1
|
Lauterbach M, Bräutigam A, Clayton H, Saladié M, Rolland V, Macfarlane TD, Weber APM, Ludwig M. Leaf transcriptomes from C3, C3-C4 intermediate, and C4Neurachne species give insights into C4 photosynthesis evolution. PLANT PHYSIOLOGY 2024; 197:kiae424. [PMID: 39149860 DOI: 10.1093/plphys/kiae424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Abstract
The C4 photosynthetic pathway is hypothesized to have evolved from the ancestral C3 pathway through progressive changes in leaf anatomy and biochemistry with extant C3-C4 photosynthetic intermediate species representing phenotypes between species demonstrating full C3 and full C4 states. The Australian endemic genus Neurachne is the only known grass group that contains distinct, closely related species that carry out C3, C3-C4 intermediate, or C4 photosynthesis. To explore and understand the molecular mechanisms underlying C4 photosynthesis evolution in this genus, leaf transcriptomes were generated from two C3, three photosynthetic intermediate (proto-Kranz, C2-like, and C2), and two C4Neurachne species. The data were used to reconstruct phylogenetic relationships in Neurachne, which confirmed two independent C4 origins in the genus. Relative transcript abundances substantiated the photosynthetic phenotypes of individual species and highlighted transcriptional investment differences between species, including between the two C4 species. The data also revealed proteins potentially involved in C4 cycle intermediate transport and identified molecular mechanisms responsible for the evolution of C4-associated proteins in the genus.
Collapse
Affiliation(s)
- Maximilian Lauterbach
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Andrea Bräutigam
- Faculty of Biology, Bielefeld University, Bielefeld 33501, Germany
| | - Harmony Clayton
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Montserrat Saladié
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Vivien Rolland
- Commonwealth Scientific and Industrial Research Organisation, Black Mountain Laboratories, Canberra, ACT 2601, Australia
| | - Terry D Macfarlane
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
- Department of Biodiversity, Conservation and Attractions, Biodiversity and Conservation Science Division, Western Australian Herbarium, Perth, WA 6152, Australia
| | - Andreas P M Weber
- Institute for Plant Biochemistry, Heinrich-Heine-University, Duesseldorf 40225, Germany
| | - Martha Ludwig
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
2
|
Zhang Y, Liu Y, Li H, Sun T, Xu M, Xu P. Dynamic Expressions of Yellow Stripe-Like (YSL) Genes During Pod Development Shed Light on Associations with Iron Distribution in Phaseolus vulgaris. Biochem Genet 2024; 62:4817-4836. [PMID: 38367128 DOI: 10.1007/s10528-023-10658-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/29/2023] [Indexed: 02/19/2024]
Abstract
The global prevalence of iron deficiency-induced "hidden hunger" highlights a critical health concern, underscoring the pressing need to improve iron nutrition through safe and efficient means, such as increasing iron intake from plant-based foods. Yellow Stripe-Like (YSL) genes play a crucial role in long-distance iron transport between source and sink tissues in plants. Here, we report on the analysis of YSL family genes in the common bean (Phaseolus vulgaris L.), an iron-rich legume crop. We identified 9 YSL genes in the common bean genome using BLAST and HMM methods. Gene duplication analysis revealed that PvYSL7a and PvYSL7b originated through tandem duplication events. Structural analysis noted an absence of conservative motifs in PvYSL3b and PvYSL7a, which led to distinct predicted 3D protein structures. Leveraging publicly available RNA-seq data from developing bean pods, the expression patterns of PvYSL genes alongside pod and seed development were analyzed. Notably, PvYSL7a and PvYSL7b, as well as PvYSL1a and PvYSL1b, exhibited diverged expression patterns in seeds, signifying their functional divergence in this tissue. Moreover, PvYSL3a and PvYSL3b exhibited divergent expression patterns in both pod walls and seeds during pod development, underscoring their distinct roles in facilitating iron transportation between pods and seeds. This study provides valuable insights into the gene regulatory basis of iron accumulation in bean pods and seeds.
Collapse
Affiliation(s)
- Yihan Zhang
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Yunxiu Liu
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Hailan Li
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Ting Sun
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Min Xu
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Pei Xu
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, People's Republic of China.
| |
Collapse
|
3
|
Jeffers TL, Purvine SO, Nicora CD, McCombs R, Upadhyaya S, Stroumza A, Whang K, Gallaher SD, Dohnalkova A, Merchant SS, Lipton M, Niyogi KK, Roth MS. Iron rescues glucose-mediated photosynthesis repression during lipid accumulation in the green alga Chromochloris zofingiensis. Nat Commun 2024; 15:6046. [PMID: 39025848 PMCID: PMC11258321 DOI: 10.1038/s41467-024-50170-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Energy status and nutrients regulate photosynthetic protein expression. The unicellular green alga Chromochloris zofingiensis switches off photosynthesis in the presence of exogenous glucose (+Glc) in a process that depends on hexokinase (HXK1). Here, we show that this response requires that cells lack sufficient iron (-Fe). Cells grown in -Fe+Glc accumulate triacylglycerol (TAG) while losing photosynthesis and thylakoid membranes. However, cells with an iron supplement (+Fe+Glc) maintain photosynthesis and thylakoids while still accumulating TAG. Proteomic analysis shows that known photosynthetic proteins are most depleted in heterotrophy, alongside hundreds of uncharacterized, conserved proteins. Photosynthesis repression is associated with enzyme and transporter regulation that redirects iron resources to (a) respiratory instead of photosynthetic complexes and (b) a ferredoxin-dependent desaturase pathway supporting TAG accumulation rather than thylakoid lipid synthesis. Combining insights from diverse organisms from green algae to vascular plants, we show how iron and trophic constraints on metabolism aid gene discovery for photosynthesis and biofuel production.
Collapse
Affiliation(s)
- Tim L Jeffers
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Samuel O Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Ryan McCombs
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Shivani Upadhyaya
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Adrien Stroumza
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Ken Whang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Sean D Gallaher
- UCLA DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA, 90095, USA
- Quantitative Biosciences Institute, University of California, Berkeley, CA, 94720, USA
| | - Alice Dohnalkova
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Sabeeha S Merchant
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Quantitative Biosciences Institute, University of California, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mary Lipton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Melissa S Roth
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
4
|
Huang S, Yamaji N, Ma JF. Metal Transport Systems in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:1-25. [PMID: 38382903 DOI: 10.1146/annurev-arplant-062923-021424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Plants take up metals, including essential micronutrients [iron (Fe), copper (Cu), zinc (Zn), and manganese (Mn)] and the toxic heavy metal cadmium (Cd), from soil and accumulate these metals in their edible parts, which are direct and indirect intake sources for humans. Multiple transporters belonging to different families are required to transport a metal from the soil to different organs and tissues, but only a few of them have been fully functionally characterized. The transport systems (the transporters required for uptake, translocation, distribution, redistribution, and their regulation) differ with metals and plant species, depending on the physiological roles, requirements of each metal, and anatomies of different organs and tissues. To maintain metal homeostasis in response to spatiotemporal fluctuations of metals in soil, plants have developed sophisticated and tightly regulated mechanisms through the regulation of transporters at the transcriptional and/or posttranscriptional levels. The manipulation of some transporters has succeeded in generating crops rich in essential metals but low in Cd accumulation. A better understanding of metal transport systems will contribute to better and safer crop production.
Collapse
Affiliation(s)
- Sheng Huang
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan; , ,
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan; , ,
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan; , ,
| |
Collapse
|
5
|
Huo Y, Cheng M, Tang M, Zhang M, Yang X, Zheng Y, Zhao T, He P, Yu J. GhCTSF1, a short PPR protein with a conserved role in chloroplast development and photosynthesis, participates in intron splicing of rpoC1 and ycf3-2 transcripts in cotton. PLANT COMMUNICATIONS 2024; 5:100858. [PMID: 38444162 PMCID: PMC11211521 DOI: 10.1016/j.xplc.2024.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/07/2024]
Abstract
Cotton is one of the most important textile fibers worldwide. As crucial agronomic traits, leaves play an essential role in the growth, disease resistance, fiber quality, and yield of cotton plants. Pentatricopeptide repeat (PPR) proteins are a large family of nuclear-encoded proteins involved in organellar or nuclear RNA metabolism. Using a virus-induced gene silencing assay, we found that cotton plants displayed variegated yellow leaf phenotypes with decreased chlorophyll content when expression of the PPR gene GhCTSF1 was silenced. GhCTSF1 encodes a chloroplast-localized protein that contains only two PPR motifs. Disruption of GhCTSF1 substantially reduces the splicing efficiency of rpoC1 intron 1 and ycf3 intron 2. Loss of function of the GhCTSF1 ortholog EMB1417 causes splicing defects in rpoC1 and ycf3-2, leading to impaired chloroplast structure and decreased photosynthetic rates in Arabidopsis. We also found that GhCTSF1 interacts with two splicing factors, GhCRS2 and GhWTF1. Defects in GhCRS2 and GhWTF1 severely affect intron splicing of rpoC1 and ycf3-2 in cotton, leading to defects in chloroplast development and a reduction in photosynthesis. Our results suggest that GhCTSF1 is specifically required for splicing rpoC1 and ycf3-2 in cooperation with GhCRS2 and GhWTF1.
Collapse
Affiliation(s)
- Yuzhu Huo
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Mengxue Cheng
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Meiju Tang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Meng Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaofan Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yating Zheng
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Tong Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Peng He
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Jianing Yu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
6
|
Zou Y, Xu E, Fan Y, Zhang P, Zhang W, Chen X. OsPML2, a chloroplast envelope localized transporter is involved in manganese homeostasis in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108054. [PMID: 37757723 DOI: 10.1016/j.plaphy.2023.108054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/17/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Manganese (Mn), a vital element, plays crucial roles in various biochemical and physiological processes by serving as an essential cofactor for numerous enzymes and acting as a catalytically active metal within biological clusters. In this study, we investigate the role of PHOTOSYNTHESIS-AFFECTED MUTANT 71-LIKE 2 (OsPML2), a member of the UNCHARACTERIZED PROTEIN FAMILY 0016 (UPF0016) family, in regulating Mn homeostasis in rice. OsPML2 was highly expressed in young leaves, ovaries, and stigmas. Cross sections from young leaves revealed that OsPML2 was mainly expressed in the phloem region and mesophyll cells. Furthermore, heterologous expression of OsPML2 restored the growth of Mn uptake-defective yeast strain Δsmf1 under Mn-limited conditions. Subcellular localization analysis demonstrated that OsPML2 was specifically localized in the chloroplast envelope. Knockdown of OsPML2 resulted in reduced chloroplast Mn content, significantly affecting plant growth under Mn deficiency. Furthermore, analysis of isolated thylakoid membranes using blue native gels indicated a compromised accumulation of photosystem II (PSII) complexes in OsPML2 knockdown lines. Additionally, grain yield, grain length, and width were significantly reduced in OsPML2 knockdown plants. Collectively, our findings provide insights into the transport function of OsPML2, which facilitates Mn transport from the cytosol to chloroplast stroma and influences the accumulation of PSII complexes in rice.
Collapse
Affiliation(s)
- Yu Zou
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Ending Xu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China; Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Ye Fan
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Peijiang Zhang
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Wei Zhang
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China.
| | - Xi Chen
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
7
|
Nishimura T, Mori S, Shikata H, Nakamura M, Hashiguchi Y, Abe Y, Hagihara T, Yoshikawa HY, Toyota M, Higaki T, Morita MT. Cell polarity linked to gravity sensing is generated by LZY translocation from statoliths to the plasma membrane. Science 2023; 381:1006-1010. [PMID: 37561884 DOI: 10.1126/science.adh9978] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
Organisms have evolved under gravitational force, and many sense the direction of gravity by means of statoliths in specialized cells. In flowering plants, starch-accumulating plastids, known as amyloplasts, act as statoliths to facilitate downstream gravitropism. The gravity-sensing mechanism has long been considered a mechanosensing process by which amyloplasts transmit forces to intracellular structures, but the molecular mechanism underlying this has not been elucidated. We show here that LAZY1-LIKE (LZY) family proteins involved in statocyte gravity signaling associate with amyloplasts and the proximal plasma membrane. This results in polar localization according to the direction of gravity. We propose a gravity-sensing mechanism by which LZY translocation to the plasma membrane signals the direction of gravity by transmitting information on the position of amyloplasts.
