1
|
Xiang J, Wei L, Zheng T, Wu J, Cheng J. ADP-ribosylation factor 1 (ARF1) protein interacts with elicitor PvNLP7 from Plasmopara viticola to mediate PvNLP7-triggered immunity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112194. [PMID: 39009307 DOI: 10.1016/j.plantsci.2024.112194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/06/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Revealing the effector-host molecular interactions is crucial for understanding the host immunity against Plasmopara viticola and devising innovative disease management strategies. As a pathogenic oomycete causing grapevine downy mildew, Plasmopara viticola employs various effectors to manipulate the defense systems of host plants. One of these P. viticola derived effectors is necrosis- and ethylene-inducing peptide 1 (Nep1) -like protein (PvNLP7), which has been known to elicit cell death and immune responses in plants. However, the underlying molecular mechanisms remain obscure, prompting the focus of this study. Through yeast two-hybrid screening, we have identified the Vitis rotundifolia ADP-ribosylation factor (VrARF1) as a host interactor of PvNLP7. This interaction is corroborated through bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (Co-IP) assays. Heterologous expression of VrARF1 in Nicotiana benthamiana verifies its accumulation in both the cytoplasm and nucleus, and induction of cell death. Moreover, the VrARF1 gene is strongly induced during early P. viticola infection and upon PvNLP7 transient expression. Overexpression of the VrARF1 gene in grapevine and N. benthamiana enhances resistance to P. viticola and Phytophthora capsici, respectively, via induction of defense related genes PR1 and PR2. Conversely, virus-induced gene silencing (VIGS) of NbARF1 in N. benthamiana, homologous to VrARF1, markedly attenuates PvNLP7-triggered cell death and reduces the expression of four PTI marker genes (PTI5, Acre31, WRKY7 and Cyp71D20) and two defense related genes (PR1 and PR2), rendering plants transiently transformed with PvNLP7 more susceptible to oomycete P. capsici. These findings highlight the role of ARF1 in mediating PvNLP7-induced immunity and indicate its potential as a target for engineering disease-resistant transgenic plants against oomycete pathogens.
Collapse
Affiliation(s)
- Jiang Xiang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lingzhu Wei
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ting Zheng
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiang Wu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianhui Cheng
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
2
|
Castanho FM, Costa BLCD, Abe VY, Yokoyama A, Darben LM, Oliveira LS, Ferreira EGC, Lopes IDON, Carvalho MCDCGD, Balbi-Peña MI, Marcelino-Guimarães FC. Variability and functional characterization of the Phakopsora pachyrhizi Egh16-like effectors. Genet Mol Biol 2024; 47:e20230192. [PMID: 39239924 PMCID: PMC11378017 DOI: 10.1590/1678-4685-gmb-2023-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 06/05/2024] [Indexed: 09/07/2024] Open
Abstract
Effector proteins in Phakopsora pachyrhizi (Pp), the causative agent of Asian Soybean rust, are involved in the infection process. A previous study identified a rust effector Egh16-like family based expression profile during the interaction with soybean. Herein, we scrutinized available the Pp genomes to validate the predicted Egh16-like family of Pp and identify new family members. We described 22 members of the Egh16-like gene family in the Pp MT2006 genome and 18 in the UFV02 and K8108 genomes, highlighting a family expansion. Family members have a small signal peptide, conserved cysteine-rich R/Y/FxC motifs in the C-terminal region, and a virulence-related Egh16-like domain and were able to suppress PTI related responses in Benthamiana. Phylogenetic analysis placed the family members into eight clusters, with members induced during the early stages of rust infection. Members of clusters VI and VII are present in different copy numbers in Pp genomes and suppressed PAMP-related responses.
Collapse
Affiliation(s)
- Fernanda Machado Castanho
- Centro de Ciências Biológicas, Programa de Pós-Graduação em Genética e Biologia Molecular, Londrina, PR, Brazil
| | | | - Valéria Yukari Abe
- Empresa Brasileira de Pesquisa e Agropecuária (Embrapa Soja), Laboratório de Biotecnologia Vegetal e Bioinformática, Londrina, PR, Brazil
| | - Alessandra Yokoyama
- Departamento de Bioquímica e Biotecnologia, Programa de Pós-Graduação em Biotecnologia, Londrina, PR, Brazil
| | | | - Liliane Santana Oliveira
- Empresa Brasileira de Pesquisa e Agropecuária (Embrapa Soja), Laboratório de Biotecnologia Vegetal e Bioinformática, Londrina, PR, Brazil
| | | | | | | | | | | |
Collapse
|
3
|
Chang J, Mapuranga J, Li R, Zhang Y, Shi J, Yan H, Yang W. Wheat Leaf Rust Fungus Effector Protein Pt1641 Is Avirulent to TcLr1. PLANTS (BASEL, SWITZERLAND) 2024; 13:2255. [PMID: 39204691 PMCID: PMC11359021 DOI: 10.3390/plants13162255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Wheat leaf rust fungus is an obligate parasitic fungus that can absorb nutrients from its host plant through haustoria and secrete effector proteins into host cells. The effector proteins are crucial factors for pathogenesis as well as targets for host disease resistance protein recognition. Exploring the role of effector proteins in the pathogenic process of Puccinia triticina Eriks. (Pt) is of great significance for unraveling its pathogenic mechanisms. We previously found that a cysteine-rich effector protein, Pt1641, is highly expressed during the interaction between wheat and Pt, but its specific role in pathogenesis remains unclear. Therefore, this study employed techniques such as heterologous expression, qRT-PCR analysis, and host-induced gene silencing (HIGS) to investigate the role of Pt1641 in the pathogenic process of Pt. The results indicate that Pt1641 is an effector protein with a secretory function and can inhibit BAX-induced programmed cell death in Nicotiana benthamiana. qRT-PCR analyses showed that expression levels of Pt1641 were different during the interaction between the high-virulence strain THTT and low-virulence strains FGD and Thatcher, respectively. The highest expression level in the low-virulence strain FGD was four times that of the high-virulence strain THTT. The overexpression of Pt1641 in wheat near-isogenic line TcLr1 induced callose deposition and H2O2 production on TcLr1. After silencing Pt1641 in the Pt low-virulence strain FGD on wheat near-isogenic line TcLr1, the pathogenic phenotype of Pt physiological race FGD on TcLr1 changed from ";" to "3", indicating that Pt1641 plays a non-toxic function in the pathogenicity of FGD to TcLr1. This study helps to reveal the pathogenic mechanism of wheat leaf rust and provides important guidance for the mining and application of Pt avirulent genes.
Collapse
Affiliation(s)
- Jiaying Chang
- Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (J.C.); (J.M.); (R.L.); (Y.Z.)
| | - Johannes Mapuranga
- Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (J.C.); (J.M.); (R.L.); (Y.Z.)
| | - Ruolin Li
- Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (J.C.); (J.M.); (R.L.); (Y.Z.)
| | - Yingdan Zhang
- Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (J.C.); (J.M.); (R.L.); (Y.Z.)
| | - Jie Shi
- International Science and Technology Joint Research Center on IPM of Hebei Province, IPM Innovation Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Baoding 071000, China;
| | - Hongfei Yan
- Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (J.C.); (J.M.); (R.L.); (Y.Z.)
| | - Wenxiang Yang
- Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (J.C.); (J.M.); (R.L.); (Y.Z.)
| |
Collapse
|
4
|
Upadhaya A, Upadhaya SGC, Brueggeman R. Association mapping with a diverse population of Puccinia graminis f. sp. tritici identified avirulence loci interacting with the barley Rpg1 stem rust resistance gene. BMC Genomics 2024; 25:751. [PMID: 39090588 PMCID: PMC11295639 DOI: 10.1186/s12864-024-10670-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is an important disease of barley and wheat. A diverse sexual Pgt population from the Pacific Northwest (PNW) region of the US contains a high proportion of individuals with virulence on the barley stem rust resistance (R) gene, Rpg1. However, the evolutionary mechanisms of this virulence on Rpg1 are mysterious considering that Rpg1 had not been deployed in the region and the gene had remained remarkably durable in the Midwestern US and prairie provinces of Canada. METHODS AND RESULTS To identify AvrRpg1 effectors, genome wide association studies (GWAS) were performed using 113 Pgt isolates collected from the PNW (n = 89 isolates) and Midwest (n = 24 isolates) regions of the US. Disease phenotype data were generated on two barley lines Morex and the Golden Promise transgenic (H228.2c) that carry the Rpg1 gene. Genotype data was generated by whole genome sequencing (WGS) of 96 isolates (PNW = 89 isolates and Midwest = 7 isolates) and RNA sequencing (RNAseq) data from 17 Midwestern isolates. Utilizing ~1.2 million SNPs generated from WGS and phenotype data (n = 96 isolates) on the transgenic line H228.2c, 53 marker trait associations (MTAs) were identified. Utilizing ~140 K common SNPs generated from combined analysis of WGS and RNAseq data, two significant MTAs were identified using the cv Morex phenotyping data. The 55 MTAs defined two distinct avirulence loci, on supercontig 2.30 and supercontig 2.11 of the Pgt reference genome of Pgt isolate CRL 75-36-700-3. The major avirulence locus designated AvrRpg1A was identified with the GWAS using both barley lines and was delimited to a 35 kb interval on supercontig 2.30 containing four candidate genes (PGTG_10878, PGTG_10884, PGTG_10885, and PGTG_10886). The minor avirulence locus designated AvrRpg1B identified with cv Morex contained a single candidate gene (PGTG_05433). AvrRpg1A haplotype analysis provided strong evidence that a dominant avirulence gene underlies the locus. CONCLUSIONS The association analysis identified strong candidate AvrRpg1 genes. Further analysis to validate the AvrRpg1 genes will fill knowledge gaps in our understanding of rust effector biology and the evolution and mechanism/s of Pgt virulence on Rpg1.
Collapse
Affiliation(s)
- Arjun Upadhaya
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
| | - Sudha G C Upadhaya
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
| | - Robert Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA.
| |
Collapse
|
5
|
Upadhaya A, Upadhaya SGC, Brueggeman R. Identification of Candidate Avirulence and Virulence Genes Corresponding to Stem Rust ( Puccinia graminis f. sp. tritici) Resistance Genes in Wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:635-649. [PMID: 38780476 DOI: 10.1094/mpmi-05-24-0056-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Stem rust, caused by the biotrophic fungal pathogen Puccinia graminis f. sp. tritici (Pgt), is an important disease of wheat. However, the majority of Pgt virulence/avirulence loci and underlying genes remain uncharacterized due to the constraints of developing bi-parental populations with this obligate biotroph. Genome-wide association studies (GWAS) using a sexual Pgt population mainly collected from the Pacific Northwestern United States were used to identify candidate virulence/avirulence effector genes corresponding to the six wheat Sr genes: Sr5, Sr21, Sr8a, Sr17, Sr9a, and Sr9d. The Pgt isolates were genotyped using whole-genome shotgun sequencing that identified approximately 1.2 million single nucleotide polymorphisms (SNPs) and were phenotyped at the seedling stage on six Sr gene differential lines. Association mapping analyses identified 17 Pgt loci associated with virulence or avirulence phenotypes on six Pgt resistance genes. Among these loci, 16 interacted with a specific Sr gene, indicating Sr-gene specific interactions. However, one avirulence locus interacted with two separate Sr genes (Sr9a and Sr17), suggesting two distinct Sr genes identifying a single avirulence effector. A total of 24 unique effector gene candidates were identified, and haplotype analysis suggests that within this population, AvrSr5, AvrSr21, AvrSr8a, AvrSr17, and AvrSr9a are dominant avirulence genes, while avrSr9d is a dominant virulence gene. The putative effector genes will be fundamental for future effector gene cloning efforts, allowing for further understanding of rust effector biology and the mechanisms underlying virulence evolution in Pgt with respect to race-specific R-genes. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Arjun Upadhaya
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420, U.S.A
| | - Sudha G C Upadhaya
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420, U.S.A
| | - Robert Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420, U.S.A
| |
Collapse
|
6
|
Feng Y, Yang X, Cai G, Wang S, Liu P, Li Y, Chen W, Li W. Identification and Characterization of High-Molecular-Weight Proteins Secreted by Plasmodiophora brassicae That Suppress Plant Immunity. J Fungi (Basel) 2024; 10:462. [PMID: 39057347 PMCID: PMC11278463 DOI: 10.3390/jof10070462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Plasmodiophora brassicae is an obligate intracellular parasitic protist that causes clubroot disease on cruciferous plants. So far, some low-molecular-weight secreted proteins from P. brassicae have been reported to play an important role in plant immunity regulation, but there are few reports on its high-molecular-weight secreted proteins. In this study, 35 putative high-molecular-weight secreted proteins (>300 amino acids) of P. brassicae (PbHMWSP) genes that are highly expressed during the infection stage were identified using transcriptome analysis and bioinformatics prediction. Then, the secretory activity of 30 putative PbHMWSPs was confirmed using the yeast signal sequence trap system. Furthermore, the genes encoding 24 PbHMWSPs were successfully cloned and their functions in plant immunity were studied. The results showed that ten PbHMWSPs could inhibit flg22-induced reactive oxygen burst, and ten PbHMWSPs significantly inhibited the expression of the SA signaling pathway marker gene PR1a. In addition, nine PbHMWSPs could inhibit the expression of a marker gene of the JA signaling pathway. Therefore, a total of 19 of the 24 tested PbHMWSPs played roles in suppressing the immune response of plants. Of these, it is worth noting that PbHMWSP34 can inhibit the expression of JA, ET, and several SA signaling pathway marker genes. The present study is the first to report the function of the high-molecular-weight secreted proteins of P. brassicae in plant immunity, which will enrich the theory of interaction mechanisms between the pathogens and plants.
