1
|
Villwock SS, Li L, Jannink JL. Carotenoid-carbohydrate crosstalk: evidence for genetic and physiological interactions in storage tissues across crop species. THE NEW PHYTOLOGIST 2024; 244:1709-1722. [PMID: 39400352 DOI: 10.1111/nph.20196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/28/2024] [Indexed: 10/15/2024]
Abstract
Carotenoids play essential roles in photosynthesis, photoprotection, and human health. Efforts to increase carotenoid content in several staple crops have been successful through both conventional selection and genetic engineering methods. Interestingly, in some cases, altering carotenoid content has had unexpected effects on other aspects of plant metabolism, impacting traits like sugar content, dry matter percentage, fatty acid content, stress tolerance, and phytohormone concentrations. Studies across several diverse crop species have identified negative correlations between carotenoid and starch contents, as well as positive correlations between carotenoids and soluble sugars. Collectively, these reports suggest a metabolic interaction between carotenoids and carbohydrates. We synthesize evidence pointing to four hypothesized mechanisms: (1) direct competition for precursors; (2) physical interactions in plastids; (3) influences of sugar or apocarotenoid signaling networks; and (4) nonmechanistic population or statistical sources of correlations. Though the carotenoid biosynthesis pathway is well understood, the regulation and interactions of carotenoids, especially in nonphotosynthetic tissues, remain unclear. This topic represents an underexplored interplay between primary and secondary metabolism where further research is needed.
Collapse
Affiliation(s)
- Seren S Villwock
- School of Integrative Plant Science, Section of Plant Breeding and Genetics, Cornell University College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
| | - Li Li
- School of Integrative Plant Science, Section of Plant Breeding and Genetics, Cornell University College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
- US Department of Agriculture-Agricultural Research Service, Plant, Soil and Nutrition Laboratory, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Jean-Luc Jannink
- School of Integrative Plant Science, Section of Plant Breeding and Genetics, Cornell University College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
- US Department of Agriculture-Agricultural Research Service, Plant, Soil and Nutrition Laboratory, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| |
Collapse
|
2
|
Lobato-Gómez M, Drapal M, Fernández-Muñoz R, Presa S, Espinosa A, Fraser PD, Gómez-Gómez L, Orzaez D, Granell A. Maximizing saffron apocarotenoid production in varied tomato fruit carotenoid contexts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:966-983. [PMID: 39292868 DOI: 10.1111/tpj.17030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Saffron spice owes its commercial appreciation to its specific apocarotenoids: crocins, picrocrocin, and safranal. In Crocus sativus, these compounds are biosynthesized from zeaxanthin through oxidative cleavage by the carotenoid cleavage dioxygenase 2 (CCD2). Transgenic tomato plants expressing CsCCD2 in the fruit, named Tomaffron, accumulate high levels of saffron apocarotenoids despite the low substrate availability for CsCCD2. In the present study, CsCCD2 has been introduced into Xantomato; this tomato variety accumulates high levels of zeaxanthin and β-carotene in ripe fruit due to a combination of four mutant alleles. Xantomato and Tomaffron genotypes have been combined to optimize apocarotenoid production. The best transgenic lines accumulated 15 and 14 times more crocins and picrocrocin than Tomaffron, alongside a fourfold increase in β-carotene compared to Xantomato, albeit at a cost in fruit yield. Segregation of the four mutations has been carried out to find the best combination for obtaining high levels of saffron apocarotenoids without adverse effects on fruit yield. Plants harboring the high-pigmented 3 (hp3) and BETA (BSh) mutations accumulated 6 and 15 times more crocins and picrocrocin than Tomaffron, without observable pleiotropic effects. Additionally, those high levels of saffron apocarotenoids were obtained in fruit accumulating high levels of both lycopene and β-carotene independently or in combination, suggesting a regulatory role for the apocarotenoids produced and indicating that it is possible to increase the levels of both types of healthy promoting molecules simultaneously.
Collapse
Affiliation(s)
- Maria Lobato-Gómez
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de València, Valencia, 46022, Spain
| | - Margit Drapal
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Rafael Fernández-Muñoz
- Instituto de Hortofruticultura Subtropical y Mediterránea, CSIC-Universidad de Málaga, Algarrobo Costa, Málaga, 29750, Spain
| | - Silvia Presa
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de València, Valencia, 46022, Spain
| | - Ana Espinosa
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de València, Valencia, 46022, Spain
| | - Paul D Fraser
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Lourdes Gómez-Gómez
- Instituto Botánico, Universidad de Castilla-La Mancha, Albacete, 02006, Spain
| | - Diego Orzaez
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de València, Valencia, 46022, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de València, Valencia, 46022, Spain
| |
Collapse
|
3
|
Wang Y, Tian C, Na Q, Zhu C, Cao H, Zhang M, Meng L. The role of SlCHRC in carotenoid biosynthesis and plastid development in tomato fruit. Int J Biol Macromol 2024; 281:136354. [PMID: 39378920 DOI: 10.1016/j.ijbiomac.2024.136354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Chromoplasts are specialized plastids in plants involved in carotenoid synthesis, accumulation, and stress resistance. In tomatoes (Solanum lycopersicum), the Chromoplast-associated carotenoid binding protein (CHRC) regulates chromoplast development and carotenoid accumulation, although its precise mechanisms are not yet fully understood. To investigate the role of SlCHRC in carotenoid biosynthesis, we generated transgenic tomatoes using overexpression (oe-SlCHRC) and CRISPR/Cas9-mediated gene editing (cr-SlCHRC) techniques. The results demonstrated inhibited fruit ripening and delayed onset of color break in both transgenic lines. The oe-SlCHRC lines exhibited increased carotenoid accumulation, particularly (E/Z)-phytoene, lycopene, and γ-carotene, with abundant plastoglobules and carotenoid crystals observed via TEM. In contrast, cr-SlCHRC mutants showed a greener phenotype, reduced carotenoid content, and fewer plastoglobules at the BK + 10 stage. Transcriptome analysis indicated that SlCHRC influences key genes in carotenoid biosynthesis, such as SlNCED2, as well as genes related to chloroplast development, photosynthesis, and plastoglobule formation. Additionally, SlCHRC enhances heat stress tolerance in tomato fruits by upregulating heat shock proteins (HSPs), antioxidants, and proline accumulation. These findings indicate that SlCHRC plays a crucial role in improving tomato fruit quality under heat stress conditions.
Collapse
Affiliation(s)
- Yu Wang
- School of Food Science and Engineering, Hainan University, Hai Kou 570228, PR China; Sanya Nanfan Research Institute, Hainan University, Sanya 572025, PR China
| | - Cong Tian
- School of Food Science and Engineering, Hainan University, Hai Kou 570228, PR China
| | - Qiting Na
- School of Food Science and Engineering, Hainan University, Hai Kou 570228, PR China
| | - Changsong Zhu
- School of Food Science and Engineering, Hainan University, Hai Kou 570228, PR China
| | - Hui Cao
- School of Food Science and Engineering, Hainan University, Hai Kou 570228, PR China
| | - Mengzhuo Zhang
- School of Food Science and Engineering, Hainan University, Hai Kou 570228, PR China
| | - Lanhuan Meng
- School of Food Science and Engineering, Hainan University, Hai Kou 570228, PR China.
| |
Collapse
|
4
|
Drapal M, Ovalle Rivera TM, Luna Meléndez JL, Perez-Fons L, Tran T, Dufour D, Becerra Lopez-Lavalle LA, Fraser PD. Biochemical characterisation of a cassava (Manihot esculenta crantz) diversity panel for post-harvest physiological deterioration; metabolite involvement and environmental influence. JOURNAL OF PLANT PHYSIOLOGY 2024; 301:154303. [PMID: 38959754 DOI: 10.1016/j.jplph.2024.154303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Cassava (Manihot esculenta Crantz) produces edible roots, a major carbohydrate source feeding more than 800 million people in Africa, Latin America, Oceania and Asia. Post-harvest physiological deterioration (PPD) renders harvested cassava roots unpalatable and unmarketable. Decades of research on PPD have elucidated several genetic, enzymatic and metabolic processes involved. Breeding populations were established to enable verification of robust biomarkers for PPD resistance. For comparison, these PPD populations have been cultivated concurrently with diversity population for carotenoid (β-carotene) content. Results highlighted a significant variation of the chemotypes due to environmental factors. Less than 3% of the detected molecular features showed consistent trends between the two harvest years and were putatively identified as phenylpropanoid derived compounds (e.g. caffeoyl rutinoside). The data corroborated that ∼20 μg β-carotene/g DW can reduced the PPD response of the cassava roots to a score of ∼1. Correlation analysis showed a significant correlation of β-carotene content at harvest to PPD response (R2 -0.55). However, the decrease of β-carotene over storage was not significantly correlated to initial content or PPD response. Volatile analysis observed changes of apocarotenoids derived from β-carotene, lipid oxidation products (alkanes, alcohols and carbonyls and esters) and terpenes. The majority of these volatiles (>90%) showed no significant correlation to β-carotene or PPD. Observed data indicated an increase (∼2-fold) of alkanes in varieties with β-carotene >10 μg/g DW and a decrease (∼60%) in varieties with less β-carotene. Fatty acid methyl esters with a chain length > C9 were detected solely after storage and show lower levels in varieties with higher β-carotene content. In combination with correlation values to PPD (R2 ∼0.3; P-value >0.05), the data indicated a more efficient ROS quenching mechanism in PPD resistant varieties.
Collapse
Affiliation(s)
- Margit Drapal
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK
| | | | | | - Laura Perez-Fons
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK
| | - Thierry Tran
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Dominique Dufour
- International Center for Tropical Agriculture (CIAT), Cali, Colombia; CIRAD, UMR QualiSud, F-34398, Montpellier, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | | | - Paul D Fraser
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK.
| |
Collapse
|
5
|
Morelli L, Perez-Colao P, Reig-Lopez D, Di X, Llorente B, Rodriguez-Concepcion M. Boosting pro-vitamin A content and bioaccessibility in leaves by combining engineered biosynthesis and storage pathways with high-light treatments. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2951-2966. [PMID: 39121193 DOI: 10.1111/tpj.16964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/11/2024]
Abstract
Biofortification of green leafy vegetables with pro-vitamin A carotenoids, such as β-carotene, has remained challenging to date. Here, we combined two strategies to achieve this goal. One of them involves producing β-carotene in the cytosol of leaf cells to avoid the negative impacts on photosynthesis derived from changing the balance of carotenoids and chlorophylls in chloroplasts. The second approach involves the conversion of chloroplasts into non-photosynthetic, carotenoid-overaccumulating chromoplasts in leaves agroinfiltrated or infected with constructs encoding the bacterial phytoene synthase crtB, leaving other non-engineered leaves of the plant to sustain normal growth. A combination of these two strategies, referred to as strategy C (for cytosolic production) and strategy P (for plastid conversion mediated by crtB), resulted in a 5-fold increase in the amount of β-carotene in Nicotiana benthamiana leaves. Following several attempts to further improve β-carotene leaf contents by metabolic engineering, hormone treatments and genetic screenings, it was found that promoting the proliferation of plastoglobules with increased light-intensity treatments not only improved β-carotene accumulation but it also resulted in a much higher bioaccessibility. The combination of strategies C and P together with a more intense light treatment increased the levels of accessible β-carotene 30-fold compared to controls. We further demonstrated that stimulating plastoglobule proliferation with strategy P, but also with a higher-light treatment alone, also improved β-carotene contents and bioaccessibility in edible lettuce (Lactuca sativa) leaves.
Collapse
Affiliation(s)
- Luca Morelli
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - Pablo Perez-Colao
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - Diego Reig-Lopez
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - Xueni Di
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - Briardo Llorente
- ARC Center of Excellence in Synthetic Biology, Australian Genome Foundry, and School of Natural Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Manuel Rodriguez-Concepcion
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| |
Collapse
|
6
|
Thagun C, Odahara M, Kodama Y, Numata K. Identification of a highly efficient chloroplast-targeting peptide for plastid engineering. PLoS Biol 2024; 22:e3002785. [PMID: 39298532 PMCID: PMC11444414 DOI: 10.1371/journal.pbio.3002785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 10/01/2024] [Accepted: 08/03/2024] [Indexed: 09/22/2024] Open
Abstract
Plastids are pivotal target organelles for comprehensively enhancing photosynthetic and metabolic traits in plants via plastid engineering. Plastidial proteins predominantly originate in the nucleus and must traverse membrane-bound multiprotein translocons to access these organelles. This import process is meticulously regulated by chloroplast-targeting peptides (cTPs). Whereas many cTPs have been employed to guide recombinantly expressed functional proteins to chloroplasts, there is a critical need for more efficient cTPs. Here, we performed a comprehensive exploration and comparative assessment of an advanced suite of cTPs exhibiting superior targeting capabilities. We employed a multifaceted approach encompassing computational prediction, in planta expression, fluorescence tracking, and in vitro chloroplast import studies to identify and analyze 88 cTPs associated with Arabidopsis thaliana mutants with phenotypes linked to chloroplast function. These polypeptides exhibited distinct abilities to transport green fluorescent protein (GFP) to various compartments within leaf cells, particularly chloroplasts. A highly efficient cTP derived from Arabidopsis plastid ribosomal protein L35 (At2g24090) displayed remarkable effectiveness in chloroplast localization. This cTP facilitated the activities of chloroplast-targeted RNA-processing proteins and metabolic enzymes within plastids. This cTP could serve as an ideal transit peptide for precisely targeting biomolecules to plastids, leading to advancements in plastid engineering.
