1
|
Depaepe T, Prinsen E, Hu Y, Sanchez-Munoz R, Denoo B, Buyst D, Darouez H, Werbrouck S, Hayashi KI, Martins J, Winne J, Van Der Straeten D. Arinole, a novel auxin-stimulating benzoxazole, affects root growth and promotes adventitious root formation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5681-5702. [PMID: 38920303 DOI: 10.1093/jxb/erae282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
The triple response phenotype is characteristic for seedlings treated with the phytohormone ethylene or its direct precursor 1-aminocyclopropane-carboxylic acid, and is often employed to find novel chemical tools to probe ethylene responses. We identified a benzoxazole-urea derivative (B2) partially mimicking ethylene effects in a triple response bioassay. A phenotypic analysis demonstrated that B2 and its closest analogue arinole (ARI) induced phenotypic responses reminiscent of seedlings with elevated levels of auxin, including impaired hook development and inhibition of seedling growth. Specifically, ARI reduced longitudinal cell elongation in roots, while promoting cell division. In contrast to other natural or synthetic auxins, ARI mostly acts as an inducer of adventitious root development, with only limited effects on lateral root development. Quantification of free auxins and auxin biosynthetic precursors as well as auxin-related gene expression demonstrated that ARI boosts global auxin levels. In addition, analyses of auxin reporter lines and mutants, together with pharmacological assays with auxin-related inhibitors, confirmed that ARI effects are facilitated by TRYPTOPHAN AMINOTRANSFERASE1 (TAA1)-mediated auxin synthesis. ARI treatment in an array of species, including Arabidopsis, pea, tomato, poplar, and lavender, resulted in adventitious root formation, which is a desirable trait in both agriculture and horticulture.
Collapse
Affiliation(s)
- Thomas Depaepe
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Els Prinsen
- Laboratory of Integrated Molecular Plant Physiological Research (IMPRES), Department of Biology, Faculty of Sciences, University of Antwerp, Antwerp, Belgium
| | - Yuming Hu
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Raul Sanchez-Munoz
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Bram Denoo
- Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Dieter Buyst
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Hajer Darouez
- Laboratory for Applied In Vitro Plant Biotechnology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Stefaan Werbrouck
- Laboratory for Applied In Vitro Plant Biotechnology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Ken-Ichiro Hayashi
- Natural Products Chemistry Lab, Department of Biochemistry, Okayama University of Science, Okayama, Japan
| | - José Martins
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Johan Winne
- Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Corbineau F. Ethylene, a Signaling Compound Involved in Seed Germination and Dormancy. PLANTS (BASEL, SWITZERLAND) 2024; 13:2674. [PMID: 39409543 PMCID: PMC11478528 DOI: 10.3390/plants13192674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024]
Abstract
The present review is focused on current findings on the involvement of ethylene in seed biology. The responsiveness of seeds to ethylene depends on the species and the dormancy status, improving concentrations ranging from 0.1 to 200 μL L-1. The signaling pathway of ethylene starts with its binding to five membrane-anchored receptors, which results in the deactivation of Constitutive Triple Response 1 (CTR1, a protein kinase) that does not exert its inhibitory effect on Ethylene Insensitive 2 (EIN2) by phosphorylating its cytosolic C-terminal domain. An analysis of germination in the presence of inhibitors of ethylene synthesis or action, and using seeds from mutant lines altered in terms of the genes involved in ethylene synthesis (acs) and the signaling pathway (etr1, ein2, ein4, ctr1 and erf1), demonstrates the involvement of ethylene in the regulation of seed dormancy. The promoting effect of ethylene is also regulated through crosstalk with abscisic acid (ABA) and gibberellins (GAs), essential hormones involved in seed germination and dormancy, and Reactive Oxygen Species (ROS). Using a mutant of the proteolytic N-degron pathway, Proteolysis (PRT6), the Ethylene Response Factors (ERFs) from group VII (HRE1, HRE2, RAP 2.2, RAP2.3 and RAP 2.12) have also been identified as being involved in seed insensitivity to ethylene. This review highlights the key roles of EIN2 and EIN3 in the ethylene signaling pathway and in interactions with different hormones and discusses the responsiveness of seeds to ethylene, depending on the species and the dormancy status.
Collapse
|
3
|
Ma X, Fan L, Ye S, Chen Y, Huang Y, Wu L, Zhao L, Yi B, Ma C, Tu J, Shen J, Fu T, Wen J. Identification of candidate genes associated with double flowers via integrating BSA-seq and RNA-seq in Brassica napus. BMC Genomics 2024; 25:799. [PMID: 39182038 PMCID: PMC11344426 DOI: 10.1186/s12864-024-10708-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
As a Brassica crop, Brassica napus typically has single flowers that contain four petals. The double-flower phenotype of rapeseed has been a desirable trait in China because of its potential commercial value in ornamental tourism. However, few double-flowered germplasms have been documented in B. napus, and knowledge of the underlying genes is limited. Here, B. napus D376 was characterized as a double-flowered strain that presented an average of 10.92 ± 1.40 petals and other normal floral organs. F1, F2 and BC1 populations were constructed by crossing D376 with a single-flowered line reciprocally. Genetic analysis revealed that the double-flower trait was a recessive trait controlled by multiple genes. To identify the key genes controlling the double-flower trait, bulk segregant analysis sequencing (BSA-seq) and RNA-seq analyses were conducted on F2 individual bulks with opposite extreme phenotypes. Through BSA-seq, one candidate interval was mapped at the region of chromosome C05: 14.56-16.17 Mb. GO and KEGG enrichment analyses revealed that the DEGs were significantly enriched in carbohydrate metabolic processes, notably starch and sucrose metabolism. Interestingly, five and thirty-six DEGs associated with floral development were significantly up- and down-regulated, respectively, in the double-flowered plants. A combined analysis of BSA-seq and RNA-seq data revealed that five genes were candidates associated with the double flower trait, and BnaC05.ERS2 was the most promising gene. These findings provide novel insights into the breeding of double-flowered varieties and lay a theoretical foundation for unveiling the molecular mechanisms of floral development in B. napus.
Collapse
Affiliation(s)
- Xiaowei Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liangmiao Fan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shenhua Ye
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanping Chen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingying Huang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lumei Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
4
|
Chien YC, Yoon GM. Subcellular dynamics of ethylene signaling drive plant plasticity to growth and stress: Spatiotemporal control of ethylene signaling in Arabidopsis. Bioessays 2024; 46:e2400043. [PMID: 38571390 DOI: 10.1002/bies.202400043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Volatile compounds, such as nitric oxide and ethylene gas, play a vital role as signaling molecules in organisms. Ethylene is a plant hormone that regulates a wide range of plant growth, development, and responses to stress and is perceived by a family of ethylene receptors that localize in the endoplasmic reticulum. Constitutive Triple Response 1 (CTR1), a Raf-like protein kinase and a key negative regulator for ethylene responses, tethers to the ethylene receptors, but undergoes nuclear translocation upon activation of ethylene signaling. This ER-to-nucleus trafficking transforms CTR1 into a positive regulator for ethylene responses, significantly enhancing stress resilience to drought and salinity. The nuclear trafficking of CTR1 demonstrates that the spatiotemporal control of ethylene signaling is essential for stress adaptation. Understanding the mechanisms governing the spatiotemporal control of ethylene signaling elements is crucial for unraveling the system-level regulatory mechanisms that collectively fine-tune ethylene responses to optimize plant growth, development, and stress adaptation.
Collapse
Affiliation(s)
- Yuan-Chi Chien
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Gyeong Mee Yoon
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
5
|
Fu Y, Ma L, Li J, Hou D, Zeng B, Zhang L, Liu C, Bi Q, Tan J, Yu X, Bi J, Luo L. Factors Influencing Seed Dormancy and Germination and Advances in Seed Priming Technology. PLANTS (BASEL, SWITZERLAND) 2024; 13:1319. [PMID: 38794390 PMCID: PMC11125191 DOI: 10.3390/plants13101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
Seed dormancy and germination play pivotal roles in the agronomic traits of plants, and the degree of dormancy intuitively affects the yield and quality of crops in agricultural production. Seed priming is a pre-sowing seed treatment that enhances and accelerates germination, leading to improved seedling establishment. Seed priming technologies, which are designed to partially activate germination, while preventing full seed germination, have exerted a profound impact on agricultural production. Conventional seed priming relies on external priming agents, which often yield unstable results. What works for one variety might not be effective for another. Therefore, it is necessary to explore the internal factors within the metabolic pathways that influence seed physiology and germination. This review unveils the underlying mechanisms of seed metabolism and germination, the factors affecting seed dormancy and germination, as well as the current seed priming technologies that can result in stable and better germination.
Collapse
Affiliation(s)
- Yanfeng Fu
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; (Y.F.); (X.Y.); (L.L.)
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Ma
- Institute for Sustainable Horticulture, Kwantlen Polytechnic University, 20901 Langley Bypass, Langley, BC V3A 8G9, Canada;
| | - Juncai Li
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Danping Hou
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Zeng
- National Agricultural Technology Extension Service Center, Room 622, Building 20, Maizidian Street, Chaoyang District, Beijing 100125, China; (B.Z.); (L.Z.); (C.L.)
| | - Like Zhang
- National Agricultural Technology Extension Service Center, Room 622, Building 20, Maizidian Street, Chaoyang District, Beijing 100125, China; (B.Z.); (L.Z.); (C.L.)
| | - Chunqing Liu
- National Agricultural Technology Extension Service Center, Room 622, Building 20, Maizidian Street, Chaoyang District, Beijing 100125, China; (B.Z.); (L.Z.); (C.L.)
| | - Qingyu Bi
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinsong Tan
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinqiao Yu
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; (Y.F.); (X.Y.); (L.L.)
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Junguo Bi
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; (Y.F.); (X.Y.); (L.L.)
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Zhao Q, Jing W, Fu X, Yang R, Zhu C, Zhao J, Choisy P, Xu T, Ma N, Zhao L, Gao J, Zhou X, Li Y. TSPO-induced degradation of the ethylene receptor RhETR3 promotes salt tolerance in rose ( Rosa hybrida). HORTICULTURE RESEARCH 2024; 11:uhae040. [PMID: 38623073 PMCID: PMC11017515 DOI: 10.1093/hr/uhae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/30/2024] [Indexed: 04/17/2024]
Abstract
The gaseous plant hormone ethylene regulates plant development, growth, and responses to stress. In particular, ethylene affects tolerance to salinity; however, the underlying mechanisms of ethylene signaling and salt tolerance are not fully understood. Here, we demonstrate that salt stress induces the degradation of the ethylene receptor ETHYLENE RESPONSE 3 (RhETR3) in rose (Rosa hybrid). Furthermore, the TspO/MBR (Tryptophan-rich sensory protein/mitochondrial benzodiazepine receptor) domain-containing membrane protein RhTSPO interacted with RhETR3 to promote its degradation in response to salt stress. Salt tolerance is enhanced in RhETR3-silenced rose plants but decreased in RhTSPO-silenced plants. The improved salt tolerance of RhETR3-silenced rose plants is partly due to the increased expression of ACC SYNTHASE1 (ACS1) and ACS2, which results in an increase in ethylene production, leading to the activation of ETHYLENE RESPONSE FACTOR98 (RhERF98) expression and, ultimately accelerating H2O2 scavenging under salinity conditions. Additionally, overexpression of RhETR3 increased the salt sensitivity of rose plants. Co-overexpression with RhTSPO alleviated this sensitivity. Together, our findings suggest that RhETR3 degradation is a key intersection hub for the ethylene signalling-mediated regulation of salt stress.