Collapse
Affiliation(s)
- Takeshi Nishimura
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Course for Basic Biology, The Graduate Institute for Advanced Studies, SOKENDAI, Hayama 240-0115, Japan
| | - Shogo Mori
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Hiromasa Shikata
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Course for Basic Biology, The Graduate Institute for Advanced Studies, SOKENDAI, Hayama 240-0115, Japan
| | - Moritaka Nakamura
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Yasuko Hashiguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshinori Abe
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama 338-8570, Japan
| | - Takuma Hagihara
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama 338-8570, Japan
| | | | - Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama 338-8570, Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), Suntory Foundation for Life Sciences, Kyoto 619-0284, Japan
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | - Takumi Higaki
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Miyo Terao Morita
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Course for Basic Biology, The Graduate Institute for Advanced Studies, SOKENDAI, Hayama 240-0115, Japan
| |
Collapse
|
8
|
Müller B. Iron transport mechanisms and their evolution focusing on chloroplasts. JOURNAL OF PLANT PHYSIOLOGY 2023; 288:154059. [PMID: 37586271 DOI: 10.1016/j.jplph.2023.154059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Iron (Fe) is an essential element for photosynthetic organisms, required for several vital biological functions. Photosynthesis, which takes place in the chloroplasts of higher plants, is the major Fe consumer. Although the components of the root Fe uptake system in dicotyledonous and monocotyledonous plants have been extensively studied, the Fe transport mechanisms of chloroplasts in these two groups of plants have received little attention. This review focuses on the comparative analysis of Fe transport processes in the evolutionary ancestors of chloroplasts (cyanobacteria) with the processes in embryophytes and green algae (Viridiplantae). The aim is to summarize how chloroplasts are integrated into cellular Fe homeostasis and how Fe transporters and Fe transport mechanisms have been modified by evolution.
Collapse
Affiliation(s)
- Brigitta Müller
- Department of Plant Physiology and Molecular Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary.
| |
Collapse
|
9
|
Sági-Kazár M, Sárvári É, Cseh B, Illés L, May Z, Hegedűs C, Barócsi A, Lenk S, Solymosi K, Solti Á. Iron uptake of etioplasts is independent from photosynthesis but applies the reduction-based strategy. FRONTIERS IN PLANT SCIENCE 2023; 14:1227811. [PMID: 37636109 PMCID: PMC10457162 DOI: 10.3389/fpls.2023.1227811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023]
Abstract
Introduction Iron (Fe) is one of themost important cofactors in the photosynthetic apparatus, and its uptake by chloroplasts has also been associated with the operation of the photosynthetic electron transport chain during reduction-based plastidial Fe uptake. Therefore, plastidial Fe uptake was considered not to be operational in the absence of the photosynthetic activity. Nevertheless, Fe is also required for enzymatic functions unrelated to photosynthesis, highlighting the importance of Fe acquisition by non-photosynthetic plastids. Yet, it remains unclear how these plastids acquire Fe in the absence of photosynthetic function. Furthermore, plastids of etiolated tissues should already possess the ability to acquire Fe, since the biosynthesis of thylakoid membrane complexes requires a massive amount of readily available Fe. Thus, we aimed to investigate whether the reduction-based plastidial Fe uptake solely relies on the functioning photosynthetic apparatus. Methods In our combined structure, iron content and transcript amount analysis studies, we used Savoy cabbage plant as a model, which develops natural etiolation in the inner leaves of the heads due to the shading of the outer leaf layers. Results Foliar and plastidial Fe content of Savoy cabbage leaves decreased towards the inner leaf layers. The leaves of the innermost leaf layers proved to be etiolated, containing etioplasts that lacked the photosynthetic machinery and thus were photosynthetically inactive. However, we discovered that these etioplasts contained, and were able to take up, Fe. Although the relative transcript abundance of genes associated with plastidial Fe uptake and homeostasis decreased towards the inner leaf layers, both ferric chelate reductase FRO7 transcripts and activity were detected in the innermost leaf layer. Additionally, a significant NADP(H) pool and NAD(P)H dehydrogenase activity was detected in the etioplasts of the innermost leaf layer, indicating the presence of the reducing capacity that likely supports the reduction-based Fe uptake of etioplasts. Discussion Based on these findings, the reduction-based plastidial Fe acquisition should not be considered exclusively dependent on the photosynthetic functions.
Collapse
Affiliation(s)
- Máté Sági-Kazár
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Sárvári
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Barnabás Cseh
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Levente Illés
- Department of Atomic Physics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Zoltán May
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Csaba Hegedűs
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Attila Barócsi
- Department of Atomic Physics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Sándor Lenk
- Department of Atomic Physics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
10
|
Mai HJ, Baby D, Bauer P. Black sheep, dark horses, and colorful dogs: a review on the current state of the Gene Ontology with respect to iron homeostasis in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1204723. [PMID: 37554559 PMCID: PMC10406446 DOI: 10.3389/fpls.2023.1204723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/04/2023] [Indexed: 08/10/2023]
Abstract
Cellular homeostasis of the micronutrient iron is highly regulated in plants and responsive to nutrition, stress, and developmental signals. Genes for iron management encode metal and other transporters, enzymes synthesizing chelators and reducing substances, transcription factors, and several types of regulators. In transcriptome or proteome datasets, such iron homeostasis-related genes are frequently found to be differentially regulated. A common method to detect whether a specific cellular pathway is affected in the transcriptome data set is to perform Gene Ontology (GO) enrichment analysis. Hence, the GO database is a widely used resource for annotating genes and identifying enriched biological pathways in Arabidopsis thaliana. However, iron homeostasis-related GO terms do not consistently reflect gene associations and levels of evidence in iron homeostasis. Some genes in the existing iron homeostasis GO terms lack direct evidence of involvement in iron homeostasis. In other aspects, the existing GO terms for iron homeostasis are incomplete and do not reflect the known biological functions associated with iron homeostasis. This can lead to potential errors in the automatic annotation and interpretation of GO term enrichment analyses. We suggest that applicable evidence codes be used to add missing genes and their respective ortholog/paralog groups to make the iron homeostasis-related GO terms more complete and reliable. There is a high likelihood of finding new iron homeostasis-relevant members in gene groups and families like the ZIP, ZIF, ZIFL, MTP, OPT, MATE, ABCG, PDR, HMA, and HMP. Hence, we compiled comprehensive lists of genes involved in iron homeostasis that can be used for custom enrichment analysis in transcriptomic or proteomic studies, including genes with direct experimental evidence, those regulated by central transcription factors, and missing members of small gene families or ortholog/paralog groups. As we provide gene annotation and literature alongside, the gene lists can serve multiple computational approaches. In summary, these gene lists provide a valuable resource for researchers studying iron homeostasis in A. thaliana, while they also emphasize the importance of improving the accuracy and comprehensiveness of the Gene Ontology.
Collapse
Affiliation(s)
- Hans-Jörg Mai
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
| | - Dibin Baby
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
- Heinrich Heine University, Center of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| |
Collapse
|
11
|
Tyagi S, Sharma Y, Sharma A, Pandey A, Singh K, Upadhyay SK. Expression of TaNCL2-A ameliorates cadmium toxicity by increasing calcium and enzymatic antioxidants activities in arabidopsis. CHEMOSPHERE 2023; 329:138636. [PMID: 37040835 DOI: 10.1016/j.chemosphere.2023.138636] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Cadmium (Cd) is a heavy metal that occurs naturally in the environment and is toxic to both animals and plants. The impact of Cd toxicity is shown to be reduced by the exogenous application of calcium (Ca) in crop plants. The sodium/calcium exchanger-like (NCL) protein is involved in Ca enrichment in the cytoplasm by transporting it from the vacuole in the exchange of cytosolic sodium (Na). However, it has not been utilized to ameliorate the Cd toxicity, to date. An elevated expression of TaNCL2-A gene in the root and shoot tissues of bread wheat seedlings, and a higher growth rate of recombinant yeast cells, suggested its role in Cd stress response. The TaNCL2-A expressing transgenic Arabidopsis lines exhibited significant Cd tolerance with increased Ca (∼10-fold) accumulation. The proline content and antioxidant enzymes activities were increased while oxidative stress-related molecules such as H2O2 and MDA were reduced in the transgenic lines. In addition, the growth and yield parameters of transgenic lines such as seed germination rate, root length, leaf biomass, leaf area index, rosette diameter, leaf length and width, and silique count, along with various physiological indicators like chlorophyll, carotenoid, and relative water contents were also improved in comparison to the control plants. Further, the transgenic lines exhibited significant salinity and osmotic stress tolerance, as well. Taken together, these results suggested that the TaNCL2-A could mitigate Cd toxicity along with salinity and osmotic stress. This gene may also be utilized for phytoremediation and Cd sequestration in future studies.
Collapse
Affiliation(s)
- Shivi Tyagi
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Yashraaj Sharma
- Department of Botany, Panjab University, Chandigarh, 160014, India; Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Alok Sharma
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, New Delhi, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | | |
Collapse
|
12
|
Yang B, Xu C, Cheng Y, Jia T, Hu X. Research progress on the biosynthesis and delivery of iron-sulfur clusters in the plastid. PLANT CELL REPORTS 2023:10.1007/s00299-023-03024-7. [PMID: 37160773 DOI: 10.1007/s00299-023-03024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
Iron-sulfur (Fe-S) clusters are ancient protein cofactors ubiquitously exist in organisms. They are involved in many important life processes. Plastids are semi-autonomous organelles with a double membrane and it is believed to originate from a cyanobacterial endosymbiont. By learning form the research in cyanobacteria, a Fe-S cluster biosynthesis and delivery pathway has been proposed and partly demonstrated in plastids, including iron uptake, sulfur mobilization, Fe-S cluster assembly and delivery. Fe-S clusters are essential for the downstream Fe-S proteins to perform their normal biological functions. Because of the importance of Fe-S proteins in plastid, researchers have made a lot of research progress on this pathway in recent years. This review summarizes the detail research progress made in recent years. In addition, the scientific problems remained in this pathway are also discussed.
Collapse
Affiliation(s)
- Bing Yang
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Chenyun Xu
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yuting Cheng
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Ting Jia
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Xueyun Hu
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
13
|
Christian R, Labbancz J, Usadel B, Dhingra A. Understanding protein import in diverse non-green plastids. Front Genet 2023; 14:969931. [PMID: 37007964 PMCID: PMC10063809 DOI: 10.3389/fgene.2023.969931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
The spectacular diversity of plastids in non-green organs such as flowers, fruits, roots, tubers, and senescing leaves represents a Universe of metabolic processes in higher plants that remain to be completely characterized. The endosymbiosis of the plastid and the subsequent export of the ancestral cyanobacterial genome to the nuclear genome, and adaptation of the plants to all types of environments has resulted in the emergence of diverse and a highly orchestrated metabolism across the plant kingdom that is entirely reliant on a complex protein import and translocation system. The TOC and TIC translocons, critical for importing nuclear-encoded proteins into the plastid stroma, remain poorly resolved, especially in the case of TIC. From the stroma, three core pathways (cpTat, cpSec, and cpSRP) may localize imported proteins to the thylakoid. Non-canonical routes only utilizing TOC also exist for the insertion of many inner and outer membrane proteins, or in the case of some modified proteins, a vesicular import route. Understanding this complex protein import system is further compounded by the highly heterogeneous nature of transit peptides, and the varying transit peptide specificity of plastids depending on species and the developmental and trophic stage of the plant organs. Computational tools provide an increasingly sophisticated means of predicting protein import into highly diverse non-green plastids across higher plants, which need to be validated using proteomics and metabolic approaches. The myriad plastid functions enable higher plants to interact and respond to all kinds of environments. Unraveling the diversity of non-green plastid functions across the higher plants has the potential to provide knowledge that will help in developing climate resilient crops.
