1
|
Hasegawa Y, Luo Y, Sato T. Recent Advances in Ubiquitin Signals Regulating Plant Membrane Trafficking. PLANT & CELL PHYSIOLOGY 2024; 65:1907-1924. [PMID: 39446594 DOI: 10.1093/pcp/pcae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/11/2024] [Accepted: 10/23/2024] [Indexed: 10/26/2024]
Abstract
Ubiquitination is a reversible post-translational modification involving the attachment of ubiquitin, a 76-amino acid protein conserved among eukaryotes. The protein 'ubiquitin' was named after it was found to be ubiquitously expressed in cells. Ubiquitination was first identified as a post-translational modification that mediates energy-consuming protein degradation by the proteasome. After half a century, the manifold functions of ubiquitin are widely recognized to play key roles in diverse molecular pathways and physiological processes. Compared to humans, the number of enzymes related to ubiquitination is almost twice as high in plant species, such as Arabidopsis and rice, suggesting that this modification plays a critical role in many aspects of plant physiology including development and environmental stress responses. Here, we summarize and discuss recent knowledge of ubiquitination focusing on the regulation of membrane trafficking in plants. Ubiquitination of plasma membrane-localized proteins often leads to endocytosis and vacuolar targeting. In addition to cargo proteins, ubiquitination of membrane trafficking regulators regulates the morphodynamics of the endomembrane system. Thus, throughout this review, we focus on the physiological responses regulated by ubiquitination and their underlying mechanisms to clarify what is already known and what would be interesting to investigate in the future.
Collapse
Affiliation(s)
- Yoko Hasegawa
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69342, France
| | - Yongming Luo
- Faculty of Science, Hokkaido University, Kita-ku N10-W8, Sapporo, 060-0810 Japan
| | - Takeo Sato
- Faculty of Science, Hokkaido University, Kita-ku N10-W8, Sapporo, 060-0810 Japan
| |
Collapse
|
2
|
Guo AY, Wu WQ, Liu WC, Zheng Y, Bai D, Li Y, Xie J, Guo S, Song CP. C2-domain abscisic acid-related proteins regulate the dynamics of a plasma membrane H+-ATPase in response to alkali stress. PLANT PHYSIOLOGY 2024; 196:2784-2794. [PMID: 39217410 DOI: 10.1093/plphys/kiae464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
Arabidopsis (Arabidopsis thaliana) H+-ATPase1 (AHA1), a plasma membrane (PM)-localized H+-ATPase, plays a key role in plant alkali stress tolerance by pumping protons from the cytoplasm to the apoplast. However, its molecular dynamics are poorly understood. We report that many C2-domain ABA-related (CAR) protein family members interact with AHA1 in Arabidopsis. Single or double mutants of CAR1, CAR6, and CAR10 had no obvious phenotype of alkali stress tolerance, while their triple mutants showed significantly higher tolerance to this stress. The disruption of AHA1 largely compromised the increased alkali stress tolerance of the car1car6car10 mutant, revealing a key role of CARs in AHA1 regulation during the plant's response to a high alkali pH. Furthermore, variable-angle total internal reflection fluorescence microscopy was used to observe AHA1-mGFP5 in intact Arabidopsis seedlings, revealing the presence of heterogeneous diffusion coefficients and oligomerization states in the AHA1 spots. In the aha1 complementation lines, alkali stress curtailed the residence time of AHA1 at the PM and increased the diffusion coefficient and particle velocity of AHA1. In contrast, the absence of CAR proteins decreased the restriction of the dynamic behavior of AHA1. Our results suggest that CARs play a negative role in plant alkali stress tolerance by interacting with AHA1 and provide a perspective to investigate the regulatory mechanism of PM H+-ATPase activity at the single-particle level.
Collapse
Affiliation(s)
- Ai-Yu Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Wen-Qiang Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yuan Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Di Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yan Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jie Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Sanya Institute of Henan University, Sanya 572025, Hainan, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Sanya Institute of Henan University, Sanya 572025, Hainan, China
| |
Collapse
|
3
|
Mohr I, Eutebach M, Knopf MC, Schommen N, Gratz R, Angrand K, Genders L, Brumbarova T, Bauer P, Ivanov R. The small ARF-like 2 GTPase TITAN5 is linked with the dynamic regulation of IRON-REGULATED TRANSPORTER 1. J Cell Sci 2024; 137:jcs263645. [PMID: 39544154 DOI: 10.1242/jcs.263645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Iron acquisition is crucial for plants. The abundance of IRON-REGULATED TRANSPORTER 1 (IRT1) is controlled through endomembrane trafficking, a process that requires small ARF-like GTPases. Only few components that are involved in the vesicular trafficking of specific cargo are known. Here, we report that the ARF-like GTPase TITAN5 (TTN5) interacts with the large cytoplasmic variable region and protein-regulatory platform of IRT1. Heterozygous ttn5-1 plants can display reduced root iron reductase activity. This activity is needed for iron uptake via IRT1. Fluorescent fusion proteins of TTN5 and IRT1 colocalize at locations where IRT1 sorting and cycling between the plasma membrane and the vacuole are coordinated. TTN5 can also interact with peripheral membrane proteins that are components of the IRT1 regulation machinery, like the trafficking factor SNX1, the C2 domain protein EHB1 and the SEC14-GOLD protein PATL2. Hence, the link between iron acquisition and vesicular trafficking involving a small GTPase of the ARF family opens up the possibility to study the involvement of TTN5 in nutritional cell biology and the endomembrane system.
Collapse
Affiliation(s)
- Inga Mohr
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Monique Eutebach
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Marie C Knopf
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Naima Schommen
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Regina Gratz
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Kalina Angrand
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Lara Genders
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Tzvetina Brumbarova
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
4
|
Lin Z, Guo Y, Zhang R, Li Y, Wu Y, Sheen J, Liu KH. ABA-activated low-nanomolar Ca 2+-CPK signalling controls root cap cycle plasticity and stress adaptation. NATURE PLANTS 2024:10.1038/s41477-024-01865-y. [PMID: 39578615 DOI: 10.1038/s41477-024-01865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024]
Abstract
Abscisic acid (ABA) regulates plant stress adaptation, growth and reproduction. Despite extensive ABA-Ca2+ signalling links, imaging ABA-induced increases in Ca2+ concentration has been challenging, except in guard cells. Here we visualize ABA-triggered [Ca2+] dynamics in diverse organs and cell types of Arabidopsis thaliana using a genetically encoded Ca2+ ratiometric sensor with a low-nanomolar Ca2+-binding affinity and a large dynamic range. The subcellular-targeted Ca2+ ratiometric sensor reveals time-resolved and unique spatiotemporal Ca2+ signatures from the initial plasma-membrane nanodomain, to cytosol, to nuclear oscillation. Via receptors and sucrose-non-fermenting1-related protein kinases (SnRK2.2/2.3/2.6), ABA activates low-nanomolar Ca2+ transient and Ca2+-sensor protein kinase (CPK10/30/32) signalling in the root cap cycle from stem cells to cell detachment. Surprisingly, unlike the prevailing NaCl-stimulated micromolar Ca2+ spike, salt stress induces a low-nanomolar Ca2+ transient through ABA signalling, repressing key transcription factors that dictate cell fate and enzymes that are crucial to root cap maturation and slough. Our findings uncover ABA-Ca2+-CPK signalling that modulates root cap cycle plasticity in adaptation to adverse environments.
Collapse
Affiliation(s)
- Ziwei Lin
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, China
| | - Ying Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, China
| | - Ruiyuan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, China
| | - Yiming Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, China
| | - Yue Wu
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jen Sheen
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Kun-Hsiang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, China.
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Institute of Future Agriculture, Northwest Agriculture & Forestry University, Yangling, China.
| |
Collapse
|
5
|
Gou H, Lu S, Nai G, Ma W, Ren J, Guo L, Chen B, Mao J. The role of gibberellin synthase gene VvGA2ox7 acts as a positive regulator to salt stress in Arabidopsis thaliana. BMC PLANT BIOLOGY 2024; 24:1051. [PMID: 39506686 PMCID: PMC11542264 DOI: 10.1186/s12870-024-05708-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Soil salinity is an important environmental component affecting plant growth and yield, but high-salinity soils are a major constraint to the development of the grape industry. Previous studies have provided lines of evidence that gibberellins (GAs) play a significant regulatory role in plant responses to salt stress. However, it remains unclear whether GA2ox, a key enzyme that maintains the balance of bioactive gibberellins and intermediates in plants, is involved in the mechanism of salt stress tolerance in grapes. RESULTS In this study, we found that GA2ox7 positively modulates salt stress via its ectopic expression in Arabidopsis thaliana. The GA2ox7 gene cloned from grape was a hydrophilic protein, its CDS length was 1002 bp. Besides, VvGA2ox7 protein contained DIOX_N and 2OG-FeII_Oxy domains and was localized at the nucleus and cytoplasm. Yeast two-hybrid (Y2H) showed VvARCN1, VvB5R, VvRUB2, and VvCAR11 might be potential interaction proteins of VvGA2ox7. Compared with the wild type, overexpression of VvGA2ox7 in Arabidopsis thaliana enhanced antioxidant enzymatic activities and proline, chlorophyll, and ABA contents, and decreased relative electrical conductivity, malondialdehyde, and GA3 contents. Moreover, overexpression of VvGA2ox7 positively regulated the expression of salt stress response genes (KAT1, APX1, LEA, P5CS1, AVP1, CBF1), indicating that the VvGA2ox7 overexpression improved the salt stress tolerance of plants. CONCLUSIONS Taken together, this investigation indicates that VvGA2ox7 may act as a positive regulator in response to salt stress and provide novel insights for a deeper understanding of the role of VvGA2ox7 in grapes.
Collapse
Affiliation(s)
- Huimin Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Guojie Nai
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Weifeng Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Jiaxuan Ren
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Lili Guo
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China.
| |
Collapse
|
6
|
Min CW, Gupta R, Lee GH, Cho JH, Kim YJ, Wang Y, Jung KH, Kim ST. Integrative Proteomic and Phosphoproteomic Profiling Reveals the Salt-Responsive Mechanisms in Two Rice Varieties (Oryza Sativa subsp. Japonica and Indica). Proteomics 2024:e202400251. [PMID: 39491529 DOI: 10.1002/pmic.202400251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/09/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024]
Abstract
Salinity stress induces ionic and osmotic imbalances in rice plants that in turn negatively affect the photosynthesis rate, resulting in growth retardation and yield penalty. Efforts have, therefore, been carried out to understand the mechanism of salt tolerance, however, the complexity of biological processes at proteome levels remains a major challenge. Here, we performed a comparative proteome and phosphoproteome profiling of microsome enriched fractions of salt-tolerant (cv. IR73; indica) and salt-susceptible (cv. Dongjin/DJ; japonica) rice varieties. This approach led to the identification of 5856 proteins, of which 473 and 484 proteins showed differential modulation between DJ and IR73 sample sets, respectively. The phosphoproteome analysis led to the identification of a total of 10,873 phosphopeptides of which 2929 and 3049 phosphopeptides showed significant differences in DJ and IR73 sample sets, respectively. The integration of proteome and phosphoproteome data showed activation of ABA and Ca2+ signaling components exclusively in the salt-tolerant variety IR73 in response to salinity stress. Taken together, our results highlight the changes at proteome and phosphoproteome levels and provide a mechanistic understanding of salinity stress tolerance in rice.
Collapse
Affiliation(s)
- Cheol Woo Min
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang, Republic of Korea
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul, Republic of Korea
| | - Gi Hyun Lee
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang, Republic of Korea
| | - Jun-Hyeon Cho
- Sangju Substation, National Institute of Crop Science, Rural Development Administration (RDA), Sangju, Republic of Korea
| | - Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Research Institute, Pusan National University, Miryang, Republic of Korea
| | - Yiming Wang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Department of Plant Pathology, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang, Republic of Korea
| |
Collapse
|
7
|
Pale M, Pérez-Torres CA, Arenas-Huertero C, Villafán E, Sánchez-Rangel D, Ibarra-Laclette E. Genome-Wide Transcriptional Response of Avocado to Fusarium sp. Infection. PLANTS (BASEL, SWITZERLAND) 2024; 13:2886. [PMID: 39458832 PMCID: PMC11511450 DOI: 10.3390/plants13202886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/20/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
The avocado crop is relevant for its economic importance and because of its unique evolutionary history. However, there is a lack of information regarding the molecular processes during the defense response against fungal pathogens. Therefore, using a genome-wide approach in this work, we investigated the transcriptional response of the Mexican horticultural race of avocado (Persea americana var. drymifolia), including miRNAs profile and their possible targets. For that, we established an avocado-Fusarium hydroponic pathosystem and studied the response for 21 days. To guarantee robustness in the analysis, first, we improved the avocado genome assembly available for this variety, resulting in 822.49 Mbp in length with 36,200 gene models. Then, using an RNA-seq approach, we identified 13,778 genes differentially expressed in response to the Fusarium infection. According to their expression profile across time, these genes can be clustered into six groups, each associated with specific biological processes. Regarding non-coding RNAs, 8 of the 57 mature miRNAs identified in the avocado genome are responsive to infection caused by Fusarium, and the analysis revealed a total of 569 target genes whose transcript could be post-transcriptionally regulated. This study represents the first research in avocados to comprehensively explore the role of miRNAs in orchestrating defense responses against Fusarium spp. Also, this work provides valuable data about the genes involved in the intricate response of the avocado during fungal infection.
