1
|
Chen S, Li S, Qian S, Xing J, Liao J, Guo Z. Stress on the Endoplasmic Reticulum Impairs the Photosynthetic Efficiency of Chlamydomonas. Int J Mol Sci 2024; 25:13304. [PMID: 39769069 PMCID: PMC11679888 DOI: 10.3390/ijms252413304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Stress on the Endoplasmic reticulum (ER) can severely disrupt cellular function by impairing protein folding and post-translational modifications, thereby leading to the accumulation of poor-quality proteins. However, research on its impact on photosynthesis remains limited. In this study, we investigated the impact of ER stress on the photosynthetic efficiency of Chlamydomonas reinhardtii using pharmacological inducers, tunicamycin (TM) and brefeldin A (BFA), which specifically target the ER. Our measurements of photosynthetic parameters showed that these ER stress-inducing compounds caused a significant decline in photosynthetic efficiency. A proteomic analysis confirmed that TM and BFA effectively induce ER stress, as evidenced by the upregulation of ER stress-related proteins. Furthermore, we observed a widespread downregulation of photosynthesis-related proteins, which is consistent with the results obtained from our measurements of photosynthetic parameters. These findings suggest that the stress on ER has a profound impact on chloroplast function, disrupting photosynthetic processes. This study highlights the critical interdependence between the ER and chloroplasts, and it underscores the broader implications of ER stress on the cellular metabolism and energy efficiency of photosynthetic organisms.
Collapse
Affiliation(s)
- Sa Chen
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110161, China;
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (S.L.); (S.Q.); (J.X.)
| | - Shuyu Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (S.L.); (S.Q.); (J.X.)
| | - Shiyuan Qian
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (S.L.); (S.Q.); (J.X.)
| | - Jiale Xing
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (S.L.); (S.Q.); (J.X.)
| | - Jingjing Liao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (S.L.); (S.Q.); (J.X.)
| | - Zhifu Guo
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110161, China;
| |
Collapse
|
2
|
Qin S, Zhang Y, Tian Z. Quantitative N-glycoproteomics characterization of differential N-glycosylation in Sorghum bicolor under salinity stress. Biochem Biophys Res Commun 2024; 737:150509. [PMID: 39137587 DOI: 10.1016/j.bbrc.2024.150509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Salt stress is one of the significant environmental stresses that severely affect plant growth and development. Here, we report quantitative N-glycoproteomics characterization of differential N-glycosylation in Sorghum bicolor under low, median and high salinity stress. 21,621 intact N-glycopeptides coming from the combination of 127 N-glycan structures on 6574 N-glycosites from 5321 proteins were identified; differential N-glycosylation was observed for 682 N-glycoproteins which are mainly involved in the pathways of biosynthesis of secondary metabolites, biosynthesis of amino acids and several metabolic pathways. 41 N-glycan structures modifying on 338 N-glycopeptides from 122 glycoproteins were co-quantified and deregulated under at least one salt stress, including enzymes of energy production and carbohydrate metabolisms, cell wall organization related proteins, glycosyltransferases and so on. Intriguingly, with increasing salt concentration, there was an increase in the percentage of complex N-glycans on the altered N-glycopeptides. Furthermore, the observation of glycoproteins with distinct salt sensitivity is noteworthy, particularly the upregulated hyposensitive glycoproteins that predominantly undergo complex N-glycan modification. This is the first N-glycoproteome description of salt stress response at the intact N-glycopeptide level in sorghum and a further validation of data reported here would likely provide deeper insights into the stress physiology of this important crop plant.
Collapse
Affiliation(s)
- Shanshan Qin
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China
| | - Yumiao Zhang
- College of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, 256600, China
| | - Zhixin Tian
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
3
|
Anjum S, Prasad A, Mastud P, Mishra G, Patankar S. N-terminal targeting sequences and coding sequences act in concert to determine the localization and trafficking pathway of apicoplast proteins in Toxoplasma gondii. Biol Cell 2024; 116:e2400027. [PMID: 39390850 DOI: 10.1111/boc.202400027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/07/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024]
Abstract
BACKGOUND INFORMATION Toxoplasma gondii has a relict plastid, the apicoplast, to which nuclear-encoded proteins are targeted after synthesis in the cytosol. Proteins exclusively found in the apicoplast use a Golgi-independent route for trafficking, while dually targeted proteins found in both the apicoplast and the mitochondrion use a Golgi-dependent route. For apicoplast targeting, N-terminal signal sequences have been shown to direct the localization of different reporters. In this study, we use chimeric proteins to dissect out the roles of N-terminal sequences and coding sequences in apicoplast localization and the choice of the trafficking route. RESULTS We show that when the N-termini of a dually targeted protein, TgTPx1/2, or of an apicoplast protein, TgACP, are fused with the reporter protein, enhanced green fluorescent protein (eGFP) or endogenous proteins, TgSOD2, TgSOD3, TgACP, or TgTPx1/2, the chimeric proteins exhibit flexibility in apicoplast targeting depending on the coding sequences. Further, the chimeras that are localized to the apicoplast use different trafficking pathways depending on the combination of the N-terminal signals and the coding sequences. CONCLUSION AND SIGNIFICANCE This report shows, for the first time, that in addition to the N-terminal signal sequences, targeting and trafficking signals also reside within the coding sequences of apicoplast proteins.
Collapse
Affiliation(s)
- Sofia Anjum
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Aparna Prasad
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Pragati Mastud
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Geetanjali Mishra
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Swati Patankar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
4
|
Liu J, Chen H, Liu L, Meng X, Liu Q, Ye Q, Wen J, Wang T, Dong J. A cargo sorting receptor mediates chloroplast protein trafficking through the secretory pathway. THE PLANT CELL 2024; 36:3770-3786. [PMID: 38963880 PMCID: PMC11371137 DOI: 10.1093/plcell/koae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Nucleus-encoded chloroplast proteins can be transported via the secretory pathway. The molecular mechanisms underlying the trafficking of chloroplast proteins between the intracellular compartments are largely unclear, and a cargo sorting receptor has not previously been identified in the secretory pathway. Here, we report a cargo sorting receptor that is specifically present in Viridiplantae and mediates the transport of cargo proteins to the chloroplast. Using a forward genetic analysis, we identified a gene encoding a transmembrane protein (MtTP930) in barrel medic (Medicago truncatula). Mutation of MtTP930 resulted in impaired chloroplast function and a dwarf phenotype. MtTP930 is highly expressed in the aerial parts of the plant and is localized to the endoplasmic reticulum (ER) exit sites and Golgi. MtTP930 contains typical cargo sorting receptor motifs, interacts with Sar1, Sec12, and Sec24, and participates in coat protein complex II vesicular transport. Importantly, MtTP930 can recognize the cargo proteins plastidial N-glycosylated nucleotide pyrophosphatase/phosphodiesterase (MtNPP) and α-carbonic anhydrase (MtCAH) in the ER and then transport them to the chloroplast via the secretory pathway. Mutation of a homolog of MtTP930 in Arabidopsis (Arabidopsis thaliana) resulted in a similar dwarf phenotype. Furthermore, MtNPP-GFP failed to localize to chloroplasts when transgenically expressed in Attp930 protoplasts, implying that these cargo sorting receptors are conserved in plants. These findings fill a gap in our understanding of the mechanism by which chloroplast proteins are sorted and transported via the secretory pathway.
Collapse
Affiliation(s)
- Jinling Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hong Chen
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Li Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangzhao Meng
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qianwen Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qinyi Ye
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangli Dong
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Zhang K, Nakamura S, Ohtsubo KI, Mitsui T. Morphological, Molecular Structural and Physicochemical Characterization of Starch Granules Formed in Endosperm of Rice with Ectopic Overexpression of α-Amylase. J Appl Glycosci (1999) 2024; 71:23-32. [PMID: 38799415 PMCID: PMC11116087 DOI: 10.5458/jag.jag.jag-2023_0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/23/2023] [Indexed: 05/29/2024] Open
Abstract
The objective of this study was to characterize the endosperm starch in rice that ectopically overexpressed the α-amylase. Transgenic rice plants, transformed with cauliflower mosaic virus 35S promoter driven AmyI-1 (35S::AmyI-1) and AmyII-4 (35S::AmyII-4), and 10 kDa prolamin promoter driven AmyI-1 (P10::AmyI-1), were cultivated under standard conditions (23 °C, 12 h in the dark/ 26 °C, 12 h in the light), and brown grains were subsequently harvested. Each grain displayed characteristic chalkiness, while electron microanalyzer (EPMA)-SEM images disclosed numerous small pits on the surface of the starch granules, attributable to α-amylase activity. Fluorescence labeling and capillary electrophoresis analysis of starch chain length distribution revealed no significant alterations in the starches of 35S::AmyI-1 and 35S::AmyII-4 transgenic rice compared to the wild-type. Conversely, the extremely short α-glucan chains (DP 2-8) exhibited a dramatic increase in the P10::AmyI-1 starch. Rapid visco-analyzer analysis also identified variations in the chain length distribution of P10::AmyI-1 starch, manifesting as changes in viscosity. Moreover, 1H-NMR analysis uncovered dynamic modifications in the molecular structure of starch in rice grain transformed with P10::AmyI-1, which was found to possess unprecedented structural characteristics.
Collapse
Affiliation(s)
- Kuo Zhang
- Graduate School of Science and Technology, Niigata University
| | - Sumiko Nakamura
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences
| | - Ken-ichi Ohtsubo
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences
| | - Toshiaki Mitsui
- Graduate School of Science and Technology, Niigata University
| |
Collapse
|
6
|
Wang W, Xu L, Jiang G, Li Z, Bi YH, Zhou ZG. Characterization of a novel γ-type carbonic anhydrase, Sjγ-CA2, in Saccharina japonica: Insights into carbon concentration mechanism in macroalgae. Int J Biol Macromol 2024; 263:130506. [PMID: 38423426 DOI: 10.1016/j.ijbiomac.2024.130506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Carbonic anhydrase (CA) is a crucial component of CO2-concentrating mechanism (CCM) in macroalgae. In Saccharina japonica, an important brown seaweed, 11 CAs, including 5 α-, 3 β-, and 3 γ-CAs, have been documented. Among them, one α-CA and one β-CA were localized in the periplasmic space, one α-CA was found in the chloroplast, and one γ-CA was situated in mitochondria. Notably, the known γ-CAs have predominantly been identified in mitochondria. In this study, we identified a chloroplastic γ-type CA, Sjγ-CA2, in S. japonica. Based on the reported amino acid sequence of Sjγ-CA2, the epitope peptide for monoclonal antibody production was selected as 165 Pro-305. After purification and specificity identification, anti-SjγCA2 monoclonal antibody was employed in immunogold electron microscopy. The results illustrated that Sjγ-CA2 was localized in the chloroplasts of both gametophytes and sporophytes of S. japonica. Subsequently, immunoprecipitation coupled with LC-MS/MS analysis revealed that Sjγ-CA2 mainly interacted with photosynthesis-related proteins. Moreover, the first 65 amino acids at N-terminal of Sjγ-CA2 was identified as the chloroplast transit peptide by the transient expression of GFP-SjγCA2 fused protein in tabacco. Real-time PCR results demonstrated an up-regulation of the transcription of Sjγ-CA2 gene in response to high CO2 concentration. These findings implied that Sjγ-CA2 might contribute to minimizing the leakage of CO2 from chloroplasts and help maintaining a high concentration of CO2 around Rubisco.
Collapse
Affiliation(s)
- Wen Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred By Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Ling Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred By Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Gang Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred By Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhi Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred By Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yan-Hui Bi
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred By Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Zhi-Gang Zhou
- International Research Center for Marine Biosciences Conferred By Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
7
|
Li F, Ye H, Wang Y, Zhou J, Zhang G, Liu X, Lu X, Wang F, Chen Q, Chen G, Xiao Y, Tang W, Deng H. Transcriptomic Profiling of Two Rice Thermo-Sensitive Genic Male Sterile Lines with Contrasting Seed Storability after Artificial Accelerated Aging Treatment. PLANTS (BASEL, SWITZERLAND) 2024; 13:945. [PMID: 38611475 PMCID: PMC11013862 DOI: 10.3390/plants13070945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
Seed storability has a significant impact on seed vitality and is a crucial genetic factor in maintaining seed value during storage. In this study, RNA sequencing was used to analyze the seed transcriptomes of two rice thermo-sensitive genic male sterile (TGMS) lines, S1146S (storage-tolerant) and SD26S (storage-susceptible), with 0 and 7 days of artificial accelerated aging treatment. In total, 2658 and 1523 differentially expressed genes (DEGs) were identified in S1146S and SD26S, respectively. Among these DEGs, 729 (G1) exhibited similar regulation patterns in both lines, while 1924 DEGs (G2) were specific to S1146S, 789 DEGs (G3) were specific to SD26S, and 5 DEGs (G4) were specific to contrary differential expression levels. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that "translation", "ribosome", "oxidative phosphorylation", "ATP-dependent activity", "intracellular protein transport", and "regulation of DNA-templated transcription" were significantly enriched during seed aging. Several genes, like Os01g0971400, Os01g0937200, Os03g0276500, Os05g0328632, and Os07g0214300, associated with seed storability were identified in G4. Core genes Os03g0100100 (OsPMEI12), Os03g0320900 (V2), Os02g0494000, Os02g0152800, and Os03g0710500 (OsBiP2) were identified in protein-protein interaction (PPI) networks. Seed vitality genes, MKKK62 (Os01g0699600), OsFbx352 (Os10g0127900), FSE6 (Os05g0540000), and RAmy3E (Os08g0473600), related to seed storability were identified. Overall, these results provide novel perspectives for studying the molecular response and related genes of different-storability rice TGMS lines under artificial aging conditions. They also provide new ideas for studying the storability of hybrid rice.
