
Fedenko VS, Landi M, Shemet SA. Metallophenolomics: A Novel Integrated Approach to Study Complexation of Plant Phenolics with Metal/Metalloid Ions. Int J Mol Sci 2022; 23:ijms231911370. [PMID: 36232672 PMCID: PMC9570091 DOI: 10.3390/ijms231911370] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 01/10/2023] Open
Abstract
Plant adaptive strategies have been shaped during evolutionary development in the constant interaction with a plethora of environmental factors, including the presence of metals/metalloids in the environment. Among adaptive reactions against either the excess of trace elements or toxic doses of non-essential elements, their complexation with molecular endogenous ligands, including phenolics, has received increasing attention. Currently, the complexation of phenolics with metal(loid)s is a topic of intensive studies in different scientific fields. In spite of the numerous studies on their chelating capacity, the systemic analysis of phenolics as plant ligands has not been performed yet. Such a systematizing can be performed based on the modern approach of metallomics as an integral biometal science, which in turn has been differentiated into subgroups according to the nature of the bioligands. In this regard, the present review summarizes phenolics–metal(loid)s’ interactions using the metallomic approach. Experimental results on the chelating activity of representative compounds from different phenolic subgroups in vitro and in vivo are systematized. General properties of phenolic ligands and specific properties of anthocyanins are revealed. The novel concept of metallophenolomics is proposed, as a ligand-oriented subgroup of metallomics, which is an integrated approach to study phenolics–metal(loid)s’ complexations. The research subjects of metallophenolomics are outlined according to the methodology of metallomic studies, including mission-oriented biometal sciences (environmental sciences, food sciences and nutrition, medicine, cosmetology, coloration technologies, chemical sciences, material sciences, solar cell sciences). Metallophenolomics opens new prospects to unite multidisciplinary investigations of phenolic–metal(loid) interactions.
Collapse
Affiliation(s)
- Volodymyr S. Fedenko
- Research Institute of Biology, Oles Honchar Dnipro National University, 72 Gagarin Avenue, 49010 Dnipro, Ukraine
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80I-56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-2216620
| | - Sergiy A. Shemet
- Ukrainian Association for Haemophilia and Haemostasis “Factor D”, Topola-3, 20/2/81, 49041 Dnipro, Ukraine
| |
Collapse
|
33
|
Liang G. Iron uptake, signaling, and sensing in plants. PLANT COMMUNICATIONS 2022; 3:100349. [PMID: 35706354 PMCID: PMC9483112 DOI: 10.1016/j.xplc.2022.100349] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 05/10/2023]
Abstract
Iron (Fe) is an essential micronutrient that affects the growth and development of plants because it participates as a cofactor in numerous physiological and biochemical reactions. As a transition metal, Fe is redox active. Fe often exists in soil in the form of insoluble ferric hydroxides that are not bioavailable to plants. Plants have developed sophisticated mechanisms to ensure an adequate supply of Fe in a fluctuating environment. Plants can sense Fe status and modulate the transcription of Fe uptake-associated genes, finally controlling Fe uptake from soil to root. There is a critical need to understand the molecular mechanisms by which plants maintain Fe homeostasis in response to Fe fluctuations. This review focuses on recent advances in elucidating the functions of Fe signaling components. Taking Arabidopsis thaliana and Oryza sativa as examples, this review begins by discussing the Fe acquisition systems that control Fe uptake from soil, the major components that regulate Fe uptake systems, and the perception of Fe status. Future explorations of Fe signal transduction will pave the way for understanding the regulatory mechanisms that underlie the maintenance of plant Fe homeostasis.
Collapse
Affiliation(s)
- Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan 650223, China.
| |
Collapse
|
34
|
He BT, Liu ZH, Li BZ, Yuan YJ. Advances in biosynthesis of scopoletin. Microb Cell Fact 2022; 21:152. [PMID: 35918699 PMCID: PMC9344664 DOI: 10.1186/s12934-022-01865-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/28/2022] [Indexed: 11/21/2022] Open
Abstract
Scopoletin is a typical example of coumarins, which can be produced in plants. Scopoletin acts as a precursor for pharmaceutical and health care products, and also possesses promising biological properties, including antibacterial, anti-tubercular, anti-hypertensive, anti-inflammatory, anti-diabetic, and anti-hyperuricemic activity. Despite the potential benefits, the production of scopoletin using traditional extraction processes from plants is unsatisfactory. In recent years, synthetic biology has developed rapidly and enabled the effective construction of microbial cell factories for production of high value-added chemicals. Herein, this review summarizes the progress of scopoletin biosynthesis in artificial microbial cell factories. The two main pathways of scopoletin biosynthesis are summarized firstly. Then, synthetic microbial cell factories are reviewed as an attractive improvement strategy for biosynthesis. Emerging techniques in synthetic biology and metabolic engineering are introduced as innovative tools for the efficient synthesis of scopoletin. This review showcases the potential of biosynthesis of scopoletin in artificial microbial cell factories.