Collapse
Affiliation(s)
- Michel Pale
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
| | - Claudia-Anahí Pérez-Torres
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
- Investigador por México-CONAHCYT en el Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico
| | - Catalina Arenas-Huertero
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78295, San Luis Potosí, Mexico;
| | - Emanuel Villafán
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
| | - Diana Sánchez-Rangel
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
- Investigador por México-CONAHCYT en el Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
| |
Collapse
|
8
|
Nemati I, Hamzelou S, Gholizadeh S, Kamath KS, Haynes PA, Sedghi M, Afshari RT, Salekdeh GH. Proteomic analysis during seed development provides insight into the early establishment of seed dormancy in Xanthium strumarium. PHYSIOLOGIA PLANTARUM 2024; 176:e14546. [PMID: 39415749 DOI: 10.1111/ppl.14546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 10/19/2024]
Abstract
This experiment was carried out to provide a comprehensive insight into the protein activities involved in dormancy establishment in seeds of common cocklebur (Xanthium strumarium), an annual plant with two dimorphic seeds contained in one casing known as a burr. These consist of a smaller dormant seed and a larger non-dormant seed. The proteome profile was compared between developing dormant and non-dormant seeds of Xanthium strumarium at five consecutive stages including three, 10, 20, 30, and 45 days after burr emergence (stages 1 to 5). We identified 6524 proteins in total, and approximately 3.6% of these were differentially abundant proteins (DAPs) between the two seed types. Both seed types showed fundamental changes in developmental programs during the examined stages. More than 38% of all DAPs were observed at the first stage, supporting the importance of the early developmental stage in seed fate determination. The detected DAPs at stage 1 were mainly associated with the cell division phase, which showed a delay in the dormant seeds. Over-representation of proteins responsible for cell wall biosynthesis, cytokinesis, and seed development were detected for non-dormant seeds at the first stage, while dormancy-associated proteins showed less abundance. Stage 3 was the critical stage for switching processes toward seed maturation and abscisic acid (ABA) signaling. Interestingly, higher abundance proteins in the mature non-dormant seed were mainly involved in the facilitation of seed germination. Taken together, the temporal pattern of the accumulated proteins in developing dormant seeds demonstrated a delay in the initiation of active cell division, enriched response to ABA, and defects in seed maturation. Moreover, stored proteins in the mature dormant seed delay germination but not dormancy induction. Finally, our results suggest that dormancy may be established at a stage of seed development earlier than previously thought.
Collapse
Affiliation(s)
- Iman Nemati
- Department of Plant Production and Genetics Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Sara Hamzelou
- School of Natural Sciences, Macquarie University, North Ryde, NSW, Australia
- CSIRO Health and Biosecurity, Adelaide, SA, Australia
| | - Somayeh Gholizadeh
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark
| | - Karthik Shantharam Kamath
- School of Natural Sciences, Macquarie University, North Ryde, NSW, Australia
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW, Australia
| | - Paul A Haynes
- School of Natural Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Mohammad Sedghi
- Department of Plant Production and Genetics Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Reza Tavakkol Afshari
- Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran
| | | |
Collapse
|
9
|
Wang X, Zhang Z, Dong Y, Wang Y. Functional Identification of MhPYL4 Involved in Iron-Deficiency Stress in Malus Halliana Koehne. PLANTS (BASEL, SWITZERLAND) 2024; 13:2317. [PMID: 39204753 PMCID: PMC11360065 DOI: 10.3390/plants13162317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
The PYL protein family are crucial sensors of the core signals of abscisic acid (ABA) and significantly influence the plant's response to ABA-mediated abiotic stresses as well as its growth and development. However, research on the role of the MhPYL4 gene in iron (Fe) deficiency in apple trees is limited. Studies have shown that the MhPYL4 gene, when exposed to Fe-deficiency stress, exhibits more rapid transcriptional upregulation than other genes' quickly elevated transcription. However, the precise mechanism by which it alleviates this stress remains unclear. The MhPYL4 gene (ID:103432868), isolated from Malus halliana, was analyzed to elucidate its function. Arabidopsis plants engineered to overexpress the MhPYL4 gene exhibited increased leaf chlorosis and slower growth in response to Fe stress compared to the unmodified controls. The transgenic plants also exhibited elevated levels of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities, as well as ferric chelate reductase (FCR) activities. Levels of malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion (O2-) were increased. In addition, these transgenic plants had lower concentrations of proline (Pro) and Fe2+, which indicated that their stress tolerance was reduced. Similarly, the overexpression of MhPYL4 in apple calli resulted in inhibited growth and increased susceptibility under Fe stress conditions. Physiological evaluations indicated that the overexpression of MhPYL4 in Arabidopsis reduced its Fe stress tolerance by inhibiting chlorophyll synthesis. In apple calli, it altered pH levels, antioxidant enzyme activity, and Fe-reducing capabilities under the same stress conditions. In summary, the elevated expression of the MhPYL4 gene reduced the tolerance of both Arabidopsis and apple calli to Fe stress, suggesting that MhPYL4 acts as a negative regulator in response to Fe deficiency.
Collapse
Affiliation(s)
| | | | | | - Yanxiu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (X.W.); (Z.Z.); (Y.D.)
| |
Collapse
|
10
|
Fernandes P, Pimentel D, Ramiro RS, Silva MDC, Fevereiro P, Costa RL. Dual transcriptomic analysis reveals early induced Castanea defense-related genes and Phytophthora cinnamomi effectors. FRONTIERS IN PLANT SCIENCE 2024; 15:1439380. [PMID: 39188543 PMCID: PMC11345161 DOI: 10.3389/fpls.2024.1439380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 08/28/2024]
Abstract
Phytophthora cinnamomi Rands devastates forest species worldwide, causing significant ecological and economic impacts. The European chestnut (Castanea sativa) is susceptible to this hemibiotrophic oomycete, whereas the Asian chestnuts (Castanea crenata and Castanea mollissima) are resistant and have been successfully used as resistance donors in breeding programs. The molecular mechanisms underlying the different disease outcomes among chestnut species are a key foundation for developing science-based control strategies. However, these are still poorly understood. Dual RNA sequencing was performed in C. sativa and C. crenata roots inoculated with P. cinnamomi. The studied time points represent the pathogen's hemibiotrophic lifestyle previously described at the cellular level. Phytophthora cinnamomi expressed several genes related to pathogenicity in both chestnut species, such as cell wall-degrading enzymes, host nutrient uptake transporters, and effectors. However, the expression of effectors related to the modulation of host programmed cell death (elicitins and NLPs) and sporulation-related genes was higher in the susceptible chestnut. After pathogen inoculation, 1,556 and 488 genes were differentially expressed by C. crenata and C. sativa, respectively. The most significant transcriptional changes occur at 2 h after inoculation (hai) in C. sativa and 48 hai in C. crenata. Nevertheless, C. crenata induced more defense-related genes, indicating that the resistant response to P. cinnamomi is controlled by multiple loci, including several pattern recognition receptors, genes involved in the phenylpropanoid, salicylic acid and ethylene/jasmonic acid pathways, and antifungal genes. Importantly, these results validate previously observed cellular responses for C. crenata. Collectively, this study provides a comprehensive time-resolved description of the chestnut-P. cinnamomi dynamic, revealing new insights into susceptible and resistant host responses and important pathogen strategies involved in disease development.
Collapse
Affiliation(s)
- Patrícia Fernandes
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Diana Pimentel
- InnovPlantProtect Collaborative Laboratory, Elvas, Portugal
| | | | - Maria do Céu Silva
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
- Linking Landscape, Environment, Agriculture and Food, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Fevereiro
- InnovPlantProtect Collaborative Laboratory, Elvas, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB, Green-It Unit), Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Rita Lourenço Costa
- Instituto Nacional de Investigação Agrária e Veterinária I.P., Oeiras, Portugal
- Centro de Estudos Florestais, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
11
|
Moulinier-Anzola J, Schwihla M, Lugsteiner R, Leibrock N, Feraru MI, Tkachenko I, Luschnig C, Arcalis E, Feraru E, Lozano-Juste J, Korbei B. Modulation of abscisic acid signaling via endosomal TOL proteins. THE NEW PHYTOLOGIST 2024; 243:1065-1081. [PMID: 38874374 DOI: 10.1111/nph.19904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
The phytohormone abscisic acid (ABA) functions in the control of plant stress responses, particularly in drought stress. A significant mechanism in attenuating and terminating ABA signals involves regulated protein turnover, with certain ABA receptors, despite their main presence in the cytosol and nucleus, subjected to vacuolar degradation via the Endosomal Sorting Complex Required for Transport (ESCRT) machinery. Collectively our findings show that discrete TOM1-LIKE (TOL) proteins, which are functional ESCRT-0 complex substitutes in plants, affect the trafficking for degradation of core components of the ABA signaling and transport machinery. TOL2,3,5 and 6 modulate ABA signaling where they function additively in degradation of ubiquitinated ABA receptors and transporters. TOLs colocalize with their cargo in different endocytic compartments in the root epidermis and in guard cells of stomata, where they potentially function in ABA-controlled stomatal aperture. Although the tol2/3/5/6 quadruple mutant plant line is significantly more drought-tolerant and has a higher ABA sensitivity than control plant lines, it has no obvious growth or development phenotype under standard conditions, making the TOL genes ideal candidates for engineering to improved plant performance.
Collapse
Affiliation(s)
- Jeanette Moulinier-Anzola
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, BOKU University, Muthgasse 18, 1190, Vienna, Austria
| | - Maximilian Schwihla
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, BOKU University, Muthgasse 18, 1190, Vienna, Austria
| | - Rebecca Lugsteiner
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, BOKU University, Muthgasse 18, 1190, Vienna, Austria
| | - Nils Leibrock
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, BOKU University, Muthgasse 18, 1190, Vienna, Austria
| | - Mugurel I Feraru
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, BOKU University, Muthgasse 18, 1190, Vienna, Austria
- "Gheorghe Rosca Codreanu" National College, Nicolae Balcescu, Barlad, 731183, Vaslui, Romania
| | - Irma Tkachenko
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, BOKU University, Muthgasse 18, 1190, Vienna, Austria
| | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, BOKU University, Muthgasse 18, 1190, Vienna, Austria
| | - Elsa Arcalis
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, BOKU University, Muthgasse 18, 1190, Vienna, Austria
| | - Elena Feraru
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, BOKU University, Muthgasse 18, 1190, Vienna, Austria
| | - Jorge Lozano-Juste
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, 46022, Valencia, Spain
| | - Barbara Korbei
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, BOKU University, Muthgasse 18, 1190, Vienna, Austria
| |
Collapse
|
12
|
Omelyanchuk NA, Lavrekha VV, Bogomolov AG, Dolgikh VA, Sidorenko AD, Zemlyanskaya EV. Computational Reconstruction of the Transcription Factor Regulatory Network Induced by Auxin in Arabidopsis thaliana L. PLANTS (BASEL, SWITZERLAND) 2024; 13:1905. [PMID: 39065433 PMCID: PMC11280061 DOI: 10.3390/plants13141905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
In plant hormone signaling, transcription factor regulatory networks (TFRNs), which link the master transcription factors to the biological processes under their control, remain insufficiently characterized despite their crucial function. Here, we identify a TFRN involved in the response to the key plant hormone auxin and define its impact on auxin-driven biological processes. To reconstruct the TFRN, we developed a three-step procedure, which is based on the integrated analysis of differentially expressed gene lists and a representative collection of transcription factor binding profiles. Its implementation is available as a part of the CisCross web server. With the new method, we distinguished two transcription factor subnetworks. The first operates before auxin treatment and is switched off upon hormone application, the second is switched on by the hormone. Moreover, we characterized the functioning of the auxin-regulated TFRN in control of chlorophyll and lignin biosynthesis, abscisic acid signaling, and ribosome biogenesis.
Collapse
Affiliation(s)
- Nadya A. Omelyanchuk
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
| | - Viktoriya V. Lavrekha
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Anton G. Bogomolov
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
| | - Vladislav A. Dolgikh
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Aleksandra D. Sidorenko
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elena V. Zemlyanskaya
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
13
|
Li YM, Zhang HX, Tang XS, Wang Y, Cai ZH, Li B, Xie ZS. Abscisic Acid Induces DNA Methylation Alteration in Genes Related to Berry Ripening and Stress Response in Grape ( Vitis vinifera L). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15027-15039. [PMID: 38886897 DOI: 10.1021/acs.jafc.4c02303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Abscisic acid (ABA) is a major regulator of nonclimacteric fruit ripening, with its processes involving epigenetic mechanisms. It remains unclear whether DNA methylation is associated with ABA-regulated ripening. In this study, we investigated the patterns of DNA methylation and gene expression following ABA treatment in grape berries by using whole-genome bisulfite sequencing and RNA-sequencing. ABA application changed global DNA methylation in grapes. The hyper-/hypo-differently methylated regions were enriched in defense-related metabolism, degreening processes, or ripening-related metabolic pathways. Many differentially expressed genes showed an alteration in DNA methylation after ABA treatment. Specifically, ten downregulated genes with hypermethylation in promoters were involved in the ripening process, ABA homeostasis/signaling, and stress response. Nine upregulated genes exhibiting hypo-methylation in promoters were related to the ripening process and stress response. These findings demonstrated ABA-induced DNA alteration of ripening related and stress-responsive genes during grape ripening, which provides new insights of the epigenetic regulation of ABA on fruit ripening.