Collapse
Affiliation(s)
- Chonprakun Thagun
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Kyoto, Japan
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - Masaki Odahara
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Keiji Numata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Kyoto, Japan
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| |
Collapse
|
7
|
Sobrino-Mengual G, Alvarez D, Twyman RM, Gerrish C, Fraser PD, Capell T, Christou P. Activation of the native PHYTOENE SYNTHASE 1 promoter by modifying near-miss cis-acting elements induces carotenoid biosynthesis in embryogenic rice callus. PLANT CELL REPORTS 2024; 43:118. [PMID: 38632121 PMCID: PMC11024007 DOI: 10.1007/s00299-024-03199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024]
Abstract
KEY MESSAGE Modification of silent latent endosperm-enabled promoters (SLEEPERs) allows the ectopic activation of non-expressed metabolic genes in rice callus Metabolic engineering in plants typically involves transgene expression or the mutation of endogenous genes. An alternative is promoter modification, where small changes in the promoter sequence allow genes to be switched on or off in particular tissues. To activate silent genes in rice endosperm, we screened native promoters for near-miss cis-acting elements that can be converted to endosperm-active regulatory motifs. We chose rice PHYTOENE SYNTHASE 1 (PSY1), encoding the enzyme responsible for the first committed step in the carotenoid biosynthesis pathway, because it is not expressed in rice endosperm. We identified six motifs within a 120-bp region, upstream of the transcriptional start site, which differed from endosperm-active elements by up to four nucleotides. We mutated four motifs to match functional elements in the endosperm-active BCH2 promoter, and this promoter was able to drive GFP expression in callus and in seeds of regenerated plants. The 4 M promoter was not sufficient to drive PSY1 expression, so we mutated the remaining two elements and used the resulting 6 M promoter to drive PSY1 expression in combination with a PDS transgene. This resulted in deep orange callus tissue indicating the accumulation of carotenoids, which was subsequently confirmed by targeted metabolomics analysis. PSY1 expression driven by the uncorrected or 4 M variants of the promoter plus a PDS transgene produced callus that lacked carotenoids. These results confirm that the adjustment of promoter elements can facilitate the ectopic activation of endogenous plant promoters in rice callus and endosperm and most likely in other tissues and plant species.
Collapse
Affiliation(s)
- Guillermo Sobrino-Mengual
- Applied Plant Biotechnology Group, Department of Agricultural and Forest Sciences and Engineering, University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Derry Alvarez
- Applied Plant Biotechnology Group, Department of Agricultural and Forest Sciences and Engineering, University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, BioActives Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Christopher Gerrish
- Department of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK
| | - Paul D Fraser
- Department of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK
| | - Teresa Capell
- Applied Plant Biotechnology Group, Department of Agricultural and Forest Sciences and Engineering, University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Paul Christou
- Applied Plant Biotechnology Group, Department of Agricultural and Forest Sciences and Engineering, University of Lleida-Agrotecnio CERCA Center, Lleida, Spain.
- ICREA, Catalan Institute for Research and Advanced Studies, Barcelona, Spain.
| |
Collapse
|
8
|
Nogueira M, Enfissi EMA, Price EJ, Menard GN, Venter E, Eastmond PJ, Bar E, Lewinsohn E, Fraser PD. Ketocarotenoid production in tomato triggers metabolic reprogramming and cellular adaptation: The quest for homeostasis. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:427-444. [PMID: 38032727 PMCID: PMC10826984 DOI: 10.1111/pbi.14196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/29/2023] [Accepted: 09/23/2023] [Indexed: 12/01/2023]
Abstract
Plants are sessile and therefore have developed an extraordinary capacity to adapt to external signals. Here, the focus is on the plasticity of the plant cell to respond to new intracellular cues. Ketocarotenoids are high-value natural red pigments with potent antioxidant activity. In the present study, system-level analyses have revealed that the heterologous biosynthesis of ketocarotenoids in tomato initiated a series of cellular and metabolic mechanisms to cope with the formation of metabolites that are non-endogenous to the plant. The broad multilevel changes were linked to, among others, (i) the remodelling of the plastidial membrane, where the synthesis and storage of ketocarotenoids occurs; (ii) the recruiting of core metabolic pathways for the generation of metabolite precursors and energy; and (iii) redox control. The involvement of the metabolites as regulators of cellular processes shown here reinforces their pivotal role suggested in the remodelled 'central dogma' concept. Furthermore, the role of metabolic reprogramming to ensure cellular homeostasis is proposed.
Collapse
Affiliation(s)
- Marilise Nogueira
- School of Biological SciencesRoyal Holloway University of LondonEghamSurreyUK
| | | | - Elliott J. Price
- School of Biological SciencesRoyal Holloway University of LondonEghamSurreyUK
- Present address:
RECETOX, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | | | - Eudri Venter
- Plant Sciences for the Bioeconomy, Rothamsted ResearchHarpendenUK
| | | | - Einat Bar
- Department of Aromatic PlantsNewe Ya'ar Research Center Agricultural Research OrganizationRamat YishayIsrael
| | - Efraim Lewinsohn
- Department of Aromatic PlantsNewe Ya'ar Research Center Agricultural Research OrganizationRamat YishayIsrael
| | - Paul D. Fraser
- School of Biological SciencesRoyal Holloway University of LondonEghamSurreyUK
| |
Collapse
|
9
|
Zhou X, Sun T, Owens L, Yang Y, Fish T, Wrightstone E, Lui A, Yuan H, Chayut N, Burger J, Tadmor Y, Thannhauser T, Guo W, Cheng L, Li L. Carotenoid sequestration protein FIBRILLIN participates in CmOR-regulated β-carotene accumulation in melon. PLANT PHYSIOLOGY 2023; 193:643-660. [PMID: 37233026 DOI: 10.1093/plphys/kiad312] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/14/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Chromoplasts are plant organelles with a unique ability to sequester and store massive carotenoids. Chromoplasts have been hypothesized to enable high levels of carotenoid accumulation due to enhanced sequestration ability or sequestration substructure formation. However, the regulators that control the substructure component accumulation and substructure formation in chromoplasts remain unknown. In melon (Cucumis melo) fruit, β-carotene accumulation in chromoplasts is governed by ORANGE (OR), a key regulator for carotenoid accumulation in chromoplasts. By using comparative proteomic analysis of a high β-carotene melon variety and its isogenic line low-β mutant that is defective in CmOr with impaired chromoplast formation, we identified carotenoid sequestration protein FIBRILLIN1 (CmFBN1) as differentially expressed. CmFBN1 expresses highly in melon fruit tissue. Overexpression of CmFBN1 in transgenic Arabidopsis (Arabidopsis thaliana) containing ORHis that genetically mimics CmOr significantly enhances carotenoid accumulation, demonstrating its involvement in CmOR-induced carotenoid accumulation. Both in vitro and in vivo evidence showed that CmOR physically interacts with CmFBN1. Such an interaction occurs in plastoglobules and results in promoting CmFBN1 accumulation. CmOR greatly stabilizes CmFBN1, which stimulates plastoglobule proliferation and subsequently carotenoid accumulation in chromoplasts. Our findings show that CmOR directly regulates CmFBN1 protein levels and suggest a fundamental role of CmFBN1 in facilitating plastoglobule proliferation for carotenoid sequestration. This study also reveals an important genetic tool to further enhance OR-induced carotenoid accumulation in chromoplasts in crops.
Collapse
Affiliation(s)
- Xuesong Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Lauren Owens
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Yong Yang
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Tara Fish
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Emalee Wrightstone
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Andy Lui
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Hui Yuan
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Noam Chayut
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, Ramat Yishay 30095, Israel
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Joseph Burger
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, Ramat Yishay 30095, Israel
| | - Yaakov Tadmor
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, Ramat Yishay 30095, Israel
| | - Theodore Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
10
|
Velitchkova M, Stefanov M, Popova AV. Effect of Low Light on Photosynthetic Performance of Tomato Plants-Ailsa Craig and Carotenoid Mutant Tangerine. PLANTS (BASEL, SWITZERLAND) 2023; 12:3000. [PMID: 37631211 PMCID: PMC10459318 DOI: 10.3390/plants12163000] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
The effects of a five-day treatment with low light intensity on tomato plants-Ailsa Craig and tangerine mutant-at normal and low temperatures and after recovery for three days under control conditions were investigated. The tangerine tomato, which has orange fruits, yellowish young leaves, and pale blossoms, accumulates prolycopene rather than all-trans lycopene. We investigated the impact of low light at normal and low temperatures on the functioning and effectiveness of photosynthetic apparatuses of both plants. The photochemical activities of Photosystem I (PSI) and Photosystem II (PSII) were assessed, and the alterations in PSII antenna size were characterized by evaluating the abundance of PSII-associated proteins Lhcb1, Lhcb2, CP43, and CP47. Alterations in energy distribution and interaction of both photosystems were analyzed using 77K fluorescence. In Aisla Craig plants, an increase in thylakoid membrane fluidity was detected during treatment with low light at a low temperature, while for the tangerine mutant, no significant change was observed. The PSII activity of thylakoids from mutant tangerine was more strongly inhibited by treatment with low light at a low temperature while low light barely affected PSII in Aisla Craig. The obtained data indicated that the observed differences in the responses of photosynthetic apparatuses of Ailsa Craig and tangerine when exposed to low light intensity and suboptimal temperature were mainly related to the differences in sensitivity and antenna complexes of PSII.
Collapse
Affiliation(s)
- Maya Velitchkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad, G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria; (M.S.)
| | | | | |
Collapse
|
11
|
Morelli L, Torres-Montilla S, Glauser G, Shanmugabalaji V, Kessler F, Rodriguez-Concepcion M. Novel insights into the contribution of plastoglobules and reactive oxygen species to chromoplast differentiation. THE NEW PHYTOLOGIST 2023; 237:1696-1710. [PMID: 36307969 DOI: 10.1111/nph.18585] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Plant tissues can be enriched in phytonutrients not only by stimulating their biosynthesis but also by providing appropriate sink structures for their sequestering and storage. In the case of carotenoids, they accumulate at high levels in chromoplasts naturally found in flowers and fruit. Chromoplasts can also be artificially differentiated from leaf chloroplasts by boosting carotenoid production with the bacterial protein crtB. Here we used electron and confocal microscopy together with subplastidial fractionation and transcript, protein and metabolite analyses to analyze the structural and biochemical changes occurring in crtB-induced artificial chromoplasts and their impact on the accumulation of health-related isoprenoids. We show that leaf chromoplasts develop plastoglobules (PG) harboring high levels of carotenoids (mainly phytoene and pro-vitamin A β-carotene) but also other nutritionally relevant isoprenoids, such as tocopherols (vitamin E) and phylloquinone (vitamin K1). Further promoting PG proliferation by exposure to intense (high) light resulted in a higher accumulation of these health-related metabolites but also an acceleration of the chloroplast-to-chromoplast conversion. We further show that the production of reactive oxygen species (ROS) stimulates chromoplastogenesis. Our data suggest that carotenoid accumulation and ROS production are not just consequences but promoters of the chromoplast differentiation process.
Collapse
Affiliation(s)
- Luca Morelli
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, 46022, Valencia, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193, Barcelona, Spain
| | - Salvador Torres-Montilla
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, 46022, Valencia, Spain
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, Faculty of Sciences, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | | | - Felix Kessler
- Laboratory of Plant Physiology, Faculty of Sciences, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | - Manuel Rodriguez-Concepcion
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, 46022, Valencia, Spain
| |
Collapse
|
12
|
Morelli L, Torres-Montilla S, Glauser G, Shanmugabalaji V, Kessler F, Rodriguez-Concepcion M. Novel insights into the contribution of plastoglobules and reactive oxygen species to chromoplast differentiation. THE NEW PHYTOLOGIST 2023. [PMID: 36307969 DOI: 10.1101/2022.06.20.496796] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plant tissues can be enriched in phytonutrients not only by stimulating their biosynthesis but also by providing appropriate sink structures for their sequestering and storage. In the case of carotenoids, they accumulate at high levels in chromoplasts naturally found in flowers and fruit. Chromoplasts can also be artificially differentiated from leaf chloroplasts by boosting carotenoid production with the bacterial protein crtB. Here we used electron and confocal microscopy together with subplastidial fractionation and transcript, protein and metabolite analyses to analyze the structural and biochemical changes occurring in crtB-induced artificial chromoplasts and their impact on the accumulation of health-related isoprenoids. We show that leaf chromoplasts develop plastoglobules (PG) harboring high levels of carotenoids (mainly phytoene and pro-vitamin A β-carotene) but also other nutritionally relevant isoprenoids, such as tocopherols (vitamin E) and phylloquinone (vitamin K1). Further promoting PG proliferation by exposure to intense (high) light resulted in a higher accumulation of these health-related metabolites but also an acceleration of the chloroplast-to-chromoplast conversion. We further show that the production of reactive oxygen species (ROS) stimulates chromoplastogenesis. Our data suggest that carotenoid accumulation and ROS production are not just consequences but promoters of the chromoplast differentiation process.