Collapse
Affiliation(s)
- Bo-Tao He
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| |
Collapse
|
35
|
Wang B, Wei H, Chen Z, Li Y, Zhang WH. Carbonate-Induced Chemical Reductants Are Responsible for Iron Acquisition in Strategy I Wild Herbaceous Plants Native to Calcareous Grasslands. PLANT & CELL PHYSIOLOGY 2022; 63:770-784. [PMID: 35348776 DOI: 10.1093/pcp/pcac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Significant progress has been made in understanding Strategy I iron (Fe) acquisition using crop/model plants under controlled conditions in laboratories. However, plant species native to calcareous soils may have evolved unique strategies for adaptation to high carbonate/pH-induced Fe deficiency. Until now, little information is available on the Fe acquisition mechanisms in these plants. Here, we explored the Fe acquisition mechanisms in wild dicot species native to calcareous grasslands, by monitoring the Fe nutrition-related rhizosphere processes in field and greenhouse conditions. Most of these wild species displayed comparable shoot Fe concentration to those of crops, and some dicots actually accumulated very high shoot Fe. However, these species did not exhibit ferric reductase oxidase (FRO)-dependent Strategy I responses to Fe deficiency, including visual rhizosphere acidification and increased Fe3+ reduction. In contrast, chemical reductants exuded by roots of dicots were responsible for Fe3+ reduction in these wild plants. These features were not observed in the FRO-dependent Strategy I crop plant cucumber. Neither leaf chlorophyll nor shoot/root Fe was depressed by 10% CaCO3 application in all the examined wild species. Furthermore, their root exudation was significantly activated by CaCO3, leading to an increased Fe3+ reduction. We show that chemical reductant-mediated Fe3+ reduction occurs preferentially in these wild dicots and that these mechanisms are not sensitive to high soil carbonate/pH. Our findings support that Fe acquisition in Strategy I wild plants native to calcareous soils is substantially different from the enzyme-dependent system of Strategy I plants.
Collapse
Affiliation(s)
- Baolan Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, PR China
| | - Haifang Wei
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, PR China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, PR China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Hao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, PR China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
Fanara S, Schloesser M, Hanikenne M, Motte P. Altered metal distribution in the sr45-1 Arabidopsis mutant causes developmental defects. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1332-1352. [PMID: 35305053 DOI: 10.1111/tpj.15740] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
The plant serine/arginine-rich (SR) splicing factor SR45 plays important roles in several biological processes, such as splicing, DNA methylation, innate immunity, glucose regulation, and abscisic acid signaling. A homozygous Arabidopsis sr45-1 null mutant is viable, but exhibits diverse phenotypic alterations, including delayed root development, late flowering, shorter siliques with fewer seeds, narrower leaves and petals, and unusual numbers of floral organs. Here, we report that the sr45-1 mutant presents an unexpected constitutive iron deficiency phenotype characterized by altered metal distribution in the plant. RNA-Sequencing highlighted severe perturbations in metal homeostasis, the phenylpropanoid pathway, oxidative stress responses, and reproductive development. Ionomic quantification and histochemical staining revealed strong iron accumulation in the sr45-1 root tissues accompanied by iron starvation in aerial parts. Mis-splicing of several key iron homeostasis genes, including BTS, bHLH104, PYE, FRD3, and ZIF1, was observed in sr45-1 roots. We showed that some sr45-1 developmental abnormalities can be complemented by exogenous iron supply. Our findings provide new insight into the molecular mechanisms governing the phenotypes of the sr45-1 mutant.
