1
|
Cho HT, Lee M, Choi HS, Maeng KH, Lee K, Lee HY, Ganguly A, Park H, Ho CH. A dose-dependent bimodal switch by homologous Aux/IAA transcriptional repressors. MOLECULAR PLANT 2024; 17:1407-1422. [PMID: 39095993 DOI: 10.1016/j.molp.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Combinatorial interactions between different regulators diversify and enrich the chance of transcriptional regulation in eukaryotic cells. However, a dose-dependent functional switch of homologous transcriptional repressors has rarely been reported. Here, we show that SHY2, an auxin/indole-3-acetic acid (Aux/IAA) repressor, exhibits a dose-dependent bimodal role in auxin-sensitive root-hair growth and gene transcription in Arabidopsis, whereas other Aux/IAA homologs consistently repress the auxin responses. The co-repressor (TOPLESS [TPL])-binding affinity of a bimodal Aux/IAA was lower than that of a consistently repressing Aux/IAA. The switch of a single amino acid residue in the TPL-binding motif between the bimodal form and the consistently repressing form switched their TPL-binding affinity and transcriptional and biological roles in auxin responses. Based on these data, we propose a model whereby competition between homologous repressors with different co-repressor-binding affinities could generate a bimodal output at the transcriptional and developmental levels.
Collapse
Affiliation(s)
- Hyung-Taeg Cho
- Department of Biological Sciences, Seoul National University, Seoul, Korea.
| | - Minsu Lee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Hee-Seung Choi
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Kwang-Ho Maeng
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Kyeonghoon Lee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Ha-Yeon Lee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Anindya Ganguly
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Hoonyoung Park
- School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea
| | - Chang-Hoi Ho
- School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea; Department of Climate and Energy Systems Engineering, Ewha Womans University, Seoul, Korea
| |
Collapse
|
2
|
Pečenková T, Potocký M, Stegmann M. More than meets the eye: knowns and unknowns of the trafficking of small secreted proteins in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3713-3730. [PMID: 38693754 DOI: 10.1093/jxb/erae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/01/2024] [Indexed: 05/03/2024]
Abstract
Small proteins represent a significant portion of the cargo transported through plant secretory pathways, playing crucial roles in developmental processes, fertilization, and responses to environmental stresses. Despite the importance of small secreted proteins, substantial knowledge gaps persist regarding the regulatory mechanisms governing their trafficking along the secretory pathway, and their ultimate localization or destination. To address these gaps, we conducted a comprehensive literature review, focusing particularly on trafficking and localization of Arabidopsis small secreted proteins with potential biochemical and/or signaling roles in the extracellular space, typically those within the size range of 101-200 amino acids. Our investigation reveals that while at least six members of the 21 mentioned families have a confirmed extracellular localization, eight exhibit intracellular localization, including cytoplasmic, nuclear, and chloroplastic locations, despite the presence of N-terminal signal peptides. Further investigation into the trafficking and secretion mechanisms of small protein cargo could not only deepen our understanding of plant cell biology and physiology but also provide a foundation for genetic manipulation strategies leading to more efficient plant cultivation.
Collapse
Affiliation(s)
- Tamara Pečenková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Martin Stegmann
- Technical University Munich, School of Life Sciences, Phytopathology, Emil-Ramann-Str. 2, 85354 Freising, Germany
| |
Collapse
|
3
|
Vӧlz R, Kim KT, Alazem M, Harris W, Hwang S, Lee YH. Lyso-phosphatidylethanolamine triggers immunity against necrotrophs by promoting JA-signaling and ROS-homeostasis. PLANT MOLECULAR BIOLOGY 2023; 113:237-247. [PMID: 38085407 PMCID: PMC10721665 DOI: 10.1007/s11103-023-01385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/06/2023] [Indexed: 12/17/2023]
Abstract
Modulation of the plant defense response by bioactive molecules is of increasing interest. However, despite plant cell lipids being one of the major cellular components, their role in plant immunity remains elusive. We found that the exogenous application of the cell-membrane localized phospholipid lyso-phosphatidylethanolamine (LPE) reprograms the plant transcript profile in favor of defense-associated genes thereby priming the plant immune system. Exogenous LPE application to different Arabidopsis accessions increases resistance against the necrotrophic pathogens, Botrytis cinerea and Cochliobolus heterostrophus. We found that the immunity-promoting effect of LPE is repealed in the jasmonic acid (JA) receptor mutant coi1, but multiplied in the JA-hypersensitive mutant feronia (fer-4). The JA-signaling repressor JAZ1 is degraded following LPE administration, suggesting that JA-signaling is promoted by LPE. Following LPE-treatment, reactive oxygen species (ROS) accumulation is affected in coi1 and fer-4. Moreover, FER signaling inhibitors of the RALF family are strongly expressed after LPE application, and RALF23 is internalized in stress granules, suggesting the LPE-mediated repression of FER-signaling by promoting RALF function. The in-situ increase of LPE-abundance in the LPE-catabolic mutants lpeat1 and lpeat2 elevates plant resistance to B. cinerea, in contrast to the endogenous LPE-deficient mutant pla2-alpha. We show that LPE increases plant resistance against necrotrophs by promoting JA-signaling and ROS-homeostasis, thereby paving the way for the LPE-targeted genomic engineering of crops to raise their ability to resist biotic threats.
Collapse
Affiliation(s)
- Ronny Vӧlz
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Ki-Tae Kim
- Department of Agricultural Life Science, Sunchon National University, Suncheon, 57922, Korea
| | - Mazen Alazem
- Donald Danforth Plant Science Center, St Louis, Missouri, USA
| | - William Harris
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | | | - Yong-Hwan Lee
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea.
- Center for Fungal Genetic Resources, Seoul National University, Seoul, 08826, Korea.
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea.
- Center for Plant Microbiome Research, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
4
|
Jang JH, Seo HS, Widiez T, Lee OR. Loss-of-function of gynoecium-expressed phospholipase pPLAIIγ triggers maternal haploid induction in Arabidopsis. THE NEW PHYTOLOGIST 2023; 238:1813-1824. [PMID: 36967578 DOI: 10.1111/nph.18898] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/12/2023] [Indexed: 05/04/2023]
Abstract
Production of in planta haploid embryos that inherit chromosomes from only one parent can greatly increase breeding efficiency via quickly generating homozygous plants, called doubled haploid. One of the main players of in planta haploid induction is a pollen-specific phospholipase A, which is able, when mutated, to induce in vivo haploid induction in numerous monocots. However, no functional orthologous gene has been identified in dicots plants. Here, we show that loss-of-function of gynoecium-expressed phospholipase AII (pPLAIIγ) triggers maternal haploid plants in Arabidopsis, at an average rate of 1.07%. Reciprocal crosses demonstrate that haploid plants are triggered from the female side and not from the pollen, and the haploid plants carry the maternal genome. Promoter activity of pPLAIIγ shows enriched expression in the funiculus of flower development stages 13 and 18, and pPLAIIγ fused to yellow fluorescent protein reveals a plasma-membrane localization Interestingly, the polar localized PIN1 at the basal plasma membrane of the funiculus was all internalized in pplaIIγ mutants, suggesting that altered PIN1 localization in female organ could play a role in maternal haploid induction.
Collapse
Affiliation(s)
- Jin Hoon Jang
- Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Korea
| | - Hae Seong Seo
- Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Korea
| | - Thomas Widiez
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, F-69342, France
| | - Ok Ran Lee
- Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Korea
| |
Collapse
|
5
|
Saddhe AA, Potocký M. Comparative phylogenomic and structural analysis of canonical secretory PLA2 and novel PLA2-like family in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1118670. [PMID: 36909415 PMCID: PMC9995887 DOI: 10.3389/fpls.2023.1118670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Plant secretory phospholipase A2 (sPLA2) is a family of lipolytic enzymes involved in the sn-2 hydrolysis of phospholipid carboxyester bonds, characterized by the presence of a conserved PA2c domain. PLA2 produces free fatty acids and lysophospholipids, which regulate several physiological functions, including lipid metabolism, plant growth and development, signal transduction, and response to various environmental stresses. In the present work, we have performed a comparative analysis of PA2c domain-containing genes across plants, focusing on gene distribution, phylogenetic analysis, tissue-specific expression, and homology modeling. Our data revealed the widespread occurrence of multiple sPLA2 in most land plants and documented single sPLA2 in multiple algal groups, indicating an ancestral origin of sPLA2. We described a novel PA2c-containing gene family present in all plant lineages and lacking secretory peptide, which we termed PLA2-like. Phylogenetic analysis revealed two independent clades in canonical sPLA2 genes referred to as α and β clades, whereas PLA2-like genes clustered independently as a third clade. Further, we have explored clade-specific gene expressions showing that while all three clades were expressed in vegetative and reproductive tissues, only sPLA2-β and PLA2-like members were expressed in the pollen and pollen tube. To get insight into the conservation of the gene regulatory network of sPLA2 and PLA2-like genes, we have analyzed the occurrence of various cis-acting promoter elements across the plant kingdom. The comparative 3D structure analysis revealed conserved and unique features within the PA2c domain for the three clades. Overall, this study will help to understand the evolutionary significance of the PA2c family and lay the foundation for future sPLA2 and PLA2-like characterization in plants.
Collapse
Affiliation(s)
- Ankush Ashok Saddhe
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
6
|
Li Q, Shen C, Zhang Y, Zhou Y, Niu M, Wang HL, Lian C, Tian Q, Mao W, Wang X, Liu C, Yin W, Xia X. PePYL4 enhances drought tolerance by modulating water-use efficiency and ROS scavenging in Populus. TREE PHYSIOLOGY 2023; 43:102-117. [PMID: 36074523 DOI: 10.1093/treephys/tpac106] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Drought is one of the major limiting factors in the growth of terrestrial plants. Abscisic acid (ABA) and pyrabactin resistance 1/prabactin resistance-1 like/regulatory components of ABA receptors (PYR/PYL/RCARs) play a key role in response to drought stress. However, the underlying mechanisms of this control remain largely elusive in trees. In this study, PePYL4, a potential ortholog of the PYR/PYL/RCARs gene, was cloned from Populus euphratica. It was localized in the cytoplasm and nucleus, induced by ABA, osmotic and dehydration treatments. To study the potential biological functions of PePYL4, transgenic triploid white poplars (Populus tomentosa 'YiXianCiZhu B38') overexpressing PePYL4 were generated. PePYL4 overexpression significantly increased ABA sensitivity and reduced stomatal aperture. Compared with wild-type plants, transgenic plants had higher water-use efficiency (WUE) and lower transpiration. When exposed to drought stress, PePYL4 overexpression plants maintained higher photosynthetic activity and accumulated more biomass. Moreover, overexpression of PePYL4 improved antioxidant enzyme activity and ascorbate content to accelerate reactive oxygen species scavenging. Meanwhile, upregulation expression of the stress-related genes also contributed to improving the drought tolerance of transgenic plants. In conclusion, our data suggest that PePYL4 is a promising gene target for regulating WUE and drought tolerance in Populus.
Collapse
Affiliation(s)
- Qing Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chao Shen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yue Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yangyan Zhou
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Mengxue Niu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hou-Ling Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Conglong Lian
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qianqian Tian
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wei Mao
- Salver Academy of Botany, Rizhao 262305, China
| | | | - Chao Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Weilun Yin
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xinli Xia
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
7
|
Xi J, Zeng J, Fu X, Zhang L, Li G, Li B, Yan X, Chu Q, Xiao Y, Pei Y, Zhang M. GhROP6 GTPase modulates auxin accumulation in cotton fibers by regulating cell-specific GhPIN3a localization. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:265-282. [PMID: 36255218 DOI: 10.1093/jxb/erac416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
PIN-FORMED- (PIN) mediated polar auxin transport plays a predominant role in most auxin-triggered organogenesis in plants. Global control of PIN polarity at the plasma membrane contributes to the essential establishment of auxin maxima in most multicellular tissues. However, establishment of auxin maxima in single cells is poorly understood. Cotton fibers, derived from ovule epidermal cells by auxin-triggered cell protrusion, provide an ideal model to explore the underlying mechanism. Here, we report that cell-specific degradation of GhPIN3a, which guides the establishment of the auxin gradient in cotton ovule epidermal cells, is associated with the preferential expression of GhROP6 GTPase in fiber cells. In turn, GhROP6 reduces GhPIN3a abundance at the plasma membrane and facilitates intracellular proteolysis of GhPIN3a. Overexpression and activation of GhROP6 promote cell elongation, resulting in a substantial improvement in cotton fiber length.