Collapse
Affiliation(s)
- Fan Li
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| | - Hongbing Ye
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| | - Yingfeng Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| | - Jieqiang Zhou
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| | - Guilian Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| | - Xiong Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| | - Xuedan Lu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| | - Feng Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| | - Qiuhong Chen
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| | - Guihua Chen
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| | - Yunhua Xiao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| | - Wenbang Tang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410128, China
| | - Huabing Deng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| |
Collapse
|
8
|
Zaragoza-Gómez A, García-Caffarel E, Cruz-Zamora Y, González J, Anaya-Muñoz VH, Cruz-García F, Juárez-Díaz JA. The Nβ motif of NaTrxh directs secretion as an endoplasmic reticulum transit peptide and variations might result in different cellular targeting. PLoS One 2023; 18:e0287087. [PMID: 37824466 PMCID: PMC10569557 DOI: 10.1371/journal.pone.0287087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023] Open
Abstract
Soluble secretory proteins with a signal peptide reach the extracellular space through the endoplasmic reticulum-Golgi conventional pathway. During translation, the signal peptide is recognised by the signal recognition particle and results in a co-translational translocation to the endoplasmic reticulum to continue the secretory pathway. However, soluble secretory proteins lacking a signal peptide are also abundant, and several unconventional (endoplasmic reticulum/Golgi independent) pathways have been proposed and some demonstrated. This work describes new features of the secretion signal called Nβ, originally identified in NaTrxh, a plant extracellular thioredoxin, that does not possess an orthodox signal peptide. We provide evidence that other proteins, including thioredoxins type h, with similar sequences are also signal peptide-lacking secretory proteins. To be a secretion signal, positions 5, 8 and 9 must contain neutral residues in plant proteins-a negative residue in position 8 is suggested in animal proteins-to maintain the Nβ motif negatively charged and a hydrophilic profile. Moreover, our results suggest that the NaTrxh translocation to the endoplasmic reticulum occurs as a post-translational event. Finally, the Nβ motif sequence at the N- or C-terminus could be a feature that may help to predict protein localisation, mainly in plant and animal proteins.
Collapse
Affiliation(s)
- Andre Zaragoza-Gómez
- Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, UNAM, Ciudad de Mexico, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de Mexico, México
| | - Emilio García-Caffarel
- Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, UNAM, Ciudad de Mexico, México
| | - Yuridia Cruz-Zamora
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, UNAM, Ciudad de Mexico, México
| | - James González
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, UNAM, Ciudad de Mexico, México
| | - Víctor Hugo Anaya-Muñoz
- Escuela Nacional Estudios Superiores unidad Morelia, Universidad Nacional Autónoma de México, Campus Morelia, Morelia, Michoacán, México
| | - Felipe Cruz-García
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, UNAM, Ciudad de Mexico, México
| | - Javier Andrés Juárez-Díaz
- Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, UNAM, Ciudad de Mexico, México
| |
Collapse
|
9
|
Ochiai A. Discovery of new functions of food proteins and their structural development for multifunctional applications. Biosci Biotechnol Biochem 2023; 87:1102-1110. [PMID: 37480241 DOI: 10.1093/bbb/zbad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Proteins and peptides derived from various food sources are used in a variety of applications, including functional foods, pharmaceuticals, and cosmetics. The three-dimensional structure of proteins provides useful insights into their functions and essential information for the creation of proteins with new functions. In this review, a series of functional conversion technologies based on protein structural information derived from foods traditionally consumed in Japan, such as natto (fermented soybeans) and rice, are introduced. For natto, we first identified 2 types of Bacillus subtilis-derived endolytic and exolytic enzymes with different modes of action on soybean cell wall polysaccharides and then focused on the technology used to create an endolytic enzyme from an exolytic enzyme. By applying this technology, a method for creating novel bioactive peptides from rice seed proteins was established. The modified peptides created could provide diverse options for the production of substances such as pharmaceuticals and cosmetic materials.
Collapse
Affiliation(s)
- Akihito Ochiai
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, Niigata, Japan
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| |
Collapse
|
10
|
Meinnel T. Tracking N-terminal protein processing from the Golgi to the chromatophore of a rhizarian amoeba. PLANT PHYSIOLOGY 2022; 189:1226-1231. [PMID: 35485189 PMCID: PMC9237673 DOI: 10.1093/plphys/kiac173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/16/2022] [Indexed: 05/03/2023]
Abstract
Mass spectrometry analysis of protein processing in a photosynthetic rhizarian amoeba, Paulinella chromatophora, suggests a major trafficking route from the cytosol to the chromatophore via the Golgi.
Collapse
|
11
|
Oberleitner L, Perrar A, Macorano L, Huesgen PF, Nowack ECM. A bipartite chromatophore transit peptide and N-terminal protein processing in the Paulinella chromatophore. PLANT PHYSIOLOGY 2022; 189:152-164. [PMID: 35043947 PMCID: PMC9070848 DOI: 10.1093/plphys/kiac012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/06/2021] [Indexed: 05/19/2023]
Abstract
The amoeba Paulinella chromatophora contains photosynthetic organelles, termed chromatophores, which evolved independently from plastids in plants and algae. At least one-third of the chromatophore proteome consists of nucleus-encoded (NE) proteins that are imported across the chromatophore double envelope membranes. Chromatophore-targeted proteins exceeding 250 amino acids (aa) carry a conserved N-terminal extension presumably involved in protein targeting, termed the chromatophore transit peptide (crTP). Short imported proteins do not carry discernable targeting signals. To explore whether the import of proteins is accompanied by their N-terminal processing, here we identified N-termini of 208 chromatophore-localized proteins by a mass spectrometry-based approach. Our study revealed extensive N-terminal acetylation and proteolytic processing in both NE and chromatophore-encoded (CE) fractions of the chromatophore proteome. Mature N-termini of 37 crTP-carrying proteins were identified, of which 30 were cleaved in a common processing region. Surprisingly, only the N-terminal ∼50 aa (part 1) become cleaved upon import. This part contains a conserved adaptor protein-1 complex-binding motif known to mediate protein sorting at the trans-Golgi network followed by a predicted transmembrane helix, implying that part 1 anchors the protein co-translationally in the endoplasmic reticulum and mediates trafficking to the chromatophore via the Golgi. The C-terminal part 2 contains conserved secondary structural elements, remains attached to the mature proteins, and might mediate translocation across the chromatophore inner membrane. Short imported proteins remain largely unprocessed. Finally, this work illuminates N-terminal processing of proteins encoded in an evolutionary-early-stage organelle and suggests host-derived posttranslationally acting factors involved in regulation of the CE chromatophore proteome.
Collapse
Affiliation(s)
- Linda Oberleitner
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Andreas Perrar
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, 52425 Jülich, Germany
- Cologne Excellence Cluster on Stress Responses in Ageing-Associated Diseases, CECAD, Medical Faculty and University Hospital, University of Cologne, 50931 Cologne, Germany
| | - Luis Macorano
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, 52425 Jülich, Germany
- Cologne Excellence Cluster on Stress Responses in Ageing-Associated Diseases, CECAD, Medical Faculty and University Hospital, University of Cologne, 50931 Cologne, Germany
- Department of Chemistry, Institute of Biochemistry, University of Cologne, 50674 Cologne, Germany
| | | |
Collapse
|
12
|
Ibrahim EI, Attia KA, Ghazy AI, Itoh K, Almajhdi FN, Al-Doss AA. Molecular Characterization and Functional Localization of a Novel SUMOylation Gene in Oryza sativa. BIOLOGY 2021; 11:biology11010053. [PMID: 35053052 PMCID: PMC8772976 DOI: 10.3390/biology11010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/19/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The small ubiquitin-related modifier genes regulate the function of the cellular proteins, which are associated with cell stress-tolerance. Identification and understanding the functional localization of these genes are very important to mitigate the stresses. In this study, we identified a novel small ubiquitin-related modifier gene and studied its functional localization in the cell. This new finding will be very valuable in increasing our understanding of the mechanism of stress-tolerance. Abstract Small ubiquitin-related modifier (SUMO) regulates the cellular function of diverse proteins through post-translational modifications. The current study defined a new homolog of SUMO genes in the rice genome and named it OsSUMO7. Putative protein analysis of OsSUMO7 detected SUMOylation features, including di-glycine (GG) and consensus motifs (ΨKXE/D) for the SUMOylation site. Phylogenetic analysis demonstrated the high homology of OsSUMO7 with identified rice SUMO genes, which indicates that the OsSUMO7 gene is an evolutionarily conserved SUMO member. RT-PCR analysis revealed that OsSUMO7 was constitutively expressed in all plant organs. Bioinformatic analysis defined the physicochemical properties and structural model prediction of OsSUMO7 proteins. A red fluorescent protein (DsRed), fused with the OsSUMO7 protein, was expressed and localized mainly in the nucleus and formed nuclear subdomain structures. The fusion proteins of SUMO-conjugating enzymes with the OsSUMO7 protein were co-expressed and co-localized in the nucleus and formed nuclear subdomains. This indicated that the OsSUMO7 precursor is processed, activated, and transported to the nucleus through the SUMOylation system of the plant cell.
Collapse
Affiliation(s)
- Eid I. Ibrahim
- Biotechnology Lab., Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.I.G.); (A.A.A.-D.)
- Correspondence: (E.I.I.); (K.A.A.)
| | - Kotb A. Attia
- Center of Excellence in Biotechnology Research, King Saud University, P.O. Box 2455-11451, Riyadh 11451, Saudi Arabia
- Rice Biotechnology Lab., Rice Research Department, Field Crops Research Institute, ARC, Sakha, Kafr, EL-Sheikh 33717, Egypt
- Correspondence: (E.I.I.); (K.A.A.)
| | - Abdelhalim I. Ghazy
- Biotechnology Lab., Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.I.G.); (A.A.A.-D.)
| | - Kimiko Itoh
- Institute of Science and Technology, Niigata University, Niigata 950-2181, Japan;
| | - Fahad N. Almajhdi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Abdullah A. Al-Doss
- Biotechnology Lab., Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.I.G.); (A.A.A.-D.)
| |
Collapse
|
13
|
Baslam M, Mitsui T, Sueyoshi K, Ohyama T. Recent Advances in Carbon and Nitrogen Metabolism in C3 Plants. Int J Mol Sci 2020; 22:E318. [PMID: 33396811 PMCID: PMC7795015 DOI: 10.3390/ijms22010318] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022] Open
Abstract
C and N are the most important essential elements constituting organic compounds in plants. The shoots and roots depend on each other by exchanging C and N through the xylem and phloem transport systems. Complex mechanisms regulate C and N metabolism to optimize plant growth, agricultural crop production, and maintenance of the agroecosystem. In this paper, we cover the recent advances in understanding C and N metabolism, regulation, and transport in plants, as well as their underlying molecular mechanisms. Special emphasis is given to the mechanisms of starch metabolism in plastids and the changes in responses to environmental stress that were previously overlooked, since these changes provide an essential store of C that fuels plant metabolism and growth. We present general insights into the system biology approaches that have expanded our understanding of core biological questions related to C and N metabolism. Finally, this review synthesizes recent advances in our understanding of the trade-off concept that links C and N status to the plant's response to microorganisms.
Collapse
Affiliation(s)
- Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan; (M.B.); (T.M.)
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan; (M.B.); (T.M.)
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
| | - Kuni Sueyoshi
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
| | - Takuji Ohyama
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
- Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| |
Collapse
|
14
|
Chiu LY, Chen IH, Hsu YH, Tsai CH. The Lipid Transfer Protein 1 from Nicotiana benthamiana Assists Bamboo mosaic virus Accumulation. Viruses 2020; 12:E1361. [PMID: 33261222 PMCID: PMC7760991 DOI: 10.3390/v12121361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022] Open
Abstract
Host factors play a pivotal role in regulating virus infection. Uncovering the mechanism of how host factors are involved in virus infection could pave the way to defeat viral disease. In this study, we characterized a lipid transfer protein, designated NbLTP1 in Nicotiana benthamiana, which was downregulated after Bamboo mosaic virus (BaMV) inoculation. BaMV accumulation significantly decreased in NbLTP1-knockdown leaves and protoplasts compared with the controls. The subcellular localization of the NbLTP1-orange fluorescent protein (OFP) was mainly the extracellular matrix. However, when we removed the signal peptide (NbLTP1/ΔSP-OFP), most of the expressed protein targeted chloroplasts. Both NbLTP1-OFP and NbLTP1/ΔSP-OFP were localized in chloroplasts when we removed the cell wall. These results suggest that NbLTP1 may have a secondary targeting signal. Transient overexpression of NbLTP1 had no effect on BaMV accumulation, but that of NbLTP1/ΔSP significantly increased BaMV expression. NbLTP1 may be a positive regulator of BaMV accumulation especially when its expression is associated with chloroplasts, where BaMV replicates. The mutation was introduced to the predicted phosphorylation site to simulate the phosphorylated status, NbLTP/ΔSP/P(+), which could still assist BaMV accumulation. By contrast, a mutant lacking calmodulin-binding or simulates the phosphorylation-negative status could not support BaMV accumulation. The lipid-binding activity of LTP1 was reported to be associated with calmodulin-binding and phosphorylation, by which the C-terminus functional domain of NbLTP1 may play a critical role in BaMV accumulation.
Collapse
Affiliation(s)
- Ling-Ying Chiu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; (L.-Y.C.); (I.-H.C.); (Y.-H.H.)
| | - I-Hsuan Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; (L.-Y.C.); (I.-H.C.); (Y.-H.H.)
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; (L.-Y.C.); (I.-H.C.); (Y.-H.H.)