Collapse
Affiliation(s)
- Steven Fanara
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging and Centre for Assistance in Technology of Microscopy (CAREm), University of Liège, 4000, Liège, Belgium
| | - Marie Schloesser
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging and Centre for Assistance in Technology of Microscopy (CAREm), University of Liège, 4000, Liège, Belgium
| | - Marc Hanikenne
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging and Centre for Assistance in Technology of Microscopy (CAREm), University of Liège, 4000, Liège, Belgium
| | - Patrick Motte
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging and Centre for Assistance in Technology of Microscopy (CAREm), University of Liège, 4000, Liège, Belgium
| |
Collapse
|
37
|
Hafiz FB, von Tucher S, Rozhon W. Plant Nutrition: Physiological and Metabolic Responses, Molecular Mechanisms and Chromatin Modifications. Int J Mol Sci 2022; 23:ijms23084084. [PMID: 35456909 PMCID: PMC9032115 DOI: 10.3390/ijms23084084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Fatema Binte Hafiz
- Department of Agriculture, Ecotrophology and Landscape Development, Anhalt University of Applied Sciences, 06406 Bernburg, Germany;
| | - Sabine von Tucher
- TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany;
| | - Wilfried Rozhon
- Department of Agriculture, Ecotrophology and Landscape Development, Anhalt University of Applied Sciences, 06406 Bernburg, Germany;
- Correspondence: ; Tel.: +49-3471-355-1126
| |
Collapse
|
38
|
Ceballos-Laita L, Takahashi D, Uemura M, Abadía J, López-Millán AF, Rodríguez-Celma J. Effects of Fe and Mn Deficiencies on the Root Protein Profiles of Tomato ( Solanum lycopersicum) Using Two-Dimensional Electrophoresis and Label-Free Shotgun Analyses. Int J Mol Sci 2022; 23:ijms23073719. [PMID: 35409079 PMCID: PMC8998858 DOI: 10.3390/ijms23073719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 12/04/2022] Open
Abstract
Iron (Fe) and manganese (Mn) are two essential elements for plants that compete for the same uptake transporters and show conflicting interactions at the regulatory level. In order to understand the differential response to both metal deficiencies in plants, two proteomic techniques (two-dimensional gel electrophoresis and label-free shotgun) were used to study the proteome profiles of roots from tomato plants grown under Fe or Mn deficiency. A total of 119 proteins changing in relative abundance were confidently quantified and identified, including 35 and 91 in the cases of Fe deficiency and Mn deficiency, respectively, with 7 of them changing in both deficiencies. The identified proteins were categorized according to function, and GO-enrichment analysis was performed. Data showed that both deficiencies provoked a common and intense cell wall remodelling. However, the response observed for Fe and Mn deficiencies differed greatly in relation to oxidative stress, coumarin production, protein, nitrogen, and energy metabolism.
Collapse
Affiliation(s)
- Laura Ceballos-Laita
- Plant Stress Physiology Group, Plant Nutrition Department, Aula Dei Experimental Station, CSIC, 50059 Zaragoza, Spain; (L.C.-L.); (J.A.); (A.F.L.-M.)
| | - Daisuke Takahashi
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; (D.T.); (M.U.)
- Department of Plant-Bioscience, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Matsuo Uemura
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; (D.T.); (M.U.)
- Department of Plant-Bioscience, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Javier Abadía
- Plant Stress Physiology Group, Plant Nutrition Department, Aula Dei Experimental Station, CSIC, 50059 Zaragoza, Spain; (L.C.-L.); (J.A.); (A.F.L.-M.)
| | - Ana Flor López-Millán
- Plant Stress Physiology Group, Plant Nutrition Department, Aula Dei Experimental Station, CSIC, 50059 Zaragoza, Spain; (L.C.-L.); (J.A.); (A.F.L.-M.)
| | - Jorge Rodríguez-Celma
- Plant Stress Physiology Group, Plant Nutrition Department, Aula Dei Experimental Station, CSIC, 50059 Zaragoza, Spain; (L.C.-L.); (J.A.); (A.F.L.-M.)
- Correspondence:
| |
Collapse
|
39
|
Lešková A, Javot H, Giehl RFH. Metal crossroads in plants: modulation of nutrient acquisition and root development by essential trace metals. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1751-1765. [PMID: 34791130 DOI: 10.1093/jxb/erab483] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
The metals iron, zinc, manganese, copper, molybdenum, and nickel are essential for the growth and development of virtually all plant species. Although these elements are required at relatively low amounts, natural factors and anthropogenic activities can significantly affect their availability in soils, inducing deficiencies or toxicities in plants. Because essential trace metals can shape root systems and interfere with the uptake and signaling mechanisms of other nutrients, the non-optimal availability of any of them can induce multi-element changes in plants. Interference by one essential trace metal with the acquisition of another metal or a non-metal nutrient can occur prior to or during root uptake. Essential trace metals can also indirectly impact the plant's ability to capture soil nutrients by targeting distinct root developmental programs and hormone-related processes, consequently inducing largely metal-specific changes in root systems. The presence of metal binding domains in many regulatory proteins also enables essential trace metals to coordinate nutrient uptake by acting at high levels in hierarchical signaling cascades. Here, we summarize the known molecular and cellular mechanisms underlying trace metal-dependent modulation of nutrient acquisition and root development, and highlight the importance of considering multi-element interactions to breed crops better adapted to non-optimal trace metal availabilities.
