1
|
Yang S, Wang Y, Wan S, Zhang C, Liao S, Chen M, Lan X, Liao Z, Zeng L. Genome-Wide Analysis of the Metallocarboxypeptidase Inhibitor Family Reveals That AbMCPI8 Affects Root Development and Tropane Alkaloid Production in Atropa belladonna. Int J Mol Sci 2024; 25:13729. [PMID: 39769489 PMCID: PMC11676366 DOI: 10.3390/ijms252413729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Atropa belladonna is a medicinal plant and an important source for the commercial production of tropane alkaloids (TAs), such as scopolamine and hyoscyamine, which are used clinically for their anticholinergic properties. In this study, we identified 16 metallocarboxypeptidase inhibitor (MCPI) genes from A. belladonna (AbMCPIs), which are grouped into three subgroups based on phylogenetic relationships and are distributed across 10 chromosomes. Promoter analysis showed that most cis-regulatory elements were related to defense and stress responses, such as drought, low-temperature, ABA (abscisic acid), GA (gibberellin), auxin, light and MeJA responsiveness. A gene encoding a putative metallocarboxypeptidase inhibitor (AbMCPI8) is cloned from A. belladonna and characterized. AbMCPI8 shows similar tissue expression pattern to TA biosynthesis genes such as AbPMT, AbAT4, AbTRI, etc., with exclusive expression in the roots. When AbMCPI8 is silenced by virus-induced gene silencing (VIGS), the root growth is markedly inhibited and the production of hyoscyamine and scopolamine is significantly reduced. Our findings indicate a positive role of AbMCPI8 in root development, which could positively affect TA production in A. belladonna.
Collapse
Affiliation(s)
- Shengyu Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China; (S.Y.); (Y.W.); (S.W.); (C.Z.); (S.L.); (Z.L.)
| | - Yi Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China; (S.Y.); (Y.W.); (S.W.); (C.Z.); (S.L.); (Z.L.)
| | - Shiyu Wan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China; (S.Y.); (Y.W.); (S.W.); (C.Z.); (S.L.); (Z.L.)
| | - Can Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China; (S.Y.); (Y.W.); (S.W.); (C.Z.); (S.L.); (Z.L.)
| | - Siyuan Liao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China; (S.Y.); (Y.W.); (S.W.); (C.Z.); (S.L.); (Z.L.)
| | - Min Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China;
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant Joint R&D Centre, Key Laboratory of Tibetan Medicine Resources Conservation and Utilization of Tibet Autonomous Region, Xizang Agriculture and Animal Husbandry University, Nyingchi 860000, China;
| | - Zhihua Liao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China; (S.Y.); (Y.W.); (S.W.); (C.Z.); (S.L.); (Z.L.)
| | - Lingjiang Zeng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China; (S.Y.); (Y.W.); (S.W.); (C.Z.); (S.L.); (Z.L.)
| |
Collapse
|
2
|
Liu X, Yang M, Zhu J, Zeng J, Qiu F, Zeng L, Yang C, Zhang H, Lan X, Chen M, Liao Z, Zhao T. Functional divergence of two arginine decarboxylase genes in tropane alkaloid biosynthesis and root growth in Atropa belladonna. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108439. [PMID: 38408396 DOI: 10.1016/j.plaphy.2024.108439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/21/2023] [Accepted: 02/13/2024] [Indexed: 02/28/2024]
Abstract
Putrescine, produced via the arginine decarboxylase (ADC)/ornithine decarboxylase (ODC)-mediated pathway, is an initial precursor for polyamines metabolism and the root-specific biosynthesis of medicinal tropane alkaloids (TAs). These alkaloids are widely used as muscarinic acetylcholine antagonists in clinics. Although the functions of ODC in biosynthesis of polyamines and TAs have been well investigated, the role of ADC is still poorly understood. In this study, enzyme inhibitor treatment showed that ADC was involved in the biosynthesis of putrescine-derived metabolites and root growth in Atropa belladonna. Further analysis found that there were six ADC unigenes in the A. belladonna transcriptome, with two of them, AbADC1 and AbADC2, exhibiting high expression in the roots. To investigate their roles in TAs/polyamines metabolism and root growth, RNA interference (RNAi) was used to suppress either AbADC1 or AbADC2 expression in A. belladonna hairy roots. Suppression of the AbADC1 expression resulted in a significant reduction in the putrescine content and hairy root biomass. However, it had no noticeable effect on the levels of N-methylputrescine and the TAs hyoscyamine, anisodamine, and scopolamine. On the other hand, suppression of AbADC2 expression markedly reduced the levels of putrescine, N-methylputrescine, and TAs, but had no significant effect on hairy root biomass. According to β-glucuronidase (GUS) staining assays, AbADC1 was mainly expressed in the root elongation and division region while AbADC2 was mainly expressed in the cylinder of the root maturation region. These differences in expression led to functional divergence, with AbADC1 primarily regulating root growth and AbADC2 contributing to TA biosynthesis.