- Advanced Plant Biotechnology Center, National Chung Hing University, Taichung 402, Taiwan
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; (L.-Y.C.); (I.-H.C.); (Y.-H.H.)
- Advanced Plant Biotechnology Center, National Chung Hing University, Taichung 402, Taiwan
| |
Collapse
|
15
|
Luo Y, Zhang L, Li W, Xu M, Zhang C, Wang L. HS1 Is Involved in Hygromycin Resistance Through Facilitating Hygromycin Phosphotransferase Transportation From Cytosol to Chloroplast. FRONTIERS IN PLANT SCIENCE 2020; 11:613. [PMID: 32528495 PMCID: PMC7266939 DOI: 10.3389/fpls.2020.00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
The transportation of proteins encoded by nuclear genes from plant cytosol to chloroplast is essential for chloroplast functions. Proteins that have a chloroplast transit peptide (cTP) are imported into chloroplasts via translocases on the outer and inner chloroplast envelope. How proteins lacking transit sequence are imported into chloroplast remains largely unknown. During screening of an Arabidopsis population transformed with a hairpin RNA gene-silencing library, we identified some transgenic plants that had active expression of the selectable marker gene, hygromycin phosphotransferase (HPT), but were sensitive to the selection agent, hygromycin B (HyB). Mutant and complementation analysis showed that this HyB sensitivity of transgenic plants was due to silencing of the HS1 (Hygromycin-Sensitive 1) gene. HS1 is localized in the chloroplast and interacts physically with HPT in yeast cells and in planta. Fluorescence and immunoblotting analysis showed that HPT could not be transported effectively into chloroplasts in Aths1, which resulted in Aths1 is sensitivity to hygromycin on higher HyB-containing medium. These data revealed that HS1 is involved in HyB resistance in transgenic Arabidopsis through facilitating cytosol-chloroplast transportation of HPT. Our findings provide novel insights on transportation of chloroplast cTP-less proteins.
Collapse
|
16
|
Bulychev AA, Foissner I. Inhibition of endosomal trafficking by brefeldin A interferes with long-distance interaction between chloroplasts and plasma membrane transporters. PHYSIOLOGIA PLANTARUM 2020; 169:122-134. [PMID: 31816092 PMCID: PMC7216902 DOI: 10.1111/ppl.13058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/22/2019] [Accepted: 12/05/2019] [Indexed: 06/01/2023]
Abstract
The huge internodal cells of the characean green algae are a convenient model to study long-range interactions between organelles via cytoplasmic streaming. It has been shown previously that photometabolites and reactive oxygen species released by illuminated chloroplasts are transmitted to remote shaded regions where they interfere with photosynthetic electron transport and the differential activity of plasma membrane transporters, and recent findings indicated the involvement of organelle trafficking pathways. In the present study, we applied pulse amplitude-modulated microscopy and pH-sensitive electrodes to study the effect of brefeldin A (BFA), an inhibitor of vesicle trafficking, on long-distance interactions in Chara australis internodal cells. These data were compared with BFA-induced changes in organelle number, size and distribution using fluorescent dyes and confocal laser scanning microscopy. We found that BFA completely and immediately inhibited endocytosis in internodal cells and induced the aggregation of organelles into BFA compartments within 30-120 min of treatment. The comparison with the physiological data suggests that the early response, the arrest of endocytosis, is related to the attenuation of differences in surface pH, whereas the longer lasting formation of BFA compartments is probably responsible for the acceleration of the cyclosis-mediated interaction between chloroplasts. These data indicate that intracellular turnover of membrane material might be important for the circulation of electric currents between functionally distinct regions in illuminated characean internodes and that translational movement of metabolites is delayed by transient binding of the transported substances to organelles.
Collapse
Affiliation(s)
| | - Ilse Foissner
- Department of BiosciencesUniversity of SalzburgSalzburgAustria
| |
Collapse
|
17
|
Ueoka H, Sasaki K, Miyawaki T, Ichino T, Tatsumi K, Suzuki S, Yamamoto H, Sakurai N, Suzuki H, Shibata D, Yazaki K. A Cytosol-Localized Geranyl Diphosphate Synthase from Lithospermum erythrorhizon and Its Molecular Evolution. PLANT PHYSIOLOGY 2020; 182:1933-1945. [PMID: 31974127 PMCID: PMC7140919 DOI: 10.1104/pp.19.00999] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/22/2019] [Indexed: 05/23/2023]
Abstract
Geranyl diphosphate (GPP) is the direct precursor of all monoterpenoids and is the prenyl source of many meroterpenoids, such as geranylated coumarins. GPP synthase (GPPS) localized in plastids is responsible for providing the substrate for monoterpene synthases and prenyltransferases for synthesis of aromatic substances that are also present in plastids, but GPPS activity in Lithospermum erythrorhizon localizes to the cytosol, in which GPP is utilized for the biosynthesis of naphthoquinone pigments, which are shikonin derivatives. This study describes the identification of the cytosol-localized GPPS gene, LeGPPS, through EST- and homology-based approaches followed by functional analyses. The deduced amino acid sequence of the unique LeGPPS showed greater similarity to that of farnesyl diphosphate synthase (FPPS), which generally localizes to the cytosol, than to plastid-localized conventional GPPS. Biochemical characterization revealed that recombinant LeGPPS predominantly produces GPP along with a trace amount of FPP. LeGPPS expression was mainly detected in root bark, in which shikonin derivatives are produced, and in shikonin-producing cultured cells. The GFP fusion protein in onion (Allium cepa) cells localized to the cytosol. Site-directed mutagenesis of LeGPPS and another FPPS homolog identified in this study, LeFPPS1, showed that the His residue at position 100 of LeGPPS, adjacent to the first Asp-rich motif, contributes to substrate preference and product specificity, leading to GPP formation. These results suggest that LeGPPS, which is involved in shikonin biosynthesis, is recruited from cytosolic FPPS and that point mutation(s) result in the acquisition of GPPS activity.
Collapse
Affiliation(s)
- Hayato Ueoka
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| | - Kanako Sasaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| | - Tatsuya Miyawaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| | - Takuji Ichino
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| | - Kanade Tatsumi
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| | - Shiro Suzuki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| | | | - Nozomu Sakurai
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Hideyuki Suzuki
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Daisuke Shibata
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| |
Collapse
|
18
|
Kitajima-Koga A, Baslam M, Hamada Y, Ito N, Taniuchi T, Takamatsu T, Oikawa K, Kaneko K, Mitsui T. Functional Analysis of Rice Long-Chain Acyl-CoA Synthetase 9 ( OsLACS9) in the Chloroplast Envelope Membrane. Int J Mol Sci 2020; 21:E2223. [PMID: 32210132 PMCID: PMC7139535 DOI: 10.3390/ijms21062223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 02/04/2023] Open
Abstract
The long-chain acyl-CoA synthetases (LACSs) are involved in lipid synthesis, fatty acid catabolism, and the transport of fatty acids between subcellular compartments. These enzymes catalyze the critical reaction of fatty acyl chains to fatty acyl-CoAs for the triacylglycerol biosynthesis used as carbon and energy reserves. In Arabidopsis, LACSs are encoded by a family of nine genes, with LACS9 being the only member located in the chloroplast envelope membrane. However, the comprehensive role of LACS9 and its contribution to plant metabolism have not been explored thoroughly. In this study, we report on the identification and characterization of LACS9 mutants in rice plants. Our results indicate that the loss-of-function mutations in OsLACS9 affect the architecture of internodes resulting in dwarf plants with large starch granules in the chloroplast, showing the suppression of starch degradation. Moreover, the plastid localization of α-amylase I-1 (AmyI-1)-a key enzyme involved in starch breakdown in plastids-was suppressed in the lacs9 mutant line. Immunological and confocal laser scanning microscopy analyses showed that OsLACS9-GFP is located in the chloroplast envelope in green tissue. Microscopic analysis showed that OsLACS9s interact with each other in the plastid envelope membrane. Furthermore, OsLACS9 is also one of the proteins transported to plastids without a transit peptide or involvement of the Toc/Tic complex system. To identify the plastid-targeting signal of OsLACS9, the transient expression and localization of a series of N-terminal truncated OsLACS9-green fluorescent protein (GFP) fusion proteins were examined. Truncation analyses identified the N-terminal 30 amino acid residues to be required for OsLACS9 plastid localization. Overall, the data in this study provide an advanced understanding of the function of OsLACS9 and its role in starch degradation and plant growth.
Collapse
Affiliation(s)
- Aya Kitajima-Koga
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Yuuki Hamada
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Namiko Ito
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Tomoko Taniuchi
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Takeshi Takamatsu
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Kazusato Oikawa
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Kentaro Kaneko
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
19
|
Luginbuehl LH, El‐Sharnouby S, Wang N, Hibberd JM. Fluorescent reporters for functional analysis in rice leaves. PLANT DIRECT 2020; 4:e00188. [PMID: 32072132 PMCID: PMC7011658 DOI: 10.1002/pld3.188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/19/2019] [Accepted: 11/07/2019] [Indexed: 05/22/2023]
Abstract
Fluorescent reporters have facilitated non-invasive imaging in multiple plant species and thus allowed the analysis of processes ranging from gene expression and protein localization to cellular patterning. However, in rice, a globally important crop and model species, there are relatively few reports of fluorescent proteins being used in leaves. Fluorescence imaging is particularly difficult in the rice leaf blade, likely due to a high degree of light scattering in this tissue. To address this, we investigated approaches to improve deep imaging in mature rice leaf blades. We found that ClearSee treatment, which has previously been used to visualize fluorescent reporters in whole tissues of plants, led to improved imaging in rice. Removing epidermal and subtending mesophyll cell layers was faster than ClearSee and also reduced light scattering such that imaging of fluorescent proteins in deeper leaf layers was possible. To expand the range of fluorescent proteins suitable for imaging in rice, we screened twelve whose spectral profiles spanned most of the visible spectrum. This identified five proteins (mTurquoise2, mNeonGreen, mClover3, mKOκ, and tdTomato) that are robustly expressed and detectable in mesophyll cells of stably transformed plants. Using microparticle bombardment, we show that mTurquoise2 and mNeonGreen can be used for simultaneous multicolor imaging of different subcellular compartments. Overall, we conclude that mTurquoise2, mNeonGreen, mClover3, mKOκ, and tdTomato are suitable for high-resolution live imaging of rice leaves, both after transient and stable transformation. Along with the rapid microparticle bombardment method, which allows transient transformation of major cell types in the leaf blade, these fluorescent reporters should greatly facilitate the analysis of gene expression and cell biology in rice.
Collapse
Affiliation(s)
| | | | - Na Wang
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
20
|
Salman A, Kotb A, Ghazy AI, Ibrahim EI, Al-Ateeq TK. Structural and functional characterization of Tomato SUMO1 gene. Saudi J Biol Sci 2020; 27:352-357. [PMID: 31889857 PMCID: PMC6933199 DOI: 10.1016/j.sjbs.2019.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/12/2019] [Accepted: 10/13/2019] [Indexed: 11/28/2022] Open
Abstract
Small ubiquitin-related modifier (SUMO) genes regulate various functions of target proteins through post-translational modification. The SUMO proteins have a similar 3-dimensional structure as that of ubiquitin proteins and occur through a cascade of enzymatic reactions. In the present study we have cloned a new SUMO gene from Tomato (Solanum lycopersicum L.), cv Saudi-1, named SlS-SUMO1 gene by PCR using specific primers. This gene has SUMO member's features such as C-terminal diglycine (GG) motif as processing site by ULP (ubiquitin-like SUMO protease) and has SUMO consensus ΨKXE/D sequence. Phylogenetic analysis showed that SlS-SUMO1 gene is highly conserved and homologous to Potatoes Ca-SUMO1 and Ca-SUMO2 genes based on sequence similarity. Expression protein of SlS-SUMO1 gene found to be localized in the nucleus, cytoplasm, and nuclear envelop or nuclear pore complex. SUMO conjugating enzyme SCE1a with SlS-SUMO1 protein co-expressed and co-localized in nucleus and formed nuclear subdomains. This study reported that the SlS-SUMO1 gene is a member of SUMO family and its SUMO protein processing using GG motif and activate and transport to nucleus through Sumoylation system in the plant cell.
Collapse
Affiliation(s)
- Alamery Salman
- Center of Excellence in Biotechnology Research, Biochemistry Department, KSU, POX 2455-11451, Saudi Arabia
| | - Attia Kotb
- Center of Excellence in Biotechnology Research, Biochemistry Department, KSU, POX 2455-11451, Saudi Arabia.,Rice Biotechnology Lab., Rice Research Dep., Field Crops Research Institute, ARC, Sakha, Kafr, EL-Sheikh, Egypt
| | - Abdelhalim I Ghazy
- Plant Production Department, Food Science and Agricultural College, King Saud University, POX 2455-11451, Riyadh, Saudi Arabia
| | - Eid I Ibrahim
- Plant Production Department, Food Science and Agricultural College, King Saud University, POX 2455-11451, Riyadh, Saudi Arabia
| | - Talal K Al-Ateeq
- Plant Production Department, Food Science and Agricultural College, King Saud University, POX 2455-11451, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Frank S, Hollmann J, Mulisch M, Matros A, Carrión CC, Mock HP, Hensel G, Krupinska K. Barley cysteine protease PAP14 plays a role in degradation of chloroplast proteins. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6057-6069. [PMID: 31403664 PMCID: PMC6859807 DOI: 10.1093/jxb/erz356] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/31/2019] [Indexed: 05/18/2023]
Abstract
Chloroplast protein degradation is known to occur both inside chloroplasts and in the vacuole. Genes encoding cysteine proteases have been found to be highly expressed during leaf senescence. However, it remains unclear where they participate in chloroplast protein degradation. In this study HvPAP14, which belongs to the C1A family of cysteine proteases, was identified in senescing barley (Hordeum vulgare L.) leaves by affinity enrichment using the mechanism-based probe DCG-04 targeting cysteine proteases and subsequent mass spectrometry. Biochemical analyses and expression of a HvPAP14:RFP fusion construct in barley protoplasts was used to identify the subcellular localization and putative substrates of HvPAP14. The HvPAP14:RFP fusion protein was detected in the endoplasmic reticulum and in vesicular bodies. Immunological studies showed that HvPAP14 was mainly located in chloroplasts, where it was found in tight association with thylakoid membranes. The recombinant enzyme was activated by low pH, in accordance with the detection of HvPAP14 in the thylakoid lumen. Overexpression of HvPAP14 in barley revealed that the protease can cleave LHCB proteins and PSBO as well as the large subunit of Rubisco. HvPAP14 is involved in the normal turnover of chloroplast proteins and may have a function in bulk protein degradation during leaf senescence.