Collapse
Affiliation(s)
- Yanqun Feng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.F.); (X.Y.); (S.W.); (P.L.); (Y.L.)
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Xiaoyue Yang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.F.); (X.Y.); (S.W.); (P.L.); (Y.L.)
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Gaolei Cai
- Institute of Plant Protection, Shiyan Academy of Agricultural Sciences, Shiyan 442000, China;
| | - Siting Wang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.F.); (X.Y.); (S.W.); (P.L.); (Y.L.)
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Pingu Liu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.F.); (X.Y.); (S.W.); (P.L.); (Y.L.)
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Yan Li
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.F.); (X.Y.); (S.W.); (P.L.); (Y.L.)
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Wang Chen
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.F.); (X.Y.); (S.W.); (P.L.); (Y.L.)
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Wei Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
7
|
Wang Y, Liu C, Qin Y, Du Y, Song C, Kang Z, Guo J, Guo J. Stripe rust effector Pst03724 modulates host immunity by inhibiting NAD kinase activation by a calmodulin. PLANT PHYSIOLOGY 2024; 195:1624-1641. [PMID: 38441329 DOI: 10.1093/plphys/kiae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/19/2024] [Indexed: 06/02/2024]
Abstract
Puccinia striiformis f. sp. tritici (Pst) secretes effector proteins that enter plant cells to manipulate host immune processes. In this report, we present an important Pst effector, Pst03724, whose mRNA expression level increases during Pst infection of wheat (Triticum aestivum). Silencing of Pst03724 reduced the growth and development of Pst. Pst03724 targeted the wheat calmodulin TaCaM3-2B, a positive regulator of wheat immunity. Subsequent investigations revealed that Pst03724 interferes with the TaCaM3-2B-NAD kinase (NADK) TaNADK2 association and thus inhibits the enzyme activity of TaNADK2 activated by TaCaM3-2B. Knocking down TaNADK2 expression by virus-mediated gene silencing significantly increased fungal growth and development, suggesting a decrease in resistance against Pst infection. In conclusion, our findings indicate that Pst effector Pst03724 inhibits the activity of NADK by interfering with the TaCaM3-2B-TaNADK2 association, thereby facilitating Pst infection.
Collapse
Affiliation(s)
- Yanfeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, P. R. China
| | - Cong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, P. R. China
| | - Yuanyang Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, P. R. China
| | - Yuanyuan Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, P. R. China
| | - Chao Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, P. R. China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, P. R. China
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, P. R. China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, P. R. China
| |
Collapse
|
8
|
Bradley JM, Butlin RK, Scholes JD. Comparative secretome analysis of Striga and Cuscuta species identifies candidate virulence factors for two evolutionarily independent parasitic plant lineages. BMC PLANT BIOLOGY 2024; 24:251. [PMID: 38582844 PMCID: PMC10998327 DOI: 10.1186/s12870-024-04935-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/20/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Many parasitic plants of the genera Striga and Cuscuta inflict huge agricultural damage worldwide. To form and maintain a connection with a host plant, parasitic plants deploy virulence factors (VFs) that interact with host biology. They possess a secretome that represents the complement of proteins secreted from cells and like other plant parasites such as fungi, bacteria or nematodes, some secreted proteins represent VFs crucial to successful host colonisation. Understanding the genome-wide complement of putative secreted proteins from parasitic plants, and their expression during host invasion, will advance understanding of virulence mechanisms used by parasitic plants to suppress/evade host immune responses and to establish and maintain a parasite-host interaction. RESULTS We conducted a comparative analysis of the secretomes of root (Striga spp.) and shoot (Cuscuta spp.) parasitic plants, to enable prediction of candidate VFs. Using orthogroup clustering and protein domain analyses we identified gene families/functional annotations common to both Striga and Cuscuta species that were not present in their closest non-parasitic relatives (e.g. strictosidine synthase like enzymes), or specific to either the Striga or Cuscuta secretomes. For example, Striga secretomes were strongly associated with 'PAR1' protein domains. These were rare in the Cuscuta secretomes but an abundance of 'GMC oxidoreductase' domains were found, that were not present in the Striga secretomes. We then conducted transcriptional profiling of genes encoding putatively secreted proteins for the most agriculturally damaging root parasitic weed of cereals, S. hermonthica. A significant portion of the Striga-specific secretome set was differentially expressed during parasitism, which we probed further to identify genes following a 'wave-like' expression pattern peaking in the early penetration stage of infection. We identified 39 genes encoding putative VFs with functions such as cell wall modification, immune suppression, protease, kinase, or peroxidase activities, that are excellent candidates for future functional studies. CONCLUSIONS Our study represents a comprehensive secretome analysis among parasitic plants and revealed both similarities and differences in candidate VFs between Striga and Cuscuta species. This knowledge is crucial for the development of new management strategies and delaying the evolution of virulence in parasitic weeds.
Collapse
Affiliation(s)
- James M Bradley
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Present address: Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada.
| | - Roger K Butlin
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
- Department of Marine Sciences, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Julie D Scholes
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
9
|
Parada-Rojas CH, Stahr M, Childs KL, Quesada-Ocampo LM. Effector Repertoire of the Sweetpotato Black Rot Fungal Pathogen Ceratocystis fimbriata. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:315-326. [PMID: 38353601 DOI: 10.1094/mpmi-09-23-0146-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In 2015, sweetpotato producers in the United States experienced one of the worst outbreaks of black rot recorded in history, with up to 60% losses reported in the field and packing houses and at shipping ports. Host resistance remains the ideal management tool to decrease crop losses. Lack of knowledge of Ceratocystis fimbriata biology represents a critical barrier for the deployment of resistance to black rot in sweetpotato. In this study, we scanned the recent near chromosomal-level assembly for putative secreted effectors in the sweetpotato C. fimbriata isolate AS236 using a custom fungal effector annotation pipeline. We identified a set of 188 putative effectors on the basis of secretion signal and in silico prediction in EffectorP. We conducted a deep RNA time-course sequencing experiment to determine whether C. fimbriata modulates effectors in planta and to define a candidate list of effectors expressed during infection. We examined the expression profile of two C. fimbriata isolates, a pre-epidemic (1990s) isolate and a post-epidemic (2015) isolate. Our in planta expression profiling revealed clusters of co-expressed secreted effector candidates. Based on fold-change differences of putative effectors in both isolates and over the course of infection, we suggested prioritization of 31 effectors for functional characterization. Among this set, we identified several effectors that provide evidence for a marked biotrophic phase in C. fimbriata during infection of sweetpotato storage roots. Our study revealed a catalog of effector proteins that provide insight into C. fimbriata infection mechanisms and represent a core catalog to implement effector-assisted breeding in sweetpotato. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Camilo H Parada-Rojas
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27606, U.S.A
| | - Madison Stahr
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27606, U.S.A
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Lina M Quesada-Ocampo
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27606, U.S.A
| |
Collapse
|
10
|
Zhao H, Huang J, Zhao X, Yu L, Wang X, Zhao C, nasab HR, Tang C, Wang X. Stripe Rust Effector Pst_9302 Inhibits Wheat Immunity to Promote Susceptibility. PLANTS (BASEL, SWITZERLAND) 2023; 13:94. [PMID: 38202402 PMCID: PMC10780974 DOI: 10.3390/plants13010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024]
Abstract
Puccinia striiformis f. sp. tritici is an obligate biotrophic fungus that causes destructive stripe rust disease in wheat. During infection, Pst secretes virulence effectors via a specific infection structure-the haustorium-inside host cells to disturb host immunity and promote fungal colonization and expansion. Hence, the identification and functional analyses of Pst effectors are of great significance in deciphering the Pst pathogenicity mechanism. Here, we identified one candidate Pst effector Pst_9302 that could suppress Bax-triggered cell death in Nicotiana benthamiana. qRT-PCR analyses showed that the transcript levels of Pst_9302 were highly increased during the early infection stages of Pst. The transient expression of Pst_9302 in wheat via the type-three secretion system (T3SS) significantly inhibited the callose deposition induced by Pseudomonas syringae EtHAn. During wheat-Pst interaction, Pst_9302 overexpression suppressed reactive oxygen species (ROS) accumulation and cell death caused by the avirulent Pst race CYR23. The host-induced gene silencing (HIGS) of Pst_9302 resulted in decreased Pst pathogenicity with reduced infection area. The results suggest that Pst_9302 plays a virulence role in suppressing plant immunity and promoting Pst pathogenicity. Moreover, wheat voltage-dependent anion channel 1 protein (TaVDAC1) was identified as candidate Pst_9302-interacting proteins by yeast two-hybrid (Y2H) screening. Pull-down assays using the His-Pst_9302 and GST-TaVDAC1 protein verified their interactions. These results suggest that Pst_9302 may modulate wheat TaVDAC1 to regulate plant immunity.
Collapse
Affiliation(s)
- Haibin Zhao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (H.Z.); (J.H.); (X.Z.); (L.Y.); (X.W.); (C.Z.)
| | - Jiangyu Huang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (H.Z.); (J.H.); (X.Z.); (L.Y.); (X.W.); (C.Z.)
| | - Xiaoyan Zhao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (H.Z.); (J.H.); (X.Z.); (L.Y.); (X.W.); (C.Z.)
| | - Ligang Yu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (H.Z.); (J.H.); (X.Z.); (L.Y.); (X.W.); (C.Z.)
| | - Xiaodong Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (H.Z.); (J.H.); (X.Z.); (L.Y.); (X.W.); (C.Z.)
| | - Congcong Zhao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (H.Z.); (J.H.); (X.Z.); (L.Y.); (X.W.); (C.Z.)
| | - Hojjatollah Rabbani nasab
- State Key Laboratory of Crop Stress, Plant Protection Department, Golestan Agricultural and Natural Resource Research and Education Center, Gorgan P.O. Box 49156-77555, Iran;
| | - Chunlei Tang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (H.Z.); (J.H.); (X.Z.); (L.Y.); (X.W.); (C.Z.)
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (H.Z.); (J.H.); (X.Z.); (L.Y.); (X.W.); (C.Z.)
| |
Collapse
|
11
|
Jost M, Outram MA, Dibley K, Zhang J, Luo M, Ayliffe M. Plant and pathogen genomics: essential approaches for stem rust resistance gene stacks in wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1223504. [PMID: 37727853 PMCID: PMC10505659 DOI: 10.3389/fpls.2023.1223504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/27/2023] [Indexed: 09/21/2023]
Abstract
The deployment of disease resistance genes is currently the most economical and environmentally sustainable method of crop protection. However, disease resistance genes can rapidly break down because of constant pathogen evolution, particularly when they are deployed singularly. Polygenic resistance is, therefore, considered the most durable, but combining and maintaining these genes by breeding is a laborious process as effective genes are usually unlinked. The deployment of polygenic resistance with single-locus inheritance is a promising innovation that overcomes these difficulties while enhancing resistance durability. Because of major advances in genomic technologies, increasing numbers of plant resistance genes have been cloned, enabling the development of resistance transgene stacks (RTGSs) that encode multiple genes all located at a single genetic locus. Gene stacks encoding five stem rust resistance genes have now been developed in transgenic wheat and offer both breeding simplicity and potential resistance durability. The development of similar genomic resources in phytopathogens has advanced effector gene isolation and, in some instances, enabled functional validation of individual resistance genes in RTGS. Here, the wheat stem rust pathosystem is used as an illustrative example of how host and pathogen genomic advances have been instrumental in the development of RTGS, which is a strategy applicable to many other agricultural crop species.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael Ayliffe
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Canberra, ACT, Australia
| |
Collapse
|
12
|
Farias KS, Ferreira MM, Amaral GV, Zugaib M, Santos AS, Gomes FP, Rezende RP, Gramacho KP, Aguiar ERGR, Pirovani CP. BASIDIN as a New Protein Effector of the Phytopathogen Causing Witche's Broom Disease in Cocoa. Int J Mol Sci 2023; 24:11714. [PMID: 37511472 PMCID: PMC10380501 DOI: 10.3390/ijms241411714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The fungus Moniliophthora perniciosa secretes protein effectors that manipulate the physiology of the host plant, but few effectors of this fungus have had their functions confirmed. We performed functional characterization of a promising candidate effector of M. perniciosa. The inoculation of rBASIDIN at 4 µmol L-1 in the mesophyll of leaflets of Solanum lycopersicum caused symptoms of shriveling within 6 h without the presence of necrosis. However, when sprayed on the plant at a concentration of 11 µmol L-1, it caused wilting symptoms only 2 h after application, followed by necrosis and cell death at 48 h. rBASIDIN applied to Theobroma cacao leaves at the same concentration caused milder symptoms. rBASIDIN caused hydrogen peroxide production in leaf tissue, damaging the leaf membrane and negatively affecting the photosynthetic rate of Solanum lycopersicum plants. Phylogenetic analysis indicated that BASIDIN has orthologs in other phytopathogenic basidiomycetes. Analysis of the transcripts revealed that BASIDIN and its orthologs are expressed in different fungal species, suggesting that this protein is differentially regulated in these basidiomycetes. Therefore, the results of applying BASIDIN allow the inference that it is an effector of the fungus M. perniciosa, with a strong potential to interfere in the defense system of the host plant.