Collapse
Affiliation(s)
- Xiaoqiang Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Mei Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jiahui Zhu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Junlan Zeng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Fei Qiu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Lingjiang Zeng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Chunxian Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Hongbo Zhang
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiaozhong Lan
- The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, TAAHC-SWU Medicinal Plant Joint R&D Centre, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet 860000, China
| | - Min Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhihua Liao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Tengfei Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Zhou W, Wang C, Hao X, Chen F, Huang Q, Liu T, Xu J, Guo S, Liao B, Liu Z, Feng Y, Wang Y, Liao P, Xue J, Shi M, Maoz I, Kai G. A chromosome-level genome assembly of anesthetic drug-producing Anisodus acutangulus provides insights into its evolution and the biosynthesis of tropane alkaloids. PLANT COMMUNICATIONS 2024; 5:100680. [PMID: 37660252 PMCID: PMC10811374 DOI: 10.1016/j.xplc.2023.100680] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Tropane alkaloids (TAs), which are anticholinergic agents, are an essential class of natural compounds, and there is a growing demand for TAs with anesthetic, analgesic, and spasmolytic effects. Anisodus acutangulus (Solanaceae) is a TA-producing plant that was used as an anesthetic in ancient China. In this study, we assembled a high-quality, chromosome-scale genome of A. acutangulus with a contig N50 of 7.4 Mb. A recent whole-genome duplication occurred in A. acutangulus after its divergence from other Solanaceae species, which resulted in the duplication of ADC1 and UGT genes involved in TA biosynthesis. The catalytic activities of H6H enzymes were determined for three Solanaceae plants. On the basis of evolution and co-expressed genes, AaWRKY11 was selected for further analyses, which revealed that its encoded transcription factor promotes TA biosynthesis by activating AaH6H1 expression. These findings provide useful insights into genome evolution related to TA biosynthesis and have potential implications for genetic manipulation of TA-producing plants.
Collapse
Affiliation(s)
- Wei Zhou
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Can Wang
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Xiaolong Hao
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Fei Chen
- Sanya Nanfan Research Institute from Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Qikai Huang
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Tingyao Liu
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shuai Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Baosheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhixiang Liu
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yue Feng
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yao Wang
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Pan Liao
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jiayu Xue
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Shi
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Itay Maoz
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, P.O. Box 15159, HaMaccabim Road 68, Rishon LeZion 7505101, Israel
| | - Guoyin Kai
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
4
|
Hu X, Liu W, Yan Y, Deng H, Cai Y. Tropinone reductase: A comprehensive review on its role as the key enzyme in tropane alkaloids biosynthesis. Int J Biol Macromol 2023; 253:127377. [PMID: 37839598 DOI: 10.1016/j.ijbiomac.2023.127377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
TAs, including hyoscyamine and scopolamine, were used to treat neuromuscular disorders ranging from nerve agent poisoning to Parkinson's disease. Tropinone reductase I (TR-I; EC 1.1.1.206) catalyzed the conversion of tropinone into tropine in the biosynthesis of TAs, directing the metabolic flow towards hyoscyamine and scopolamine. Tropinone reductase II (TR-II; EC 1.1.1.236) was responsible for the conversion of tropinone into pseudotropine, diverting the metabolic flux towards calystegine A3. The regulation of metabolite flow through both branches of the TAs pathway seemed to be influenced by the enzymatic activity of both enzymes and their accessibility to the precursor tropinone. The significant interest in the utilization of metabolic engineering for the efficient production of TAs has highlighted the importance of TRs as crucial enzymes that govern both the direction of metabolic flow and the yield of products. This review discussed recent advances for the TRs sources, properties, protein structure and biocatalytic mechanisms, and a detailed overview of its crucial role in the metabolism and synthesis of TAs was summarized. Furthermore, we conducted a detailed investigation into the evolutionary origins of these two TRs. A prospective analysis of potential challenges and applications of TRs was presented.
Collapse
Affiliation(s)
- Xiaoxiang Hu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Wenjing Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yi Yan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Huaxiang Deng
- Center for Synthetic Biochemistry, Institute of Synthetic Biology, Institutes of Advanced Technologies, Shenzhen, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
5
|
Yang J, Wu Y, Zhang P, Ma J, Yao YJ, Ma YL, Zhang L, Yang Y, Zhao C, Wu J, Fang X, Liu J. Multiple independent losses of the biosynthetic pathway for two tropane alkaloids in the Solanaceae family. Nat Commun 2023; 14:8457. [PMID: 38114555 PMCID: PMC10730914 DOI: 10.1038/s41467-023-44246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/05/2023] [Indexed: 12/21/2023] Open
Abstract
Hyoscyamine and scopolamine (HS), two valuable tropane alkaloids of significant medicinal importance, are found in multiple distantly related lineages within the Solanaceae family. Here we sequence the genomes of three representative species that produce HS from these lineages, and one species that does not produce HS. Our analysis reveals a shared biosynthetic pathway responsible for HS production in the three HS-producing species. We observe a high level of gene collinearity related to HS synthesis across the family in both types of species. By introducing gain-of-function and loss-of-function mutations at key sites, we confirm the reduced/lost or re-activated functions of critical genes involved in HS synthesis in both types of species, respectively. These findings indicate independent and repeated losses of the HS biosynthesis pathway since its origin in the ancestral lineage. Our results hold promise for potential future applications in the artificial engineering of HS biosynthesis in Solanaceae crops.
Collapse
Affiliation(s)
- Jiao Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Ying Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Pan Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jianxiang Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Ying Jun Yao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yan Lin Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Lei Zhang
- Key Laboratory of Ecological Protection of Agro-Pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People's Republic of China, College of Biological Science & Engineering, North Minzu University, Yinchuan, 750021, Ningxia, China
| | - Yongzhi Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Changmin Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jihua Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xiangwen Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jianquan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China.