Collapse
Affiliation(s)
- Susann Frank
- Institute of Botany, Christian-Albrechts-University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - Julien Hollmann
- Institute of Botany, Christian-Albrechts-University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany
- Solana Research, Eichenallee 9, Windeby, Germany
| | - Maria Mulisch
- Institute of Botany, Christian-Albrechts-University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany
- Central Microscopy, Christian-Albrechts-University of Kiel, Olshausenstraße 40, Kiel, Germany
| | - Andrea Matros
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland, OT Gatersleben, Germany
| | - Cristian C Carrión
- Instituto de Fisiología Vegetal, INFIVE, CONICET-UNLP, cc 327, 1900 La Plata, Argentina
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland, OT Gatersleben, Germany
| | - Götz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland, OT Gatersleben, Germany
| | - Karin Krupinska
- Institute of Botany, Christian-Albrechts-University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany
- Correspondence:
| |
Collapse
|
22
|
Munakata R, Takemura T, Tatsumi K, Moriyoshi E, Yanagihara K, Sugiyama A, Suzuki H, Seki H, Muranaka T, Kawano N, Yoshimatsu K, Kawahara N, Yamaura T, Grosjean J, Bourgaud F, Hehn A, Yazaki K. Isolation of Artemisia capillaris membrane-bound di-prenyltransferase for phenylpropanoids and redesign of artepillin C in yeast. Commun Biol 2019; 2:384. [PMID: 31646187 PMCID: PMC6802118 DOI: 10.1038/s42003-019-0630-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 09/24/2019] [Indexed: 11/08/2022] Open
Abstract
Plants produce various prenylated phenolic metabolites, including flavonoids, phloroglucinols, and coumarins, many of which have multiple prenyl moieties and display various biological activities. Prenylated phenylpropanes, such as artepillin C (3,5-diprenyl-p-coumaric acid), exhibit a broad range of pharmaceutical effects. To date, however, no prenyltransferases (PTs) involved in the biosynthesis of phenylpropanes and no plant enzymes that introduce multiple prenyl residues to native substrates with different regio-specificities have been identified. This study describes the isolation from Artemisia capillaris of a phenylpropane-specific PT gene, AcPT1, belonging to UbiA superfamily. This gene encodes a membrane-bound enzyme, which accepts p-coumaric acid as its specific substrate and transfers two prenyl residues stepwise to yield artepillin C. These findings provide novel insights into the molecular evolution of this gene family, contributing to the chemical diversification of plant specialized metabolites. These results also enabled the design of a yeast platform for the synthetic biology of artepillin C.
Collapse
Affiliation(s)
- Ryosuke Munakata
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611–0011 Japan
- Université de Lorraine, INRA, LAE, F54000 Nancy, France
| | - Tomoya Takemura
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611–0011 Japan
| | - Kanade Tatsumi
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611–0011 Japan
| | - Eiko Moriyoshi
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611–0011 Japan
| | - Koki Yanagihara
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611–0011 Japan
| | - Akifumi Sugiyama
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611–0011 Japan
| | - Hideyuki Suzuki
- Department of Research & Development, Kazusa DNA Research Institute, Kisarazu, 292-0818 Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, 565-0871 Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, 565-0871 Japan
| | - Noriaki Kawano
- Tsukuba Division, Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, 305-0843 Japan
| | - Kayo Yoshimatsu
- Tsukuba Division, Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, 305-0843 Japan
| | - Nobuo Kawahara
- Tsukuba Division, Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, 305-0843 Japan
| | - Takao Yamaura
- The Yamashina Botanical Research Institute, Nippon Shinyaku Co. Ltd., 39 Sakanotsuji-cho, Ohyake, Yamashina-ku Kyoto, 607-8182 Japan
| | | | - Frédéric Bourgaud
- Plant Advanced Technologies – PAT, 19 Avenue de la forêt de Haye, 54500 Vandoeuvre, France
| | - Alain Hehn
- Université de Lorraine, INRA, LAE, F54000 Nancy, France
| | - Kazufumi Yazaki
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611–0011 Japan
| |
Collapse
|
23
|
Yue C, Cao H, Lin H, Hu J, Ye Y, Li J, Hao Z, Hao X, Sun Y, Yang Y, Wang X. Expression patterns of alpha-amylase and beta-amylase genes provide insights into the molecular mechanisms underlying the responses of tea plants (Camellia sinensis) to stress and postharvest processing treatments. PLANTA 2019; 250:281-298. [PMID: 31025197 DOI: 10.1007/s00425-019-03171-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/22/2019] [Indexed: 05/27/2023]
Abstract
The alpha-amylase and beta-amylase genes have been identified from tea plants, and their bioinformatic characteristics and expression patterns provide a foundation for further studies to elucidate their biological functions. Alpha-amylase (AMY)- and beta-amylase (BAM)-mediated starch degradation plays central roles in carbohydrate metabolism and participates extensively in the regulation of a wide range of biological processes, including growth, development and stress response. However, the AMY and BAM genes in tea plants (Camellia sinensis) are poorly understood, and the biological functions of these genes remain to be elucidated. In this study, three CsAMY and nine CsBAM genes from tea plants were identified based on genomic and transcriptomic database analyses, and the genes were subjected to comprehensive bioinformatic characterization. Phylogenetic analysis showed that the CsAMY proteins could be clustered into three different subfamilies, and nine CsBAM proteins could be classified into four groups. Putative catalytically active proteins were identified based on multiple sequence alignments, and the tertiary structures of these proteins were analyzed. Cis-element analysis indicated that CsAMY and CsBAM were extensively involved in tea plant growth, development and stress response. In addition, the CsAMY and CsBAM genes were differentially expressed in various tissues and were regulated by stress treatments (e.g., ABA, cold, drought and salt stress), and the expression patterns of these genes were associated with the postharvest withering and rotation processes. Taken together, our results will enhance the understanding of the roles of the CsAMY and CsBAM gene families in the growth, development and stress response of tea plants and of the potential functions of these genes in determining tea quality during the postharvest processing of tea leaves.
Collapse
Affiliation(s)
- Chuan Yue
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science, Universities of Fujian Province, Fuzhou, China.
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China.
| | - Hongli Cao
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science, Universities of Fujian Province, Fuzhou, China
| | - Hongzheng Lin
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science, Universities of Fujian Province, Fuzhou, China
| | - Juan Hu
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science, Universities of Fujian Province, Fuzhou, China
| | - Yijun Ye
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science, Universities of Fujian Province, Fuzhou, China
| | - Jiamin Li
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science, Universities of Fujian Province, Fuzhou, China
| | - Zhilong Hao
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science, Universities of Fujian Province, Fuzhou, China
| | - Xinyuan Hao
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Yun Sun
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science, Universities of Fujian Province, Fuzhou, China
| | - Yajun Yang
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China.
| | - Xinchao Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China.
| |
Collapse
|
24
|
New insights into the origin and evolution of α-amylase genes in green plants. Sci Rep 2019; 9:4929. [PMID: 30894656 PMCID: PMC6426938 DOI: 10.1038/s41598-019-41420-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/05/2018] [Indexed: 01/16/2023] Open
Abstract
Gene duplication is a source of genetic materials and evolutionary changes, and has been associated with gene family expansion. Functional divergence of duplicated genes is strongly directed by natural selections such as organism diversification and novel feature acquisition. We show that, plant α-amylase gene family (AMY) is comprised of six subfamilies (AMY1-AMY6) that fell into two ancient phylogenetic lineages (AMY3 and AMY4). Both AMY1 and AMY2 are grass-specific and share a single-copy ancestor, which is derived from grass AMY3 genes that have undergone massive tandem and whole-genome duplications during evolution. Ancestral features of AMY4 and AMY5/AMY6 genes have been retained among four green algal sequences (Chrein_08.g362450, Vocart_0021s0194, Dusali_0430s00012 and Monegl_16464), suggesting a gene duplication event following Chlorophyceae diversification. The observed horizontal gene transfers between plant and bacterial AMYs, and chromosomal locations of AMY3 and AMY4 genes in the most ancestral green body (C. reinhardtii), provide evidences for the monophyletic origin of plant AMYs. Despite subfamily-specific sequence divergence driven by natural selections, the active site and SBS1 are well-conserved across different AMY isoforms. The differentiated electrostatic potentials and hydrogen bands-forming residue polymorphisms, further imply variable digestive abilities for a broad substrates in particular tissues or subcellular localizations.
Collapse
|
25
|
Ju L, Deng G, Liang J, Zhang H, Li Q, Pan Z, Yu M, Long H. Structural organization and functional divergence of high isoelectric point α-amylase genes in bread wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). BMC Genet 2019; 20:25. [PMID: 30845909 PMCID: PMC6404323 DOI: 10.1186/s12863-019-0732-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/26/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND High isoelectric point α-amylase genes (Amy1) play major roles during cereal seed germination, and are associated with unacceptable high residual α-amylase activities in ripe wheat grains. However, in wheat and barley, due to extremely high homology of duplicated copies, and large and complex genome background, the knowledge on this multigene family is limited. RESULTS In the present work, we identified a total of 41 Amy1 genes among 13 investigated grasses. By using genomic resources and experimental validation, the exact copy numbers and chromosomal locations in wheat and barley were determined. Phylogenetic and syntenic analyses revealed tandem gene duplication and chromosomal rearrangement leading to separation of Amy1 into two distinct loci, Amy1θ and Amy1λ. The divergence of Amy1λ from Amy1θ was driven by adaptive selection pressures performed on two amino acids, Arg97 and Asn233 (P > 0.95*). The predicted protein structural alteration caused by substitution of Asp233Asn in the conserved starch binding surface site, and significantly expressional differentiation during seed germination and grain development provided evidence of functional divergence between Amy1θ and Amy1λ genes. We screened out candidate copies (TaAmy1-A1/A2 and TaAmy1-D1) associated with high residual α-amylase activities in ripe grains. Furthermore, we proposed an evolutionary model for expansion dynamics of Amy1 genes. CONCLUSIONS Our study provides comprehensive analyses of the Amy1 multigene family, and defines the fixation of two spatially structural Amy1 loci in wheat and barley. Potential functional divergence between them is reflected by their sequence features and expressional patterns, and driven by gene duplication, chromosome rearrangement and natural selections during gene family evolution. Furthermore, the discrimination of differentially effective copies during seed germination and/or grain development will provide guidance to manipulation of α-amylase activity in wheat and barley breeding for better yield and processing properties.
Collapse
Affiliation(s)
- Liangliang Ju
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Guangbing Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Junjun Liang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Haili Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Qiao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Zhifen Pan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Maoqun Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| |
Collapse
|
26
|
LaBrant E, Barnes AC, Roston RL. Lipid transport required to make lipids of photosynthetic membranes. PHOTOSYNTHESIS RESEARCH 2018; 138:345-360. [PMID: 29961189 DOI: 10.1007/s11120-018-0545-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/20/2018] [Indexed: 05/21/2023]
Abstract
Photosynthetic membranes provide much of the usable energy for life on earth. To produce photosynthetic membrane lipids, multiple transport steps are required, including fatty acid export from the chloroplast stroma to the endoplasmic reticulum, and lipid transport from the endoplasmic reticulum to the chloroplast envelope membranes. Transport of hydrophobic molecules through aqueous space is energetically unfavorable and must be catalyzed by dedicated enzymes, frequently on specialized membrane structures. Here, we review photosynthetic membrane lipid transport to the chloroplast in the context of photosynthetic membrane lipid synthesis. We independently consider the identity of transported lipids, the proteinaceous transport components, and membrane structures which may allow efficient transport. Recent advances in lipid transport of chloroplasts, bacteria, and other systems strongly suggest that lipid transport is achieved by multiple mechanisms which include membrane contact sites with specialized protein machinery. This machinery is likely to include the TGD1, 2, 3 complex with the TGD5 and TGD4/LPTD1 systems, and may also include a number of proteins with domains similar to other membrane contact site lipid-binding proteins. Importantly, the likelihood of membrane contact sites does not preclude lipid transport by other mechanisms including vectorial acylation and vesicle transport. Substantial progress is needed to fully understand all photosynthetic membrane lipid transport processes and how they are integrated.