Collapse
Affiliation(s)
- Luca Morelli
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, 46022, Valencia, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193, Barcelona, Spain
| | - Salvador Torres-Montilla
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, 46022, Valencia, Spain
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, Faculty of Sciences, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | | | - Felix Kessler
- Laboratory of Plant Physiology, Faculty of Sciences, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | - Manuel Rodriguez-Concepcion
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, 46022, Valencia, Spain
| |
Collapse
|
13
|
Lundquist PK. Chromoplast differentiation: a central role for plastoglobule lipid droplets comes into focus. THE NEW PHYTOLOGIST 2023; 237:1483-1485. [PMID: 36649485 DOI: 10.1111/nph.18700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Affiliation(s)
- Peter K Lundquist
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
14
|
D'Ambrosio C, Stigliani AL, Rambla JL, Frusciante S, Diretto G, Enfissi EMA, Granell A, Fraser PD, Giorio G. A xanthophyll-derived apocarotenoid regulates carotenogenesis in tomato chromoplasts. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111575. [PMID: 36572066 DOI: 10.1016/j.plantsci.2022.111575] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Carotenoids possess important biological functions that make them essential components of the human diet. β-Carotene and some other carotenoids have vitamin A activity while lutein and zeaxanthin, typically referred to as the macular pigments, are involved in good vision and in delaying the onset of age-related eye diseases. In order to create a zeaxanthin-producing tomato fruit, two transgenic lines, one with a high β-carotene cyclase activity and the other with a high β-carotene hydroxylase activity, have been genetically crossed. Ripe fruits from the resulting progeny contained significant levels of violaxanthin, antheraxanthin, and xanthophyll esters. However, their zeaxanthin content was not as high as expected, and the total level of carotenoids was only 25% of the carotenoids found in ripe fruits of the comparator line. Targeted transcript analysis and apocarotenoids determinations indicated that transcriptional regulation of the pathway or degradation of synthesized carotenoids were not responsible for the low carotenoid content of hybrid fruits which instead appeared to result from a substantial reduction of carotenoid biosynthesis. Notably, the content of an unidentified hydroxylated cyclic (C13) apocarotenoid was 13 times higher in the hybrid fruits than in the control fruits. Furthermore, a GC-MS-based metabolite profiling demonstrated a perturbation of carotenogenesis in ripening hybrid fruits compatible with a block of the pathway. Moreover, carotenoid profiling on leaf, fruit, and petal samples from a set of experimental lines carrying the hp3 mutation, in combination with the two transgenes, indicated that the carotenoid biosynthesis in petal and fruit chromoplasts could be regulated. Altogether the data were consistent with the hypothesis of the regulation of the carotenoid pathway in tomato chromoplasts through a mechanism of feedback inhibition mediated by a xanthophyll-derived apocarotenoid. This chromoplast-specific post-transcriptional mechanism was disclosed in transgenic fruits of HU hybrid owing to the abnormal production of zeaxanthin and antheraxanthin, the more probable precursors of the apocarotenoid signal. A model describing the regulation of carotenoid pathway in tomato chromoplasts is presented.
Collapse
Affiliation(s)
- Caterina D'Ambrosio
- Centro Ricerche Metapontum Agrobios, Agenzia Lucana di Sviluppo e di Innovazione in Agricoltura (ALSIA), Metaponto, MT, Italy
| | - Adriana Lucia Stigliani
- Centro Ricerche Metapontum Agrobios, Agenzia Lucana di Sviluppo e di Innovazione in Agricoltura (ALSIA), Metaponto, MT, Italy
| | - José L Rambla
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, 46022 Valencia, Spain; Universitat Jaume I., Departamento de Biología, Bioquímica y Ciencias Naturales, Avda Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Sarah Frusciante
- Italian National Agency for New Technologies Energy and Sustainable Development (ENEA), Casaccia Research Centre, Rome, Italy
| | - Gianfranco Diretto
- Italian National Agency for New Technologies Energy and Sustainable Development (ENEA), Casaccia Research Centre, Rome, Italy
| | - Eugenia M A Enfissi
- School of Biological Sciences, Royal Holloway University of London (RHUL), Egham, Surrey, UK
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Paul D Fraser
- School of Biological Sciences, Royal Holloway University of London (RHUL), Egham, Surrey, UK
| | - Giovanni Giorio
- Centro Ricerche Metapontum Agrobios, Agenzia Lucana di Sviluppo e di Innovazione in Agricoltura (ALSIA), Metaponto, MT, Italy.
| |
Collapse
|
15
|
Teixeira A, Noronha H, Frusciante S, Diretto G, Gerós H. Biosynthesis of Chlorophyll and Other Isoprenoids in the Plastid of Red Grape Berry Skins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1873-1885. [PMID: 36652329 PMCID: PMC9896546 DOI: 10.1021/acs.jafc.2c07207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Despite current knowledge showing that fruits like tomato and grape berries accumulate different components of the light reactions and Calvin cycle, the role of green tissues in fruits is not yet fully understood. In mature tomato fruits, chlorophylls are degraded and replaced by carotenoids through the conversion of chloroplasts in chromoplasts, while in red grape berries, chloroplasts persist at maturity and chlorophylls are masked by anthocyanins. To study isoprenoid and lipid metabolism in grape skin chloroplasts, metabolites of enriched organelle fractions were analyzed by high-performance liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS) and the expression of key genes was evaluated by real-time polymerase chain reaction (PCR) in berry skins and leaves. Overall, the results indicated that chloroplasts of the grape berry skins, as with leaf chloroplasts, share conserved mechanisms of synthesis (and degradation) of important components of the photosynthetic machinery. Some of these components, such as chlorophylls and their precursors, and catabolites, carotenoids, quinones, and lipids have important roles in grape and wine sensory characteristics.
Collapse
Affiliation(s)
- António Teixeira
- Centre
of Molecular and Environmental Biology, Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Henrique Noronha
- Centre
of Molecular and Environmental Biology, Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Sarah Frusciante
- Italian
National Agency for New Technologies, Energy and Sustainable Development
(ENEA), Casaccia Research Centre, 00123 Rome, Italy
| | - Gianfranco Diretto
- Italian
National Agency for New Technologies, Energy and Sustainable Development
(ENEA), Casaccia Research Centre, 00123 Rome, Italy
| | - Hernâni Gerós
- Centre
of Molecular and Environmental Biology, Department of Biology, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
16
|
Zita W, Bressoud S, Glauser G, Kessler F, Shanmugabalaji V. Chromoplast plastoglobules recruit the carotenoid biosynthetic pathway and contribute to carotenoid accumulation during tomato fruit maturation. PLoS One 2022; 17:e0277774. [PMID: 36472971 PMCID: PMC9725166 DOI: 10.1371/journal.pone.0277774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/02/2022] [Indexed: 12/12/2022] Open
Abstract
Tomato (Solanum lycopersicum) fruit maturation is associated with a developmental transition from chloroplasts (in mature green fruit) to chromoplasts (in red fruit). The hallmark red color of ripe tomatoes is due to carotenogenesis and accumulation of the red carotenoid lycopene inside chromoplasts. Plastoglobules (PG) are lipid droplets in plastids that are involved in diverse lipid metabolic pathways. In tomato, information on the possible role of PG in carotogenesis and the PG proteome is largely lacking. Here, we outline the role of PG in carotenogenesis giving particular attention to tomato fruit PG proteomes and metabolomes. The proteome analysis revealed the presence of PG-typical FBNs, ABC1K-like kinases, and metabolic enzymes, and those were decreased in the PG of tomato chromoplasts compared to chloroplasts. Notably, the complete β-carotene biosynthesis pathway was recruited to chromoplast PG, and the enzymes PHYTOENE SYNTHASE 1 (PSY-1), PHYTOENE DESATURASE (PDS), ZETA-CAROTENE DESATURASE (ZDS), and CAROTENOID ISOMERASE (CRTISO) were enriched up to twelvefold compared to chloroplast PG. We profiled the carotenoid and prenyl lipid changes in PG during the chloroplast to chromoplast transition and demonstrated large increases of lycopene and β-carotene in chromoplast PG. The PG proteome and metabolome are subject to extensive remodeling resulting in high accumulation of lycopene during the chloroplast-to-chromoplast transition. Overall, the results indicate that PGs contribute to carotenoid accumulation during tomato fruit maturation and suggest that they do so by functioning as a biosynthetic platform for carotenogenesis.
Collapse
Affiliation(s)
- Wayne Zita
- Plant Physiology Laboratory, University of Neuchâtel, Neuchâtel, Switzerland
| | - Ségolène Bressoud
- Plant Physiology Laboratory, University of Neuchâtel, Neuchâtel, Switzerland
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Felix Kessler
- Plant Physiology Laboratory, University of Neuchâtel, Neuchâtel, Switzerland
| | | |
Collapse
|
17
|
Zheng X, Mi J, Balakrishna A, Liew KX, Ablazov A, Sougrat R, Al‐Babili S. Gardenia carotenoid cleavage dioxygenase 4a is an efficient tool for biotechnological production of crocins in green and non-green plant tissues. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2202-2216. [PMID: 35997958 PMCID: PMC9616529 DOI: 10.1111/pbi.13901] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/03/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Crocins are beneficial antioxidants and potential chemotherapeutics that give raise, together with picrocrocin, to the colour and taste of saffron, the most expensive spice, respectively. Crocins are formed from crocetin dialdehyde that is produced in Crocus sativus from zeaxanthin by the carotenoid cleavage dioxygenase 2L (CsCCD2L), while GjCCD4a from Gardenia jasminoides, another major source of crocins, converted different carotenoids, including zeaxanthin, into crocetin dialdehyde in bacterio. To establish a biotechnological platform for sustainable production of crocins, we investigated the enzymatic activity of GjCCD4a, in comparison with CsCCD2L, in citrus callus engineered by Agrobacterium-mediated supertransformation of multi genes and in transiently transformed Nicotiana benthamiana leaves. We demonstrate that co-expression of GjCCD4a with phytoene synthase and β-carotene hydroxylase genes is an optimal combination for heterologous production of crocetin, crocins and picrocrocin in citrus callus. By profiling apocarotenoids and using in vitro assays, we show that GjCCD4a cleaved β-carotene, in planta, and produced crocetin dialdehyde via C30 β-apocarotenoid intermediate. GjCCD4a also cleaved C27 β-apocarotenoids, providing a new route for C17 -dialdehyde biosynthesis. Callus lines overexpressing GjCCD4a contained higher number of plastoglobuli in chromoplast-like plastids and increased contents in phytoene, C17:0 fatty acid (FA), and C18:1 cis-9 and C22:0 FA esters. GjCCD4a showed a wider substrate specificity and higher efficiency in Nicotiana leaves, leading to the accumulation of up to 1.6 mg/g dry weight crocins. In summary, we established a system for investigating CCD enzymatic activity in planta and an efficient biotechnological platform for crocins production in green and non-green crop tissues/organs.
Collapse
Affiliation(s)
- Xiongjie Zheng
- The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Jianing Mi
- The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Aparna Balakrishna
- The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Kit Xi Liew
- The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Abdugaffor Ablazov
- The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Rachid Sougrat
- Advanced Nanofabrication Imaging and Characterization CenterKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Salim Al‐Babili
- The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| |
Collapse
|
18
|
Drapal M, Gerrish C, Fraser PD. Changes in carbon allocation and subplastidal amyloplast structures of specialised Ipomoea batatas (sweet potato) storage root phenotypes. PHYTOCHEMISTRY 2022; 203:113409. [PMID: 36049525 DOI: 10.1016/j.phytochem.2022.113409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Vitamin A deficiency (VAD) in Low and Medium Income countries remains a major health concern. Ipomoea batatas, orange sweet potato (OSP), is one of the biofortification solutions being implemented by the World Health Organisation (WHO) to combat VAD. However, high provitamin A (β-carotene) content has been associated with a reduction in dry matter, reducing calorific value and having adverse effects on consumer traits. Both starch and carotenoid formation are located in amyloplasts and could potentially compete for the same precursors. Hence, five different sweet potato storage root phenotypes were characterized through spatial metabolomics and proteomics at the sub-plastidal level. The metabolite data suggested an indirect correlation of starch and carotenoids through the TCA cycle and pentose phosphate pathway. Furthermore, a change in lipid composition was observed to accommodate the storage of carotenoids in the hydrophilic environment of the amyloplast. The data suggests an alteration of cellular ultra-structures and perturbation of metabolism in high β-carotene producing sweet potato roots. This corroborates with previous gene expression analysis through biochemical analysis of sweet potato root tissue.