Collapse
Affiliation(s)
- Qingcui Zhao
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen, 518055, Guangdong, China
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, 518055, Guangdong, China
| | - Weikun Jing
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen, 518055, Guangdong, China
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, China
| | - Xijia Fu
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Beijing 100193, China
| | - Ruoyun Yang
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Beijing 100193, China
| | - Chunyan Zhu
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Beijing 100193, China
| | - Jiaxin Zhao
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Beijing 100193, China
| | | | - Tao Xu
- LVMH Recherche, F-45800 St Jean de Braye, France
| | - Nan Ma
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Beijing 100193, China
| | - Liangjun Zhao
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Beijing 100193, China
| | - Junping Gao
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Beijing 100193, China
| | - Xiaofeng Zhou
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Beijing 100193, China
| | - Yonghong Li
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen, 518055, Guangdong, China
| |
Collapse
|
7
|
Xie S, Luo H, Huang W, Jin W, Dong Z. Striking a growth-defense balance: Stress regulators that function in maize development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:424-442. [PMID: 37787439 DOI: 10.1111/jipb.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/01/2023] [Indexed: 10/04/2023]
Abstract
Maize (Zea mays) cultivation is strongly affected by both abiotic and biotic stress, leading to reduced growth and productivity. It has recently become clear that regulators of plant stress responses, including the phytohormones abscisic acid (ABA), ethylene (ET), and jasmonic acid (JA), together with reactive oxygen species (ROS), shape plant growth and development. Beyond their well established functions in stress responses, these molecules play crucial roles in balancing growth and defense, which must be finely tuned to achieve high yields in crops while maintaining some level of defense. In this review, we provide an in-depth analysis of recent research on the developmental functions of stress regulators, focusing specifically on maize. By unraveling the contributions of these regulators to maize development, we present new avenues for enhancing maize cultivation and growth while highlighting the potential risks associated with manipulating stress regulators to enhance grain yields in the face of environmental challenges.
Collapse
Affiliation(s)
- Shiyi Xie
- Maize Engineering and Technology Research Center of Hunan Province, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Hongbing Luo
- Maize Engineering and Technology Research Center of Hunan Province, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Huang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiwei Jin
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, Fresh Corn Research Center of BTH, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Zhaobin Dong
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
8
|
He W, Truong HA, Zhang L, Cao M, Arakawa N, Xiao Y, Zhong K, Hou Y, Busch W. Identification of mebendazole as an ethylene signaling activator reveals a role of ethylene signaling in the regulation of lateral root angles. Cell Rep 2024; 43:113763. [PMID: 38358890 PMCID: PMC10949360 DOI: 10.1016/j.celrep.2024.113763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/31/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024] Open
Abstract
The lateral root angle or gravitropic set-point angle (GSA) is an important trait for root system architecture (RSA) that determines the radial expansion of the root system. The GSA therefore plays a crucial role for the ability of plants to access nutrients and water in the soil. Only a few regulatory pathways and mechanisms that determine GSA are known. These mostly relate to auxin and cytokinin pathways. Here, we report the identification of a small molecule, mebendazole (MBZ), that modulates GSA in Arabidopsis thaliana roots and acts via the activation of ethylene signaling. MBZ directly acts on the serine/threonine protein kinase CTR1, which is a negative regulator of ethylene signaling. Our study not only shows that the ethylene signaling pathway is essential for GSA regulation but also identifies a small molecular modulator of RSA that acts downstream of ethylene receptors and that directly activates ethylene signaling.
Collapse
Affiliation(s)
- Wenrong He
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Hai An Truong
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ling Zhang
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Min Cao
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Neal Arakawa
- Environmental and Complex Analysis Laboratory (ECAL), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yao Xiao
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kaizhen Zhong
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Yingnan Hou
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA 92521, USA; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
9
|
Palukaitis P, Yoon JY. Defense signaling pathways in resistance to plant viruses: Crosstalk and finger pointing. Adv Virus Res 2024; 118:77-212. [PMID: 38461031 DOI: 10.1016/bs.aivir.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Resistance to infection by plant viruses involves proteins encoded by plant resistance (R) genes, viz., nucleotide-binding leucine-rich repeats (NLRs), immune receptors. These sensor NLRs are activated either directly or indirectly by viral protein effectors, in effector-triggered immunity, leading to induction of defense signaling pathways, resulting in the synthesis of numerous downstream plant effector molecules that inhibit different stages of the infection cycle, as well as the induction of cell death responses mediated by helper NLRs. Early events in this process involve recognition of the activation of the R gene response by various chaperones and the transport of these complexes to the sites of subsequent events. These events include activation of several kinase cascade pathways, and the syntheses of two master transcriptional regulators, EDS1 and NPR1, as well as the phytohormones salicylic acid, jasmonic acid, and ethylene. The phytohormones, which transit from a primed, resting states to active states, regulate the remainder of the defense signaling pathways, both directly and by crosstalk with each other. This regulation results in the turnover of various suppressors of downstream events and the synthesis of various transcription factors that cooperate and/or compete to induce or suppress transcription of either other regulatory proteins, or plant effector molecules. This network of interactions results in the production of defense effectors acting alone or together with cell death in the infected region, with or without the further activation of non-specific, long-distance resistance. Here, we review the current state of knowledge regarding these processes and the components of the local responses, their interactions, regulation, and crosstalk.
Collapse
Affiliation(s)
- Peter Palukaitis
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| | - Ju-Yeon Yoon
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
10
|
Paull RE, Ksouri N, Kantar M, Zerpa‐Catanho D, Chen NJ, Uruu G, Yue J, Guo S, Zheng Y, Wai CMJ, Ming R. Differential gene expression during floral transition in pineapple. PLANT DIRECT 2023; 7:e541. [PMID: 38028646 PMCID: PMC10644199 DOI: 10.1002/pld3.541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023]
Abstract
Pineapple (Ananas comosus var. comosus) and ornamental bromeliads are commercially induced to flower by treatment with ethylene or its analogs. The apex is transformed from a vegetative to a floral meristem and shows morphological changes in 8 to 10 days, with flowers developing 8 to 10 weeks later. During eight sampling stages ranging from 6 h to 8 days after treatment, 7961 genes were found to exhibit differential expression (DE) after the application of ethylene. In the first 3 days after treatment, there was little change in ethylene synthesis or in the early stages of the ethylene response. Subsequently, three ethylene response transcription factors (ERTF) were up-regulated and the potential gene targets were predicted to be the positive flowering regulator CONSTANS-like 3 (CO), a WUSCHEL gene, two APETALA1/FRUITFULL (AP1/FUL) genes, an epidermal patterning gene, and a jasmonic acid synthesis gene. We confirm that pineapple has lost the flowering repressor FLOWERING LOCUS C. At the initial stages, the SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) was not significantly involved in this transition. Another WUSCHEL gene and a PHD homeobox transcription factor, though not apparent direct targets of ERTF, were up-regulated within a day of treatment, their predicted targets being the up-regulated CO, auxin response factors, SQUAMOSA, and histone H3 genes with suppression of abscisic acid response genes. The FLOWERING LOCUS T (FT), TERMINAL FLOWER (TFL), AGAMOUS-like APETELAR (AP2), and SEPETALA (SEP) increased rapidly within 2 to 3 days after ethylene treatment. Two FT genes were up-regulated at the apex and not at the leaf bases after treatment, suggesting that transport did not occur. These results indicated that the ethylene response in pineapple and possibly most bromeliads act directly to promote the vegetative to flower transition via APETALA1/FRUITFULL (AP1/FUL) and its interaction with SPL, FT, TFL, SEP, and AP2. A model based on AP2/ERTF DE and predicted DE target genes was developed to give focus to future research. The identified candidate genes are potential targets for genetic manipulation to determine their molecular role in flower transition.
Collapse
Affiliation(s)
- Robert E. Paull
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Najla Ksouri
- Laboratory of Genomics, Genetics and Breeding of Fruits and Grapevine, Experimental Aula Dei‐CSICZaragozaSpain
| | - Michael Kantar
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | | | - Nancy Jung Chen
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Gail Uruu
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Jingjing Yue
- Center for Genomics and BiotechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Shiyong Guo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
| | - Yun Zheng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
| | | | - Ray Ming
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Center for Genomics and BiotechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
11
|
Huang J, Zhao X, Bürger M, Chory J, Wang X. The role of ethylene in plant temperature stress response. TRENDS IN PLANT SCIENCE 2023; 28:808-824. [PMID: 37055243 DOI: 10.1016/j.tplants.2023.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/15/2023] [Accepted: 03/07/2023] [Indexed: 06/17/2023]
Abstract
Temperature influences the seasonal growth and geographical distribution of plants. Heat or cold stress occur when temperatures exceed or fall below the physiological optimum ranges, resulting in detrimental and irreversible damage to plant growth, development, and yield. Ethylene is a gaseous phytohormone with an important role in plant development and multiple stress responses. Recent studies have shown that, in many plant species, both heat and cold stress affect ethylene biosynthesis and signaling pathways. In this review, we summarize recent advances in understanding the role of ethylene in plant temperature stress responses and its crosstalk with other phytohormones. We also discuss potential strategies and knowledge gaps that need to be adopted and filled to develop temperature stress-tolerant crops by optimizing ethylene response.
Collapse
Affiliation(s)
- Jianyan Huang
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Xiaobo Zhao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Marco Bürger
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Joanne Chory
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Xinchao Wang
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
12
|
Feng S, Jiang X, Wang R, Tan H, Zhong L, Cheng Y, Bao M, Qiao H, Zhang F. Histone H3K4 methyltransferase DcATX1 promotes ethylene induced petal senescence in carnation. PLANT PHYSIOLOGY 2023; 192:546-564. [PMID: 36623846 PMCID: PMC10152666 DOI: 10.1093/plphys/kiad008] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 05/03/2023]
Abstract
Petal senescence is controlled by a complex regulatory network. Epigenetic regulation like histone modification influences chromatin state and gene expression. However, the involvement of histone methylation in regulating petal senescence remains poorly understood. Here, we found that the trimethylation of histone H3 at Lysine 4 (H3K4me3) is increased during ethylene-induced petal senescence in carnation (Dianthus caryophyllus L.). H3K4me3 levels were positively associated with the expression of transcription factor DcWRKY75, ethylene biosynthetic genes 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (DcACS1), and ACC oxidase (DcACO1), and senescence associated genes (SAGs) DcSAG12 and DcSAG29. Further, we identified that carnation ARABIDOPSIS HOMOLOG OF TRITHORAX1 (DcATX1) encodes a histone lysine methyltransferase which can methylate H3K4. Knockdown of DcATX1 delayed ethylene-induced petal senescence in carnation, which was associated with the down-regulated expression of DcWRKY75, DcACO1, and DcSAG12, whereas overexpression of DcATX1 exhibited the opposite effects. DcATX1 promoted the transcription of DcWRKY75, DcACO1, and DcSAG12 by elevating the H3K4me3 levels within their promoters. Overall, our results demonstrate that DcATX1 is a H3K4 methyltransferase that promotes the expression of DcWRKY75, DcACO1, DcSAG12 and potentially other downstream target genes by regulating H3K4me3 levels, thereby accelerating ethylene-induced petal senescence in carnation. This study further indicates that epigenetic regulation is important for plant senescence processes.