Collapse
Affiliation(s)
- Ryan Christian
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - June Labbancz
- Department of Horticulture, Washington State University, Pullman, WA, United States
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | | | - Amit Dhingra
- Department of Horticulture, Washington State University, Pullman, WA, United States
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- *Correspondence: Amit Dhingra,
| |
Collapse
|
14
|
Identification and Functional Analysis of Two Mitoferrins, CsMIT1 and CsMIT2, Participating in Iron Homeostasis in Cucumber. Int J Mol Sci 2023; 24:ijms24055050. [PMID: 36902490 PMCID: PMC10003640 DOI: 10.3390/ijms24055050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Mitochondria are one of the major iron sinks in plant cells. Mitochondrial iron accumulation involves the action of ferric reductase oxidases (FRO) and carriers located in the inner mitochondrial membrane. It has been suggested that among these transporters, mitoferrins (mitochondrial iron transporters, MITs) belonging to the mitochondrial carrier family (MCF) function as mitochondrial iron importers. In this study, two cucumber proteins, CsMIT1 and CsMIT2, with high homology to Arabidopsis, rice and yeast MITs were identified and characterized. CsMIT1 and CsMIT2 were expressed in all organs of the two-week-old seedlings. Under Fe-limited conditions as well as Fe excess, the mRNA levels of CsMIT1 and CsMIT2 were altered, suggesting their regulation by iron availability. Analyses using Arabidopsis protoplasts confirmed the mitochondrial localization of cucumber mitoferrins. Expression of CsMIT1 and CsMIT2 restored the growth of the Δmrs3Δmrs4 mutant (defective in mitochondrial Fe transport), but not in mutants sensitive to other heavy metals. Moreover, the altered cytosolic and mitochondrial Fe concentrations, observed in the Δmrs3Δmrs4 strain, were recovered almost to the levels of WT yeast by expressing CsMIT1 or CsMIT2. These results indicate that cucumber proteins are involved in the iron transport from the cytoplasm to the mitochondria.
Collapse
|
15
|
Vargas J, Gómez I, Vidal EA, Lee CP, Millar AH, Jordana X, Roschzttardtz H. Growth Developmental Defects of Mitochondrial Iron Transporter 1 and 2 Mutants in Arabidopsis in Iron Sufficient Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:1176. [PMID: 36904036 PMCID: PMC10007191 DOI: 10.3390/plants12051176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/25/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Iron is the most abundant micronutrient in plant mitochondria, and it has a crucial role in biochemical reactions involving electron transfer. It has been described in Oryza sativa that Mitochondrial Iron Transporter (MIT) is an essential gene and that knockdown mutant rice plants have a decreased amount of iron in their mitochondria, strongly suggesting that OsMIT is involved in mitochondrial iron uptake. In Arabidopsis thaliana, two genes encode MIT homologues. In this study, we analyzed different AtMIT1 and AtMIT2 mutant alleles, and no phenotypic defects were observed in individual mutant plants grown in normal conditions, confirming that neither AtMIT1 nor AtMIT2 are individually essential. When we generated crosses between the Atmit1 and Atmit2 alleles, we were able to isolate homozygous double mutant plants. Interestingly, homozygous double mutant plants were obtained only when mutant alleles of Atmit2 with the T-DNA insertion in the intron region were used for crossings, and in these cases, a correctly spliced AtMIT2 mRNA was generated, although at a low level. Atmit1 Atmit2 double homozygous mutant plants, knockout for AtMIT1 and knockdown for AtMIT2, were grown and characterized in iron-sufficient conditions. Pleiotropic developmental defects were observed, including abnormal seeds, an increased number of cotyledons, a slow growth rate, pinoid stems, defects in flower structures, and reduced seed set. A RNA-Seq study was performed, and we could identify more than 760 genes differentially expressed in Atmit1 Atmit2. Our results show that Atmit1 Atmit2 double homozygous mutant plants misregulate genes involved in iron transport, coumarin metabolism, hormone metabolism, root development, and stress-related response. The phenotypes observed, such as pinoid stems and fused cotyledons, in Atmit1 Atmit2 double homozygous mutant plants may suggest defects in auxin homeostasis. Unexpectedly, we observed a possible phenomenon of T-DNA suppression in the next generation of Atmit1 Atmit2 double homozygous mutant plants, correlating with increased splicing of the AtMIT2 intron containing the T-DNA and the suppression of the phenotypes observed in the first generation of the double mutant plants. In these plants with a suppressed phenotype, no differences were observed in the oxygen consumption rate of isolated mitochondria; however, the molecular analysis of gene expression markers, AOX1a, UPOX, and MSM1, for mitochondrial and oxidative stress showed that these plants express a degree of mitochondrial perturbation. Finally, we could establish by a targeted proteomic analysis that a protein level of 30% of MIT2, in the absence of MIT1, is enough for normal plant growth under iron-sufficient conditions.
Collapse
Affiliation(s)
- Joaquín Vargas
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Isabel Gómez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Elena A. Vidal
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Chun Pong Lee
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Bayliss Building M316, Crawley, WA 6009, Australia
| | - A. Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Bayliss Building M316, Crawley, WA 6009, Australia
| | - Xavier Jordana
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Hannetz Roschzttardtz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| |
Collapse
|
16
|
Yue X, Ke X, Shi Y, Li Y, Zhang C, Wang Y, Hou X. Chloroplast inner envelope protein FtsH11 is involved in the adjustment of assembly of chloroplast ATP synthase under heat stress. PLANT, CELL & ENVIRONMENT 2023; 46:850-864. [PMID: 36573466 DOI: 10.1111/pce.14525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The maintenance of a proton gradient across the thylakoid membrane is an integral aspect of photosynthesis that is mainly established by the splitting of water molecules in photosystem II and plastoquinol oxidation at the cytochrome complex, and it is necessary for the generation of ATP in the last step of photophosphorylation. Although environmental stresses, such as high temperatures, are known to disrupt this fundamental process, only a few studies have explored the molecular mechanisms underlying proton gradient regulation during stress. The present study identified a heat-sensitive mutant that displays aberrant photosynthesis at high temperatures. This mutation was mapped to AtFtsH11, which encodes an ATP-dependent AAA-family metalloprotease. We showed that AtFtsH11 localizes to the chloroplast inner envelope membrane and is capable of degrading the ATP synthase assembly factor BFA3 under heat stress. We posit that this function limits the amount of ATP synthase integrated into the thylakoid membrane to regulate proton efflux from the lumen to the stroma. Our data also suggest that AtFtsH11 is critical in stabilizing photosystem II and cytochrome complexes at high temperatures, and additional studies can further elucidate the specific molecular functions of this critical regulator of photosynthetic thermotolerance.
Collapse
Affiliation(s)
- Xiaohong Yue
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiangsheng Ke
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yafei Shi
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chenhao Zhang
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yetao Wang
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xin Hou
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Kermeur N, Pédrot M, Cabello-Hurtado F. Iron Availability and Homeostasis in Plants: A Review of Responses, Adaptive Mechanisms, and Signaling. Methods Mol Biol 2023; 2642:49-81. [PMID: 36944872 DOI: 10.1007/978-1-0716-3044-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Iron is an essential element for all living organisms, playing a major role in plant biochemistry as a redox catalyst based on iron redox properties. Iron is the fourth most abundant element of the Earth's crust, but its uptake by plants is complex because it is often in insoluble forms that are not easily accessible for plants to use. The physical and chemical speciation of iron, as well as rhizosphere activity, are key factors controlling the bioavailability of Fe. Iron can be under reduced (Fe2+) or oxidized (Fe3+) ionic forms, adsorbed onto mineral surfaces, forming complexes with organic molecules, precipitated to form poorly crystalline hydroxides to highly crystalline iron oxides, or included in crystalline Fe-rich mineral phases. Plants must thus adapt to a complex and changing iron environment, and their response is finely regulated by multiple signaling pathways initiated by a diversity of stimulus perceptions. Higher plants possess two separate strategies to uptake iron from rhizosphere soil: the chelation strategy and the reduction strategy in grass and non-grass plants, respectively. Molecular actors involved in iron uptake and mobilization through the plant have been characterized for both strategies. All these processes that contribute to iron homeostasis in plants are highly regulated in response to iron availability by downstream signaling responses, some of which are characteristic signaling signatures of iron dynamics, while others are shared with other environmental stimuli. Recent research has thus revealed key transcription factors, cis-acting elements, post-translational regulators, and other molecular mechanisms controlling these genes or their encoded proteins in response to iron availability. In addition, the most recent research is increasingly highlighting the crosstalk between iron homeostasis and nutrient response regulation. These regulatory processes help to avoid plant iron concentrations building up to potential cell functioning disruptions that could adversely affect plant fitness. Indeed, when iron is in excess in the plant, it can lead to the production and accumulation of dangerous reactive oxygen species and free radicals (H2O2, HO•, O2•-, HO•2) that can cause considerable damages to most cellular components. To cope with iron oxidative stress, plants have developed defense systems involving the complementary action of antioxidant enzymes and molecular antioxidants, safe iron-storage mechanisms, and appropriate morphological adaptations.
Collapse
Affiliation(s)
- Nolenn Kermeur
- University of Rennes, CNRS, Ecobio, UMR 6553, Rennes, France
- University of Rennes, CNRS, Géosciences Rennes, UMR 6118, Rennes, France
| | - Mathieu Pédrot
- University of Rennes, CNRS, Géosciences Rennes, UMR 6118, Rennes, France
| | | |
Collapse
|
18
|
Wu X, Wang T, Song H, Jia Y, Ma Q, Tao M, Zhu X, Cao S. The transcription factor WRKY12 negatively regulates iron entry into seeds in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:415-426. [PMID: 36223275 DOI: 10.1093/jxb/erac404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Yellow Stripe 1-Like 1 (YSL1) and Yellow Stripe 1-Like 3 (YSL3) transport metal-nicotianamine (NA) complexes to leaves, pollen, and developing seeds and play an important role in regulating iron (Fe) accumulation during the seed development and maturation stages; however, how their gene transcript levels are regulated remains unknown. In this study, we used yeast one-hybrid screening to identify a transcription factor, WRKY12, in Arabidopsis that directly regulates the transcription levels of YSL1 and YSL3 genes. WRKY12 has opposite expression patterns to YSL1 and YSL3. wrky12 mutants are tolerant to Fe deficiency, whereas WRKY12 overexpression lines are sensitive to Fe deficiency. During the development and maturation of seeds, WRKY12 can directly bind to the promoters of YSL1 and YSL3 and inhibit their expression. Genetic analysis showed that WRKY12 functions upstream of YSL1 and YSL3 in Fe intake during the seed development and maturation stages. Together, our results suggest that WRKY12 negatively regulates the iron intake in plant seeds by inhibiting the expression of YSL1 and YSL3.
Collapse
Affiliation(s)
- Xi Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Tingting Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hui Song
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yafeng Jia
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qian Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Manzhi Tao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiangyu Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shuqing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
19
|
de Oliveira NT, Namorato FA, Rao S, de Souza Cardoso AA, de Rezende PM, Guilherme LRG, Liu J, Li L. Iron counteracts zinc-induced toxicity in soybeans. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:335-344. [PMID: 36459868 DOI: 10.1016/j.plaphy.2022.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Zinc (Zn) and iron (Fe) are essential micronutrients for all living organisms and the major targets for crop biofortification. However, when acquired in excess quantities, Zn and Fe can be toxic to plants. In this study, we examined the interaction between Zn and Fe in soybean plants under various Zn and Fe treatments. While the level of Zn accumulation increased with increasing Zn supplies, Zn content greatly decreased with rising Fe supplies. Moreover, Zn uptake rates were negatively correlated with Fe supplies. However, Fe accumulation was not greatly affected by elevating Zn supplies. Excess Zn supplies were found to induce typical Fe deficiency symptoms under low Fe conditions, which can be counteracted by increasing Fe supplies. Interestingly, leaf chlorosis caused by excess Zn and low Fe supplies was not directly associated with reduced total Fe content but likely associated with deleterious effects of excess Zn. The combination of high Zn and low Fe greatly activates FRO2 and FIT1 gene expression in soybean roots. Besides, Zn-Fe interaction influences the activities of antioxidative enzymes as well as the uptake, accumulation, and homeostasis of other essential micronutrients, such as copper and manganese in soybean plants. These findings provide new perspectives on Zn and Fe interaction and on heavy metal-induced Fe deficiency-like symptoms.