Collapse
Affiliation(s)
- Keilane Silva Farias
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Monaliza Macêdo Ferreira
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Geiseane Veloso Amaral
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Maria Zugaib
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Ariana Silva Santos
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Fábio Pinto Gomes
- Fisiologia Vegetal, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Rachel Passos Rezende
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Karina Peres Gramacho
- Comissão Executiva do Plano da Lavoura Cacaueira, Centro de Pesquisas do Cacau-MAPA, Laboratório de Fitopatologia Molecular, km 22 Rodovia Ilhéus Itabuna, Ilhéus 45600-970, Bahia, Brazil
| | - Eric Roberto Guimarães Rocha Aguiar
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Carlos Priminho Pirovani
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| |
Collapse
|
13
|
Bernoux M, Chen J, Zhang X, Newell K, Hu J, Deslandes L, Dodds P. Subcellular localization requirements and specificities for plant immune receptor Toll-interleukin-1 receptor signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36932864 DOI: 10.1111/tpj.16195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 06/02/2023]
Abstract
Recent work shed light on how plant intracellular immune receptors of the nucleotide-binding leucine-rich repeat (NLR) family are activated upon pathogen effector recognition to trigger immune responses. Activation of Toll-interleukin-1 receptor (TIR) domain-containing NLRs (TNLs) induces receptor oligomerization and close proximity of the TIR domain, which is required for TIR enzymatic activity. TIR-catalyzed small signaling molecules bind to EDS1 family heterodimers and subsequently activate downstream helper NLRs, which function as Ca2+ permeable channel to activate immune responses eventually leading to cell death. Subcellular localization requirements of TNLs and signaling partners are not well understood, although they are required to understand fully the mechanisms underlying NLR early signaling. TNLs show diverse subcellular localization while EDS1 shows nucleocytosolic localization. Here, we studied the impact of TIR and EDS1 mislocalization on the signaling activation of different TNLs. In Nicotiana benthamiana, our results suggest that close proximity of TIR domains isolated from flax L6 and Arabidopsis RPS4 and SNC1 TNLs drives signaling activation from different cell compartments. Nevertheless, both Golgi-membrane anchored L6 and nucleocytosolic RPS4 have the same requirements for EDS1 subcellular localization in Arabidopsis thaliana. By using mislocalized variants of EDS1, we found that autoimmune L6 and RPS4 TIR domain can induce seedling cell death when EDS1 is present in the cytosol. However, when EDS1 is restricted to the nucleus, both induce a stunting phenotype but no cell death. Our data point out the importance of thoroughly investigating the dynamics of TNLs and signaling partners subcellular localization to understand TNL signaling fully.
Collapse
Affiliation(s)
- Maud Bernoux
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), UMR 2594/441 CNRS, INRAE, 31326, Castanet-Tolosan, France
| | - Jian Chen
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Canberra, ACT 2601, Australia
| | - Xiaoxiao Zhang
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Kim Newell
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Canberra, ACT 2601, Australia
| | - Jian Hu
- Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing, 100094, People's Republic of China
| | - Laurent Deslandes
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), UMR 2594/441 CNRS, INRAE, 31326, Castanet-Tolosan, France
| | - Peter Dodds
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Canberra, ACT 2601, Australia
| |
Collapse
|
14
|
Yang D, He N, Huang F, Jin Y, Li S. The Genetic Mechanism of the Immune Response to the Rice False Smut (RFS) Fungus Ustilaginoidea virens. PLANTS (BASEL, SWITZERLAND) 2023; 12:741. [PMID: 36840089 PMCID: PMC9961370 DOI: 10.3390/plants12040741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Rice false smut (RFS), which is caused by Ustilaginoidea virens (U. virens), has become one of the most devastating diseases in rice-growing regions worldwide. The disease results in a significant yield loss and poses health threats to humans and animals due to producing mycotoxins. In this review, we update the understanding of the symptoms and resistance genes of RFS, as well as the genomics and effectors in U. virens. We also highlight the genetic mechanism of the immune response to RFS. Finally, we analyse and explore the identification method for RFS, breeding for resistance against the disease, and interactions between the effector proteins and resistance (R) proteins, which would be involved in the development of rice disease resistance materials for breeding programmes.
Collapse
Affiliation(s)
- Dewei Yang
- Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
| | - Niqing He
- Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
| | - Fenghuang Huang
- Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
| | - Yidan Jin
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shengping Li
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
15
|
Blackman C, Subramaniam R. A Bioinformatic Guide to Identify Protein Effectors from Phytopathogens. Methods Mol Biol 2023; 2659:95-101. [PMID: 37249888 DOI: 10.1007/978-1-0716-3159-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phytopathogenic fungi are a diverse and widespread group that has a significant detrimental impact on crops with an estimated annual average loss of 15% worldwide. Understanding the interaction between host plants and pathogenic fungi is critical to delineate underlying mechanisms of plant defense to mitigate agricultural losses. Fungal pathogens utilize suites of secreted molecules, called effectors, to modulate plant metabolism and immune response to overcome host defenses and promote colonization. Effectors come in many flavors including proteinaceous products, small RNAs, and metabolites such as mycotoxins. This review will focus on methods for identifying protein effectors from fungi. Excellent reviews have been published to identify secondary metabolites and small RNAs from fungi and therefore will not be part of this review.
Collapse
Affiliation(s)
- Christopher Blackman
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Rajagopal Subramaniam
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada.
| |
Collapse
|
16
|
Chen J, Zhang X, Rathjen JP, Dodds PN. Direct recognition of pathogen effectors by plant NLR immune receptors and downstream signalling. Essays Biochem 2022; 66:471-483. [PMID: 35731245 PMCID: PMC9528080 DOI: 10.1042/ebc20210072] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
Plants deploy extracellular and intracellular immune receptors to sense and restrict pathogen attacks. Rapidly evolving pathogen effectors play crucial roles in suppressing plant immunity but are also monitored by intracellular nucleotide-binding, leucine-rich repeat immune receptors (NLRs), leading to effector-triggered immunity (ETI). Here, we review how NLRs recognize effectors with a focus on direct interactions and summarize recent research findings on the signalling functions of NLRs. Coiled-coil (CC)-type NLR proteins execute immune responses by oligomerizing to form membrane-penetrating ion channels after effector recognition. Some CC-NLRs function in sensor-helper networks with the sensor NLR triggering oligomerization of the helper NLR. Toll/interleukin-1 receptor (TIR)-type NLR proteins possess catalytic activities that are activated upon effector recognition-induced oligomerization. Small molecules produced by TIR activity are detected by additional signalling partners of the EDS1 lipase-like family (enhanced disease susceptibility 1), leading to activation of helper NLRs that trigger the defense response.
Collapse
Affiliation(s)
- Jian Chen
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Canberra, ACT 2601, Australia
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Xiaoxiao Zhang
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - John P Rathjen
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Peter N Dodds
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Canberra, ACT 2601, Australia
| |
Collapse
|
17
|
Zhang D, Wang Z, Yamamoto N, Wang M, Yi X, Li P, Lin R, Nasimi Z, Okada K, Mochida K, Noutoshi Y, Zheng A. Secreted Glycosyltransferase RsIA_GT of Rhizoctonia solani AG-1 IA Inhibits Defense Responses in Nicotiana benthamiana. Pathogens 2022; 11:pathogens11091026. [PMID: 36145458 PMCID: PMC9501517 DOI: 10.3390/pathogens11091026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Anastomosis group AG-1 IA of Rhizoctonia solani Khün has a wide host range and threatens crop production. Various glycosyltransferases secreted by phytopathogenic fungi play an essential role in pathogenicity. Previously, we identified a glycosyltransferase RsIA_GT (AG11A_09161) as a secreted protein-encoding gene of R. solani AG-1 IA, whose expression levels increased during infection in rice. In this study, we further characterized the virulence function of RsIA_GT. It is conserved not only in Basidiomycota, including multiple anastomosis groups of R. solani, but also in other primary fungal taxonomic categories. RsIA_GT possesses a signal peptide (SP) for protein secretion, and its functionality was proven using yeast and Nicotiana benthamiana. The SP-truncated form of RsIA_GT (RsIA_GT(ΔS)) expressed in Escherichia coli-induced lesion-like phenotype in rice leaves when applied to punched leaves. However, Agrobacterium-mediated transient expressions of both the full-length RsIA_GT and RsIA_GT(ΔS) did not induce cell death in N. benthamiana leaves. Instead, only RsIA_GT(ΔS) suppressed the cell death induced by two reference cell death factors BAX and INF1 in N.benthamiana. RsIA_GT(ΔS)R154A D168A D170A, a mutant RsIA_GT(ΔS) for the glycosyltransferase catalytic domain, still suppressed the BAX- or INF1-induced cell death, suggesting that the cell death suppression activity of RsIA_GT(ΔS) would be independent from its enzymatic activity. RsIA_GT(ΔS) also suppressed the H2O2 production and callose deposition and showed an effect on the induction of defense genes associated with the expression of BAX and INF1. The transient expression of RsIA_GT(ΔS) in N. benthamiana enhanced the lesion area caused by R. solani AG-1 IA. The secreted glycosyltransferase, RsIA_GT, of R. solani AG-1 IA is likely to have a dual role in virulence inside and outside of host cells.
Collapse
Affiliation(s)
- Danhua Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhaoyilin Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Naoki Yamamoto
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyue Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoqun Yi
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Runmao Lin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zohreh Nasimi
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Kazunori Okada
- Agro-Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama 2300045, Japan
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama 2300045, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 2440813, Japan
- School of Information and Data Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Aiping Zheng
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
18
|
Tarallo M, McDougal RL, Chen Z, Wang Y, Bradshaw RE, Mesarich CH. Characterization of two conserved cell death elicitor families from the Dothideomycete fungal pathogens Dothistroma septosporum and Fulvia fulva (syn. Cladosporium fulvum). Front Microbiol 2022; 13:964851. [PMID: 36160260 PMCID: PMC9493481 DOI: 10.3389/fmicb.2022.964851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Dothistroma septosporum (Ds) and Fulvia fulva (Ff; previously called Cladosporium fulvum) are two closely related Dothideomycete fungal species that cause Dothistroma needle blight in pine and leaf mold in tomato, respectively. During host colonization, these pathogens secrete virulence factors termed effectors to promote infection. In the presence of corresponding host immune receptors, however, these effectors activate plant defenses, including a localized cell death response that halts pathogen growth. We identified two apoplastic effector protein families, Ecp20 and Ecp32, which are conserved between the two pathogens. The Ecp20 family has four paralogues in both species, while the Ecp32 family has four paralogues in D. septosporum and five in F. fulva. Both families have members that are highly expressed during host infection. Members of the Ecp20 family have predicted structural similarity to proteins with a β-barrel fold, including the Alt a 1 allergen from Alternaria alternata, while members of the Ecp32 family have predicted structural similarity to proteins with a β-trefoil fold, such as trypsin inhibitors and lectins. Using Agrobacterium tumefaciens-mediated transient transformation assays, each family member was assessed for its ability to trigger cell death in leaves of the non-host species Nicotiana benthamiana and N. tabacum. Using this approach, FfEcp20-2, DsEcp20-3, and FfEcp20-3 from the Ecp20 family, and all members from the Ecp32 family, except for the Ds/FfEcp32-4 pair, triggered cell death in both species. This cell death was dependent on secretion of the effectors to the apoplast. In line with recognition by an extracellular immune receptor, cell death triggered by Ds/FfEcp20-3 and FfEcp32-3 was compromised in N. benthamiana silenced for BAK1 or SOBIR1, which encode extracellular co-receptors involved in transducing defense response signals following apoplastic effector recognition. We then investigated whether DsEcp20-3 and DsEcp20-4 triggered cell death in the host species Pinus radiata by directly infiltrating purified protein into pine needles. Strikingly, as in the non-host species, DsEcp20-3 triggered cell death, while DsEcp20-4 did not. Collectively, our study describes two new candidate effector families with cell death-eliciting activity from D. septosporum and F. fulva and provides evidence that members of these families are recognized by plant immune receptors.