Collapse
Affiliation(s)
- Shan Feng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyu Jiang
- State key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruiming Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hualiang Tan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Linlin Zhong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunjiang Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Manzhu Bao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Huazhong Urban Agriculture, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Qiao
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Fan Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Huazhong Urban Agriculture, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
13
|
Jiang Y, Zhang S, Chen K, Xia X, Tao B, Kong W. Impacts of DNA methylases and demethylases on the methylation and expression of Arabidopsis ethylene signal pathway genes. Funct Integr Genomics 2023; 23:143. [PMID: 37127698 DOI: 10.1007/s10142-023-01069-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Arabidopsis ethylene (ET) signal pathway plays important roles in various aspects. Cytosine DNA methylation is significant in controlling gene expression in plants. Here, we analyzed the bisulfite sequencing and mRNA sequencing data from Arabidopsis (de)methylase mutants met1, cmt3, drm1/2, ddm1, ros1-4, and rdd to investigate how DNA (de)methylases influence the DNA methylation and expression of Arabidopsis ET pathway genes. At least 32 genes are found to involved in Arabidopsis ET pathway by text mining. Among them, 14 genes are unmethylated or methylated with very low levels. ACS6 and ACS9 are conspicuously methylated within their upstream regions. The other 16 genes are predominantly methylated at the CG sites within gene body regions in wild-type plants, and mutation of MET1 resulted in almost entire elimination of the CG methylations. In addition, CG methylations within some genes are jointly maintained by MET1 and other (de)methylases. Analyses of mRNA-seq data indicated that some ET pathway genes were differentially expressed between wild-type and diverse mutants. PDF1.2, the marker gene of ET signal pathway, was found being regulated indirectly by the methylases. Eighty-two transposable elements (TEs) were identified to be associated to 15 ET pathway genes. ACS11 is found located in a heterochromatin region that contains 57 TEs, indicating its specific expression and regulation. Together, our results suggest that DNA (de)methylases are implicated in the regulation of CG methylation within gene body regions and transcriptional activity of some ET pathway genes and that maintenance of normal CG methylation is essential for ET pathway in Arabidopsis.
Collapse
Affiliation(s)
- Yan Jiang
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Shengwei Zhang
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Kun Chen
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xue Xia
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Bingqing Tao
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Weiwen Kong
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
14
|
Zhu C, Huang Z, Sun Z, Feng S, Wang S, Wang T, Yuan X, Zhong L, Cheng Y, Bao M, Zhang F. The mutual regulation between DcEBF1/2 and DcEIL3-1 is involved in ethylene induced petal senescence in carnation (Dianthus caryophyllus L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:636-650. [PMID: 36808165 DOI: 10.1111/tpj.16158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 05/10/2023]
Abstract
Carnation (Dianthus caryophyllus L.) is a respiratory climacteric flower, comprising one of the most important cut flowers that is extremely sensitive to plant hormone ethylene. Ethylene signaling core transcription factor DcEIL3-1 plays a key role in ethylene induced petal senescence in carnation. However, how the dose of DcEIL3-1 is regulated in the carnation petal senescence process is still not clear. Here, we screened out two EBF (EIN3 Binding F-box) genes, DcEBF1 and DcEBF2, which showed quick elevation by ethylene treatment according to the ethylene induced carnation petal senescence transcriptome. Silencing of DcEBF1 and DcEBF2 accelerated, whereas overexpression of DcEBF1 and DcEBF2 delayed, ethylene induced petal senescence in carnation by influencing DcEIL3-1 downstream target genes but not DcEIL3-1 itself. Furthermore, DcEBF1 and DcEBF2 interact with DcEIL3-1 to degrade DcEIL3-1 via an ubiquitination pathway in vitro and in vivo. Finally, DcEIL3-1 binds to the promoter regions of DcEBF1 and DcEBF2 to activate their expression. In conclusion, the present study reveals the mutual regulation between DcEBF1/2 and DcEIL3-1 during ethylene induced petal senescence in carnation, which not only expands our understanding about ethylene signal regulation network in the carnation petal senescence process, but also provides potential targets with respect to breeding a cultivar of long-lived cut carnation.
Collapse
Affiliation(s)
- Chunlin Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiheng Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zheng Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shan Feng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Siqi Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Teng Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinyi Yuan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Linlin Zhong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunjiang Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Manzhu Bao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Huazhong Urban Agriculture, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fan Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Huazhong Urban Agriculture, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
15
|
Saxena S, Das A, Kaila T, Ramakrishna G, Sharma S, Gaikwad K. Genomic survey of high-throughput RNA-Seq data implicates involvement of long intergenic non-coding RNAs (lincRNAs) in cytoplasmic male-sterility and fertility restoration in pigeon pea. Genes Genomics 2023; 45:783-811. [PMID: 37115379 DOI: 10.1007/s13258-023-01383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/21/2022] [Indexed: 04/29/2023]
Abstract
BACKGROUND Long-intergenic non-coding RNAs (lincRNAs) originate from intergenic regions and have no coding potential. LincRNAs have emerged as key players in the regulation of various biological processes in plant development. Cytoplasmic male-sterility (CMS) in association with restorer-of-fertility (Rf) systems makes it a highly reliable tool for exploring heterosis for producing commercial hybrid seeds. To date, there have been no reports of lincRNAs during pollen development in CMS and fertility restorer lines in pigeon pea. OBJECTIVE Identification of lincRNAs in the floral buds of cytoplasmic male-sterile (AKCMS11) and fertility restorer (AKPR303) pigeon pea lines. METHODS We employed a computational approach to identify lincRNAs in the floral buds of cytoplasmic male-sterile (AKCMS11) and fertility restorer (AKPR303) pigeon pea lines using RNA-Seq data. RESULTS We predicted a total of 2145 potential lincRNAs of which 966 were observed to be differentially expressed between the sterile and fertile pollen. We identified, 927 cis-regulated and 383 trans-regulated target genes of the lincRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the target genes revealed that these genes were specifically enriched in pathways like pollen and pollen tube development, oxidative phosphorylation, etc. We detected 23 lincRNAs that were co-expressed with 17 pollen-related genes with known functions. Fifty-nine lincRNAs were predicted to be endogenous target mimics (eTMs) for 25 miRNAs, and found to be associated with pollen development. The, lincRNA regulatory networks revealed that different lincRNA-miRNA-mRNA networks might be associated with CMS and fertility restoration. CONCLUSION Thus, this study provides valuable information by highlighting the functions of lincRNAs as regulators during pollen development in pigeon pea and utilization in hybrid seed production.
Collapse
Affiliation(s)
- Swati Saxena
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Antara Das
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Tanvi Kaila
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - G Ramakrishna
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
16
|
Yin CC, Huang YH, Zhang X, Zhou Y, Chen SY, Zhang JS. Ethylene-mediated regulation of coleoptile elongation in rice seedlings. PLANT, CELL & ENVIRONMENT 2023; 46:1060-1074. [PMID: 36397123 DOI: 10.1111/pce.14492] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Rice is an important food crop in the world and the study of its growth and plasticity has a profound influence on sustainable development. Ethylene modulates multiple agronomic traits of rice as well as abiotic and biotic stresses during its lifecycle. It has diverse roles, depending on the organs, developmental stages and environmental conditions. Compared to Arabidopsis (Arabidopsis thaliana), rice ethylene signalling pathway has its own unique features due to its special semiaquatic living environment and distinct plant structure. Ethylene signalling and responses are part of an intricate network in crosstalk with internal and external factors. This review will summarize the current progress in the mechanisms of ethylene-regulated coleoptile growth in rice, with a special focus on ethylene signaling and interaction with other hormones. Insights into these molecular mechanisms may shed light on ethylene biology and should be beneficial for the genetic improvement of rice and other crops.
Collapse
Affiliation(s)
- Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, China
| | - Yi-Hua Huang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, China
| | - Xun Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Zhou
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Yin L, Zander M, Huang SSC, Xie M, Song L, Saldierna Guzmán JP, Hann E, Shanbhag BK, Ng S, Jain S, Janssen BJ, Clark NM, Walley JW, Beddoe T, Bar-Joseph Z, Lewsey MG, Ecker JR. Transcription Factor Dynamics in Cross-Regulation of Plant Hormone Signaling Pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531630. [PMID: 36945593 PMCID: PMC10028877 DOI: 10.1101/2023.03.07.531630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Cross-regulation between hormone signaling pathways is indispensable for plant growth and development. However, the molecular mechanisms by which multiple hormones interact and co-ordinate activity need to be understood. Here, we generated a cross-regulation network explaining how hormone signals are integrated from multiple pathways in etiolated Arabidopsis (Arabidopsis thaliana) seedlings. To do so we comprehensively characterized transcription factor activity during plant hormone responses and reconstructed dynamic transcriptional regulatory models for six hormones; abscisic acid, brassinosteroid, ethylene, jasmonic acid, salicylic acid and strigolactone/karrikin. These models incorporated target data for hundreds of transcription factors and thousands of protein-protein interactions. Each hormone recruited different combinations of transcription factors, a subset of which were shared between hormones. Hub target genes existed within hormone transcriptional networks, exhibiting transcription factor activity themselves. In addition, a group of MITOGEN-ACTIVATED PROTEIN KINASES (MPKs) were identified as potential key points of cross-regulation between multiple hormones. Accordingly, the loss of function of one of these (MPK6) disrupted the global proteome, phosphoproteome and transcriptome during hormone responses. Lastly, we determined that all hormones drive substantial alternative splicing that has distinct effects on the transcriptome compared with differential gene expression, acting in early hormone responses. These results provide a comprehensive understanding of the common features of plant transcriptional regulatory pathways and how cross-regulation between hormones acts upon gene expression.
Collapse
Affiliation(s)
- Lingling Yin
- La Trobe Institute for Agriculture and Food, Department of Animal, Plant and Soil Sciences, School of Agriculture Biomedicine and Environment, AgriBio Building, La Trobe University, Melbourne, VIC 3086, Australia
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Mark Zander
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Present address: Waksman Institute of Microbiology, Department of Plant Biology, Rutgers, The State University of New Jersey, NJ 08854, USA
| | - Shao-shan Carol Huang
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Present address: Department of Biology, New York University, New York, NY 10003, USA
| | - Mingtang Xie
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Present address: Cibus, San Diego, CA 92121, USA
| | - Liang Song
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Present address: Department of Botany, The University of British Columbia, Vancouver, British Columbia, Canada
| | - J. Paola Saldierna Guzmán
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Present address: Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Elizabeth Hann
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Present address: Department of Chemical and Environmental Engineering, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Bhuvana K. Shanbhag
- La Trobe Institute for Agriculture and Food, Department of Animal, Plant and Soil Sciences, School of Agriculture Biomedicine and Environment, AgriBio Building, La Trobe University, Melbourne, VIC 3086, Australia
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Sophia Ng
- La Trobe Institute for Agriculture and Food, Department of Animal, Plant and Soil Sciences, School of Agriculture Biomedicine and Environment, AgriBio Building, La Trobe University, Melbourne, VIC 3086, Australia
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Siddhartha Jain
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Bart J. Janssen
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Natalie M. Clark
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA, 50011 USA
| | - Justin W. Walley
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA, 50011 USA
| | - Travis Beddoe
- La Trobe Institute for Agriculture and Food, Department of Animal, Plant and Soil Sciences, School of Agriculture Biomedicine and Environment, AgriBio Building, La Trobe University, Melbourne, VIC 3086, Australia
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Ziv Bar-Joseph
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Mathew G. Lewsey
- La Trobe Institute for Agriculture and Food, Department of Animal, Plant and Soil Sciences, School of Agriculture Biomedicine and Environment, AgriBio Building, La Trobe University, Melbourne, VIC 3086, Australia
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Centre of Excellence in Plants For Space, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Joseph R. Ecker
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
18
|
Nie Y, Li Y, Liu M, Ma B, Sui X, Chen J, Yu Y, Dong CH. The nucleoporin NUP160 and NUP96 regulate nucleocytoplasmic export of mRNAs and participate in ethylene signaling and response in Arabidopsis. PLANT CELL REPORTS 2023; 42:549-559. [PMID: 36598573 DOI: 10.1007/s00299-022-02976-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Arabidopsis nucleoporin involved in the regulation of ethylene signaling via controlling of nucleocytoplasmic transport of mRNAs. The two-way transport of mRNAs between the nucleus and cytoplasm are controlled by the nuclear pore complex (NPC). In higher plants, the NPC contains at least 30 nucleoporins. The Arabidopsis nucleoporins are involved in various biological processes such as pathogen interaction, nodulation, cold response, flowering, and hormone signaling. However, little is known about the regulatory functions of the nucleoporin NUP160 and NUP96 in ethylene signaling pathway. In the present study, we provided data showing that the Arabidopsis nucleoporin NUP160 and NUP96 participate in ethylene signaling-related mRNAs nucleocytoplasmic transport. The Arabidopsis nucleoporin mutants (nup160, nup96-1, nup96-2) exhibited enhanced ethylene sensitivity. Nuclear qRT-PCR analysis and poly(A)-mRNA in situ hybridization showed that the nucleoporin mutants affected the nucleocytoplasmic transport of all the examined mRNAs, including the ethylene signaling-related mRNAs such as ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, and EIN3. Transcriptome analysis of the nucleoporin mutants provided clues suggesting that the nucleoporin NUP160 and NUP96 may participate in ethylene signaling via various molecular mechanisms. These observations significantly advance our understanding of the regulatory mechanisms of nucleoporin proteins in ethylene signaling and ethylene response.