Collapse
Affiliation(s)
- Margit Drapal
- School of Biological Sciences, Royal Holloway University of London, Egham, TW200EX, United Kingdom
| | - Christopher Gerrish
- School of Biological Sciences, Royal Holloway University of London, Egham, TW200EX, United Kingdom
| | - Paul D Fraser
- School of Biological Sciences, Royal Holloway University of London, Egham, TW200EX, United Kingdom.
| |
Collapse
|
19
|
Zacarías-García J, Cronje PJ, Diretto G, Zacarías L, Rodrigo MJ. A comprehensive analysis of carotenoids metabolism in two red-fleshed mutants of Navel and Valencia sweet oranges ( Citrus sinensis). FRONTIERS IN PLANT SCIENCE 2022; 13:1034204. [PMID: 36330241 PMCID: PMC9623303 DOI: 10.3389/fpls.2022.1034204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/22/2022] [Indexed: 06/01/2023]
Abstract
Kirkwood Navel and Ruby Valencia are two spontaneous bud mutations of the respective parental lines of sweet orange (Citrus sinensis) Palmer Navel and Olinda Valencia, showing an atypical red pigmentation of the pulp. These red-fleshed varieties are commercially available and highly attractive for consumers but their carotenoid metabolism and the basis of the mutation have not been investigated. The red colour of Kirkwood and Ruby pulp was observed from the very early stages of fruit development until full maturity and associated with an altered carotenoid profiling. The red-fleshed varieties accumulated from 6- up to 1000-times more total carotenoids compared to the standard oranges. Specifically, the pulp of Kirkwood and Ruby accumulated large amounts of phytoene and phytofluene, and moderate contents of lycopene. Moreover, the red-fleshed oranges contained other unusual carotenes as δ-carotene, and lower concentrations of downstream products such as β,β-xanthophylls, abscisic acid (ABA) and ABA-glucosyl ester. This peculiar profile was associated with chromoplasts with lycopene crystalloid structures and round vesicles likely containing colourless carotenes. The flavedo and leaves of Kirkwood and Ruby showed minor changes in carotenoids, mainly limited to higher levels of phytoene. The carotenoid composition in Kirkwood and Ruby fruits was not explained by differences in the transcriptional profile of 26 genes related to carotenoid metabolism, covering the main steps of biosynthesis, catabolism and other processes related to carotenoid accumulation. Moreover, sequence analysis of the lycopene cyclase genes revealed no alterations in those of the red-fleshed oranges compared to the genes of the standard varieties. A striking event observed in Kirkwood and Ruby trees was the reddish coloration of the inner side of the bark tissue, with larger amounts of phytoene, accumulation of lycopene and lower ABA content. These observation lead to the conclusion that the mutation is not only manifested in fruit, affecting other carotenogenic tissues of the mutant plants, but with different consequences in the carotenoid profile. Overall, the carotenoid composition in the red-fleshed mutants suggests a partial blockage of the lycopene β-cyclization in the carotenoid pathway, rendering a high accumulation of carotenes upstream lycopene and a reduced flow to downstream xanthophylls and ABA.
Collapse
Affiliation(s)
- Jaime Zacarías-García
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Paul J. Cronje
- Citrus Research International (CRI), Department of Horticultural Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy, and Sustainable Development (ENEA), Biotechnology Laboratory, Casaccia Research Center, Roma, Italy
| | - Lorenzo Zacarías
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - María Jesús Rodrigo
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| |
Collapse
|
20
|
Li T, Liu JX, Deng YJ, Duan AQ, Liu H, Zhuang FY, Xiong AS. Differential hydroxylation efficiency of the two non-heme carotene hydroxylases: DcBCH1, rather than DcBCH2, plays a major role in carrot taproot. HORTICULTURE RESEARCH 2022; 9:uhac193. [PMID: 36338853 PMCID: PMC9630967 DOI: 10.1093/hr/uhac193] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Carotene hydroxylase plays an important role in catalyzing the hydroxylation of carotene to xanthopylls, including two types: non-heme carotene hydroxylase (BCH type) and heme-containing cytochrome P450 hydroxylase (P450 type). Two BCH-encoding genes were annotated in the carrot genome. However, the role of BCHs and whether there are functional interactions between the duplicated BCHs in carrot remains unclear. In this study, two BCH encoding genes, DcBCH1 and DcBCH2, were cloned from carrot. The relative expression level of DcBCH1 was much higher than that of DcBCH2 in carrot taproots with different carotene accumulation levels. Overexpression of DcBCH1 in 'KRD' (high carotene accumulated) carrot changed the taproot color from orange to yellow, accompanied by substantial reductions in α-carotene and β-carotene. There was no obvious change in taproot color between transgenic 'KRD' carrot overexpressing DcBCH2 and control carrot. Simultaneously, the content of α-carotene in the taproot of DcBCH2-overexpressing carrot decreased, but the content of β-carotene did not change significantly in comparison with control carrot. Using the CRISPR/Cas9 system to knock out DcBCH1 in 'KRD' carrot lightened the taproot color from orange to pink-orange; the content of α-carotene in the taproot increased slightly, while the β-carotene content was still significantly decreased, compared with control carrot. In DcBCH1-knockout carrot, the transcript level of DcBCH2 was significantly increased. These results indicated that in carrot taproot, DcBCH1 played the main function of BCH enzyme, which could hydroxylate α-carotene and β-carotene; DcBCH1 and DcBCH2 had functional redundancy, and these two DcBCHs could partially compensate for each other.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Yuan-Jie Deng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Ao-Qi Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Fei-Yun Zhuang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| |
Collapse
|
21
|
Drapal M, Perez-Fons L, Price EJ, Amah D, Bhattacharjee R, Heider B, Rouard M, Swennen R, Lopez-Lavalle LAB, Fraser PD. Datasets from harmonised metabolic phenotyping of root, tuber and banana crop. Data Brief 2022; 42:108041. [PMID: 35341032 PMCID: PMC8943254 DOI: 10.1016/j.dib.2022.108041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/19/2022] Open
Abstract
Biochemical characterisation of germplasm collections and crop wild relatives (CWRs) facilitates the assessment of biological potential and the selection of breeding lines for crop improvement. Data from the biochemical characterisation of staple root, tuber and banana (RTB) crops, i.e. banana (Musa spp.), cassava (Manihot esculenta), potato (Solanum tuberosum), sweet potato (Ipomoea batatas) and yam (Dioscorea spp.), using a metabolomics approach is presented. The data support the previously published research article “Metabolite database for root, tuber, and banana crops to facilitate modern breeding in understudied crops” (Price et al., 2020) [1]. Diversity panels for each crop, which included a variety of species, accessions, landraces and CWRs, were characterised. The biochemical profile for potato was based on five elite lines under abiotic stress. Metabolites were extracted from the tissue of foliage and storage organs (tuber, root and banana pulp) via solvent partition. Extracts were analysed via a combination of liquid chromatography – mass spectrometry (LC-MS), gas chromatography (GC)-MS, high pressure liquid chromatography with photodiode array detector (HPLC-PDA) and ultra performance liquid chromatography (UPLC)-PDA. Metabolites were identified by mass spectral matching to in-house libraries comprised from authentic standards and comparison to databases or previously published literature.
Collapse
Affiliation(s)
- Margit Drapal
- Royal Holloway University of London, Surrey, TW20 0EX, United Kingdom
| | - Laura Perez-Fons
- Royal Holloway University of London, Surrey, TW20 0EX, United Kingdom
| | - Elliott J. Price
- Royal Holloway University of London, Surrey, TW20 0EX, United Kingdom
| | - Delphine Amah
- International Institute of Tropical Agriculture, PMB 5320, Ibadan, Nigeria
| | | | - Bettina Heider
- International Potato Center, La Molina, CP 1558, Lima, Peru
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier, France
| | - Rony Swennen
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, B-3001 Leuven, Belgium
- Bioversity International, Willem De Croylaan 42, B-3001 Leuven, Belgium
- International Institute of Tropical Agriculture. C/0 The Nelson Mandela African Institution of Science and Technology, P.O. Box 44, Arusha, Tanzania
| | | | - Paul D. Fraser
- Royal Holloway University of London, Surrey, TW20 0EX, United Kingdom
- Corresponding author. @FraserRhul
| |
Collapse
|
22
|
Li H, Han S, Huo Y, Ma G, Sun Z, Li H, Hou S, Han Y. Comparative metabolomic and transcriptomic analysis reveals a coexpression network of the carotenoid metabolism pathway in the panicle of Setaria italica. BMC PLANT BIOLOGY 2022; 22:105. [PMID: 35260077 PMCID: PMC8903627 DOI: 10.1186/s12870-022-03467-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The grains of foxtail millet are enriched in carotenoids, which endow this plant with a yellow color and extremely high nutritional value. However, the underlying molecular regulation mechanism and gene coexpression network remain unclear. METHODS The carotenoid species and content were detected by HPLC for two foxtail millet varieties at three panicle development stages. Based on a homologous sequence BLAST analysis, these genes related to carotenoid metabolism were identified from the foxtail millet genome database. The conserved protein domains, chromosome locations, gene structures and phylogenetic trees were analyzed using bioinformatics tools. RNA-seq was performed for these samples to identify differentially expressed genes (DEGs). A Pearson correlation analysis was performed between the expression of genes related to carotenoid metabolism and the content of carotenoid metabolites. Furthermore, the expression levels of the key DEGs were verified by qRT-PCR. The gene coexpression network was constructed by a weighted gene coexpression network analysis (WGCNA). RESULT The major carotenoid metabolites in the panicles of DHD and JG21 were lutein and β-carotene. These carotenoid metabolite contents sharply decreased during the panicle development stage. The lutein and β-carotene contents were highest at the S1 stage of DHD, with values of 11.474 μg /100 mg and 12.524 μg /100 mg, respectively. Fifty-four genes related to carotenoid metabolism were identified in the foxtail millet genome. Cis-acting element analysis showed that these gene promoters mainly contain 'plant hormone', 'drought stress resistance', 'MYB binding site', 'endosperm specific' and 'seed specific' cis-acting elements and especially the 'light-responsive' and 'ABA-responsive' elements. In the carotenoid metabolic pathways, SiHDS, SiHMGS3, SiPDS and SiNCED1 were more highly expressed in the panicle of foxtail millet. The expression of SiCMT, SiAACT3, SiPSY1, SiZEP1/2, and SiCCD8c/8d was significantly correlated with the lutein content. The expression of SiCMT, SiHDR, SiIDI2, SiAACT3, SiPSY1, and SiZEP1/2 was significantly correlated with the content of β-carotene. WGCNA showed that the coral module was highly correlated with lutein and β-carotene, and 13 structural genes from the carotenoid biosynthetic pathway were identified. Network visualization revealed 25 intramodular hub genes that putatively control carotenoid metabolism. CONCLUSION Based on the integrative analysis of the transcriptomics and carotenoid metabonomics, we found that DEGs related to carotenoid metabolism had a stronger correlation with the key carotenoid metabolite content. The correlation analysis and WGCNA identified and predicted the gene regulation network related to carotenoid metabolism. These results lay the foundation for exploring the key target genes regulating carotenoid metabolism flux in the panicle of foxtail millet. We hope that these target genes could be used to genetically modify millet to enhance the carotenoid content in the future.
Collapse
Affiliation(s)
- Hui Li
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Shangling Han
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yiqiong Huo
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Guifang Ma
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Zhaoxia Sun
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- Shanxi Key Laboratory of Germplasm Innovation and Molecular Breeding of Minor Crop, Taigu, 030801, Shanxi, China
| | - Hongying Li
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- Shanxi Key Laboratory of Germplasm Innovation and Molecular Breeding of Minor Crop, Taigu, 030801, Shanxi, China
| | - Siyu Hou
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
- Shanxi Key Laboratory of Germplasm Innovation and Molecular Breeding of Minor Crop, Taigu, 030801, Shanxi, China.
| | - Yuanhuai Han
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
- Shanxi Key Laboratory of Germplasm Innovation and Molecular Breeding of Minor Crop, Taigu, 030801, Shanxi, China.
| |
Collapse
|
23
|
Lemaire-Chamley M, Koutouan C, Jorly J, Assali J, Yoshida T, Nogueira M, Tohge T, Ferrand C, Peres LEP, Asamizu E, Ezura H, Fraser PD, Hajirezaei MR, Fernie AR, Rothan C. A Chimeric TGA Repressor Slows Down Fruit Maturation and Ripening in Tomato. PLANT & CELL PHYSIOLOGY 2022; 63:120-134. [PMID: 34665867 DOI: 10.1093/pcp/pcab150] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
The bZIP transcription factor (TF) SlTGA2.2 was previously highlighted as a possible hub in a network regulating fruit growth and transition to ripening (maturation phase). It belongs to a clade of TFs well known for their involvement in the regulation of the salicylic acid-dependent systemic acquired resistance. To investigate if this TGA TF plays a role in tomato fruit growth and maturation, we took advantage of the fruit-specific SlPPC2 promoter (PPC2pro) to target the expression of a SlTGA2.2-SRDX chimeric repressor in a developmental window restricted to early fruit growth and maturation. Here, we show that this SlTGA2.2-SRDX repressor alters early fruit development and metabolism, including chloroplast number and structure, considerably extends the time necessary to reach the mature green stage and slows down fruit ripening. RNA sequencing and plant hormone analyses reveal that PPC2pro:SlTGA2.2-SRDX fruits are maintained in an immature stage as long as PPC2pro is active, through early modifications of plant hormonal signaling and down-regulation of MADS-RIN and NAC-NOR ripening regulators. Once PPC2pro becomes inactive and therefore SlTGA2.2-SRDX expression is reduced, ripening can proceed, albeit at a slower pace than normal. Altogether, this work emphasizes the developmental continuum between fruit growth, maturation and ripening and provides a useful tool to alter and study the molecular bases of tomato fruit transition to ripening.