Collapse
Affiliation(s)
- Mariana Tarallo
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | | | - Zhiyuan Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Rosie E. Bradshaw
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Carl H. Mesarich
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| |
Collapse
|
19
|
Xia C, Qiu A, Wang M, Liu T, Chen W, Chen X. Current Status and Future Perspectives of Genomics Research in the Rust Fungi. Int J Mol Sci 2022; 23:9629. [PMID: 36077025 PMCID: PMC9456177 DOI: 10.3390/ijms23179629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Rust fungi in Pucciniales have caused destructive plant epidemics, have become more aggressive with new virulence, rapidly adapt to new environments, and continually threaten global agriculture. With the rapid advancement of genome sequencing technologies and data analysis tools, genomics research on many of the devastating rust fungi has generated unprecedented insights into various aspects of rust biology. In this review, we first present a summary of the main findings in the genomics of rust fungi related to variations in genome size and gene composition between and within species. Then we show how the genomics of rust fungi has promoted our understanding of the pathogen virulence and population dynamics. Even with great progress, many questions still need to be answered. Therefore, we introduce important perspectives with emphasis on the genome evolution and host adaptation of rust fungi. We believe that the comparative genomics and population genomics of rust fungi will provide a further understanding of the rapid evolution of virulence and will contribute to monitoring the population dynamics for disease management.
Collapse
Affiliation(s)
- Chongjing Xia
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Age Qiu
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
- Wheat Health, Genetics, and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA 99164-6430, USA
| |
Collapse
|
20
|
Khairi MHF, Nor Muhammad NA, Bunawan H, Abdul Murad AM, Ramzi AB. Unveiling the Core Effector Proteins of Oil Palm Pathogen Ganoderma boninense via Pan-Secretome Analysis. J Fungi (Basel) 2022; 8:jof8080793. [PMID: 36012782 PMCID: PMC9409662 DOI: 10.3390/jof8080793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 12/10/2022] Open
Abstract
Ganoderma boninense is the major causal agent of basal stem rot (BSR) disease in oil palm, causing the progressive rot of the basal part of the stem. Despite its prominence, the key pathogenicity determinants for the aggressive nature of hemibiotrophic infection remain unknown. In this study, genome sequencing and the annotation of G. boninense T10 were carried out using the Illumina sequencing platform, and comparative genome analysis was performed with previously reported G. boninense strains (NJ3 and G3). The pan-secretome of G. boninense was constructed and comprised 937 core orthogroups, 243 accessory orthogroups, and 84 strain-specific orthogroups. In total, 320 core orthogroups were enriched with candidate effector proteins (CEPs) that could be classified as carbohydrate-active enzymes, hydrolases, and non-catalytic proteins. Differential expression analysis revealed an upregulation of five CEP genes that was linked to the suppression of PTI signaling cascade, while the downregulation of four CEP genes was linked to the inhibition of PTI by preventing host defense elicitation. Genome architecture analysis revealed the one-speed architecture of the G. boninense genome and the lack of preferential association of CEP genes to transposable elements. The findings obtained from this study aid in the characterization of pathogenicity determinants and molecular biomarkers of BSR disease.
Collapse
Affiliation(s)
- Mohamad Hazwan Fikri Khairi
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (M.H.F.K.); (N.A.N.M.); (H.B.)
| | - Nor Azlan Nor Muhammad
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (M.H.F.K.); (N.A.N.M.); (H.B.)
| | - Hamidun Bunawan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (M.H.F.K.); (N.A.N.M.); (H.B.)
| | - Abdul Munir Abdul Murad
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Ahmad Bazli Ramzi
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (M.H.F.K.); (N.A.N.M.); (H.B.)
- Correspondence: ; Tel.: +603-8921-4546; Fax: +603-8921-3398
| |
Collapse
|
21
|
Iswanto ABB, Vu MH, Pike S, Lee J, Kang H, Son GH, Kim J, Kim SH. Pathogen effectors: What do they do at plasmodesmata? MOLECULAR PLANT PATHOLOGY 2022; 23:795-804. [PMID: 34569687 PMCID: PMC9104267 DOI: 10.1111/mpp.13142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Plants perceive an assortment of external cues during their life cycle, including abiotic and biotic stressors. Biotic stress from a variety of pathogens, including viruses, oomycetes, fungi, and bacteria, is considered to be a substantial factor hindering plant growth and development. To hijack the host cell's defence machinery, plant pathogens have evolved sophisticated attack strategies mediated by numerous effector proteins. Several studies have indicated that plasmodesmata (PD), symplasmic pores that facilitate cell-to-cell communication between a cell and neighbouring cells, are one of the targets of pathogen effectors. However, in contrast to plant-pathogenic viruses, reports of fungal- and bacterial-encoded effectors that localize to and exploit PD are limited. Surprisingly, a recent study of PD-associated bacterial effectors has shown that a number of bacterial effectors undergo cell-to-cell movement via PD. Here we summarize and highlight recent advances in the study of PD-associated fungal/oomycete/bacterial effectors. We also discuss how pathogen effectors interfere with host defence mechanisms in the context of PD regulation.
Collapse
Affiliation(s)
- Arya Bagus Boedi Iswanto
- Division of Applied Life Science (BK21 Four Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Minh Huy Vu
- Division of Applied Life Science (BK21 Four Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Sharon Pike
- Division of Plant SciencesChristopher S. Bond Life Sciences Center and Interdisciplinary Plant GroupUniversity of MissouriColumbiaMissouriUSA
| | - Jihyun Lee
- Division of Applied Life Science (BK21 Four Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Hobin Kang
- Division of Applied Life Science (BK21 Four Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Geon Hui Son
- Division of Applied Life Science (BK21 Four Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Jae‐Yean Kim
- Division of Applied Life Science (BK21 Four Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
- Division of Life ScienceGyeongsang National UniversityJinjuRepublic of Korea
| | - Sang Hee Kim
- Division of Applied Life Science (BK21 Four Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
- Division of Life ScienceGyeongsang National UniversityJinjuRepublic of Korea
| |
Collapse
|
22
|
Rafiqi M, Jelonek L, Diouf AM, Mbaye A, Rep M, Diarra A. Profile of the in silico secretome of the palm dieback pathogen, Fusarium oxysporum f. sp. albedinis, a fungus that puts natural oases at risk. PLoS One 2022; 17:e0260830. [PMID: 35617325 PMCID: PMC9135196 DOI: 10.1371/journal.pone.0260830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/28/2022] [Indexed: 11/18/2022] Open
Abstract
Understanding biotic changes that occur alongside climate change constitute a research priority of global significance. Here, we address a plant pathogen that poses a serious threat to life on natural oases, where climate change is already taking a toll and severely impacting human subsistence. Fusarium oxysporum f. sp. albedinis is a pathogen that causes dieback disease on date palms, a tree that provides several critical ecosystem services in natural oases; and consequently, of major importance in this vulnerable habitat. Here, we assess the current state of global pathogen spread, we annotate the genome of a sequenced pathogen strain isolated from the native range and we analyse its in silico secretome. The palm dieback pathogen secretes a large arsenal of effector candidates including a variety of toxins, a distinguished profile of secreted in xylem proteins (SIX) as well as an expanded protein family with an N-terminal conserved motif [SG]PC[KR]P that could be involved in interactions with host membranes. Using agrobiodiversity as a strategy to decrease pathogen infectivity, while providing short term resilient solutions, seems to be widely overcome by the pathogen. Hence, the urgent need for future mechanistic research on the palm dieback disease and a better understanding of pathogen genetic diversity.
Collapse
Affiliation(s)
- Maryam Rafiqi
- Plant Pathology Program, Agrobiosciences, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Lukas Jelonek
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Aliou Moussa Diouf
- Plant Pathology Program, Agrobiosciences, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - AbdouLahat Mbaye
- Plant Pathology Program, Agrobiosciences, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Martijn Rep
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Alhousseine Diarra
- Digital 4 Research Labs, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| |
Collapse
|
23
|
Bai Q, Wang M, Xia C, See DR, Chen X. Identification of Secreted Protein Gene-Based SNP Markers Associated with Virulence Phenotypes of Puccinia striiformis f. sp. tritici, the Wheat Stripe Rust Pathogen. Int J Mol Sci 2022; 23:ijms23084114. [PMID: 35456934 PMCID: PMC9033109 DOI: 10.3390/ijms23084114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 01/14/2023] Open
Abstract
Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is a destructive disease that occurs throughout the major wheat-growing regions of the world. This pathogen is highly variable due to the capacity of virulent races to undergo rapid changes in order to circumvent resistance in wheat cultivars and genotypes and to adapt to different environments. Intensive efforts have been made to study the genetics of wheat resistance to this disease; however, no known avirulence genes have been molecularly identified in Pst so far. To identify molecular markers for avirulence genes, a Pst panel of 157 selected isolates representing 126 races with diverse virulence spectra was genotyped using 209 secreted protein gene-based single nucleotide polymorphism (SP-SNP) markers via association analysis. Nineteen SP-SNP markers were identified for significant associations with 12 avirulence genes: AvYr1, AvYr6, AvYr7, AvYr9, AvYr10, AvYr24, AvYr27, AvYr32, AvYr43, AvYr44, AvYrSP, and AvYr76. Some SP-SNPs were associated with two or more avirulence genes. These results further confirmed that association analysis in combination with SP-SNP markers is a powerful tool for identifying markers for avirulence genes. This study provides genomic resources for further studies on the cloning of avirulence genes, understanding the mechanisms of host–pathogen interactions, and developing functional markers for tagging specific virulence genes and race groups.
Collapse
Affiliation(s)
- Qing Bai
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA; (Q.B.); (M.W.); (C.X.); (D.R.S.)
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA; (Q.B.); (M.W.); (C.X.); (D.R.S.)
| | - Chongjing Xia
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA; (Q.B.); (M.W.); (C.X.); (D.R.S.)
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Deven R. See
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA; (Q.B.); (M.W.); (C.X.); (D.R.S.)
- U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430, USA
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA; (Q.B.); (M.W.); (C.X.); (D.R.S.)
- U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430, USA
- Correspondence: ; Tel.: +1-509-335-8086
| |
Collapse
|
24
|
Mapuranga J, Zhang L, Zhang N, Yang W. The haustorium: The root of biotrophic fungal pathogens. FRONTIERS IN PLANT SCIENCE 2022; 13:963705. [PMID: 36105706 PMCID: PMC9465030 DOI: 10.3389/fpls.2022.963705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/15/2022] [Indexed: 05/02/2023]
Abstract
Biotrophic plant pathogenic fungi are among the dreadful pathogens that continuously threaten the production of economically important crops. The interaction of biotrophic fungal pathogens with their hosts necessitates the development of unique infection mechanisms and involvement of various virulence-associated components. Biotrophic plant pathogenic fungi have an exceptional lifestyle that supports nutrient acquisition from cells of a living host and are fully dependent on the host for successful completion of their life cycle. The haustorium, a specialized infection structure, is the key organ for biotrophic fungal pathogens. The haustorium is not only essential in the uptake of nutrients without killing the host, but also in the secretion and delivery of effectors into the host cells to manipulate host immune system and defense responses and reprogram the metabolic flow of the host. Although there is a number of unanswered questions in this area yet, results from various studies indicate that the haustorium is the root of biotrophic fungal pathogens. This review provides an overview of current knowledge of the haustorium, its structure, composition, and functions, which includes the most recent haustorial transcriptome studies.