Collapse
Affiliation(s)
- Evan LaBrant
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St, Lincoln, NE, 68588, USA
| | - Allison C Barnes
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St, Lincoln, NE, 68588, USA
| | - Rebecca L Roston
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St, Lincoln, NE, 68588, USA.
| |
Collapse
|
27
|
Inomata T, Baslam M, Masui T, Koshu T, Takamatsu T, Kaneko K, Pozueta-Romero J, Mitsui T. Proteomics Analysis Reveals Non-Controlled Activation of Photosynthesis and Protein Synthesis in a Rice npp1 Mutant under High Temperature and Elevated CO₂ Conditions. Int J Mol Sci 2018; 19:ijms19092655. [PMID: 30205448 PMCID: PMC6165220 DOI: 10.3390/ijms19092655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 11/26/2022] Open
Abstract
Rice nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) catalyzes the hydrolytic breakdown of the pyrophosphate and phosphodiester bonds of a number of nucleotides including ADP-glucose and ATP. Under high temperature and elevated CO2 conditions (HT + ECO2), the npp1 knockout rice mutant displayed rapid growth and high starch content phenotypes, indicating that NPP1 exerts a negative effect on starch accumulation and growth. To gain further insight into the mechanisms involved in the NPP1 downregulation induced starch overaccumulation, in this study we conducted photosynthesis, leaf proteomic, and chloroplast phosphoproteomic analyses of wild-type (WT) and npp1 plants cultured under HT + ECO2. Photosynthesis in npp1 leaves was significantly higher than in WT. Additionally, npp1 leaves accumulated higher levels of sucrose than WT. The proteomic analyses revealed upregulation of proteins related to carbohydrate metabolism and the protein synthesis system in npp1 plants. Further, our data indicate the induction of 14-3-3 proteins in npp1 plants. Our finding demonstrates a higher level of protein phosphorylation in npp1 chloroplasts, which may play an important role in carbohydrate accumulation. Together, these results offer novel targets and provide additional insights into carbohydrate metabolism regulation under ambient and adverse conditions.
Collapse
Affiliation(s)
- Takuya Inomata
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan.
| | - Marouane Baslam
- Department of Biochemistry, Niigata University, Niigata 950-218, Japan.
| | - Takahiro Masui
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan.
| | - Tsutomu Koshu
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan.
| | - Takeshi Takamatsu
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan.
- Department of Biochemistry, Niigata University, Niigata 950-218, Japan.
| | - Kentaro Kaneko
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan.
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología (CSIC, UPNA, Gobierno de Navarra), Mutiloako Etorbidea Zenbaki Gabe, 31192 Mutiloabeti, Nafarroa, Spain.
| | - Toshiaki Mitsui
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan.
- Department of Biochemistry, Niigata University, Niigata 950-218, Japan.
| |
Collapse
|
28
|
Nomura T, Kuchida R, Kitaoka N, Kato Y. Molecular diversity of tuliposide B-converting enzyme in tulip (Tulipa gesneriana): identification of the third isozyme with a distinct expression profile. Biosci Biotechnol Biochem 2018; 82:810-820. [DOI: 10.1080/09168451.2018.1438170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
6-Tuliposide B (PosB), a major secondary metabolite that accumulates in tulip (Tulipa gesneriana), is converted to the antibacterial lactone, tulipalin B (PaB), by PosB-converting enzyme (TCEB). TgTCEB1 and TgTCEB-R, which encode TCEB, are specifically expressed in tulip pollen and roots, respectively, but are hardly expressed in other tissues (e.g. leaves) despite the presence of substantial PosB-converting activity, suggesting the existence of another TCEB isozyme. Here, we describe the identification of TgTCEB-L (“L” for leaf), a paralog of TgTCEB1 and TgTCEB-R, from leaves via native enzyme purification. The enzymatic characters of TgTCEB-L, including catalytic activity and subcellular localization, were substantially the same as those of TgTCEB1 and TgTCEB-R. However, TgTCEB-L did not exhibit tissue-specific expression. Identification of TgTCEB-L explains the PosB-converting activity detected in tissues where TgTCEB1 and TgTCEB-R transcripts could not be detected, indicating that tulip subtilizes the three TgTCEB isozymes depending on the tissue.
Collapse
Affiliation(s)
- Taiji Nomura
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Japan
| | - Ryo Kuchida
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Japan
| | - Naoki Kitaoka
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Japan
| | - Yasuo Kato
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Japan
| |
Collapse
|
29
|
Oikawa K, Inomata T, Hirao Y, Yamamoto T, Baslam M, Kaneko K, Mitsui T. Proteomic Analysis of Rice Golgi Membranes Isolated by Floating Through Discontinuous Sucrose Density Gradient. Methods Mol Biol 2018; 1696:91-105. [PMID: 29086398 DOI: 10.1007/978-1-4939-7411-5_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The Golgi apparatus is an endomembrane system organelle and has roles in glycosylation, sorting, and secretion of proteins in the secretory pathway. It has a central function in living organism and is also essential for plant growth. Proteomic approaches to identify the Golgi membrane proteins have been performed in cell suspension cultures and many Golgi membrane-associated proteins were found, whereas it has well established in rice seedling yet. In this chapter, our recent improving published methods for isolated rice Golgi membranes by floating through a discontinuous sucrose density gradient are provided in detail with proteomic analyses.
Collapse
Affiliation(s)
- Kazusato Oikawa
- Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan
| | - Takuya Inomata
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata, 950-2181, Japan
| | - Yoshitoshi Hirao
- Biofluid Biomarker Center, Niigata University, 2-8050 Ikarashi, Niigata, 950-2181, Japan
| | - Tadashi Yamamoto
- Biofluid Biomarker Center, Niigata University, 2-8050 Ikarashi, Niigata, 950-2181, Japan
| | - Marouane Baslam
- Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata, 950-2181, Japan
| | - Kentaro Kaneko
- Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata, 950-2181, Japan
| | - Toshiaki Mitsui
- Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan.
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata, 950-2181, Japan.
| |
Collapse
|
30
|
Bellucci M, De Marchis F, Pompa A. The endoplasmic reticulum is a hub to sort proteins toward unconventional traffic pathways and endosymbiotic organelles. JOURNAL OF EXPERIMENTAL BOTANY 2017; 69:7-20. [PMID: 28992342 DOI: 10.1093/jxb/erx286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/24/2017] [Indexed: 05/25/2023]
Abstract
The discovery that much of the extracellular proteome in eukaryotic cells consists of proteins lacking a signal peptide, which cannot therefore enter the secretory pathway, has led to the identification of alternative protein secretion routes bypassing the Golgi apparatus. However, proteins harboring a signal peptide for translocation into the endoplasmic reticulum can also be transported along these alternative routes, which are still far from being well elucidated in terms of the molecular machineries and subcellular/intermediate compartments involved. In this review, we first try to provide a definition of all the unconventional protein secretion pathways in eukaryotic cells, as those pathways followed by proteins directed to an 'external space' bypassing the Golgi, where 'external space' refers to the extracellular space plus the lumen of the secretory route compartments and the inner space of mitochondria and plastids. Then, we discuss the role of the endoplasmic reticulum in sorting proteins toward unconventional traffic pathways in plants. In this regard, various unconventional pathways exporting proteins from the endoplasmic reticulum to the vacuole, plasma membrane, apoplast, mitochondria, and plastids are described, including the short routes followed by the proteins resident in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Michele Bellucci
- Institute of Biosciences and Bioresources, Research Division of Perugia, National Research Council (CNR), Italy
| | - Francesca De Marchis
- Institute of Biosciences and Bioresources, Research Division of Perugia, National Research Council (CNR), Italy
| | - Andrea Pompa
- Institute of Biosciences and Bioresources, Research Division of Perugia, National Research Council (CNR), Italy
| |
Collapse
|
31
|
Mass spectrometry approaches to study plant endomembrane trafficking. Semin Cell Dev Biol 2017; 80:123-132. [PMID: 29042236 DOI: 10.1016/j.semcdb.2017.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/12/2017] [Indexed: 01/08/2023]
Abstract
Intracellular proteins reside in highly controlled microenvironments in which they perform context specific functions. Trafficking pathways have evolved that enable proteins to be precisely delivered to the correct location but also to re-locate in response to environmental perturbation. Trafficking of membrane proteins to their correct endomembrane location is especially important to enable them to carry out their function. Although a considerable amount of knowledge about membrane protein trafficking in plants has been delivered by years of dedicated research, there are still significant gaps in our understanding of this process. Further knowledge of endomembrane trafficking is dependent on thorough characterization of the subcellular components that constitute the endomembrane system. Such studies are challenging for a number of reasons including the complexity of the plant endomembrane system, inability to purify individual constituents, discrimination protein cargo for full time residents of compartments, and the fact that many proteins function at more than one location. In this review, we describe the components of the secretory pathway and focus on how mass spectrometry based proteomics methods have helped elucidation of this pathway. We demonstrate that the combination of targeted and untargeted approaches is allowing research into new areas of the secretory pathway investigation. Finally we describe new enabling technologies that will impact future studies in this area.
Collapse
|
32
|
Hartings S, Paradies S, Karnuth B, Eisfeld S, Mehsing J, Wolff C, Levey T, Westhoff P, Meierhoff K. The DnaJ-Like Zinc-Finger Protein HCF222 Is Required for Thylakoid Membrane Biogenesis in Plants. PLANT PHYSIOLOGY 2017; 174:1807-1824. [PMID: 28572458 PMCID: PMC5490910 DOI: 10.1104/pp.17.00401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/31/2017] [Indexed: 05/22/2023]
Abstract
To understand the biogenesis of the thylakoid membrane in higher plants and to identify auxiliary proteins required to build up this highly complex membrane system, we have characterized the allelic nuclear mutants high chlorophyll fluorescence222-1 (hcf222-1) and hcf222-2 and isolated the causal gene by map-based cloning. In the ethyl methanesulfonate-induced mutant hcf222-1, the accumulation of the cytochrome b6f (Cytb6f) complex was reduced to 30% compared with the wild type. Other thylakoid membrane complexes accumulated to normal levels. The T-DNA knockout mutant hcf222-2 showed a more severe defect with respect to thylakoid membrane proteins and accumulated only 10% of the Cytb6f complex, accompanied by a reduction in photosystem II, the photosystem II light-harvesting complex, and photosystem I. HCF222 encodes a protein of 99 amino acids in Arabidopsis (Arabidopsis thaliana) that has similarities to the cysteine-rich zinc-binding domain of DnaJ chaperones. The insulin precipitation assay demonstrated that HCF222 has disulfide reductase activity in vitro. The protein is conserved in higher plants and bryophytes but absent in algae and cyanobacteria. Confocal fluorescence microscopy showed that a fraction of HCF222-green fluorescent protein was detectable in the endoplasmic reticulum but that it also could be recognized in chloroplasts. A fusion construct of HCF222 containing a plastid transit peptide targets the protein into chloroplasts and was able to complement the mutational defect. These findings indicate that the chloroplast-targeted HCF222 is indispensable for the maturation and/or assembly of the Cytb6f complex and is very likely involved in thiol-disulfide biochemistry at the thylakoid membrane.
Collapse
Affiliation(s)
- Stephanie Hartings
- Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University Düsseldorf, 40225 Duesseldorf, Germany
| | - Susanne Paradies
- Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University Düsseldorf, 40225 Duesseldorf, Germany
| | - Bianca Karnuth
- Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University Düsseldorf, 40225 Duesseldorf, Germany
| | - Sabrina Eisfeld
- Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University Düsseldorf, 40225 Duesseldorf, Germany
| | - Jasmin Mehsing
- Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University Düsseldorf, 40225 Duesseldorf, Germany
| | - Christian Wolff
- Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University Düsseldorf, 40225 Duesseldorf, Germany
| | - Tatjana Levey
- Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University Düsseldorf, 40225 Duesseldorf, Germany
| | - Peter Westhoff
- Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University Düsseldorf, 40225 Duesseldorf, Germany
| | - Karin Meierhoff
- Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University Düsseldorf, 40225 Duesseldorf, Germany
| |
Collapse
|
33
|
Nomura T, Ueno A, Ogita S, Kato Y. Molecular diversity of tuliposide B-converting enzyme in tulip (Tulipa gesneriana): identification of the root-specific isozyme. Biosci Biotechnol Biochem 2017; 81:1185-1193. [PMID: 28485211 DOI: 10.1080/09168451.2017.1295806] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
6-Tuliposide B (PosB) is a glucose ester accumulated in tulip (Tulipa gesneriana) as a major secondary metabolite. PosB serves as the precursor of the antimicrobial lactone tulipalin B (PaB), which is formed by PosB-converting enzyme (TCEB). The gene TgTCEB1, encoding a TCEB, is transcribed in tulip pollen but scarcely transcribed in other tissues (e.g. roots) even though those tissues show high TCEB activity. This led to the prediction of the presence of a TCEB isozyme with distinct tissue specificity. Herein, we describe the identification of the TgTCEB-R gene from roots via native enzyme purification; this gene is a paralog of TgTCEB1. Recombinant enzyme characterization verified that TgTCEB-R encodes a TCEB. Moreover, TgTCEB-R was localized in tulip plastids, as found for pollen TgTCEB1. TgTCEB-R is transcribed almost exclusively in roots, indicating a tissue preference for the transcription of TCEB isozyme genes.