Collapse
Affiliation(s)
- Martine Lemaire-Chamley
- INRAE, University of Bordeaux, UMR1332 BFP, 71 Av E Bourlaux, Villenave d'Ornon 33882, France
| | - Claude Koutouan
- INRAE, University of Bordeaux, UMR1332 BFP, 71 Av E Bourlaux, Villenave d'Ornon 33882, France
| | - Joana Jorly
- INRAE, University of Bordeaux, UMR1332 BFP, 71 Av E Bourlaux, Villenave d'Ornon 33882, France
| | - Julien Assali
- INRAE, University of Bordeaux, UMR1332 BFP, 71 Av E Bourlaux, Villenave d'Ornon 33882, France
| | - Takuya Yoshida
- Max-Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Marilise Nogueira
- Department of Biological Sciences, Holloway University of London, Egham Hill, Egham, UK
| | - Takayuki Tohge
- Max-Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Carine Ferrand
- INRAE, University of Bordeaux, UMR1332 BFP, 71 Av E Bourlaux, Villenave d'Ornon 33882, France
| | - Lázaro E P Peres
- Department of Biological Science, São Paulo University, Avenida Pádua Dias, Piracicaba 13418-900, Brazil
| | - Erika Asamizu
- Tsukuba Plant Innovation Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Shiga 520-2194, Japan
| | - Hiroshi Ezura
- Tsukuba Plant Innovation Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Paul D Fraser
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Shiga 520-2194, Japan
| | - Mohammad-Reza Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Corrensstraße 3, Seeland 06466, Germany
| | - Alisdair R Fernie
- Max-Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Christophe Rothan
- INRAE, University of Bordeaux, UMR1332 BFP, 71 Av E Bourlaux, Villenave d'Ornon 33882, France
| |
Collapse
|
24
|
Cesarino I. Going red but not mad: efficient astaxanthin production in tobacco without yield penalty. PLANT PHYSIOLOGY 2022; 188:35-37. [PMID: 35051289 PMCID: PMC8774826 DOI: 10.1093/plphys/kiab482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-090, São Paulo, Brazil
- Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues, 370, 05508-020, São Paulo, Brazil
| |
Collapse
|
25
|
Agrawal S, Karcher D, Ruf S, Erban A, Hertle AP, Kopka J, Bock R. Riboswitch-mediated inducible expression of an astaxanthin biosynthetic operon in plastids. PLANT PHYSIOLOGY 2022; 188:637-652. [PMID: 34623449 PMCID: PMC8774745 DOI: 10.1093/plphys/kiab428] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/06/2021] [Indexed: 06/01/2023]
Abstract
The high-value carotenoid astaxanthin (3,3'-dihydroxy-β,β-carotene-4,4'-dione) is one of the most potent antioxidants in nature. In addition to its large-scale use in fish farming, the pigment has applications as a food supplement and an active ingredient in cosmetics and in pharmaceuticals for the treatment of diseases linked to reactive oxygen species. The biochemical pathway for astaxanthin synthesis has been introduced into seed plants, which do not naturally synthesize this pigment, by nuclear and plastid engineering. The highest accumulation rates have been achieved in transplastomic plants, but massive production of astaxanthin has resulted in severe growth retardation. What limits astaxanthin accumulation levels and what causes the mutant phenotype is unknown. Here, we addressed these questions by making astaxanthin synthesis in tobacco (Nicotiana tabacum) plastids inducible by a synthetic riboswitch. We show that, already in the uninduced state, astaxanthin accumulates to similarly high levels as in transplastomic plants expressing the pathway constitutively. Importantly, the inducible plants displayed wild-type-like growth properties and riboswitch induction resulted in a further increase in astaxanthin accumulation. Our data suggest that the mutant phenotype associated with constitutive astaxanthin synthesis is due to massive metabolite turnover, and indicate that astaxanthin accumulation is limited by the sequestration capacity of the plastid.
Collapse
Affiliation(s)
- Shreya Agrawal
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Stephanie Ruf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Alexander Erban
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Alexander P Hertle
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Joachim Kopka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
26
|
Berry HM, Nogueira M, Drapal M, Almeida J, Perez-Fons L, Enfissi EM, Fraser PD. Isolation and characterization of sub-plastidial fractions from carotenoid rich fruits. Methods Enzymol 2022; 671:285-300. [DOI: 10.1016/bs.mie.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Lewis ER, Nogueira M, Enfissi EMA, Fraser PD. The esterification of xanthophylls in Solanum lycopersicum (tomato) chromoplasts; the role of a non-specific acyltransferase. PHYTOCHEMISTRY 2021; 191:112912. [PMID: 34450419 DOI: 10.1016/j.phytochem.2021.112912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/25/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The esterification of carotenoids has been associated with high-level accumulation, greater stability and potentially improved dietary bioavailability. Engineering the formation of ketocarotenoids into tomato fruit has resulted in the esterification of these non-endogenous metabolites. A genotype of tomato was created that contains; (i) the mutant pale yellow petal (pyp)1-1 allele, which is responsible for the absence of carotenoid esters in tomato flowers and (ii) the heterologous enzymes for ketocarotenoid formation. Analysis of the resulting progeny showed altered quantitative and qualitative differences in esterified carotenoids. For example, in ripe fruit tissues, in the presence of the pyp mutant allele, non-endogenous ketocarotenoid esters were absent while their free forms accumulated. These data demonstrate the involvement of the PYP gene product in the esterification of diverse xanthophylls.
Collapse
Affiliation(s)
- Esther R Lewis
- Department of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK
| | - Marilise Nogueira
- Department of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK
| | - Eugenia M A Enfissi
- Department of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK
| | - Paul D Fraser
- Department of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK.
| |
Collapse
|
28
|
Almeida J, Perez-Fons L, Fraser PD. A transcriptomic, metabolomic and cellular approach to the physiological adaptation of tomato fruit to high temperature. PLANT, CELL & ENVIRONMENT 2021; 44:2211-2229. [PMID: 32691430 DOI: 10.1111/pce.13854] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/02/2020] [Accepted: 07/12/2020] [Indexed: 05/21/2023]
Abstract
High temperatures can negatively influence plant growth and development. Besides yield, the effects of heat stress on fruit quality traits remain poorly characterised. In tomato, insights into how fruits regulate cellular metabolism in response to heat stress could contribute to the development of heat-tolerant varieties, without detrimental effects on quality. In the present study, the changes occurring in wild type tomato fruits after exposure to transient heat stress have been elucidated at the transcriptome, cellular and metabolite level. An impact on fruit quality was evident as nutritional attributes changed in response to heat stress. Fruit carotenogenesis was affected, predominantly at the stage of phytoene formation, although altered desaturation/isomerisation arose during the transient exposure to high temperatures. Plastidial isoprenoid compounds showed subtle alterations in their distribution within chromoplast sub-compartments. Metabolite profiling suggests limited effects on primary/intermediary metabolism but lipid remodelling was evident. The heat-induced molecular signatures included the accumulation of sucrose and triacylglycerols, and a decrease in the degree of membrane lipid unsaturation, which influenced the volatile profile. Collectively, these data provide valuable insights into the underlying biochemical and molecular adaptation of fruit to heat stress and will impact on our ability to develop future climate resilient tomato varieties.
Collapse
Affiliation(s)
- Juliana Almeida
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Laura Perez-Fons
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Paul D Fraser
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| |
Collapse
|
29
|
Andersen TB, Llorente B, Morelli L, Torres‐Montilla S, Bordanaba‐Florit G, Espinosa FA, Rodriguez‐Goberna MR, Campos N, Olmedilla‐Alonso B, Llansola‐Portoles MJ, Pascal AA, Rodriguez‐Concepcion M. An engineered extraplastidial pathway for carotenoid biofortification of leaves. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1008-1021. [PMID: 33314563 PMCID: PMC8131046 DOI: 10.1111/pbi.13526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 12/09/2020] [Indexed: 05/02/2023]
Abstract
Carotenoids are lipophilic plastidial isoprenoids highly valued as nutrients and natural pigments. A correct balance of chlorophylls and carotenoids is required for photosynthesis and therefore highly regulated, making carotenoid enrichment of green tissues challenging. Here we show that leaf carotenoid levels can be boosted through engineering their biosynthesis outside the chloroplast. Transient expression experiments in Nicotiana benthamiana leaves indicated that high extraplastidial production of carotenoids requires an enhanced supply of their isoprenoid precursors in the cytosol, which was achieved using a deregulated form of the main rate-determining enzyme of the mevalonic acid (MVA) pathway. Constructs encoding bacterial enzymes were used to convert these MVA-derived precursors into carotenoid biosynthetic intermediates that do not normally accumulate in leaves, such as phytoene and lycopene. Cytosolic versions of these enzymes produced extraplastidial carotenoids at levels similar to those of total endogenous (i.e. chloroplast) carotenoids. Strategies to enhance the development of endomembrane structures and lipid bodies as potential extraplastidial carotenoid storage systems were not successful to further increase carotenoid contents. Phytoene was found to be more bioaccessible when accumulated outside plastids, whereas lycopene formed cytosolic crystalloids very similar to those found in the chromoplasts of ripe tomatoes. This extraplastidial production of phytoene and lycopene led to an increased antioxidant capacity of leaves. Finally, we demonstrate that our system can be adapted for the biofortification of leafy vegetables such as lettuce.
Collapse
Affiliation(s)
- Trine B. Andersen
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBBarcelonaSpain
- Present address:
Great Lakes Bioenergy Research CenterMichigan State UniversityEast LansingMI48824USA
| | - Briardo Llorente
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBBarcelonaSpain
- Department of Molecular Sciences, ARC Center of Excellence in Synthetic BiologyMacquarie UniversitySydneyNSWAustralia
- CSIRO Synthetic Biology Future Science PlatformSydneyNSWAustralia
| | - Luca Morelli
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBBarcelonaSpain
| | | | | | - Fausto A. Espinosa
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBBarcelonaSpain
| | | | - Narciso Campos
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBBarcelonaSpain
- Departament de Bioquímica i Biologia MolecularUniversitat de BarcelonaBarcelona08028Spain
| | | | | | - Andrew A. Pascal
- CEA, CNRSInstitute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayGif‐sur‐YvetteFrance
| | - Manuel Rodriguez‐Concepcion
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBBarcelonaSpain
- Instituto de Biologia Molecular y Celular de Plantas (IBMCP)CSIC‐Universitat Politècnica de ValènciaValenciaSpain
| |
Collapse
|
30
|
Kilambi HV, Dindu A, Sharma K, Nizampatnam NR, Gupta N, Thazath NP, Dhanya AJ, Tyagi K, Sharma S, Kumar S, Sharma R, Sreelakshmi Y. The new kid on the block: a dominant-negative mutation of phototropin1 enhances carotenoid content in tomato fruits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:844-861. [PMID: 33608974 DOI: 10.1111/tpj.15206] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/15/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Phototropins, the UVA-blue light photoreceptors, endow plants to detect the direction of light and optimize photosynthesis by regulating positioning of chloroplasts and stomatal gas exchange. Little is known about their functions in other developmental responses. A tomato Non-phototropic seedling1 (Nps1) mutant, bearing an Arg495His substitution in the vicinity of LOV2 domain in phototropin1, dominant-negatively blocks phototropin1 responses. The fruits of Nps1 mutant were enriched in carotenoids, particularly lycopene, compared with its parent, Ailsa Craig. On the contrary, CRISPR/CAS9-edited loss of function phototropin1 mutants displayed subdued carotenoids compared with the parent. The enrichment of carotenoids in Nps1 fruits is genetically linked with the mutation and exerted in a dominant-negative fashion. Nps1 also altered volatile profiles with high levels of lycopene-derived 6-methyl 5-hepten2-one. The transcript levels of several MEP and carotenogenesis pathway genes were upregulated in Nps1. Nps1 fruits showed altered hormonal profiles with subdued ethylene emission and reduced respiration. Proteome profiles showed a causal link between higher carotenogenesis and increased levels of protein protection machinery, which may stabilize proteins contributing to MEP and carotenogenesis pathways. The enhancement of carotenoid content by Nps1 in a dominant-negative fashion offers a potential tool for high lycopene-bearing hybrid tomatoes.
Collapse
Affiliation(s)
- Himabindu Vasuki Kilambi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Alekhya Dindu
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Kapil Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Narasimha Rao Nizampatnam
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Neha Gupta
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Nikhil Padmanabhan Thazath
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Ajayakumar Jaya Dhanya
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Kamal Tyagi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Sulabha Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Sumit Kumar
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rameshwar Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
31
|
Girón-Calva PS, Pérez-Fons L, Sandmann G, Fraser PD, Christou P. Nitrogen inputs influence vegetative metabolism in maize engineered with a seed-specific carotenoid pathway. PLANT CELL REPORTS 2021; 40:899-911. [PMID: 33787959 DOI: 10.1007/s00299-021-02689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Metabolomic profiling of a maize line engineered with an endosperm-specific carotenogenic pathway revealed unexpected metabolic readjustments of primary metabolism in leaves and roots. High-carotenoid (HC) maize was engineered to accumulate high levels of carotenoids in the endosperm. The metabolic interventions influenced the flux through non-target pathways in tissues that were not affected by the targeted intervention. HC maize at the vegetative stage also showed a reduced susceptibility to insect feeding. It is unknown, however, whether the metabolic history of the embryo has any impact on the metabolite composition in vegetative tissues. We, therefore, compared HC maize and its isogenic counterpart (M37W) to test the hypothesis that boosting the carotenoid content in the endosperm triggers compensatory effects in core metabolism in vegetative tissues. Specifically, we investigated whether the metabolite composition of leaves and roots at the V6 stage differs between HC and M37W, and whether N inputs further alter the core metabolism of HC compared to M37W. We found an increase in the abundance of organic acids from the tricarboxylic acid (TCA) cycle in HC even under restricted N conditions. In contrast, low levels of carotenoids and chlorophyll were measured regardless of N levels. Sugars were also significantly depleted in HC under low N. We propose a model explaining the observed genotype-dependent and input-dependent effects, in which organic acids derived from the TCA cycle accumulate during vegetative growth and contribute to the increased demand for pyruvate and/or acetyl-CoA in the endosperm and embryo. This response may in part reflect the transgenerational priming of vegetative tissues in the embryo induced by the increased demand for metabolic precursors during seed development in the previous generation.