Collapse
Affiliation(s)
- Yuanyuan Nie
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yang Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Menghui Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Binran Ma
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xinying Sui
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiacai Chen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yanchong Yu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chun-Hai Dong
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
19
|
Vincent M, Boubakri H, Gasser M, Hay AE, Herrera-Belaroussi A. What contribution of plant immune responses in Alnus glutinosa-Frankia symbiotic interactions? Symbiosis 2023. [DOI: 10.1007/s13199-022-00889-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
20
|
Shao Z, Zhao B, Kotla P, Burns JG, Tran J, Ke M, Chen X, Browning KS, Qiao H. Phosphorylation status of Bβ subunit acts as a switch to regulate the function of phosphatase PP2A in ethylene-mediated root growth inhibition. THE NEW PHYTOLOGIST 2022; 236:1762-1778. [PMID: 36073540 PMCID: PMC9828452 DOI: 10.1111/nph.18467] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/25/2022] [Indexed: 05/20/2023]
Abstract
The various combinations and regulations of different subunits of phosphatase PP2A holoenzymes underlie their functional complexity and importance. However, molecular mechanisms governing the assembly of PP2A complex in response to external or internal signals remain largely unknown, especially in Arabidopsis thaliana. We found that the phosphorylation status of Bβ of PP2A acts as a switch to regulate the activity of PP2A. In the absence of ethylene, phosphorylated Bβ leads to an inactivation of PP2A; the substrate EIR1 remains to be phosphorylated, preventing the EIR1-mediated auxin transport in epidermis, leading to normal root growth. Upon ethylene treatment, the dephosphorylated Bβ mediates the formation of the A2-C4-Bβ protein complex to activate PP2A, resulting in the dephosphorylation of EIR1 to promote auxin transport in epidermis of elongation zone, leading to root growth inhibition. Altogether, our research revealed a novel molecular mechanism by which the dephosphorylation of Bβ subunit switches on PP2A activity to dephosphorylate EIR1 to establish EIR1-mediated auxin transport in the epidermis in elongation zone for root growth inhibition in response to ethylene.
Collapse
Affiliation(s)
- Zhengyao Shao
- Institute for Cellular and Molecular BiologyThe University of Texas at AustinAustinTX78712USA
- Department of Molecular BiosciencesThe University of Texas at AustinAustinTX78712USA
| | - Bo Zhao
- Institute for Cellular and Molecular BiologyThe University of Texas at AustinAustinTX78712USA
- Department of Molecular BiosciencesThe University of Texas at AustinAustinTX78712USA
| | - Prashanth Kotla
- Institute for Cellular and Molecular BiologyThe University of Texas at AustinAustinTX78712USA
| | - Jackson G. Burns
- Institute for Cellular and Molecular BiologyThe University of Texas at AustinAustinTX78712USA
| | - Jaclyn Tran
- Institute for Cellular and Molecular BiologyThe University of Texas at AustinAustinTX78712USA
- Department of Molecular BiosciencesThe University of Texas at AustinAustinTX78712USA
| | - Meiyu Ke
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics CenterFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Xu Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics CenterFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Karen S. Browning
- Institute for Cellular and Molecular BiologyThe University of Texas at AustinAustinTX78712USA
- Department of Molecular BiosciencesThe University of Texas at AustinAustinTX78712USA
| | - Hong Qiao
- Institute for Cellular and Molecular BiologyThe University of Texas at AustinAustinTX78712USA
- Department of Molecular BiosciencesThe University of Texas at AustinAustinTX78712USA
| |
Collapse
|
21
|
Jiang S, Zheng W, Li Z, Tan J, Wu M, Li X, Hong SB, Deng J, Zhu Z, Zang Y. Enhanced Resistance to Sclerotinia sclerotiorum in Brassica rapa by Activating Host Immunity through Exogenous Verticillium dahliae Aspf2-like Protein (VDAL) Treatment. Int J Mol Sci 2022; 23:13958. [PMID: 36430439 PMCID: PMC9694685 DOI: 10.3390/ijms232213958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Sclerotinia stem rot caused by Sclerotinia sclerotiorum is one of the most destructive diseases in Brassica rapa. Verticillium dahliae Aspf2-like protein (VDAL) is a secretory protein of V. dahliae which has been shown to enhance the resistance against fungal infections in several plants. Nonetheless, the molecular mechanisms of VDAL-primed disease resistance are still poorly understood. In this study, we performed physiological, biochemical, and transcriptomic analyses of Brassica rapa in order to understand how VDAL confers resistance to S. sclerotiorumn infections in plants. The results showed that foliar application of VDAL significantly reduced the plaque area on leaves inoculated with S. sclerotiorum. It also enhanced antioxidant capacity by increasing activities of superoxide dismutase (SOD), peroxidase (POD), peroxidase (APX), glutathione reductase (GR), protoporphyrinogen oxidase (PPO), and defense-related enzymes β-1,3-glucanase and chitinase during the infection periods. This occurred in parallel with significantly reduced relative conductivity at different periods and lower malondialdehyde (MDA) content as compared to sole S. sclerotiorum inoculation. Transcriptomic analysis showed a total of 146 (81 up-regulated and 65 down-regulated) differentially expressed genes (DEGs) in VDAL-treated leaves compared to the control. The most enriched three Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were the mitogen-activated protein kinase (MAPK) signaling pathway, plant hormone signal transduction, and plant-pathogen interaction, all of which were associated with plant immunity. DEGs associated with MAPK and hormone signal transduction pathways were ethylene response sensor ERS2, EIN3 (Ethylene Insensitive3)-binding F-box protein 2 (EBF2), ethylene-responsive transcription factor ERF94, MAPK 9 (MKK9), protein phosphatase 2C (PP2C37), auxin-responsive proteins (AUX/IAA1 and 19), serine/threonine-protein kinase CTR1, and abscisic acid receptors (PLY 4 and 5). Among the DEGs linked with the plant-pathogen interaction pathway were calmodulin-like proteins (CML5, 24, 27), PTI1-like tyrosine protein kinase 3 (Pti13) and transcription factor MYB30, all of which are known to play key roles in pathogen-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity (ETI) for hypersensitive response (HR), cell wall reinforcement, and stomatal closure in plants. Overall, VDLA treatment triggered repression of the auxin and ABA signaling pathways and de-repression of the ethylene signaling pathways in young B. rapa seedlings to increase plant innate immunity. Our results showed that VDAL holds great potential to enhance fungal disease resistance in B. rapa crop.
Collapse
Affiliation(s)
- Shufang Jiang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Weiwei Zheng
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Zewei Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Jingru Tan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Meifang Wu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Xinyuan Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Seung-Beom Hong
- Department of Biotechnology, University of Houston Clear Lake, Houston, TX 77058-1098, USA
| | - Jianyu Deng
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhujun Zhu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yunxiang Zang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
22
|
Zhou Y, Ma B, Tao JJ, Yin CC, Hu Y, Huang YH, Wei W, Xin PY, Chu JF, Zhang WK, Chen SY, Zhang JS. Rice EIL1 interacts with OsIAAs to regulate auxin biosynthesis mediated by the tryptophan aminotransferase MHZ10/OsTAR2 during root ethylene responses. THE PLANT CELL 2022; 34:4366-4387. [PMID: 35972379 PMCID: PMC9614475 DOI: 10.1093/plcell/koac250] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/18/2022] [Indexed: 05/11/2023]
Abstract
Ethylene plays essential roles in adaptive growth of rice (Oryza sativa). Understanding of the crosstalk between ethylene and auxin (Aux) is limited in rice. Here, from an analysis of the root-specific ethylene-insensitive rice mutant mao hu zi 10 (mhz10), we identified the tryptophan aminotransferase (TAR) MHZ10/OsTAR2, which catalyzes the key step in indole-3-pyruvic acid-dependent Aux biosynthesis. Genetically, OsTAR2 acts downstream of ethylene signaling in root ethylene responses. ETHYLENE INSENSITIVE3 like1 (OsEIL1) directly activated OsTAR2 expression. Surprisingly, ethylene induction of OsTAR2 expression still required the Aux pathway. We also show that Os indole-3-acetic acid (IAA)1/9 and OsIAA21/31 physically interact with OsEIL1 and show promotive and repressive effects on OsEIL1-activated OsTAR2 promoter activity, respectively. These effects likely depend on their EAR motif-mediated histone acetylation/deacetylation modification. The special promoting activity of OsIAA1/9 on OsEIL1 may require both the EAR motifs and the flanking sequences for recruitment of histone acetyltransferase. The repressors OsIAA21/31 exhibit earlier degradation upon ethylene treatment than the activators OsIAA1/9 in a TIR1/AFB-dependent manner, allowing OsEIL1 activation by activators OsIAA1/9 for OsTAR2 expression and signal amplification. This study reveals a positive feedback regulation of ethylene signaling by Aux biosynthesis and highlights the crosstalk between ethylene and Aux pathways at a previously underappreciated level for root growth regulation in rice.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biao Ma
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jian-Jun Tao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Hu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Hua Huang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Pei-Yong Xin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Fang Chu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Identification of Key Genes during Ethylene-Induced Adventitious Root Development in Cucumber (Cucumis sativus L.). Int J Mol Sci 2022; 23:ijms232112981. [PMID: 36361778 PMCID: PMC9658848 DOI: 10.3390/ijms232112981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 12/04/2022] Open
Abstract
Ethylene (ETH), as a key plant hormone, plays critical roles in various processes of plant growth and development. ETH has been reported to induce adventitious rooting. Moreover, our previous studies have shown that exogenous ETH may induce plant adventitious root development in cucumber (Cucumis sativus L.). However, the key genes involved in this process are still unclear. To explore the key genes in ETH-induced adventitious root development, we employed a transcriptome technique and revealed 1415 differentially expressed genes (DEGs), with 687 DEGs up-regulated and 728 DEGs down-regulated. Using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, we further identified critical pathways that were involved in ETH-induced adventitious root development, including carbon metabolism (starch and sucrose metabolism, glycolysis/gluconeogenesis, citrate cycle (TCA cycle), oxidative phosphorylation, fatty acid biosynthesis, and fatty acid degradation), secondary metabolism (phenylalanine metabolism and flavonoid biosynthesis) and plant hormone signal transduction. In carbon metabolism, ETH reduced the content of sucrose, glucose, starch, the activity of sucrose synthase (SS), sucrose–phosphate synthase (SPS) and hexokinase (HK), and the expressions of CsHK2, pyruvate kinase2 (CsPK2), and CsCYP86A1, whereas it enhanced the expressions of β-amylase 1 (CsBAM1) and β-amylase 3 (CsBAM3). In secondary metabolism, the transcript levels of phenylalanine ammonia-lyase (CsPAL) and flavonoid 3′-monooxygenase (CsF3′M) were negatively regulated, and that of primary-amine oxidase (CsPAO) was positively regulated by ETH. Additionally, the indole-3-acetic acid (IAA) content and the expressions of auxin and ETH signaling transduction-related genes (auxin transporter-like protein 5 (CsLAX5), CsGH3.17, CsSUAR50, and CsERS) were suppressed, whereas the abscisic acid (ABA) content and the expressions of ABA and BR signaling transduction-related genes (CsPYL1, CsPYL5, CsPYL8, BRI1-associated kinase 1 (CsBAK1), and CsXTH3) were promoted by ETH. Furthermore, the mRNA levels of these genes were confirmed by real-time PCR (RT-qPCR). These results indicate that genes related to carbon metabolism, secondary metabolite biosynthesis, and plant hormone signaling transduction are involved in ETH-induced adventitious root development. This work identified the key pathways and genes in ETH-induced adventitious rooting in cucumber, which may provide new insights into ETH-induced adventitious root development and will be useful for investigating the molecular roles of key genes in this process in further studies.