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Waller S, Powell A, Noel R, Schueller MJ, Ferrieri RA. Radiocarbon Flux Measurements Reveal Mechanistic Insight into Heat-Stress Induction of Nicotine Biosynthesis in Nicotiana attenuata. Int J Mol Sci 2023; 24:15509. [PMID: 37958493 PMCID: PMC10650385 DOI: 10.3390/ijms242115509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
The effect of high-temperature (HT) stress on nicotine biosynthesis in Nicotiana attenuata was examined. Nicotine content was measured in mature leaves, young sink leaves, and in roots from well-watered plants grown at 25 °C as controls and from plants exposed to 38 °C and 43 °C temperatures applied for 24, 48, 72, and 96 h duration. At 38 °C, all leaf nicotine levels were significantly less than control plants for up to 72 h exposure but rose sharply thereafter to levels significantly greater than controls with 96 h exposure. In contrast, plants exposed to 43 °C never exhibited a reduction in leaf nicotine content and showed an increase in content with just 48 h exposure. Using radioactive 11CO2 and 13NO3-, we found that HT stress reduced both CO2 fixation and nitrate uptake. Furthermore, radiocarbon flux analysis revealed that 'new' carbon partitioning (as 11C) into the 11C-radiolabeled amino acid (AA) pool was significantly reduced with HT stress as were yields of [11C]-aspartic acid, an important AA in nicotine biosynthesis, and its beta-amido counterpart [11C]-asparagine. In contrast, [12C]-aspartic acid levels appeared unaffected at 38 °C but were elevated at 43 °C relative to controls. [12C]-Asparagine levels were noted to be elevated at both stress temperatures. Since HT reductions in carbon input and nitrogen uptake were noted to impede de novo AA biosynthesis, protein degradation at HT was examined as a source of AAs. Here, leaf total soluble protein (TSP) content was reduced 39% with long exposures to both stress temperatures. However, Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) which was 41% TSP appeared unaffected. Altogether, these results support the theory that plant proteins other than Rubisco degrade at elevated temperatures freeing up essential AAs in support of nicotine biosynthesis.
Collapse
Affiliation(s)
- Spenser Waller
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA; (S.W.); (R.N.); (M.J.S.)
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Avery Powell
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA; (S.W.); (R.N.); (M.J.S.)
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Randi Noel
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA; (S.W.); (R.N.); (M.J.S.)
- Division of Plant Science & Technology, University of Missouri, Columbia, MO 65211, USA
| | - Michael J. Schueller
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA; (S.W.); (R.N.); (M.J.S.)
- Chemistry Department, University of Missouri, Columbia, MO 65211, USA
| | - Richard A. Ferrieri
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA; (S.W.); (R.N.); (M.J.S.)
- Division of Plant Science & Technology, University of Missouri, Columbia, MO 65211, USA
- Chemistry Department, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
7
|
Zhang F, Qiu F, Zeng J, Xu Z, Tang Y, Zhao T, Gou Y, Su F, Wang S, Sun X, Xue Z, Wang W, Yang C, Zeng L, Lan X, Chen M, Zhou J, Liao Z. Revealing evolution of tropane alkaloid biosynthesis by analyzing two genomes in the Solanaceae family. Nat Commun 2023; 14:1446. [PMID: 36922496 PMCID: PMC10017790 DOI: 10.1038/s41467-023-37133-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
Tropane alkaloids (TAs) are widely distributed in the Solanaceae, while some important medicinal tropane alkaloids (mTAs), such as hyoscyamine and scopolamine, are restricted to certain species/tribes in this family. Little is known about the genomic basis and evolution of TAs biosynthesis and specialization in the Solanaceae. Here, we present chromosome-level genomes of two representative mTAs-producing species: Atropa belladonna and Datura stramonium. Our results reveal that the two species employ a conserved biosynthetic pathway to produce mTAs despite being distantly related within the nightshade family. A conserved gene cluster combined with gene duplication underlies the wide distribution of TAs in this family. We also provide evidence that branching genes leading to mTAs likely have evolved in early ancestral Solanaceae species but have been lost in most of the lineages, with A. belladonna and D. stramonium being exceptions. Furthermore, we identify a cytochrome P450 that modifies hyoscyamine into norhyoscyamine. Our results provide a genomic basis for evolutionary insights into the biosynthesis of TAs in the Solanaceae and will be useful for biotechnological production of mTAs via synthetic biology approaches.