Collapse
Affiliation(s)
- Taiji Nomura
- a Biotechnology Research Center and Department of Biotechnology , Toyama Prefectural University , Imizu, Toyama , Japan
| | - Ayaka Ueno
- a Biotechnology Research Center and Department of Biotechnology , Toyama Prefectural University , Imizu, Toyama , Japan
| | - Shinjiro Ogita
- a Biotechnology Research Center and Department of Biotechnology , Toyama Prefectural University , Imizu, Toyama , Japan.,b Faculty of Life and Environmental Sciences , Prefectural University of Hiroshima , Shobara, Hiroshima , Japan
| | - Yasuo Kato
- a Biotechnology Research Center and Department of Biotechnology , Toyama Prefectural University , Imizu, Toyama , Japan
| |
Collapse
|
34
|
Ahmed S, Ariyaratne M, Patel J, Howard AE, Kalinoski A, Phuntumart V, Morris PF. Altered expression of polyamine transporters reveals a role for spermidine in the timing of flowering and other developmental response pathways. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 258:146-155. [PMID: 28330558 DOI: 10.1016/j.plantsci.2016.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/01/2016] [Accepted: 12/08/2016] [Indexed: 05/25/2023]
Abstract
Changes in the levels of polyamines are correlated with the activation or repression of developmental response pathways, but the role of polyamine transporters in the regulation of polyamine homeostasis and thus indirectly gene expression, has not been previously addressed. Here we show that the A. thaliana and rice transporters AtPUT5 and OsPUT1 were localized to the ER, while the AtPUT2, AtPUT3, and OsPUT3 were localized to the chloroplast by transient expression in N. benthamiana. A. thaliana plants that were transformed with OsPUT1 under the control the PUT5 promoter were delayed in flowering by 16days. In contrast, put5 mutants flowered four days earlier than WT plants. The delay of flowering was associated with significantly higher levels of spermidine and spermidine conjugates in the leaves prior to flowering. A similar delay in flowering was also noted in transgenic lines with constitutive expression of either OsPUT1 or OsPUT3. All three transgenic lines had larger rosette leaves, thicker flowering stems, and produced more siliques than wild type plants. In contrast, put5 plants had smaller leaves, thinner flowering stems, and produced fewer siliques. Constitutive expression of PUTs was also associated with an extreme delay in both plant senescence and maturation rate of siliques. These experiments provide the first genetic evidence of polyamine transport in the timing of flowering, and indicate the importance of polyamine transporters in the regulation of flowering and senescence pathways.
Collapse
Affiliation(s)
- Sheaza Ahmed
- Department of Biological Sciences, Bowling Green State University, Bowling Green Oh, 43403, United States
| | - Menaka Ariyaratne
- Department of Biological Sciences, Bowling Green State University, Bowling Green Oh, 43403, United States
| | - Jigar Patel
- Department of Biological Sciences, Bowling Green State University, Bowling Green Oh, 43403, United States
| | - Alexander E Howard
- Department of Biological Sciences, Bowling Green State University, Bowling Green Oh, 43403, United States
| | - Andrea Kalinoski
- Department of Surgery, University of Toledo, 3000 Arlington Ave. Toledo, OH 43614, United States
| | - Vipaporn Phuntumart
- Department of Biological Sciences, Bowling Green State University, Bowling Green Oh, 43403, United States
| | - Paul F Morris
- Department of Biological Sciences, Bowling Green State University, Bowling Green Oh, 43403, United States.
| |
Collapse
|
35
|
Hou J, Zhang H, Liu J, Reid S, Liu T, Xu S, Tian Z, Sonnewald U, Song B, Xie C. Amylases StAmy23, StBAM1 and StBAM9 regulate cold-induced sweetening of potato tubers in distinct ways. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2317-2331. [PMID: 28369567 PMCID: PMC5447890 DOI: 10.1093/jxb/erx076] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cold-induced sweetening (CIS) in potato is detrimental to the quality of processed products. Conversion of starch to reducing sugars (RS) by amylases is considered one of the main pathways in CIS but is not well studied. The amylase genes StAmy23, StBAM1, and StBAM9 were studied for their functions in potato CIS. StAmy23 is localized in the cytoplasm, whereas StBAM1 and StBAM9 are targeted to the plastid stroma and starch granules, respectively. Genetic transformation of these amylases in potatoes by RNA interference showed that β-amylase activity could be decreased in cold-stored tubers by silencing of StBAM1 and collective silencing of StBAM1 and StBAM9. However, StBAM9 silencing did not decrease β-amylase activity. Silencing StBAM1 and StBAM9 caused starch accumulation and lower RS, which was more evident in simultaneously silenced lines, suggesting functional redundancy. Soluble starch content increased in RNAi-StBAM1 lines but decreased in RNAi-StBAM9 lines, suggesting that StBAM1 may regulate CIS by hydrolysing soluble starch and StBAM9 by directly acting on starch granules. Moreover, StBAM9 interacted with StBAM1 on the starch granules. StAmy23 silencing resulted in higher phytoglycogen and lower RS accumulation in cold-stored tubers, implying that StAmy23 regulates CIS by degrading cytosolic phytoglycogen. Our findings suggest that StAmy23, StBAM1, and StBAM9 function in potato CIS with varying levels of impact.
Collapse
Affiliation(s)
- Juan Hou
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Wuhan 430070, People's Republic of China
- National Center for Vegetable Improvement (Central China), Wuhan 430070, People's Republic of China
- Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Huiling Zhang
- Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan 430070, People's Republic of China
- College of Forestry, Henan University of Science and Technology, Luoyang 471003, People's Republic of China
| | - Jun Liu
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Wuhan 430070, People's Republic of China
- National Center for Vegetable Improvement (Central China), Wuhan 430070, People's Republic of China
- Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Stephen Reid
- Biochemistry Division, Department of Biology, Friedrich-Alexander-University Erlangen-Nuernberg, 91058 Erlangen, Germany
| | - Tengfei Liu
- National Center for Vegetable Improvement (Central China), Wuhan 430070, People's Republic of China
- Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan 430070, People's Republic of China
| | - Shijing Xu
- National Center for Vegetable Improvement (Central China), Wuhan 430070, People's Republic of China
- Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan 430070, People's Republic of China
| | - Zhendong Tian
- National Center for Vegetable Improvement (Central China), Wuhan 430070, People's Republic of China
- Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan 430070, People's Republic of China
| | - Uwe Sonnewald
- Biochemistry Division, Department of Biology, Friedrich-Alexander-University Erlangen-Nuernberg, 91058 Erlangen, Germany
| | - Botao Song
- National Center for Vegetable Improvement (Central China), Wuhan 430070, People's Republic of China
- Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan 430070, People's Republic of China
| | - Conghua Xie
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Wuhan 430070, People's Republic of China
- National Center for Vegetable Improvement (Central China), Wuhan 430070, People's Republic of China
- Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
36
|
Lv Y, Yang M, Hu D, Yang Z, Ma S, Li X, Xiong L. The OsMYB30 Transcription Factor Suppresses Cold Tolerance by Interacting with a JAZ Protein and Suppressing β-Amylase Expression. PLANT PHYSIOLOGY 2017; 173:1475-1491. [PMID: 28062835 PMCID: PMC5291022 DOI: 10.1104/pp.16.01725] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/03/2017] [Indexed: 05/17/2023]
Abstract
Cold stress is one of the major limiting factors for rice (Oryza sativa) productivity. Several MYB transcriptional factors have been reported as important regulators in the cold stress response, but the molecular mechanisms are largely unknown. In this study, we characterized a cold-responsive R2R3-type MYB gene, OsMYB30, for its regulatory function in cold tolerance in rice. Functional analysis revealed that overexpression of OsMYB30 in rice resulted in increased cold sensitivity, while the osmyb30 knockout mutant showed increased cold tolerance. Microarray and quantitative real-time polymerase chain reaction analyses revealed that a few β-amylase (BMY) genes were down-regulated by OsMYB30. The BMY activity and maltose content, which were decreased and increased in the OsMYB30 overexpression and osmyb30 knockout mutant, respectively, were correlated with the expression patterns of the BMY genes. OsMYB30 was shown to bind to the promoters of the BMY genes. These results suggested that OsMYB30 exhibited a regulatory effect on the breakdown of starch through the regulation of the BMY genes. In addition, application of maltose had a protective effect for cell membranes under cold stress conditions. Furthermore, we identified an OsMYB30-interacting protein, OsJAZ9, that had a significant effect in suppressing the transcriptional activation of OsMYB30 and in the repression of BMY genes mediated by OsMYB30. These results together suggested that OsMYB30 might be a novel regulator of cold tolerance through the negative regulation of the BMY genes by interacting with OsJAZ9 to fine-tune the starch breakdown and the content of maltose, which might contribute to the cold tolerance as a compatible solute.
Collapse
Affiliation(s)
- Yan Lv
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Mei Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Zeyu Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Siqi Ma
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
37
|
Nakata M, Fukamatsu Y, Miyashita T, Hakata M, Kimura R, Nakata Y, Kuroda M, Yamaguchi T, Yamakawa H. High Temperature-Induced Expression of Rice α-Amylases in Developing Endosperm Produces Chalky Grains. FRONTIERS IN PLANT SCIENCE 2017; 8:2089. [PMID: 29270189 PMCID: PMC5723670 DOI: 10.3389/fpls.2017.02089] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/23/2017] [Indexed: 05/05/2023]
Abstract
Global warming impairs grain filling in rice and reduces starch accumulation in the endosperm, leading to chalky-appearing grains, which damages their market value. We found previously that high temperature-induced expression of starch-lytic α-amylases during ripening is crucial for grain chalkiness. Because the rice genome carries at least eight functional α-amylase genes, identification of the α-amylase(s) that contribute most strongly to the production of chalky grains could accelerate efficient breeding. To identify α-amylase genes responsible for the production of chalky grains, we characterized the histological expression pattern of eight α-amylase genes and the influences of their overexpression on grain appearance and carbohydrate components through a series of experiments with transgenic rice plants. The promoter activity of most α-amylase genes was elevated to various extents at high temperature. Among them, the expression of Amy1A and Amy3C was induced in the internal, especially basal to dorsal, region of developing endosperm, whereas that of Amy3D was confined near the ventral aleurone. These regions coincided with the site of occurrence of chalkiness, which was in clear contrast to conventionally known expression patterns of the enzyme in the scutellum and aleurone during seed germination. Furthermore, overexpression of α-amylase genes, except for Amy3E, in developing endosperm produced various degrees of chalky grains without heat exposure, whereas that of Amy3E yielded normal translucent grains, as was the case in the vector control, even though Amy3E-overexpressing grains contained enhanced α-amylase activities. The weight of the chalky grains was decreased due to reduced amounts of starch, and microscopic observation of the chalky part of these grains revealed that their endosperm consisted of loosely packed round starch granules that had numerous pits on their surface, confirming the hydrolysis of the starch reserve by α-amylases. Moreover, the chalky grains contained increased amounts of soluble sugars including maltooligosaccharides at the expense of starch. The integrated analyses proposed that expression of Amy1A, Amy3C, and Amy3D at the specific regions of the developing endosperm could generate the chalkiness. This finding provides the fundamental knowledge to narrow down the targets for the development of high temperature-tolerant premium rice.
Collapse
|
38
|
Møller MS, Svensson B. Structural biology of starch-degrading enzymes and their regulation. Curr Opin Struct Biol 2016; 40:33-42. [DOI: 10.1016/j.sbi.2016.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 02/05/2023]
|
39
|
Baslam M, Oikawa K, Kitajima-Koga A, Kaneko K, Mitsui T. Golgi-to-plastid trafficking of proteins through secretory pathway: Insights into vesicle-mediated import toward the plastids. PLANT SIGNALING & BEHAVIOR 2016; 11:e1221558. [PMID: 27700755 PMCID: PMC5058459 DOI: 10.1080/15592324.2016.1221558] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/31/2016] [Accepted: 08/01/2016] [Indexed: 05/22/2023]
Abstract
The diversity of protein targeting pathways to plastids and their regulation in response to developmental and metabolic status is a key issue in the regulation of cellular function in plants. The general import pathways that target proteins into and across the plastid envelope with changes in gene expression are critical for plant development by regulating the response to physiological and metabolic changes within the cell. Glycoprotein targeting to complex plastids involves routing through the secretory pathway, among others. However, the mechanisms of trafficking via this system remain poorly understood. The present article discusses our results in site-specific N-glycosylation of nucleotide pyrophosphatase/phosphodiesterases (NPPs) glycoproteins and highlights protein delivery in Golgi/plastid pathway via the secretory pathway. Furthermore, we outline the hypotheses that explain the mechanism for importing vesicles trafficking with nucleus-encoded proteins into plastids.
Collapse
Affiliation(s)
- Marouane Baslam
- Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
- Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata, Japan
| | - Kazusato Oikawa
- Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Aya Kitajima-Koga
- Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Kentaro Kaneko
- Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata, Japan
| | - Toshiaki Mitsui
- Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
- Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata, Japan
- CONTACT Toshiaki Mitsui Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Niigata, 9502181, R3T 2N2 Japan
| |
Collapse
|
40
|
Kaneko K, Takamatsu T, Inomata T, Oikawa K, Itoh K, Hirose K, Amano M, Nishimura SI, Toyooka K, Matsuoka K, Pozueta-Romero J, Mitsui T. N-Glycomic and Microscopic Subcellular Localization Analyses of NPP1, 2 and 6 Strongly Indicate that trans-Golgi Compartments Participate in the Golgi to Plastid Traffic of Nucleotide Pyrophosphatase/Phosphodiesterases in Rice. PLANT & CELL PHYSIOLOGY 2016; 57:1610-28. [PMID: 27335351 PMCID: PMC4970613 DOI: 10.1093/pcp/pcw089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/26/2016] [Indexed: 05/02/2023]
Abstract
Nucleotide pyrophosphatase/phosphodiesterases (NPPs) are widely distributed N-glycosylated enzymes that catalyze the hydrolytic breakdown of numerous nucleotides and nucleotide sugars. In many plant species, NPPs are encoded by a small multigene family, which in rice are referred to NPP1-NPP6 Although recent investigations showed that N-glycosylated NPP1 is transported from the endoplasmic reticulum (ER)-Golgi system to the chloroplast through the secretory pathway in rice cells, information on N-glycan composition and subcellular localization of other NPPs is still lacking. Computer-assisted analyses of the amino acid sequences deduced from different Oryza sativa NPP-encoding cDNAs predicted all NPPs to be secretory glycoproteins. Confocal fluorescence microscopy observation of cells expressing NPP2 and NPP6 fused with green fluorescent protein (GFP) revealed that NPP2 and NPP6 are plastidial proteins. Plastid targeting of NPP2-GFP and NPP6-GFP was prevented by brefeldin A and by the expression of ARF1(Q71L), a dominant negative mutant of ADP-ribosylation factor 1 that arrests the ER to Golgi traffic, indicating that NPP2 and NPP6 are transported from the ER-Golgi to the plastidial compartment. Confocal laser scanning microscopy and high-pressure frozen/freeze-substituted electron microscopy analyses of transgenic rice cells ectopically expressing the trans-Golgi marker sialyltransferase fused with GFP showed the occurrence of contact of Golgi-derived membrane vesicles with cargo and subsequent absorption into plastids. Sensitive and high-throughput glycoblotting/mass spectrometric analyses showed that complex-type and paucimannosidic-type glycans with fucose and xylose residues occupy approximately 80% of total glycans of NPP1, NPP2 and NPP6. The overall data strongly indicate that the trans-Golgi compartments participate in the Golgi to plastid trafficking and targeting mechanism of NPPs.