Collapse
Affiliation(s)
- Patricia S Girón-Calva
- Department of Plant Production and Forestry Sciences, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Laura Pérez-Fons
- Department of Biological Sciences, Royal Holloway, University London, Egham, Surrey, UK
| | - Gerhard Sandmann
- Institute of Molecular Bioscience, J. W. Goethe University, Frankfurt am Main, Germany
| | - Paul D Fraser
- Department of Biological Sciences, Royal Holloway, University London, Egham, Surrey, UK.
| | - Paul Christou
- Department of Plant Production and Forestry Sciences, University of Lleida-Agrotecnio Center, Lleida, Spain.
- ICREA, Catalan Institute for Research and Advanced Studies, Barcelona, Spain.
| |
Collapse
|
32
|
Sharma K, Gupta S, Sarma S, Rai M, Sreelakshmi Y, Sharma R. Mutations in tomato 1-aminocyclopropane carboxylic acid synthase2 uncover its role in development beside fruit ripening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:95-112. [PMID: 33370496 DOI: 10.1111/tpj.15148] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
The role of ethylene in plant development is mostly inferred from its exogenous application. The usage of mutants affecting ethylene biosynthesis proffers a better alternative to decipher its role. In tomato (Solanum lycopersicum), 1-aminocyclopropane carboxylic acid synthase2 (ACS2) is a key enzyme regulating ripening-specific ethylene biosynthesis. We characterised two contrasting acs2 mutants; acs2-1 overproduces ethylene, has higher ACS activity, and has increased protein levels, while acs2-2 is an ethylene underproducer, displays lower ACS activity, and has lower protein levels than wild type. Consistent with high/low ethylene emission, the mutants show opposite phenotypes, physiological responses, and metabolomic profiles compared with the wild type. The acs2-1 mutant shows early seed germination, faster leaf senescence, and accelerated fruit ripening. Conversely, acs2-2 has delayed seed germination, slower leaf senescence, and prolonged fruit ripening. The phytohormone profiles of mutants were mostly opposite in the leaves and fruits. The faster/slower senescence of acs2-1/acs2-2 leaves correlated with the endogenous ethylene/zeatin ratio. The genetic analysis showed that the metabolite profiles of respective mutants co-segregated with the homozygous mutant progeny. Our results uncover that besides ripening, ACS2 participates in the vegetative and reproductive development of tomato. The distinct influence of ethylene on phytohormone profiles indicates the intertwining of ethylene action with other phytohormones in regulating plant development.
Collapse
Affiliation(s)
- Kapil Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Soni Gupta
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Supriya Sarma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Meenakshi Rai
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rameshwar Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
33
|
Sharma K, Gupta S, Sarma S, Rai M, Sreelakshmi Y, Sharma R. Mutations in tomato 1-aminocyclopropane carboxylic acid synthase2 uncover its role in development beside fruit ripening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:95-112. [PMID: 33370496 DOI: 10.1101/2020.05.12.090431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 05/24/2023]
Abstract
The role of ethylene in plant development is mostly inferred from its exogenous application. The usage of mutants affecting ethylene biosynthesis proffers a better alternative to decipher its role. In tomato (Solanum lycopersicum), 1-aminocyclopropane carboxylic acid synthase2 (ACS2) is a key enzyme regulating ripening-specific ethylene biosynthesis. We characterised two contrasting acs2 mutants; acs2-1 overproduces ethylene, has higher ACS activity, and has increased protein levels, while acs2-2 is an ethylene underproducer, displays lower ACS activity, and has lower protein levels than wild type. Consistent with high/low ethylene emission, the mutants show opposite phenotypes, physiological responses, and metabolomic profiles compared with the wild type. The acs2-1 mutant shows early seed germination, faster leaf senescence, and accelerated fruit ripening. Conversely, acs2-2 has delayed seed germination, slower leaf senescence, and prolonged fruit ripening. The phytohormone profiles of mutants were mostly opposite in the leaves and fruits. The faster/slower senescence of acs2-1/acs2-2 leaves correlated with the endogenous ethylene/zeatin ratio. The genetic analysis showed that the metabolite profiles of respective mutants co-segregated with the homozygous mutant progeny. Our results uncover that besides ripening, ACS2 participates in the vegetative and reproductive development of tomato. The distinct influence of ethylene on phytohormone profiles indicates the intertwining of ethylene action with other phytohormones in regulating plant development.
Collapse
Affiliation(s)
- Kapil Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Soni Gupta
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Supriya Sarma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Meenakshi Rai
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rameshwar Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
34
|
Koschmieder J, Wüst F, Schaub P, Álvarez D, Trautmann D, Krischke M, Rustenholz C, Mano J, Mueller MJ, Bartels D, Hugueney P, Beyer P, Welsch R. Plant apocarotenoid metabolism utilizes defense mechanisms against reactive carbonyl species and xenobiotics. PLANT PHYSIOLOGY 2021; 185:331-351. [PMID: 33721895 PMCID: PMC8133636 DOI: 10.1093/plphys/kiaa033] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
Carotenoid levels in plant tissues depend on the relative rates of synthesis and degradation of the molecules in the pathway. While plant carotenoid biosynthesis has been extensively characterized, research on carotenoid degradation and catabolism into apocarotenoids is a relatively novel field. To identify apocarotenoid metabolic processes, we characterized the transcriptome of transgenic Arabidopsis (Arabidopsis thaliana) roots accumulating high levels of β-carotene and, consequently, β-apocarotenoids. Transcriptome analysis revealed feedback regulation on carotenogenic gene transcripts suitable for reducing β-carotene levels, suggesting involvement of specific apocarotenoid signaling molecules originating directly from β-carotene degradation or after secondary enzymatic derivatizations. Enzymes implicated in apocarotenoid modification reactions overlapped with detoxification enzymes of xenobiotics and reactive carbonyl species (RCS), while metabolite analysis excluded lipid stress response, a potential secondary effect of carotenoid accumulation. In agreement with structural similarities between RCS and β-apocarotenoids, RCS detoxification enzymes also converted apocarotenoids derived from β-carotene and from xanthophylls into apocarotenols and apocarotenoic acids in vitro. Moreover, glycosylation and glutathionylation-related processes and translocators were induced. In view of similarities to mechanisms found in crocin biosynthesis and cellular deposition in saffron (Crocus sativus), our data suggest apocarotenoid metabolization, derivatization and compartmentalization as key processes in (apo)carotenoid metabolism in plants.
Collapse
Affiliation(s)
| | - Florian Wüst
- Faculty of Biology II, University of Freiburg, 79104 Freiburg, Germany
| | - Patrick Schaub
- Faculty of Biology II, University of Freiburg, 79104 Freiburg, Germany
| | - Daniel Álvarez
- Faculty of Biology II, University of Freiburg, 79104 Freiburg, Germany
| | - Danika Trautmann
- Faculty of Biology II, University of Freiburg, 79104 Freiburg, Germany
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, F-68000 Colmar, France
| | - Markus Krischke
- Julius-Maximilians-University Würzburg, Julius-von-Sachs-Institute for Biosciences, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Camille Rustenholz
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, F-68000 Colmar, France
| | - Jun’ichi Mano
- Science Research Center, Organization for Research Initiatives, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8515, Japan
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8515, Japan
| | - Martin J Mueller
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, F-68000 Colmar, France
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Philippe Hugueney
- Julius-Maximilians-University Würzburg, Julius-von-Sachs-Institute for Biosciences, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Peter Beyer
- Faculty of Biology II, University of Freiburg, 79104 Freiburg, Germany
| | - Ralf Welsch
- Faculty of Biology II, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
35
|
López-Gámez G, Elez-Martínez P, Quiles-Chuliá A, Martín-Belloso O, Hernando-Hernando I, Soliva-Fortuny R. Effect of pulsed electric fields on carotenoid and phenolic bioaccessibility and their relationship with carrot structure. Food Funct 2021; 12:2772-2783. [PMID: 33687388 DOI: 10.1039/d0fo03035j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Phenolic compounds (PC) and carotenoids from carrots are bound to dietary fibre or stored in vacuoles and chromoplasts, respectively. To exert their antioxidant effects these compounds must be released during digestion, which is hindered by such barriers. Pulsed electric fields (PEF) modify cell membrane permeability, thus enhancing their bioaccessibility. The effect of PEF on the carrot carotenoid and PC content and bioaccessibility was investigated. With this purpose, PEF-treated carrots (5 pulses of 3.5 kV cm-1) were stored for 24 h at 4 °C and microstructure was evaluated before subjecting them to in vitro digestion. PEF did not affect carotenoid content, whereas their bioaccessibility improved (11.9%). Likewise, PEF increased the content of some PC, e.g. coumaric acid (163.2%), probably caused by their better extractability. Conversely, caffeic acid derivatives decreased, which may be associated to greater contact with oxidative enzymes. Total PC bioaccessibility (20.8%) and some derivatives increased, e.g. caffeoylshikimic (68.9%), whereas some decreased (e.g. ferulic acid). Structural changes caused by PEF may improve bioaccessibility of carotenoids and PC by favouring their release and easy access to digestive enzymes. However, other antioxidants may be further degraded or entrapped during digestion. Therefore, PEF is an effective technology for obtaining carrots with enhanced carotenoids and phenolic bioaccessibility.
Collapse
Affiliation(s)
- Gloria López-Gámez
- Department of Food Technology, Agrotecnio Centre, University of Lleida, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain.
| | | | | | | | | | | |
Collapse
|
36
|
Sirijan M, Drapal M, Chaiprasart P, Fraser PD. Characterisation of Thai strawberry (Fragaria × ananassa Duch.) cultivars with RAPD markers and metabolite profiling techniques. PHYTOCHEMISTRY 2020; 180:112522. [PMID: 33010537 DOI: 10.1016/j.phytochem.2020.112522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/14/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Strawberries (Fragaria × ananassa Duch.) are one of the most economically important fruit crops worldwide, several commercially viable cultivars are cultivated in the northern region of Thailand. The morphological characters at the young vegetative seedling stage can be very similar, which has hindered breeding efforts. The present study assesses the ability of random amplification of polymorphic DNA (RAPD) markers and metabolomics techniques to distinguish six strawberry cultivars. Both techniques showed congruent results for the leaf tissue and classified the cultivars into three major clusters. For the most different cultivars, Akihime and Praratchatan No.80, fruits were analysed at eight fruit ripening stages. The data highlighted a broad biological variation at the early ripening stages and less biological variation at the mature stages. Key metabolic differences included the polyphenol profile in Praratchatan No.80 and fatty acid synthesis/oxidation in Akihime. In summary, the RAPD and metabolite data can be used to distinguish strawberry cultivars and elucidate the metabolite composition of each phenotype. This approach to the characterisation of genotypes will benefit future breeding programmes.
Collapse
Affiliation(s)
- Mongkon Sirijan
- Center of Excellence in Postharvest Technology, Department of Agricultural Science, Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok, 65000, Thailand
| | - Margit Drapal
- School of Biological Sciences, Royal Holloway University of London, Egham, TW200EX, United Kingdom
| | - Peerasak Chaiprasart
- Center of Excellence in Postharvest Technology, Department of Agricultural Science, Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok, 65000, Thailand
| | - Paul D Fraser
- School of Biological Sciences, Royal Holloway University of London, Egham, TW200EX, United Kingdom.
| |
Collapse
|
37
|
Zheng X, Zhu K, Ye J, Price EJ, Deng X, Fraser PD. The effect of β-cyclocitral treatment on the carotenoid content of transgenic Marsh grapefruit (Citrus paradisi Macf.) suspension-cultured cells. PHYTOCHEMISTRY 2020; 180:112509. [PMID: 32966904 DOI: 10.1016/j.phytochem.2020.112509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
This work reports the development of suspension culture system of transgenic Marsh grapefruit (Citrus paradisi Macf., Rutaceae) callus overexpressing bacterial phytoene synthase; and the use of this suspension culture to investigate the effects of β-cyclocitral on carotenoid content and composition. At a β-cyclocitral concentration of 0.5 mM and after ten days cultivation, analysis of the carotenoids showed a significant increase in the content of β-, α-carotene, and phytoene predominantly. The maximal increase in total provitamin A carotenoids content following β-cyclocitral application was ~2-fold higher than the control, reaching 245.8 μg/g DW. The trend for increased transcript levels of biosynthetic genes PSY and ZDS correlated with the enhancement of the content of these carotenes following β-cyclocitral treatment and GC-MS based metabolite profiling showed significant changes of metabolite levels across intermediary metabolism. These findings suggest that β-cyclocitral can act as a chemical elicitor, to enhance the formation of carotenes in citrus suspension-cultured cells (SCC), which could be utilized in studying the regulation of carotenoid biosynthesis and biotechnological application to the renewable production of nutritional carotenoids.