Collapse
|
25
|
Louet C, Saubin M, Andrieux A, Persoons A, Gorse M, Pétrowski J, Fabre B, De Mita S, Duplessis S, Frey P, Halkett F. A point mutation and large deletion at the candidate avirulence locus AvrMlp7 in the poplar rust fungus correlate with poplar RMlp7 resistance breakdown. Mol Ecol 2021; 32:2472-2483. [PMID: 34843142 DOI: 10.1111/mec.16294] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 10/21/2021] [Accepted: 11/09/2021] [Indexed: 01/29/2023]
Abstract
The deployment of plant varieties carrying resistance genes (R) exerts strong selection pressure on pathogen populations. Rapidly evolving avirulence genes (Avr) allow pathogens to escape R-mediated plant immunity through a variety of mechanisms, leading to virulence. The poplar rust fungus Melampsora larici-populina is a damaging pathogen of poplars in Europe. It underwent a major adaptive event in 1994, with the breakdown of the poplar RMlp7 resistance gene. Population genomics studies identified a locus in the genome of M. larici-populina that probably corresponds to the candidate avirulence gene AvrMlp7. Here, to further characterize this effector, we used a population genetics approach on a comprehensive set of 281 individuals recovered throughout a 28-year period encompassing the resistance breakdown event. Using two dedicated molecular tools, genotyping at the candidate locus highlighted two different alterations of a predominant allele found mainly before the resistance breakdown: a nonsynonymous mutation and a complete deletion of this locus. This results in six diploid genotypes: three genotypes related to the avirulent phenotype and three related to the virulent phenotype. The temporal survey of the candidate locus revealed that both alterations were found in association during the resistance breakdown event. They pre-existed before the breakdown in a heterozygous state with the predominant allele cited above. Altogether, these results suggest that the association of both alterations at the candidate locus AvrMlp7 drove the poplar rust adaptation to RMlp7-mediated immunity. This study demonstrates for the first time a case of adaptation from standing genetic variation in rust fungi during a qualitative resistance breakdown.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Pascal Frey
- Université de Lorraine, INRAE, IAM, Nancy, France
| | | |
Collapse
|
26
|
Jones DAB, Moolhuijzen PM, Hane JK. Remote homology clustering identifies lowly conserved families of effector proteins in plant-pathogenic fungi. Microb Genom 2021; 7. [PMID: 34468307 PMCID: PMC8715435 DOI: 10.1099/mgen.0.000637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Plant diseases caused by fungal pathogens are typically initiated by molecular interactions between 'effector' molecules released by a pathogen and receptor molecules on or within the plant host cell. In many cases these effector-receptor interactions directly determine host resistance or susceptibility. The search for fungal effector proteins is a developing area in fungal-plant pathology, with more than 165 distinct confirmed fungal effector proteins in the public domain. For a small number of these, novel effectors can be rapidly discovered across multiple fungal species through the identification of known effector homologues. However, many have no detectable homology by standard sequence-based search methods. This study employs a novel comparison method (RemEff) that is capable of identifying protein families with greater sensitivity than traditional homology-inference methods, leveraging a growing pool of confirmed fungal effector data to enable the prediction of novel fungal effector candidates by protein family association. Resources relating to the RemEff method and data used in this study are available from https://figshare.com/projects/Effector_protein_remote_homology/87965.
Collapse
Affiliation(s)
- Darcy A B Jones
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, Australia
| | - Paula M Moolhuijzen
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, Australia
| | - James K Hane
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, Australia.,Curtin Institute for Computation, Curtin University, Perth, Australia
| |
Collapse
|
27
|
Duplessis S, Lorrain C, Petre B, Figueroa M, Dodds PN, Aime MC. Host Adaptation and Virulence in Heteroecious Rust Fungi. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:403-422. [PMID: 34077239 DOI: 10.1146/annurev-phyto-020620-121149] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rust fungi (Pucciniales, Basidiomycota) are obligate biotrophic pathogens that cause rust diseases in plants, inflicting severe damage to agricultural crops. Pucciniales possess the most complex life cycles known in fungi. These include an alternation of generations, the development of up to five different sporulating stages, and, for many species, the requirement of infecting two unrelated host plants during different parts of their life cycle, termed heteroecism. These fungi have been extensively studied in the past century through microscopy and inoculation studies, providing precise descriptions of their infection processes, although the molecular mechanisms underlying their unique biology are poorly understood. In this review, we cover recent genomic and life cycle transcriptomic studies in several heteroecious rust species, which provide insights into the genetic tool kits associated with host adaptation and virulence, opening new avenues for unraveling their unique evolution.
Collapse
Affiliation(s)
- Sebastien Duplessis
- Université de Lorraine, INRAE, UMR 1136 IAM, Interactions Arbres-Microorganismes, 54000 Nancy, France; ,
| | - Cecile Lorrain
- Plant Pathology Group, ETH Zurich, 8092 Zurich, Switzerland;
| | - Benjamin Petre
- Université de Lorraine, INRAE, UMR 1136 IAM, Interactions Arbres-Microorganismes, 54000 Nancy, France; ,
| | - Melania Figueroa
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; ,
| | - Peter N Dodds
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; ,
| | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA;
| |
Collapse
|
28
|
Kumar J, Ramlal A, Kumar K, Rani A, Mishra V. Signaling Pathways and Downstream Effectors of Host Innate Immunity in Plants. Int J Mol Sci 2021; 22:ijms22169022. [PMID: 34445728 PMCID: PMC8396522 DOI: 10.3390/ijms22169022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
Phytopathogens, such as biotrophs, hemibiotrophs and necrotrophs, pose serious stress on the development of their host plants, compromising their yields. Plants are in constant interaction with such phytopathogens and hence are vulnerable to their attack. In order to counter these attacks, plants need to develop immunity against them. Consequently, plants have developed strategies of recognizing and countering pathogenesis through pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). Pathogen perception and surveillance is mediated through receptor proteins that trigger signal transduction, initiated in the cytoplasm or at the plasma membrane (PM) surfaces. Plant hosts possess microbe-associated molecular patterns (P/MAMPs), which trigger a complex set of mechanisms through the pattern recognition receptors (PRRs) and resistance (R) genes. These interactions lead to the stimulation of cytoplasmic kinases by many phosphorylating proteins that may also be transcription factors. Furthermore, phytohormones, such as salicylic acid, jasmonic acid and ethylene, are also effective in triggering defense responses. Closure of stomata, limiting the transfer of nutrients through apoplast and symplastic movements, production of antimicrobial compounds, programmed cell death (PCD) are some of the primary defense-related mechanisms. The current article highlights the molecular processes involved in plant innate immunity (PII) and discusses the most recent and plausible scientific interventions that could be useful in augmenting PII.
Collapse
Affiliation(s)
- Jitendra Kumar
- Bangalore Bioinnovation Centre, Life Sciences Park, Electronics City Phase 1, Bengaluru 560100, India;
| | - Ayyagari Ramlal
- Division of Genetics, Indian Agricultural Research Institute (IARI), Pusa Campus, New Delhi 110012, India;
| | - Kamal Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110066, India;
| | - Anita Rani
- Department of Botany, Dyal Singh College, University of Delhi, Delhi 110003, India;
| | - Vachaspati Mishra
- Department of Botany, Dyal Singh College, University of Delhi, Delhi 110003, India;
- Correspondence:
| |
Collapse
|
29
|
Mehta S, Chakraborty A, Roy A, Singh IK, Singh A. Fight Hard or Die Trying: Current Status of Lipid Signaling during Plant-Pathogen Interaction. PLANTS (BASEL, SWITZERLAND) 2021; 10:1098. [PMID: 34070722 PMCID: PMC8228701 DOI: 10.3390/plants10061098] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/15/2021] [Accepted: 05/24/2021] [Indexed: 12/29/2022]
Abstract
Plant diseases pose a substantial threat to food availability, accessibility, and security as they account for economic losses of nearly $300 billion on a global scale. Although various strategies exist to reduce the impact of diseases, they can introduce harmful chemicals to the food chain and have an impact on the environment. Therefore, it is necessary to understand and exploit the plants' immune systems to control the spread of pathogens and enable sustainable agriculture. Recently, growing pieces of evidence suggest a functional myriad of lipids to be involved in providing structural integrity, intracellular and extracellular signal transduction mediators to substantial cross-kingdom cell signaling at the host-pathogen interface. Furthermore, some pathogens recognize or exchange plant lipid-derived signals to identify an appropriate host or development, whereas others activate defense-related gene expression. Typically, the membrane serves as a reservoir of lipids. The set of lipids involved in plant-pathogen interaction includes fatty acids, oxylipins, phospholipids, glycolipids, glycerolipids, sphingolipids, and sterols. Overall, lipid signals influence plant-pathogen interactions at various levels ranging from the communication of virulence factors to the activation and implementation of host plant immune defenses. The current review aims to summarize the progress made in recent years regarding the involvement of lipids in plant-pathogen interaction and their crucial role in signal transduction.
Collapse
Affiliation(s)
- Sahil Mehta
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India;
| | - Amrita Chakraborty
- EVA4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Kamýcká 129, Suchdol, 165 21 Prague 6, Czech Republic; (A.C.); (A.R.)
| | - Amit Roy
- EVA4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Kamýcká 129, Suchdol, 165 21 Prague 6, Czech Republic; (A.C.); (A.R.)
- Excelentní Tým pro Mitigaci (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Kamýcká 129, Suchdol, 165 21 Prague 6, Czech Republic
| | - Indrakant K. Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, New Delhi 110007, India
| |
Collapse
|
30
|
Kimura S, Shibata Y, Oi T, Kawakita K, Takemoto D. Effect of flutianil on the morphology and gene expression of powdery mildew. JOURNAL OF PESTICIDE SCIENCE 2021; 46:206-213. [PMID: 34135682 PMCID: PMC8175223 DOI: 10.1584/jpestics.d21-003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Flutianil, a fungicide effective only on powdery mildew, was previously reported to affect the host cell's haustorial formation and nutrient absorption. Studies were conducted to investigate flutianil's primary site of action on Blumeria graminis morphology using transmission electron microscope (TEM) observation and RNA sequencing (RAN-seq) techniques. TEM observation revealed that flutianil caused the extra-haustorial matrix and fungal cell wall to be obscured, without remarkable changes of other fungal organelles. RNA-seq analysis indicated that, unlike other powdery-mildew fungicides, flutianil did not significantly affect the constantly expressed genes for the survival of B. graminis. Genes whose expression is up- or downregulated by flutianil were found; these are the three sugar transporter genes and various effector genes, mainly expressed in haustoria. These findings indicate that the primary site of action of flutianil might be in the haustoria.
Collapse
Affiliation(s)
- Sachi Kimura
- Research and Development Division, OAT Agrio Co., Ltd., Tokushima, Japan
| | - Yusuke Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464–8601, Japan
| | - Takao Oi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464–8601, Japan
| | - Kazuhito Kawakita
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464–8601, Japan
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464–8601, Japan
| |
Collapse
|
31
|
Chí Manzanero B, Carreón Anguiano KG, Anna Todd JN, Gómez Tah R, Grijalva Arango R, Tzec Simá MA, Canto Canché B. Analysis of Pseudocercospora fijiensis genes upregulated during early interaction with Musa acuminata (var. Dwarf Cavendish). BIONATURA 2021. [DOI: 10.21931/rb/2021.06.01.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Pseudocercospora fijiensis is a filamentous, hemi[B1] biotrophic fungus whose infection process in banana comprises biotrophic and necrotrophic phases; the biotrophic phase is the longer and less damaging of the two but is nonetheless a crucial stage of fungal establishment in the host. To discover the genes essential in this stage, we conducted an interaction experiment to isolate the transcriptome of the P. fijiensis and Musa acuminata interaction during the first 9 days of infection. Of more than 7000 P. fijiensis genes identified, the fifteen most highly expressed genes (RPKM>500) were analyzed. Specific non-canonical effector candidates were identified following in silico characterization which may be fundamental to pathogenicity. This report reveals essential details of a poorly-elucidated stage of the P. fijiensis-Musa sp. pathosystem.
Collapse
Affiliation(s)
- Bartolomé Chí Manzanero
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 X 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205 Mérida, Yucatán, México
| | - Karla Gisel Carreón Anguiano
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 X 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205 Mérida, Yucatán, México
| | - Jewel Nicole Anna Todd
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 X 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205 Mérida, Yucatán, México
| | - Rufino Gómez Tah
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 X 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205 Mérida, Yucatán, México
| | - Rosa Grijalva Arango
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 X 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205 Mérida, Yucatán, México
| | - Miguel A. Tzec Simá
- Unidad de Boquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 X 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205 Mérida, Yucatán, México
| | - Blondy Canto Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 X 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205 Mérida, Yucatán, México
| |
Collapse
|
32
|
Li J, Fokkens L, Rep M. A single gene in Fusarium oxysporum limits host range. MOLECULAR PLANT PATHOLOGY 2021; 22:108-116. [PMID: 33146465 PMCID: PMC7749751 DOI: 10.1111/mpp.13011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/24/2020] [Accepted: 09/22/2020] [Indexed: 05/07/2023]
Abstract
Fusarium oxysoporum f. sp. radicis-cucumerinum (Forc) is able to cause disease in cucumber, melon, and watermelon, while F. oxysporum f. sp. melonis (Fom) can only infect melon plants. Earlier research showed that mobile chromosomes in Forc and Fom determine the difference in host range between Forc and Fom. By closely comparing these pathogenicity chromosomes combined with RNA-sequencing data, we selected 11 candidate genes that we tested for involvement in the difference in host range between Forc and Fom. One of these candidates is a putative effector gene on the Fom pathogenicity chromosome that has nonidentical homologs on the Forc pathogenicity chromosome. Four independent Forc transformants with this gene from Fom showed strongly reduced or no pathogenicity towards cucumber, while retaining pathogenicity towards melon and watermelon. This suggests that the protein encoded by this gene is recognized by an immune receptor in cucumber plants. This is the first time that a single gene has been demonstrated to determine a difference in host specificity between formae speciales of F. oxysporum.