Collapse
Affiliation(s)
- Fangyuan Zhang
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Fei Qiu
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Junlan Zeng
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Zhichao Xu
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Yueli Tang
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Tengfei Zhao
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Yuqin Gou
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Fei Su
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Shiyi Wang
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Xiuli Sun
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Zheyong Xue
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Weixing Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Chunxian Yang
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Lingjiang Zeng
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant Joint R&D Centre, Tibetan Collaborative Innovation Centre of Agricultural and Animal Husbandry Resources, Xizang Agricultural and Animal Husbandry College, Nyingchi, Tibet, 860000, China
| | - Min Chen
- College of Pharmaceutical Sciences, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing, 400715, China
| | - Junhui Zhou
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhihua Liao
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China. .,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
8
|
Parks HM, Cinelli MA, Bedewitz MA, Grabar JM, Hurney SM, Walker KD, Jones AD, Barry CS. Redirecting tropane alkaloid metabolism reveals pyrrolidine alkaloid diversity in Atropa belladonna. THE NEW PHYTOLOGIST 2023; 237:1810-1825. [PMID: 36451537 PMCID: PMC10107824 DOI: 10.1111/nph.18651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Plant-specialized metabolism is complex, with frequent examples of highly branched biosynthetic pathways, and shared chemical intermediates. As such, many plant-specialized metabolic networks are poorly characterized. The N-methyl Δ1 -pyrrolinium cation is a simple pyrrolidine alkaloid and precursor of pharmacologically important tropane alkaloids. Silencing of pyrrolidine ketide synthase (AbPyKS) in the roots of Atropa belladonna (Deadly Nightshade) reduces tropane alkaloid abundance and causes high N-methyl Δ1 -pyrrolinium cation accumulation. The consequences of this metabolic shift on alkaloid metabolism are unknown. In this study, we utilized discovery metabolomics coupled with AbPyKS silencing to reveal major changes in the root alkaloid metabolome of A. belladonna. We discovered and annotated almost 40 pyrrolidine alkaloids that increase when AbPyKS activity is reduced. Suppression of phenyllactate biosynthesis, combined with metabolic engineering in planta, and chemical synthesis indicates several of these pyrrolidines share a core structure formed through the nonenzymatic Mannich-like decarboxylative condensation of the N-methyl Δ1 -pyrrolinium cation with 2-O-malonylphenyllactate. Decoration of this core scaffold through hydroxylation and glycosylation leads to mono- and dipyrrolidine alkaloid diversity. This study reveals the previously unknown complexity of the A. belladonna root metabolome and creates a foundation for future investigation into the biosynthesis, function, and potential utility of these novel alkaloids.
Collapse
Affiliation(s)
- Hannah M. Parks
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Maris A. Cinelli
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | | | - Josh M. Grabar
- Department of HorticultureMichigan State UniversityEast LansingMI48824USA
| | - Steven M. Hurney
- Department of ChemistryMichigan State UniversityEast LansingMI48824USA
| | - Kevin D. Walker
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
- Department of ChemistryMichigan State UniversityEast LansingMI48824USA
| | - A. Daniel Jones
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Cornelius S. Barry
- Department of HorticultureMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
9
|
Transcriptome Analysis Reveals an Essential Role of Exogenous Brassinolide on the Alkaloid Biosynthesis Pathway in Pinellia Ternata. Int J Mol Sci 2022; 23:ijms231810898. [PMID: 36142812 PMCID: PMC9501358 DOI: 10.3390/ijms231810898] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Pinellia ternata (Thunb.) Druce is a traditional medicinal plant containing a variety of alkaloids, which are important active ingredients. Brassinolide (BR) is a plant hormone that regulates plant response to environmental stress and promotes the accumulation of secondary metabolites in plants. However, the regulatory mechanism of BR-induced alkaloid accumulation in P. ternata is not clear. In this study, we investigated the effects of BR and BR biosynthesis inhibitor (propiconazole, Pcz) treatments on alkaloid biosynthesis in the bulbil of P. ternata. The results showed that total alkaloid content and bulbil yield was enhanced by 90.87% and 29.67% under BR treatment, respectively, compared to the control. We identified 818 (476 up-regulated and 342 down-regulated) and 697 (389 up-regulated and 308 down-regulated) DEGs in the BR-treated and Pcz-treated groups, respectively. Through this annotated data and the Kyoto encyclopedia of genes and genomes (KEGG), the expression patterns of unigenes involved in the ephedrine alkaloid, tropane, piperidine, pyridine alkaloid, indole alkaloid, and isoquinoline alkaloid biosynthesis were observed under BR and Pcz treatments. We identified 11, 8, 2, and 13 unigenes in the ephedrine alkaloid, tropane, piperidine, and pyridine alkaloid, indole alkaloid, and isoquinoline alkaloid biosynthesis, respectively. The expression levels of these unigenes were increased by BR treatment and were decreased by Pcz treatment, compared to the control. The results provided molecular insight into the study of the molecular mechanism of BR-promoted alkaloid biosynthesis.
Collapse
|
10
|
Fiesel PD, Parks HM, Last RL, Barry CS. Fruity, sticky, stinky, spicy, bitter, addictive, and deadly: evolutionary signatures of metabolic complexity in the Solanaceae. Nat Prod Rep 2022; 39:1438-1464. [PMID: 35332352 PMCID: PMC9308699 DOI: 10.1039/d2np00003b] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: 2000-2022Plants collectively synthesize a huge repertoire of metabolites. General metabolites, also referred to as primary metabolites, are conserved across the plant kingdom and are required for processes essential to growth and development. These include amino acids, sugars, lipids, and organic acids. In contrast, specialized metabolites, historically termed secondary metabolites, are structurally diverse, exhibit lineage-specific distribution and provide selective advantage to host species to facilitate reproduction and environmental adaptation. Due to their potent bioactivities, plant specialized metabolites attract considerable attention for use as flavorings, fragrances, pharmaceuticals, and bio-pesticides. The Solanaceae (Nightshade family) consists of approximately 2700 species and includes crops of significant economic, cultural, and scientific importance: these include potato, tomato, pepper, eggplant, tobacco, and petunia. The Solanaceae has emerged as a model family for studying the biochemical evolution of plant specialized metabolism and multiple examples exist of lineage-specific metabolites that influence the senses and physiology of commensal and harmful organisms, including humans. These include, alcohols, phenylpropanoids, and carotenoids that contribute to fruit aroma and color in tomato (fruity), glandular trichome-derived terpenoids and acylsugars that contribute to plant defense (stinky & sticky, respectively), capsaicinoids in chilli-peppers that influence seed dispersal (spicy), and steroidal glycoalkaloids (bitter) from Solanum, nicotine (addictive) from tobacco, as well as tropane alkaloids (deadly) from Deadly Nightshade that deter herbivory. Advances in genomics and metabolomics, coupled with the adoption of comparative phylogenetic approaches, resulted in deeper knowledge of the biosynthesis and evolution of these metabolites. This review highlights recent progress in this area and outlines opportunities for - and challenges of-developing a more comprehensive understanding of Solanaceae metabolism.