Collapse
Affiliation(s)
- Alexandra Lešková
- Aix Marseille Univ, CEA, CNRS, Bioscience and Biotechnology Institut of Aix-Marseille (BIAM), SAVE, Saint Paul-Lez-Durance, F-13108, France
| | - Hélène Javot
- Aix Marseille Univ, CEA, CNRS, Bioscience and Biotechnology Institut of Aix-Marseille (BIAM), SAVE, Saint Paul-Lez-Durance, F-13108, France
| | - Ricardo F H Giehl
- Department of Physiology & Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| |
Collapse
|
40
|
Murgia I, Marzorati F, Vigani G, Morandini P. Plant iron nutrition: the long road from soil to seeds. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1809-1824. [PMID: 34864996 DOI: 10.1093/jxb/erab531] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
Iron (Fe) is an essential plant micronutrient since many cellular processes including photosynthesis, respiration, and the scavenging of reactive oxygen species depend on adequate Fe levels; however, non-complexed Fe ions can be dangerous for cells, as they can act as pro-oxidants. Hence, plants possess a complex homeostatic control system for safely taking up Fe from the soil and transporting it to its various cellular destinations, and for its subcellular compartmentalization. At the end of the plant's life cycle, maturing seeds are loaded with the required amount of Fe needed for germination and early seedling establishment. In this review, we discuss recent findings on how the microbiota in the rhizosphere influence and interact with the strategies adopted by plants to take up iron from the soil. We also focus on the process of seed-loading with Fe, and for crop species we also consider its associated metabolism in wild relatives. These two aspects of plant Fe nutrition may provide promising avenues for a better comprehension of the long pathway of Fe from soil to seeds.
Collapse
Affiliation(s)
- Irene Murgia
- Department of Biosciences, University of Milano, Milano, Italy
| | - Francesca Marzorati
- Department of Environmental Science and Policy, University of Milano, Milano, Italy
| | - Gianpiero Vigani
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Piero Morandini
- Department of Environmental Science and Policy, University of Milano, Milano, Italy
| |
Collapse
|
41
|
Gautam CK, Tsai HH, Schmidt W. A Quick Method to Quantify Iron in Arabidopsis Seedlings. Bio Protoc 2022; 12:e4342. [PMID: 35592601 PMCID: PMC8918212 DOI: 10.21769/bioprotoc.4342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 11/10/2021] [Accepted: 01/12/2022] [Indexed: 12/29/2022] Open
Abstract
Iron (Fe) is an indispensable micronutrient for plant growth and development. Since both deficiency, as well as a surplus of Fe, can be detrimental to plant health, plants need to constantly tune uptake rates to maintain an optimum level of Fe. Quantification of Fe serves as an important parameter for analyzing the fitness of plants from different accessions, or mutants and transgenic lines with altered expression of specific genes. To quantify metals in plant samples, methods based on inductively coupled plasma-optical emission spectrometry (ICP-OES) or inductively coupled plasma-mass spectrometry (ICP-MS) have been widely employed. Although these methods are highly accurate, these methodologies rely on sophisticated equipment which is not always available. Moreover, ICP-OES and ICP-MS allow for surveying several metals in the same sample, which may not be necessary if only the Fe status is to be determined. Here, we outline a simple and cost-efficient protocol to quantify Fe concentrations in roots and shoots of Arabidopsis seedlings, by using a spectroscopy-based assay to quantify Fe2+-BPDS3 complexes against a set of standards. This protocol provides a fast and reproducible method to determine Fe levels in plant samples with high precision and low costs, which does not depend on expensive equipment and expertise to operate such equipment.
Collapse
Affiliation(s)
| | - Huei-Hsuan Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
,Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
,Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
,
*For correspondence:
| |
Collapse
|
42
|
Wu F, Duan Z, Xu P, Yan Q, Meng M, Cao M, Jones CS, Zong X, Zhou P, Wang Y, Luo K, Wang S, Yan Z, Wang P, Di H, Ouyang Z, Wang Y, Zhang J. Genome and systems biology of Melilotus albus provides insights into coumarins biosynthesis. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:592-609. [PMID: 34717292 PMCID: PMC8882801 DOI: 10.1111/pbi.13742] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 05/08/2023]
Abstract
Melilotus species are used as green manure and rotation crops worldwide and contain abundant pharmacologically active coumarins. However, there is a paucity of information on its genome and coumarin production and function. Here, we reported a chromosome-scale assembly of Melilotus albus genome with 1.04 Gb in eight chromosomes, containing 71.42% repetitive elements. Long terminal repeat retrotransposon bursts coincided with declining of population sizes during the Quaternary glaciation. Resequencing of 94 accessions enabled insights into genetic diversity, population structure, and introgression. Melilotus officinalis had relatively larger genetic diversity than that of M. albus. The introgression existed between M. officinalis group and M. albus group, and gene flows was from M. albus to M. officinalis. Selection sweep analysis identified candidate genes associated with flower colour and coumarin biosynthesis. Combining genomics, BSA, transcriptomics, metabolomics, and biochemistry, we identified a β-glucosidase (BGLU) gene cluster contributing to coumarin biosynthesis. MaBGLU1 function was verified by overexpression in M. albus, heterologous expression in Escherichia coli, and substrate feeding, revealing its role in scopoletin (coumarin derivative) production and showing that nonsynonymous variation drives BGLU enzyme activity divergence in Melilotus. Our work will accelerate the understanding of biologically active coumarins and their biosynthetic pathways, and contribute to genomics-enabled Melilotus breeding.