Collapse
Affiliation(s)
- Jing Xi
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, PR China
- Academy of Agricultural Sciences, Southwest University, Chongqing, PR China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, PR China
| | - Jianyan Zeng
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, PR China
- Academy of Agricultural Sciences, Southwest University, Chongqing, PR China
| | - Xingxian Fu
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, PR China
- Academy of Agricultural Sciences, Southwest University, Chongqing, PR China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, PR China
| | - Liuqin Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, PR China
- Academy of Agricultural Sciences, Southwest University, Chongqing, PR China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, PR China
| | - Gailing Li
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, PR China
| | - Baoxia Li
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, PR China
- Academy of Agricultural Sciences, Southwest University, Chongqing, PR China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, PR China
| | - Xingying Yan
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, PR China
- Academy of Agricultural Sciences, Southwest University, Chongqing, PR China
| | - Qingqing Chu
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, PR China
- Academy of Agricultural Sciences, Southwest University, Chongqing, PR China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, PR China
| | - Yuehua Xiao
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, PR China
- Academy of Agricultural Sciences, Southwest University, Chongqing, PR China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, PR China
- Academy of Agricultural Sciences, Southwest University, Chongqing, PR China
| | - Mi Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, PR China
- Academy of Agricultural Sciences, Southwest University, Chongqing, PR China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, PR China
| |
Collapse
|
8
|
Aranda-Caño L, Valderrama R, Chaki M, Begara-Morales JC, Melguizo M, Barroso JB. Nitrated Fatty-Acids Distribution in Storage Biomolecules during Arabidopsis thaliana Development. Antioxidants (Basel) 2022; 11:antiox11101869. [PMID: 36290592 PMCID: PMC9598412 DOI: 10.3390/antiox11101869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
The non-enzymatic interaction of polyunsaturated fatty acids with nitric oxide (NO) and derived species results in the formation of nitrated fatty acids (NO2-FAs). These signaling molecules can release NO, reversibly esterify with complex lipids, and modulate protein function through the post-translational modification called nitroalkylation. To date, NO2-FAs act as signaling molecules during plant development in plant systems and are involved in defense responses against abiotic stress conditions. In this work, the previously unknown storage biomolecules of NO2-FAs in Arabidopsis thaliana were identified. In addition, the distribution of NO2-FAs in storage biomolecules during plant development was determined, with phytosterol esters (SE) and TAGs being reservoir biomolecules in seeds, which were replaced by phospholipids and proteins in the vegetative, generative, and senescence stages. The detected esterified NO2-FAs were nitro-linolenic acid (NO2-Ln), nitro-oleic acid (NO2-OA), and nitro-linoleic acid (NO2-LA). The last two were detected for the first time in Arabidopsis. The levels of the three NO2-FAs that were esterified in both lipid and protein storage biomolecules showed a decreasing pattern throughout Arabidopsis development. Esterification of NO2-FAs in phospholipids and proteins highlights their involvement in both biomembrane dynamics and signaling processes, respectively, during Arabidopsis plant development.
Collapse
Affiliation(s)
- Lorena Aranda-Caño
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, University Institute of Research in Olive Groves and Olive Oils, University of Jaén, E-23071 Jaén, Spain
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, University Institute of Research in Olive Groves and Olive Oils, University of Jaén, E-23071 Jaén, Spain
| | - Mounira Chaki
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, University Institute of Research in Olive Groves and Olive Oils, University of Jaén, E-23071 Jaén, Spain
| | - Juan C. Begara-Morales
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, University Institute of Research in Olive Groves and Olive Oils, University of Jaén, E-23071 Jaén, Spain
| | - Manuel Melguizo
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, University of Jaén, E-23071 Jaén, Spain
| | - Juan B. Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, University Institute of Research in Olive Groves and Olive Oils, University of Jaén, E-23071 Jaén, Spain
- Correspondence:
| |
Collapse
|
9
|
Wang X, Deng Y, Gao L, Kong F, Shen G, Duan B, Wang Z, Dai M, Han Z. Series-temporal transcriptome profiling of cotton reveals the response mechanism of phosphatidylinositol signaling system in the early stage of drought stress. Genomics 2022; 114:110465. [PMID: 36038061 DOI: 10.1016/j.ygeno.2022.110465] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/15/2022]
Abstract
Plants are sessile organisms suffering severe environmental conditions. Drought stress is one of the major environmental issues that affect plant growth and productivity. Although complex regulatory gene networks of plants under drought stress have been analyzed extensively, the response mechanism in the early stage of drought stress is still rarely mentioned. Here, we performed transcriptome analyses on cotton samples treated for a short time (10 min, 30 min, 60 min, 180 min) using 10% PEG, which is used to simulate drought stress. The analysis of differently expressed genes (DEGs) showed that the number of DEGs in roots was obviously more than that in stems and leaves at the four time points and maintained >2000 FDEGs (DEGs appearing for the first time) from 10 min, indicating that root tissues of plants respond to drought stress quickly and continuously strongly. Gene ontology (GO) analysis showed that DEGs in roots were mainly enriched in protein modification and microtubule-based process. DEGs were found significantly enriched in phosphatidylinositol signaling system at 10 min through Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, implying the great importance of phosphatidylinositol signal in the early stage of drought stress. What was more, two co-expression modules, which were significantly positively correlated with drought stress, were found by Weighted Gene Co-expression Network Analysis (WGCNA). From one of the co-expression modules, we identified a hub-gene Gohir.A07G058200, which is annotated as "phosphatidylinositol 3- and 4-kinase" in phosphatidylinositol signaling system, and found this gene may interact with auxin-responsive protein. This result suggested that Gohir.A07G058200 may be involved in the crosstalk of phosphatidylinositol signal and auxin signal in the early stage of drought stress. In summary, through transcriptome sequencing, we found that phosphatidylinositol signaling system is an important signal transduction pathway in early stage in response to drought stress, and it may interact with auxin signal transduction through phosphatidylinositol 3- and 4-kinase.
Collapse
Affiliation(s)
- Xiaoge Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Jinan, Shandong 250100, PR China
| | - Yongsheng Deng
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Jinan, Shandong 250100, PR China
| | - Liying Gao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Jinan, Shandong 250100, PR China
| | - Fanjin Kong
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Jinan, Shandong 250100, PR China
| | - Guifang Shen
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Jinan, Shandong 250100, PR China
| | - Bing Duan
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Jinan, Shandong 250100, PR China
| | - Zongwen Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Jinan, Shandong 250100, PR China
| | - Maohua Dai
- Dryland Farming Institute, Hebei Academy of Agricultural and Forestry Sciences, Hebei Key Laboratory of Crops Drought Resistance, Hengshui, Hebei 053000, PR China.
| | - Zongfu Han
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Jinan, Shandong 250100, PR China.
| |
Collapse
|
10
|
Wu C, Zhang X, Cui Z, Gou J, Zhang B, Sun X, Xu N. Patatin-like phospholipase A-induced alterations in lipid metabolism and jasmonic acid production affect the heat tolerance of Gracilariopsis lemaneiformis. MARINE ENVIRONMENTAL RESEARCH 2022; 179:105688. [PMID: 35759824 DOI: 10.1016/j.marenvres.2022.105688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/02/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
High temperatures seriously limit the growth and productivity of Gracilariopsis lemaneiformis. By hydrolyzing glycerolipids into lysophospholipids (LPs) and free fatty acids (FFAs), patatin-like phospholipase A (pPLA) plays an important role in stress responses. GlpPLA expression was up-regulated under heat stress, however, the regulation of pPLA in heat tolerance of G. lemaneiformis is unknown. In this study, G. lemaneiformis under heat stress was treated with bromoenololide (BEL), a chemical inhibitor of pPLA, to evaluate the cellular function of pPLA in this species. When pPLA was inhibited through BEL treatment, the sensitivity of G. lemaneiformis to heat stress increased and the biomass and maximum and effective quantum yield of photosystem II decreased. Moreover, BEL treatment resulted in a significant decrease in many lipid molecular species, all of which are mainly composed of 16C, 18C, and 20C fatty acids. Consistently, FFA levels and LPs contents in G. lemaneiformis under BEL treatment showed a significant decrease. The first step in the synthesis of jasmonic acid (JA) is the lipoxygenase (LOX)-mediated oxygenation of linolenic acid (C18:3). BEL treatment decreased JA and C18:3 accumulation and markedly downregulated the expression of GILOX under heat stress. Together, these results indicate that pPLA is closely related to the growth of G. lemaneiformis under heat stress, and pPLA is involved in the lipid metabolism and JA biosynthesis of G. lemaneiformis in response to heat stress. This research broadens the understanding of the heat stress adaptation mechanism of G. lemaneiformis.
Collapse
Affiliation(s)
- Chunmei Wu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xiaoqian Zhang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Zhenhao Cui
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Jinhao Gou
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Bo Zhang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xue Sun
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Nianjun Xu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
11
|
Wattelet-Boyer V, Le Guédard M, Dittrich-Domergue F, Maneta-Peyret L, Kriechbaumer V, Boutté Y, Bessoule JJ, Moreau P. Lysophosphatidic acid acyltransferases: a link with intracellular protein trafficking in Arabidopsis root cells? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1327-1343. [PMID: 34982825 DOI: 10.1093/jxb/erab504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Phosphatidic acid (PA) and lysophosphatidic acid acyltransferases (LPAATs) might be critical for the secretory pathway. Four extra-plastidial LPAATs (LPAAT2, 3, 4, and 5) were identified in Arabidopsis thaliana. These AtLPAATs display a specific enzymatic activity converting lysophosphatidic acid to PA and are located in the endomembrane system. We investigate a putative role for AtLPAATs 3, 4, and 5 in the secretory pathway of root cells through genetical (knockout mutants), biochemical (activity inhibitor, lipid analyses), and imaging (live and immuno-confocal microscopy) approaches. Treating a lpaat4;lpaat5 double mutant with the LPAAT inhibitor CI976 produced a significant decrease in primary root growth. The trafficking of the auxin transporter PIN2 was disturbed in this lpaat4;lpaat5 double mutant treated with CI976, whereas trafficking of H+-ATPases was unaffected. The lpaat4;lpaat5 double mutant is sensitive to salt stress, and the trafficking of the aquaporin PIP2;7 to the plasma membrane in the lpaat4;lpaat5 double mutant treated with CI976 was reduced. We measured the amounts of neo-synthesized PA in roots, and found a decrease in PA only in the lpaat4;lpaat5 double mutant treated with CI976, suggesting that the protein trafficking impairment was due to a critical PA concentration threshold.