Collapse
Affiliation(s)
- Paul D Fiesel
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Hannah M Parks
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Robert L Last
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Cornelius S Barry
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
11
|
Metabolomics-guided discovery of cytochrome P450s involved in pseudotropine-dependent biosynthesis of modified tropane alkaloids. Nat Commun 2022; 13:3832. [PMID: 35780230 PMCID: PMC9250511 DOI: 10.1038/s41467-022-31653-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 06/26/2022] [Indexed: 12/01/2022] Open
Abstract
Plant alkaloids constitute an important class of bioactive chemicals with applications in medicine and agriculture. However, the knowledge gap of the diversity and biosynthesis of phytoalkaloids prevents systematic advances in biotechnology for engineered production of these high-value compounds. In particular, the identification of cytochrome P450s driving the structural diversity of phytoalkaloids has remained challenging. Here, we use a combination of reverse genetics with discovery metabolomics and multivariate statistical analysis followed by in planta transient assays to investigate alkaloid diversity and functionally characterize two candidate cytochrome P450s genes from Atropa belladonna without a priori knowledge of their functions or information regarding the identities of key pathway intermediates. This approach uncovered a largely unexplored root localized alkaloid sub-network that relies on pseudotropine as precursor. The two cytochrome P450s catalyze N-demethylation and ring-hydroxylation reactions within the early steps in the biosynthesis of diverse N-demethylated modified tropane alkaloids. Cytochrome P450s drive the structural diversity of plant alkaloids, many of which have biotechnological uses. Here the authors use reverse genetics and metabolomics to identify two Atropa belladonna cytochrome P450s that synthesize pseudotropine-derived alkaloids.
Collapse
|
12
|
Zhang Q, Liang M, Zeng J, Yang C, Qin J, Qiang W, Lan X, Chen M, Lin M, Liao Z. Engineering tropane alkaloid production and glyphosate resistance by overexpressing AbCaM1 and G2-EPSPS in Atropa belladonna. Metab Eng 2022; 72:237-246. [PMID: 35390492 DOI: 10.1016/j.ymben.2022.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 11/27/2022]
Abstract
Atropa belladonna is an important industrial crop for producing anticholinergic tropane alkaloids (TAs). Using glyphosate as selection pressure, transgenic homozygous plants of A. belladonna are generated, in which a novel calmodulin gene (AbCaM1) and a reported EPSPS gene (G2-EPSPS) are co-overexpressed. AbCaM1 is highly expressed in secondary roots of A. belladonna and has calcium-binding activity. Three transgenic homozygous lines were generated and their glyphosate tolerance and TAs' production were evaluated in the field. Transgenic homozygous lines produced TAs at much higher levels than wild-type plants. In the leaves of T2GC02, T2GC05, and T2GC06, the hyoscyamine content was 8.95-, 10.61-, and 9.96 mg/g DW, the scopolamine content was 1.34-, 1.50- and 0.86 mg/g DW, respectively. Wild-type plants of A. belladonna produced hyoscyamine and scopolamine respectively at the levels of 2.45 mg/g DW and 0.30 mg/g DW in leaves. Gene expression analysis indicated that AbCaM1 significantly up-regulated seven key TA biosynthesis genes. Transgenic homozygous lines could tolerate a commercial recommended dose of glyphosate in the field. In summary, new varieties of A. belladonna not only produce pharmaceutical TAs at high levels but tolerate glyphosate, facilitating industrial production of TAs and weed management at a much lower cost.
Collapse
Affiliation(s)
- Qiaozhuo Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Mengjiao Liang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Junlan Zeng
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chunxian Yang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jianbo Qin
- Chongqing Academy of Science and Technology, Chongqing, 401123, China
| | - Wei Qiang
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant Joint R&D Centre, Xizang Agricultural and Husbandry College, Nyingchi of Tibet, 860000, China
| | - Min Chen
- College of Pharmaceutical Sciences, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing, 400715, China
| | - Min Lin
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712, China
| | - Zhihua Liao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China; Chongqing Academy of Science and Technology, Chongqing, 401123, China.
| |
Collapse
|
13
|
Gong H, He P, Lan X, Zeng L, Liao Z. Biotechnological Approaches on Engineering Medicinal Tropane Alkaloid Production in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:924413. [PMID: 35720595 PMCID: PMC9201383 DOI: 10.3389/fpls.2022.924413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Hyoscyamine and scopolamine, belonging to medicinal tropane alkaloids (MTAs), are potent anticholinergic drugs. Their industrial production relies on medicinal plants, but the levels of the two alkaloids are very low in planta. Engineering the MTA's production is an everlasting hot topic for pharmaceutical industry. With understanding the MTA's biosynthesis, biotechnological approaches are established to produce hyoscyamine and scopolamine in an efficient manner. Great advances have been obtained in engineering MTA's production in planta. In this review, we summarize the advances on the biosynthesis of MTAs and engineering the MTA's production in hairy root cultures, as well in plants. The problems and perspectives on engineering the MTA's production are also discussed.