Collapse
Affiliation(s)
- Natalia Trajano de Oliveira
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture, Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA; Department of Agronomy, Federal University of Lavras (ESAL-UFLA), Lavras, MG, 37200-900, Brazil
| | - Filipe Aiura Namorato
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture, Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA; Soil Science Department, Federal University of Lavras (ESAL-UFLA), Lavras, MG, 37200-900, Brazil
| | - Sombir Rao
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture, Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Arnon Afonso de Souza Cardoso
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture, Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA; Soil Science Department, Federal University of Lavras (ESAL-UFLA), Lavras, MG, 37200-900, Brazil
| | | | | | - Jiping Liu
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture, Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture, Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
20
|
Ichikawa S, Ishikawa K, Miyakawa H, Kodama Y. Live-cell imaging of the chloroplast outer envelope membrane using fluorescent dyes. PLANT DIRECT 2022; 6:e462. [PMID: 36398034 PMCID: PMC9666008 DOI: 10.1002/pld3.462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Chloroplasts are organelles composed of sub-organellar compartments-stroma, thylakoids, and starch granules-and are surrounded by outer and inner envelope membranes (OEM and IEM, respectively). The chloroplast OEM and IEM play key roles not only as a barrier separating the chloroplast components from the cytosol but also in the interchange of numerous metabolites and proteins between the chloroplast interior and the cytosol. Fluorescent protein markers for the chloroplast OEM have been widely used to visualize the outermost border of chloroplasts. However, the use of marker proteins requires an established cellular genetic transformation method, which limits the plant species in which marker proteins can be used. Moreover, the high accumulation of OEM marker proteins often elicits abnormal morphological phenotypes of the OEM. Because the OEM can currently only be visualized using exogenous marker proteins, the behaviors of the chloroplast and/or its OEM remain unknown in wild-type cells of various plant species. Here, we visualized the OEM using live-cell staining with the fluorescent dyes rhodamine B and Nile red in several plant species, including crops. We propose rhodamine B and Nile red as new tools for visualizing the chloroplast OEM in living plant cells that do not require genetic transformation. Significance Statement We established a live-cell imaging method to visualize the chloroplast outer envelope membrane by staining living cells with fluorescent dyes. This method does not require genetic transformation and allows the observation of the chloroplast outer envelope membrane in various plant species.
Collapse
Affiliation(s)
- Shintaro Ichikawa
- Center for Bioscience Research and EducationUtsunomiya UniversityTochigiJapan
- Graduate School of Regional Development and CreativityUtsunomiya UniversityTochigiJapan
| | - Kazuya Ishikawa
- Center for Bioscience Research and EducationUtsunomiya UniversityTochigiJapan
| | - Hitoshi Miyakawa
- Center for Bioscience Research and EducationUtsunomiya UniversityTochigiJapan
- Graduate School of Regional Development and CreativityUtsunomiya UniversityTochigiJapan
| | - Yutaka Kodama
- Center for Bioscience Research and EducationUtsunomiya UniversityTochigiJapan
- Graduate School of Regional Development and CreativityUtsunomiya UniversityTochigiJapan
| |
Collapse
|
21
|
Zhang B, Zhang C, Tang R, Zheng X, Zhao F, Fu A, Lan W, Luan S. Two magnesium transporters in the chloroplast inner envelope essential for thylakoid biogenesis in Arabidopsis. THE NEW PHYTOLOGIST 2022; 236:464-478. [PMID: 35776059 DOI: 10.1111/nph.18349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Magnesium (Mg2+ ) serves as a cofactor for a number of photosynthetic enzymes in the chloroplast, and is the central atom of the Chl molecule. However, little is known about the molecular mechanism of Mg2+ transport across the chloroplast envelope. Here, we report the functional characterization of two transport proteins in Arabidopsis: Magnesium Release 8 (MGR8) and MGR9, of the ACDP/CNNM family, which is evolutionarily conserved across all lineages of living organisms. Both MGR8 and MGR9 genes were expressed ubiquitously, and their encoded proteins were localized in the inner envelope of chloroplasts. Mutations of MGR8 and MGR9 together, but neither of them alone, resulted in albino ovules and chlorotic seedlings. Further analysis revealed severe defects in thylakoid biogenesis and assembly of photosynthetic complexes in the double mutant. Both MGR8 and MGR9 functionally complemented the growth of the Salmonella typhimurium mutant strain MM281, which lacks Mg2+ uptake capacity. The embryonic and early seedling defects of the mgr8/mgr9 double mutant were rescued by the expression of MGR9 under the embryo-specific ABI3 promoter. The partially rescued mutant plants were hypersensitive to Mg2+ deficient conditions and contained less Mg2+ in their chloroplasts than wild-type plants. Taken together, we conclude that MGR8 and MGR9 serve as Mg2+ transporters and are responsible for chloroplast Mg2+ uptake.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Life Sciences, Northwest University, Xi'an, 710069, China
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Chi Zhang
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Renjie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Xiaojiang Zheng
- College of Life Sciences, Northwest University, Xi'an, 710069, China
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Fugeng Zhao
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Aigen Fu
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Wenzhi Lan
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
22
|
Peter J, Huleux M, Spaniol B, Sommer F, Neunzig J, Schroda M, Li-Beisson Y, Philippar K. Fatty acid export (FAX) proteins contribute to oil production in the green microalga Chlamydomonas reinhardtii. Front Mol Biosci 2022; 9:939834. [PMID: 36120551 PMCID: PMC9470853 DOI: 10.3389/fmolb.2022.939834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
In algae and land plants, transport of fatty acids (FAs) from their site of synthesis in the plastid stroma to the endoplasmic reticulum (ER) for assembly into acyl lipids is crucial for cellular lipid homeostasis, including the biosynthesis of triacylglycerol (TAG) for energy storage. In the unicellular green alga Chlamydomonas reinhardtii, understanding and engineering of these processes is of particular interest for microalga-based biofuel and biomaterial production. Whereas in the model plant Arabidopsis thaliana, FAX (fatty acid export) proteins have been associated with a function in plastid FA-export and hence TAG synthesis in the ER, the knowledge on the function and subcellular localization of this protein family in Chlamydomonas is still scarce. Among the four FAX proteins encoded in the Chlamydomonas genome, we found Cr-FAX1 and Cr-FAX5 to be involved in TAG production by functioning in chloroplast and ER membranes, respectively. By in situ immunolocalization, we show that Cr-FAX1 inserts into the chloroplast envelope, while Cr-FAX5 is located in ER membranes. Severe reduction of Cr-FAX1 or Cr-FAX5 proteins by an artificial microRNA approach results in a strong decrease of the TAG content in the mutant strains. Further, overexpression of chloroplast Cr-FAX1, but not of ER-intrinsic Cr-FAX5, doubled the content of TAG in Chlamydomonas cells. We therefore propose that Cr-FAX1 in chloroplast envelopes and Cr-FAX5 in ER membranes represent a basic set of FAX proteins to ensure shuttling of FAs from chloroplasts to the ER and are crucial for oil production in Chlamydomonas.
Collapse
Affiliation(s)
- Janick Peter
- Plant Biology, Center for Human- and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Marie Huleux
- Aix Marseille Univ, CEA, CNRS, Institute of Bioscience and Biotechnology of Aix Marseille, BIAM, Saint Paul-Lez-Durance, France
| | - Benjamin Spaniol
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, Kaiserslautern, Germany
| | - Frederik Sommer
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, Kaiserslautern, Germany
| | - Jens Neunzig
- Plant Biology, Center for Human- and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, Kaiserslautern, Germany
| | - Yonghua Li-Beisson
- Aix Marseille Univ, CEA, CNRS, Institute of Bioscience and Biotechnology of Aix Marseille, BIAM, Saint Paul-Lez-Durance, France
| | - Katrin Philippar
- Plant Biology, Center for Human- and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
- *Correspondence: Katrin Philippar,
| |
Collapse
|
23
|
The Cluster Transfer Function of AtNEET Supports the Ferredoxin-Thioredoxin Network of Plant Cells. Antioxidants (Basel) 2022; 11:antiox11081533. [PMID: 36009251 PMCID: PMC9405330 DOI: 10.3390/antiox11081533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
NEET proteins are conserved 2Fe-2S proteins that regulate the levels of iron and reactive oxygen species in plant and mammalian cells. Previous studies of seedlings with constitutive expression of AtNEET, or its dominant-negative variant H89C (impaired in 2Fe-2S cluster transfer), revealed that disrupting AtNEET function causes oxidative stress, chloroplast iron overload, activation of iron-deficiency responses, and cell death. Because disrupting AtNEET function is deleterious to plants, we developed an inducible expression system to study AtNEET function in mature plants using a time-course proteomics approach. Here, we report that the suppression of AtNEET cluster transfer function results in drastic changes in the expression of different members of the ferredoxin (Fd), Fd-thioredoxin (TRX) reductase (FTR), and TRX network of Arabidopsis, as well as in cytosolic cluster assembly proteins. In addition, the expression of Yellow Stripe-Like 6 (YSL6), involved in iron export from chloroplasts was elevated. Taken together, our findings reveal new roles for AtNEET in supporting the Fd-TFR-TRX network of plants, iron mobilization from the chloroplast, and cytosolic 2Fe-2S cluster assembly. In addition, we show that the AtNEET function is linked to the expression of glutathione peroxidases (GPXs), which play a key role in the regulation of ferroptosis and redox balance in different organisms.
Collapse
|
24
|
Shee R, Ghosh S, Khan P, Sahid S, Roy C, Shee D, Paul S, Datta R. Glutathione regulates transcriptional activation of iron transporters via S-nitrosylation of bHLH factors to modulate subcellular iron homoeostasis. PLANT, CELL & ENVIRONMENT 2022; 45:2176-2190. [PMID: 35394650 DOI: 10.1111/pce.14331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Glutathione (GSH) is known to regulate iron (Fe) deficiency response in plants but its involvement in modulating subcellular Fe homoeostasis remains elusive. In this study, we report that the GSH-deficient mutants, cad2-1 and pad2-1 displayed increased sensitivity to Fe deficiency with significant downregulation of the vacuolar Fe exporters, AtNRAMP3 and AtNRAMP4, and the chloroplast Fe importer, AtPIC1. Moreover, the pad2-1 mutant accumulated higher Fe levels in vacuoles but lower Fe levels in chloroplasts compared to wild type (Columbia ecotype [Col-0]) under Fe limited conditions. Exogenous GSH treatment enhanced chloroplast Fe contents in Col-0 but failed to do so in the nramp3nramp4 double mutants demonstrating that GSH plays a role in modulating subcellular Fe homoeostasis. Pharmacological experiments, mutant analysis, and promoter assays revealed that this regulation involves the transcriptional activation of Fe transporter genes by a GSH-S-nitrosoglutathione (GSNO) module. The Fe responsive bHLH transcription factors (TFs), AtbHLH29, AtbHLH38, and AtbHLH101 were found to interact with the promoters of these genes, which were, in turn, activated via S-nitrosylation (SNO). Taken together, the present study highlights the role of the GSH-GSNO module in regulating subcellular Fe homoeostasis by transcriptional activation of the Fe transporters AtNRAMP3, AtNRAMP4, and AtPIC1 via SNO of bHLH TFs during Fe deficiency.