Collapse
Affiliation(s)
- You-Mei Li
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Hong-Xing Zhang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Xuan-Si Tang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Yue Wang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Zhong-Hui Cai
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Bo Li
- Shandong Academy of Grape, Jinan 250000, China
| | - Zhao-Sen Xie
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
14
|
Guo AY, Wu WQ, Bai D, Li Y, Xie J, Guo S, Song CP. Recruitment of HAB1 and SnRK2.2 by C2-domain protein CAR1 in plasma membrane ABA signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:237-251. [PMID: 38597817 DOI: 10.1111/tpj.16757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Plasma membrane (PM)-associated abscisic acid (ABA) signal transduction is an important component of ABA signaling. The C2-domain ABA-related (CAR) proteins have been reported to play a crucial role in recruiting ABA receptor PYR1/PYL/RCAR (PYLs) to the PM. However, the molecular details of the involvement of CAR proteins in membrane-delimited ABA signal transduction remain unclear. For instance, where this response process takes place and whether any additional members besides PYL are taking part in this signaling process. Here, the GUS-tagged materials for all Arabidopsis CAR members were used to comprehensively visualize the extensive expression patterns of the CAR family genes. Based on the representativeness of CAR1 in response to ABA, we determined to use it as a target to study the function of CAR proteins in PM-associated ABA signaling. Single-particle tracking showed that ABA affected the spatiotemporal dynamics of CAR1. The presence of ABA prolonged the dwell time of CAR1 on the membrane and showed faster lateral mobility. Surprisingly, we verified that CAR1 could directly recruit hypersensitive to ABA1 (HAB1) and SNF1-related protein kinase 2.2 (SnRK2.2) to the PM at both the bulk and single-molecule levels. Furthermore, PM localization of CAR1 was demonstrated to be related to membrane microdomains. Collectively, our study revealed that CARs recruited the three main components of ABA signaling to the PM to respond positively to ABA. This study deepens our understanding of ABA signal transduction.
Collapse
Affiliation(s)
- Ai-Yu Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Wen-Qiang Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Di Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yan Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jie Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Sanya Institute of Henan University, Sanya, Hainan, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Sanya Institute of Henan University, Sanya, Hainan, China
| |
Collapse
|
15
|
Li J, Huang Y, Yu X, Wu Q, Man X, Diao Z, You H, Shen J, Cai Y. Identification and Application of CLE Peptides for Drought Resistance in Solanaceae Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38836320 DOI: 10.1021/acs.jafc.4c03684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The CLE (CLAVATA3/Embryo Surrounding Region-related) family, a group of peptides with hormone-like features, plays a pivotal role in plant growth, development, and adaptation to stress. Through homology-based blast analysis of 32 Arabidopsis thaliana CLE peptide sequences, we have identified 5, 14, and 10 CLE family members in Nicotiana tabacum, Capsicum annuum, and Solanum melongena, respectively. Chemical synthesis and functional assays of the peptides led to the discovery that NtCLE3 substantially enhances the drought resistance of these three Solanaceae crops. Our transcriptome, RT-qPCR, and antioxidant enzyme activity data showed that NtCLE3 increased antioxidant capacity and ABA synthesis in tobacco. Moreover, the recombinant protein RPNtCLE3, composed of 6*NtCLE3, preserved the capacity to foster drought resilience and proved to be a promising drought resistance regulator, which presents a more favorable alternative for field applications compared to ABA which degrades rapidly under sunlight exposure. This research unveils the prospective utility of NtCLE3 in enhancing drought tolerance in Solanaceae crops and provides new ideas for the development of novel bioregulators aimed at mitigating drought stress.
Collapse
Affiliation(s)
- Junhao Li
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Yan Huang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Xiaosong Yu
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Qiqi Wu
- Chengdu Lusyno Biotechnology Co., Ltd., Chengdu 610213, PR China
| | - Xiaxia Man
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Zhihong Diao
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Huang You
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Yi Cai
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| |
Collapse
|
16
|
Yang FS, Liu M, Guo X, Xu C, Jiang J, Mu W, Fang D, Xu YC, Zhang FM, Wang YH, Yang T, Chen H, Sahu SK, Li R, Wang G, Wang Q, Xu X, Ge S, Liu H, Guo YL. Signatures of Adaptation and Purifying Selection in Highland Populations of Dasiphora fruticosa. Mol Biol Evol 2024; 41:msae099. [PMID: 38768215 PMCID: PMC11156201 DOI: 10.1093/molbev/msae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
High mountains harbor a considerable proportion of biodiversity, but we know little about how diverse plants adapt to the harsh environment. Here we finished a high-quality genome assembly for Dasiphora fruticosa, an ecologically important plant distributed in the Qinghai-Tibetan Plateau and lowland of the Northern Hemisphere, and resequenced 592 natural individuals to address how this horticulture plant adapts to highland. Demographic analysis revealed D. fruticosa underwent a bottleneck after Naynayxungla Glaciation. Selective sweep analysis of two pairs of lowland and highland populations identified 63 shared genes related to cell wall organization or biogenesis, cellular component organization, and dwarfism, suggesting parallel adaptation to highland habitats. Most importantly, we found that stronger purging of estimated genetic load due to inbreeding in highland populations apparently contributed to their adaptation to the highest mountain. Our results revealed how plants could tolerate the extreme plateau, which could provide potential insights for species conservation and crop breeding.
Collapse
Affiliation(s)
- Fu-Sheng Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
- BGI Research, Wuhan 430074, China
| | - Xing Guo
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
- BGI Research, Wuhan 430074, China
| | - Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Juan Jiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weixue Mu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Dongming Fang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Yong-Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Fu-Min Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Hui Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Yang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Hongyun Chen
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
- BGI Research, Wuhan 430074, China
| | - Ruirui Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Guanlong Wang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Qiang Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Zhang F, Wang C, Yao J, Xing C, Xu K, Zhang Z, Chen Q, Qiao Q, Dong H, Han C, Lin L, Zhang S, Huang X. PbHsfC1a-coordinates ABA biosynthesis and H 2O 2 signalling pathways to improve drought tolerance in Pyrus betulaefolia. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1177-1197. [PMID: 38041554 PMCID: PMC11022796 DOI: 10.1111/pbi.14255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023]
Abstract
Abiotic stresses have had a substantial impact on fruit crop output and quality. Plants have evolved an efficient immune system to combat abiotic stress, which employs reactive oxygen species (ROS) to activate the downstream defence response signals. Although an aquaporin protein encoded by PbPIP1;4 is identified from transcriptome analysis of Pyrus betulaefolia plants under drought treatments, little attention has been paid to the role of PIP and ROS in responding to abiotic stresses in pear plants. In this study, we discovered that overexpression of PbPIP1;4 in pear callus improved tolerance to oxidative and osmotic stresses by reconstructing redox homeostasis and ABA signal pathways. PbPIP1;4 overexpression enhanced the transport of H2O2 into pear and yeast cells. Overexpression of PbPIP1;4 in Arabidopsis plants mitigates the stress effects caused by adding ABA, including stomatal closure and reduction of seed germination and seedling growth. Overexpression of PbPIP1;4 in Arabidopsis plants decreases drought-induced leaf withering. The PbPIP1;4 promoter could be bound and activated by TF PbHsfC1a. Overexpression of PbHsfC1a in Arabidopsis plants rescued the leaf from wilting under drought stress. PbHsfC1a could bind to and activate AtNCED4 and PbNCED4 promoters, but the activation could be inhibited by adding ABA. Besides, PbNCED expression was up-regulated under H2O2 treatment but down-regulated under ABA treatment. In conclusion, this study revealed that PbHsfC1a is a positive regulator of abiotic stress, by targeting PbPIP1;4 and PbNCED4 promoters and activating their expression to mediate redox homeostasis and ABA biosynthesis. It provides valuable information for breeding drought-resistant pear cultivars through gene modification.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Chunmeng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Jia‐Long Yao
- The New Zealand Institute for Plant and Food Research LimitedAucklandNew Zealand
| | - Caihua Xing
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Kang Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Zan Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Qiming Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Qinghai Qiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Huizhen Dong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Chenyang Han
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Likun Lin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Xiaosan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
18
|
Li Y, Tian M, Feng Z, Zhang J, Lu J, Fu X, Ma L, Wei H, Wang H. GhDof1.7, a Dof Transcription Factor, Plays Positive Regulatory Role under Salinity Stress in Upland Cotton. PLANTS (BASEL, SWITZERLAND) 2023; 12:3740. [PMID: 37960096 PMCID: PMC10649836 DOI: 10.3390/plants12213740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
Salt stress is a major abiotic stressor that can severely limit plant growth, distribution, and crop yield. DNA-binding with one finger (Dof) is a plant-specific transcription factor that plays a crucial role in plant growth, development, and stress response. In this study, the function of a Dof transcription factor, GhDof1.7, was investigated in upland cotton. The GhDof1.7 gene has a coding sequence length of 759 base pairs, encoding 252 amino acids, and is mainly expressed in roots, stems, leaves, and inflorescences. Salt and abscisic acid (ABA) treatments significantly induced the expression of GhDof1.7. The presence of GhDof1.7 in Arabidopsis may have resulted in potential improvements in salt tolerance, as suggested by a decrease in H2O2 content and an increase in catalase (CAT) and superoxide dismutase (SOD) activities. The GhDof1.7 protein was found to interact with GhCAR4 (C2-domain ABA-related 4), and the silencing of either GhDof1.7 or GhCAR4 resulted in reduced salt tolerance in cotton plants. These findings demonstrate that GhDof1.7 plays a crucial role in improving the salt tolerance of upland cotton and provide insight into the regulation of abiotic stress response by Dof transcription factors.
Collapse
Affiliation(s)
- Yi Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Miaomiao Tian
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Zhen Feng
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Jingjing Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Jianhua Lu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Xiaokang Fu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Liang Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Hengling Wei
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Hantao Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
19
|
Mulet JM, Porcel R, Yenush L. Modulation of potassium transport to increase abiotic stress tolerance in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5989-6005. [PMID: 37611215 DOI: 10.1093/jxb/erad333] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
Potassium is the major cation responsible for the maintenance of the ionic environment in plant cells. Stable potassium homeostasis is indispensable for virtually all cellular functions, and, concomitantly, viability. Plants must cope with environmental changes such as salt or drought that can alter ionic homeostasis. Potassium fluxes are required to regulate the essential process of transpiration, so a constraint on potassium transport may also affect the plant's response to heat, cold, or oxidative stress. Sequencing data and functional analyses have defined the potassium channels and transporters present in the genomes of different species, so we know most of the proteins directly participating in potassium homeostasis. The still unanswered questions are how these proteins are regulated and the nature of potential cross-talk with other signaling pathways controlling growth, development, and stress responses. As we gain knowledge regarding the molecular mechanisms underlying regulation of potassium homeostasis in plants, we can take advantage of this information to increase the efficiency of potassium transport and generate plants with enhanced tolerance to abiotic stress through genetic engineering or new breeding techniques. Here, we review current knowledge of how modifying genes related to potassium homeostasis in plants affect abiotic stress tolerance at the whole plant level.
Collapse
Affiliation(s)
- Jose M Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Rosa Porcel
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
20
|
Feng CH, Niu MX, Zhao S, Guo S, Yin W, Xia X, Su Y. Aspartyl tRNA-synthetase (AspRS) gene family enhances drought tolerance in poplar through BABA-PtrIBIs-PtrVOZ signaling module. BMC Genomics 2023; 24:473. [PMID: 37605104 PMCID: PMC10441740 DOI: 10.1186/s12864-023-09556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Drought stress is a prevalent abiotic stress that significantly hinders the growth and development of plants. According to studies, β-aminobutyric acid (BABA) can influence the ABA pathway through the AtIBI1 receptor gene to enhance cold resistance in Arabidopsis. However, the Aspartate tRNA-synthetase (AspRS) gene family, which acts as the receptor for BABA, has not yet been investigated in poplar. Particularly, it is uncertain how the AspRS gene family (PtrIBIs)r can resist drought stress after administering various concentrations of BABA to poplar. RESULTS In this study, we have identified 12 AspRS family genes and noted that poplar acquired four PtrIBI pairs through whole genome duplication (WGD). We conducted cis-action element analysis and found a significant number of stress-related action elements on different PtrIBI genes promoters. The expression of most PtrIBI genes was up-regulated under beetle and mechanical damage stresses, indicating their potential role in responding to leaf damage stress. Our results suggest that a 50 mM BABA treatment can alleviate the damage caused by drought stress in plants. Additionally, via transcriptome sequencing, we observed that the partial up-regulation of BABA receptor genes, PtrIBI2/4/6/8/11, in poplars after drought treatment. We hypothesize that poplar responds to drought stress through the BABA-PtrIBIs-PtrVOZ coordinated ABA signaling pathway. Our research provides molecular evidence for understanding how plants respond to drought stress through external application of BABA. CONCLUSIONS In summary, our study conducted genome-wide analysis of the AspRS family of P. trichocarpa and identified 12 PtrIBI genes. We utilized genomics and bioinformatics to determine various characteristics of PtrIBIs such as chromosomal localization, evolutionary tree, gene structure, gene doubling, promoter cis-elements, and expression profiles. Our study found that certain PtrIBI genes are regulated by drought, beetle, and mechanical damage implying their crucial role in enhancing poplar stress tolerance. Additionally, we observed that external application of low concentrations of BABA increased plant drought resistance under drought stress. Through the BABA-PtrIBIs-PtrVOZ signaling module, poplar plants were able to transduce ABA signaling and regulate their response to drought stress. These results suggest that the PtrIBI genes in poplar have the potential to improve drought tolerance in plants through the topical application of low concentrations of BABA.