Collapse
Affiliation(s)
- Haiyue Gong
- School of Life Sciences, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Southwest University, Chongqing, China
| | - Ping He
- Chongqing Academy of Science and Technology, Chongqing, China
| | - Xiaozhong Lan
- Xizang Agricultural and Husbandry College, The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, TAAHC-SWU Medicinal Plant Joint R&D Centre, Nyingchi, China
| | - Lingjiang Zeng
- School of Life Sciences, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Southwest University, Chongqing, China
| | - Zhihua Liao
- School of Life Sciences, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Southwest University, Chongqing, China
- Chongqing Academy of Science and Technology, Chongqing, China
| |
Collapse
|
14
|
Watkins JL, Facchini PJ. Compartmentalization at the interface of primary and alkaloid metabolism. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102186. [PMID: 35219143 DOI: 10.1016/j.pbi.2022.102186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/17/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Plants produce many compounds used by humans as medicines, including alkaloids of the benzylisoquinoline (BIA), monoterpene indole (MIA) and tropane classes. The biosynthetic pathways of these pharmaceutical alkaloids are complex and spatially segregated across several tissues, cell-types and organelles. This review discusses the origin of primary metabolic inputs required by these specialized biosynthetic pathways and considers aspects relevant to their spatial organization. These factors are important for alkaloid production both in the native plants and for synthetic biology pathway reconstruction in microorganisms.
Collapse
Affiliation(s)
- Jacinta L Watkins
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
15
|
Morales J, Araujo-Sanchez J, Castro-Concha L, Ku A, Pereira-Santana A, Miranda-Ham MDL, Castaño E. Defining Color Change in Pitaya: A Close Look at Betacyanin Synthesis Genes in Stenocereus queretaroensis. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.698195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Betalains are tyrosine-derived plant pigments present in several species of the Caryophyllales order. Betalains are classified in red betacyanins and yellow betaxanthins and are implicated in plant stress tolerance and visual attraction for pollinators. The compounds are used as natural colorants in many industries. Today, there is little information on betalain biosynthesis with several key enzymes that remain unknown on plants of the Caryophyllales order. Omic tools have proven to be very useful in gaining insights into various molecular mechanisms. In this study, we used suspension cells from fruits of the cactus Stenocereus queretaroensis. Two growing conditions were used to perform RNA-seq and differential expression analysis to help identify betalain biosynthesis-related genes. We found 98 differential expressed genes related to aromatic amino acids and betalain biosynthesis pathways. Interestingly, we found that only one gene of the betalain synthesis pathway was differentially expressed. The rest of the genes belong to the aromatic amino acid pathway, including hydroxy phenylpyruvate-related genes, suggesting the possibility of an alternative biosynthetic pathway similar to that observed in legumes.
Collapse
|
16
|
Jamieson CS, Misa J, Tang Y, Billingsley JM. Biosynthesis and synthetic biology of psychoactive natural products. Chem Soc Rev 2021; 50:6950-7008. [PMID: 33908526 PMCID: PMC8217322 DOI: 10.1039/d1cs00065a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Psychoactive natural products play an integral role in the modern world. The tremendous structural complexity displayed by such molecules confers diverse biological activities of significant medicinal value and sociocultural impact. Accordingly, in the last two centuries, immense effort has been devoted towards establishing how plants, animals, and fungi synthesize complex natural products from simple metabolic precursors. The recent explosion of genomics data and molecular biology tools has enabled the identification of genes encoding proteins that catalyze individual biosynthetic steps. Once fully elucidated, the "biosynthetic pathways" are often comparable to organic syntheses in elegance and yield. Additionally, the discovery of biosynthetic enzymes provides powerful catalysts which may be repurposed for synthetic biology applications, or implemented with chemoenzymatic synthetic approaches. In this review, we discuss the progress that has been made toward biosynthetic pathway elucidation amongst four classes of psychoactive natural products: hallucinogens, stimulants, cannabinoids, and opioids. Compounds of diverse biosynthetic origin - terpene, amino acid, polyketide - are identified, and notable mechanisms of key scaffold transforming steps are highlighted. We also provide a description of subsequent applications of the biosynthetic machinery, with an emphasis placed on the synthetic biology and metabolic engineering strategies enabling heterologous production.