Collapse
Affiliation(s)
- Jiming Li
- Molecular Plant PathologyUniversity of AmsterdamAmsterdamNetherlands
| | - Like Fokkens
- Molecular Plant PathologyUniversity of AmsterdamAmsterdamNetherlands
| | - Martijn Rep
- Molecular Plant PathologyUniversity of AmsterdamAmsterdamNetherlands
| |
Collapse
|
33
|
In-depth secretome analysis of Puccinia striiformis f. sp. tritici in infected wheat uncovers effector functions. Biosci Rep 2020; 40:226968. [PMID: 33275764 PMCID: PMC7724613 DOI: 10.1042/bsr20201188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 11/17/2022] Open
Abstract
The importance of wheat yellow rust disease, caused by Puccinia striiformis f. sp. tritici (Pst), has increased substantially due to the emergence of aggressive new Pst races in the last couple of decades. In an era of escalating human populations and climate change, it is vital to understand the infection mechanism of Pst in order to develop better strategies to combat wheat yellow disease. The present study focuses on the identification of small secreted proteins (SSPs) and candidate-secreted effector proteins (CSEPs) that are used by the pathogen to support infection and control disease development. We generated de novo assembled transcriptomes of Pst collected from wheat fields in central Anatolia. We inoculated both susceptible and resistant seedlings with Pst and analyzed haustoria formation. At 10 days post-inoculation (dpi), we analyzed the transcriptomes and identified 10550 Differentially Expressed Unigenes (DEGs), of which 6072 were Pst-mapped. Among those Pst-related genes, 227 were predicted as PstSSPs. In silico characterization was performed using an approach combining the transcriptomic data and data mining results to provide a reliable list to narrow down the ever-expanding repertoire of predicted effectorome. The comprehensive analysis detected 14 Differentially Expressed Small-Secreted Proteins (DESSPs) that overlapped with the genes in available literature data to serve as the best CSEPs for experimental validation. One of the CSEPs was cloned and studied to test the reliability of the presented data. Biological assays show that the randomly selected CSEP, Unigene17495 (PSTG_10917), localizes in the chloroplast and is able to suppress cell death induced by INF1 in a Nicotiana benthamiana heterologous expression system.
Collapse
|
34
|
Zhang Y, Wei J, Qi Y, Li J, Amin R, Yang W, Liu D. Predicating the Effector Proteins Secreted by Puccinia triticina Through Transcriptomic Analysis and Multiple Prediction Approaches. Front Microbiol 2020; 11:538032. [PMID: 33072007 PMCID: PMC7536266 DOI: 10.3389/fmicb.2020.538032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/26/2020] [Indexed: 11/17/2022] Open
Abstract
Wheat leaf rust caused by Puccinia triticina is one of the most common and serious diseases in wheat production. The constantly changing pathogens overcome the plant resistance to P. triticina. Plant pathogens secrete effector proteins that alter the structure of the host cell, interfere plant defenses, or modify the physiology of plant cells. Therefore, the identification of effector proteins is critical to reveal the pathogenic mechanism. We used SignalP v4.1, TargetP v1.1, TMHMM v2.0, and EffectorP v2.0 to screen the candidate effector proteins in P. triticina isolates – KHTT, JHKT, and THSN. As a result, a total of 635 candidate effector proteins were obtained. Structural analysis showed that effector proteins were small in size (50AA to 422AA) and of diverse sequences, and the conserved sequential elements or clear common elements were not involved, regardless of their secretion from the pathogen to the host. There were 427 candidate effector proteins that contain more than or equal to 4 cysteine residues, and 339 candidate effector proteins contained the known motifs. Sixteen families, 9 domains, and 53 other known functional types were found in 186 candidate effector proteins using the Pfam search. Three novel motifs were found by MEME. Heterogeneous expression system was performed to verify the functions of 30 candidate effectors by inhibiting the programmed cell death (PCD) induced by BAX (the mouse-apoptotic gene elicitor) on Nicotiana benthamiana. Hypersensitive response (HR) can be induced by the six effectors in the wheat leaf rust resistance near isogenic lines, and this would be shown by the method of transient expression through Agrobacterium tumefaciens infiltration. The quantitative reverse transcription PCR (qRT-PCR) analysis of 14 candidate effector proteins secreted after P. triticina inoculation showed that the tested effectors displayed different expression patterns in different stages, suggesting that they may be involved in the wheat–P. triticina interaction. The results showed that the prediction of P. triticina effector proteins based on transcriptomic analysis and multiple bioinformatics software is effective and more accurate, laying the foundation of revealing the pathogenic mechanism of Pt and controlling disease.
Collapse
Affiliation(s)
- Yue Zhang
- College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Jie Wei
- College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Yue Qi
- College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Jianyuan Li
- College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.,College of Biological Sciences and Engineering, Hebei Xingtai College, Xingtai, China
| | - Raheela Amin
- College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Wenxiang Yang
- College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Daqun Liu
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
35
|
Montenegro Alonso AP, Ali S, Song X, Linning R, Bakkeren G. UhAVR1, an HR-Triggering Avirulence Effector of Ustilago hordei, Is Secreted via the ER-Golgi Pathway, Localizes to the Cytosol of Barley Cells during in Planta-Expression, and Contributes to Virulence Early in Infection. J Fungi (Basel) 2020; 6:E178. [PMID: 32961976 PMCID: PMC7559581 DOI: 10.3390/jof6030178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022] Open
Abstract
The basidiomycete Ustilago hordei causes covered smut disease of barley and oats. Virulence effectors promoting infection and supporting pathogen lifestyle have been described for this fungus. Genetically, six avirulence genes are known and one codes for UhAVR1, the only proven avirulence effector identified in smuts to date that triggers complete immunity in barley cultivars carrying resistance gene Ruh1. A prerequisite for resistance breeding is understanding the host targets and molecular function of UhAVR1. Analysis of this effector upon natural infection of barley coleoptiles using teliospores showed that UhAVR1 is expressed during the early stages of fungal infection where it leads to HR triggering in resistant cultivars or performs its virulence function in susceptible cultivars. Fungal secretion of UhAVR1 is directed by its signal peptide and occurs via the BrefeldinA-sensitive ER-Golgi pathway in cell culture away from its host. Transient in planta expression of UhAVR1 in barley and a nonhost, Nicotiana benthamiana, supports a cytosolic localization. Delivery of UhAVR1 via foxtail mosaic virus or Pseudomonas species in both barley and N. benthamiana reveals a role in suppressing components common to both plant systems of Effector- and Pattern-Triggered Immunity, including necrosis triggered by Agrobacterium-delivered cell death inducers.
Collapse
Affiliation(s)
- Ana Priscilla Montenegro Alonso
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC V0H 1Z0, Canada;
| | - Shawkat Ali
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS B4N 1J5, Canada;
| | - Xiao Song
- Sandstone Pharmacies Glenmore Landing Calgary-Compounding, 167D, 1600–90 Ave SW Calgary, AB T2V 5A8, Canada;
| | - Rob Linning
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC V0H 1Z0, Canada;
| | - Guus Bakkeren
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC V0H 1Z0, Canada;
| |
Collapse
|
36
|
Sun W, Fan J, Fang A, Li Y, Tariqjaveed M, Li D, Hu D, Wang WM. Ustilaginoidea virens: Insights into an Emerging Rice Pathogen. ANNUAL REVIEW OF PHYTOPATHOLOGY 2020; 58:363-385. [PMID: 32364825 DOI: 10.1146/annurev-phyto-010820-012908] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
False smut of rice, caused by Ustilaginoidea virens, has become one of the most important diseases in rice-growing regions worldwide. The disease causes a significant yield loss and imposes health threats to humans and animals by producing mycotoxins. In this review, we update our understanding of the pathogen, including the disease cycle and infection strategies, the decoding of the U. virens genome, comparative/functional genomics, and effector biology. Whereas the decoding of the U. virens genome unveils specific adaptations of the pathogen in successfully occupying rice flowers, progresses in comparative/functional genomics and effector biology have begun to uncover the molecular mechanisms underlying U. virens virulence and pathogenicity. We highlight the identification and characterization of the produced mycotoxins and their biosynthetic pathways in U. virens.The management strategies for this disease are also discussed. The flower-specific infection strategy makes the pathogen a unique tool to unveil novel mechanisms for the interactions between nonobligate biotrophic pathogens and their hosts.
Collapse
Affiliation(s)
- Wenxian Sun
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China;
| | - Anfei Fang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yuejiao Li
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Muhammad Tariqjaveed
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Dayong Li
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
| | - Dongwei Hu
- State Key Laboratory of Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou 310058, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China;
| |
Collapse
|
37
|
Li J, Cornelissen B, Rep M. Host-specificity factors in plant pathogenic fungi. Fungal Genet Biol 2020; 144:103447. [PMID: 32827756 DOI: 10.1016/j.fgb.2020.103447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 01/18/2023]
Abstract
Fortunately, no fungus can cause disease on all plant species, and although some plant-pathogenic fungi have quite a broad host range, most are highly limited in the range of plant species or even cultivars that they cause disease in. The mechanisms of host specificity have been extensively studied in many plant-pathogenic fungi, especially in fungal pathogens causing disease on economically important crops. Specifically, genes involved in host specificity have been identified during the last few decades. In this overview, we describe and discuss these host-specificity genes. These genes encode avirulence (Avr) proteins, proteinaceous host-specific toxins or secondary metabolites. We discuss the genomic context of these genes, their expression, polymorphism, horizontal transfer and involvement in pathogenesis.
Collapse
Affiliation(s)
- Jiming Li
- Molecular Plant Pathology, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Ben Cornelissen
- Molecular Plant Pathology, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Martijn Rep
- Molecular Plant Pathology, University of Amsterdam, Amsterdam 1098 XH, the Netherlands.
| |
Collapse
|
38
|
Lin X, Armstrong M, Baker K, Wouters D, Visser RGF, Wolters PJ, Hein I, Vleeshouwers VGAA. RLP/K enrichment sequencing; a novel method to identify receptor-like protein (RLP) and receptor-like kinase (RLK) genes. THE NEW PHYTOLOGIST 2020; 227:1264-1276. [PMID: 32285454 PMCID: PMC7383770 DOI: 10.1111/nph.16608] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/27/2020] [Indexed: 05/29/2023]
Abstract
The identification of immune receptors in crop plants is time-consuming but important for disease control. Previously, resistance gene enrichment sequencing (RenSeq) was developed to accelerate mapping of nucleotide-binding domain and leucine-rich repeat containing (NLR) genes. However, resistances mediated by pattern recognition receptors (PRRs) remain less utilized. Here, our pipeline shows accelerated mapping of PRRs. Effectoromics leads to precise identification of plants with target PRRs, and subsequent RLP/K enrichment sequencing (RLP/KSeq) leads to detection of informative single nucleotide polymorphisms that are linked to the trait. Using Phytophthora infestans as a model, we identified Solanum microdontum plants that recognize the apoplastic effectors INF1 or SCR74. RLP/KSeq in a segregating Solanum population confirmed the localization of the INF1 receptor on chromosome 12, and led to the rapid mapping of the response to SCR74 to chromosome 9. By using markers obtained from RLP/KSeq in conjunction with additional markers, we fine-mapped the SCR74 receptor to a 43-kbp G-LecRK locus. Our findings show that RLP/KSeq enables rapid mapping of PRRs and is especially beneficial for crop plants with large and complex genomes. This work will enable the elucidation and characterization of the nonNLR plant immune receptors and ultimately facilitate informed resistance breeding.