Collapse
Affiliation(s)
- Valérie Wattelet-Boyer
- CNRS, University of Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33140 Villenave d'Ornon, France
| | - Marina Le Guédard
- CNRS, University of Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33140 Villenave d'Ornon, France
- LEB Aquitaine Transfert-ADERA, INRA Bordeaux Aquitaine, 33140 Villenave d'Ornon, France
| | - Franziska Dittrich-Domergue
- CNRS, University of Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33140 Villenave d'Ornon, France
| | - Lilly Maneta-Peyret
- CNRS, University of Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33140 Villenave d'Ornon, France
| | - Verena Kriechbaumer
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Yohann Boutté
- CNRS, University of Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33140 Villenave d'Ornon, France
| | - Jean-Jacques Bessoule
- CNRS, University of Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33140 Villenave d'Ornon, France
- LEB Aquitaine Transfert-ADERA, INRA Bordeaux Aquitaine, 33140 Villenave d'Ornon, France
| | - Patrick Moreau
- CNRS, University of Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33140 Villenave d'Ornon, France
- Bordeaux Imaging Center, UMS 3420 CNRS, US004 INSERM, University of Bordeaux, 33000 Bordeaux, France
| |
Collapse
|
12
|
Jang JH, Seo HS, Lee OR. Overexpression of pPLAIIIγ in Arabidopsis Reduced Xylem Lignification of Stem by Regulating Peroxidases. PLANTS 2022; 11:plants11020200. [PMID: 35050088 PMCID: PMC8777835 DOI: 10.3390/plants11020200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/30/2022]
Abstract
Patatin-related phospholipases A (pPLAs) are a group of plant-specific acyl lipid hydrolases that share less homology with phospholipases than that observed in other organisms. Out of the three known subfamilies (pPLAI, pPLAII, and pPLAIII), the pPLAIII member of genes is particularly known for modifying the cell wall structure, resulting in less lignin content. Overexpression of pPLAIIIα and ginseng-derived PgpPLAIIIβ in Arabidopsis and hybrid poplar was reported to reduce the lignin content. Lignin is a complex racemic phenolic heteropolymer that forms the key structural material supporting most of the tissues in plants and plays an important role in the adaptive strategies of vascular plants. However, lignin exerts a negative impact on the utilization of plant biomass in the paper and pulp industry, forage digestibility, textile industry, and production of biofuel. Therefore, the overexpression of pPLAIIIγ in Arabidopsis was analyzed in this study. This overexpression led to the formation of dwarf plants with altered anisotropic growth and reduced lignification of the stem. Transcript levels of lignin biosynthesis-related genes, as well as lignin-specific transcription factors, decreased. Peroxidase-mediated oxidation of monolignols occurs in the final stage of lignin polymerization. Two secondary cell wall-specific peroxidases were downregulated following lowered H2O2 levels, which suggests a functional role of peroxidase in the reduction of lignification by pPLAIIIγ when overexpressed in Arabidopsis.
Collapse
Affiliation(s)
- Jin Hoon Jang
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea; (J.H.J.); (H.S.S.)
- AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju 61186, Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Korea
| | - Hae Seong Seo
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea; (J.H.J.); (H.S.S.)
- AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju 61186, Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Korea
| | - Ok Ran Lee
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea; (J.H.J.); (H.S.S.)
- AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju 61186, Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Korea
- Correspondence: ; Tel.: +82-(0)-62-530-2054; Fax: +82-(0)-62-530-2059
| |
Collapse
|
13
|
Jang JH, Seo HS, Lee OR. The Reduced Longitudinal Growth Induced by Overexpression of pPLAIIIγ Is Regulated by Genes Encoding Microtubule-Associated Proteins. PLANTS 2021; 10:plants10122615. [PMID: 34961086 PMCID: PMC8706840 DOI: 10.3390/plants10122615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022]
Abstract
There are three subfamilies of patatin-related phospholipase A (pPLA) group of genes: pPLAI, pPLAII, and pPLAIII. Among the four members of pPLAIIIs (α, β, γ, δ), the overexpression of three isoforms (α, β, and δ) displayed distinct morphological growth patterns, in which the anisotropic cell expansion was disrupted. Here, the least studied pPLAIIIγ was characterized, and it was found that the overexpression of pPLAIIIγ in Arabidopsis resulted in longitudinally reduced cell expansion patterns, which are consistent with the general phenotype induced by pPLAIIIs overexpression. The microtubule-associated protein MAP18 was found to be enriched in a pPLAIIIδ overexpressing line in a previous study. This indicates that factors, such as microtubules and ethylene biosynthesis, are involved in determining the radial cell expansion patterns. Microtubules have long been recognized to possess functional key roles in the processes of plant cells, including cell division, growth, and development, whereas ethylene treatment was reported to induce the reorientation of microtubules. Thus, the possible links between the altered anisotropic cell expansion and microtubules were studied. Our analysis revealed changes in the transcriptional levels of microtubule-associated genes, as well as phospholipase D (PLD) genes, upon the overexpression of pPLAIIIγ. Overall, our results suggest that the longitudinally reduced cell expansion observed in pPLAIIIγ overexpression is driven by microtubules via transcriptional modulation of the PLD and MAP genes. The altered transcripts of the genes involved in ethylene-biosynthesis in pPLAIIIγOE further support the conclusion that the typical phenotype is derived from the link with microtubules.
Collapse
Affiliation(s)
- Jin Hoon Jang
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea; (J.H.J.); (H.S.S.)
- AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju 61186, Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Korea
| | - Hae Seong Seo
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea; (J.H.J.); (H.S.S.)
- AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju 61186, Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Korea
| | - Ok Ran Lee
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea; (J.H.J.); (H.S.S.)
- AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju 61186, Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Korea
- Correspondence: ; Tel.: +82-(0)-62-530-2054; Fax: +82-(0)-62-530-2059
| |
Collapse
|
14
|
Lee H, Ganguly A, Baik S, Cho HT. Calcium-dependent protein kinase 29 modulates PIN-FORMED polarity and Arabidopsis development via its own phosphorylation code. THE PLANT CELL 2021; 33:3513-3531. [PMID: 34402905 PMCID: PMC8566293 DOI: 10.1093/plcell/koab207] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/12/2021] [Indexed: 05/15/2023]
Abstract
PIN-FORMED (PIN)-mediated polar auxin transport (PAT) is involved in key developmental processes in plants. Various internal and external cues influence plant development via the modulation of intracellular PIN polarity and, thus, the direction of PAT, but the mechanisms underlying these processes remain largely unknown. PIN proteins harbor a hydrophilic loop (HL) that has important regulatory functions; here, we used the HL as bait in protein pulldown screening for modulators of intracellular PIN trafficking in Arabidopsis thaliana. Calcium-dependent protein kinase 29 (CPK29), a Ca2+-dependent protein kinase, was identified and shown to phosphorylate specific target residues on the PIN-HL that were not phosphorylated by other kinases. Furthermore, loss of CPK29 or mutations of the phospho-target residues in PIN-HLs significantly compromised intracellular PIN trafficking and polarity, causing defects in PIN-mediated auxin redistribution and biological processes such as lateral root formation, root twisting, hypocotyl gravitropism, phyllotaxis, and reproductive development. These findings indicate that CPK29 directly interprets Ca2+ signals from internal and external triggers, resulting in the modulation of PIN trafficking and auxin responses.
Collapse
Affiliation(s)
- Hyodong Lee
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Anindya Ganguly
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Song Baik
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyung-Taeg Cho
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
- Author for correspondence:
| |
Collapse
|
15
|
Kim JY, Park YJ, Lee JH, Kim ZH, Park CM. EIN3-Mediated Ethylene Signaling Attenuates Auxin Response during Hypocotyl Thermomorphogenesis. PLANT & CELL PHYSIOLOGY 2021; 62:708-720. [PMID: 33594435 DOI: 10.1093/pcp/pcab028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/10/2021] [Indexed: 05/21/2023]
Abstract
The gaseous phytohormone ethylene plays vital roles in diverse developmental and environmental adaptation processes, such as fruit ripening, seedling establishment, mechanical stress tolerance and submergence escape. It is also known that in the light, ethylene promotes hypocotyl growth by stimulating the expression of PHYTOCHROME INTERACTING FACTOR3 (PIF3) transcription factor, which triggers microtubule reorganization during hypocotyl cell elongation. In particular, ethylene has been implicated in plant responses to warm temperatures in recent years. However, it is currently unclear how ethylene signals are functionally associated with hypocotyl thermomorphogenesis at the molecular level. Here, we show that ETHYLENE-INSENSITIVE3 (EIN3)-mediated ethylene signals attenuate hypocotyl thermomorphogenesis by suppressing auxin response. At warm temperatures, when the activity of the PIF4 thermomorphogenesis promoter is prominently high, the ethylene-activated EIN3 transcription factor directly induces the transcription of ARABIDOPSIS PP2C CLADE D7 (APD7) gene encoding a protein phosphatase that inactivates the plasma membrane (PM) H+-ATPase proton pumps. In conjunction with the promotive role of the PM H+-ATPases in hypocotyl cell elongation, our observations strongly support that the EIN3-directed induction of APD7 gene is linked with the suppression of auxin-induced cell expansion, leading to the reduction in thermomorphogenic hypocotyl growth. Our data demonstrate that APD7 acts as a molecular hub that integrates ethylene and auxin signals into hypocotyl thermomorphogenesis. We propose that the ethylene-auxin signaling crosstalks via the EIN3-APD7 module facilitate the fine-tuning of hypocotyl thermomorphogenesis under natural environments, which often fluctuate in a complex manner.
Collapse
Affiliation(s)
- Jae Young Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Young-Joon Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - June-Hee Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Zee Hwan Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
16
|
Xing J, Zhang L, Duan Z, Lin J. Coordination of Phospholipid-Based Signaling and Membrane Trafficking in Plant Immunity. TRENDS IN PLANT SCIENCE 2021; 26:407-420. [PMID: 33309101 DOI: 10.1016/j.tplants.2020.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 05/26/2023]
Abstract
In plants, defense-associated signal transduction involves key membrane-related processes, such as phospholipid-based signaling and membrane trafficking. Coordination of these processes occurs in the lipid bilayer of plasma membrane (PM) and luminal/extracellular membranes. Deciphering the spatiotemporal organization of phospholipids and lipid-protein interactions provides crucial information on the mechanisms that link phospholipid-based signaling and membrane trafficking in plant immunity. In this review, we summarize recent advances in our understanding of these connections, including deployment of key enzymes and molecules in phospholipid pathways, and roles of lipid diversity in membrane trafficking. We highlight the mechanisms that mediate feedback between phospholipid-based signaling and membrane trafficking to regulate plant immunity, including their novel roles in balancing endocytosis and exocytosis.
Collapse
Affiliation(s)
- Jingjing Xing
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Liang Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Zhikun Duan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
17
|
Völz R, Park JY, Harris W, Hwang S, Lee YH. Lyso-phosphatidylethanolamine primes the plant immune system and promotes basal resistance against hemibiotrophic pathogens. BMC Biotechnol 2021; 21:12. [PMID: 33536000 PMCID: PMC7856808 DOI: 10.1186/s12896-020-00661-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023] Open
Abstract
Background Lyso-phosphatidylethanolamine (LPE) is a natural phospholipid that functions in the early stages of plant senescence. Plant innate immunity and early leaf senescence share molecular components. To reveal conserved mechanisms that link-up both processes, we tried to unravel to what extent LPE coordinates defense response and by what mode of action. Result We found that LPE-treatment induces signaling and biosynthesis gene expression of the defensive hormone salicylic acid (SA). However, jasmonic acid and ethylene triggered gene induction levels are indistinguishable from the control. In accordance with gene induction for SA, oxidative stress, and reactive oxygen species (ROS) production, we detected raised in-situ hydrogen peroxide levels following LPE-application. Yet, ROS-burst assays of LPE-pretreated plants revealed a reduced release of ROS after PAMP-administration suggesting that LPE interferes with an oxidative burst. Our data refer to a priming effect of LPE on SA/ROS-associated genomic loci that encode pivotal factors in early senescence and considerably improve plant basal immunity. Thus, we challenged Arabidopsis thaliana with the hemibiotrophic pathogen Pseudomonas syringae. Consistently, we found an increased resistance in the LPE-pretreated Arabidopsis plants compared to the mock-pretreated control. Conclusions Our results underscore a beneficial effect of LPE on plant innate immunity against hemibiotrophs. Given the resistance-promoting effect of exogenously applied LPE, this bio-agent bears the potential of being applied as a valuable tool for the genetic activation of defense-associated traits. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-020-00661-8.