Collapse
Affiliation(s)
- Ranjana Shee
- Department of Botany, Dr. A. P. J. Abdul Kalam Government College, New Town, West Bengal, India
| | - Soumi Ghosh
- Department of Botany, Dr. A. P. J. Abdul Kalam Government College, New Town, West Bengal, India
| | - Pinki Khan
- Department of Botany, Dr. A. P. J. Abdul Kalam Government College, New Town, West Bengal, India
| | - Salman Sahid
- Department of Botany, Dr. A. P. J. Abdul Kalam Government College, New Town, West Bengal, India
- Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Chandan Roy
- Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Dibyendu Shee
- Department of Botany, Dr. A. P. J. Abdul Kalam Government College, New Town, West Bengal, India
- Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Soumitra Paul
- Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Riddhi Datta
- Department of Botany, Dr. A. P. J. Abdul Kalam Government College, New Town, West Bengal, India
| |
Collapse
|
25
|
Magnetic Treatment Improves the Seedling Growth, Nitrogen Metabolism, and Mineral Nutrient Contents in Populus × euramericana ‘Neva’ under Cadmium Stress. FORESTS 2022. [DOI: 10.3390/f13060947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This pot experiment was carried out to investigate the mechanism underlying nutrient metabolism and seedling growth responses to magnetic treatment following exposure to cadmium (Cd) stress. A magnetic device of 300 Gs was applied during Cd(NO3)2 solution treatment at 0 and 100 mM·L−1. One-year-old seedlings of Populus × euramericana ‘Neva’ were treated with different Cd(NO3)2 solutions in the presence or absence of magnetic treatment for 30 days. Seedling growth and physiological–biochemical indexes were measured under Cd stress. The contents of ammonium (NH4+–N), nitrate (NO3––N), and total nitrogen (TN) in leaves, as well as NH4+–N and TN in roots, were increased by magnetic treatment combined with Cd stress, although the NO3––N content was decreased. The activities of nitrate reductase (NR), nitrite reductase (NiR), glutathione reductase (GR), and glutamate synthase (GOGAT) in leaves and the activities of NR, glutamine synthetase (GS), and GOGAT in roots were stimulated by magnetic treatment; conversely, the NiR activity in roots was inhibited by magnetic effects. Magnetic treatment improved the synthesis of cysteine (Cys) and glutamine (Gln) in leaves and reduced the contents of glutamic acid (Glu) and glycine (Gly), while the contents of Cys, Glu, Gln, and Gly were increased in roots. The contents of Ca, Mg, Fe, Mn, Zn, and Cu in leaves were increased by magnetic treatment under Cd stress, whereas the content of K was reduced. In roots, the contents of K, Ca, and Fe were increased by magnetic treatment under Cd stress, but the contents of Na, Mg, Mn, Zn, and Cu were decreased. Magnetization could regulate the uptake of mineral nutrients by roots and translocation from the roots to the aboveground parts by affecting root morphology. Magnetic treatment could also improve nitrogen assimilation and the synthesis of free amino acids by stimulating the activities of key enzymes.
Collapse
|
26
|
Yu H, Wang Q, Zhang Z, Wu T, Yang X, Zhu X, Ye Y, Leng J, Yang S, Feng X. Genetic Mapping of the Gmpgl3 Mutant Reveals the Function of GmTic110a in Soybean Chloroplast Development. FRONTIERS IN PLANT SCIENCE 2022; 13:892077. [PMID: 35693168 PMCID: PMC9178232 DOI: 10.3389/fpls.2022.892077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The generation of oxygen and organic matter in plants mainly depends on photosynthesis, which directly affects plant growth and development. The chloroplast is the main organelle in which photosynthesis occurs. In this study, a Glycine max pale green leaf 3-1 (Gmpgl3-1) mutant was isolated from the soybean mutagenized population. The Gmpgl3-1 mutant presented with decreased chlorophyll contents, reduced chloroplast stroma thylakoids, reduced yields, and decreased numbers of pods per plant. Bulked segregant analysis (BSA) together with map-based cloning revealed a single-nucleotide non-synonymous mutation at the 341st nucleotide of the first exon of the chloroplast development-related GmTic110a gene. The phenotype of the knockout plants was the same as that of the mutant. The GmTic110a gene was highly expressed in the leaves at various developmental stages, and its protein was localized to the inner chloroplast membrane. Split luciferase complementation assays and coimmunoprecipitation (co-IP) experiments revealed that GmTic110a interacted with GmTic20, GmTic40a, and GmTic40b in tobacco leaves. These results indicated that the GmTic110a gene plays an important role in chloroplast development.
Collapse
Affiliation(s)
- Hui Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Qiushi Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Zhirui Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tao Wu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xinjing Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaobin Zhu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yongheng Ye
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiantian Leng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Suxin Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Zhejiang Lab, Hangzhou, China
| |
Collapse
|
27
|
Oberleitner L, Perrar A, Macorano L, Huesgen PF, Nowack ECM. A bipartite chromatophore transit peptide and N-terminal protein processing in the Paulinella chromatophore. PLANT PHYSIOLOGY 2022; 189:152-164. [PMID: 35043947 PMCID: PMC9070848 DOI: 10.1093/plphys/kiac012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/06/2021] [Indexed: 05/19/2023]
Abstract
The amoeba Paulinella chromatophora contains photosynthetic organelles, termed chromatophores, which evolved independently from plastids in plants and algae. At least one-third of the chromatophore proteome consists of nucleus-encoded (NE) proteins that are imported across the chromatophore double envelope membranes. Chromatophore-targeted proteins exceeding 250 amino acids (aa) carry a conserved N-terminal extension presumably involved in protein targeting, termed the chromatophore transit peptide (crTP). Short imported proteins do not carry discernable targeting signals. To explore whether the import of proteins is accompanied by their N-terminal processing, here we identified N-termini of 208 chromatophore-localized proteins by a mass spectrometry-based approach. Our study revealed extensive N-terminal acetylation and proteolytic processing in both NE and chromatophore-encoded (CE) fractions of the chromatophore proteome. Mature N-termini of 37 crTP-carrying proteins were identified, of which 30 were cleaved in a common processing region. Surprisingly, only the N-terminal ∼50 aa (part 1) become cleaved upon import. This part contains a conserved adaptor protein-1 complex-binding motif known to mediate protein sorting at the trans-Golgi network followed by a predicted transmembrane helix, implying that part 1 anchors the protein co-translationally in the endoplasmic reticulum and mediates trafficking to the chromatophore via the Golgi. The C-terminal part 2 contains conserved secondary structural elements, remains attached to the mature proteins, and might mediate translocation across the chromatophore inner membrane. Short imported proteins remain largely unprocessed. Finally, this work illuminates N-terminal processing of proteins encoded in an evolutionary-early-stage organelle and suggests host-derived posttranslationally acting factors involved in regulation of the CE chromatophore proteome.
Collapse
Affiliation(s)
- Linda Oberleitner
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Andreas Perrar
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, 52425 Jülich, Germany
- Cologne Excellence Cluster on Stress Responses in Ageing-Associated Diseases, CECAD, Medical Faculty and University Hospital, University of Cologne, 50931 Cologne, Germany
| | - Luis Macorano
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, 52425 Jülich, Germany
- Cologne Excellence Cluster on Stress Responses in Ageing-Associated Diseases, CECAD, Medical Faculty and University Hospital, University of Cologne, 50931 Cologne, Germany
- Department of Chemistry, Institute of Biochemistry, University of Cologne, 50674 Cologne, Germany
| | | |
Collapse
|
28
|
Therby-Vale R, Lacombe B, Rhee SY, Nussaume L, Rouached H. Mineral nutrient signaling controls photosynthesis: focus on iron deficiency-induced chlorosis. TRENDS IN PLANT SCIENCE 2022; 27:502-509. [PMID: 34848140 DOI: 10.1016/j.tplants.2021.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Photosynthetic organisms convert light energy into chemical energy stored in carbohydrates. To perform this process, an adequate supply of essential mineral elements, such as iron, is required in the chloroplast. Because iron plays a crucial role during electron transport and chlorophyll formation, iron deficiency alters photosynthesis and promotes chlorosis, or the yellowing of leaves. Intriguingly, iron deficiency-induced chlorosis can be reverted by the depletion of other micronutrients [i.e., manganese (Mn)] or macronutrients [i.e., sulfur (S) or phosphorus (P)], raising the question of how plants integrate nutrient status to control photosynthesis. Here, we review how improving our understanding of the complex relationship between nutrient homeostasis and photosynthesis has great potential for crop improvement.
Collapse
Affiliation(s)
| | - Benoit Lacombe
- BPMP, University of Montpellier, CNRS, INRAE, Montpellier, France
| | - Seung Y Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Laurent Nussaume
- DRF/BIAM/SBVME/SAVE UMR 7265 CEA-CNRS-Université Aix Marseille-CEA Cadarache, 13108 St Paul lez Durance, France
| | - Hatem Rouached
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
29
|
Sági-Kazár M, Solymosi K, Solti Á. Iron in leaves: chemical forms, signalling, and in-cell distribution. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1717-1734. [PMID: 35104334 PMCID: PMC9486929 DOI: 10.1093/jxb/erac030] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/26/2022] [Indexed: 05/26/2023]
Abstract
Iron (Fe) is an essential transition metal. Based on its redox-active nature under biological conditions, various Fe compounds serve as cofactors in redox enzymes. In plants, the photosynthetic machinery has the highest demand for Fe. In consequence, the delivery and incorporation of Fe into cofactors of the photosynthetic apparatus is the focus of Fe metabolism in leaves. Disturbance of foliar Fe homeostasis leads to impaired biosynthesis of chlorophylls and composition of the photosynthetic machinery. Nevertheless, mitochondrial function also has a significant demand for Fe. The proper incorporation of Fe into proteins and cofactors as well as a balanced intracellular Fe status in leaf cells require the ability to sense Fe, but may also rely on indirect signals that report on the physiological processes connected to Fe homeostasis. Although multiple pieces of information have been gained on Fe signalling in roots, the regulation of Fe status in leaves has not yet been clarified in detail. In this review, we give an overview on current knowledge of foliar Fe homeostasis, from the chemical forms to the allocation and sensing of Fe in leaves.
Collapse
Affiliation(s)
- Máté Sági-Kazár
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| |
Collapse
|
30
|
High-value pleiotropic genes for developing multiple stress-tolerant biofortified crops for 21st-century challenges. Heredity (Edinb) 2022; 128:460-472. [PMID: 35173311 PMCID: PMC8852949 DOI: 10.1038/s41437-022-00500-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/08/2022] Open
Abstract
The agriculture-based livelihood systems that are already vulnerable due to multiple challenges face immediate risk of increased crop failures due to weather vagaries. As breeders and biotechnologists, our strategy is to advance and innovate breeding for weather-proofing crops. Plant stress tolerance is a genetically complex trait. Additionally, crops rarely face a single type of stress in isolation, and it is difficult for plants to deal with multiple stresses simultaneously. One of the most helpful approaches to creating stress-resilient crops is genome editing and trans- or cis-genesis. Out of hundreds of stress-responsive genes, many have been used to impart tolerance against a particular stress factor, while a few used in combination for gene pyramiding against multiple stresses. However, a better approach would be to use multi-role pleiotropic genes that enable plants to adapt to numerous environmental stresses simultaneously. Herein we attempt to integrate and present the scattered information published in the past three decades about these pleiotropic genes for crop improvement and remodeling future cropping systems. Research articles validating functional roles of genes in transgenic plants were used to create groups of multi-role pleiotropic genes that could be candidate genes for developing weather-proof crop varieties. These biotech crop varieties will help create 'high-value farms' to meet the goal of a sustainable increase in global food productivity and stabilize food prices by ensuring a fluctuation-free assured food supply. It could also help create a gene repository through artificial gene synthesis for 'resilient high-value food production' for the 21st century.