Collapse
|
24
|
New Insights into Phase Separation Processes and Membraneless Condensates of EIN2. PLANTS 2022; 11:plants11162149. [PMID: 36015451 PMCID: PMC9416524 DOI: 10.3390/plants11162149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 12/04/2022]
Abstract
Recent technological advances allow us to resolve molecular processes in living cells with high spatial and temporal resolution. Based on these technological advances, membraneless intracellular condensates formed by reversible functional aggregation and phase separation have been identified as important regulatory modules in diverse biological processes. Here, we present bioinformatic and cellular studies highlighting the possibility of the involvement of the central activator of ethylene responses EIN2 in such cellular condensates and phase separation processes. Our work provides insight into the molecular type (identity) of the observed EIN2 condensates and on potential intrinsic elements and sequence motifs in EIN2-C that may regulate condensate formation and dynamics.
Collapse
|
25
|
Tünnermann L, Colou J, Näsholm T, Gratz R. To have or not to have: expression of amino acid transporters during pathogen infection. PLANT MOLECULAR BIOLOGY 2022; 109:413-425. [PMID: 35103913 PMCID: PMC9213295 DOI: 10.1007/s11103-022-01244-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
The interaction between plants and plant pathogens can have significant effects on ecosystem performance. For their growth and development, both bionts rely on amino acids. While amino acids are key transport forms of nitrogen and can be directly absorbed from the soil through specific root amino acid transporters, various pathogenic microbes can invade plant tissues to feed on different plant amino acid pools. In parallel, plants may initiate an immune response program to restrict this invasion, employing various amino acid transporters to modify the amino acid pool at the site of pathogen attack. The interaction between pathogens and plants is sophisticated and responses are dynamic. Both avail themselves of multiple tools to increase their chance of survival. In this review, we highlight the role of amino acid transporters during pathogen infection. Having control over the expression of those transporters can be decisive for the fate of both bionts but the underlying mechanism that regulates the expression of amino acid transporters is not understood to date. We provide an overview of the regulation of a variety of amino acid transporters, depending on interaction with biotrophic, hemibiotrophic or necrotrophic pathogens. In addition, we aim to highlight the interplay of different physiological processes on amino acid transporter regulation during pathogen attack and chose the LYSINE HISTIDINE TRANSPORTER1 (LHT1) as an example.
Collapse
Affiliation(s)
- Laura Tünnermann
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Justine Colou
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Torgny Näsholm
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Regina Gratz
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden.
| |
Collapse
|
26
|
Mao K, Zhang M, Kong Y, Dai S, Wang Y, Meng Q, Ma N, Lv W. Origin, Expansion, and Divergence of ETHYLENE-INSENSITIVE 3 (EIN3)/EIN3-LIKE Transcription Factors During Streptophytes Evolution. FRONTIERS IN PLANT SCIENCE 2022; 13:858477. [PMID: 35645995 PMCID: PMC9136324 DOI: 10.3389/fpls.2022.858477] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
The transition of plants to land required several regulatory adaptive mechanisms. Little is known about these mechanisms, but they no doubt involved the evolution of transcription factor (TF) families. ETHYLENE-INSENSITIVE 3 (EIN3)/EIN3-LIKE (EIL) transcription factors (TFs) are core components of the ethylene signaling pathway that play important roles in almost every aspect of plant development and environmental responses by regulating the transcription of numerous genes. However, the evolutionary history of EIN3/EIL TFs, which are present in a wide range of streptophytes, is still not clear. Here, to explore the evolution and functions of EIN3/EIL TFs, we performed phylogenetic analysis of these TFs and investigated their gene and protein structures as well as sequence features. Our results suggest that the EIN3/EIL TF family was already was already present in the ancestor of streptophyte algae. Phylogenetic analysis divided the EIN3/EIL TFs into three groups (Group A-C). Analysis of gene and protein structure revealed that most of the structural features of these TFs had already formed in ancient lineages. Further investigation suggested that all groups have undergone several duplication events related to whole-genome duplications in plants, generating multiple, functionally diverse gene copies. Therefore, as plants colonized terrestrial habitats and evolved key traits, the EIN3/EIL TF family expanded broadly via multiple duplication events, which could have promoted their fundamental neo- and sub-functionalization to help plants adapt to terrestrial life. Our findings shed light on the functional evolution of the EIN3/EIL TF family in the streptophytes.
Collapse
|
27
|
Ethylene regulates miRNA-mediated lignin biosynthesis and leaf serration in Arabidopsis thaliana. Biochem Biophys Res Commun 2022; 605:51-55. [DOI: 10.1016/j.bbrc.2022.03.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 01/05/2023]
|
28
|
Hormonal Signaling in the Progamic Phase of Fertilization in Plants. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pollen–pistil interaction is a basic process in the reproductive biology of flowering plants and has been the subject of intense fundamental research that has a pronounced practical value. The phytohormones ethylene (ET) and cytokinin (CK) together with other hormones such as auxin, gibberellin (GA), jasmonic acid (JA), abscisic acid (ABA), and brassinosteroids (BRs) influence different stages of plant development and growth. Here, we mainly focus on the information about the ET and CK signaling in the progamic phase of fertilization. This signaling occurs during male gametophyte development, including tapetum (TAP) cell death, and pollen tube growth, including synergid programmed cell death (PCD) and self-incompatibility (SI)-induced PCD. ET joins the coordination of successive events in the developing anther, including the TAP development and cell death, anther dehiscence, microspore development, pollen grain maturation, and dehydration. Both ET and CK take part in the regulation of E. ET signaling accompanies adhesion, hydration, and germination of pollen grains in the stigma and growth of pollen tubes in style tissues. Thus, ET production may be implicated in the pollination signaling between organs accumulated in the stigma and transmitted to the style and ovary to ensure successful pollination. Some data suggest that ET and CK signaling are involved in S-RNase-based SI.
Collapse
|
29
|
Aguilar-Benitez D, Casimiro-Soriguer I, Ferrandiz C, Torres AM. Study and QTL mapping of reproductive and morphological traits implicated in the autofertility of faba bean. BMC PLANT BIOLOGY 2022; 22:175. [PMID: 35387612 PMCID: PMC8985305 DOI: 10.1186/s12870-022-03499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Autofertility describes the ability of faba bean flowers to self-fertilize thereby ensuring the productivity of this crop in the absence of pollinators or mechanical disturbance. In the legume crop faba bean (Vicia faba L.), lack of autofertility in a context of insufficient pollination can lead to a severe decrease in grain yield. Here we performed the first QTL analysis aimed at identifying the genomic regions controlling autofertility in this crop. We combined pod and seed setting scores from a recombinant inbred population (RIL) segregating for autofertility in different environments and years with measurements of morphological floral traits and pollen production and viability. This approach revealed 19 QTLs co-localizing in six genomic regions. Extensive co-localization was evident for various floral features whose QTLs clustered in chrs. I, II and V, while other QTLs in chrs. III, IV and VI revealed co-localization of flower characteristics and pod and seed set data. The percentage of phenotypic variation explained by the QTLs ranged from 8.9 for style length to 25.7 for stigma angle. In the three QTLs explaining the highest phenotypic variation (R 2 > 20), the marker alleles derived from the autofertile line Vf27. We further inspected positional candidates identified by these QTLs which represent a valuable resource for further validation. Our results advance the understanding of autofertility in faba bean and will aid the identification of responsible genes for genomic-assisted breeding in this crop.
Collapse
Affiliation(s)
- David Aguilar-Benitez
- Área de Mejora y Biotecnología, IFAPA Centro "Alameda del Obispo", Apdo. 3092, 14080, Córdoba, Spain
| | - Inés Casimiro-Soriguer
- Área de Mejora y Biotecnología, IFAPA Centro "Alameda del Obispo", Apdo. 3092, 14080, Córdoba, Spain.
| | - Cristina Ferrandiz
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas - Universitat Politécnica de Valencia, 46022, Valencia, Spain
| | - Ana M Torres
- Área de Mejora y Biotecnología, IFAPA Centro "Alameda del Obispo", Apdo. 3092, 14080, Córdoba, Spain
| |
Collapse
|
30
|
Chen J, Sui X, Ma B, Li Y, Li N, Qiao L, Yu Y, Dong CH. Arabidopsis CPR5 plays a role in regulating nucleocytoplasmic transport of mRNAs in ethylene signaling pathway. PLANT CELL REPORTS 2022; 41:1075-1085. [PMID: 35201411 DOI: 10.1007/s00299-022-02838-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Arabidopsis CPR5 is involved in regulation of ethylene signaling via two different ways: interacting with the ETR1 N-terminal domains, and controlling nucleocytoplasmic transport of ethylene-related mRNAs. The ETR1 receptor plays a predominant role in ethylene signaling in Arabidopsis thaliana. Previous studies showed that both RTE1 and CPR5 can directly bind to the ETR1 receptor and regulate ethylene signaling. RTE1 was suggested to promote the ETR1 receptor signaling by influencing its conformation, but little is known about the regulatory mechanism of CPR5 in ethylene signaling. In this study, we presented the data showing that both RTE1 and CPR5 bound to the N-terminal domains of ETR1, and regulated ethylene signaling via the ethylene receptor. On the other hand, the research provided evidence indicating that CPR5 could act as a nucleoporin to regulate the ethylene-related mRNAs export out of the nucleus, while RTE1 or its homolog (RTH) had no effect on the nucleocytoplasmic transport of mRNAs. Nuclear qRT-PCR analysis and poly(A)-mRNA in situ hybridization showed that defect of CPR5 restricted nucleocytoplasmic transport of mRNAs. These results advance our understanding of the regulatory mechanism of CPR5 in ethylene signaling.
Collapse
Affiliation(s)
- Jiacai Chen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xinying Sui
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Binran Ma
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuetong Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Na Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Longfei Qiao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yanchong Yu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chun-Hai Dong
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
31
|
NMR Detection and Structural Modeling of the Ethylene Receptor LeETR2 from Tomato. MEMBRANES 2022; 12:membranes12020107. [PMID: 35207029 PMCID: PMC8879215 DOI: 10.3390/membranes12020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 11/17/2022]
Abstract
The gaseous plant hormone ethylene influences many physiological processes in plant growth and development. Plant ethylene responses are mediated by a family of ethylene receptors, in which the N-terminal transmembrane domains are responsible for ethylene binding and membrane localization. Until now, little structural information was available on the molecular mechanism of ethylene responses by the transmembrane binding domain of ethylene receptors. Here, we screened different constructs, fusion tags, detergents, and purification methods of the transmembrane sensor domain of ethylene receptors. However, due to their highly hydrophobic transmembrane domain (TMD), only a KSI-fused LeETR21–131 from tomato yielded a good-quality nuclear magnetic resonance (NMR) spectrum in the organic solvent. Interestingly, a dimer model of LeETR21–131 built by the AlphaFold2 algorithm showed greatly converged structures. The interaction analysis of ethylene and LeETR21–131 using molecular docking and molecular dynamics (MD) simulations demonstrated the potential binding sites of ethylene in LeETR21–131. Our exploration provides valuable knowledge for further understanding of the ethylene-perception process in ethylene receptors.