Collapse
Affiliation(s)
- Cong-Hua Feng
- College of Agronomy, Liaocheng University, Liaocheng, 252000, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Meng-Xue Niu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shilei Zhao
- College of Agronomy, Liaocheng University, Liaocheng, 252000, China
| | - Shangjing Guo
- College of Agronomy, Liaocheng University, Liaocheng, 252000, China
| | - Weilun Yin
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinli Xia
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yanyan Su
- College of Agronomy, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
21
|
Née G, Krüger T. Dry side of the core: a meta-analysis addressing the original nature of the ABA signalosome at the onset of seed imbibition. FRONTIERS IN PLANT SCIENCE 2023; 14:1192652. [PMID: 37476171 PMCID: PMC10354442 DOI: 10.3389/fpls.2023.1192652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023]
Abstract
The timing of seedling emergence is a major agricultural and ecological fitness trait, and seed germination is controlled by a complex molecular network including phytohormone signalling. One such phytohormone, abscisic acid (ABA), controls a large array of stress and developmental processes, and researchers have long known it plays a crucial role in repressing germination. Although the main molecular components of the ABA signalling pathway have now been identified, the molecular mechanisms through which ABA elicits specific responses in distinct organs is still enigmatic. To address the fundamental characteristics of ABA signalling during germination, we performed a meta-analysis focusing on the Arabidopsis dry seed proteome as a reflexion basis. We combined cutting-edge proteome studies, comparative functional analyses, and protein interaction information with genetic and physiological data to redefine the singular composition and operation of the ABA core signalosome from the onset of seed imbibition. In addition, we performed a literature survey to integrate peripheral regulators present in seeds that directly regulate core component function. Although this may only be the tip of the iceberg, this extended model of ABA signalling in seeds already depicts a highly flexible system able to integrate a multitude of information to fine-tune the progression of germination.
Collapse
|
22
|
Cui M, Gupta SK, Bauer P. Role of the plant-specific calcium-binding C2-DOMAIN ABSCISIC ACID-RELATED (CAR) protein family in environmental signaling. Eur J Cell Biol 2023; 102:151322. [PMID: 37211005 DOI: 10.1016/j.ejcb.2023.151322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023] Open
Abstract
Many signaling processes rely on information decoding at the plasma membrane, and membrane-associated proteins and their complexes are fundamental for regulating this process. Still many questions exist as to how protein complexes are assembled and function at membrane sites to change identity and dynamics of membrane systems. Peripheral membrane proteins containing a calcium and phospholipid-binding C2-domain can act in membrane-related signaling by providing a tethering function so that protein complexes form. C2 domain proteins termed C2-DOMAIN ABSCISIC ACID-RELATED (CAR) proteins are plant-specific, and the functional relevance of this C2 domain protein subgroup is just emerging. The ten Arabidopsis CAR proteins CAR1 to CAR10 have a single C2 domain with a plant-specific insertion, the so-called "CAR-extra-signature" or also termed "sig domain". Via this "sig domain" CAR proteins can bind signaling protein complexes of different kinds and act in biotic and abiotic stress, blue light and iron nutrition. Interestingly, CAR proteins can oligomerize in membrane microdomains, and their presence in the nucleus can be linked with nuclear protein regulation. This shows that CAR proteins may play unprecedented roles in coordinating environmental responses and assembling required protein complexes to transmit information cues between plasma membrane and nucleus. The aim of this review is to summarize structure-function characteristics of the CAR protein family and assemble findings from CAR protein interactions and physiological functions. From this comparative investigation we extract common principles about the molecular operations that CAR proteins may fulfill in the cell. We also deduce functional properties of the CAR protein family based on its evolution and gene expression profiles. We highlight open questions and suggest novel avenues to prove and understand the functional networks and roles played by this protein family in plants.
Collapse
Affiliation(s)
- Mingming Cui
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Shishir K Gupta
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany; Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf 40225, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany; Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf 40225, Germany.
| |
Collapse
|
23
|
Mehdi SMM, Szczesniak MW, Ludwików A. The Bro1-like domain-containing protein, AtBro1, modulates growth and abiotic stress responses in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1157435. [PMID: 37251780 PMCID: PMC10213323 DOI: 10.3389/fpls.2023.1157435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/11/2023] [Indexed: 05/31/2023]
Abstract
Abscisic acid (ABA) affects plant physiology by altering gene expression, enabling plants to adapt to a wide range of environments. Plants have evolved protective mechanisms to allow seed germination in harsh conditions. Here, we explore a subset of these mechanisms involving the AtBro1 gene, which encodes one of a small family of poorly characterised Bro1-like domain-containing proteins, in Arabidopsis thaliana plants subjected to multiple abiotic stresses. AtBro1 transcripts were upregulated by salt, ABA and mannitol stress, while AtBro1-overexpression lines demonstrated robust tolerance to drought and salt stress. Furthermore, we found that ABA elicits stress-resistance responses in loss-of-function bro1-1 mutant plants and AtBro1 regulates drought resistance in Arabidopsis. When the AtBro1 promoter was fused to the β-glucuronidase (GUS) gene and introduced into plants, GUS was expressed mainly in rosette leaves and floral clusters, especially in anthers. Using a construct expressing an AtBro1-GFP fusion protein, AtBro1 was found to be localized in the plasma membrane in Arabidopsis protoplasts. A broad RNA-sequencing analysis revealed specific quantitative differences in the early transcriptional responses to ABA treatment between wild-type and loss-of-function bro1-1 mutant plants, suggesting that ABA stimulates stress-resistance responses via AtBro1. Additionally, transcripts levels of MOP9.5, MRD1, HEI10, and MIOX4 were altered in bro1-1 plants exposed to different stress conditions. Collectively, our results show that AtBro1 plays a significant role in the regulation of the plant transcriptional response to ABA and the induction of resistance responses to abiotic stress.
Collapse
Affiliation(s)
- Syed Muhammad Muntazir Mehdi
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Michal Wojciech Szczesniak
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Agnieszka Ludwików
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| |
Collapse
|
24
|
Feng CH, Niu MX, Liu X, Bao Y, Liu S, Liu M, He F, Han S, Liu C, Wang HL, Yin W, Su Y, Xia X. Genome-Wide Analysis of the FBA Subfamily of the Poplar F-Box Gene Family and Its Role under Drought Stress. Int J Mol Sci 2023; 24:4823. [PMID: 36902250 PMCID: PMC10002531 DOI: 10.3390/ijms24054823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
F-box proteins are important components of eukaryotic SCF E3 ubiquitin ligase complexes, which specifically determine protein substrate proteasomal degradation during plant growth and development, as well as biotic and abiotic stress. It has been found that the FBA (F-box associated) protein family is one of the largest subgroups of the widely prevalent F-box family and plays significant roles in plant development and stress response. However, the FBA gene family in poplar has not been systematically studied to date. In this study, a total of 337 F-box candidate genes were discovered based on the fourth-generation genome resequencing of P. trichocarpa. The domain analysis and classification of candidate genes revealed that 74 of these candidate genes belong to the FBA protein family. The poplar F-box genes have undergone multiple gene replication events, particularly in the FBA subfamily, and their evolution can be attributed to genome-wide duplication (WGD) and tandem duplication (TD). In addition, we investigated the P. trichocarpa FBA subfamily using the PlantGenIE database and quantitative real-time PCR (qRT-PCR); the results showed that they are expressed in the cambium, phloem and mature tissues, but rarely expressed in young leaves and flowers. Moreover, they are also widely involved in the drought stress response. At last, we selected and cloned PtrFBA60 for physiological function analysis and found that it played an important role in coping with drought stress. Taken together, the family analysis of FBA genes in P. trichocarpa provides a new opportunity for the identification of P. trichocarpa candidate FBA genes and elucidation of their functions in growth, development and stress response, thus demonstrating their utility in the improvement of P. trichocarpa.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Yanyan Su
- Correspondence: (Y.S.); (X.X.); Tel.: +86-10-62336400 (X.X.)
| | - Xinli Xia
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
25
|
Chen W, Zhou H, Xu F, Yu M, Coego A, Rodriguez L, Lu Y, Xie Q, Fu Q, Chen J, Xu G, Wu D, Li X, Li X, Jaillais Y, Rodriguez PL, Zhu S, Yu F. CAR modulates plasma membrane nano-organization and immune signaling downstream of RALF1-FERONIA signaling pathway. THE NEW PHYTOLOGIST 2023; 237:2148-2162. [PMID: 36527240 DOI: 10.1111/nph.18687] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
In Arabidopsis, the receptor-like kinase (RLK) FERONIA (FER) senses peptide ligands in the plasma membrane (PM), modulates plant growth and development, and integrates biotic and abiotic stress signaling for downstream adaptive responses. However, the molecular interplay of these diverse processes is largely unknown. Here, we show that FER, the receptor of Rapid Alkalinization Factor 1 (RALF1), physically interacts with C2 domain ABA-related (CAR) proteins to control the nano-organization of the PM. During this process, the RALF1-FER pathway upregulates CAR protein translation, and then more CAR proteins are recruited to the PM. This acts as a rapid feedforward loop that stabilizes the PM liquid-ordered phase. FER interacts with and phosphorylates CARs, thereby reducing their lipid-binding ability and breaking the feedback regulation at later time points. The formation of the flg22-induced FLS2-BAK1 immune complex, which depends on the integrity of FER-containing nanodomains, is impaired in fer and pentuple car14569 mutant. Together, we propose that the FER-CAR module controls the formation of PM nano-organization during RALF signaling through a self-contained amplifying loop including both positive and negative feedback.
Collapse
Affiliation(s)
- Weijun Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Huina Zhou
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Fan Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Meng Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Alberto Coego
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, ES-46022, Valencia, Spain
| | - Lesia Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, ES-46022, Valencia, Spain
| | - Yuqing Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Qijun Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Qiong Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Jia Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Guoyun Xu
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Dousheng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Xiushan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Xiaojuan Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, ES-46022, Valencia, Spain
| | - Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| |
Collapse
|
26
|
Li Q, Shen C, Zhang Y, Zhou Y, Niu M, Wang HL, Lian C, Tian Q, Mao W, Wang X, Liu C, Yin W, Xia X. PePYL4 enhances drought tolerance by modulating water-use efficiency and ROS scavenging in Populus. TREE PHYSIOLOGY 2023; 43:102-117. [PMID: 36074523 DOI: 10.1093/treephys/tpac106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Drought is one of the major limiting factors in the growth of terrestrial plants. Abscisic acid (ABA) and pyrabactin resistance 1/prabactin resistance-1 like/regulatory components of ABA receptors (PYR/PYL/RCARs) play a key role in response to drought stress. However, the underlying mechanisms of this control remain largely elusive in trees. In this study, PePYL4, a potential ortholog of the PYR/PYL/RCARs gene, was cloned from Populus euphratica. It was localized in the cytoplasm and nucleus, induced by ABA, osmotic and dehydration treatments. To study the potential biological functions of PePYL4, transgenic triploid white poplars (Populus tomentosa 'YiXianCiZhu B38') overexpressing PePYL4 were generated. PePYL4 overexpression significantly increased ABA sensitivity and reduced stomatal aperture. Compared with wild-type plants, transgenic plants had higher water-use efficiency (WUE) and lower transpiration. When exposed to drought stress, PePYL4 overexpression plants maintained higher photosynthetic activity and accumulated more biomass. Moreover, overexpression of PePYL4 improved antioxidant enzyme activity and ascorbate content to accelerate reactive oxygen species scavenging. Meanwhile, upregulation expression of the stress-related genes also contributed to improving the drought tolerance of transgenic plants. In conclusion, our data suggest that PePYL4 is a promising gene target for regulating WUE and drought tolerance in Populus.