Collapse
|
31
|
Hao B, Ma J, Jiang L, Wang X, Bai Y, Zhou C, Ren S, Li C, Wang Z. Effects of foliar application of micronutrients on concentration and bioavailability of zinc and iron in wheat landraces and cultivars. Sci Rep 2021; 11:22782. [PMID: 34815451 PMCID: PMC8611096 DOI: 10.1038/s41598-021-02088-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 10/19/2021] [Indexed: 11/09/2022] Open
Abstract
Foliar application of micronutrient is a rapid and promising strategy to enhance the concentration and bioavailability of micronutrients in wheat grain. To explore the effects of foliar application of micronutrients on the concentration and bioavailability of zinc and iron in grain in wheat cultivars and landraces, field experiments were carried out using 65 wheat cultivars and 28 landraces to assess the effects of foliar application of zinc (iron) on phytic acid concentrations, zinc (iron) concentrations and their molar ratios. The results indicated that mean grain zinc concentration of landraces (44.83 mg kg−1) was 11.13% greater than that of cultivars (40.34 mg kg−1) on average across seasons, while grain iron concentration did not differ significantly between landraces (41.00 mg kg−1) and cultivars (39.43 mg kg−1). Foliar zinc application significantly improved the concentration and bioavailability of zinc in grains in both cultivars and landraces, while landraces had almost two-fold more increase in grain zinc and also greater improvement in zinc bioavailability compared to cultivars. While foliar iron application did not significantly affect iron concentration and bioavailability in grains in either cultivars or landraces. Our study showed that, with foliar application of zinc but not iron, wheat landraces had better performance than cultivars in terms of the increases in both concentration and bioavailability of micronutrient in grains.
Collapse
Affiliation(s)
- Baozhen Hao
- School of Life Science and Basic Medicine, Xinxiang University, Xinxiang, 453003, Henan, China
| | - Jingli Ma
- School of Life Science and Basic Medicine, Xinxiang University, Xinxiang, 453003, Henan, China
| | - Lina Jiang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China.
| | - Xiaojie Wang
- School of Life Science and Basic Medicine, Xinxiang University, Xinxiang, 453003, Henan, China
| | - Yongqu Bai
- School of Life Science and Basic Medicine, Xinxiang University, Xinxiang, 453003, Henan, China
| | - Chuangchuang Zhou
- School of Life Science and Basic Medicine, Xinxiang University, Xinxiang, 453003, Henan, China
| | - Simin Ren
- School of Life Science and Basic Medicine, Xinxiang University, Xinxiang, 453003, Henan, China
| | - Chunxi Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Zhimin Wang
- College of Agronomy, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
32
|
Thiriet-Rupert S, Gain G, Jadoul A, Vigneron A, Bosman B, Carnol M, Motte P, Cardol P, Nouet C, Hanikenne M. Long-term acclimation to cadmium exposure reveals extensive phenotypic plasticity in Chlamydomonas. PLANT PHYSIOLOGY 2021; 187:1653-1678. [PMID: 34618070 PMCID: PMC8566208 DOI: 10.1093/plphys/kiab375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/17/2021] [Indexed: 05/06/2023]
Abstract
Increasing industrial and anthropogenic activities are producing and releasing more and more pollutants in the environment. Among them, toxic metals are one of the major threats for human health and natural ecosystems. Because photosynthetic organisms play a critical role in primary productivity and pollution management, investigating their response to metal toxicity is of major interest. Here, the green microalga Chlamydomonas (Chlamydomonas reinhardtii) was subjected to short (3 d) or chronic (6 months) exposure to 50 µM cadmium (Cd), and the recovery from chronic exposure was also examined. An extensive phenotypic characterization and transcriptomic analysis showed that the impact of Cd on biomass production of short-term (ST) exposed cells was almost entirely abolished by long-term (LT) acclimation. The underlying mechanisms were initiated at ST and further amplified after LT exposure resulting in a reversible equilibrium allowing biomass production similar to control condition. This included modification of cell wall-related gene expression and biofilm-like structure formation, dynamics of metal ion uptake and homeostasis, photosynthesis efficiency recovery and Cd acclimation through metal homeostasis adjustment. The contribution of the identified coordination of phosphorus and iron homeostasis (partly) mediated by the main phosphorus homeostasis regulator, Phosphate Starvation Response 1, and a basic Helix-Loop-Helix transcription factor (Cre05.g241636) was further investigated. The study reveals the highly dynamic physiological plasticity enabling algal cell growth in an extreme environment.
Collapse
Affiliation(s)
- Stanislas Thiriet-Rupert
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
- Present address: Unité de Génétique des Biofilms, Département Microbiologie, Institut Pasteur, Paris, France
| | - Gwenaëlle Gain
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
- InBioS-PhytoSystems, Genetics and Physiology of Microalgae, University of Liège, 4000 Liège, Belgium
| | - Alice Jadoul
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
| | - Amandine Vigneron
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
| | - Bernard Bosman
- InBioS-PhytoSystems, Laboratory of Plant and Microbial Ecology, University of Liège, 4000 Liège, Belgium
| | - Monique Carnol
- InBioS-PhytoSystems, Laboratory of Plant and Microbial Ecology, University of Liège, 4000 Liège, Belgium
| | - Patrick Motte
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
| | - Pierre Cardol
- InBioS-PhytoSystems, Genetics and Physiology of Microalgae, University of Liège, 4000 Liège, Belgium
| | - Cécile Nouet
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
| | - Marc Hanikenne
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
- Author for communication:
| |
Collapse
|
33
|
Xiao Z, Tang F, Zhang L, Li S, Wang S, Huo Q, Yang B, Zhang C, Wang D, Li Q, Wei L, Guo T, Qu C, Lu K, Zhang Y, Guo L, Li J, Li N. The Brassica napus fatty acid exporter FAX1-1 contributes to biological yield, seed oil content, and oil quality. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:190. [PMID: 34587987 PMCID: PMC8482660 DOI: 10.1186/s13068-021-02035-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/07/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND In the oilseed crop Brassica napus (rapeseed), various metabolic processes influence seed oil content, oil quality, and biological yield. However, the role of plastid membrane proteins in these traits has not been explored. RESULTS Our genome-wide association study (GWAS) of 520 B. napus accessions identified the chloroplast membrane protein-localized FATTY ACID EXPORTER 1-1 (FAX1-1) as a candidate associated with biological yield. Seed transcript levels of BnaFAX1-1 were higher in a cultivar with high seed oil content relative to a low-oil cultivar. BnaFAX1-1 was localized to the plastid envelope. When expressed in Arabidopsis thaliana, BnaFAX1-1 enhanced biological yield (total plant dry matter), seed yield and seed oil content per plant. Likewise, in the field, B. napus BnaFAX1-1 overexpression lines (BnaFAX1-1-OE) displayed significantly enhanced biological yield, seed yield, and seed oil content compared with the wild type. BnaFAX1-1 overexpression also up-regulated gibberellic acid 4 (GA4) biosynthesis, which may contribute to biological yield improvement. Furthermore, oleic acid (C18:1) significantly increased in BnaFAX1-1 overexpression seeds. CONCLUSION Our results indicated that the putative fatty acid exporter BnaFAX1-1 may simultaneously improve seed oil content, oil quality and biological yield in B. napus, providing new approaches for future molecular breeding.
Collapse
Affiliation(s)
- Zhongchun Xiao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
- College of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi, 562400, Guizhou, China
| | - Fang Tang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Liyuan Zhang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Shengting Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Shufeng Wang
- College of Resources and Environment, and Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Qiang Huo
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Bo Yang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Chao Zhang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Daojie Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Qing Li
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi, China
| | - Lijuan Wei
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Tao Guo
- College of Resources and Environment, and Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China.
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China.
| | - Nannan Li
- College of Resources and Environment, and Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China.
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
34
|
Jogawat A, Yadav B, Narayan OP. Metal transporters in organelles and their roles in heavy metal transportation and sequestration mechanisms in plants. PHYSIOLOGIA PLANTARUM 2021; 173:259-275. [PMID: 33586164 DOI: 10.1111/ppl.13370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/23/2021] [Accepted: 02/11/2021] [Indexed: 05/19/2023]
Abstract
Heavy metal toxicity is one of the major concerns for agriculture and health. Accumulation of toxic heavy metals at high concentrations in edible parts of crop plants is the primary cause of disease in humans and cattle. A dramatic increase in industrialization, urbanization, and other high anthropogenic activities has led to the accumulation of heavy metals in agricultural soil, which has consequently disrupted soil conditions and affected crop yield. By now, plants have developed several mechanisms to cope with heavy metal stress. However, not all plants are equally effective in dealing with the toxicity of high heavy metal concentrations. Plants have modified their anatomy, morphophysiology, and molecular networks to survive under changing environmental conditions. Heavy metal sequestration is one of the essential processes evolved by some plants to deal with heavy metals' toxic concentration. Some plants even have the ability to accumulate metals in high quantities in the shoots/organelles without toxic effects. For intercellular and interorganeller metal transport, plants harbor spatially distributed various transporters which mainly help in uptake, translocation, and redistribution of metals. This review discusses different heavy metal transporters in different organelles and their roles in metal sequestration and redistribution to help plants cope with heavy metal stress. A good understanding of the processes at stake helps in developing more tolerant crops without affecting their productivity.
Collapse
Affiliation(s)
| | - Bindu Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|
35
|
Kim LJ, Tsuyuki KM, Hu F, Park EY, Zhang J, Iraheta JG, Chia JC, Huang R, Tucker AE, Clyne M, Castellano C, Kim A, Chung DD, DaVeiga CT, Parsons EM, Vatamaniuk OK, Jeong J. Ferroportin 3 is a dual-targeted mitochondrial/chloroplast iron exporter necessary for iron homeostasis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:215-236. [PMID: 33884692 PMCID: PMC8316378 DOI: 10.1111/tpj.15286] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/10/2021] [Indexed: 05/26/2023]
Abstract
Mitochondria and chloroplasts are organelles with high iron demand that are particularly susceptible to iron-induced oxidative stress. Despite the necessity of strict iron regulation in these organelles, much remains unknown about mitochondrial and chloroplast iron transport in plants. Here, we propose that Arabidopsis ferroportin 3 (FPN3) is an iron exporter that is dual-targeted to mitochondria and chloroplasts. FPN3 is expressed in shoots, regardless of iron conditions, but its transcripts accumulate under iron deficiency in roots. fpn3 mutants cannot grow as well as the wild type under iron-deficient conditions and their shoot iron levels are lower compared with the wild type. Analyses of iron homeostasis gene expression in fpn3 mutants and inductively coupled plasma mass spectrometry (ICP-MS) measurements show that iron levels in the mitochondria and chloroplasts are increased relative to the wild type, consistent with the proposed role of FPN3 as a mitochondrial/plastid iron exporter. In iron-deficient fpn3 mutants, abnormal mitochondrial ultrastructure was observed, whereas chloroplast ultrastructure was not affected, implying that FPN3 plays a critical role in the mitochondria. Overall, our study suggests that FPN3 is essential for optimal iron homeostasis.
Collapse
Affiliation(s)
- Leah J. Kim
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | | | - Fengling Hu
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Emily Y. Park
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Jingwen Zhang
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | | | - Ju-Chen Chia
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Rong Huang
- Cornell High Energy Synchrotron Source, Ithaca, New York 14853
| | - Avery E. Tucker
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Madeline Clyne
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Claire Castellano
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Angie Kim
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Daniel D. Chung
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | | | | | - Olena K. Vatamaniuk
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Jeeyon Jeong
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| |
Collapse
|
36
|
Bandyopadhyay T, Prasad M. IRONing out stress problems in crops: a homeostatic perspective. PHYSIOLOGIA PLANTARUM 2021; 171:559-577. [PMID: 32770754 DOI: 10.1111/ppl.13184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Iron (Fe) is essential for plant growth and therefore plays a key role in influencing crop productivity worldwide. Apart from its central role in chlorophyll biosynthesis and oxidative phosphorylation (electron transfer), it is an important constituent of many enzymes involved in primary metabolism. Fe has different accessibilities to the roots in the rhizosphere depending upon whether it is ferrous (soluble) or ferric (insoluble) oxidation stages, which in turn, determine two kinds of Fe uptake strategies employed by the plants. The reduction strategy is exclusively found in non-graminaceous plants wherein the ferrous Fe2+ is absorbed and translocated from the soil through specialized transporters. In contrast, the chelation strategy (widespread in graminaceous plants) relies on the formation of Fe (III)-chelate complex as the necessary requirement of Fe uptake. Once inside the cell, Fe is translocated, compartmentalized and stored through a common set of physiological processes involving many transporters and enzymes whose functions are controlled by underlying genetic components, so that a fine balance of Fe homeostasis is maintained. Recently, molecular and mechanistic aspects of the process involving the role of transcription factors, signaling components, and cis-acting elements have been obtained, which has enabled a much better understanding of its ecophysiology. This mini-review summarizes recent developments in our understanding of Fe transport in higher plants with particular emphasis on crops in the context of major agronomically important abiotic stresses. It also highlights outstanding questions on the regulation of Fe homeostasis and lists potentially useful genes/regulatory pathways that may be useful for subsequent crop improvement under the stresses discussed through either conventional or transgenic approaches.