Collapse
Affiliation(s)
- Ronny Völz
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea.
| | - Ju-Young Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - William Harris
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | | | - Yong-Hwan Lee
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea. .,Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea. .,Center for Fungal Genetic Resources, Seoul National University, Seoul, 08826, South Korea. .,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
18
|
Xu Y, Caldo KMP, Singer SD, Mietkiewska E, Greer MS, Tian B, Dyer JM, Smith M, Zhou XR, Qiu X, Weselake RJ, Chen G. Physaria fendleri and Ricinus communis lecithin:cholesterol acyltransferase-like phospholipases selectively cleave hydroxy acyl chains from phosphatidylcholine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:182-196. [PMID: 33107656 DOI: 10.1111/tpj.15050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/12/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Production of hydroxy fatty acids (HFAs) in transgenic crops represents a promising strategy to meet our demands for specialized plant oils with industrial applications. The expression of Ricinus communis (castor) OLEATE 12-HYDROXYLASE (RcFAH12) in Arabidopsis has resulted in only limited accumulation of HFAs in seeds, which probably results from inefficient transfer of HFAs from their site of synthesis (phosphatidylcholine; PC) to triacylglycerol (TAG), especially at the sn-1/3 positions of TAG. Phospholipase As (PLAs) may be directly involved in the liberation of HFAs from PC, but the functions of their over-expression in HFA accumulation and distribution at TAG in transgenic plants have not been well studied. In this work, the functions of lecithin:cholesterol acyltransferase-like PLAs (LCAT-PLAs) in HFA biosynthesis were characterized. The LCAT-PLAs were shown to exhibit homology to LCAT and mammalian lysosomal PLA2 , and to contain a conserved and functional Ser/His/Asp catalytic triad. In vitro assays revealed that LCAT-PLAs from the HFA-accumulating plant species Physaria fendleri (PfLCAT-PLA) and castor (RcLCAT-PLA) could cleave acyl chains at both the sn-1 and sn-2 positions of PC, and displayed substrate selectivity towards sn-2-ricinoleoyl-PC over sn-2-oleoyl-PC. Furthermore, co-expression of RcFAH12 with PfLCAT-PLA or RcLCAT-PLA, but not Arabidopsis AtLCAT-PLA, resulted in increased occupation of HFA at the sn-1/3 positions of TAG as well as small but insignificant increases in HFA levels in Arabidopsis seeds compared with RcFAH12 expression alone. Therefore, PfLCAT-PLA and RcLCAT-PLA may contribute to HFA turnover on PC, and represent potential candidates for engineering the production of unusual fatty acids in crops.
Collapse
Affiliation(s)
- Yang Xu
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Kristian Mark P Caldo
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Stacy D Singer
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, T1J 4B1, Canada
| | - Elzbieta Mietkiewska
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Michael S Greer
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Bo Tian
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
- CAS Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - John M Dyer
- U.S. Department of Agriculture-Agricultural Research Service, US Arid-Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Mark Smith
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, S7N 0X2, Canada
| | - Xue-Rong Zhou
- CSIRO Agriculture and Food, PO Box 1700, Canberra, ACT, 2601, Australia
| | - Xiao Qiu
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8, Canada
| | - Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| |
Collapse
|
19
|
Jang JH, Nguyen NQ, Légeret B, Beisson F, Kim YJ, Sim HJ, Lee OR. Phospholipase pPLAIIIα Increases Germination Rate and Resistance to Turnip Crinkle Virus when Overexpressed. PLANT PHYSIOLOGY 2020; 184:1482-1498. [PMID: 32859754 PMCID: PMC7608167 DOI: 10.1104/pp.20.00630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/15/2020] [Indexed: 05/12/2023]
Abstract
Patatin-related phospholipase As (pPLAs) are major hydrolases acting on acyl-lipids and play important roles in various plant developmental processes. pPLAIII group members, which lack a canonical catalytic Ser motif, have been less studied than other pPLAs. We report here the characterization of pPLAIIIα in Arabidopsis (Arabidopsis thaliana) based on the biochemical and physiological characterization of pPLAIIIα knockouts, complementants, and overexpressors, as well as heterologous expression of the protein. In vitro activity assays on the purified recombinant protein showed that despite lack of canonical phospholipase motifs, pPLAIIIα had a phospholipase A activity on a wide variety of phospholipids. Overexpression of pPLAIIIα in Arabidopsis resulted in a decrease in many lipid molecular species, but the composition in major lipid classes was not affected. Fluorescence tagging indicated that pPLAIIIα localizes to the plasma membrane. Although Arabidopsis pplaIIIα knockout mutants showed some phenotypes comparable to other pPLAIIIs, such as reduced trichome length and increased hypocotyl length, control of seed size and germination were identified as distinctive pPLAIIIα-mediated functions. Expression of some PLD genes was strongly reduced in the pplaIIIα mutants. Overexpression of pPLAIIIα caused increased resistance to turnip crinkle virus, which associated with a 2-fold higher salicylic acid/jasmonic acid ratio and an increased expression of the defense gene pathogenesis-related protein1. These results therefore show that pPLAIIIα has functions that overlap with those of other pPLAIIIs but also distinctive functions, such as the control of seed germination. This study also provides new insights into the pathways downstream of pPLAIIIα.
Collapse
Affiliation(s)
- Jin Hoon Jang
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ngoc Quy Nguyen
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Bertrand Légeret
- Biosciences and Biotechnologies Institute of Aix-Marseille, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Centre National de la Recherche Scientifique and Aix-Marseille University, Commissariat à l'Énergie Atomique et aux Énergies Alternatives Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Fred Beisson
- Biosciences and Biotechnologies Institute of Aix-Marseille, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Centre National de la Recherche Scientifique and Aix-Marseille University, Commissariat à l'Énergie Atomique et aux Énergies Alternatives Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, Pusan National University, Miryang, 50463, Republic of Korea
| | - Hee-Jung Sim
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jinju-si, 52834, Republic of Korea
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Ok Ran Lee
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
20
|
Abstract
In plants, lipids function in a variety of ways. Lipids are a major component of biological membranes and are used as a compact energy source for seed germination. Fatty acids, the major lipids in plants, are synthesized in plastid and assembled by glycerolipids or triacylglycerols in endoplasmic reticulum. The metabolism of fatty acids and triacylglycerols is well studied in most Arabidopsis model plants by forward and reverse genetics methods. However, research on the diverse functions of lipids in plants, including various crops, has yet to be completed. The papers of this Special Issue cover the core of the field of plant lipid research on the role of galactolipids in the chloroplast biogenesis from etioplasts and the role of acyltransferases and transcription factors involved in fatty acid and triacylglycerol synthesis. This information will contribute to the expansion of plant lipid research.
Collapse
|
21
|
Patatin-Related Phospholipase AtpPLAIIIα Affects Lignification of Xylem in Arabidopsis and Hybrid Poplars. PLANTS 2020; 9:plants9040451. [PMID: 32260242 PMCID: PMC7238252 DOI: 10.3390/plants9040451] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/21/2022]
Abstract
Lipid acyl hydrolase are a diverse group of enzymes that hydrolyze the ester or amide bonds of fatty acid in plant lipids. Patatin-related phospholipase AIIIs (pPLAIIIs) are one of major lipid acyl hydrolases that are less closely related to potato tuber patatins and are plant-specific. Recently, overexpression of ginseng-derived PgpPLAIIIβ was reported to be involved in the reduced level of lignin content in Arabidopsis and the mature xylem layer of poplar. The presence of lignin-polysaccharides renders cell walls recalcitrant for pulping and biofuel production. The tissue-specific regulation of lignin biosynthesis, without altering all xylem in plants, can be utilized usefully by keeping mechanical strength and resistance to various environmental stimuli. To identify another pPLAIII homolog from Arabidopsis, constitutively overexpressed AtpPLAIIIα was characterized for xylem lignification in two well-studied model plants, Arabidopsis and poplar. The characterization of gene function in annual and perennial plants with respect to lignin biosynthesis revealed the functional redundancy of less lignification via downregulation of lignin biosynthesis-related genes.
Collapse
|
22
|
Lee H, Ganguly A, Lee RD, Park M, Cho HT. Intracellularly Localized PIN-FORMED8 Promotes Lateral Root Emergence in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 10:1808. [PMID: 32082353 PMCID: PMC7005106 DOI: 10.3389/fpls.2019.01808] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/24/2019] [Indexed: 05/28/2023]
Abstract
PIN-FORMED (PIN) auxin efflux carriers with a long central hydrophilic loop (long PINs) have been implicated in organogenesis. However, the role of short hydrophilic loop PINs (short PINs) in organogenesis is largely unknown. In this study, we investigated the role of a short PIN, PIN8, in lateral root (LR) development in Arabidopsis thaliana. The loss-of-function mutation in PIN8 significantly decreased LR density, mostly by affecting the emergence stage. PIN8 showed a sporadic expression pattern along the root vascular cells in the phloem, where the PIN8 protein predominantly localized to intracellular compartments. During LR primordium development, PIN8 was expressed at the late stage. Plasma membrane (PM)-localized long PINs suppressed LR formation when expressed in the PIN8 domain. Conversely, an auxin influx carrier, AUX1, restored the wild-type (WT) LR density when expressed in the PIN8 domain of the pin8 mutant root. Moreover, LR emergence was considerably inhibited when AXR2-1, the dominant negative form of Aux/IAA7, compromised auxin signaling in the PIN8 domain. Consistent with these observations, the expression of many genes implicated in late LR development was suppressed in the pin8 mutant compared with the WT. Our results suggest that the intracellularly localized PIN8 affects LR development most likely by modulating intracellular auxin translocation. Thus, the function of PIN8 is distinctive from that of PM-localized long PINs, where they generate local auxin gradients for organogenesis by conducting cell-to-cell auxin reflux.
Collapse
|
23
|
Jang JH, Bae EK, Choi YI, Lee OR. Ginseng-derived patatin-related phospholipase PgpPLAIIIβ alters plant growth and lignification of xylem in hybrid poplars. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110224. [PMID: 31521213 DOI: 10.1016/j.plantsci.2019.110224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Patatin-liked phospholipase A (pPLAs) are major lipid acyl hydrolases that participate in various biological functions in plant growth and development. Previously, a ginseng-derived pPLAIII homolog was reported to reduce lignin content in Arabidopsis. This led us to evaluate its possible usefulness as a biomass source in wood plant. Herein, we report that there are six members in the pPLAIII gene family in poplar. Overexpression of pPLAIIIβ derived from ginseng resulted in a reduced plant height with radially expanded stem growth in hybrid poplars. Compared with the wild type (WT), the chlorophyll content was increased in the overexpression poplar lines, whereas the leaf size was smaller. The secondary cell wall structure in overexpression lines was also altered, exhibiting reduced lignification in the xylem. Two transcription factors, MYB92 and MYB152, which control lignin biosynthesis, were downregulated in the overexpression lines. The middle xylem of the overexpression line showed heavy thickening, making it thicker than the other xylem parts and the WT xylem, which rather could have been contributed by the presence of more cellulose in the selected surface area. Taken together, the results suggest that PgpPLAIIIβ plays a role not only in cell elongation patterns, but also in determining the secondary cell wall composition.