Collapse
Affiliation(s)
- Qing Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chao Shen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yue Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yangyan Zhou
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Mengxue Niu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hou-Ling Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Conglong Lian
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qianqian Tian
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wei Mao
- Salver Academy of Botany, Rizhao 262305, China
| | | | - Chao Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Weilun Yin
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xinli Xia
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
27
|
Wu Q, Yang L, Liang H, Yin L, Chen D, Shen P. Integrated analyses reveal the response of peanut to phosphorus deficiency on phenotype, transcriptome and metabolome. BMC PLANT BIOLOGY 2022; 22:524. [PMID: 36372886 PMCID: PMC9661748 DOI: 10.1186/s12870-022-03867-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Phosphorus (P) is one of the most essential macronutrients for crops. The growth and yield of peanut (Arachis hypogaea L.) are always limited by P deficiency. However, the transcriptional and metabolic regulatory mechanisms were less studied. In this study, valuable phenotype, transcriptome and metabolome data were analyzed to illustrate the regulatory mechanisms of peanut under P deficiency stress. RESULT In present study, two treatments of P level in deficiency with no P application (-P) and in sufficiency with 0.6 mM P application (+ P) were used to investigate the response of peanut on morphology, physiology, transcriptome, microRNAs (miRNAs), and metabolome characterizations. The growth and development of plants were significantly inhibited under -P treatment. A total of 6088 differentially expressed genes (DEGs) were identified including several transcription factor family genes, phosphate transporter genes, hormone metabolism related genes and antioxidant enzyme related genes that highly related to P deficiency stress. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that 117 genes were annotated in the phenylpropanoid biosynthesis pathway under P deficiency stress. A total of 6 miRNAs have been identified significantly differential expression between + P and -P group by high-throughput sequencing of miRNAs, including two up-regulated miRNAs (ahy-miR160-5p and ahy-miR3518) and four down-regulated miRNAs (ahy-miR408-5p, ahy-miR408-3p, ahy-miR398, and ahy-miR3515). Further, the predicted 22 target genes for 6 miRNAs and cis-elements in 2000 bp promoter region of miRNA genes were analyzed. A total of 439 differentially accumulated metabolites (DAMs) showed obviously differences in two experimental conditions. CONCLUSIONS According to the result of transcripome and metabolome analyses, we can draw a conclusion that by increasing the content of lignin, amino acids, and levan combining with decreasing the content of LPC, cell reduced permeability, maintained stability, raised the antioxidant capacity, and increased the P uptake in struggling for survival under P deficiency stress.
Collapse
Affiliation(s)
- Qi Wu
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Liyu Yang
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Haiyan Liang
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Liang Yin
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Dianxu Chen
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Pu Shen
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| |
Collapse
|
28
|
Niu J, Li Z, Zhu J, Wu R, Kong L, Niu T, Li X, Cheng X, Li J, Dai L. Genome-wide identification and characterization of the C2 domain family in Sorghum bicolor (L.) and expression profiles in response to saline-alkali stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1695-1711. [PMID: 36387979 PMCID: PMC9636366 DOI: 10.1007/s12298-022-01222-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
The C2 domain family proteins in plants has been recently shown to be involved in the response to abiotic stress such as salt and drought stress. However, less information on C2 domain family members has been reported in Sorghum bicolor (L.), which is a tolerant cereal crop. To elaborate the mechanism of C2 domain family members in response to abiotic stress, bioinformatic methods were used to analyze this family. The results indicated that 69 C2 domain genes belonging to 5 different groups were first identified within the sorghum genome, and each group possessed various gene structures and conserved functional domains. Second, those C2 family genes were localized on 10 chromosomes 3 tandem repeat genes and 1 pair of repeat gene fragments were detected. The family members further presented a variety of stress responsive cis-elements. Third, in addition to being the major integral component of the membrane, sorghum C2 domain family proteins mainly played roles in response to abiotic and biotic stress with their organic transport and catalytic activity by specific location in the cell on the basis of gene ontology analysis. C2 family genes were differentially expressed in root, shoot or leaf, and shown different expression profiling after saline-alkali stress, which indicated that C2 family members played an important role in response to saline-alkali stress based on the transcription profiles of RNA-seq data and expression analysis by quantitative real-time polymerase chain reaction. Besides, most C2 family members were mainly located in cytoplasmi and nucleus. Weighted gene co-expression network analysis revealed three modules (turquoise, dark magenta and pink) that were associated with stress resistance, respectively. Therefore, the present research provides comprehensive information for further analysis of the molecular function of C2 domain family genes in sorghum. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01222-3.
Collapse
Affiliation(s)
- Jiangshuai Niu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Zhijiang Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, 163319 Heilongjiang Province China
| | - Jiarui Zhu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Rong Wu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Lingxin Kong
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Tingli Niu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Xueying Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Xinran Cheng
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Jianying Li
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing, 163319 Heilongjiang Province China
| | - Lingyan Dai
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| |
Collapse
|
29
|
You C, Li C, Ma M, Tang W, Kou M, Yan H, Song W, Gao R, Wang X, Zhang Y, Li Q. A C2-Domain Abscisic Acid-Related Gene, IbCAR1, Positively Enhances Salt Tolerance in Sweet Potato (Ipomoea batatas (L.) Lam.). Int J Mol Sci 2022; 23:ijms23179680. [PMID: 36077077 PMCID: PMC9456122 DOI: 10.3390/ijms23179680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Plant C2-domain abscisic acid-related (CAR) protein family plays an important role in plant growth, abiotic stress responses, and defense regulation. In this study, we cloned the IbCAR1 by homologous cloning method from the transcriptomic data of Xuzishu8, which is a sweet potato cultivar with dark-purple flesh. This gene was expressed in all tissues of sweet potato, with the highest expression level in leaf tissue, and it could be induced by NaCl and ABA. Subcellular localization analyses indicated that IbCAR1 was localized in the nucleus and plasma membrane. The PI staining experiment revealed the distinctive root cell membrane integrity of overexpressed transgenic lines upon salt stress. Salt stress significantly increased the contents of proline, ABA, and the activity of superoxide dismutase (SOD), whereas the content of malondialdehyde (MDA) was decreased in overexpressed lines. On the contrary, RNA interference plants showed sensitivity to salt stress. Overexpression of IbCAR1 in sweet potatoes could improve the salt tolerance of plants, while the RNAi of IbCAR1 significantly increased sensitivity to salt stress in sweet potatoes. Meanwhile, the genes involved in ABA biosynthesis, stress response, and reactive oxygen species (ROS)-scavenging system were upregulated in overexpressed lines under salt stress. Taken together, these results demonstrated that IbCAR1 plays a positive role in salt tolerance by relying on the ABA signal transduction pathway, activating the ROS-scavenging system in sweet potatoes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Qiang Li
- Correspondence: ; Tel.: +86-0516-8218-9203
| |
Collapse
|
30
|
Belda-Palazón B, Rodriguez PL. Microscopic Imaging of Endosomal Trafficking of ABA Receptors. Methods Mol Biol 2022; 2462:59-69. [PMID: 35152380 DOI: 10.1007/978-1-0716-2156-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The abscisic acid (ABA) is a key hormone for stress tolerance. The balance between growth/development and stress responses is crucial for the optimal course of plant life meaning that plants need to control the timing and extent of ABA pathway activation. In this regard, protein turnover regulation by means of both the ubiquitin-proteasome system (UPS) and non-26S proteasome endomembrane trafficking pathways, plays a critical role in the regulation of ABA signaling activation and deactivation. Over the last few years, the ubiquitination of ABA receptors PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR) at the plasma membrane by the RING between RING fingers (RBR)-type E3 ligase RING FINGER OF SEED LONGEVITY1 (RSL1) triggering their internalization through the clathrin-mediated endocytosis (CME) pathway, followed by their endosomal trafficking and delivery to the vacuole for degradation, was reported. For this process, the direct role of some components of the endosomal sorting complex required for transport (ESCRT) machinery, that is, FYVE DOMAIN-CONTAINING PROTEIN 1 (FYVE1)/FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING 1 (FREE1) and VACUOLAR PROTEIN SORTING23A (VPS23A) members of ESCRT-I complex, and ALG-2 INTERACTING PROTEIN-X (ALIX) associated protein of ESCRT-III, was reported. In this chapter, we will detail two methods for imaging endosomal trafficking of ABA receptor proteins by confocal microscopy: (a) colocalization of GFP-PYL4 (also known as RCAR10) and CLATHRIN LIGHT CHAIN 2 (CLC2)-mOrange in clathrin-coated vesicles in Nicotiana benthamiana leaf cells and (b) localization of GFP-PYL4 into Wortmannin (WM)-enlarged late endosomes in Arabidopsis thaliana root cells.
Collapse
Affiliation(s)
- Borja Belda-Palazón
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal.
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
31
|
Nagar P, Sharma N, Jain M, Sharma G, Prasad M, Mustafiz A. OsPSKR15, a phytosulfokine receptor from rice enhances abscisic acid response and drought stress tolerance. PHYSIOLOGIA PLANTARUM 2022; 174:e13569. [PMID: 34549425 DOI: 10.1111/ppl.13569] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/06/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Abscisic acid (ABA) is a major phytohormone that acts as stimuli and plays an important role in plant growth, development, and environmental stress responses. Membrane-localized receptor-like kinases (RLKs) help to detect extracellular stimuli and activate downstream signaling responses to modulate a variety of biological processes. Phytosulfokine receptor (PSKR), a Leu-rich repeat (LRR)-RLK, has been characterized for its role in growth, development and biotic stress. Here, we observed that OsPSKR15, a rice PSKR, was upregulated by ABA in Oryza sativa. We demonstrated OsPSKR15 is a positive regulator in plant response to ABA. Ectopic expression of OsPSKR15 in Arabidopsis thaliana increased the sensitivity to ABA during germination, growth and stomatal closure. Consistently, the expression of ABA-inducible genes was significantly upregulated in these plants. OsPSKR15 also regulated reactive oxygen species (ROS)-mediated ABA signaling in guard cells, thereby governing stomatal closure. Furthermore, the constitutive expression of OsPSKR15 enhanced drought tolerance by reducing the transpirational water loss in Arabidopsis. We also reported that OsPSKR15 directly interacts with AtPYL9 and its orthologue OsPYL11 of rice through its kinase domain in the plasma membrane and nucleus. Altogether, these results reveal an important role of OsPSKR15 in plant response toward abiotic stress in an ABA-dependent manner.
Collapse
Affiliation(s)
- Preeti Nagar
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Namisha Sharma
- National Institute of Plant Genome Research, New Delhi, India
| | - Muskan Jain
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Gauri Sharma
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India
| | - Ananda Mustafiz
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| |
Collapse
|
32
|
Shanmugam S, Boyett VA, Khodakovskaya M. Enhancement of drought tolerance in rice by silencing of the OsSYT-5 gene. PLoS One 2021; 16:e0258171. [PMID: 34679114 PMCID: PMC8535189 DOI: 10.1371/journal.pone.0258171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/20/2021] [Indexed: 11/19/2022] Open
Abstract
Improvement of drought tolerance of crops is a great challenge in conditions of increasing climate change. This report describes that the silencing of the synaptotagmin-5 (OsSYT-5) gene encoding the rice Ca2+ sensing protein with a C2 domain led to a significant improvement of rice tolerance to water deficit stress. Transgenic lines with suppressed expression of the OsSYT-5 gene exhibited an enhanced photosynthetic rate but reduced stomatal conductance and transpiration during water deficit stress. The abscisic acid (ABA) content under both normal and drought conditions was elevated in the leaves of the transgenic rice as compared to the wild type. The silencing of the OsSYT-5 gene affected the expression of several genes associated with ABA-related stress signaling in the transgenic rice plants. In the water deficit experiment, the transgenic lines with a silenced OsSYT-5 gene exhibited symptoms of drought stress seven days later than the wild type. Transgenic lines with suppressed OsSYT-5 gene expression exhibited higher pollen viability and produced more grains compared to the wild type at both normal and drought stress conditions.
Collapse
Affiliation(s)
- Sudha Shanmugam
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR, United States of America
| | - Virginia Ann Boyett
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR, United States of America
- University of Arkansas Rice Research & Extension Center, Stuttgart, AR, United States of America
| | - Mariya Khodakovskaya
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR, United States of America
- * E-mail:
| |
Collapse
|
33
|
Ambastha V, Matityahu I, Tidhar D, Leshem Y. RabA2b Overexpression Alters the Plasma-Membrane Proteome and Improves Drought Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:738694. [PMID: 34691115 PMCID: PMC8526897 DOI: 10.3389/fpls.2021.738694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/13/2021] [Indexed: 06/07/2023]
Abstract
Rab proteins are small GTPases that are important in the regulation of vesicle trafficking. Through data mining, we identified RabA2b to be stress responsive, though little is known about the involvement of RabA in plant responses to abiotic stresses. Analysis of the RabA2b native promoter showed strong activity during osmotic stress, which required the stress hormone Abscisic acid (ABA) and was restricted to the vasculature. Sequence analysis of the promoter region identified predicted binding motifs for several ABA-responsive transcription factors. We cloned RabA2b and overexpressed it in Arabidopsis. The resulting transgenic plants were strikingly drought resistant. The reduced water loss observed in detached leaves of the transgenic plants could not be explained by stomatal aperture or density, which was similar in all the genotypes. Subcellular localization studies detected strong colocalization between RabA2b and the plasma membrane (PM) marker PIP2. Further studies of the PM showed, for the first time, a distinguished alteration in the PM proteome as a result of RabA2b overexpression. Proteomic analysis of isolated PM fractions showed enrichment of stress-coping proteins as well as cell wall/cuticle modifiers in the transgenic lines. Finally, the cuticle permeability of transgenic leaves was significantly reduced compared to the wild type, suggesting that it plays a role in its drought resistant properties. Overall, these data provide new insights into the roles and modes of action of RabA2b during water stresses, and indicate that increased RabA2b mediated PM trafficking can affect the PM proteome and increase drought tolerance.