Collapse
Affiliation(s)
- Fan Wu
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Zhen Duan
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Pan Xu
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Qi Yan
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Minghui Meng
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Mingshu Cao
- Grasslands Research CentreAgResearch LimitedPalmerston NorthNew Zealand
| | - Chris S. Jones
- Feed and Forage DevelopmentInternational Livestock Research InstituteNairobiKenya
| | - Xifang Zong
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Pei Zhou
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Yimeng Wang
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Kai Luo
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Shengsheng Wang
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Zhuanzhuan Yan
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Penglei Wang
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Hongyan Di
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Zifeng Ouyang
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Yanrong Wang
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Jiyu Zhang
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| |
Collapse
|
43
|
Vélez-Bermúdez IC, Schmidt W. How Plants Recalibrate Cellular Iron Homeostasis. PLANT & CELL PHYSIOLOGY 2022; 36:154-162. [PMID: 35048128 DOI: 10.1093/pcp/pcab166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/01/2021] [Accepted: 11/19/2021] [Indexed: 05/16/2023]
Abstract
Insufficient iron supply poses severe constraints on plants, restricting species with inefficient iron uptake mechanisms from habitats with low iron availability and causing yield losses in agricultural ecosystems. Iron deficiency also poses a severe threat on human health. Anemia resulting from insufficient iron intake is affecting one of four people in the world. It is, therefore, imperative to understand the mechanisms by which plants acquire iron against a huge soil-cell gradient and how iron is distributed within the plant to develop strategies that increase its concentration in edible plant parts. Research into the processes that are employed by plants to adjust cellular iron homeostasis revealed an astonishingly complex puzzle of signaling nodes and circuits, which are intertwined with the perception and communication of other environmental cues such as pathogens, light, nutrient availability and edaphic factors such as pH. In a recent Spotlight issue in this journal, a collection of review articles summarized the state-of-the-art in plant iron research, covering the most active and, debatably, most important topics in this field. Here, we highlight breakthroughs that were reported after the publication date of this review collection, focusing on exciting and potentially influential studies that have changed our understanding of plant iron nutrition.
Collapse
Affiliation(s)
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, 1 Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
44
|
Li Y, Lei R, Pu M, Cai Y, Lu C, Li Z, Liang G. bHLH11 inhibits bHLH IVc proteins by recruiting the TOPLESS/TOPLESS-RELATED corepressors. PLANT PHYSIOLOGY 2022; 188:1335-1349. [PMID: 34894263 PMCID: PMC8825326 DOI: 10.1093/plphys/kiab540] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 05/24/2023]
Abstract
Iron (Fe) homeostasis is essential for plant growth and development. Many transcription factors (TFs) play pivotal roles in the maintenance of Fe homeostasis. bHLH11 is a negative TF that regulates Fe homeostasis. However, the underlying molecular mechanism remains elusive. Here, we generated two loss-of-function bhlh11 mutants in Arabidopsis (Arabidopsis thaliana), which display enhanced sensitivity to excess Fe, increased Fe accumulation, and elevated expression of Fe deficiency responsive genes. Levels of bHLH11 protein, localized in both the cytoplasm and nucleus, decreased in response to Fe deficiency. Co-expression assays indicated that bHLH IVc TFs (bHLH34, bHLH104, bHLH105, and bHLH115) facilitate the nuclear accumulation of bHLH11. Further analysis indicated that bHLH11 represses the transactivity of bHLH IVc TFs toward bHLH Ib genes (bHLH38, bHLH39, bHLH100, and bHLH101). The two ethylene response factor-associated amphiphilic repression motifs of bHLH11 provided the repression function by recruiting the TOPLESS/TOPLESS-RELATED (TPL/TPRs) corepressors. Correspondingly, the expression of Fe uptake genes increased in the tpr1 tpr4 tpl mutant. Moreover, genetic analysis revealed that bHLH11 has functions independent of FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR. This study provides insights into the complicated Fe homeostasis signaling network.