Collapse
Affiliation(s)
- Jin Hoon Jang
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Eun-Kyung Bae
- Division of Forest Biotechnology, National Institute of Forest Science, Suwon, 441-847, Republic of Korea.
| | - Young-Im Choi
- Division of Forest Biotechnology, National Institute of Forest Science, Suwon, 441-847, Republic of Korea.
| | - Ok Ran Lee
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
24
|
WITHDRAWN: Functional diversity of glycerolipid acylhydrolases in plant metabolism and physiology. Prog Lipid Res 2019. [DOI: 10.1016/j.plipres.2019.100994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Functional diversity of glycerolipid acylhydrolases in plant metabolism and physiology. Prog Lipid Res 2019; 75:100987. [PMID: 31078649 DOI: 10.1016/j.plipres.2019.100987] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 11/22/2022]
Abstract
Most current knowledge about plant lipid metabolism has focused on the biosynthesis of lipids and their transport between different organelles. However, lipid composition changes during development and in response to environmental cues often go beyond adjustments of lipid biosynthesis. When lipids have to be removed to adjust the extent of membranes during down regulation of photosynthesis, or lipid composition has to be adjusted to alter the biophysical properties of membranes, or lipid derived chemical signals have to be produced, lipid-degrading enzymes come into play. This review focuses on glycerolipid acylhydrolases that remove acyl groups from glycerolipids and will highlight their roles in lipid remodeling and lipid-derived signal generation. One emerging theme is that these enzymes are involved in the dynamic movement of acyl groups through different lipid pools, for example from polar membrane lipids to neutral lipids sequestered in lipid droplets during de novo triacylglycerol synthesis. Another example of acyl group sequestration in the form of triacylglycerols in lipid droplets is membrane lipid remodeling in response to abiotic stresses. Fatty acids released for membrane lipids can also give rise to potent signaling molecules and acylhydrolases are therefore often the first step in initiating the formation of these lipid signals.
Collapse
|
26
|
Khanom S, Jang J, Lee OR. Overexpression of ginseng cytochrome P450 CYP736A12 alters plant growth and confers phenylurea herbicide tolerance in Arabidopsis. J Ginseng Res 2019; 43:645-653. [PMID: 31695570 PMCID: PMC6823764 DOI: 10.1016/j.jgr.2019.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/02/2019] [Accepted: 04/15/2019] [Indexed: 12/02/2022] Open
Abstract
Background Cytochrome P450 enzymes catalyze a wide range of reactions in plant metabolism. Besides their physiological functions on primary and secondary metabolites, P450s are also involved in herbicide detoxification via hydroxylation or dealkylation. Ginseng as a perennial plant offers more sustainable solutions to herbicide resistance. Methods Tissue-specific gene expression and differentially modulated transcripts were monitored by quantitative real-time polymerase chain reaction. As a tool to evaluate the function of PgCYP736A12, the 35S promoter was used to overexpress the gene in Arabidopsis. Protein localization was visualized using confocal microscopy by tagging the fluorescent protein. Tolerance to herbicides was analyzed by growing seeds and seedlings on Murashige and Skoog medium containing chlorotoluron. Results The expression of PgCYP736A12 was three-fold more in leaves compared with other tissues from two-year-old ginseng plants. Transcript levels were similarly upregulated by treatment with abscisic acid, hydrogen peroxide, and NaCl, the highest being with salicylic acid. Jasmonic acid treatment did not alter the mRNA levels of PgCYP736A12. Transgenic lines displayed slightly reduced plant height and were able to tolerate the herbicide chlorotoluron. Reduced stem elongation might be correlated with increased expression of genes involved in bioconversion of gibberellin to inactive forms. PgCYP736A12 protein localized to the cytoplasm and nucleus. Conclusion PgCYP736A12 does not respond to the well-known secondary metabolite elicitor jasmonic acid, which suggests that it may not function in ginsenoside biosynthesis. Heterologous overexpression of PgCYP736A12 reveals that this gene is actually involved in herbicide metabolism.
Collapse
Affiliation(s)
- Sanjida Khanom
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - Jinhoon Jang
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - Ok Ran Lee
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
27
|
Takáč T, Novák D, Šamaj J. Recent Advances in the Cellular and Developmental Biology of Phospholipases in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:362. [PMID: 31024579 PMCID: PMC6459882 DOI: 10.3389/fpls.2019.00362] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/08/2019] [Indexed: 05/05/2023]
Abstract
Phospholipases (PLs) are lipid-hydrolyzing enzymes known to have diverse signaling roles during plant abiotic and biotic stress responses. They catalyze lipid remodeling, which is required to generate rapid responses of plants to environmental cues. Moreover, they produce second messenger molecules, such as phosphatidic acid (PA) and thus trigger or modulate signaling cascades that lead to changes in gene expression. The roles of phospholipases in plant abiotic and biotic stress responses have been intensively studied. Nevertheless, emerging evidence suggests that they also make significant contributions to plants' cellular and developmental processes. In this mini review, we summarized recent advances in the study of the cellular and developmental roles of phospholipases in plants.
Collapse
Affiliation(s)
| | | | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
28
|
Characterization of squalene-induced PgCYP736B involved in salt tolerance by modulating key genes of abscisic acid biosynthesis. Int J Biol Macromol 2018; 121:796-805. [PMID: 30336242 DOI: 10.1016/j.ijbiomac.2018.10.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/02/2018] [Accepted: 10/14/2018] [Indexed: 11/22/2022]
Abstract
Cytochrome P450 genes as the one of the largest superfamily genes mediate a wide range of plant biochemical pathways. In this study, a full-length cytochrome P450 monooxygenase (CYP736B) cDNA was isolated and characterized from Panax ginseng. It was revealed that the deduced amino acid of PgCYP736B shares a high degree of sequence homology with CYP736A12 encoded by P. ginseng. Expression of PgCYP736B was differentially induced not only during a Pseudomonas syringae infection (7.7-fold) and wounding (47.3-fold) but also after exposure to salt (7.4-fold), cold (8.3-fold), and drought stress (3.24-fold). The gene transcription was highly affected by methyl jasmonate (476-fold) in the ginseng, suggesting that PgCYP736B was elicitor-responsive. Furthermore, we overexpressed the PgCYP736B gene in Arabidopsis and found that PgCYP736B is a transmembrane protein. Overexpression of PgCYP736B in Arabidopsis conferred enhanced resistance to salt stress via decreased H2O2 accumulation, increased carotenoid levels, and through abscisic acid biosynthesis gene expression. Our results suggest that the induction of ginsenoside biosynthetic pathway genes along with PgCYP736B by an exogenous supply of 10-100 μM of squalene most likely affects the metabolite profile of ginsenoside triterpenoid. Overall, our findings indicate that PgCYP736B protects ginseng from salt stress and may contribute to triterpenoid biosynthesis.
Collapse
|
29
|
Zhou JJ, Luo J. The PIN-FORMED Auxin Efflux Carriers in Plants. Int J Mol Sci 2018; 19:E2759. [PMID: 30223430 PMCID: PMC6164769 DOI: 10.3390/ijms19092759] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
Auxin plays crucial roles in multiple developmental processes, such as embryogenesis, organogenesis, cell determination and division, as well as tropic responses. These processes are finely coordinated by the auxin, which requires the polar distribution of auxin within tissues and cells. The intercellular directionality of auxin flow is closely related to the asymmetric subcellular location of PIN-FORMED (PIN) auxin efflux transporters. All PIN proteins have a conserved structure with a central hydrophilic loop domain, which harbors several phosphosites targeted by a set of protein kinases. The activities of PIN proteins are finely regulated by diverse endogenous and exogenous stimuli at multiple layers-including transcriptional and epigenetic levels, post-transcriptional modifications, subcellular trafficking, as well as PINs' recycling and turnover-to facilitate the developmental processes in an auxin gradient-dependent manner. Here, the recent advances in the structure, evolution, regulation and functions of PIN proteins in plants will be discussed. The information provided by this review will shed new light on the asymmetric auxin-distribution-dependent development processes mediated by PIN transporters in plants.
Collapse
Affiliation(s)
- Jing-Jing Zhou
- College of Horticulture and Forestry Science, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jie Luo
- College of Horticulture and Forestry Science, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
30
|
He F, Wang H, Li H, Su Y, Li S, Yang Y, Feng C, Yin W, Xia X. PeCHYR1, a ubiquitin E3 ligase from Populus euphratica, enhances drought tolerance via ABA-induced stomatal closure by ROS production in Populus. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1514-1528. [PMID: 29406575 PMCID: PMC6041450 DOI: 10.1111/pbi.12893] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/28/2017] [Accepted: 01/28/2018] [Indexed: 05/11/2023]
Abstract
Drought, a primary abiotic stress, seriously affects plant growth and productivity. Stomata play a vital role in regulating gas exchange and drought adaptation. However, limited knowledge exists of the molecular mechanisms underlying stomatal movement in trees. Here, PeCHYR1, a ubiquitin E3 ligase, was isolated from Populus euphratica, a model of stress adaptation in forest trees. PeCHYR1 was preferentially expressed in young leaves and was significantly induced by ABA (abscisic acid) and dehydration treatments. To study the potential biological functions of PeCHYR1, transgenic poplar 84K (Populus alba × Populus glandulosa) plants overexpressing PeCHYR1 were generated. PeCHYR1 overexpression significantly enhanced H2 O2 production and reduced stomatal aperture. Transgenic lines exhibited increased sensitivity to exogenous ABA and greater drought tolerance than that of WT (wild-type) controls. Moreover, up-regulation of PeCHYR1 promoted stomatal closure and decreased transpiration, resulting in strongly elevated WUE (water use efficiency). When exposed to drought stress, transgenic poplar maintained higher photosynthetic activity and biomass accumulation. Taken together, these results suggest that PeCHYR1 plays a crucial role in enhancing drought tolerance via ABA-induced stomatal closure caused by hydrogen peroxide (H2 O2 ) production in transgenic poplar plants.
Collapse
Affiliation(s)
- Fang He
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Hou‐Ling Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Hui‐Guang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yanyan Su
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Shuang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yanli Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Cong‐Hua Feng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
31
|
Reza SH, Delhomme N, Street NR, Ramachandran P, Dalman K, Nilsson O, Minina EA, Bozhkov PV. Transcriptome analysis of embryonic domains in Norway spruce reveals potential regulators of suspensor cell death. PLoS One 2018; 13:e0192945. [PMID: 29499063 PMCID: PMC5834160 DOI: 10.1371/journal.pone.0192945] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/09/2018] [Indexed: 01/04/2023] Open
Abstract
The terminal differentiation and elimination of the embryo-suspensor is the earliest manifestation of programmed cell death (PCD) during plant ontogenesis. Molecular regulation of suspensor PCD remains poorly understood. Norway spruce (Picea abies) embryos provide a powerful model for studying embryo development because of their large size, sequenced genome, and the possibility to obtain a large number of embryos at a specific developmental stage through somatic embryogenesis. Here, we have carried out global gene expression analysis of the Norway spruce embryo-suspensor versus embryonal mass (a gymnosperm analogue of embryo proper) using RNA sequencing. We have identified that suspensors have enhanced expression of the NAC domain-containing transcription factors, XND1 and ANAC075, previously shown to be involved in the initiation of developmental PCD in Arabidiopsis. The analysis has also revealed enhanced expression of Norway spruce homologues of the known executioners of both developmental and stress-induced cell deaths, such as metacaspase 9 (MC9), cysteine endopeptidase-1 (CEP1) and ribonuclease 3 (RNS3). Interestingly, a spruce homologue of bax inhibitor-1 (PaBI-1, for Picea abies BI-1), an evolutionarily conserved cell death suppressor, was likewise up-regulated in the embryo-suspensor. Since Arabidopsis BI-1 so far has been implicated only in the endoplasmic reticulum (ER)-stress induced cell death, we investigated its role in embryogenesis and suspensor PCD using RNA interference (RNAi). We have found that PaBI-1-deficient lines formed a large number of abnormal embryos with suppressed suspensor elongation and disturbed polarity. Cytochemical staining of suspensor cells has revealed that PaBI-1 deficiency suppresses vacuolar cell death and induces necrotic type of cell death previously shown to compromise embryo development. This study demonstrates that a large number of cell-death components are conserved between angiosperms and gymnosperms and establishes a new role for BI-1 in the progression of vacuolar cell death.