Collapse
Affiliation(s)
- Xiongjie Zheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Kaijie Zhu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Elliott J Price
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK; Faculty of Sports Studies, Masaryk University, Brno, Czech Republic; RECETOX Centre, Masaryk University, Brno, Czech Republic
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China.
| | - Paul D Fraser
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK.
| |
Collapse
|
38
|
Karniel U, Koch A, Zamir D, Hirschberg J. Development of zeaxanthin-rich tomato fruit through genetic manipulations of carotenoid biosynthesis. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2292-2303. [PMID: 32320515 PMCID: PMC7589248 DOI: 10.1111/pbi.13387] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/19/2020] [Accepted: 03/26/2020] [Indexed: 05/22/2023]
Abstract
The oxygenated carotenoid zeaxanthin provides numerous benefits to human health due to its antioxidant properties. Especially it is linked to protecting, together with the xanthophyll lutein, the retina in the human eye by filtering harmful blue light thus delaying the progression of age-related macular degeneration (AMD), the most prevalent cause of blindness in developed countries. Despite its high nutritional value, zeaxanthin is less available than other substantial carotenoids in our diet. To solve this shortage, we chose to develop a new food source that would contain a high concentration of natural zeaxanthin. Tomato (Solanum lycopersicum L.) was selected as the target plant since it is the second largest vegetable crop grown worldwide and its fruit characteristically synthesizes and accumulates a high concentration of carotenoids. We employed two genetic approaches in order to enhance zeaxanthin biosynthesis in tomato fruit: a transgenic metabolic engineering and classical genetic breeding. A nontransgenic tomato line, named 'Xantomato', was generated whose fruit accumulated zeaxanthin at a concentration of 39 μg/g fresh weight (or 577 μg/g dry weight), which comprised ca. 50% of total fruit carotenoids compared to zero in the wild type. This is the highest concentration of zeaxanthin reached in a primary crop. Xantomato can potentially increase zeaxanthin availability in the human diet and serve as raw material for industrial applications.
Collapse
Affiliation(s)
- Uri Karniel
- Department of GeneticsAlexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Amit Koch
- Robert H. Smith Institute of Plant Sciences and GeneticsThe Hebrew University of JerusalemRehovotIsrael
| | - Dani Zamir
- Robert H. Smith Institute of Plant Sciences and GeneticsThe Hebrew University of JerusalemRehovotIsrael
| | - Joseph Hirschberg
- Department of GeneticsAlexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
39
|
Bhattacharya O, Ortiz I, Walling LL. Methodology: an optimized, high-yield tomato leaf chloroplast isolation and stroma extraction protocol for proteomics analyses and identification of chloroplast co-localizing proteins. PLANT METHODS 2020; 16:131. [PMID: 32983250 PMCID: PMC7513546 DOI: 10.1186/s13007-020-00667-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/04/2020] [Indexed: 06/09/2023]
Abstract
BACKGROUND Chloroplasts are critical organelles that perceive and convey metabolic and stress signals to different cellular components, while remaining the seat of photosynthesis and a metabolic factory. The proteomes of intact leaves, chloroplasts, and suborganellar fractions of plastids have been evaluated in the model plant Arabidopsis, however fewer studies have characterized the proteomes of plastids in crops. Tomato (Solanum lycopersicum) is an important world-wide crop and a model system for the study of wounding, herbivory and fruit ripening. While significant advances have been made in understanding proteome and metabolome changes in fruit ripening, far less is known about the tomato chloroplast proteome or its subcompartments. RESULTS With the long-term goal of understanding chloroplast proteome dynamics in response to stress, we describe a high-yielding method to isolate intact tomato chloroplasts and stromal proteins for proteomic studies. The parameters that limit tomato chloroplast yields were identified and revised to increase yields. Compared to published data, our optimized method increased chloroplast yields by 6.7- and 4.3-fold relative to published spinach and Arabidopsis leaf protocols, respectively; furthermore, tomato stromal protein yields were up to 79-fold higher than Arabidopsis stromal proteins yields. We provide immunoblot evidence for the purity of the stromal proteome isolated using our enhanced methods. In addition, we leverage our nanoliquid chromatography tandem mass spectrometry (nanoLC-MS/MS) data to assess the quality of our stromal proteome. Using strict criteria, proteins detected by 1 peptide spectral match, by one peptide, or were sporadically detected were designated as low-level contaminating proteins. A set of 254 proteins that reproducibly co-isolated with the tomato chloroplast stroma were identified. The subcellular localization, frequency of detection, normalized spectral abundance, and functions of the co-isolating proteins are discussed. CONCLUSIONS Our optimized method for chloroplast isolation increased the yields of tomato chloroplasts eightfold enabling the proteomics analysis of the chloroplast stromal proteome. The set of 254 proteins that co-isolate with the chloroplast stroma provides opportunities for developing a better understanding of the extensive and dynamic interactions of chloroplasts with other organelles. These co-isolating proteins also have the potential for expanding our knowledge of proteins that are co-localized in multiple subcellular organelles.
Collapse
Affiliation(s)
- Oindrila Bhattacharya
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA 92521 USA
| | - Irma Ortiz
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA 92521 USA
| | - Linda L. Walling
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA 92521 USA
| |
Collapse
|
40
|
Drapal M, Ovalle Rivera TM, Becerra Lopez-Lavalle LA, Fraser PD. Exploring the chemotypes underlying important agronomic and consumer traits in cassava (Manihot esculenta crantz). JOURNAL OF PLANT PHYSIOLOGY 2020; 251:153206. [PMID: 32512382 DOI: 10.1016/j.jplph.2020.153206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 05/26/2023]
Abstract
A broad diversity of phenotypes are available within the cassava germplasm collections. The phenotypes include improved nutritional, starch or culinary root quality as well as abiotic and biotic resistance properties. Some of these traits can be found naturally occurring in cassava landraces, whereas others are the result of targeted breeding efforts. For future breeding programmes it is important to know the underlying mechanisms of these desirable traits. Metabolomics can assist in the elucidation of these mechanisms by measuring the end products of the cellular processes conferring the traits of interest. The present study focused on the comparison of two or more variants of the same trait such as high and low culinary quality or resistance and susceptibility to thrips. Overall, eight different traits were assessed. Results showed that amino acids and umami compounds were associated with superior culinary attributes and the phenylpropanoid superpathway plays an important role in pest resistance. Furthermore, the data highlighted a low chemodiversity in African cassavas and that the source-sink relation was still active at the harvest stage.
Collapse
Affiliation(s)
- Margit Drapal
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK
| | | | | | - Paul D Fraser
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK.
| |
Collapse
|
41
|
Chettry U, Chrungoo NK. A multifocal approach towards understanding the complexities of carotenoid biosynthesis and accumulation in rice grains. Brief Funct Genomics 2020; 19:324-335. [PMID: 32240289 DOI: 10.1093/bfgp/elaa007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 11/12/2022] Open
Abstract
Carotenoids are mostly C40 terpenoids that participate in several important functions in plants including photosynthesis, responses to various forms of stress, signal transduction and photoprotection. While the antioxidant potential of carotenoids is of particular importance for human health, equally important is the role of β-carotene as the precursor for vitamin A in the human diet. Rice, which contributes upto 40% of dietary energy for mankind, contains very low level of β-carotene, thereby making it an important crop for enhancing β-carotene accumulation in its grains and consequently targeting vitamin A deficiency. Biosynthesis of carotenoids in the endosperm of white rice is blocked at the first enzymatic step wherein geranylgeranyl diphosphate is converted to phytoene by the action of phytoene synthase (PSY). Strategies aimed at enhancing β-carotene levels in the endosperm of white rice identified Narcissus pseudonarcissus (npPSY) and bacterial CRT1 as the regulators of the carotenoid biosynthetic pathway in rice. Besides transcriptional regulation of PSY, posttranscriptional regulation of PSY expression by OR gene, molecular synergism between ε-LCY and β-LCY and epigenetic control of CRITSO through SET DOMAIN containing protein appear to be the other regulatory nodes which regulate carotenoid biosynthesis and accumulation in rice grains. In this review, we elucidate a comprehensive and deeper understanding of the regulatory mechanisms of carotenoid metabolism in crops that will enable us to identify an effective tool to alleviate carotenoid content in rice grains.
Collapse
Affiliation(s)
- Upasna Chettry
- Department of Botany, North-Eastern Hill University, Shillong 793022, India
| | - Nikhil K Chrungoo
- Department of Botany, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
42
|
Drapal M, Lindqvist-Kreuze H, Mihovilovich E, Aponte M, Bonierbale M, Fraser PD. Cooking dependent loss of metabolites in potato breeding lines and their wild and landrace relatives. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Watkins JL, Pogson BJ. Prospects for Carotenoid Biofortification Targeting Retention and Catabolism. TRENDS IN PLANT SCIENCE 2020; 25:501-512. [PMID: 31956035 DOI: 10.1016/j.tplants.2019.12.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 11/20/2019] [Accepted: 12/16/2019] [Indexed: 05/08/2023]
Abstract
Due to the ongoing prevalence of vitamin A deficiency (VAD) in developing countries there has been a large effort towards increasing the carotenoid content of staple foods via biofortification. Common strategies used for carotenoid biofortification include altering flux through the biosynthesis pathway to direct synthesis to a specific product, generally β-carotene, or via increasing the expression of genes early in the carotenoid biosynthesis pathway. Recently, carotenoid biofortification strategies are turning towards increasing the retention of carotenoids in plant tissues either via altering sequestration within the cell or via downregulating enzymes known to cause degradation of carotenoids. To date, little attention has focused on increasing the stability of carotenoids, which may be a promising method of increasing carotenoid content in staple foods.
Collapse
Affiliation(s)
- Jacinta L Watkins
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Barry J Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
44
|
Wen X, Heller A, Wang K, Han Q, Ni Y, Carle R, Schweiggert R. Carotenogenesis and chromoplast development during ripening of yellow, orange and red colored Physalis fruit. PLANTA 2020; 251:95. [PMID: 32274590 DOI: 10.1007/s00425-020-03383-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Formation of specific ultrastructural chromoplastidal elements during ripening of fruits of three different colored Physalis spp. is closely related to their distinct carotenoid profiles. The accumulation of color-determining carotenoids within the chromoplasts of ripening yellow, orange, and red fruit of Physalis pubescens L., Physalis peruviana L., and Physalis alkekengi L., respectively, was monitored by high-performance liquid chromatography/diode array detector/tandem mass spectrometry (HPLC-DAD-MS/MS) as well as light and transmission electron microscopy. Both yellow and orange fruit gradually accumulated mainly β-carotene and lutein esters at variable levels, explaining their different colors at full ripeness. Upon commencing β-carotene biosynthesis, large crystals appeared in their chromoplasts, while large filaments protruding from plastoglobules were characteristic elements of chromoplasts of orange fruit. In contrast to yellow and orange fruit, fully ripe red fruit contained almost no β-carotene, but esters of both β-cryptoxanthin and zeaxanthin at very high levels. Tubule bundles and unusual disc-like crystallites were predominant carotenoid-bearing elements in red fruit. Our study supports the earlier hypothesis that the predominant carotenoid type might shape the ultrastructural carotenoid deposition form, which is considered important for color, stability and bioavailability of the contained carotenoids.
Collapse
Affiliation(s)
- Xin Wen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, China Agricultural University, Beijing, 100083, China
- Chair of Plant Foodstuff Technology and Analysis, Institute of Food Science and Biotechnology, University of Hohenheim, 70599, Stuttgart, Germany
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Annerose Heller
- Institute of Botany, University of Hohenheim, 70599, Stuttgart, Germany
| | - Kunli Wang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, China Agricultural University, Beijing, 100083, China
| | - Qianyun Han
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, China Agricultural University, Beijing, 100083, China
| | - Yuanying Ni
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, China Agricultural University, Beijing, 100083, China.
| | - Reinhold Carle
- Chair of Plant Foodstuff Technology and Analysis, Institute of Food Science and Biotechnology, University of Hohenheim, 70599, Stuttgart, Germany
- Biological Science Department, King Abdulaziz University, P. O. Box 80257, Jeddah, 21589, Saudi Arabia
| | - Ralf Schweiggert
- Chair of Plant Foodstuff Technology and Analysis, Institute of Food Science and Biotechnology, University of Hohenheim, 70599, Stuttgart, Germany
- Chair of Analysis and Technology of Plant-Based Foods, Institute of Beverage Research, Geisenheim University, 65366, Geisenheim, Germany
| |
Collapse
|
45
|
Price EJ, Drapal M, Perez‐Fons L, Amah D, Bhattacharjee R, Heider B, Rouard M, Swennen R, Becerra Lopez‐Lavalle LA, Fraser PD. Metabolite database for root, tuber, and banana crops to facilitate modern breeding in understudied crops. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1258-1268. [PMID: 31845400 PMCID: PMC7383867 DOI: 10.1111/tpj.14649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/09/2019] [Accepted: 11/28/2019] [Indexed: 05/06/2023]
Abstract
Roots, tubers, and bananas (RTB) are vital staples for food security in the world's poorest nations. A major constraint to current RTB breeding programmes is limited knowledge on the available diversity due to lack of efficient germplasm characterization and structure. In recent years large-scale efforts have begun to elucidate the genetic and phenotypic diversity of germplasm collections and populations and, yet, biochemical measurements have often been overlooked despite metabolite composition being directly associated with agronomic and consumer traits. Here we present a compound database and concentration range for metabolites detected in the major RTB crops: banana (Musa spp.), cassava (Manihot esculenta), potato (Solanum tuberosum), sweet potato (Ipomoea batatas), and yam (Dioscorea spp.), following metabolomics-based diversity screening of global collections held within the CGIAR institutes. The dataset including 711 chemical features provides a valuable resource regarding the comparative biochemical composition of each RTB crop and highlights the potential diversity available for incorporation into crop improvement programmes. Particularly, the tropical crops cassava, sweet potato and banana displayed more complex compositional metabolite profiles with representations of up to 22 chemical classes (unknowns excluded) than that of potato, for which only metabolites from 10 chemical classes were detected. Additionally, over 20% of biochemical signatures remained unidentified for every crop analyzed. Integration of metabolomics with the on-going genomic and phenotypic studies will enhance 'omics-wide associations of molecular signatures with agronomic and consumer traits via easily quantifiable biochemical markers to aid gene discovery and functional characterization.