Collapse
Affiliation(s)
- Xiao Lin
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Miles Armstrong
- Cell and Molecular SciencesThe James Hutton InstituteDundeeDD2 5DAUK
| | - Katie Baker
- Cell and Molecular SciencesThe James Hutton InstituteDundeeDD2 5DAUK
| | - Doret Wouters
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Richard G. F. Visser
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Pieter J. Wolters
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Ingo Hein
- Cell and Molecular SciencesThe James Hutton InstituteDundeeDD2 5DAUK
- Division of Plant SciencesSchool of Life SciencesUniversity of Dundee at the James Hutton InstituteDundeeDD2 5DAUK
| | | |
Collapse
|
39
|
Zhao S, Shang X, Bi W, Yu X, Liu D, Kang Z, Wang X, Wang X. Genome-Wide Identification of Effector Candidates With Conserved Motifs From the Wheat Leaf Rust Fungus Puccinia triticina. Front Microbiol 2020; 11:1188. [PMID: 32582112 PMCID: PMC7283542 DOI: 10.3389/fmicb.2020.01188] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Rust fungi secrete various specialized effectors into host cells to manipulate the plant defense response. Conserved motifs, including RXLR, LFLAK-HVLVxxP (CRN), Y/F/WxC, CFEM, LysM, EAR, [SG]-P-C-[KR]-P, DPBB_1 (PNPi), and ToxA, have been identified in various oomycete and fungal effectors and are reported to be crucial for effector translocation or function. However, little is known about potential effectors containing any of these conserved motifs in the wheat leaf rust fungus (Puccinia triticina, Pt). In this study, sequencing was performed on RNA samples collected from the germ tubes (GT) of uredospores of an epidemic Pt pathotype PHTT(P) and Pt-infected leaves of a susceptible wheat cultivar "Chinese Spring" at 4, 6, and 8 days post-inoculation (dpi). The assembled transcriptome data were compared to the reference genome of "Pt 1-1 BBBD Race 1." A total of 17,976 genes, including 2,284 "novel" transcripts, were annotated. Among all these genes, we identified 3,149 upregulated genes upon Pt infection at all time points compared to GT, whereas 1,613 genes were more highly expressed in GT. A total of 464 secreted proteins were encoded by those upregulated genes, with 79 of them also predicted as possible effectors by EffectorP. Using hmmsearch and Regex, we identified 719 RXLR-like, 19 PNPi-like, 19 CRN-like, 138 Y/F/WxC, and 9 CFEM effector candidates from the deduced protein database including data based on the "Pt 1-1 BBBD Race 1" genome and the transcriptome data collected here. Four of the PNPi-like effector candidates with DPBB_1 conserved domain showed physical interactions with wheat NPR1 protein in yeast two-hybrid assay. Nine Y/F/WxC and seven CFEM effector candidates were transiently expressed in Nicotiana benthamiana. None of these effector candidates showed induction or suppression of cell death triggered by BAX protein, but the expression of one CFEM effector candidate, PTTG_08198, accelerated the progress of cell death and promoted the accumulation of reactive oxygen species (ROS). In conclusion, we profiled genes associated with the infection process of the Pt pathotype PHTT(P). The identified effector candidates with conserved motifs will help guide the investigation of virulent mechanisms of leaf rust fungus.
Collapse
Affiliation(s)
- Shuqing Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Xiaofeng Shang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Weishuai Bi
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Xiumei Yu
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Daqun Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Xiaodong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| |
Collapse
|
40
|
A Post-Haustorial Defense Mechanism is Mediated by the Powdery Mildew Resistance Gene, PmG3M, Derived from Wild Emmer Wheat. Pathogens 2020; 9:pathogens9060418. [PMID: 32481482 PMCID: PMC7350345 DOI: 10.3390/pathogens9060418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 11/30/2022] Open
Abstract
The destructive wheat powdery mildew disease is caused by the fungal pathogen Blumeria graminis f. sp. tritici (Bgt). PmG3M, derived from wild emmer wheat Triticum dicoccoides accession G305-3M, is a major gene providing a wide-spectrum resistance against Bgt. PmG3M was previously mapped to wheat chromosome 6B using an F6 recombinant inbred line (RIL) mapping population generated by crossing G305-3M with the susceptible T. durum wheat cultivar Langdon (LDN). In the current study, we aimed to explore the defense mechanisms conferred by PmG3M against Bgt. Histopathology of fungal development was characterized in artificially inoculated leaves of G305-3M, LDN, and homozygous RILs using fluorescence and light microscopy. G305-3M exhibited H2O2 accumulation typical of a hypersensitive response, which resulted in programmed cell death (PCD) in Bgt-penetrated epidermal cells, while LDN showed well-developed colonies without PCD. In addition, we observed a post-haustorial resistance mechanism that arrested the development of fungal feeding structures and pathogen growth in both G305-3M and resistant RIL, while LDN and a susceptible RIL displayed fully developed digitated haustoria and massive accumulation of fungal biomass. In contrast, both G305-3M and LDN exhibited callose deposition in attempt to prevent fungal invasion, supporting this as a mechanism of a basal defense response not associated with PmG3M resistance mechanism per se. The presented results shed light on the resistance mechanisms conferred by PmG3M against wheat powdery mildew.
Collapse
|
41
|
Qin L, Zhou Z, Li Q, Zhai C, Liu L, Quilichini TD, Gao P, Kessler SA, Jaillais Y, Datla R, Peng G, Xiang D, Wei Y. Specific Recruitment of Phosphoinositide Species to the Plant-Pathogen Interfacial Membrane Underlies Arabidopsis Susceptibility to Fungal Infection. THE PLANT CELL 2020; 32:1665-1688. [PMID: 32156686 PMCID: PMC7203932 DOI: 10.1105/tpc.19.00970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/07/2020] [Accepted: 03/09/2020] [Indexed: 05/04/2023]
Abstract
Different phosphoinositides enriched at the membranes of specific subcellular compartments within plant cells contribute to organelle identity, ensuring appropriate cellular trafficking and function. During the infection of plant cells, biotrophic pathogens such as powdery mildews enter plant cells and differentiate into haustoria. Each haustorium is enveloped by an extrahaustorial membrane (EHM) derived from the host plasma membrane. Little is known about the EHM biogenesis and identity. Here, we demonstrate that among the two plasma membrane phosphoinositides in Arabidopsis (Arabidopsis thaliana), PI(4,5)P2 is dynamically up-regulated at powdery mildew infection sites and recruited to the EHM, whereas PI4P is absent in the EHM. Lateral transport of PI(4,5)P2 into the EHM occurs through a brefeldin A-insensitive but actin-dependent trafficking pathway. Furthermore, the lower levels of PI(4,5)P2 in pip5k1 pip5k2 mutants inhibit fungal pathogen development and cause disease resistance, independent of cell death-associated defenses and involving impaired host susceptibility. Our results reveal that plant biotrophic and hemibiotrophic pathogens modulate the subcellular distribution of host phosphoinositides and recruit PI(4,5)P2 as a susceptibility factor for plant disease.
Collapse
Affiliation(s)
- Li Qin
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Zhuqing Zhou
- Laboratory of Cell Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qiang Li
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Chun Zhai
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan S7N 0X2, Canada
| | - Lijiang Liu
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, China
| | | | - Peng Gao
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Sharon A Kessler
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École normale supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, Lyon 69342, France
| | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Gary Peng
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan S7N 0X2, Canada
| | - Daoquan Xiang
- National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| |
Collapse
|
42
|
Li Y, Xia C, Wang M, Yin C, Chen X. Whole-genome sequencing of Puccinia striiformis f. sp. tritici mutant isolates identifies avirulence gene candidates. BMC Genomics 2020; 21:247. [PMID: 32197579 PMCID: PMC7085141 DOI: 10.1186/s12864-020-6677-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/13/2020] [Indexed: 12/30/2022] Open
Abstract
Background The stripe rust pathogen, Puccinia striiformis f. sp. tritici (Pst), threats world wheat production. Resistance to Pst is often overcome by pathogen virulence changes, but the mechanisms of variation are not clearly understood. To determine the role of mutation in Pst virulence changes, in previous studies 30 mutant isolates were developed from a least virulent isolate using ethyl methanesulfonate (EMS) mutagenesis and phenotyped for virulence changes. The progenitor isolate was sequenced, assembled and annotated for establishing a high-quality reference genome. In the present study, the 30 mutant isolates were sequenced and compared to the wide-type isolate to determine the genomic variation and identify candidates for avirulence (Avr) genes. Results The sequence reads of the 30 mutant isolates were mapped to the wild-type reference genome to identify genomic changes. After selecting EMS preferred mutations, 264,630 and 118,913 single nucleotide polymorphism (SNP) sites and 89,078 and 72,513 Indels (Insertion/deletion) were detected among the 30 mutant isolates compared to the primary scaffolds and haplotigs of the wild-type isolate, respectively. Deleterious variants including SNPs and Indels occurred in 1866 genes. Genome wide association analysis identified 754 genes associated with avirulence phenotypes. A total of 62 genes were found significantly associated to 16 avirulence genes after selection through six criteria for putative effectors and degree of association, including 48 genes encoding secreted proteins (SPs) and 14 non-SP genes but with high levels of association (P ≤ 0.001) to avirulence phenotypes. Eight of the SP genes were identified as avirulence-associated effectors with high-confidence as they met five or six criteria used to determine effectors. Conclusions Genome sequence comparison of the mutant isolates with the progenitor isolate unraveled a large number of mutation sites along the genome and identified high-confidence effector genes as candidates for avirulence genes in Pst. Since the avirulence gene candidates were identified from associated SNPs and Indels caused by artificial mutagenesis, these avirulence gene candidates are valuable resources for elucidating the mechanisms of the pathogen pathogenicity, and will be studied to determine their functions in the interactions between the wheat host and the Pst pathogen.
Collapse
Affiliation(s)
- Yuxiang Li
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Chongjing Xia
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Chuntao Yin
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA. .,USDA-ARS, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA, 99164-6430, USA.
| |
Collapse
|
43
|
Abstract
Among the thousands of rust species described, many are known for their devastating effects on their hosts, which include major agriculture crops and trees. Hence, for over a century, these basidiomycete pathogenic fungi have been researched and experimented with. However, due to their biotrophic nature, they are challenging organisms to work with and, needing their hosts for propagation, represent pathosystems that are not easily experimentally accessible. Indeed, efforts to perform genetics have been few and far apart for the rust fungi, though one study performed in the 1940s was famously instrumental in formulating the gene-for-gene hypothesis describing pathogen-host interactions. By taking full advantage of the molecular genetic tools developed in the 1980s, research on many plant pathogenic microbes thrived, yet similar work on the rusts remained very challenging though not without some successes. However, the genomics era brought real breakthrough research for the biotrophic fungi and with innovative experimentation and the use of heterologous systems, molecular genetic analyses over the last 2 decades have significantly advanced our insight into the function of many rust fungus genes and their role in the interaction with their hosts. This has allowed optimizing efforts for resistance breeding and the design and testing of various novel strategies to reduce the devastating diseases they cause.
Collapse
Affiliation(s)
- Guus Bakkeren
- Agriculture and Agri-Food Canada, Summerland Research & Development Centre, 4200 Hwy 97, Summerland, BC, Canada V0H 1Z0
| | - Les J Szabo
- U.S. Department of Agriculture-Agriculture Research Service, Cereal Disease Laboratory and University of Minnesota, 1551 Lindig Street, St. Paul, MN 55108, U.S.A
| |
Collapse
|
44
|
Prasad P, Savadi S, Bhardwaj SC, Gupta PK. The progress of leaf rust research in wheat. Fungal Biol 2020; 124:537-550. [PMID: 32448445 DOI: 10.1016/j.funbio.2020.02.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 02/09/2020] [Accepted: 02/19/2020] [Indexed: 01/25/2023]
Abstract
Leaf rust (also called brown rust) in wheat, caused by fungal pathogen Puccinia triticina Erikss. (Pt) is one of the major constraints in wheat production worldwide. Pt is widespread with diverse population structure and undergoes rapid evolution to produce new virulent races against resistant cultivars that are regularly developed to provide resistance against the prevailing races of the pathogen. Occasionally, the disease may also take the shape of an epidemic in some wheat-growing areas causing major economic losses. In the recent past, substantial progress has been made in characterizing the sources of leaf rust resistance including non-host resistance (NHR). Progress has also been made in elucidating the population biology of Pt and the mechanisms of wheat-Pt interaction. So far, ∼80 leaf rust resistance genes (Lr genes) have been identified and characterized; some of them have also been used for the development of resistant wheat cultivars. It has also been shown that a gene-for-gene relationship exists between individual wheat Lr genes and the corresponding Pt Avr genes so that no Lr gene can provide resistance unless the prevailing race of the pathogen carries the corresponding Avr gene. Several Lr genes have also been cloned and their products characterized, although no Avr gene corresponding a specific Lr gene has so far been identified. However, several candidate effectors for Pt have been identified and functionally characterized using genome-wide analyses, transcriptomics, RNA sequencing, bimolecular fluorescence complementation (BiFC), virus-induced gene silencing (VIGS), transient expression and other approaches. This review summarizes available information on different aspects of the pathogen Pt, genetics/genomics of leaf rust resistance in wheat including cloning and characterization of Lr genes and epigenetic regulation of disease resistance.