Collapse
Affiliation(s)
- Cooper S Jamieson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Joshua Misa
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Yi Tang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA. and Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - John M Billingsley
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA. and Invizyne Technologies, Inc., Monrovia, CA, USA
| |
Collapse
|
17
|
Cinelli MA, Jones AD. Alkaloids of the Genus Datura: Review of a Rich Resource for Natural Product Discovery. Molecules 2021; 26:molecules26092629. [PMID: 33946338 PMCID: PMC8124590 DOI: 10.3390/molecules26092629] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 11/16/2022] Open
Abstract
The genus Datura (Solanaceae) contains nine species of medicinal plants that have held both curative utility and cultural significance throughout history. This genus’ particular bioactivity results from the enormous diversity of alkaloids it contains, making it a valuable study organism for many disciplines. Although Datura contains mostly tropane alkaloids (such as hyoscyamine and scopolamine), indole, beta-carboline, and pyrrolidine alkaloids have also been identified. The tools available to explore specialized metabolism in plants have undergone remarkable advances over the past couple of decades and provide renewed opportunities for discoveries of new compounds and the genetic basis for their biosynthesis. This review provides a comprehensive overview of studies on the alkaloids of Datura that focuses on three questions: How do we find and identify alkaloids? Where do alkaloids come from? What factors affect their presence and abundance? We also address pitfalls and relevant questions applicable to natural products and metabolomics researchers. With both careful perspectives and new advances in instrumentation, the pace of alkaloid discovery—from not just Datura—has the potential to accelerate dramatically in the near future.
Collapse
Affiliation(s)
- Maris A. Cinelli
- Correspondence: or (M.A.C.); (A.D.J.); Tel.: +1-906-360-8177 (M.A.C.); +1-517-432-7126 (A.D.J.)
| | - A. Daniel Jones
- Correspondence: or (M.A.C.); (A.D.J.); Tel.: +1-906-360-8177 (M.A.C.); +1-517-432-7126 (A.D.J.)
| |
Collapse
|
18
|
Qiu F, Yan Y, Zeng J, Huang JP, Zeng L, Zhong W, Lan X, Chen M, Huang SX, Liao Z. Biochemical and Metabolic Insights into Hyoscyamine Dehydrogenase. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04667] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fei Qiu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yijun Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Junlan Zeng
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jian-Ping Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lingjiang Zeng
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Wei Zhong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant Joint R&D Centre, Tibetan Collaborative Innovation Centre of Agricultural and Animal Husbandry Resources, Xizang Agricultural and Animal Husbandry College, Nyingchi of Tibet 860000, China
| | - Min Chen
- College of Pharmaceutical Sciences, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zhihua Liao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
19
|
Huang JP, Wang YJ, Tian T, Wang L, Yan Y, Huang SX. Tropane alkaloid biosynthesis: a centennial review. Nat Prod Rep 2021; 38:1634-1658. [PMID: 33533391 DOI: 10.1039/d0np00076k] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: 1917 to 2020Tropane alkaloids (TAs) are a remarkable class of plant secondary metabolites, which are characterized by an 8-azabicyclo[3.2.1]octane (nortropane) ring. Members of this class, such as hyoscyamine, scopolamine, and cocaine, are well known for their long history as poisons, hallucinogens, and anaesthetic agents. Since the structure of the tropane ring system was first elucidated in 1901, organic chemists and biochemists have been interested in how these mysterious tropane alkaloids are assembled in vitro and in vivo. However, it was only in 2020 that the complete biosynthetic route of hyoscyamine and scopolamine was clarified, and their de novo production in yeast was also achieved. The aim of this review is to present the innovative ideas and results in exploring the story of tropane alkaloid biosynthesis in plants from 1917 to 2020. This review also highlights that Robinson's classic synthesis of tropinone, which is one hundred years old, is biomimetic, and underscores the importance of total synthesis in the study of natural product biosynthesis.
Collapse
Affiliation(s)
- Jian-Ping Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China. and State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yong-Jiang Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China.
| | - Tian Tian
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China. and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Li Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China.
| | - Yijun Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China.
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China. and State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
20
|
Hedayati A, Hosseini B, Palazon J, Maleki R. Improved tropane alkaloid production and changes in gene expression in hairy root cultures of two Hyoscyamus species elicited by silicon dioxide nanoparticles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:416-428. [PMID: 32814278 DOI: 10.1016/j.plaphy.2020.07.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 05/22/2023]
Abstract
Species of Hyoscyamus are rich sources of medicinally important tropane alkaloids, which have anticholinergic, antispasmodic and sedative effects and are competitive inhibitors of acetylcholine. The application of nanotechnology and nanomaterials for elicitation is rapidly expanding and recent research indicates that silicon dioxide nanoparticles (SiO2 NPs) can be used as an efficient elicitor to increase the production of hyoscyamine and scopolamine in Hyoscyamus species. Thus, in this work, the effect of SiO2 NPs (0, 25, 50, 100 and 200 mg L-1) with two treatment times (24 and 48 h) on the growth rate, total phenol and flavonoid content (TPC, TFC), antioxidant enzyme activity, tropane alkaloid yield and pmt (putrescine N-methyltransferase) and h6h (hyoscyamine 6<beta>-hydroxylase) gene expression levels in hairy roots of two Hyoscyamus species (H. reticulatus and H. pusillus) was investigated. The highest TPC and TFC accumulation was obtained in H. reticulatus elicited by SiO2 NPs (100 and 200 mg L-1), respectively, at 24 h of treatment. High-performance liquid chromatography (HPLC) revealed the highest amount of hyoscyamine (140.15 μg g-1 FW) and scopolamine (67.71 μg g-1 FW) accumulated in H. reticulatus transformed roots treated with 100 mg L-1 SiO2 NPs at 24 h, with a respective increase of 1212% and 272% compared to non-treated roots. In H. pusillus, the highest hyoscyamine (7.42 μg g-1 FW) and scopolamine (15.56 μg g-1 FW) production (about 82% and 241% higher, respectively, compared to the lowest amounts) was achieved with 25 and 100 mg L-1 SiO2 NPs, respectively, at 48 h of treatment. Semi-quantitative RT-PCR analysis determined the highest expression level of pmt and h6h genes in H. reticulatus transformed roots supplemented with 100 mg L-1 SiO2 NPs.