Collapse
Affiliation(s)
- Yang Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Rihua Lei
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Mengna Pu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuerong Cai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengkai Lu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Zhifang Li
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan 475001, China
| | - Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
45
|
Hsieh EJ, Lin WD, Schmidt W. Genomically Hardwired Regulation of Gene Activity Orchestrates Cellular Iron Homeostasis in Arabidopsis. RNA Biol 2021; 19:143-161. [PMID: 35067184 PMCID: PMC8786333 DOI: 10.1080/15476286.2021.2024024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/09/2021] [Accepted: 12/26/2021] [Indexed: 10/26/2022] Open
Abstract
Iron (Fe) is an essential micronutrient which plays pivotal roles as electron donor and catalyst across organisms. In plants, variable, often insufficient Fe supply necessitates mechanisms that constantly attune Fe uptake rates and recalibrate cellular Fe homoeostasis. Here, we show that short-term (0.5, 6, and 12 h) exposure of Arabidopsis thaliana plants to Fe deficiency triggered massive changes in gene activity governed by transcription and alternative splicing (AS), regulatory layers that were to a large extent mutually exclusive. Such preclusion was not observed for genes that are directly involved in the acquisition of Fe, which appears to be concordantly regulated by both expression and AS. Generally, genes with lower splice site strengths and higher intron numbers were more likely to be regulated by AS, no dependence on gene architecture was observed for transcriptionally controlled genes. Conspicuously, specific processes were associated with particular genomic features and biased towards either regulatory mode, suggesting that genomic hardwiring is functionally biased. Early changes in splicing patterns were, in many cases, congruent with later changes in transcript or protein abundance, thus contributing to the pronounced transcriptome-proteome discordance observed in plants.
Collapse
Affiliation(s)
- En-Jung Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wen-Dar Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
46
|
Targeting Oxidative Stress, NLRP3 Inflammasome, and Autophagy by Fraxetin to Combat Doxorubicin-Induced Cardiotoxicity. Pharmaceuticals (Basel) 2021; 14:ph14111188. [PMID: 34832970 PMCID: PMC8621693 DOI: 10.3390/ph14111188] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 01/24/2023] Open
Abstract
Doxorubicin belongs to the class of anthracycline antibiotics that is widely used in the treatment protocols of a wide range of malignancies. The major deleterious effect of doxorubicin use is the possible occurrence of cardiotoxicity. This study aimed to delineate the possible effects of targeting oxidative stress, NLRP3 inflammasome, and autophagy by fraxetin on doxorubicin-induced cardiac dysfunction in rats. In a model of doxorubicin-induced cardiotoxicity, the effects of different doses of fraxetin were assessed by determination of biochemical, histopathological, immunohistochemical, and electron microscopic changes. Fraxetin, in a dose-dependent manner, was found to have the ability to mitigate the harmful effects of oxidative stress and inflammation on myocardial muscles with significant decrease in NLRP3 inflammasome, augmentation of autophagy, and amelioration of the apoptotic signaling pathways. In addition, fraxetin, in a dose-dependent manner, had the ability to combat the echocardiographic, histopathological, immunohistochemical, and electron microscopic changes induced by doxorubicin in cardiomyocytes. As a result, fraxetin may be put into consideration as a new adjuvant line of therapy on the way to mitigate doxorubicin-induced cardiotoxicity.
Collapse
|
47
|
Gautam CK, Tsai HH, Schmidt W. IRONMAN tunes responses to iron deficiency in concert with environmental pH. PLANT PHYSIOLOGY 2021; 187:1728-1745. [PMID: 34618058 PMCID: PMC8566206 DOI: 10.1093/plphys/kiab329] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 05/16/2023]
Abstract
Iron (Fe) is an essential mineral element that governs the composition of natural plant communities and limits crop yield in agricultural ecosystems due to its extremely low availability in most soils, particularly at alkaline pH. To extract sufficient Fe from the soil under such conditions, some plants, including Arabidopsis (Arabidopsis thaliana), secrete Fe-mobilizing phenylpropanoids, which mobilize sparingly soluble Fe hydroxides by reduction and chelation. We show here that ectopic expression of the peptides IRONMAN (IMA1) and IMA2 improves growth on calcareous soil by inducing biosynthesis and secretion of the catecholic coumarin 7,8-dihydroxy-6-methoxycoumarin (fraxetin) via increased expression of MYB72 and SCOPOLETIN 8-HYDROXYLASE, a response that is strictly dependent on elevated environmental pH (pHe). By contrast, transcription of the cytochrome P450 family protein CYP82C4, catalyzing the subsequent hydroxylation of fraxetin to sideretin, which forms less stable complexes with iron, was strongly repressed under such conditions. We concluded that IMA peptides regulate processes supporting Fe uptake at both acidic and elevated pH by controlling gene expression upstream of or in concert with a putative pHe signal, adapting the plant to prevailing edaphic conditions. This regulatory pattern confers tolerance to calcareous soils by extending the pH range in which Fe can be efficiently absorbed from the soil. Our results further suggest that pHe calibrates the activities of components of the Fe deficiency response, accentuating processes that are most efficient under the prevailing conditions. Altering the expression of IMA peptides provides a route for generating plants adapted to calcareous soils.