Collapse
Affiliation(s)
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
37
|
Yadav B, Jogawat A, Lal SK, Lakra N, Mehta S, Shabek N, Narayan OP. Plant mineral transport systems and the potential for crop improvement. PLANTA 2021; 253:45. [PMID: 33483879 DOI: 10.1007/s00425-020-03551-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/22/2020] [Indexed: 05/09/2023]
Abstract
Nutrient transporter genes could be a potential candidate for improving crop plants, with enhanced nutrient uptake leading to increased crop yield by providing tolerance against different biotic and abiotic stresses. The world's food supply is nearing a crisis in meeting the demands of an ever-growing global population, and an increase in both yield and nutrient value of major crops is vitally necessary to meet the increased population demand. Nutrients play an important role in plant metabolism as well as growth and development, and nutrient deficiency results in retarded plant growth and leads to reduced crop yield. A variety of cellular processes govern crop plant nutrient absorption from the soil. Among these, nutrient membrane transporters play an important role in the acquisition of nutrients from soil and transport of these nutrients to their target sites. In addition, as excess nutrient delivery has toxic effects on plant growth, these membrane transporters also play a significant role in the removal of excess nutrients in the crop plant. The key function provided by membrane transporters is the ability to supply the crop plant with an adequate level of tolerance against environmental stresses, such as soil acidity, alkalinity, salinity, drought, and pathogen attack. Membrane transporter genes have been utilized for the improvement of crop plants, with enhanced nutrient uptake leading to increased crop yield by providing tolerance against different biotic and abiotic stresses. Further understanding of the basic mechanisms of nutrient transport in crop plants could facilitate the advanced design of engineered plant crops to achieve increased yield and improve nutrient quality through the use of genetic technologies as well as molecular breeding. This review is focused on nutrient toxicity and tolerance mechanisms in crop plants to aid in understanding and addressing the anticipated global food demand.
Collapse
Affiliation(s)
- Bindu Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abhimanyu Jogawat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Shambhu Krishan Lal
- ICAR- Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Nita Lakra
- Department of Biotechnology, CCS HAU, Hisar, India
| | - Sahil Mehta
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Nitzan Shabek
- Department of Plant Biology, University of California, Davis, CA, USA
| | | |
Collapse
|
38
|
Kosakivska IV, Babenko LM, Romanenko KO, Korotka IY, Potters G. Molecular mechanisms of plant adaptive responses to heavy metals stress. Cell Biol Int 2020; 45:258-272. [PMID: 33200493 DOI: 10.1002/cbin.11503] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/21/2020] [Accepted: 11/11/2020] [Indexed: 12/29/2022]
Abstract
Heavy metals (HMs) are among the main environmental pollutants that can enter the soil, water bodies, and the atmosphere as a result of natural processes (weathering of rocks, volcanic activity), and also as a result of human activities (mining, metallurgical and chemical industries, transport, application of mineral fertilizers). Plants counteract the HMs stresses through morphological and physiological adaptations, which are imparted through well-coordinated molecular mechanisms. New approaches, which include transcriptomics, genomics, proteomics, and metabolomics analyses, have opened the paths to understand such complex networks. This review sheds light on molecular mechanisms included in plant adaptive and defense responses during metal stress. It is focused on the entry of HMs into plants, its transport and accumulation, effects on the main physiological processes, gene expressions included in plant adaptive and defense responses during HM stress. Analysis of new data allowed the authors to conclude that the most important mechanism of HM tolerance is extracellular and intracellular HM sequestration. Organic anions (malate, oxalate, etc.) provide extracellular sequestration of HM ions. Intracellular HM sequestration depends not only on a direct binding mechanism with different polymers (pectin, lignin, cellulose, hemicellulose, etc.) or organic anions but also on the action of cellular receptors and transmembrane transporters. We focused on the functioning chloroplasts, mitochondria, and the Golgi complex under HM stress. The currently known molecular mechanisms of plant tolerance to the toxic effects of HMs are analyzed.
Collapse
Affiliation(s)
- Iryna V Kosakivska
- Phytohormonology Department, M. G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Lidia M Babenko
- Phytohormonology Department, M. G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Kateryna O Romanenko
- Phytohormonology Department, M. G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Iryna Y Korotka
- Phytohormonology Department, M. G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Geert Potters
- Department of Phytohormonology, Antwerp Maritime Academy, Antwerp, Belgium
| |
Collapse
|
39
|
Zhang C, Zhang B, Mu B, Zheng X, Zhao F, Lan W, Fu A, Luan S. A Thylakoid Membrane Protein Functions Synergistically with GUN5 in Chlorophyll Biosynthesis. PLANT COMMUNICATIONS 2020; 1:100094. [PMID: 33367259 PMCID: PMC7747962 DOI: 10.1016/j.xplc.2020.100094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 05/21/2023]
Abstract
Chlorophyll (Chl) is essential for photosynthetic reactions and chloroplast development. While the enzymatic pathway for Chl biosynthesis is well established, the regulatory mechanism underlying the homeostasis of Chl levels remains largely unknown. In this study, we identified CBD1 (Chlorophyll Biosynthetic Defect1), which functions in the regulation of chlorophyll biosynthesis. The CBD1 gene was expressed specifically in green tissues and its protein product was embedded in the thylakoid membrane. Furthermore, CBD1 was precisely co-expressed and functionally correlated with GUN5 (Genome Uncoupled 5). Analysis of chlorophyll metabolic intermediates indicated that cbd1 and cbd1gun5 mutants over-accumulated magnesium protoporphyrin IX (Mg-Proto IX). In addition, the cbd1 mutant thylakoid contained less Mg than the wild type not only as a result of lower Chl content, but also implicating CBD1 in Mg transport. This was supported by the finding that CBD1 complemented a Mg2+ uptake-deficient Salmonella strain under low Mg conditions. Taken together, these results indicate that CBD1 functions synergistically with CHLH/GUN5 in Mg-Proto IX processing, and may serve as a Mg-transport protein to maintain Mg homeostasis in the chloroplast.
Collapse
Affiliation(s)
- Chi Zhang
- The Key Laboratory of Western Resources Biology and Biological Technology, College of Life Sciences, Northwest University, Xi'an 710069, China
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Bin Zhang
- The Key Laboratory of Western Resources Biology and Biological Technology, College of Life Sciences, Northwest University, Xi'an 710069, China
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Baicong Mu
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
- Temasek Life Sciences Laboratory, Singapore 117604, Republic of Singapore
| | - Xiaojiang Zheng
- The Key Laboratory of Western Resources Biology and Biological Technology, College of Life Sciences, Northwest University, Xi'an 710069, China
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Fugeng Zhao
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Wenzhi Lan
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
- Corresponding author
| | - Aigen Fu
- The Key Laboratory of Western Resources Biology and Biological Technology, College of Life Sciences, Northwest University, Xi'an 710069, China
- Corresponding author
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Corresponding author
| |
Collapse
|
40
|
Garcia-Molina A, Marino G, Lehmann M, Leister D. Systems biology of responses to simultaneous copper and iron deficiency in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2119-2138. [PMID: 32578228 DOI: 10.1111/tpj.14887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 06/09/2020] [Indexed: 05/29/2023]
Abstract
Plant responses to coincident nutrient deficiencies cannot be predicted from the responses to individual deficiencies. Although copper (Cu) and iron (Fe) are essential micronutrients for plant growth that are often and concurrently limited in soils, the combinatorial response to Cu-Fe deficiency remains elusive. In the present study, we characterised the responses of Arabidopsis thaliana plants deprived of Cu, Fe or both (-Cu-Fe) at the level of plant development, mineral composition, and reconfiguration of transcriptomes, proteomes and metabolomes. Compared to single deficiencies, simultaneous -Cu-Fe leads to a distinct pattern in leaf physiology and microelement concentration characterised by lowered protein content and enhanced manganese and zinc levels. Conditional networking analysis of molecular changes indicates that biological processes also display different co-expression patterns among single and double deficiencies. Indeed, the interaction between Cu and Fe deficiencies causes distinct expression profiles for 15% of all biomolecules, leading to specific enhancement of general stress responses and protein homeostasis mechanisms, at the same time as severely arresting photosynthesis. Accordingly, central carbon metabolites, in particular photosynthates, decrease especially under -Cu-Fe conditions, whereas the pool of free amino acids increases. Further meta-analysis of transcriptomes and proteomes corroborated that protein biosynthesis and folding capacity were readjusted during the combinatorial response and unveiled important rearrangements in the metabolism of organic acids. Consequently, our results demonstrate that the response to -Cu-Fe imposes a distinct reconfiguration of large sets of molecules, not triggered by single deficiencies, resulting into a switch from autotrophy to heterotrophy and involving organic acids such as fumaric acid as central mediators of the response.
Collapse
Affiliation(s)
- Antoni Garcia-Molina
- Faculty of Biology, Plant Molecular Biology (Botany), Ludwig-Maximilians Universität München, Großhadernerstr. 2-4, Planegg-Martinsried, D-82152, Germany
| | - Giada Marino
- Faculty of Biology, Plant Molecular Biology (Botany), Ludwig-Maximilians Universität München, Großhadernerstr. 2-4, Planegg-Martinsried, D-82152, Germany
| | - Martin Lehmann
- Faculty of Biology, Plant Molecular Biology (Botany), Ludwig-Maximilians Universität München, Großhadernerstr. 2-4, Planegg-Martinsried, D-82152, Germany
| | - Dario Leister
- Faculty of Biology, Plant Molecular Biology (Botany), Ludwig-Maximilians Universität München, Großhadernerstr. 2-4, Planegg-Martinsried, D-82152, Germany
| |
Collapse
|
41
|
Schmidt SB, Eisenhut M, Schneider A. Chloroplast Transition Metal Regulation for Efficient Photosynthesis. TRENDS IN PLANT SCIENCE 2020; 25:817-828. [PMID: 32673582 DOI: 10.1016/j.tplants.2020.03.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/14/2020] [Accepted: 03/04/2020] [Indexed: 05/24/2023]
Abstract
Plants require sunlight, water, CO2, and essential nutrients to drive photosynthesis and fulfill their life cycle. The photosynthetic apparatus resides in chloroplasts and fundamentally relies on transition metals as catalysts and cofactors. Accordingly, chloroplasts are particularly rich in iron (Fe), manganese (Mn), and copper (Cu). Owing to their redox properties, those metals need to be carefully balanced within the cell. However, the regulation of transition metal homeostasis in chloroplasts is poorly understood. With the availability of the arabidopsis genome information and membrane protein databases, a wider catalogue for searching chloroplast metal transporters has considerably advanced the study of transition metal regulation. This review provides an updated overview of the chloroplast transition metal requirements and the transporters involved for efficient photosynthesis in higher plants.