Collapse
Affiliation(s)
- Vivek Ambastha
- Department of Plant Sciences, MIGAL – Galilee Research Institute, Kiryat Shmona, Israel
| | - Ifat Matityahu
- Department of Plant Sciences, MIGAL – Galilee Research Institute, Kiryat Shmona, Israel
| | - Dafna Tidhar
- Department of Plant Sciences, MIGAL – Galilee Research Institute, Kiryat Shmona, Israel
- Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| | - Yehoram Leshem
- Department of Plant Sciences, MIGAL – Galilee Research Institute, Kiryat Shmona, Israel
- Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| |
Collapse
|
34
|
Kanwar P, Baby D, Bauer P. Interconnection of iron and osmotic stress signalling in plants: is FIT a regulatory hub to cross-connect abscisic acid responses? PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23 Suppl 1:31-38. [PMID: 33772999 DOI: 10.1111/plb.13261] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Osmotic stresses, such as salinity and drought, have deleterious effects on uptake and translocation of essential mineral nutrients. Iron (Fe) is an important micronutrient that regulates many processes in plants. Plants have adopted various molecular and physiological strategies for Fe acquisition from soil and transport to and within plants. Dynamic Fe signalling in plants tightly regulates Fe uptake and homeostasis. In this way, Fe nutrition is adjusted to growth and stress conditions, and Fe deficiency-regulated transcription factors, such as FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT), act as regulatory hubs in these responses. Here, we review and analyse expression of the various components of the Fe signalling during osmotic stresses. We discuss common players in the Fe and osmotic stress signalling. Furthermore, this review focuses on exploring a novel and exciting direct connection of regulatory mechanisms of Fe intake and acquisition with ABA-mediated environmental stress cues, like salt/drought. We propose a model that discuss how environmental stress affects Fe uptake and acquisition and vice versa at molecular-physiological levels in plants.
Collapse
Affiliation(s)
- P Kanwar
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, Düsseldorf, Germany
| | - D Baby
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, Düsseldorf, Germany
| | - P Bauer
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, Düsseldorf, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
35
|
Chen D, He L, Lin M, Jing Y, Liang C, Liu H, Gao J, Zhang W, Wang M. A ras-related small GTP-binding protein, RabE1c, regulates stomatal movements and drought stress responses by mediating the interaction with ABA receptors. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110858. [PMID: 33775364 DOI: 10.1016/j.plantsci.2021.110858] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/22/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Drought represents a leading constraint over crop productivity worldwide. The plant response to this stress is centered on the behavior of the cell membrane, where the transduction of abscisic acid (ABA) signaling occurs. Here, the Ras-related small GTP-binding protein RabE1c has been shown able to bind to an ABA receptor in the Arabidopsis thaliana plasma membrane, thereby positively regulating ABA signaling. RabE1c is highly induced by drought stress and expressed abundantly in guard cells. In the loss-of-function rabe1c mutant, both stomatal closure and the whole plant drought stress response showed a reduced sensitivity to ABA treatment, demonstrating that RabE1c is involved in the control over transpirative water loss through the stomata. Impairment of RabE1c's function suppressed the accumulation of the ABA receptor PYL4. The over-expression of RabE1c in A. thaliana enhanced the plants' ability to tolerate drought, and a similar phenotypic effect was achieved by constitutively expressing the gene in Chinese cabbage (Brassica rapassp. pekinensis). The leading conclusion was that RabE1c promotes the degradation of PYL4, suggesting a possible genetic strategy to engineer crop plants to better withstand drought stress.
Collapse
Affiliation(s)
- Donghua Chen
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Lilong He
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China; Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Minyan Lin
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Ying Jing
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Chaochao Liang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Huiping Liu
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Jianwei Gao
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Wei Zhang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Mei Wang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
36
|
Li P, Tian J, Guo C, Luo S, Li J. Interaction of gibberellin and other hormones in almond anthers: phenotypic and physiological changes and transcriptomic reprogramming. HORTICULTURE RESEARCH 2021; 8:94. [PMID: 33931608 PMCID: PMC8087710 DOI: 10.1038/s41438-021-00527-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/23/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Low temperature causes anther dysfunction, severe pollen sterility and, ultimately, major yield losses in crop plants. Previous studies have shown that the gibberellic acid (GA) metabolic pathway plays an important role in this process by regulating tapetum function and pollen development. However, the interaction mechanism of GA with other hormones mediating anther development is still unclear. Herein, we collected and analyzed almond (Amygdalus communis L.) anthers at the meiosis, tetrad, 1-nucleus, and mature 2-nucleus stages. The growth rate per 1000 anthers exhibited a significant positive correlation with the total bioactive GA compound content, and the levels of all bioactive GA compounds were highest in the 1-nucleus pollen stage. GA3 treatment experiments indicated that exogenous GA3 increased the levels of indole-3-acetic acid (IAA), trans-zeatin (tZ), and jasmonic acid (JA) and decreased the levels of salicylic acid (SA) and abscisic acid (ABA); moreover, GA3 improved pollen viability and quantities under cold conditions, whereas PP333 (paclobutrazol, an inhibitor of GA biosynthesis) was antagonistic with GA3 in controlling anther development. RNA-seq and qRT-PCR results showed that GA played an important role in anther development by regulating the expression of other phytohormone pathway genes, dehydration-responsive element-binding/C-repeat binding factor (DREB1/CBF)-mediated signaling genes, and anther development pathway genes. Our results reveal the novel finding that GA interacts with other hormones to balance anther development under normal- and low-temperature conditions in almond.
Collapse
Affiliation(s)
- Peng Li
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, 125100, China
| | - Jia Tian
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Changkui Guo
- School of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| | - Shuping Luo
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Jiang Li
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China.
| |
Collapse
|
37
|
Chen S, Li X, Yang C, Yan W, Liu C, Tang X, Gao C. Genome-wide Identification and Characterization of FCS-Like Zinc Finger (FLZ) Family Genes in Maize ( Zea mays) and Functional Analysis of ZmFLZ25 in Plant Abscisic Acid Response. Int J Mol Sci 2021; 22:3529. [PMID: 33805388 PMCID: PMC8037668 DOI: 10.3390/ijms22073529] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 01/20/2023] Open
Abstract
FCS-like zinc finger family proteins (FLZs), a class of plant-specific scaffold of SnRK1 complex, are involved in the regulation of various aspects of plant growth and stress responses. Most information of FLZ family genes was obtained from the studies in Arabidopsis thaliana, whereas little is known about the potential functions of FLZs in crop plants. In this study, 37 maize FLZ (ZmFLZ) genes were identified to be asymmetrically distributed on 10 chromosomes and can be divided into three subfamilies. Protein interaction and subcellular localization assays demonstrated that eight typical ZmFLZs interacted and partially co-localized with ZmKIN10, the catalytic α-subunit of the SnRK1 complex in maize leaf mesophyll cells. Expression profile analysis revealed that several ZmFLZs were differentially expressed across various tissues and actively responded to diverse abiotic stresses. In addition, ectopic overexpression of ZmFLZ25 in Arabidopsis conferred hypersensitivity to exogenous abscisic acid (ABA) and triggered higher expression of ABA-induced genes, pointing to the positive regulatory role of ZmFLZ25 in plant ABA signaling, a scenario further evidenced by the interactions between ZmFLZ25 and ABA receptors. In summary, these data provide the most comprehensive information on FLZ family genes in maize, and shed light on the biological function of ZmFLZ25 in plant ABA signaling.
Collapse
Affiliation(s)
- Shunquan Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.C.); (X.L.); (C.Y.); (W.Y.); (C.L.)
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
| | - Xibao Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.C.); (X.L.); (C.Y.); (W.Y.); (C.L.)
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.C.); (X.L.); (C.Y.); (W.Y.); (C.L.)
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.C.); (X.L.); (C.Y.); (W.Y.); (C.L.)
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
| | - Chuanliang Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.C.); (X.L.); (C.Y.); (W.Y.); (C.L.)
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.C.); (X.L.); (C.Y.); (W.Y.); (C.L.)
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.C.); (X.L.); (C.Y.); (W.Y.); (C.L.)
| |
Collapse
|
38
|
Chen ZF, Ru JN, Sun GZ, Du Y, Chen J, Zhou YB, Chen M, Ma YZ, Xu ZS, Zhang XH. Genomic-Wide Analysis of the PLC Family and Detection of GmPI-PLC7 Responses to Drought and Salt Stresses in Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:631470. [PMID: 33763092 PMCID: PMC7982816 DOI: 10.3389/fpls.2021.631470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/10/2021] [Indexed: 05/12/2023]
Abstract
Phospholipase C (PLC) performs significant functions in a variety of biological processes, including plant growth and development. The PLC family of enzymes principally catalyze the hydrolysis of phospholipids in organisms. This exhaustive exploration of soybean GmPLC members using genome databases resulted in the identification of 15 phosphatidylinositol-specific PLC (GmPI-PLC) and 9 phosphatidylcholine-hydrolyzing PLC (GmNPC) genes. Chromosomal location analysis indicated that GmPLC genes mapped to 10 of the 20 soybean chromosomes. Phylogenetic relationship analysis revealed that GmPLC genes distributed into two groups in soybean, the PI-PLC and NPC groups. The expression patterns and tissue expression analysis showed that GmPLCs were differentially expressed in response to abiotic stresses. GmPI-PLC7 was selected to further explore the role of PLC in soybean response to drought and salt stresses by a series of experiments. Compared with the transgenic empty vector (EV) control lines, over-expression of GmPI-PLC7 (OE) conferred higher drought and salt tolerance in soybean, while the GmPI-PLC7-RNAi (RNAi) lines exhibited the opposite phenotypes. Plant tissue staining and physiological parameters observed from drought- and salt-stressed plants showed that stress increased the contents of chlorophyll, oxygen free radical (O2 -), hydrogen peroxide (H2O2) and NADH oxidase (NOX) to amounts higher than those observed in non-stressed plants. This study provides new insights in the functional analysis of GmPLC genes in response to abiotic stresses.
Collapse
Affiliation(s)
- Zhi-Feng Chen
- College of Life Sciences, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jing-Na Ru
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Guo-Zhong Sun
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yan Du
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Xiao-Hong Zhang
- College of Life Sciences, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| |
Collapse
|
39
|
Juarez-Escobar J, Guerrero-Analco JA, Zamora-Briseño JA, Elizalde-Contreras JM, Bautista-Valle MV, Bojórquez-Velázquez E, Loyola-Vargas VM, Mata-Rosas M, Ruíz-May E. Tissue-specific proteome characterization of avocado seed during postharvest shelf life. J Proteomics 2021; 235:104112. [PMID: 33450407 DOI: 10.1016/j.jprot.2021.104112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/15/2022]
Abstract
Avocado is a nutritious and economically important fruit, generating significant income for exporter countries. Recently, by-products of this fruit such as seeds and peels, have raised interest in different industries. However, the biochemical features of the nutraceutical value of these tissues have not been analyzed using molecular approaches during the postharvest shelf life (PSL). We carried out comparative proteomics using tandem mass tagging (TMT) and synchronous-precursor selection (SPS)-MS3. We analyzed testa, cotyledon, and embryo axes from avocado seeds at detachment from the tree (unripe), and after five (breaker) and ten days (ripe) of PSL. We identified 1968 proteins, from which 933 were specific to the testa, 167 to the embryo axis, and 23 to the cotyledon. The testa had a more dynamic proteome than the other tissues, resembling similar stress responses to those observed in peel tissues, such as down-accumulation of translational machinery, cell wall catabolism and synthesis of secondary metabolites. In contrast, the up-accumulation of the biosynthesis of l-glutamine, L-isoleucine, and l-serine was observed in all tissues. Our study provides the basic biochemical and physiological features of avocado seed during PSL and demonstrates that avocado seed tissues could potentially be used as a costless source of high-value compounds. SIGNIFICANCE: Avocado seed as a fruit by-product is a source of different valuable molecules, including those with nutraceutical properties. During PSL, several biochemical and physiological modifications occur in this dispersal unit, which also includes the alteration of several key metabolites' content. However, the proteome profile associated with different metabolic pathways that regulate the inner content of seed metabolites has not been previously studied. Our tissue-specific proteomics TMT-SPS-MS3-based provides the first evidence of molecular and physiological changes in avocado tissues during PSL delivering fundamental knowledge of this organ. In this vein, the modulation of secondary metabolites, amino acid, and sugar metabolism of avocado tissues during PLS can encourage these by-products exploitation in multiple industries.