Collapse
|
32
|
Zhang B, Yang J, Gu G, Jin L, Chen C, Lin Z, Song J, Xie X. Integrative Analyses of Biochemical Properties and Transcriptome Reveal the Dynamic Changes in Leaf Senescence of Tobacco ( Nicotiana tabacum L.). Front Genet 2022; 12:790167. [PMID: 35003224 PMCID: PMC8727547 DOI: 10.3389/fgene.2021.790167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Leaf senescence is an important process of growth and development in plant, and it is a programmed decline controlled by a series of genes. In this study, the biochemical properties and transcriptome at five maturity stages (M1∼M5) of tobacco leaves were analyzed to reveal the dynamic changes in leaf senescence of tobacco. A total of 722, 1,534, 3,723, and 6,933 genes were differentially expressed (DEG) between M1 and M2, M1 and M3, M1 and M4, and M1 and M5, respectively. Significant changes of nitrogen, sugars, and the DEGs related to metabolite accumulation were identified, suggesting the importance of energy metabolism during leaf senescence. Gene Ontology (GO) analysis found that DEGs were enriched in biosynthetic, metabolic, photosynthesis, and redox processes, and especially, the nitrogen metabolic pathways were closely related to the whole leaf senescence process (M1∼M5). All the DEGs were grouped into 12 expression profiles according to their distinct expression patterns based on Short Time-series Expression Miner (STEM) software analysis. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis found that these DEGs were enriched in pathways of carbon metabolism, starch and sucrose metabolism, nitrogen metabolism, and photosynthesis among these expression profiles. A total of 30 core genes were examined by Weight Gene Co-expression Network Analysis (WGCNA), and they appeared to play a crucial role in the regulatory of tobacco senescence. Our results provided valuable information for further functional investigation of leaf senescence in plants.
Collapse
Affiliation(s)
- Binghui Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Tobacco Science, Fujian Provincial Tobacco Company, Fuzhou, China
| | - Jiahan Yang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gang Gu
- Institute of Tobacco Science, Fujian Provincial Tobacco Company, Fuzhou, China
| | - Liao Jin
- Yanping Branch of Nanping Tobacco Company, Nanping, China
| | | | - Zhiqiang Lin
- Yanping Branch of Nanping Tobacco Company, Nanping, China
| | | | - Xiaofang Xie
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
33
|
Xu H, Luo D, Zhang F. DcWRKY75 promotes ethylene induced petal senescence in carnation (Dianthus caryophyllus L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1473-1492. [PMID: 34587330 DOI: 10.1111/tpj.15523] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 05/09/2023]
Abstract
Carnation (Dianthus caryophyllus L.) is one of the most important and typical ethylene sensitive cut flowers worldwide, although how ethylene influences the petal senescence process in carnation remains largely unknown. Here, we screened out one of the key transcription factors, DcWRKY75, using a constructed ethylene induced petal senescence transcriptome in carnation and found that it shows quick induction by ethylene treatment. Silencing of DcWRKY75 delays ethylene induced petal senescence in carnation. Molecular evidence confirms that DcWRKY75 can bind to the promoter regions of two main ethylene biosynthetic genes (DcACS1 and DcACO1) and a couple of senescence associated genes (DcSAG12 and DcSAG29) to activate their expression. Furthermore, we show that DcWRKY75 is a direct target gene of DcEIL3-1, which is a homolog of the ethylene signaling core transcription factor EIN3 in Arabidopsis. DcEIL3-1 can physically interact with DcWRKY75 and silencing of DcEIL3-1 also delays ethylene induced petal senescence in carnation and inhibits the ethylene induced expression of DcWRKY75 and its target genes. The present study demonstrates that the transcriptional regulation network is vitally important for ethylene induced petal senescence process in carnation and potentially in other ethylene sensitive cut flowers.
Collapse
Affiliation(s)
- Han Xu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dan Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Fan Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
34
|
Patel R, Mehta K, Goswami D, Saraf M. An Anecdote on Prospective Protein Targets for Developing Novel Plant Growth Regulators. Mol Biotechnol 2021; 64:109-129. [PMID: 34561838 DOI: 10.1007/s12033-021-00404-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022]
Abstract
Phytohormones are the main regulatory molecules of core signalling networks associated with plant life cycle regulation. Manipulation of hormone signalling cascade enables the control over physiological traits of plant, which has major applications in field of agriculture and food sustainability. Hence, stable analogues of these hormones are long sought after and many of them are currently known, but the quest for more effective, stable and economically viable analogues is still going on. This search has been further strengthened by the identification of the components of signalling cascade such as receptors, downstream cascade members and transcription factors. Furthermore, many proteins of phytohormone cascades are available in crystallized forms. Such crystallized structures can provide the basis for identification of novel interacting compounds using in silico approach. Plenty of computational tools and bioinformatics software are now available that can aid in this process. Here, the metadata of all the major phytohormone signalling cascades are presented along with discussion on major protein-ligand interactions and protein components that may act as a potential target for manipulation of phytohormone signalling cascade. Furthermore, structural aspects of phytohormones and their known analogues are also discussed that can provide the basis for the synthesis of novel analogues.
Collapse
Affiliation(s)
- Rohit Patel
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Krina Mehta
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| | - Meenu Saraf
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
35
|
Li F, Hu Q, Chen F, Jiang JF. Transcriptome analysis reveals Vernalization is independent of cold acclimation in Arabidopsis. BMC Genomics 2021; 22:462. [PMID: 34154522 PMCID: PMC8218483 DOI: 10.1186/s12864-021-07763-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/31/2021] [Indexed: 01/08/2023] Open
Abstract
Background Through vernalization, plants achieve flowering competence by sensing prolonged cold exposure (constant exposure approximately 2-5 °C). During this process, plants initiate defense responses to endure cold conditions. Here, we conducted transcriptome analysis of Arabidopsis plants subjected to prolonged cold exposure (6 weeks) to explore the physiological dynamics of vernalization and uncover the relationship between vernalization and cold stress. Results Time-lag initiation of the two pathways and weighted gene co-expression network analysis (WGCNA) revealed that vernalization is independent of cold acclimation. Moreover, WGCNA revealed three major networks involving ethylene and jasmonic acid response, cold acclimation, and chromatin modification in response to prolonged cold exposure. Finally, throughout vernalization, the cold stress response is regulated via an alternative splicing-mediated mechanism. Conclusion These findings illustrate a comprehensive picture of cold stress- and vernalization-mediated global changes in Arabidopsis. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07763-3.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jia Fu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
36
|
Hoang XLT, Prerostova S, Thu NBA, Thao NP, Vankova R, Tran LSP. Histidine Kinases: Diverse Functions in Plant Development and Responses to Environmental Conditions. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:297-323. [PMID: 34143645 DOI: 10.1146/annurev-arplant-080720-093057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The two-component system (TCS), which is one of the most evolutionarily conserved signaling pathway systems, has been known to regulate multiple biological activities and environmental responses in plants. Significant progress has been made in characterizing the biological functions of the TCS components, including signal receptor histidine kinase (HK) proteins, signal transducer histidine-containing phosphotransfer proteins, and effector response regulator proteins. In this review, our scope is focused on the diverse structure, subcellular localization, and interactions of the HK proteins, as well as their signaling functions during development and environmental responses across different plant species. Based on data collected from scientific studies, knowledge about acting mechanisms and regulatory roles of HK proteins is presented. This comprehensive summary ofthe HK-related network provides a panorama of sophisticated modulating activities of HK members and gaps in understanding these activities, as well as the basis for developing biotechnological strategies to enhance the quality of crop plants.
Collapse
Affiliation(s)
- Xuan Lan Thi Hoang
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; , ,
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Sylva Prerostova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague 6, Czech Republic; ,
| | - Nguyen Binh Anh Thu
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; , ,
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Phuong Thao
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; , ,
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague 6, Czech Republic; ,
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas 79409, USA;
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
37
|
Zhao W, Li Y, Fan S, Wen T, Wang M, Zhang L, Zhao L. The transcription factor WRKY32 affects tomato fruit colour by regulating YELLOW FRUITED-TOMATO 1, a core component of ethylene signal transduction. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4269-4282. [PMID: 33773493 DOI: 10.1093/jxb/erab113] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Fruit quality in most fleshy fruit crops is fundamentally linked to ripening-associated traits, including changes in colour. In many climacteric fruits, including tomato (Solanum lycopersicum), the phytohormone ethylene plays a key role in regulating ripening. Previous map-based cloning of YELLOW FRUITED-TOMATO 1 (YFT1) revealed that it encodes the EIN2 protein, a core component in ethylene signal transduction. A YFT1 allele with a genetic lesion was found to be down-regulated in the yft1 tomato mutant that has a yellow fruit phenotype and perturbed ethylene signalling. Based on bioinformatic analysis, yeast one hybrid assays and electrophoretic mobility shift assays, we report that transcription factor WRKY32 regulates tomato fruit colour formation. WRKY32 binds to W-box and W-box-like motifs in the regulatory region of the YFT1 promoter and induces its expression. In tomato fruits of WRKY32-RNAi generated lines, ethylene signalling was reduced, leading to a suppression in ethylene emission, a delay in chromoplast development, decreased carotenoid accumulation, and a yellow fruit phenotype. These results provide new insights into the regulatory networks that govern tomato fruit colour formation via ethylene signal transduction.
Collapse
Affiliation(s)
- Weihua Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhang Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shaozhu Fan
- Branch Institute of Horticulture, Harbin Academy of Agricultural Science, Harbin, China
| | - Tengjian Wen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Minghui Wang
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, New York, USA
| | - Lida Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lingxia Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
38
|
Chuong NN, Hoang XLT, Nghia DHT, Nguyen NC, Thao DTT, Tran TB, Ngoc TTM, Thu NBA, Nguyen QT, Thao NP. Ectopic expression of GmHP08 enhances resistance of transgenic Arabidopsis toward drought stress. PLANT CELL REPORTS 2021; 40:819-834. [PMID: 33725150 DOI: 10.1007/s00299-021-02677-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Ectopic expression of Glycine max two-component system member GmHP08 in Arabidopsis enhanced drought tolerance of transgenic plants, possibly via ABA-dependent pathways. Phosphorelay by two-component system (TCS) is a signal transduction mechanism which has been evolutionarily conserved in both prokaryotic and eukaryotic organisms. Previous studies have provided lines of evidence on the involvement of TCS genes in plant perception and responses to environmental stimuli. In this research, drought-associated functions of GmHP08, a TCS member from soybean (Glycine max L.), were investigated via its ectopic expression in Arabidopsis system. Results from the drought survival assay showed that GmHP08-transgenic plants exhibited higher survival rates compared with their wild-type (WT) counterparts, indicating better drought resistance of the former group. Analyses revealed that the transgenic plants outperformed the WT in various regards, i.e. capability of water retention, prevention of hydrogen peroxide accumulation and enhancement of antioxidant enzymatic activities under water-deficit conditions. Additionally, the expression of stress-marker genes, especially antioxidant enzyme-encoding genes, in the transgenic plants were found greater than that of the WT plants. In contrary, the expression of SAG13 gene, one of the senescence-associated genes, and of several abscisic acid (ABA)-related genes was repressed. Data from this study also revealed that the ectopic expression lines at germination and early seedling development stages were hypersensitive to exogenous ABA treatment. Taken together, our results demonstrated that GmHP08 could play an important role in mediating plant response to drought, possibly via an ABA-dependent manner.