Collapse
Affiliation(s)
- Sidsel Birkelund Schmidt
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Marion Eisenhut
- Biochemie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Anja Schneider
- Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany.
| |
Collapse
|
42
|
Herlihy JH, Long TA, McDowell JM. Iron homeostasis and plant immune responses: Recent insights and translational implications. J Biol Chem 2020; 295:13444-13457. [PMID: 32732287 DOI: 10.1074/jbc.rev120.010856] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
Iron metabolism and the plant immune system are both critical for plant vigor in natural ecosystems and for reliable agricultural productivity. Mechanistic studies of plant iron home-ostasis and plant immunity have traditionally been carried out in isolation from each other; however, our growing understanding of both processes has uncovered significant connections. For example, iron plays a critical role in the generation of reactive oxygen intermediates during immunity and has been recently implicated as a critical factor for immune-initiated cell death via ferroptosis. Moreover, plant iron stress triggers immune activation, suggesting that sensing of iron depletion is a mechanism by which plants recognize a pathogen threat. The iron deficiency response engages hormone signaling sectors that are also utilized for plant immune signaling, providing a probable explanation for iron-immunity cross-talk. Finally, interference with iron acquisition by pathogens might be a critical component of the immune response. Efforts to address the global burden of iron deficiency-related anemia have focused on classical breeding and transgenic approaches to develop crops biofortified for iron content. However, our improved mechanistic understanding of plant iron metabolism suggests that such alterations could promote or impede plant immunity, depending on the nature of the alteration and the virulence strategy of the pathogen. Effects of iron biofortification on disease resistance should be evaluated while developing plants for iron biofortification.
Collapse
Affiliation(s)
- John H Herlihy
- School of Plant and Environmental Sciences, Virginia Tech, Latham Hall, Blacksburg, Virginia, USA
| | - Terri A Long
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA.
| | - John M McDowell
- School of Plant and Environmental Sciences, Virginia Tech, Latham Hall, Blacksburg, Virginia, USA.
| |
Collapse
|
43
|
Ma X, Su Z, Ma H. Molecular genetic analyses of abiotic stress responses during plant reproductive development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2870-2885. [PMID: 32072177 PMCID: PMC7260722 DOI: 10.1093/jxb/eraa089] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/12/2020] [Indexed: 05/20/2023]
Abstract
Plant responses to abiotic stresses during vegetative growth have been extensively studied for many years. Daily environmental fluctuations can have dramatic effects on plant vegetative growth at multiple levels, resulting in molecular, cellular, physiological, and morphological changes. Plants are even more sensitive to environmental changes during reproductive stages. However, much less is known about how plants respond to abiotic stresses during reproduction. Fortunately, recent advances in this field have begun to provide clues about these important processes, which promise further understanding and a potential contribution to maximize crop yield under adverse environments. Here we summarize information from several plants, focusing on the possible mechanisms that plants use to cope with different types of abiotic stresses during reproductive development, and present a tentative molecular portrait of plant acclimation during reproductive stages. Additionally, we discuss strategies that plants use to balance between survival and productivity, with some comparison among different plants that have adapted to distinct environments.
Collapse
Affiliation(s)
- Xinwei Ma
- Department of Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Zhao Su
- Department of Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Correspondence:
| | - Hong Ma
- Department of Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
44
|
Kroh GE, Pilon M. Regulation of Iron Homeostasis and Use in Chloroplasts. Int J Mol Sci 2020; 21:E3395. [PMID: 32403383 PMCID: PMC7247011 DOI: 10.3390/ijms21093395] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 01/20/2023] Open
Abstract
Iron (Fe) is essential for life because of its role in protein cofactors. Photosynthesis, in particular photosynthetic electron transport, has a very high demand for Fe cofactors. Fe is commonly limiting in the environment, and therefore photosynthetic organisms must acclimate to Fe availability and avoid stress associated with Fe deficiency. In plants, adjustment of metabolism, of Fe utilization, and gene expression, is especially important in the chloroplasts during Fe limitation. In this review, we discuss Fe use, Fe transport, and mechanisms of acclimation to Fe limitation in photosynthetic lineages with a focus on the photosynthetic electron transport chain. We compare Fe homeostasis in Cyanobacteria, the evolutionary ancestors of chloroplasts, with Fe homeostasis in green algae and in land plants in order to provide a deeper understanding of how chloroplasts and photosynthesis may cope with Fe limitation.
Collapse
Affiliation(s)
| | - Marinus Pilon
- Department of Biology, Colorado State University Department of Biology, Fort Collins, CO 80523, USA;
| |
Collapse
|
45
|
Li N, Meng H, Li S, Zhang Z, Zhao X, Wang S, Liu A, Li Q, Song Q, Li X, Guo L, Li H, Zuo J, Luo K. Two Plastid Fatty Acid Exporters Contribute to Seed Oil Accumulation in Arabidopsis. PLANT PHYSIOLOGY 2020; 182:1910-1919. [PMID: 32019874 PMCID: PMC7140923 DOI: 10.1104/pp.19.01344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/25/2020] [Indexed: 05/25/2023]
Abstract
Triacylglycerols (TAGs) are the major storage form of seed oil in oilseed plants. They are biosynthesized de novo in seed plastids and then transported into the endoplasmic reticulum. However, the transport mechanism for plastid fatty acids in developing seeds remains unknown. Here, we isolated two novel plastid fatty acid exporters (FATTYACID EXPORT 2 [FAX2] and FAX4, respectively) specifically abundant in seed embryos during the seed-filling stage in Arabidopsis (Arabidopsis thaliana). FAX2 and FAX4 were both localized to the chloroplast membrane. FAX2 and FAX4 loss-of-function mutations caused deficiencies in embryo and cotyledon development. Seeds of fax2fax4 double mutants exhibited significantly reduced TAG contents but elevated levels of plastid lipid contents compared with those of wild-type plants. By contrast, overexpression of FAX2 or FAX4 enhanced TAG deposition. Seed-feeding experiments showed that the two FAX proteins transported 14C-plastid fatty acids and 13C-oleic acids for TAG biosynthesis during the seed-filling stage. Together, our data demonstrate that FAX2 and FAX4 play critical roles in transporting plastid fatty acids for TAG biosynthesis during seed embryo development. These two transporters may have broad application for increasing oil yield in oilseed crops.
Collapse
Affiliation(s)
- Nannan Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
- Research Center of Bioremediation and Bioenergy, College of Resources and Environment, Southwest University, Beibei, Chongqing 400715, China
| | - Hongjun Meng
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Shengting Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
- Research Center of Bioremediation and Bioenergy, College of Resources and Environment, Southwest University, Beibei, Chongqing 400715, China
| | - Zhen Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
- Research Center of Bioremediation and Bioenergy, College of Resources and Environment, Southwest University, Beibei, Chongqing 400715, China
| | - Xin Zhao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Shufeng Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
- Research Center of Bioremediation and Bioenergy, College of Resources and Environment, Southwest University, Beibei, Chongqing 400715, China
| | - Aihui Liu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Song
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaohong Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanwen Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
46
|
Richardson LGL, Schnell DJ. Origins, function, and regulation of the TOC-TIC general protein import machinery of plastids. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1226-1238. [PMID: 31730153 PMCID: PMC7031061 DOI: 10.1093/jxb/erz517] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 11/14/2019] [Indexed: 05/11/2023]
Abstract
The evolution of chloroplasts from the original endosymbiont involved the transfer of thousands of genes from the ancestral bacterial genome to the host nucleus, thereby combining the two genetic systems to facilitate coordination of gene expression and achieve integration of host and organelle functions. A key element of successful endosymbiosis was the evolution of a unique protein import system to selectively and efficiently target nuclear-encoded proteins to their site of function within the chloroplast after synthesis in the cytoplasm. The chloroplast TOC-TIC (translocon at the outer chloroplast envelope-translocon at the inner chloroplast envelope) general protein import system is conserved across the plant kingdom, and is a system of hybrid origin, with core membrane transport components adapted from bacterial protein targeting systems, and additional components adapted from host genes to confer the specificity and directionality of import. In vascular plants, the TOC-TIC system has diversified to mediate the import of specific, functionally related classes of plastid proteins. This functional diversification occurred as the plastid family expanded to fulfill cell- and tissue-specific functions in terrestrial plants. In addition, there is growing evidence that direct regulation of TOC-TIC activities plays an essential role in the dynamic remodeling of the organelle proteome that is required to coordinate plastid biogenesis with developmental and physiological events.
Collapse
Affiliation(s)
- Lynn G L Richardson
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Danny J Schnell
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
47
|
Handing off iron to the next generation: how does it get into seeds and what for? Biochem J 2020; 477:259-274. [DOI: 10.1042/bcj20190188] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 01/24/2023]
Abstract
To ensure the success of the new generation in annual species, the mother plant transfers a large proportion of the nutrients it has accumulated during its vegetative life to the next generation through its seeds. Iron (Fe) is required in large amounts to provide the energy and redox power to sustain seedling growth. However, free Fe is highly toxic as it leads to the generation of reactive oxygen species. Fe must, therefore, be tightly bound to chelating molecules to allow seed survival for long periods of time without oxidative damage. Nevertheless, when conditions are favorable, the seed's Fe stores have to be readily remobilized to achieve the transition toward active photosynthesis before the seedling becomes able to take up Fe from the environment. This is likely critical for the vigor of the young plant. Seeds constitute an important dietary source of Fe, which is essential for human health. Understanding the mechanisms of Fe storage in seeds is a key to improve their Fe content and availability in order to fight Fe deficiency. Seed longevity, germination efficiency and seedling vigor are also important traits that may be affected by the chemical form under which Fe is stored. In this review, we summarize the current knowledge on seed Fe loading during development, long-term storage and remobilization upon germination. We highlight how this knowledge may help seed Fe biofortification and discuss how Fe storage may affect the seed quality and germination efficiency.
Collapse
|
48
|
Filiz E, Aydın Akbudak M. Investigation of PIC1 (permease in chloroplasts 1) gene’s role in iron homeostasis: bioinformatics and expression analyses in tomato and sorghum. Biometals 2019; 33:29-44. [DOI: 10.1007/s10534-019-00228-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 11/28/2019] [Indexed: 11/28/2022]
|
49
|
Wang M, Kawakami Y, Bhullar NK. Molecular Analysis of Iron Deficiency Response in Hexaploid Wheat. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00067] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
50
|
Li S, Liu X, Zhou X, Li Y, Yang W, Chen R. Improving Zinc and Iron Accumulation in Maize Grains Using the Zinc and Iron Transporter ZmZIP5. PLANT & CELL PHYSIOLOGY 2019; 60:2077-2085. [PMID: 31165152 DOI: 10.1093/pcp/pcz104] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/16/2019] [Indexed: 05/25/2023]
Abstract
Zinc (Zn) and iron (Fe) are essential micronutrients for plant growth. Thus, it is important to understand the mechanisms of uptake, transport and accumulation of these micronutrients in maize to improve crop nutritional quality. Members of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) family are responsible for the uptake and transport of divalent metal ions in plant. Previously, we showed that ZmZIP5 functionally complemented the Zn uptake double mutant zrt1zrt2, Fe-uptake double mutant fet3fet4 in yeast. In our β-glucuronidase (GUS) assay, the germinated seeds, young sheaths, and stems of ZmZIP5-promoter-GUS transgenic plants were stained. We generated and compared two maize lines for this study: Ubi-ZmZIP5, in which ZmZIP5 was constitutively overexpressed, and ZmZIP5i, a RNAi line. At the seedling stage, high levels of Zn and Fe were found in the roots and shoots of Ubi-ZmZIP5 plants, whereas low levels were found in the ZmZIP5i plants. Zn and Fe contents decreased in the seeds of Ubi-ZmZIP5 plants and remained unchanged in the seeds of ZmZIP5i plants. The seeds of Leg-ZmZIP5 plants, in which ZmZIP5 overexpression is specific to the endosperm, had higher levels of Zn and Fe. Our results imply that ZmZIP5 may play a role in Zn and Fe uptake and root-to-shoot translocation. Endosperm-specific ZmZIP5 overexpression could be useful for Zn and Fe biofortification of cereal grains.
Collapse
Affiliation(s)
- Suzhen Li
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoqing Liu
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaojin Zhou
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ye Li
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenzhu Yang
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rumei Chen
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|