Collapse
Affiliation(s)
- Kentaro Kaneko
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata, 950-2181 Japan
| | - Takeshi Takamatsu
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata, 950-2181 Japan Department of Applied Biological Chemistry, Niigata University, 2-8050 Ikarashi, Niigata, 950-2181 Japan
| | - Takuya Inomata
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata, 950-2181 Japan
| | - Kazusato Oikawa
- Department of Applied Biological Chemistry, Niigata University, 2-8050 Ikarashi, Niigata, 950-2181 Japan
| | - Kimiko Itoh
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata, 950-2181 Japan Department of Applied Biological Chemistry, Niigata University, 2-8050 Ikarashi, Niigata, 950-2181 Japan
| | - Kazuko Hirose
- Graduate School of Advanced Life Science, Frontier Research Center for Post-genomic Science and Technology, Hokkaido University, Sapporo, 001-0021 Japan
| | - Maho Amano
- Graduate School of Advanced Life Science, Frontier Research Center for Post-genomic Science and Technology, Hokkaido University, Sapporo, 001-0021 Japan
| | - Shin-Ichiro Nishimura
- Graduate School of Advanced Life Science, Frontier Research Center for Post-genomic Science and Technology, Hokkaido University, Sapporo, 001-0021 Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, Kanagawa, 230-0045 Japan
| | - Ken Matsuoka
- Laboratory of Plant Nutrition, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581 Japan
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología (CSIC, UPNA, Gobierno de Navarra), Mutiloako etorbidea zenbaki gabe, 31192 Mutiloabeti, Nafarroa, Spain
| | - Toshiaki Mitsui
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata, 950-2181 Japan Department of Applied Biological Chemistry, Niigata University, 2-8050 Ikarashi, Niigata, 950-2181 Japan
| |
Collapse
|
41
|
Bunsupa S, Hanada K, Maruyama A, Aoyagi K, Komatsu K, Ueno H, Yamashita M, Sasaki R, Oikawa A, Saito K, Yamazaki M. Molecular Evolution and Functional Characterization of a Bifunctional Decarboxylase Involved in Lycopodium Alkaloid Biosynthesis. PLANT PHYSIOLOGY 2016; 171:2432-44. [PMID: 27303024 PMCID: PMC4972286 DOI: 10.1104/pp.16.00639] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/09/2016] [Indexed: 05/03/2023]
Abstract
Lycopodium alkaloids (LAs) are derived from lysine (Lys) and are found mainly in Huperziaceae and Lycopodiaceae. LAs are potentially useful against Alzheimer's disease, schizophrenia, and myasthenia gravis. Here, we cloned the bifunctional lysine/ornithine decarboxylase (L/ODC), the first gene involved in LA biosynthesis, from the LA-producing plants Lycopodium clavatum and Huperzia serrata We describe the in vitro and in vivo functional characterization of the L. clavatum L/ODC (LcL/ODC). The recombinant LcL/ODC preferentially catalyzed the decarboxylation of l-Lys over l-ornithine (l-Orn) by about 5 times. Transient expression of LcL/ODC fused with the amino or carboxyl terminus of green fluorescent protein, in onion (Allium cepa) epidermal cells and Nicotiana benthamiana leaves, showed LcL/ODC localization in the cytosol. Transgenic tobacco (Nicotiana tabacum) hairy roots and Arabidopsis (Arabidopsis thaliana) plants expressing LcL/ODC enhanced the production of a Lys-derived alkaloid, anabasine, and cadaverine, respectively, thus, confirming the function of LcL/ODC in plants. In addition, we present an example of the convergent evolution of plant Lys decarboxylase that resulted in the production of Lys-derived alkaloids in Leguminosae (legumes) and Lycopodiaceae (clubmosses). This convergent evolution event probably occurred via the promiscuous functions of the ancestral Orn decarboxylase, which is an enzyme involved in the primary metabolism of polyamine. The positive selection sites were detected by statistical analyses using phylogenetic trees and were confirmed by site-directed mutagenesis, suggesting the importance of those sites in granting the promiscuous function to Lys decarboxylase while retaining the ancestral Orn decarboxylase function. This study contributes to a better understanding of LA biosynthesis and the molecular evolution of plant Lys decarboxylase.
Collapse
Affiliation(s)
- Somnuk Bunsupa
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan (S.B., A.M., K.A., K.K., H.U., Mad.Y., K.S., Mam.Y.);Faculty of Pharmacy, Mahidol University, Ratchathewi, Bangkok 10400, Thailand (S.B.);Kyushu Institute of Technology, Iizuka-shi, Fukuoka 820-8502, Japan (K.H.);RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama 230-0045, Japan (R.S., A.O., K.S.); andFaculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan (A.O.)
| | - Kousuke Hanada
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan (S.B., A.M., K.A., K.K., H.U., Mad.Y., K.S., Mam.Y.);Faculty of Pharmacy, Mahidol University, Ratchathewi, Bangkok 10400, Thailand (S.B.);Kyushu Institute of Technology, Iizuka-shi, Fukuoka 820-8502, Japan (K.H.);RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama 230-0045, Japan (R.S., A.O., K.S.); andFaculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan (A.O.)
| | - Akira Maruyama
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan (S.B., A.M., K.A., K.K., H.U., Mad.Y., K.S., Mam.Y.);Faculty of Pharmacy, Mahidol University, Ratchathewi, Bangkok 10400, Thailand (S.B.);Kyushu Institute of Technology, Iizuka-shi, Fukuoka 820-8502, Japan (K.H.);RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama 230-0045, Japan (R.S., A.O., K.S.); andFaculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan (A.O.)
| | - Kaori Aoyagi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan (S.B., A.M., K.A., K.K., H.U., Mad.Y., K.S., Mam.Y.);Faculty of Pharmacy, Mahidol University, Ratchathewi, Bangkok 10400, Thailand (S.B.);Kyushu Institute of Technology, Iizuka-shi, Fukuoka 820-8502, Japan (K.H.);RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama 230-0045, Japan (R.S., A.O., K.S.); andFaculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan (A.O.)
| | - Kana Komatsu
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan (S.B., A.M., K.A., K.K., H.U., Mad.Y., K.S., Mam.Y.);Faculty of Pharmacy, Mahidol University, Ratchathewi, Bangkok 10400, Thailand (S.B.);Kyushu Institute of Technology, Iizuka-shi, Fukuoka 820-8502, Japan (K.H.);RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama 230-0045, Japan (R.S., A.O., K.S.); andFaculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan (A.O.)
| | - Hideki Ueno
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan (S.B., A.M., K.A., K.K., H.U., Mad.Y., K.S., Mam.Y.);Faculty of Pharmacy, Mahidol University, Ratchathewi, Bangkok 10400, Thailand (S.B.);Kyushu Institute of Technology, Iizuka-shi, Fukuoka 820-8502, Japan (K.H.);RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama 230-0045, Japan (R.S., A.O., K.S.); andFaculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan (A.O.)
| | - Madoka Yamashita
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan (S.B., A.M., K.A., K.K., H.U., Mad.Y., K.S., Mam.Y.);Faculty of Pharmacy, Mahidol University, Ratchathewi, Bangkok 10400, Thailand (S.B.);Kyushu Institute of Technology, Iizuka-shi, Fukuoka 820-8502, Japan (K.H.);RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama 230-0045, Japan (R.S., A.O., K.S.); andFaculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan (A.O.)
| | - Ryosuke Sasaki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan (S.B., A.M., K.A., K.K., H.U., Mad.Y., K.S., Mam.Y.);Faculty of Pharmacy, Mahidol University, Ratchathewi, Bangkok 10400, Thailand (S.B.);Kyushu Institute of Technology, Iizuka-shi, Fukuoka 820-8502, Japan (K.H.);RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama 230-0045, Japan (R.S., A.O., K.S.); andFaculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan (A.O.)
| | - Akira Oikawa
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan (S.B., A.M., K.A., K.K., H.U., Mad.Y., K.S., Mam.Y.);Faculty of Pharmacy, Mahidol University, Ratchathewi, Bangkok 10400, Thailand (S.B.);Kyushu Institute of Technology, Iizuka-shi, Fukuoka 820-8502, Japan (K.H.);RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama 230-0045, Japan (R.S., A.O., K.S.); andFaculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan (A.O.)
| | - Kazuki Saito
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan (S.B., A.M., K.A., K.K., H.U., Mad.Y., K.S., Mam.Y.);Faculty of Pharmacy, Mahidol University, Ratchathewi, Bangkok 10400, Thailand (S.B.);Kyushu Institute of Technology, Iizuka-shi, Fukuoka 820-8502, Japan (K.H.);RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama 230-0045, Japan (R.S., A.O., K.S.); andFaculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan (A.O.)
| | - Mami Yamazaki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan (S.B., A.M., K.A., K.K., H.U., Mad.Y., K.S., Mam.Y.);Faculty of Pharmacy, Mahidol University, Ratchathewi, Bangkok 10400, Thailand (S.B.);Kyushu Institute of Technology, Iizuka-shi, Fukuoka 820-8502, Japan (K.H.);RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama 230-0045, Japan (R.S., A.O., K.S.); andFaculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan (A.O.)
| |
Collapse
|
42
|
Sugano S, Hayashi N, Kawagoe Y, Mochizuki S, Inoue H, Mori M, Nishizawa Y, Jiang CJ, Matsui M, Takatsuji H. Rice OsVAMP714, a membrane-trafficking protein localized to the chloroplast and vacuolar membrane, is involved in resistance to rice blast disease. PLANT MOLECULAR BIOLOGY 2016; 91:81-95. [PMID: 26879413 DOI: 10.1007/s11103-016-0444-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 01/26/2016] [Indexed: 06/05/2023]
Abstract
Membrane trafficking plays pivotal roles in many cellular processes including plant immunity. Here, we report the characterization of OsVAMP714, an intracellular SNARE protein, focusing on its role in resistance to rice blast disease caused by the fungal pathogen Magnaporthe oryzae. Disease resistance tests using OsVAMP714 knockdown and overexpressing rice plants demonstrated the involvement of OsVAMP714 in blast resistance. The overexpression of OsVAMP7111, whose product is highly homologous to OsVAMP714, did not enhance blast resistance to rice, implying a potential specificity of OsVAMP714 to blast resistance. OsVAMP714 was localized to the chloroplast in mesophyll cells and to the cellular periphery in epidermal cells of transgenic rice plant leaves. We showed that chloroplast localization is critical for the normal OsVAMP714 functioning in blast resistance by analyzing the rice plants overexpressing OsVAMP714 mutants whose products did not localize in the chloroplast. We also found that OsVAMP714 was located in the vacuolar membrane surrounding the invasive hyphae of M. oryzae. Furthermore, we showed that OsVAMP714 overexpression promotes leaf sheath elongation and that the first 19 amino acids, which are highly conserved between animal and plant VAMP7 proteins, are crucial for normal rice plant growths. Our studies imply that the OsVAMP714-mediated trafficking pathway plays an important role in rice blast resistance as well as in the vegetative growth of rice.
Collapse
Affiliation(s)
- Shoji Sugano
- Disease Resistant Crops Research Unit, GMO Center, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Nagao Hayashi
- Disease Resistant Crops Research Unit, GMO Center, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Yasushi Kawagoe
- Functional Plant Research Unit, Division of Plant Sciences, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Susumu Mochizuki
- Disease Resistant Crops Research Unit, GMO Center, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
- Graduate School and Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan
| | - Haruhiko Inoue
- Disease Resistant Crops Research Unit, GMO Center, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Masaki Mori
- Disease Resistant Crops Research Unit, GMO Center, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Yoko Nishizawa
- Disease Resistant Crops Research Unit, GMO Center, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Chang-Jie Jiang
- Disease Resistant Crops Research Unit, GMO Center, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Minami Matsui
- Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehirocho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Hiroshi Takatsuji
- Disease Resistant Crops Research Unit, GMO Center, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan.
| |
Collapse
|
43
|
Oikawa K, Mano S, Hosokawa Y, Nishimura M. Analysis of physical interaction between peroxisomes and chloroplast induced by dynamic morphological changes of peroxisomes using femtosecond laser impulsive force. ACTA ACUST UNITED AC 2016. [DOI: 10.5685/plmorphol.28.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kazusato Oikawa
- Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University
- Department of Cell Biology, National Institute for Basic Biology
| | - Shoji Mano
- Department of Evolutionary Biology and Biodiversity, National Institute for Basic Biology
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies)
| | - Yoichiroh Hosokawa
- Graduate School of Materials Science, Nara Institute of Science and Technology
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology
| |
Collapse
|
44
|
Shiraya T, Mori T, Maruyama T, Sasaki M, Takamatsu T, Oikawa K, Itoh K, Kaneko K, Ichikawa H, Mitsui T. Golgi/plastid-type manganese superoxide dismutase involved in heat-stress tolerance during grain filling of rice. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1251-63. [PMID: 25586098 PMCID: PMC6680209 DOI: 10.1111/pbi.12314] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/19/2014] [Indexed: 05/20/2023]
Abstract
Superoxide dismutase (SOD) is widely assumed to play a role in the detoxification of reactive oxygen species caused by environmental stresses. We found a characteristic expression of manganese SOD 1 (MSD1) in a heat-stress-tolerant cultivar of rice (Oryza sativa). The deduced amino acid sequence contains a signal sequence and an N-glycosylation site. Confocal imaging analysis of rice and onion cells transiently expressing MSD1-YFP showed MSD1-YFP in the Golgi apparatus and plastids, indicating that MSD1 is a unique Golgi/plastid-type SOD. To evaluate the involvement of MSD1 in heat-stress tolerance, we generated transgenic rice plants with either constitutive high expression or suppression of MSD1. The grain quality of rice with constitutive high expression of MSD1 grown at 33/28 °C, 12/12 h, was significantly better than that of the wild type. In contrast, MSD1-knock-down rice was markedly susceptible to heat stress. Quantitative shotgun proteomic analysis indicated that the overexpression of MSD1 up-regulated reactive oxygen scavenging, chaperone and quality control systems in rice grains under heat stress. We propose that the Golgi/plastid MSD1 plays an important role in adaptation to heat stress.