Collapse
Affiliation(s)
- Salim H. Reza
- Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, SE, Sweden
- Department of Molecular Sciences, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, SE, Sweden
- * E-mail: (SHR); (EAM); (PVB)
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Nathaniel R. Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Prashanth Ramachandran
- Department of Organismal Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Uppsala University, Uppsala, SE, Sweden
| | - Kerstin Dalman
- Department of Molecular Sciences, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, SE, Sweden
| | - Ove Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Elena A. Minina
- Department of Molecular Sciences, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, SE, Sweden
- * E-mail: (SHR); (EAM); (PVB)
| | - Peter V. Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, SE, Sweden
- * E-mail: (SHR); (EAM); (PVB)
| |
Collapse
|
32
|
Shin J, Jeong G, Park JY, Kim H, Lee I. MUN (MERISTEM UNSTRUCTURED), encoding a SPC24 homolog of NDC80 kinetochore complex, affects development through cell division in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:977-991. [PMID: 29356153 DOI: 10.1111/tpj.13823] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/24/2017] [Accepted: 12/14/2017] [Indexed: 05/22/2023]
Abstract
Kinetochore, a protein super-complex on the centromere of chromosomes, mediates chromosome segregation during cell division by providing attachment sites for spindle microtubules. The NDC80 complex, composed of four proteins, NDC80, NUF2, SPC24 and SPC25, is localized at the outer kinetochore and connects spindle fibers to the kinetochore. Although it is conserved across species, functional studies of this complex are rare in Arabidopsis. Here, we characterize a recessive mutant, meristem unstructured-1 (mun-1), exhibiting an abnormal phenotype with unstructured shoot apical meristem caused by ectopic expression of the WUSCHEL gene in unexpected tissues. mun-1 is a weak allele because of the insertion of T-DNA in the promoter region of the SPC24 homolog. The mutant exhibits stunted growth, embryo arrest, DNA aneuploidy, and defects in chromosome segregation with a low cell division rate. Null mutants of MUN from TALEN and CRISPR/Cas9-mediated mutagenesis showed zygotic embryonic lethality similar to nuf2-1; however, the null mutations were fully transmissible via pollen and ovules. Interactions among the components of the NDC80 complex were confirmed in a yeast two-hybrid assay and in planta co-immunoprecipitation. MUN is co-localized at the centromere with HTR12/CENH3, which is a centromere-specific histone variant, but MUN is not required to recruit HTR12/CENH3 to the kinetochore. Our results support that MUN is a functional homolog of SPC24 in Arabidopsis, which is required for proper cell division. In addition, we report the ectopic generations of stem cell niches by the malfunction of kinetochore components.
Collapse
Affiliation(s)
- Jinwoo Shin
- Laboratory of Plant Developmental Genetics, School of Biological Sciences, Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| | - Goowon Jeong
- Laboratory of Plant Developmental Genetics, School of Biological Sciences, Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| | - Jong-Yoon Park
- Laboratory of Plant Developmental Genetics, School of Biological Sciences, Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| | - Hoyeun Kim
- Laboratory of Plant Developmental Genetics, School of Biological Sciences, Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| | - Ilha Lee
- Laboratory of Plant Developmental Genetics, School of Biological Sciences, Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
33
|
Eom H, Park SJ, Kim MK, Kim H, Kang H, Lee I. TAF15b, involved in the autonomous pathway for flowering, represses transcription of FLOWERING LOCUS C. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:79-91. [PMID: 29086456 DOI: 10.1111/tpj.13758] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/26/2017] [Accepted: 10/25/2017] [Indexed: 05/03/2023]
Abstract
TATA-binding protein-associated factors (TAFs) are general transcription factors within the transcription factor IID (TFIID) complex, which recognizes the core promoter of genes. In addition to their biochemical function, it is known that several TAFs are involved in the regulation of developmental processes. In this study, we found that TAF15b affects flowering time, especially through the autonomous pathway (AP) in Arabidopsis. The mutant taf15b shows late flowering compared with the wild type plant during both long and short days, and vernalization accelerates the flowering time of taf15b. In addition, taf15b shows strong upregulation of FLOWERING LOCUS C (FLC), a flowering repressor in Arabidopsis, and the flc taf15b double mutant completely offsets the late flowering of taf15b, indicating that TAF15b is a typical AP gene. The taf15b mutant also shows increased transcript levels of COOLAIR, an antisense transcript of FLC. Consistently, chromatin immunoprecipitation (ChIP) analyses showed that the TAF15b protein is enriched around both sense and antisense transcription start sites of the FLC locus. In addition, co-immunoprecipitation showed that TAF15b interacts with RNA polymerase II (Pol II), while ChIP showed increased enrichment of the phosphorylated forms, both serine 2 (Ser2) and Ser5, of the C-terminal domain of Pol II at the FLC locus, which is indicative of transcriptional elongation. Finally, taf15b showed higher enrichment of the active histone marker, H3K4me3, on FLC chromatin. Taken together, our results suggest that TAF15b affects flowering time through transcriptional repression of FLC in Arabidopsis.
Collapse
Affiliation(s)
- Hyunjoo Eom
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, Korea
| | - Su Jung Park
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Min Kyung Kim
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Hoyeun Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Hunseung Kang
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Ilha Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
34
|
Gupta P, Dash PK. Molecular details of secretory phospholipase A 2 from flax (Linum usitatissimum L.) provide insight into its structure and function. Sci Rep 2017; 7:11080. [PMID: 28894144 DOI: 10.1038/s41598-017-109699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/17/2017] [Indexed: 05/29/2023] Open
Abstract
Secretory phospholipase A2 (sPLA2) are low molecular weight proteins (12-18 kDa) involved in a suite of plant cellular processes imparting growth and development. With myriad roles in physiological and biochemical processes in plants, detailed analysis of sPLA2 in flax/linseed is meagre. The present work, first in flax, embodies cloning, expression, purification and molecular characterisation of two distinct sPLA2s (I and II) from flax. PLA2 activity of the cloned sPLA2s were biochemically assayed authenticating them as bona fide phospholipase A2. Physiochemical properties of both the sPLA2s revealed they are thermostable proteins requiring di-valent cations for optimum activity.While, structural analysis of both the proteins revealed deviations in the amino acid sequence at C- & N-terminal regions; hydropathic study revealed LusPLA2I as a hydrophobic protein and LusPLA2II as a hydrophilic protein. Structural analysis of flax sPLA2s revealed that secondary structure of both the proteins are dominated by α-helix followed by random coils. Modular superimposition of LusPLA2 isoforms with rice sPLA2 confirmed monomeric structural preservation among plant phospholipase A2 and provided insight into structure of folded flax sPLA2s.
Collapse
Affiliation(s)
- Payal Gupta
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
- Department of Biotechnology, Kurukshetra University, Thanesar, 136119, India.
| | - Prasanta K Dash
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
35
|
Gupta P, Dash PK. Molecular details of secretory phospholipase A 2 from flax (Linum usitatissimum L.) provide insight into its structure and function. Sci Rep 2017; 7:11080. [PMID: 28894144 PMCID: PMC5593939 DOI: 10.1038/s41598-017-10969-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/17/2017] [Indexed: 01/19/2023] Open
Abstract
Secretory phospholipase A2 (sPLA2) are low molecular weight proteins (12-18 kDa) involved in a suite of plant cellular processes imparting growth and development. With myriad roles in physiological and biochemical processes in plants, detailed analysis of sPLA2 in flax/linseed is meagre. The present work, first in flax, embodies cloning, expression, purification and molecular characterisation of two distinct sPLA2s (I and II) from flax. PLA2 activity of the cloned sPLA2s were biochemically assayed authenticating them as bona fide phospholipase A2. Physiochemical properties of both the sPLA2s revealed they are thermostable proteins requiring di-valent cations for optimum activity.While, structural analysis of both the proteins revealed deviations in the amino acid sequence at C- & N-terminal regions; hydropathic study revealed LusPLA2I as a hydrophobic protein and LusPLA2II as a hydrophilic protein. Structural analysis of flax sPLA2s revealed that secondary structure of both the proteins are dominated by α-helix followed by random coils. Modular superimposition of LusPLA2 isoforms with rice sPLA2 confirmed monomeric structural preservation among plant phospholipase A2 and provided insight into structure of folded flax sPLA2s.
Collapse
Affiliation(s)
- Payal Gupta
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
- Department of Biotechnology, Kurukshetra University, Thanesar, 136119, India.
| | - Prasanta K Dash
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
36
|
Gupta P, Saini R, Dash PK. Origin and evolution of group XI secretory phospholipase A 2 from flax (Linum usitatissimum) based on phylogenetic analysis of conserved domains. 3 Biotech 2017; 7:216. [PMID: 28669075 DOI: 10.1007/s13205-017-0790-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/12/2017] [Indexed: 01/10/2023] Open
Abstract
Phospholipase A2 (PLA2) belongs to class of lipolytic enzymes (EC 3.1.1.4). Lysophosphatidic acid (LPA) and free fatty acids (FFAs) are the products of PLA2 catalyzed hydrolysis of phosphoglycerides at sn-2 position. LPA and FFA that act as second mediators involved in the development and maturation of plants and animals. Mining of flax genome identified two phospholipase A2 encoding genes, viz., LusPLA 2 I and LusPLA 2 II (Linum usitatissimum secretory phospholipase A2). Molecular simulation of LusPLA2s with already characterized plant sPLA2s revealed the presence of conserved motifs and signature domains necessary to classify them as secretory phospholipase A2. Phylogenetic analysis of flax sPLA2 with representative sPLA2s from other organisms revealed that they evolved rapidly via gene duplication/deletion events and shares a common ancestor. Our study is the first report of detailed phylogenetic analysis for secretory phospholipase A2 in flax. Comparative genomic analysis of two LusPLA2s with earlier reported plant sPLA2s, based on their gene architectures, sequence similarities, and domain structures are presented elucidating the uniqueness of flax sPLA2.
Collapse
|
37
|
Nguyen NQ, Lee OR. Overexpression of ginseng UGT72AL1 causes organ fusion in the axillary leaf branch of Arabidopsis. J Ginseng Res 2017; 41:419-427. [PMID: 28701886 PMCID: PMC5489871 DOI: 10.1016/j.jgr.2017.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/09/2017] [Accepted: 03/14/2017] [Indexed: 11/20/2022] Open
Abstract
Background Glycosylation of natural compounds increases the diversity of secondary metabolites. Glycosylation steps are implicated not only in plant growth and development, but also in plant defense responses. Although the activities of uridine-dependent glycosyltransferases (UGTs) have long been recognized, and genes encoding them in several higher plants have been identified, the specific functions of UGTs in planta remain largely unknown. Methods Spatial and temporal patterns of gene expression were analyzed by quantitative reverse transcription (qRT)-polymerase chain reaction (PCR) and GUS histochemical assay. In planta transformation in heterologous Arabidopsis was generated by floral dipping using Agrobacterium tumefaciens (C58C1). Protein localization was analyzed by confocal microscopy via fluorescent protein tagging. Results PgUGT72AL1 was highly expressed in the rhizome, upper root, and youngest leaf compared with the other organs. GUS staining of the promoter: GUS fusion revealed high expression in different organs, including axillary leaf branch. Overexpression of PgUGT72AL1 resulted in a fused organ in the axillary leaf branch. Conclusion PgUGT72AL1, which is phylogenetically close to PgUGT71A27, is involved in the production of ginsenoside compound K. Considering that compound K is not reported in raw ginseng material, further characterization of this gene may shed light on the biological function of ginsenosides in ginseng plant growth and development. The organ fusion phenotype could be caused by the defective growth of cells in the boundary region, commonly regulated by phytohormones such as auxins or brassinosteroids, and requires further analysis.