Collapse
Affiliation(s)
- Janet Juarez-Escobar
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, CP 91070, Xalapa, Veracruz, Mexico
| | - José A Guerrero-Analco
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, CP 91070, Xalapa, Veracruz, Mexico
| | - Jesús Alejandro Zamora-Briseño
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, CP 91070, Xalapa, Veracruz, Mexico
| | - José M Elizalde-Contreras
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, CP 91070, Xalapa, Veracruz, Mexico
| | - Mirna V Bautista-Valle
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, CP 91070, Xalapa, Veracruz, Mexico
| | - Esaú Bojórquez-Velázquez
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, CP 91070, Xalapa, Veracruz, Mexico
| | - Víctor M Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán (CICY), Mérida, Yucatán, Mexico
| | - Martín Mata-Rosas
- Red de Manejo Biotecnológico de Recursos, Instituto de Ecología A. C., Cluster BioMimic®, Carretera Antigua a Coatepec 351, Congregación el Haya, CP 91070 Xalapa, Veracruz, Mexico
| | - Eliel Ruíz-May
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, CP 91070, Xalapa, Veracruz, Mexico.
| |
Collapse
|
40
|
Wang C, Gao H, Chu Z, Ji C, Xu Y, Cao W, Zhou S, Song Y, Liu H, Zhu C. A nonspecific lipid transfer protein, StLTP10, mediates resistance to Phytophthora infestans in potato. MOLECULAR PLANT PATHOLOGY 2021; 22:48-63. [PMID: 33118686 PMCID: PMC7749752 DOI: 10.1111/mpp.13007] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/09/2020] [Accepted: 09/27/2020] [Indexed: 05/03/2023]
Abstract
Nonspecific lipidtransfer proteins (nsLTPs), which are small, cysteine-rich proteins, belong to the pathogenesis-related protein family, and several of them act as positive regulators during plant disease resistance. However, the underlying molecular mechanisms of these proteins in plant immune responses are unclear. In this study, a typical nsLTP gene, StLTP10, was identified and functionally analysed in potato. StLTP10 expression was significantly induced by Phytophthora infestans, which causes late blight in potato, and defence-related phytohormones, including abscisic acid (ABA), salicylic acid, and jasmonic acid. Characterization of StLTP10-overexpressing and knockdown lines indicated that StLTP10 positively regulates plant resistance to P. infestans. This resistance was coupled with enhanced expression of reactive oxygen species scavenging- and defence-related genes. Furthermore, we identified that StLTP10 physically interacts with ABA receptor PYL4 and affects its subcellular localization. These two proteins work together to regulate stomatal closure during pathogen infection. Interestingly, we also found that wound-induced protein kinase interacts with StLTP10 and positively regulates its protein abundance. Taken together, our results provide insight into the role of StLTP10 in resistance to P. infestans and suggest candidates to enhance broad-spectrum resistance to pathogens in potato.
Collapse
Affiliation(s)
- Chenchen Wang
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTai’an, ShandongChina
| | - Hongjuan Gao
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTai’an, ShandongChina
| | - Zhaohui Chu
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTai’an, ShandongChina
| | - Changquan Ji
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTai’an, ShandongChina
| | - Yang Xu
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTai’an, ShandongChina
| | - Weilin Cao
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTai’an, ShandongChina
| | - Shumei Zhou
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTai’an, ShandongChina
| | - Yunzhi Song
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTai’an, ShandongChina
| | - Hongmei Liu
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTai’an, ShandongChina
| | - Changxiang Zhu
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTai’an, ShandongChina
| |
Collapse
|
41
|
Xiong T, Tan Q, Li S, Mazars C, Galaud JP, Zhu X. Interactions between calcium and ABA signaling pathways in the regulation of fruit ripening. JOURNAL OF PLANT PHYSIOLOGY 2021; 256:153309. [PMID: 33197829 DOI: 10.1016/j.jplph.2020.153309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 05/18/2023]
Abstract
Fruit ripening and senescence are finely controlled by plant hormones such as ethylene and abscisic acid (ABA) but also by calcium ions and by calcium-dependent signaling pathways. Although there are extensive data supporting an interaction between ethylene and calcium in fruit ripening, the regulatory mechanisms resulting from the interaction between ABA and calcium have not yet been fully clarified. In this article, we have reviewed the full roles of calcium and its sensors (CaM, CMLs, CDPKs, CBLs) as well as ABA and the interactions between the two signaling pathways in the regulation of stress responses and in fruit ripening. To illustrate the possible interaction between calcium sensors and ABA signaling components in the control of fruit ripening, we propose an interaction model between the calcium and ABA signaling pathways.
Collapse
Affiliation(s)
- Tiantian Xiong
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Qinqin Tan
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Shaoshan Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chiristian Mazars
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24, chemin de Borde-Rouge, Auzeville, 31320, Castanet-Tolosan, France
| | - Jean-Philippe Galaud
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24, chemin de Borde-Rouge, Auzeville, 31320, Castanet-Tolosan, France.
| | - Xiaoyang Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
42
|
Zorin EA, Afonin AM, Kulaeva OA, Gribchenko ES, Shtark OY, Zhukov VA. Transcriptome Analysis of Alternative Splicing Events Induced by Arbuscular Mycorrhizal Fungi ( Rhizophagus irregularis) in Pea ( Pisum sativum L.) Roots. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1700. [PMID: 33287282 PMCID: PMC7761762 DOI: 10.3390/plants9121700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 11/16/2022]
Abstract
Alternative splicing (AS), a process that enables formation of different mRNA isoforms due to alternative ways of pre-mRNA processing, is one of the mechanisms for fine-tuning gene expression. Currently, the role of AS in symbioses formed by plants with soil microorganisms is not fully understood. In this work, a comprehensive analysis of the transcriptome of garden pea (Pisum sativum L.) roots in symbiosis with arbuscular mycorrhiza was performed using RNAseq and following bioinformatic analysis. AS profiles of mycorrhizal and control roots were highly similar, intron retention accounting for a large proportion of the observed AS types (67%). Using three different tools (SUPPA2, DRIMSeq and IsoformSwitchAnalyzeR), eight genes with AS events specific for mycorrhizal roots of pea were identified, among which four were annotated as encoding an apoptosis inhibitor protein, a serine/threonine-protein kinase, a dehydrodolichyl diphosphate synthase, and a pre-mRNA-splicing factor ATP-dependent RNA helicase DEAH1. In pea mycorrhizal roots, the isoforms of these four genes with preliminary stop codons leading to a truncated ORFs were up-regulated. Interestingly, two of these four genes demonstrating mycorrhiza-specific AS are related to the process of splicing, thus forming parts of the feedback loops involved in fine-tuning of gene expression during mycorrhization.
Collapse
Affiliation(s)
| | | | | | | | | | - Vladimir A. Zhukov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (E.A.Z.); (A.M.A.); (O.A.K.); (E.S.G.); (O.Y.S.)
| |
Collapse
|
43
|
Mateo de Arias M, Gao L, Sherwood DA, Dwivedi KK, Price BJ, Jamison M, Kowallis BM, Carman JG. Whether Gametophytes are Reduced or Unreduced in Angiosperms Might Be Determined Metabolically. Genes (Basel) 2020; 11:genes11121449. [PMID: 33276690 PMCID: PMC7761559 DOI: 10.3390/genes11121449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
In angiosperms, meiotic failure coupled with the formation of genetically unreduced gametophytes in ovules (apomeiosis) constitute major components of gametophytic apomixis. These aberrant developmental events are generally thought to be caused by mutation. However, efforts to locate the responsible mutations have failed. Herein, we tested a fundamentally different hypothesis: apomeiosis is a polyphenism of meiosis, with meiosis and apomeiosis being maintained by different states of metabolic homeostasis. Microarray analyses of ovules and pistils were used to differentiate meiotic from apomeiotic processes in Boechera (Brassicaceae). Genes associated with translation, cell division, epigenetic silencing, flowering, and meiosis characterized sexual Boechera (meiotic). In contrast, genes associated with stress responses, abscisic acid signaling, reactive oxygen species production, and stress attenuation mechanisms characterized apomictic Boechera (apomeiotic). We next tested whether these metabolic differences regulate reproductive mode. Apomeiosis switched to meiosis when premeiotic ovules of apomicts were cultured on media that increased oxidative stress. These treatments included drought, starvation, and H2O2 applications. In contrast, meiosis switched to apomeiosis when premeiotic pistils of sexual plants were cultured on media that relieved oxidative stress. These treatments included antioxidants, glucose, abscisic acid, fluridone, and 5-azacytidine. High-frequency apomeiosis was initiated in all sexual species tested: Brassicaceae, Boechera stricta, Boechera exilis, and Arabidopsis thaliana; Fabaceae, Vigna unguiculata; Asteraceae, Antennaria dioica. Unreduced gametophytes formed from ameiotic female and male sporocytes, first division restitution dyads, and nucellar cells. These results are consistent with modes of reproduction and types of apomixis, in natural apomicts, being regulated metabolically.
Collapse
Affiliation(s)
- Mayelyn Mateo de Arias
- Plants, Soils, and Climate Department, Utah State University, Logan, UT 84322-4820, USA; (M.M.d.A.); (L.G.); (D.A.S.); (B.J.P.)
- Instituto Tecnológico de Santo Domingo, 10103 Santo Domingo, Dominican Republic
| | - Lei Gao
- Plants, Soils, and Climate Department, Utah State University, Logan, UT 84322-4820, USA; (M.M.d.A.); (L.G.); (D.A.S.); (B.J.P.)
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang 332000, China
| | - David A. Sherwood
- Plants, Soils, and Climate Department, Utah State University, Logan, UT 84322-4820, USA; (M.M.d.A.); (L.G.); (D.A.S.); (B.J.P.)
- Sherwood Pet Health, Logan, UT 84321, USA
| | - Krishna K. Dwivedi
- Caisson Laboratories, Inc., Smithfield, UT 84335, USA; (K.K.D.); (M.J.); (B.M.K.)
- Crop Improvement Division, Indian Grassland and Fodder Research Institute, 284003 Jhansi, India
| | - Bo J. Price
- Plants, Soils, and Climate Department, Utah State University, Logan, UT 84322-4820, USA; (M.M.d.A.); (L.G.); (D.A.S.); (B.J.P.)
- Molecular Biology Program, University of Utah, Salt Lake City, UT 84112-5750, USA
| | - Michelle Jamison
- Caisson Laboratories, Inc., Smithfield, UT 84335, USA; (K.K.D.); (M.J.); (B.M.K.)
- Wescor, Inc. An Elitech Company, Logan, UT 84321, USA
| | - Becky M. Kowallis
- Caisson Laboratories, Inc., Smithfield, UT 84335, USA; (K.K.D.); (M.J.); (B.M.K.)
- Cytiva, Inc., Logan, UT 84321, USA
| | - John G. Carman
- Plants, Soils, and Climate Department, Utah State University, Logan, UT 84322-4820, USA; (M.M.d.A.); (L.G.); (D.A.S.); (B.J.P.)
- Correspondence: ; Tel.: +1-435-512-4913
| |
Collapse
|
44
|
Berková V, Kameniarová M, Ondrisková V, Berka M, Menšíková S, Kopecká R, Luklová M, Novák J, Spíchal L, Rashotte AM, Brzobohatý B, Černý M. Arabidopsis Response to Inhibitor of Cytokinin Degradation INCYDE: Modulations of Cytokinin Signaling and Plant Proteome. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1563. [PMID: 33202776 PMCID: PMC7698199 DOI: 10.3390/plants9111563] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022]
Abstract
Cytokinins are multifaceted plant hormones that play crucial roles in plant interactions with the environment. Modulations in cytokinin metabolism and signaling have been successfully used for elevating plant tolerance to biotic and abiotic stressors. Here, we analyzed Arabidopsis thaliana response to INhibitor of CYtokinin DEgradation (INCYDE), a potent inhibitor of cytokinin dehydrogenase. We found that at low nanomolar concentration, the effect of INCYCE on seedling growth and development was not significantly different from that of trans-Zeatin treatment. However, an alteration in the spatial distribution of cytokinin signaling was found at low micromolar concentrations, and proteomics analysis revealed a significant impact on the molecular level. An in-depth proteome analysis of an early (24 h) response and a dose-dependent response after 168 h highlighted the effects on primary and secondary metabolism, including alterations in ribosomal subunits, RNA metabolism, modulations of proteins associated with chromatin, and the flavonoid and phenylpropanoid biosynthetic pathway. The observed attenuation in stress-response mechanisms, including abscisic acid signaling and the metabolism of jasmonates, could explain previously reported positive effects of INCYDE under mild stress conditions.
Collapse
Affiliation(s)
- Veronika Berková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (V.B.); (M.K.); (V.O.); (M.B.); (S.M.); (R.K.); (M.L.); (J.N.); (B.B.)
| | - Michaela Kameniarová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (V.B.); (M.K.); (V.O.); (M.B.); (S.M.); (R.K.); (M.L.); (J.N.); (B.B.)
| | - Vladěna Ondrisková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (V.B.); (M.K.); (V.O.); (M.B.); (S.M.); (R.K.); (M.L.); (J.N.); (B.B.)
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (V.B.); (M.K.); (V.O.); (M.B.); (S.M.); (R.K.); (M.L.); (J.N.); (B.B.)
| | - Simona Menšíková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (V.B.); (M.K.); (V.O.); (M.B.); (S.M.); (R.K.); (M.L.); (J.N.); (B.B.)
| | - Romana Kopecká
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (V.B.); (M.K.); (V.O.); (M.B.); (S.M.); (R.K.); (M.L.); (J.N.); (B.B.)
| | - Markéta Luklová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (V.B.); (M.K.); (V.O.); (M.B.); (S.M.); (R.K.); (M.L.); (J.N.); (B.B.)