Collapse
Affiliation(s)
- Chandan Kumar Gautam
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Huei-Hsuan Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wolfgang Schmidt
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei 11529, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
48
|
O’Rourke JA, Morrisey MJ, Merry R, Espina MJ, Lorenz AJ, Stupar RM, Graham MA. Mining Fiskeby III and Mandarin (Ottawa) Expression Profiles to Understand Iron Stress Tolerant Responses in Soybean. Int J Mol Sci 2021; 22:11032. [PMID: 34681702 PMCID: PMC8537376 DOI: 10.3390/ijms222011032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022] Open
Abstract
The soybean (Glycine max L. merr) genotype Fiskeby III is highly resistant to a multitude of abiotic stresses, including iron deficiency, incurring only mild yield loss during stress conditions. Conversely, Mandarin (Ottawa) is highly susceptible to disease and suffers severe phenotypic damage and yield loss when exposed to abiotic stresses such as iron deficiency, a major challenge to soybean production in the northern Midwestern United States. Using RNA-seq, we characterize the transcriptional response to iron deficiency in both Fiskeby III and Mandarin (Ottawa) to better understand abiotic stress tolerance. Previous work by our group identified a quantitative trait locus (QTL) on chromosome 5 associated with Fiskeby III iron efficiency, indicating Fiskeby III utilizes iron deficiency stress mechanisms not previously characterized in soybean. We targeted 10 of the potential candidate genes in the Williams 82 genome sequence associated with the QTL using virus-induced gene silencing. Coupling virus-induced gene silencing with RNA-seq, we identified a single high priority candidate gene with a significant impact on iron deficiency response pathways. Characterization of the Fiskeby III responses to iron stress and the genes underlying the chromosome 5 QTL provides novel targets for improved abiotic stress tolerance in soybean.
Collapse
Affiliation(s)
| | | | - Ryan Merry
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | - Mary Jane Espina
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | - Aaron J. Lorenz
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | - Robert M. Stupar
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | | |
Collapse
|
49
|
Huang T, Suen D. Iron insufficiency in floral buds impairs pollen development by disrupting tapetum function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:244-267. [PMID: 34310779 PMCID: PMC9292431 DOI: 10.1111/tpj.15438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/25/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Reduction of crop yield due to iron (Fe) deficiency has always been a concern in agriculture. How Fe insufficiency in floral buds affects pollen development remains unexplored. Here, plants transferred to Fe-deficient medium at the reproductive stage had reduced floral Fe content and viable pollen and showed a defective pollen outer wall, all restored by supplying floral buds with Fe. A comparison of differentially expressed genes (DEGs) in Fe-deficient leaves, roots, and anthers suggested that changes in several cellular processes were unique to anthers, including increased lipid degradation. Co-expression analysis revealed that ABORTED MICROSPORES (AMS), DEFECTIVE IN TAPETAL DEVELOPMENT AND FUNCTION1, and BASIC HELIX-LOOP-HELIX 089/091/010 encode key upstream transcription factors of Fe deficiency-responsive DEGs involved in tapetum function and development, including tapetal ROS homeostasis, programmed cell death, and pollen outer wall formation-related lipid metabolism. Analysis of RESPIRATORY-BURST OXIDASE HOMOLOG E (RBOHE) gain- and loss-of-function under Fe deficiency indicated that RBOHE- and Fe-dependent regulation cooperatively control anther reactive oxygen species levels and pollen development. Since DEGs in Fe-deficient anthers were not significantly enriched in genes related to mitochondrial function, the changes in mitochondrial status under Fe deficiency, including respiration activity, density, and morphology, were probably because the Fe amount was insufficient to maintain proper mitochondrial protein function in anthers. To sum up, Fe deficiency in anthers may affect Fe-dependent protein function and impact upstream transcription factors and their downstream genes, resulting in extensively impaired tapetum function and pollen development.