Collapse
Affiliation(s)
| | - Ok Ran Lee
- Corresponding author. Department of Plant Biotechnology, College of Agriculture and Life Science, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.Department of Plant BiotechnologyCollege of Agriculture and Life ScienceChonnam National University77 Yongbong-ro, Buk-guGwangju61186Republic of Korea
| |
Collapse
|
38
|
Hwang Y, Choi HS, Cho HM, Cho HT. Tracheophytes Contain Conserved Orthologs of a Basic Helix-Loop-Helix Transcription Factor That Modulate ROOT HAIR SPECIFIC Genes. THE PLANT CELL 2017; 29:39-53. [PMID: 28087829 PMCID: PMC5304353 DOI: 10.1105/tpc.16.00732] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/05/2016] [Accepted: 01/11/2017] [Indexed: 05/21/2023]
Abstract
ROOT HAIR SPECIFIC (RHS) genes, which contain the root hair-specific cis-element (RHE) in their regulatory regions, function in root hair morphogenesis. Here, we demonstrate that an Arabidopsis thaliana basic helix-loop-helix transcription factor, ROOT HAIR DEFECTVE SIX-LIKE4 (RSL4), directly binds to the RHE in vitro and in vivo, upregulates RHS genes, and stimulates root hair formation in Arabidopsis. Orthologs of RSL4 from a eudicot (poplar [Populus trichocarpa]), a monocot (rice [Oryza sativa]), and a lycophyte (Selaginella moellendorffii) each restored root hair growth in the Arabidopsis rsl4 mutant. In addition, the rice and S. moellendorffii RSL4 orthologs bound to the RHE in in vitro and in vivo assays. The RSL4 orthologous genes contain RHEs in their promoter regions, and RSL4 was able to bind to its own RHEs in vivo and amplify its own expression. This process likely provides a positive feedback loop for sustainable root hair growth. When RSL4 and its orthologs were expressed in cells in non-root-hair positions, they induced ectopic root hair growth, indicating that these genes are sufficient to specify root hair formation. Our results suggest that RSL4 mediates root hair formation by regulating RHS genes and that this mechanism is conserved throughout the tracheophyte (vascular plant) lineage.
Collapse
Affiliation(s)
- Youra Hwang
- Department of Biological Sciences and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-742, Korea
| | - Hee-Seung Choi
- Department of Biological Sciences and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-742, Korea
| | - Hyun-Min Cho
- Department of Biological Sciences and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-742, Korea
| | - Hyung-Taeg Cho
- Department of Biological Sciences and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
39
|
Ki D, Sasayama D, Cho HT. The M3 Phosphorylation Site Is Required for Trafficking and Biological Roles of PIN-FORMED1, 2, and 7 in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:1479. [PMID: 27733863 PMCID: PMC5039202 DOI: 10.3389/fpls.2016.01479] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/16/2016] [Indexed: 05/28/2023]
Abstract
Asymmetrically localized PIN-FORMED (PIN) auxin efflux carriers play key roles in regulating directional intercellular auxin movement, generating local auxin gradients, and diverse auxin-mediated growth and development. The polar localization of PINs is controlled by phosphorylation in the central hydrophilic loop (HL) of PINs. Although the M3 phosphorylation site, including phosphorylatable 5 Ser/Thr residues, is conserved among long HL-PINs, its native role has only been characterized in PIN3. In this study, we examined the role of M3 phosphorylation site of PIN1, PIN2, and PIN7 in intracellular trafficking, phosphorylation, and biological functions of those PINs in their native expressing tissues. Phosphorylation-defective mutations of the phosphorylatable residues in the M3 site of PIN1-HL led to alteration in subcellular polarity of PIN1 and caused defects in PIN1-mediated biological functions such as cotyledon development, phyllotaxy of vegetative leaves, and development of reproductive organs. The M3 mutations of PIN7 interfered with its polar recycling in the root columella cell in response to gravity stimulus and partially disrupted root gravitropism. On the other hand, the M3 site of PIN2 was shown to be necessary for its targeting to the plasma membrane. In vitro phosphorylation assay showed that the M3 phosphorylation residues of PIN1 are the partial targets by PINOID kinase. Our data suggest that the M3 phosphorylation site is functionally conserved among long HL-PINs by playing roles for their subcellular trafficking and auxin-mediated developmental processes.
Collapse
|
40
|
Nguyen HTK, Kim SY, Cho KM, Hong JC, Shin JS, Kim HJ. A Transcription Factor γMYB1 Binds to the P1BS cis-Element and Activates PLA2-γ Expression with its Co-Activator γMYB2. PLANT & CELL PHYSIOLOGY 2016; 57:784-97. [PMID: 26872838 DOI: 10.1093/pcp/pcw024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/22/2016] [Indexed: 05/10/2023]
Abstract
Phospholipase A2(PLA2) hydrolyzes phospholipid molecules to produce two products that are both precursors of second messengers of signaling pathways and signaling molecules per se.Arabidopsis thaliana PLA2 paralogs (-β,-γ and -δ) play critical roles during pollen development, pollen germination and tube growth. In this study, analysis of the PLA2-γ promoter using a deletion series revealed that the promoter region -153 to -1 is crucial for its pollen specificity. Using a yeast one-hybrid screening assay with the PLA2-γ promoter and an Arabidopsis transcription factor (TF)-only library, we isolated two novel MYB-like TFs belonging to the MYB-CC family, denoted here as γMYB1 and γMYB2. By electrophoretic mobility shift assay, we found that these two TFs bind directly to the P1BS (phosphate starvation response 1-binding sequence)cis-element of the PLA2-γ promoter. γMYB1 alone functioned as a transcriptional activator for PLA2-γ expression, whereas γMYB2 directly interacted with γMYB1 and enhanced its activation. Overexpression of γMYB1 in the mature pollen grain led to increased expression of not only the PLA2-γ gene but also of several genes whose promoters contain the P1BS cis-element and which are involved in the Pi starvation response, phospholipid biosynthesis and sugar synthesis. Based on these results, we suggest that the TF γMYB1 binds to the P1BS cis-element, activates the expression of PLA2-γ with the assistance of its co-activator, γMYB2, and regulates the expression of several target genes involved in many plant metabolic reactions.
Collapse
Affiliation(s)
| | - Soo Youn Kim
- Division of Life Sciences, Korea University, Seoul 136-701, Korea
| | - Kwang-Moon Cho
- Division of Life Sciences, Korea University, Seoul 136-701, Korea
| | - Jong Chan Hong
- Division of Life Science, Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea; Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Jeong Sheop Shin
- Division of Life Sciences, Korea University, Seoul 136-701, Korea
| | - Hae Jin Kim
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, NE 68588, USA
| |
Collapse
|
41
|
Hwang Y, Lee H, Lee YS, Cho HT. Cell wall-associated ROOT HAIR SPECIFIC 10, a proline-rich receptor-like kinase, is a negative modulator of Arabidopsis root hair growth. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2007-22. [PMID: 26884603 PMCID: PMC4783376 DOI: 10.1093/jxb/erw031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Plant cell growth is restricted by the cell wall, and cell wall dynamics act as signals for the cytoplasmic and nuclear events of cell growth. Among various receptor kinases, ROOT HAIR SPECIFIC 10 (RHS10) belongs to a poorly known receptor kinase subfamily with a proline-rich extracellular domain. Here, we report that RHS10 defines the root hair length of Arabidopsis thaliana by negatively regulating hair growth. RHS10 modulates the duration of root hair growth rather than the growth rate. As poplar and rice RHS10 orthologs also showed a root hair-inhibitory function, this receptor kinase-mediated function appears to be conserved in angiosperms. RHS10 showed a strong association with the cell wall, most probably through its extracellular proline-rich domain (ECD). Deletion analysis of the ECD demonstrated that a minimal extracellular part, which includes a few proline residues, is required for RHS10-mediated root hair inhibition. RHS10 suppressed the accumulation of reactive oxygen species (ROS) in the root, which are necessary for root hair growth. A yeast two-hybrid screening identified an RNase (RNS2) as a putative downstream target of RHS10. Accordingly, RHS10 overexpression decreased and RHS10 loss increased RNA levels in the hair-growing root region. Our results suggest that RHS10 mediates cell wall-associated signals to maintain proper root hair length, at least in part by regulating RNA catabolism and ROS accumulation.
Collapse
Affiliation(s)
- Youra Hwang
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Hyodong Lee
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Young-Sook Lee
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Hyung-Taeg Cho
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
42
|
Mazzucotelli E, Trono D. Cloning, expression analysis, and functional characterization of two secretory phospholipases A2 in durum wheat (Triticum durum Desf.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 241:295-306. [PMID: 26706080 DOI: 10.1016/j.plantsci.2015.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/16/2015] [Accepted: 10/17/2015] [Indexed: 06/05/2023]
Abstract
We previously isolated four cDNAs in durum wheat, TdsPLA2I, TdsPLA2II, TdsPLA2III and TdsPLA2IV, that encode proteins with homology to plant secretory phospholipases A2 (sPLA2s) (Verlotta et al., Int. J. Mol. Sci., 14, 2013, 5146-5169). In this study, we have further characterized TdsPLA2II and TdsPLA2III sequences that, on the basis of our previous findings, might encode sPLA2 isoforms with different features. Functional analysis revealed that, similarly to other known sPLA2s, TdsPLA2II and TdsPLA2III have an optimum at pH 9.0, require Ca(2+), are heat stable, and are inhibited by the disulfide-bond-reducing agent dithiothreitol. However, differences emerged between these TdsPLA2 isoforms. Transcript analysis revealed that the TdsPLA2III gene is highly up-regulated under different environmental stresses; conversely, the TdsPLA2II gene is expressed at constant levels under almost all of the stress conditions examined. Moreover, TdsPLA2II is saturated at micromolar substrate and Ca(2+) concentrations, whereas TdsPLA2III requires millimolar concentrations to reach maximal activity. This suggests that TdsPLA2II normally functions under optimal conditions in vivo, whereas TdsPLA2III is only partially activated, depending on the specific phospholipid and Ca(2+) levels. Altogether these data lead to the hypothesis that in vivo TdsPLA2II and TdsPLA2III are differently regulated at both molecular and biochemical level and that TdsPLA2III plays a major role in durum wheat response to adverse environmental conditions.
Collapse
MESH Headings
- Amino Acid Sequence
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- DNA, Plant/genetics
- DNA, Plant/metabolism
- Gene Expression Regulation, Plant
- Molecular Sequence Data
- Phospholipases A2, Secretory/genetics
- Phospholipases A2, Secretory/metabolism
- Phylogeny
- Plant Proteins/genetics
- Plant Proteins/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Sequence Alignment
- Triticum/enzymology
- Triticum/genetics
- Triticum/metabolism
Collapse
Affiliation(s)
- Elisabetta Mazzucotelli
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la Genomica Vegetale, Via San Protaso 302, 29017 Fiorenzuola d'Arda, Italy
| | - Daniela Trono
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la Cerealicoltura, S.S. 673, Km 25,200, 71122 Foggia, Italy.
| |
Collapse
|
43
|
Bayon S, Chen G, Weselake RJ, Browse J. A small phospholipase A2-α from castor catalyzes the removal of hydroxy fatty acids from phosphatidylcholine in transgenic Arabidopsis seeds. PLANT PHYSIOLOGY 2015; 167:1259-70. [PMID: 25667315 PMCID: PMC4378157 DOI: 10.1104/pp.114.253641] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/04/2015] [Indexed: 05/21/2023]
Abstract
Ricinoleic acid, an industrially useful hydroxy fatty acid (HFA), only accumulates to high levels in the triacylglycerol fraction of castor (Ricinus communis) endosperm, even though it is synthesized on the membrane lipid phosphatidylcholine (PC) from an oleoyl ester. The acyl chains of PC undergo intense remodeling through the process of acyl editing. The identities of the proteins involved in this process, however, are unknown. A phospholipase A2 (PLA2) is thought to be involved in the acyl-editing process. We show here a role for RcsPLA2α in the acyl editing of HFA esterified to PC. RcsPLA2α was identified by its high relative expression in the castor endosperm transcriptome. Coexpression in Arabidopsis (Arabidopsis thaliana) seeds of RcsPLA2α with the castor fatty acid hydroxylase RcFAH12 led to a dramatic decrease in seed HFA content when compared with RcFAH12 expression alone in both PC and the neutral lipid fraction. The low-HFA trait was heritable and gene dosage dependent, with hemizygous lines showing intermediate HFA levels. The low seed HFA levels suggested that RcsPLA2α functions in vivo as a PLA2 with HFA specificity. Activity assays with yeast (Saccharomyces cerevisiae) microsomes showed a high specificity of RcsPLA2α for ricinoleic acid, superior to that of the endogenous Arabidopsis PLA2α. These results point to RcsPLA2α as a phospholipase involved in acyl editing, adapted to specifically removing HFA from membrane lipids in seeds.