Collapse
Affiliation(s)
- Takeshi Shiraya
- Department of Applied Biological Chemistry, Niigata University, Niigata, Japan
| | - Taiki Mori
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Tatsuya Maruyama
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Maiko Sasaki
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Takeshi Takamatsu
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Kazusato Oikawa
- Department of Applied Biological Chemistry, Niigata University, Niigata, Japan
| | - Kimiko Itoh
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Kentaro Kaneko
- Department of Applied Biological Chemistry, Niigata University, Niigata, Japan
| | - Hiroaki Ichikawa
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Toshiaki Mitsui
- Department of Applied Biological Chemistry, Niigata University, Niigata, Japan
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| |
Collapse
|
45
|
Huang LF, Tan CC, Yeh JF, Liu HY, Liu YK, Ho SL, Lu CA. Efficient Secretion of Recombinant Proteins from Rice Suspension-Cultured Cells Modulated by the Choice of Signal Peptide. PLoS One 2015; 10:e0140812. [PMID: 26473722 PMCID: PMC4608814 DOI: 10.1371/journal.pone.0140812] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/29/2015] [Indexed: 11/25/2022] Open
Abstract
Plant-based expression systems have emerged as a competitive platform in the large-scale production of recombinant proteins. By adding a signal peptide, αAmy3sp, the desired recombinant proteins can be secreted outside transgenic rice cells, making them easy to harvest. In this work, to improve the secretion efficiency of recombinant proteins in rice expression systems, various signal peptides including αAmy3sp, CIN1sp, and 33KDsp have been fused to the N-terminus of green fluorescent protein (GFP) and introduced into rice cells to explore the efficiency of secretion of foreign proteins. 33KDsp had better efficiency than αAmy3sp and CIN1sp for the secretion of GFP from calli and suspension-cultured cells. 33KDsp was further applied for the secretion of mouse granulocyte-macrophage colony-stimulating factor (mGM-CSF) from transgenic rice suspension-cultured cells; approximately 76%–92% of total rice-derived mGM-CSF (rmGM-CSF) was detected in the culture medium. The rmGM-CSF was bioactive and could stimulate the proliferation of a murine myeloblastic leukemia cell line, NSF-60. The extracellular yield of rmGM-CSF reached 31.7 mg/L. Our study indicates that 33KDsp is better at promoting the secretion of recombinant proteins in rice suspension-cultured cell systems than the commonly used αAmy3sp.
Collapse
Affiliation(s)
- Li-Fen Huang
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, 135 Yuan-Tung Road, Taoyuan, Taiwan, ROC
- * E-mail: (L-FH); (C-AL)
| | - Chia-Chun Tan
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, 135 Yuan-Tung Road, Taoyuan, Taiwan, ROC
| | - Ju-Fang Yeh
- Department of Life Science, National Central University, Taoyuan, Taiwan, ROC
| | - Hsin-Yi Liu
- Department of Life Science, National Central University, Taoyuan, Taiwan, ROC
| | - Yu-Kuo Liu
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Shin-Lon Ho
- Department of Agronomy, National Chi-Yi University, Chiayi, Taiwan, ROC
| | - Chung-An Lu
- Department of Life Science, National Central University, Taoyuan, Taiwan, ROC
- * E-mail: (L-FH); (C-AL)
| |
Collapse
|
46
|
Yoshimoto N, Onuma M, Mizuno S, Sugino Y, Nakabayashi R, Imai S, Tsuneyoshi T, Sumi SI, Saito K. Identification of a flavin-containing S-oxygenating monooxygenase involved in alliin biosynthesis in garlic. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:941-951. [PMID: 26345717 DOI: 10.1111/tpj.12954] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/23/2015] [Accepted: 07/27/2015] [Indexed: 06/05/2023]
Abstract
S-Alk(en)yl-l-cysteine sulfoxides are cysteine-derived secondary metabolites highly accumulated in the genus Allium. Despite pharmaceutical importance, the enzymes that contribute to the biosynthesis of S-alk-(en)yl-l-cysteine sulfoxides in Allium plants remain largely unknown. Here, we report the identification of a flavin-containing monooxygenase, AsFMO1, in garlic (Allium sativum), which is responsible for the S-oxygenation reaction in the biosynthesis of S-allyl-l-cysteine sulfoxide (alliin). Recombinant AsFMO1 protein catalyzed the stereoselective S-oxygenation of S-allyl-l-cysteine to nearly exclusively yield (RC SS )-S-allylcysteine sulfoxide, which has identical stereochemistry to the major natural form of alliin in garlic. The S-oxygenation reaction catalyzed by AsFMO1 was dependent on the presence of nicotinamide adenine dinucleotide phosphate (NADPH) and flavin adenine dinucleotide (FAD), consistent with other known flavin-containing monooxygenases. AsFMO1 preferred S-allyl-l-cysteine to γ-glutamyl-S-allyl-l-cysteine as the S-oxygenation substrate, suggesting that in garlic, the S-oxygenation of alliin biosynthetic intermediates primarily occurs after deglutamylation. The transient expression of green fluorescent protein (GFP) fusion proteins indicated that AsFMO1 is localized in the cytosol. AsFMO1 mRNA was accumulated in storage leaves of pre-emergent nearly sprouting bulbs, and in various tissues of sprouted bulbs with green foliage leaves. Taken together, our results suggest that AsFMO1 functions as an S-allyl-l-cysteine S-oxygenase, and contributes to the production of alliin both through the conversion of stored γ-glutamyl-S-allyl-l-cysteine to alliin in storage leaves during sprouting and through the de novo biosynthesis of alliin in green foliage leaves.
Collapse
Affiliation(s)
- Naoko Yoshimoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Misato Onuma
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Shinya Mizuno
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Yuka Sugino
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Shinsuke Imai
- Central Research & Development Institute, House Foods Group Inc., 1-4 Takanodai, Yotsukaido, Chiba, 284-0033, Japan
| | - Tadamitsu Tsuneyoshi
- Central Research Institute, Wakunaga Pharmaceutical Company, 1624 Shimokotachi Koda, Akitakata, Hiroshima, 739-1195, Japan
| | - Shin-ichiro Sumi
- Research Planning Department, Wakunaga Pharmaceutical Company, 1624 Shimokotachi Koda, Akitakata, Hiroshima, 739-1195, Japan
| | - Kazuki Saito
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| |
Collapse
|
47
|
Nomura T, Murase T, Ogita S, Kato Y. Molecular identification of tuliposide B-converting enzyme: a lactone-forming carboxylesterase from the pollen of tulip. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:252-62. [PMID: 25997073 DOI: 10.1111/tpj.12883] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 04/23/2015] [Accepted: 05/12/2015] [Indexed: 05/10/2023]
Abstract
6-Tuliposides A (PosA) and B (PosB), which are the major secondary metabolites in tulip (Tulipa gesneriana), are enzymatically converted to the antimicrobial lactonized aglycons, tulipalins A (PaA) and B (PaB), respectively. We recently identified a PosA-converting enzyme (TCEA) as the first reported member of the lactone-forming carboxylesterases. Herein, we describe the identification of another lactone-forming carboxylesterase, PosB-converting enzyme (TCEB), which preferentially reacts with PosB to give PaB. This enzyme was isolated from tulip pollen, which showed high PosB-converting activity. Purified TCEB exhibited greater activity towards PosB than PosA, which was contrary to that of the TCEA. Novel cDNA (TgTCEB1) encoding the TCEB was isolated from tulip pollen. TgTCEB1 belonged to the carboxylesterase family and was approximately 50% identical to the TgTCEA polypeptides. Functional characterization of the recombinant enzyme verified that TgTCEB1 catalyzed the conversion of PosB to PaB with an activity comparable with the native TCEB. RT-qPCR analysis of each part of plant revealed that TgTCEB1 transcripts were limited almost exclusively to the pollen. Furthermore, the immunostaining of the anther cross-section using anti-TgTCEB1 polyclonal antibody verified that TgTCEB1 was specifically expressed in the pollen grains, but not in the anther cells. N-terminal transit peptide of TgTCEB1 was shown to function as plastid-targeted signal. Taken together, these results indicate that mature TgTCEB1 is specifically localized in plastids of pollen grains. Interestingly, PosB, the substrate of TgTCEB1, accumulated on the pollen surface, but not in the intracellular spaces of pollen grains.
Collapse
Affiliation(s)
- Taiji Nomura
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Tatsunori Murase
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Shinjiro Ogita
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yasuo Kato
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| |
Collapse
|
48
|
Lehtimäki N, Koskela MM, Mulo P. Posttranslational Modifications of Chloroplast Proteins: An Emerging Field. PLANT PHYSIOLOGY 2015; 168:768-75. [PMID: 25911530 PMCID: PMC4741338 DOI: 10.1104/pp.15.00117] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/29/2015] [Indexed: 05/19/2023]
Abstract
Posttranslational modifications of proteins are key effectors of enzyme activity, protein interactions, targeting, and turnover rate, but despite their importance, they are still poorly understood in plants. Although numerous reports have revealed the regulatory role of protein phosphorylation in photosynthesis, various other protein modifications have been identified in chloroplasts only recently. It is known that posttranslational N(α)-acetylation occurs in both nuclear- and plastid-encoded chloroplast proteins, but the physiological significance of this acetylation is not yet understood. Lysine acetylation affects the localization and activity of key metabolic enzymes, and it may work antagonistically or cooperatively with lysine methylation, which also occurs in chloroplasts. In addition, tyrosine nitration may help regulate the repair cycle of photosystem II, while N-glycosylation determines enzyme activity of chloroplastic carbonic anhydrase. This review summarizes the progress in the research field of posttranslational modifications of chloroplast proteins and points out the importance of these modifications in the regulation of chloroplast metabolism.
Collapse
Affiliation(s)
- Nina Lehtimäki
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Minna M Koskela
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Paula Mulo
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
49
|
Delfosse K, Wozny MR, Jaipargas EA, Barton KA, Anderson C, Mathur J. Fluorescent Protein Aided Insights on Plastids and their Extensions: A Critical Appraisal. FRONTIERS IN PLANT SCIENCE 2015; 6:1253. [PMID: 26834765 PMCID: PMC4719081 DOI: 10.3389/fpls.2015.01253] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/21/2015] [Indexed: 05/20/2023]
Abstract
Multi-colored fluorescent proteins targeted to plastids have provided new insights on the dynamic behavior of these organelles and their interactions with other cytoplasmic components and compartments. Sub-plastidic components such as thylakoids, stroma, the inner and outer membranes of the plastid envelope, nucleoids, plastoglobuli, and starch grains have been efficiently highlighted in living plant cells. In addition, stroma filled membrane extensions called stromules have drawn attention to the dynamic nature of the plastid and its interactions with the rest of the cell. Use of dual and triple fluorescent protein combinations has begun to reveal plastid interactions with mitochondria, the nucleus, the endoplasmic reticulum and F-actin and suggests integral roles of plastids in retrograde signaling, cell to cell communication as well as plant-pathogen interactions. While the rapid advances and insights achieved through fluorescent protein based research on plastids are commendable it is necessary to endorse meaningful observations but subject others to closer scrutiny. Here, in order to develop a better and more comprehensive understanding of plastids and their extensions we provide a critical appraisal of recent information that has been acquired using targeted fluorescent protein probes.
Collapse
|
50
|
Tian L, Okita TW. mRNA-based protein targeting to the endoplasmic reticulum and chloroplasts in plant cells. CURRENT OPINION IN PLANT BIOLOGY 2014; 22:77-85. [PMID: 25282588 DOI: 10.1016/j.pbi.2014.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/06/2014] [Accepted: 09/15/2014] [Indexed: 05/12/2023]
Abstract
The targeting of proteins to subcellular organelles is specified by the presence of signal/leader peptide sequences normally located on the N-terminus. In the past two decades, messenger RNA (mRNA) localization, a pathway driven by cis-acting localization elements within the RNA sequence, has emerged as an alternative mechanism for protein targeting to specific locations in the cytoplasm, on the endoplasmic reticulum or to mitochondria and chloroplasts. In this review, we will summarize studies on mRNA-based protein targeting to the endoplasmic reticulum and chloroplast within plant cells.
Collapse
Affiliation(s)
- Li Tian
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Thomas W Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|