Collapse
Affiliation(s)
- Nguyen Nguyen Chuong
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Xuan Lan Thi Hoang
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Duong Hoang Trong Nghia
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Nguyen Cao Nguyen
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Dau Thi Thanh Thao
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Tram Bao Tran
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Tran Thi My Ngoc
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Nguyen Binh Anh Thu
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Quang Thien Nguyen
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Nguyen Phuong Thao
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam.
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam.
| |
Collapse
|
39
|
Lyu J, Wu Y, Jin X, Tang Z, Liao W, Dawuda MM, Hu L, Xie J, Yu J, Calderón-Urrea A. Proteomic analysis reveals key proteins involved in ethylene-induced adventitious root development in cucumber ( Cucumis sativus L.). PeerJ 2021; 9:e10887. [PMID: 33868797 PMCID: PMC8034359 DOI: 10.7717/peerj.10887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/12/2021] [Indexed: 01/25/2023] Open
Abstract
The mechanisms involved in adventitious root formation reflect the adaptability of plants to the environment. Moreover, the rooting process is regulated by endogenous hormone signals. Ethylene, a signaling hormone molecule, has been shown to play an essential role in the process of root development. In the present study, in order to explore the relationship between the ethylene-induced adventitious rooting process and photosynthesis and energy metabolism, the iTRAQ technique and proteomic analysis were employed to ascertain the expression of different proteins that occur during adventitious rooting in cucumber (Cucumis sativus L.) seedlings. Out of the 5,014 differentially expressed proteins (DEPs), there were 115 identified DEPs, among which 24 were considered related to adventitious root development. Most of the identified proteins were related to carbon and energy metabolism, photosynthesis, transcription, translation and amino acid metabolism. Subsequently, we focused on S-adenosylmethionine synthase (SAMS) and ATP synthase subunit a (AtpA). Our findings suggest that the key enzyme, SAMS, upstream of ethylene synthesis, is directly involved in adventitious root development in cucumber. Meanwhile, AtpA may be positively correlated with photosynthetic capacity during adventitious root development. Moreover, endogenous ethylene synthesis, photosynthesis, carbon assimilation capacity, and energy material metabolism were enhanced by exogenous ethylene application during adventitious rooting. In conclusion, endogenous ethylene synthesis can be improved by exogenous ethylene additions to stimulate the induction and formation of adventitious roots. Moreover, photosynthesis and starch degradation were enhanced by ethylene treatment to provide more energy and carbon sources for the rooting process.
Collapse
Affiliation(s)
- Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xin Jin
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Mohammed Mujitaba Dawuda
- College of Horticulture, Gansu Agricultural University, Lanzhou, China.,Department of Horticulture, University for Development Studies, Tamale, Ghana
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China.,Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Alejandro Calderón-Urrea
- Department of Biology, College of Science and Mathematics, California State University, CA, USA.,College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
40
|
Wang L, Zhang Z, Zhang F, Shao Z, Zhao B, Huang A, Tran J, Hernandez FV, Qiao H. EIN2-directed histone acetylation requires EIN3-mediated positive feedback regulation in response to ethylene. THE PLANT CELL 2021; 33:322-337. [PMID: 33793786 PMCID: PMC8136887 DOI: 10.1093/plcell/koaa029] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/27/2020] [Indexed: 05/19/2023]
Abstract
Ethylene is an important phytohormone with pleotropic roles in plant growth, development, and stress responses. ETHYLENE INSENSITIVE2 (EIN2) mediates the transduction of the ethylene signal from the endoplasmic reticulum membrane to the nucleus, where its C-terminus (EIN2-C) regulates histone acetylation to mediate transcriptional regulation by EIN3. However, no direct interaction between EIN2-C and EIN3 has been detected. To determine how EIN2-C and EIN3 act together, we followed a synthetic approach and engineered a chimeric EIN2-C with EIN3 DNA-binding activity but lacking its transactivation activity (EIN2C-EIN3DB). The overexpression of EIN2C-EIN3DB in either wild-type or in the ethylene-insensitive mutant ein3-1 eil1-1 led to a partial constitutive ethylene response. Chromatin immunoprecipitation sequencing showed that EIN2C-EIN3DB has DNA-binding activity, indicating that EIN3DB is functional in EIN2C-EIN3DB. Furthermore, native EIN3 protein levels determine EIN2C-EIN3DB binding activity and binding targets in a positive feedback loop by interacting with EIN2C-EIN3DB to form a heterodimer. Additionally, although EIN3 does not direct affect histone acetylation levels in the absence of EIN2, it is required for the ethylene-induced elevation of H3K14Ac and H3K23Ac in the presence of EIN2. Together, we reveal efficient and specific DNA-binding by dimerized EIN3 in the presence of ethylene to mediate positive feedback regulation, which is required for EIN2-directed elevation of histone acetylation to integrate into an EIN3-dependent transcriptional activation.
Collapse
Affiliation(s)
- Likai Wang
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Zhiyuan Zhang
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Fan Zhang
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Zhengyao Shao
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Bo Zhao
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Austin Huang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jaclyn Tran
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - Hong Qiao
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
41
|
Huang J, Zhao X, Bürger M, Wang Y, Chory J. Two interacting ethylene response factors regulate heat stress response. THE PLANT CELL 2021; 33:338-357. [PMID: 33793870 PMCID: PMC8136883 DOI: 10.1093/plcell/koaa026] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/06/2020] [Indexed: 05/05/2023]
Abstract
The ethylene response factor (ERF) transcription factors are integral components of environmental stress signaling cascades, regulating a wide variety of downstream genes related to stress responses and plant development. However, the mechanisms by which ERF genes regulate the heat stress response are not well understood. Here, we uncover the positive role of ethylene signaling, ERF95 and ERF97 in basal thermotolerance of Arabidopsis thaliana. We demonstrate that ethylene signaling-defective mutants exhibit compromised basal thermotolerance, whereas plants with constitutively activated ethylene response show enhanced basal thermotolerance. EIN3 physically binds to the promoters of ERF95 and ERF97. Ectopic constitutive expression of ERF95 or ERF97 increases the basal thermotolerance of plants. In contrast, erf95 erf96 erf97 erf98 quadruple mutants exhibit decreased basal thermotolerance. ERF95 and ERF97 genetically function downstream of EIN3. ERF95 can physically interact with ERF97, and this interaction is heat inducible. ERF95 and ERF97 regulate a common set of target genes, including known heat-responsive genes and directly bind to the promoter of HSFA2. Thus, our study reveals that the EIN3-ERF95/ERF97-HSFA2 transcriptional cascade may play an important role in the heat stress response, thereby establishing a connection between ethylene and its downstream regulation in basal thermotolerance of plants.
Collapse
Affiliation(s)
- Jianyan Huang
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Authors for correspondence: ,
| | - Xiaobo Zhao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Marco Bürger
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Yurong Wang
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Division of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Joanne Chory
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Authors for correspondence: ,
| |
Collapse
|
42
|
Hang T, Ling X, He C, Xie S, Jiang H, Ding T. Isolation of the ZmERS4 Gene From Maize and Its Functional Analysis in Transgenic Plants. Front Microbiol 2021; 12:632908. [PMID: 33776962 PMCID: PMC7994261 DOI: 10.3389/fmicb.2021.632908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/15/2021] [Indexed: 11/24/2022] Open
Abstract
A gene encoding a protein similar to ethylene receptor was isolated from maize (Zea mays L.), which was named as ZmERS4.The gene was 1,905 bp in length with an open reading frame that encoded a protein consisting of 634 amino acids. The homologous analysis showed that ZmERS4 shared high similarity with the ethylene receptor protein, OsERS1, from rice (Oryza sativa L.). ZmERS4 grouped into the ETR1 subfamily of ethylene receptors based on its conserved domain and phylogenetic status. Tissue-specific and induced expression analyses indicated that ZmERS4 was differentially expressed in maize tissues, predominantly in the stems and leaves, and was induced by salicylic acid (SA). Overexpression of ZmERS4 in Arabidopsis improved resistance against the bacterial pathogen, PstDC3000, by inducing the expression of SA signaling-related genes. Moreover, treatment with flg22 induced the expression of the defense-related gene, PR1, in maize protoplasts that transiently expressed ZmERS4. Furthermore, the ultra-high-performance liquid chromatography (UPLC) analysis showed that the SA contents in ZmERS4-overexpressing Arabidopsis lines were significantly higher than the control lines. Additionally, the improved resistance of ZmERS4-overexpressing Arabidopsis against PstDC3000 was blocked after pretreatment with the SA biosynthetic inhibitor, ABT. Based on the collective findings, we hypothesize that ZmERS4 plays an important role in disease resistance through SA-mediated signaling pathways.
Collapse
Affiliation(s)
- Tianlu Hang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xuezhi Ling
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Cheng He
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Shanshan Xie
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Haiyang Jiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Ting Ding
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
43
|
Kidd BN, Foley R, Singh KB, Anderson JP. Foliar resistance to Rhizoctonia solani in Arabidopsis is compromised by simultaneous loss of ethylene, jasmonate and PEN2 mediated defense pathways. Sci Rep 2021; 11:2546. [PMID: 33510286 PMCID: PMC7843637 DOI: 10.1038/s41598-021-81858-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/06/2021] [Indexed: 11/09/2022] Open
Abstract
Rhizoctonia solani causes damaging yield losses on most major food crops. R. solani isolates belonging to anastomosis group 8 (AG8) are soil-borne, root-infecting pathogens with a broad host range. AG8 isolates can cause disease on wheat, canola and legumes, however Arabidopsis thaliana is heretofore thought to possess non-host resistance as A. thaliana ecotypes, including the reference strain Col-0, are resistant to AG8 infection. Using a mitochondria-targeted redox sensor (mt-roGFP2) and cell death staining, we demonstrate that both AG8 and a host isolate (AG2-1) of R. solani are able to infect A. thaliana roots. Above ground tissue of A. thaliana was found to be resistant to AG8 but not AG2. Genetic analysis revealed that ethylene, jasmonate and PENETRATION2-mediated defense pathways work together to provide resistance to AG8 in the leaves which subsequently enable tolerance of root infections. Overall, we demonstrate a significant difference in defense capabilities of above and below ground tissue in providing resistance to R. solani AG8 in Arabidopsis.