Collapse
Affiliation(s)
- Pramod Prasad
- Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India
| | - Siddanna Savadi
- ICAR-Directorate of Cashew Research, Puttur, Karnataka, 574202, India
| | - S C Bhardwaj
- Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India
| | - P K Gupta
- Department of Genetics and Plant Breeding, Ch.Charan Singh University, Meerut, 250004, India.
| |
Collapse
|
45
|
Hudzik C, Hou Y, Ma W, Axtell MJ. Exchange of Small Regulatory RNAs between Plants and Their Pests. PLANT PHYSIOLOGY 2020; 182:51-62. [PMID: 31636103 PMCID: PMC6945882 DOI: 10.1104/pp.19.00931] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/02/2019] [Indexed: 05/09/2023]
Abstract
Regulatory small RNAs are well known as antiviral agents, regulators of gene expression, and defenders of genome integrity in plants. Several studies over the last decade have also shown that some small RNAs are exchanged between plants and their pathogens and parasites. Naturally occurring trans-species small RNAs are used by host plants to silence mRNAs in pathogens. These gene-silencing events are thought to be detrimental to the pathogen and beneficial to the host. Conversely, trans-species small RNAs from pathogens and parasites are deployed to silence host mRNAs; these events are thought to be beneficial for the pests. The natural ability of plants to exchange small RNAs with invading eukaryotic organisms can be exploited to provide disease resistance. This review gives an overview of the current state of trans-species small RNA research in plants and discusses several outstanding questions for future research.
Collapse
Affiliation(s)
- Collin Hudzik
- Department of Biology, Intercollege Ph.D. Program in Plant Biology, and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Yingnan Hou
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, University of California, Riverside, California 92521
| | - Wenbo Ma
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, University of California, Riverside, California 92521
| | - Michael J Axtell
- Department of Biology, Intercollege Ph.D. Program in Plant Biology, and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
46
|
Xu Q, Tang C, Wang L, Zhao C, Kang Z, Wang X. Haustoria - arsenals during the interaction between wheat and Puccinia striiformis f. sp. tritici. MOLECULAR PLANT PATHOLOGY 2020; 21:83-94. [PMID: 31774224 PMCID: PMC6913192 DOI: 10.1111/mpp.12882] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
As an obligate parasite, Puccinia striiformis f. sp. tritici (Pst) forms haustoria to obtain nutrients from plant cells for development, and these structures are essential for pathogen survival. To better understand the contribution of haustoria to the interactions with the host plants, we isolated haustoria from susceptible wheat leaves infected with Pst race CYR31 and sequenced their transcriptome as well as those of urediospores and germ tubes, and compared the three transcriptomes. A total of 3524 up-regulated genes were obtained from haustoria, of which 73 genes were related to thiamine biosynthesis, glycolysis and lipid metabolic processes. Silencing seven of the genes reduced the growth and development of Pst in wheat. More interestingly, 1197 haustorial secreted proteins (HASPs) were detected in haustoria, accounting for 34% of the total proteins, indicating that these HASPs play important roles in haustorium-mediated pathogenic progression. Furthermore, 69 HASPs were able to suppress Bax-triggered programmed cell death in tobacco. Additionally, 46 HASPs significantly reduced callose deposition in wheat using the type III secretion system. This study identified a large number of effectors through transcriptome sequencing, and the results revealed components of metabolic pathways that impact the growth and colonization of the pathogen and indicate essential functions of haustoria in the growth and pathogenicity of Pst.
Collapse
Affiliation(s)
- Qiang Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Chunlei Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Likun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Congcong Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| |
Collapse
|
47
|
Wu W, Nemri A, Blackman LM, Catanzariti AM, Sperschneider J, Lawrence GJ, Dodds PN, Jones DA, Hardham AR. Flax rust infection transcriptomics reveals a transcriptional profile that may be indicative for rust Avr genes. PLoS One 2019; 14:e0226106. [PMID: 31830116 PMCID: PMC6907798 DOI: 10.1371/journal.pone.0226106] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/19/2019] [Indexed: 01/04/2023] Open
Abstract
Secreted effectors of fungal pathogens are essential elements for disease development. However, lack of sequence conservation among identified effectors has long been a problem for predicting effector complements in fungi. Here we have explored the expression characteristics of avirulence (Avr) genes and candidate effectors of the flax rust fungus, Melampsora lini. We performed transcriptome sequencing and real-time quantitative PCR (qPCR) on RNA extracted from ungerminated spores, germinated spores, isolated haustoria and flax seedlings inoculated with M. lini isolate CH5 during plant infection. Genes encoding two categories of M. lini proteins, namely Avr proteins and plant cell wall degrading enzymes (CWDEs), were investigated in detail. Analysis of the expression profiles of 623 genes encoding predicted secreted proteins in the M. lini transcriptome shows that the six known Avr genes (i.e. AvrM (avrM), AvrM14, AvrL2, AvrL567, AvrP123 (AvrP) and AvrP4) fall within a group of 64 similarly expressed genes that are induced in planta and show a peak of expression early in infection with a subsequent decline towards sporulation. Other genes within this group include two paralogues of AvrL2, an AvrL567 virulence allele, and a number of genes encoding putative effector proteins. By contrast, M. lini genes encoding CWDEs fall into different expression clusters with their distribution often unrelated to their catalytic activity or substrate targets. These results suggest that synthesis of M. lini Avr proteins may be regulated in a coordinated fashion and that the expression profiling-based analysis has significant predictive power for the identification of candidate Avr genes.
Collapse
Affiliation(s)
- Wenjie Wu
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australia
- * E-mail:
| | | | - Leila M. Blackman
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australia
| | - Ann-Maree Catanzariti
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australia
| | - Jana Sperschneider
- Biological Data Science Institute, the Australian National University, Canberra, Australia
| | | | | | - David A. Jones
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australia
| | - Adrienne R. Hardham
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australia
| |
Collapse
|
48
|
de Guillen K, Lorrain C, Tsan P, Barthe P, Petre B, Saveleva N, Rouhier N, Duplessis S, Padilla A, Hecker A. Structural genomics applied to the rust fungus Melampsora larici-populina reveals two candidate effector proteins adopting cystine knot and NTF2-like protein folds. Sci Rep 2019; 9:18084. [PMID: 31792250 PMCID: PMC6889267 DOI: 10.1038/s41598-019-53816-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/31/2019] [Indexed: 12/29/2022] Open
Abstract
Rust fungi are plant pathogens that secrete an arsenal of effector proteins interfering with plant functions and promoting parasitic infection. Effectors are often species-specific, evolve rapidly, and display low sequence similarities with known proteins. How rust fungal effectors function in host cells remains elusive, and biochemical and structural approaches have been scarcely used to tackle this question. In this study, we produced recombinant proteins of eleven candidate effectors of the leaf rust fungus Melampsora larici-populina in Escherichia coli. We successfully purified and solved the three-dimensional structure of two proteins, MLP124266 and MLP124017, using NMR spectroscopy. Although both MLP124266 and MLP124017 show no sequence similarity with known proteins, they exhibit structural similarities to knottins, which are disulfide-rich small proteins characterized by intricate disulfide bridges, and to nuclear transport factor 2-like proteins, which are molecular containers involved in a wide range of functions, respectively. Interestingly, such structural folds have not been reported so far in pathogen effectors, indicating that MLP124266 and MLP124017 may bear novel functions related to pathogenicity. Our findings show that sequence-unrelated effectors can adopt folds similar to known proteins, and encourage the use of biochemical and structural approaches to functionally characterize effector candidates.
Collapse
Affiliation(s)
- Karine de Guillen
- Centre de Biochimie Structurale (CBS), INSERM U1054, CNRS UMR 5048, Univ Montpellier, F-34090, Montpellier, France
| | - Cécile Lorrain
- Université de Lorraine, INRA, IAM, F-54000, Nancy, France
| | - Pascale Tsan
- Université de Lorraine, CNRS, CRM2, F-54000, Nancy, France
| | - Philippe Barthe
- Centre de Biochimie Structurale (CBS), INSERM U1054, CNRS UMR 5048, Univ Montpellier, F-34090, Montpellier, France
| | - Benjamin Petre
- Université de Lorraine, INRA, IAM, F-54000, Nancy, France
| | | | | | | | - André Padilla
- Centre de Biochimie Structurale (CBS), INSERM U1054, CNRS UMR 5048, Univ Montpellier, F-34090, Montpellier, France
| | - Arnaud Hecker
- Université de Lorraine, INRA, IAM, F-54000, Nancy, France.
| |
Collapse
|
49
|
van de Vossenberg BTLH, Prodhomme C, van Arkel G, van Gent-Pelzer MPE, Bergervoet M, Brankovics B, Przetakiewicz J, Visser RGF, van der Lee TAJ, Vossen JH. The Synchytrium endobioticum AvrSen1 Triggers a Hypersensitive Response in Sen1 Potatoes While Natural Variants Evade Detection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1536-1546. [PMID: 31246152 DOI: 10.1094/mpmi-05-19-0138-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Synchytrium endobioticum is an obligate biotrophic fungus of division Chytridiomycota. It causes potato wart disease, has a worldwide quarantine status and is included on the Health and Human Services and United States Department of Agriculture Select Agent list. S. endobioticum isolates are grouped in pathotypes based on their ability to evade host resistance in a set of differential potato varieties. Thus far, 39 pathotypes are reported. A single dominant gene (Sen1) governs pathotype 1 (D1) resistance and we anticipated that the underlying molecular model would involve a pathogen effector (AvrSen1) that is recognized by the host. The S. endobioticum-specific secretome of 14 isolates representing six different pathotypes was screened for effectors specifically present in pathotype 1 (D1) isolates but absent in others. We identified a single AvrSen1 candidate. Expression of this candidate in potato Sen1 plants showed a specific hypersensitive response (HR), which cosegregated with the Sen1 resistance in potato populations. No HR was obtained with truncated genes found in pathotypes that evaded recognition by Sen1. These findings established that our candidate gene was indeed Avrsen1. The S. endobioticum AvrSen1 is a single-copy gene and encodes a 376-amino-acid protein without predicted function or functional domains, and is the first effector gene identified in Chytridiomycota, an extremely diverse yet underrepresented basal lineage of fungi.
Collapse
Affiliation(s)
- Bart T L H van de Vossenberg
- Wageningen University and Research, Biointeractions and Plant Health, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Dutch National Plant Protection Organization, National Reference Centre, Geertjesweg 15, 6706EA, Wageningen, The Netherlands
| | | | | | - Marga P E van Gent-Pelzer
- Wageningen University and Research, Biointeractions and Plant Health, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | | | - Balázs Brankovics
- Wageningen University and Research, Biointeractions and Plant Health, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Jarosław Przetakiewicz
- Plant Breeding and Acclimatization Institute, National Research Institute, Radzików, 05-870 Błonie, Warsaw, Poland
| | | | - Theo A J van der Lee
- Wageningen University and Research, Biointeractions and Plant Health, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | | |
Collapse
|
50
|
De Novo Genome Assembly and Comparative Genomics of the Barley Leaf Rust Pathogen Puccinia hordei Identifies Candidates for Three Avirulence Genes. G3-GENES GENOMES GENETICS 2019; 9:3263-3271. [PMID: 31444296 PMCID: PMC6778787 DOI: 10.1534/g3.119.400450] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Puccinia hordei (Ph) is a damaging pathogen of barley throughout the world. Despite its importance, almost nothing is known about the genomics of this pathogen, and a reference genome is lacking. In this study, the first reference genome was assembled for an Australian isolate of Ph ("Ph560") using long-read SMRT sequencing. A total of 838 contigs were assembled, with a total size of 207 Mbp. This included both haplotype collapsed and separated regions, consistent with an estimated haploid genome size of about 150Mbp. An annotation pipeline that combined RNA-Seq of Ph-infected host tissues and homology to proteins from four other Puccinia species predicted 25,543 gene models of which 1,450 genes were classified as encoding secreted proteins based on the prediction of a signal peptide and no transmembrane domain. Genome resequencing using short-read technology was conducted for four additional Australian strains, Ph612, Ph626, Ph608 and Ph584, which are considered to be simple mutational derivatives of Ph560 with added virulence to one or two of three barley leaf rust resistance genes (viz. Rph3, Rph13 and Rph19). To identify candidate genes for the corresponding avirulence genes AvrRph3, AvrRph13 and AvrRph19, genetic variation in predicted secreted protein genes between the strains was correlated to the virulence profiles of each, identifying 35, 29 and 46 candidates for AvrRph13, AvrRph3 and AvrRph19, respectively. The identification of these candidate genes provides a strong foundation for future efforts to isolate these three avirulence genes, investigate their biological properties, and develop new diagnostic tests for monitoring pathogen virulence.
Collapse
|