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (V.B.); (M.K.); (V.O.); (M.B.); (S.M.); (R.K.); (M.L.); (J.N.); (B.B.)
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 77200 Olomouc, Czech Republic;
| | - Aaron M. Rashotte
- Department of Biological Sciences, Auburn University, Auburn, AL 811, USA;
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (V.B.); (M.K.); (V.O.); (M.B.); (S.M.); (R.K.); (M.L.); (J.N.); (B.B.)
- Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (V.B.); (M.K.); (V.O.); (M.B.); (S.M.); (R.K.); (M.L.); (J.N.); (B.B.)
| |
Collapse
|
45
|
Yu C, Dou K, Wang S, Wu Q, Ni M, Zhang T, Lu Z, Tang J, Chen J. Elicitor hydrophobin Hyd1 interacts with Ubiquilin1-like to induce maize systemic resistance. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:509-526. [PMID: 30803127 DOI: 10.1111/jipb.12796] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Trichoderma harzianum is a plant-beneficial fungus that secretes small cysteine-rich proteins that induce plant defense responses; however, the molecular mechanism involved in this induction is largely unknown. Here, we report that the class II hydrophobin ThHyd1 acts as an elicitor of induced systemic resistance (ISR) in plants. Immunogold labeling and immunofluorescence revealed ThHyd1 localized on maize (Zea mays) root cell plasma membranes. To identify host plant protein interactors of Hyd1, we screened a maize B73 root cDNA library. ThHyd1 interacted directly with ubiquilin 1-like (UBL). Furthermore, the N-terminal fragment of UBL was primarily responsible for binding with Hyd1 and the eight-cysteine amino acid of Hyd1 participated in the protein-protein interactions. Hyd1 from T. harzianum (Thhyd1) and ubl from maize were co-expressed in Arabidopsis thaliana, they synergistically promoted plant resistance against Botrytis cinerea. RNA-sequencing analysis of global gene expression in maize leaves 24 h after spraying with Curvularia lunata spore suspension showed that Thhyd1-induced systemic resistance was primarily associated with brassinosteroid signaling, likely mediated through BAK1. Jasmonate/ethylene (JA/ET) signaling was also involved to some extent in this response. Our results suggest that the Hyd1-UBL axis might play a key role in inducing systemic resistance as a result of Trichoderma-plant interactions.
Collapse
Affiliation(s)
- Chuanjin Yu
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kai Dou
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaoqing Wang
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiong Wu
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mi Ni
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tailong Zhang
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhixiang Lu
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Tang
- School of Life Science, Fuyang Normal University, Fuyang, 236037, China
| | - Jie Chen
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
46
|
Rao S, Tian Y, Xia X, Li Y, Chen J. Chromosome doubling mediates superior drought tolerance in Lycium ruthenicum via abscisic acid signaling. HORTICULTURE RESEARCH 2020; 7:40. [PMID: 32257226 PMCID: PMC7109118 DOI: 10.1038/s41438-020-0260-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/19/2020] [Accepted: 01/26/2020] [Indexed: 05/05/2023]
Abstract
Plants are continuously affected by unfavorable external stimuli, which influences their productivity and growth. Differences in gene composition and expression patterns lead homologous polyploid plants to exhibit different physiological phenomena, among which enhanced environmental adaptability is a powerful phenotype conferred by polyploidization. The mechanisms underlying the differences in stress tolerance between diploids and autotetraploids at the molecular level remain unclear. In this research, a full-length transcription profile obtained via the single-molecule real-time (SMRT) sequencing of high-quality single RNA molecules for use as background was combined with next-generation transcriptome and proteome technologies to probe the variation in the molecular mechanisms of autotetraploids. Tetraploids exhibited an increase in ABA content of 78.4% under natural conditions and a superior stress-resistance phenotype under severe drought stress compared with diploids. The substantial differences in the transcriptome profiles observed between diploids and autotetraploids under normal growth conditions were mainly related to ABA biosynthesis and signal transduction pathways, and 9-cis-epoxycarotenoid dioxygenase 1 (NCED1) and NCED2, which encode key synthetic enzymes, were significantly upregulated. The increased expression of the ABRE-binding factor 5-like (ABF5-like) gene was a pivotal factor in promoting the activation of the ABA signaling pathway and downstream target genes. In addition, ABA strongly induced the expression of osmotic proteins to increase the stress tolerance of the plants at the translational level. We consider the intrinsic mechanisms by which ABA affects drought resistance in tetraploids and diploids to understand the physiological and molecular mechanisms that enhance abiotic stress tolerance in polyploid plants.
Collapse
Affiliation(s)
- Shupei Rao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083 Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, 100083 Beijing, China
| | - Yuru Tian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083 Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, 100083 Beijing, China
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083 Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, 100083 Beijing, China
| | - Yue Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083 Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, 100083 Beijing, China
| | - Jinhuan Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083 Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, 100083 Beijing, China
| |
Collapse
|
47
|
Fernandez MA, Belda-Palazon B, Julian J, Coego A, Lozano-Juste J, Iñigo S, Rodriguez L, Bueso E, Goossens A, Rodriguez PL. RBR-Type E3 Ligases and the Ubiquitin-Conjugating Enzyme UBC26 Regulate Abscisic Acid Receptor Levels and Signaling. PLANT PHYSIOLOGY 2020; 182:1723-1742. [PMID: 31699847 PMCID: PMC7140949 DOI: 10.1104/pp.19.00898] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/21/2019] [Indexed: 05/06/2023]
Abstract
The turnover of abscisic acid (ABA) signaling core components modulates the plant's response to ABA and is regulated by ubiquitination. We show that Arabidopsis (Arabidopsis thaliana) RING Finger ABA-Related1 (RFA1) and RFA4 E3 ubiquitin ligases, members of the RING between RING fingers (RBR)-type RSL1/RFA family, are key regulators of ABA receptor stability in root and leaf tissues, targeting ABA receptors for degradation in different subcellular locations. RFA1 is localized both in the nucleus and cytosol, whereas RFA4 shows specific nuclear localization and promotes nuclear degradation of ABA receptors. Therefore, members of the RSL1/RFA family interact with ABA receptors at plasma membrane, cytosol, and nucleus, targeting them for degradation via the endosomal/vacuolar RSL1-dependent pathway or 26S proteasome. Additionally, we provide insight into the physiological function of the relatively unexplored plant RBR-type E3 ligases, and through mutagenesis and biochemical assays we identified cysteine-361 in RFA4 as the putative active site cysteine, which is a distinctive feature of RBR-type E3 ligases. Endogenous levels of PYR1 and PYL4 ABA receptors were higher in the rfa1 rfa4 double mutant than in wild-type plants. UBC26 was identified as the cognate nuclear E2 enzyme that interacts with the RFA4 E3 ligase and forms UBC26-RFA4-receptor complexes in nuclear speckles. Loss-of-function ubc26 alleles and the rfa1 rfa4 double mutant showed enhanced sensitivity to ABA and accumulation of ABA receptors compared with the wild type. Together, our results reveal a sophisticated mechanism by which ABA receptors are targeted by ubiquitin at different subcellular locations, in which the complexity of the ABA receptor family is mirrored in the partner RBR-type E3 ligases.
Collapse
Affiliation(s)
- Maria Angeles Fernandez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Uiversidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Borja Belda-Palazon
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Uiversidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Jose Julian
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Uiversidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Alberto Coego
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Uiversidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Jorge Lozano-Juste
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Uiversidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Sabrina Iñigo
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Lesia Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Uiversidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Eduardo Bueso
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Uiversidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Uiversidad Politécnica de Valencia, 46022 Valencia, Spain
| |
Collapse
|
48
|
Gong Z, Xiong L, Shi H, Yang S, Herrera-Estrella LR, Xu G, Chao DY, Li J, Wang PY, Qin F, Li J, Ding Y, Shi Y, Wang Y, Yang Y, Guo Y, Zhu JK. Plant abiotic stress response and nutrient use efficiency. SCIENCE CHINA-LIFE SCIENCES 2020; 63:635-674. [PMID: 32246404 DOI: 10.1007/s11427-020-1683-x] [Citation(s) in RCA: 582] [Impact Index Per Article: 116.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/17/2020] [Indexed: 12/15/2022]
Abstract
Abiotic stresses and soil nutrient limitations are major environmental conditions that reduce plant growth, productivity and quality. Plants have evolved mechanisms to perceive these environmental challenges, transmit the stress signals within cells as well as between cells and tissues, and make appropriate adjustments in their growth and development in order to survive and reproduce. In recent years, significant progress has been made on many fronts of the stress signaling research, particularly in understanding the downstream signaling events that culminate at the activation of stress- and nutrient limitation-responsive genes, cellular ion homeostasis, and growth adjustment. However, the revelation of the early events of stress signaling, particularly the identification of primary stress sensors, still lags behind. In this review, we summarize recent work on the genetic and molecular mechanisms of plant abiotic stress and nutrient limitation sensing and signaling and discuss new directions for future studies.
Collapse
Affiliation(s)
- Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Liming Xiong
- Department of Biology, Hong Kong Baptist University, Kowlong Tong, Hong Kong, China
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Luis R Herrera-Estrella
- Plant and Soil Science Department (IGCAST), Texas Tech University, Lubbock, TX, 79409, USA.,Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, Irapuato, 36610, México.,College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guohua Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dai-Yin Chao
- National Key laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jingrui Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Peng-Yun Wang
- School of Life Science, Henan University, Kaifeng, 457000, China
| | - Feng Qin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jijang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yu Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
49
|
PfCERLI1 is a conserved rhoptry associated protein essential for Plasmodium falciparum merozoite invasion of erythrocytes. Nat Commun 2020; 11:1411. [PMID: 32179747 PMCID: PMC7075938 DOI: 10.1038/s41467-020-15127-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 02/15/2020] [Indexed: 12/01/2022] Open
Abstract
The disease-causing blood-stage of the Plasmodium falciparum lifecycle begins with invasion of human erythrocytes by merozoites. Many vaccine candidates with key roles in binding to the erythrocyte surface and entry are secreted from the large bulb-like rhoptry organelles at the apical tip of the merozoite. Here we identify an essential role for the conserved protein P. falciparum Cytosolically Exposed Rhoptry Leaflet Interacting protein 1 (PfCERLI1) in rhoptry function. We show that PfCERLI1 localises to the cytosolic face of the rhoptry bulb membrane and knockdown of PfCERLI1 inhibits merozoite invasion. While schizogony and merozoite organelle biogenesis appear normal, biochemical techniques and semi-quantitative super-resolution microscopy show that PfCERLI1 knockdown prevents secretion of key rhoptry antigens that coordinate merozoite invasion. PfCERLI1 is a rhoptry associated protein identified to have a direct role in function of this essential merozoite invasion organelle, which has broader implications for understanding apicomplexan invasion biology. Rhoptries are essential organelles for invasion of erythrocytes by Plasmodium. Here, the authors characterize the rhoptry-associated protein CERLI1 using quantitative super-resolution microscopy, showing that it is important for parasite invasion and secretion of rhoptry proteins including vaccine antigens.
Collapse
|
50
|
Lai Y, Zhang D, Wang J, Wang J, Ren P, Yao L, Si E, Kong Y, Wang H. Integrative Transcriptomic and Proteomic Analyses of Molecular Mechanism Responding to Salt Stress during Seed Germination in Hulless Barley. Int J Mol Sci 2020; 21:ijms21010359. [PMID: 31935789 PMCID: PMC6981547 DOI: 10.3390/ijms21010359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
Hulless barley (Hordeum vulgare L. var. nudum) is one of the most important crops in the Qinghai-Tibet Plateau. Soil salinity seriously affects its cultivation. To investigate the mechanism of salt stress response during seed germination, two contrasting hulless barley genotypes were selected to first investigate the molecular mechanism of seed salinity response during the germination stage using RNA-sequencing and isobaric tags for relative and absolute quantitation technologies. Compared to the salt-sensitive landrace lk621, the salt-tolerant one lk573 germinated normally under salt stress. The changes in hormone contents also differed between lk621 and lk573. In lk573, 1597 differentially expressed genes (DEGs) and 171 differentially expressed proteins (DEPs) were specifically detected at 4 h after salt stress, and correspondingly, 2748 and 328 specifically detected at 16 h. Most specific DEGs in lk573 were involved in response to oxidative stress, biosynthetic process, protein localization, and vesicle-mediated transport, and most specific DEPs were assigned to an oxidation-reduction process, carbohydrate metabolic process, and protein phosphorylation. There were 96 genes specifically differentially expressed at both transcriptomic and proteomic levels in lk573. These results revealed the molecular mechanism of salt tolerance and provided candidate genes for further study and salt-tolerant improvement in hulless barley.
Collapse
Affiliation(s)
- Yong Lai
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Y.L.); (D.Z.)
| | - Dangquan Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Y.L.); (D.Z.)
| | - Jinmin Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Juncheng Wang
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou 730070, China
| | - Panrong Ren
- Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lirong Yao
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou 730070, China
| | - Erjing Si
- Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Yuhua Kong
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Y.L.); (D.Z.)
- Correspondence: (Y.K.); (H.W.)
| | - Huajun Wang
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Correspondence: (Y.K.); (H.W.)
| |
Collapse
|