Collapse
Affiliation(s)
- Brendan N Kidd
- Centre for Environment and Life Sciences, CSIRO Agriculture and Food, Floreat, WA, Australia.,Australian Reseach Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Rhonda Foley
- Centre for Environment and Life Sciences, CSIRO Agriculture and Food, Floreat, WA, Australia
| | - Karam B Singh
- Centre for Environment and Life Sciences, CSIRO Agriculture and Food, Floreat, WA, Australia.,Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia.,The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Jonathan P Anderson
- Centre for Environment and Life Sciences, CSIRO Agriculture and Food, Floreat, WA, Australia. .,The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
44
|
Valentini N, Portis E, Botta R, Acquadro A, Pavese V, Cavalet Giorsa E, Torello Marinoni D. Mapping the Genetic Regions Responsible for Key Phenology-Related Traits in the European Hazelnut. FRONTIERS IN PLANT SCIENCE 2021; 12:749394. [PMID: 35003153 PMCID: PMC8733624 DOI: 10.3389/fpls.2021.749394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/24/2021] [Indexed: 05/03/2023]
Abstract
An increasing interest in the cultivation of (European) hazelnut (Corylus avellana) is driving a demand to breed cultivars adapted to non-conventional environments, particularly in the context of incipient climate change. Given that plant phenology is so strongly determined by genotype, a rational approach to support these breeding efforts will be to identify quantitative trait loci (QTLs) and the genes underlying the basis for adaptation. The present study was designed to map QTLs for phenology-related traits, such as the timing of both male and female flowering, dichogamy, and the period required for nuts to reach maturity. The analysis took advantage of an existing linkage map developed from a population of F1 progeny bred from the cross "Tonda Gentile delle Langhe" × "Merveille de Bollwiller," consisting in 11 LG. A total of 42 QTL-harboring regions were identified. Overall, 71 QTLs were detected, 49 on the TGdL map and 22 on the MB map; among these, 21 were classified as major; 13 were detected in at least two of the seasons (stable-major QTL). In detail, 20 QTLs were identified as contributing to the time of male flowering, 15 to time of female flowering, 25 to dichogamy, and 11 to time of nut maturity. LG02 was found to harbor 16 QTLs, while 15 QTLs mapped to LG10 and 14 to LG03. Many of the QTLs were clustered with one another. The major cluster was located on TGdL_02 and consisted of mainly major QTLs governing all the analyzed traits. A search of the key genomic regions revealed 22 candidate genes underlying the set of traits being investigated. Many of them have been described in the literature as involved in processes related to flowering, control of dormancy, budburst, the switch from vegetative to reproductive growth, or the morphogenesis of flowers and seeds.
Collapse
|
45
|
Wang L, Ko EE, Tran J, Qiao H. TREE1-EIN3-mediated transcriptional repression inhibits shoot growth in response to ethylene. Proc Natl Acad Sci U S A 2020; 117:29178-29189. [PMID: 33139535 PMCID: PMC7682432 DOI: 10.1073/pnas.2018735117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ethylene is an important plant hormone that regulates plant growth, in which the master transcriptionactivator EIN3 (Ethylene Insensitive 3)-mediated transcriptional activation plays vital roles. However, the EIN3-mediated transcriptional repression in ethylene response is unknown. We report here that a Transcriptional Repressor of EIN3-dependent Ethylene-response 1 (TREE1) interacts with EIN3 to regulate transcriptional repression that leads to an inhibition of shoot growth in response to ethylene. Tissue-specific transcriptome analysis showed that most of the genes are down-regulated by ethylene in shoots, and a DNA binding motif was identified that is important for this transcriptional repression. TREE1 binds to the DNA motif to repress gene expression in an EIN3-dependent manner. Genetic validation demonstrated that repression of TREE1-targeted genes leads to an inhibition of shoot growth. Overall, this work establishes a mechanism by which transcriptional repressor TREE1 interacts with EIN3 to inhibit shoot growth via transcriptional repression in response to ethylene.
Collapse
Affiliation(s)
- Likai Wang
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | - Eun Esther Ko
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
| | - Jaclyn Tran
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
| | - Hong Qiao
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712;
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
46
|
Alamar MC, Anastasiadi M, Lopez-Cobollo R, Bennett MH, Thompson AJ, Turnbull CG, Mohareb F, Terry LA. Transcriptome and phytohormone changes associated with ethylene-induced onion bulb dormancy. POSTHARVEST BIOLOGY AND TECHNOLOGY 2020; 168:111267. [PMID: 33012993 PMCID: PMC7398043 DOI: 10.1016/j.postharvbio.2020.111267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Control of dormancy and sprouting in onion bulbs is commercially important for postharvest management. Although ethylene application is sometimes used to extend dormancy, the underlying mechanisms regulating dormancy transition remain unclear. Since the sprout leaves emerge from the bulb baseplate, we used this tissue to assess the impact of ethylene treatment and storage time on the hormone profile and the transcriptome. Reads from 30 libraries were assembled and annotated, with 94,840 unigenes retained after filtering. The de novo transcriptome assembly was of high quality and continuity (N50: 1809 bp, GC content: 36.21 %), and was used to analyse differential expression and Gene Onotologies. Across two years, applied ethylene resulted in delayed dormancy break and reduced post-dormancy sprout vigour. Ethylene supplementation enhanced endogenous ethylene production and caused a transient climacteric-like increase in respiration. Significant changes in hormone and associated transcript profiles occurred through storage and in response to ethylene. In particular, abscisic acid (ABA) and its metabolite phaseic acid (PA) increased under ethylene during the longer dormancy period; however, cytokinin increases observed during storage appeared largely independent of ethylene treatment. Several hormone-related transcripts showed differential expression over time and/or in response to ethylene. Expression of ethylene biosynthesis (ACO), receptor (EIN4) and transcription factor (EIL3) genes were modified by ethylene, as were ABA biosynthesis genes such NCED, and cytokinin biosynthesis genes such as LOG and CKX. We conclude that ethylene substantially modifies expression of genes in several phytohormone pathways, and some of these changes may underlie the dormancy-extending effects of exogenous ethylene.
Collapse
Affiliation(s)
| | | | - Rosa Lopez-Cobollo
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Mark H. Bennett
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | | | | | - Fady Mohareb
- Cranfield University, Bedfordshire, MK43 0AL, UK
| | - Leon A. Terry
- Cranfield University, Bedfordshire, MK43 0AL, UK
- Corresponding author.
| |
Collapse
|
47
|
Waadt R. Phytohormone signaling mechanisms and genetic methods for their modulation and detection. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:31-40. [PMID: 32622326 DOI: 10.1016/j.pbi.2020.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/24/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Phytohormones enable plants to regulate their development, growth and physiology according to the environmental requirements. Knowledge about the underlying signaling mechanisms, combined with the ability to pharmacologically or genetically manipulate phytohormone responses is steadily being incorporated into modern plant biology research and agriculture. This knowledge also enabled the development of genetically encoded phytohormone indicators that allow the tracking of spatiotemporal phytohormone dynamics and signaling processes in vivo. This review aims to provide an overview about core phytohormone signaling mechanisms, and about genetic tools for the manipulation and in vivo tracking of phytohormone actions.
Collapse
|
48
|
Wang L, Zhang F, Qiao H. Chromatin Regulation in the Response of Ethylene: Nuclear Events in Ethylene Signaling. SMALL METHODS 2020; 4:1900288. [PMID: 34189257 PMCID: PMC8238466 DOI: 10.1002/smtd.201900288] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Indexed: 05/15/2023]
Abstract
Plant hormones, produced in response to environmental stimuli, regulate almost all aspects of plant growth and development. Ethylene is a gaseous plant hormone that plays pleotropic roles in plant growth, plant development, fruit ripening, stress responses, and pathogen defenses. After decades of research, the key components of ethylene signaling have been identified and characterized. Although the molecular mechanisms of the sensing of ethylene signal and the transduction of ethylene signaling have been studied extensively, how chromatin influences ethylene signaling and ethylene response is a new area of research. This review describes the current understanding of how chromatin modifications, specifically histone acetylation, regulate ethylene signaling and the ethylene response.
Collapse
Affiliation(s)
- Likai Wang
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Fan Zhang
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hong Qiao
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
49
|
Abstract
Ethylene is a gaseous phytohormone and the first of this hormone class to be discovered. It is the simplest olefin gas and is biosynthesized by plants to regulate plant development, growth, and stress responses via a well-studied signaling pathway. One of the earliest reported responses to ethylene is the triple response. This response is common in eudicot seedlings grown in the dark and is characterized by reduced growth of the root and hypocotyl, an exaggerated apical hook, and a thickening of the hypocotyl. This proved a useful assay for genetic screens and enabled the identification of many components of the ethylene-signaling pathway. These components include a family of ethylene receptors in the membrane of the endoplasmic reticulum (ER); a protein kinase, called constitutive triple response 1 (CTR1); an ER-localized transmembrane protein of unknown biochemical activity, called ethylene-insensitive 2 (EIN2); and transcription factors such as EIN3, EIN3-like (EIL), and ethylene response factors (ERFs). These studies led to a linear model, according to which in the absence of ethylene, its cognate receptors signal to CTR1, which inhibits EIN2 and prevents downstream signaling. Ethylene acts as an inverse agonist by inhibiting its receptors, resulting in lower CTR1 activity, which releases EIN2 inhibition. EIN2 alters transcription and translation, leading to most ethylene responses. Although this canonical pathway is the predominant signaling cascade, alternative pathways also affect ethylene responses. This review summarizes our current understanding of ethylene signaling, including these alternative pathways, and discusses how ethylene signaling has been manipulated for agricultural and horticultural applications.
Collapse
Affiliation(s)
- Brad M Binder
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
50
|
Hofmann A, Müller S, Drechsler T, Berleth M, Caesar K, Rohr L, Harter K, Groth G. High-Level Expression, Purification and Initial Characterization of Recombinant Arabidopsis Histidine Kinase AHK1. PLANTS 2020; 9:plants9030304. [PMID: 32121559 PMCID: PMC7154865 DOI: 10.3390/plants9030304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 01/16/2023]
Abstract
Plants employ a number of phosphorylation cascades in response to a wide range of environmental stimuli. Previous studies in Arabidopsis and yeast indicate that histidine kinase AHK1 is a positive regulator of drought and osmotic stress responses. Based on these studies AHK1 was proposed a plant osmosensor, although the molecular basis of plant osmosensing still remains unknown. To understand the molecular role and signaling mechanism of AHK1 in osmotic stress, we have expressed and purified full-length AHK1 from Arabidopsis in a bacterial host to allow for studies on the isolated transmembrane receptor. Purification of the recombinant protein solubilized from the host membranes was achieved in a single step by metal-affinity chromatography. Analysis of the purified AHK1 by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting show a single band indicating that the preparation is highly pure and devoid of contaminants or degradation products. In addition, gel filtration experiments indicate that the preparation is homogenous and monodisperse. Finally, CD-spectroscopy, phosphorylation activity, dimerization studies, and protein–protein interaction with plant phosphorylation targeting AHP2 demonstrate that the purified protein is functionally folded and acts as phospho-His or phospho-Asp phosphatase. Hence, the expression and purification of recombinant AHK1 reported here provide a basis for further detailed functional and structural studies of the receptor, which might help to understand plant osmosensing and osmosignaling on the molecular level.
Collapse
Affiliation(s)
- Alexander Hofmann
- Institute of Biochemical Plant Physiology, Heinrich Heine University, Düsseldorf 40225, Germany; (A.H.); (S.M.); (M.B.)
| | - Sophia Müller
- Institute of Biochemical Plant Physiology, Heinrich Heine University, Düsseldorf 40225, Germany; (A.H.); (S.M.); (M.B.)
| | - Thomas Drechsler
- Center for Plant Molecular Biology (ZMBP), Eberhard Karls Universität Tübingen, Tübingen 72076, Germany; (T.D.); (K.C.); (L.R.); (K.H.)
| | - Mareike Berleth
- Institute of Biochemical Plant Physiology, Heinrich Heine University, Düsseldorf 40225, Germany; (A.H.); (S.M.); (M.B.)
| | - Katharina Caesar
- Center for Plant Molecular Biology (ZMBP), Eberhard Karls Universität Tübingen, Tübingen 72076, Germany; (T.D.); (K.C.); (L.R.); (K.H.)
| | - Leander Rohr
- Center for Plant Molecular Biology (ZMBP), Eberhard Karls Universität Tübingen, Tübingen 72076, Germany; (T.D.); (K.C.); (L.R.); (K.H.)
| | - Klaus Harter
- Center for Plant Molecular Biology (ZMBP), Eberhard Karls Universität Tübingen, Tübingen 72076, Germany; (T.D.); (K.C.); (L.R.); (K.H.)
| | - Georg Groth
- Institute of Biochemical Plant Physiology, Heinrich Heine University, Düsseldorf 40225, Germany; (A.H.); (S.M.); (M.B.)
- Correspondence: ; Tel.: +49-211-811-2822
| |
Collapse
|