Collapse
Affiliation(s)
- Shen Bayon
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (S.B., J.B.); andAlberta Innovates Phytola Centre, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5 (G.C., R.J.W.)
| | - Guanqun Chen
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (S.B., J.B.); andAlberta Innovates Phytola Centre, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5 (G.C., R.J.W.)
| | - Randall J Weselake
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (S.B., J.B.); andAlberta Innovates Phytola Centre, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5 (G.C., R.J.W.)
| | - John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (S.B., J.B.); andAlberta Innovates Phytola Centre, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5 (G.C., R.J.W.)
| |
Collapse
|
44
|
Pireyre M, Burow M. Regulation of MYB and bHLH transcription factors: a glance at the protein level. MOLECULAR PLANT 2015; 8:378-88. [PMID: 25667003 DOI: 10.1016/j.molp.2014.11.022] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/10/2014] [Accepted: 11/24/2014] [Indexed: 05/07/2023]
Abstract
In complex, constantly changing environments, plants have developed astonishing survival strategies. These elaborated strategies rely on rapid and precise gene regulation mediated by transcription factors (TFs). TFs represent a large fraction of plant genomes and among them, MYBs and basic helix-loop-helix (bHLHs) have unique inherent properties specific to plants. Proteins of these two TF families can act as homo- or heterodimers, associate with proteins from other protein families, or form MYB/bHLH complexes to regulate distinct cellular processes. The ability of MYBs and bHLHs to interact with multiple protein partners has evolved to keep up with the increased metabolic complexity of multi-cellular organisms. Association and disassociation of dynamic TF complexes in response to developmental and environmental cues are controlled through a plethora of regulatory mechanisms specifically modulating TF activity. Regulation of TFs at the protein level is critical for efficient and precise control of their activity, and thus provides the mechanistic basis for a rapid on-and-off switch of TF activity. In this review, examples of post-translational modifications, protein-protein interactions, and subcellular mobilization of TFs are discussed with regard to the relevance of these regulatory mechanisms for the specific activation of MYBs and bHLHs in response to a given environmental stimulus.
Collapse
Affiliation(s)
- Marie Pireyre
- DynaMo DNRF Center of Excellence, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Meike Burow
- DynaMo DNRF Center of Excellence, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
45
|
Boutté Y, Moreau P. Modulation of endomembranes morphodynamics in the secretory/retrograde pathways depends on lipid diversity. CURRENT OPINION IN PLANT BIOLOGY 2014; 22:22-29. [PMID: 25233477 DOI: 10.1016/j.pbi.2014.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/27/2014] [Accepted: 08/30/2014] [Indexed: 05/11/2023]
Abstract
Membrane lipids are crucial bricks for cell and organelle compartmentalization and their physical properties and interactions with other membrane partners (lipids or proteins) reveal lipids as key actors of the regulation of membrane morphodynamics in many cellular functions and especially in the secretory/retrograde pathways. Studies on membrane models have indicated diverse mechanisms by which membranes bend. Moreover, in vivo studies also indicate that membrane curvature can play crucial roles in the regulation of endomembrane morphodynamics, organelle morphology and transport vesicle formation. A role for enzymes of lipid metabolism and lipid-protein interactions will be discussed as crucial mechanisms in the regulation of membrane morphodynamics in the secretory/retrograde pathways.
Collapse
Affiliation(s)
- Yohann Boutté
- Laboratoire de Biogenèse Membranaire, UMR 5200 CNRS, University of Bordeaux, France
| | - Patrick Moreau
- Laboratoire de Biogenèse Membranaire, UMR 5200 CNRS, University of Bordeaux, France.
| |
Collapse
|
46
|
Wang L, Kazachkov M, Shen W, Bai M, Wu H, Zou J. Deciphering the roles of Arabidopsis LPCAT and PAH in phosphatidylcholine homeostasis and pathway coordination for chloroplast lipid synthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:965-76. [PMID: 25268378 DOI: 10.1111/tpj.12683] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 09/10/2014] [Accepted: 09/22/2014] [Indexed: 05/19/2023]
Abstract
Phosphatidylcholine (PC) is a key intermediate in the metabolic network of glycerolipid biosynthesis. Lysophosphatidylcholine acyltransferase (LPCAT) and phosphatidic acid phosphatase (PAH) are two key enzymes of PC homeostasis. We report that LPCAT activity is markedly induced in the Arabidopsis pah mutant. The quadruple pah lpcat mutant, with dual defects in PAH and LPCAT, had a level of lysophosphatidylcholine (LPC) that was much higher than that in the lpcat mutants and a PC content that was higher than that in the pah mutant. Comparative molecular profile analysis of monogalactosyldiacylglycerol and digalactosyldiacylglycerol revealed that both the pah and pah lpcat mutants had increased proportions of 34:6 from the prokaryotic pathway despite differing levels of LPCAT activity. We show that a decreased representation of the C16:0 C18:2 diacylglycerol moiety in PC was a shared feature of pah and pah lpcat, and that this change in PC metabolic profile correlated with the increased prokaryotic contribution to chloroplast lipid synthesis. We detected increased PC deacylation in the pah lpcat mutant that was attributable at least in part to the induced phospholipases. Increased LPC generation was also evident in the pah mutant, but the phospholipases were not induced, raising the possibility that PC deacylation is mediated by the reverse reaction of LPCAT. We discuss possible roles of LPCAT and PAH in PC turnover that impacts lipid pathway coordination for chloroplast lipid synthesis.
Collapse
Affiliation(s)
- Liping Wang
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Plant phosphoinositides-complex networks controlling growth and adaptation. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:759-69. [PMID: 25280638 DOI: 10.1016/j.bbalip.2014.09.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 11/24/2022]
Abstract
Plants differ in many ways from mammals or yeast. However, plants employ phosphoinositides for the regulation of essential cellular functions as do all other eukaryotes. In recent years the plant phosphoinositide system has been linked to the control of cell polarity. Phosphoinositides are also implicated in plant adaptive responses to changing environmental conditions. The current understanding is that plant phosphoinositides control membrane trafficking, ion channels and the cytoskeleton in similar ways as in other eukaryotic systems, but adapted to meet plant cellular requirements and with some plant-specific features. In addition, the formation of soluble inositol polyphosphates from phosphoinositides is important for the perception of important phytohormones, as the relevant receptor proteins contain such molecules as structural cofactors. Overall, the essential nature of phosphoinositides in plants has been established. Still, the complexity of the phosphoinositide networks in plant cells is only emerging and invites further study of its molecular details. This article is part of a special issue entitled Phosphoinositides.
Collapse
|
48
|
Verlotta A, Trono D. Expression, purification and refolding of active durum wheat (Triticum durum Desf.) secretory phospholipase A2 from inclusion bodies of Escherichia coli. Protein Expr Purif 2014; 101:28-36. [DOI: 10.1016/j.pep.2014.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 05/18/2014] [Accepted: 05/26/2014] [Indexed: 11/16/2022]
|
49
|
Naramoto S, Otegui MS, Kutsuna N, de Rycke R, Dainobu T, Karampelias M, Fujimoto M, Feraru E, Miki D, Fukuda H, Nakano A, Friml J. Insights into the localization and function of the membrane trafficking regulator GNOM ARF-GEF at the Golgi apparatus in Arabidopsis. THE PLANT CELL 2014; 26:3062-76. [PMID: 25012191 PMCID: PMC4145132 DOI: 10.1105/tpc.114.125880] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/28/2014] [Accepted: 06/04/2014] [Indexed: 05/19/2023]
Abstract
GNOM is one of the most characterized membrane trafficking regulators in plants, with crucial roles in development. GNOM encodes an ARF-guanine nucleotide exchange factor (ARF-GEF) that activates small GTPases of the ARF (ADP ribosylation factor) class to mediate vesicle budding at endomembranes. The crucial role of GNOM in recycling of PIN auxin transporters and other proteins to the plasma membrane was identified in studies using the ARF-GEF inhibitor brefeldin A (BFA). GNOM, the most prominent regulator of recycling in plants, has been proposed to act and localize at so far elusive recycling endosomes. Here, we report the GNOM localization in context of its cellular function in Arabidopsis thaliana. State-of-the-art imaging, pharmacological interference, and ultrastructure analysis show that GNOM predominantly localizes to Golgi apparatus. Super-resolution confocal live imaging microscopy identified GNOM and its closest homolog GNOM-like 1 at distinct subdomains on Golgi cisternae. Short-term BFA treatment stabilizes GNOM at the Golgi apparatus, whereas prolonged exposures results in GNOM translocation to trans-Golgi network (TGN)/early endosomes (EEs). Malformed TGN/EE in gnom mutants suggests a role for GNOM in maintaining TGN/EE function. Our results redefine the subcellular action of GNOM and reevaluate the identity and function of recycling endosomes in plants.
Collapse
Affiliation(s)
- Satoshi Naramoto
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium Molecular Membrane Biology laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan Department of Life Science, International Christian University, Mitaka-shi, Tokyo 181-8585, Japan
| | - Marisa S Otegui
- Department of Botany and Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Natsumaro Kutsuna
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Riet de Rycke
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Tomoko Dainobu
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Michael Karampelias
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Masaru Fujimoto
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Elena Feraru
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Daisuke Miki
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akihiko Nakano
- Molecular Membrane Biology laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan Live Cell Molecular Imaging Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Jiří Friml
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
50
|
Kim YJ, Lee OR, Oh JY, Jang MG, Yang DC. Functional analysis of 3-hydroxy-3-methylglutaryl coenzyme a reductase encoding genes in triterpene saponin-producing ginseng. PLANT PHYSIOLOGY 2014. [PMID: 24569845 DOI: 10.1104/pp.113.222596/1532-2548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Ginsenosides are glycosylated triterpenes that are considered to be important pharmaceutically active components of the ginseng (Panax ginseng 'Meyer') plant, which is known as an adaptogenic herb. However, the regulatory mechanism underlying the biosynthesis of triterpene saponin through the mevalonate pathway in ginseng remains unclear. In this study, we characterized the role of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) concerning ginsenoside biosynthesis. Through analysis of full-length complementary DNA, two forms of ginseng HMGR (PgHMGR1 and PgHMGR2) were identified as showing high sequence identity. The steady-state mRNA expression patterns of PgHMGR1 and PgHMGR2 are relatively low in seed, leaf, stem, and flower, but stronger in the petiole of seedling and root. The transcripts of PgHMGR1 were relatively constant in 3- and 6-year-old ginseng roots. However, PgHMGR2 was increased five times in the 6-year-old ginseng roots compared with the 3-year-old ginseng roots, which indicates that HMGRs have constant and specific roles in the accumulation of ginsenosides in roots. Competitive inhibition of HMGR by mevinolin caused a significant reduction of total ginsenoside in ginseng adventitious roots. Moreover, continuous dark exposure for 2 to 3 d increased the total ginsenosides content in 3-year-old ginseng after the dark-induced activity of PgHMGR1. These results suggest that PgHMGR1 is associated with the dark-dependent promotion of ginsenoside biosynthesis. We also observed that the PgHMGR1 can complement Arabidopsis (Arabidopsis thaliana) hmgr1-1 and that the overexpression of PgHMGR1 enhanced the production of sterols and triterpenes in Arabidopsis and ginseng. Overall, this finding suggests that ginseng HMGRs play a regulatory role in triterpene ginsenoside biosynthesis.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Department of Oriental Medicinal Materials and Processing, College of Life Science, Kyung Hee University, Suwon 449-701, Korea
| | | | | | | | | |
Collapse
|