Collapse
Affiliation(s)
- Tzu‐Hsiang Huang
- Agricultural Biotechnology Research CenterAcademia SinicaTaipei11529Taiwan
- Molecular and Biological Agricultural Sciences ProgramTaiwan International Graduate ProgramAcademia Sinica and National Chung‐Hsing UniversityTaipei11529Taiwan
- Graduate Institute of BiotechnologyNational Chung‐Hsing UniversityTaichung40227Taiwan
| | - Der‐Fen Suen
- Agricultural Biotechnology Research CenterAcademia SinicaTaipei11529Taiwan
- Molecular and Biological Agricultural Sciences ProgramTaiwan International Graduate ProgramAcademia Sinica and National Chung‐Hsing UniversityTaipei11529Taiwan
- Biotechnology CenterNational Chung‐Hsing UniversityTaichung40227Taiwan
| |
Collapse
|
50
|
Chevalier Q, Gallé JB, Wasser N, Mazan V, Villette C, Mutterer J, Elustondo MM, Girard N, Elhabiri M, Schaller H, Hemmerlin A, Vonthron-Sénécheau C. Unravelling the Puzzle of Anthranoid Metabolism in Living Plant Cells Using Spectral Imaging Coupled to Mass Spectrometry. Metabolites 2021; 11:metabo11090571. [PMID: 34564386 PMCID: PMC8472718 DOI: 10.3390/metabo11090571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
Vismione H (VH) is a fluorescent prenylated anthranoid produced by plants from the Hypericaceae family, with antiprotozoal activities against malaria and leishmaniosis. Little is known about its biosynthesis and metabolism in plants or its mode of action against parasites. When VH is isolated from Psorospermum glaberrimum, it is rapidly converted into madagascine anthrone and anthraquinone, which are characterized by markedly different fluorescent properties. To locate the fluorescence of VH in living plant cells and discriminate it from that of the other metabolites, an original strategy combining spectral imaging (SImaging), confocal microscopy, and non-targeted metabolomics using mass spectrometry, was developed. Besides VH, structurally related molecules including madagascine (Mad), emodin (Emo), quinizarin (Qui), as well as lapachol (Lap) and fraxetin (Fra) were analyzed. This strategy readily allowed a spatiotemporal characterization and discrimination of spectral fingerprints from anthranoid-derived metabolites and related complexes with cations and proteins. In addition, our study validates the ability of plant cells to metabolize VH into madagascine anthrone, anthraquinones and unexpected metabolites. These results pave the way for new hypotheses on anthranoid metabolism in plants.
Collapse
Affiliation(s)
- Quentin Chevalier
- Centre National de la Recherche Scientifique, Laboratoire d’Innovation Thérapeutique, Université de Strasbourg, CEDEX, F-67401 Illkirch, France; (J.-B.G.); (N.W.); (N.G.); (C.V.-S.)
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, CEDEX, F-67084 Strasbourg, France; (C.V.); (J.M.); (H.S.); (A.H.)
- Correspondence: ; Tel.: +33-367155265
| | - Jean-Baptiste Gallé
- Centre National de la Recherche Scientifique, Laboratoire d’Innovation Thérapeutique, Université de Strasbourg, CEDEX, F-67401 Illkirch, France; (J.-B.G.); (N.W.); (N.G.); (C.V.-S.)
| | - Nicolas Wasser
- Centre National de la Recherche Scientifique, Laboratoire d’Innovation Thérapeutique, Université de Strasbourg, CEDEX, F-67401 Illkirch, France; (J.-B.G.); (N.W.); (N.G.); (C.V.-S.)
| | - Valérie Mazan
- Centre National de la Recherche Scientifique, Laboratoire d’Innovation Moléculaire et Applications, Université de Strasbourg-Université de Haute Alsace, CEDEX, F-67087 Strasbourg, France; (V.M.); (M.E.)
| | - Claire Villette
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, CEDEX, F-67084 Strasbourg, France; (C.V.); (J.M.); (H.S.); (A.H.)
| | - Jérôme Mutterer
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, CEDEX, F-67084 Strasbourg, France; (C.V.); (J.M.); (H.S.); (A.H.)
| | | | - Nicolas Girard
- Centre National de la Recherche Scientifique, Laboratoire d’Innovation Thérapeutique, Université de Strasbourg, CEDEX, F-67401 Illkirch, France; (J.-B.G.); (N.W.); (N.G.); (C.V.-S.)
| | - Mourad Elhabiri
- Centre National de la Recherche Scientifique, Laboratoire d’Innovation Moléculaire et Applications, Université de Strasbourg-Université de Haute Alsace, CEDEX, F-67087 Strasbourg, France; (V.M.); (M.E.)
| | - Hubert Schaller
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, CEDEX, F-67084 Strasbourg, France; (C.V.); (J.M.); (H.S.); (A.H.)
| | - Andréa Hemmerlin
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, CEDEX, F-67084 Strasbourg, France; (C.V.); (J.M.); (H.S.); (A.H.)
| | - Catherine Vonthron-Sénécheau
- Centre National de la Recherche Scientifique, Laboratoire d’Innovation Thérapeutique, Université de Strasbourg, CEDEX, F-67401 Illkirch, France; (J.-B.G.); (N.W.); (N.G.); (C.V.-S.)
| |
Collapse
|