Collapse
Affiliation(s)
- Elliott J. Price
- Royal Holloway University of London, SurreyTW20 0EXEghamUnited Kingdom
- Present address:
Masaryk UniversityBrno‐Bohunice625 00Czech Republic
| | - Margit Drapal
- Royal Holloway University of London, SurreyTW20 0EXEghamUnited Kingdom
| | - Laura Perez‐Fons
- Royal Holloway University of London, SurreyTW20 0EXEghamUnited Kingdom
| | - Delphine Amah
- International Institute of Tropical AgriculturePMB 5320IbadanNigeria
| | | | | | - Mathieu Rouard
- Bioversity InternationalParc Scientifique Agropolis II34397MontpellierFrance
| | - Rony Swennen
- Laboratory of Tropical Crop ImprovementDivision of Crop BiotechnicsKU LeuvenB‐3001LeuvenBelgium
- Bioversity InternationalWillem De Croylaan 42B‐3001LeuvenBelgium
- International Institute of Tropical Agriculture. C/0 The Nelson Mandela African Institution of Science and TechnologyP.O. Box 44ArushaTanzania
| | | | - Paul D. Fraser
- Royal Holloway University of London, SurreyTW20 0EXEghamUnited Kingdom
| |
Collapse
|
46
|
Zheng X, Giuliano G, Al-Babili S. Carotenoid biofortification in crop plants: citius, altius, fortius. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158664. [PMID: 32068105 DOI: 10.1016/j.bbalip.2020.158664] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/24/2022]
Abstract
Carotenoids are indispensable for human health, required as precursors of vitamin A and efficient antioxidants. However, these plant pigments that play a vital role in photosynthesis are represented at insufficient levels in edible parts of several crops, which creates a need for increasing their content or optimizing their composition through biofortification. In particular, vitamin A deficiency, a severe health problem affecting the lives of millions in developing countries, has triggered the development of a series of high-provitamin A crops, including Golden Rice as the best-known example. Further carotenoid-biofortified crops have been generated by using genetic engineering approaches or through classical breeding. In this review, we depict carotenoid metabolism in plants and provide an update on the development of carotenoid-biofortified plants and their potential to meet needs and expectations. Furthermore, we discuss the possibility of using natural variation for carotenoid biofortification and the potential of gene editing tools. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Xiongjie Zheng
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Science and Engineering, Center for Desert Agriculture, the BioActives Lab, Thuwal 23955-6900, Saudi Arabia
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Center, Via Anguillarese 301, Roma 00123, Italy
| | - Salim Al-Babili
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Science and Engineering, Center for Desert Agriculture, the BioActives Lab, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
47
|
Jin X, Baysal C, Gao L, Medina V, Drapal M, Ni X, Sheng Y, Shi L, Capell T, Fraser PD, Christou P, Zhu C. The subcellular localization of two isopentenyl diphosphate isomerases in rice suggests a role for the endoplasmic reticulum in isoprenoid biosynthesis. PLANT CELL REPORTS 2020; 39:119-133. [PMID: 31679061 DOI: 10.1007/s00299-019-02479-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/03/2019] [Indexed: 05/19/2023]
Abstract
Both OsIPPI1 and OsIPPI2 enzymes are found in the endoplasmic reticulum, providing novel important insights into the role of this compartment in the synthesis of MVA pathway isoprenoids. Isoprenoids are synthesized from the precursor's isopentenyl diphosphate (IPP) and dimethylallyl diphosphosphate (DMAPP), which are interconverted by the enzyme isopentenyl diphosphate isomerase (IPPI). Many plants express multiple isoforms of IPPI, the only enzyme shared by the mevalonate (MVA) and non-mevalonate (MEP) pathways, but little is known about their specific roles. Rice (Oryza sativa) has two IPPI isoforms (OsIPPI1 and OsIPPI2). We, therefore, carried out a comprehensive comparison of IPPI gene expression, protein localization, and isoprenoid biosynthesis in this species. We found that OsIPPI1 mRNA was more abundant than OsIPPI2 mRNA in all tissues, and its expression in de-etiolated leaves mirrored the accumulation of phytosterols, suggesting a key role in the synthesis of MVA pathway isoprenoids. We investigated the subcellular localization of both isoforms by constitutively expressing them as fusions with synthetic green fluorescent protein. Both proteins localized to the endoplasmic reticulum (ER) as well as peroxisomes and mitochondria, whereas only OsIPPI2 was detected in plastids, due to an N-terminal transit peptide which is not present in OsIPPI1. Despite the plastidial location of OsIPPI2, the expression of OsIPPI2 mRNA did not mirror the accumulation of chlorophylls or carotenoids, indicating that OsIPPI2 may be a redundant component of the MEP pathway. The detection of both OsIPPI isoforms in the ER indicates that DMAPP can be synthesized de novo in this compartment. Our work shows that the ER plays an as yet unknown role in the synthesis of MVA-derived isoprenoids, with important implications for the metabolic engineering of isoprenoid biosynthesis in higher plants.
Collapse
Affiliation(s)
- Xin Jin
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
| | - Can Baysal
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
| | - Lihong Gao
- School of Life Sciences, Changchun Normal University, Changchun, 130032, China
| | - Vicente Medina
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
| | - Margit Drapal
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK
| | - Xiuzhen Ni
- School of Life Sciences, Changchun Normal University, Changchun, 130032, China
| | - Yanmin Sheng
- School of Life Sciences, Changchun Normal University, Changchun, 130032, China
| | - Lianxuan Shi
- School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Teresa Capell
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
| | - Paul D Fraser
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK
| | - Paul Christou
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
- ICREA, Catalan Institute for Research and Advanced Studies, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain.
- School of Life Sciences, Changchun Normal University, Changchun, 130032, China.
| |
Collapse
|
48
|
Drapal M, Fraser PD. Determination of carotenoids in sweet potato (Ipomoea batatas L., Lam) tubers: Implications for accurate provitamin A determination in staple sturdy tuber crops. PHYTOCHEMISTRY 2019; 167:112102. [PMID: 31466009 DOI: 10.1016/j.phytochem.2019.112102] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Vitamin A deficiency (VAD) is a global health problem, which despite significant financial investments and initiatives has not been eradicated. Biofortification of staple crops with β-carotene (provitamin A) in Low Medium Income Countries (LMICs) is the approach advocated and adopted by the WHO and HarvestPlus programme. The accurate determination of β-carotene is key to the assessment of outputs from these activities. In the present study, HPLC-PDA analysis displayed superior resolving power, separating and identifying 23 carotenoids in the orange sweet potato (Ipomoea batatas) variety used, including only eight carotenoids with provitamin A properties. Additionally, the results evidently displayed that the use of lyophilised material facilitated the extraction of twice the amount of pigments compared to fresh material, which impacts the precise calculation of the provitamin A content. These results highlight that yellow to orange starchy edible crops produce a wide array of carotenoids in addition to β-carotene. Biosynthetically it is clear from the intermediates and products accumulating that the β-branch of the carotenoid pathway persists in sweet potato tuber material. Collectively, the data also have implications with respect to the determination and biosynthesis of provitamin A among staple crops for developing countries.
Collapse
Affiliation(s)
- Margit Drapal
- School of Biological Sciences, Royal Holloway University of London, Egham, TW200EX, United Kingdom
| | - Paul D Fraser
- School of Biological Sciences, Royal Holloway University of London, Egham, TW200EX, United Kingdom.
| |
Collapse
|
49
|
Enfissi EM, Nogueira M, D'Ambrosio C, Stigliani AL, Giorio G, Misawa N, Fraser PD. The road to astaxanthin production in tomato fruit reveals plastid and metabolic adaptation resulting in an unintended high lycopene genotype with delayed over-ripening properties. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1501-1513. [PMID: 30623551 PMCID: PMC6662112 DOI: 10.1111/pbi.13073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/07/2018] [Accepted: 12/17/2018] [Indexed: 05/23/2023]
Abstract
Tomato fruit are an important nutritional component of the human diet and offer potential to act as a cell factory for speciality chemicals, which are often produced by chemical synthesis. In the present study our goal was to produce competitive levels of the high value ketocarotenoid, astaxanthin, in tomato fruit. The initial stage in this process was achieved by expressing the 4, 4' carotenoid oxygenase (crtW) and 3, 3' hydroxylase (crtZ) from marine bacteria in tomato under constitutive control. Characterization of this genotype showed a surprising low level production of ketocarotenoids in ripe fruit but over production of lycopene (~3.5 mg/g DW), accompanied by delayed ripening. In order to accumulate these non-endogenous carotenoids, metabolite induced plastid differentiation was evident as well as esterification. Metabolomic and pathway based transcription studies corroborated the delayed onset of ripening. The data also revealed the importance of determining pheno/chemotype inheritance, with ketocarotenoid producing progeny displaying loss of vigour in the homozygous state but stability and robustness in the hemizygous state. To iteratively build on these data and optimize ketocarotenoid production in this genotype, a lycopene β-cyclase was incorporated to avoid precursor limitations and a more efficient hydroxylase was introduced. These combinations resulted in the production of astaxanthin (and ketocarotenoid esters) in ripe fruit at ~3 mg/g DW. Based on previous studies, this level of product formation represents an economic competitive value in a Generally Regarded As Safe (GRAS) matrix that requires minimal downstream processing.
Collapse
Affiliation(s)
| | - Marilise Nogueira
- School of Biological SciencesRoyal HollowayUniversity of LondonEghamSurreyUK
| | | | | | | | - Norihiko Misawa
- Res Inst Bioresources & BiotechnolIshikawa Prefectural UniversityNonoichiIshikawaJapan
| | - Paul D. Fraser
- School of Biological SciencesRoyal HollowayUniversity of LondonEghamSurreyUK
| |
Collapse
|
50
|
Ilahy R, Tlili I, Siddiqui MW, Hdider C, Lenucci MS. Inside and Beyond Color: Comparative Overview of Functional Quality of Tomato and Watermelon Fruits. FRONTIERS IN PLANT SCIENCE 2019; 10:769. [PMID: 31263475 PMCID: PMC6585571 DOI: 10.3389/fpls.2019.00769] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/28/2019] [Indexed: 05/15/2023]
Abstract
The quali-quantitative evaluation and the improvement of the levels of plant bioactive secondary metabolites are increasingly gaining consideration by growers, breeders and processors, particularly in those fruits and vegetables that, due to their supposed health promoting properties, are considered "functional." Worldwide, tomato and watermelon are among the main grown and consumed crops and represent important sources not only of dietary lycopene but also of other health beneficial bioactives. Tomato and watermelon synthesize and store lycopene as their major ripe fruit carotenoid responsible of their typical red color at full maturity. It is also the precursor of some characteristic aroma volatiles in both fruits playing, thus, an important visual and olfactory impact in consumer choice. While sharing the same main pigment, tomato and watermelon fruits show substantial biochemical and physiological differences during ripening. Tomato is climacteric while watermelon is non-climacteric; unripe tomato fruit is green, mainly contributed by chlorophylls and xanthophylls, while young watermelon fruit mesocarp is white and contains only traces of carotenoids. Various studies comparatively evaluated in vivo pigment development in ripening tomato and watermelon fruits. However, in most cases, other classes of compounds have not been considered. We believe this knowledge is fundamental for targeted breeding aimed at improving the functional quality of elite cultivars. Hence, in this paper, we critically review the recent understanding underlying the biosynthesis, accumulation and regulation of different bioactive compounds (carotenoids, phenolics, aroma volatiles, and vitamin C) during tomato and watermelon fruit ripening. We also highlight some concerns about possible harmful effects of excessive uptake of bioactive compound on human health. We found that a complex interweaving of anabolic, catabolic and recycling reactions, finely regulated at multiple levels and with temporal and spatial precision, ensures a certain homeostasis in the concentrations of carotenoids, phenolics, aroma volatiles and Vitamin C within the fruit tissues. Nevertheless, several exogenous factors including light and temperature conditions, pathogen attack, as well as pre- and post-harvest manipulations can drive their amounts far away from homeostasis. These adaptive responses allow crops to better cope with abiotic and biotic stresses but may severely affect the supposed functional quality of fruits.
Collapse
Affiliation(s)
- Riadh Ilahy
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Imen Tlili
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Mohammed Wasim Siddiqui
- Department of Food Science and Postharvest Technology, Bihar Agricultural University, Bhagalpur, India
| | - Chafik Hdider
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Marcello Salvatore Lenucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento (DiSTeBA), Lecce, Italy
| |
Collapse
|