Collapse
Affiliation(s)
- Ahad Hedayati
- Department of Horticulture, Faculty of Agriculture, Urmia University, Iran
| | - Bahman Hosseini
- Department of Horticulture, Faculty of Agriculture, Urmia University, Iran.
| | - Javier Palazon
- Department of Plant Physiology, Faculty of Pharmacy, University of Barcelona, Av. Joan, XXIII, S/n, 08028, Barcelona, Spain
| | - Ramin Maleki
- Iranian Academic Center for Education, Culture and Research (ACECR), Urmia, Iran
| |
Collapse
|
21
|
Qiu F, Zeng J, Wang J, Huang JP, Zhou W, Yang C, Lan X, Chen M, Huang SX, Kai G, Liao Z. Functional genomics analysis reveals two novel genes required for littorine biosynthesis. THE NEW PHYTOLOGIST 2020; 225:1906-1914. [PMID: 31705812 DOI: 10.1111/nph.16317] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/01/2019] [Indexed: 05/04/2023]
Abstract
Some medicinal plants of the Solanaceae produce pharmaceutical tropane alkaloids (TAs), such as hyoscyamine and scopolamine. Littorine is a key biosynthetic intermediate in the hyoscyamine and scopolamine biosynthetic pathways. However, the mechanism underlying littorine formation from the precursors phenyllactate and tropine is not completely understood. Here, we report the elucidation of littorine biosynthesis through a functional genomics approach and functional identification of two novel biosynthesis genes that encode phenyllactate UDP-glycosyltransferase (UGT1) and littorine synthase (LS). UGT1 and LS are highly and specifically expressed in Atropa belladonna secondary roots. Suppression of either UGT1 or LS disrupted the biosynthesis of littorine and its TA derivatives (hyoscyamine and scopolamine). Purified His-tagged UGT1 catalysed phenyllactate glycosylation to form phenyllactylglucose. UGT1 and LS co-expression in tobacco leaves led to littorine synthesis if tropine and phenyllactate were added. This identification of UGT1 and LS provides the missing link in littorine biosynthesis. The results pave the way for producing hyoscyamine and scopolamine for medical use by metabolic engineering or synthetic biology.
Collapse
Affiliation(s)
- Fei Qiu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Junlan Zeng
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jing Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jian-Ping Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Centre for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Wei Zhou
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, China
| | - Chunxian Yang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant Joint R&D Centre, Tibetan Collaborative Innovation Centre of Agricultural and Animal Husbandry Resources, Xizang Agricultural and Animal Husbandry College, Nyingchi of Tibet, 860000, China
| | - Min Chen
- College of Pharmaceutical Sciences, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing, 400715, China
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Centre for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, China
| | - Zhihua Liao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
22
|
Zhao T, Li S, Wang J, Zhou Q, Yang C, Bai F, Lan X, Chen M, Liao Z. Engineering Tropane Alkaloid Production Based on Metabolic Characterization of Ornithine Decarboxylase in Atropa belladonna. ACS Synth Biol 2020; 9:437-448. [PMID: 31935324 DOI: 10.1021/acssynbio.9b00461] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ornithine decarboxylase (ODC) plays an important role in various biological processes; however, its role in plant secondary metabolism, especially in the biosynthesis of tropane alkaloids (TAs) such as pharmaceutical hyoscyamine, anisodamine, and scopolamine, remains largely unknown. In this study, we characterized the physiological and metabolic functions of the ODC gene of Atropa belladonna (AbODC) and determined its role in TA production using metabolic engineering approaches. Feeding assays with enzyme inhibitors indicated that ODC, rather than arginine decarboxylase (ADC), plays a major role in TA biosynthesis. Tissue-specific AbODC expression analysis and β-glucuronidase (GUS) staining assays showed that AbODC was highly expressed in secondary roots, especially in the cylinder tissue. Enzymatic assays indicated that AbODC was able to convert ornithine to putrescine, with the highest activity at pH 8.0 and 30 °C. Additionally, AbODC showed higher catalytic efficiency than other plant ODCs, as evident from the Km, Vmax, and Kcat values of AbODC using ornithine as the substrate. In A. belladonna root cultures, suppression of AbODC greatly reduced the production of putrescine, N-methylputrescine, and TAs, whereas overexpression of AbODC significantly increased the biosynthesis of putrescine, N-methylputrescine, hyoscyamine, and anisodamine. Moreover, transgenic A. belladonna plants overexpressing AbODC showed a significantly higher production of hyoscyamine and anisodamine compared with control plants. These findings indicate that AbODC plays a key role in TA biosynthesis and therefore is a valuable candidate for increasing TA production in A. belladonna.
Collapse
Affiliation(s)
- Tengfei Zhao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Siqi Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jing Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qi Zhou
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Chunxian Yang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
- Chongqing Academy of Science and Technology, Chongqing 401123, China
| | - Feng Bai
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant Joint R&D Centre, Xizang Agricultural and Husbandry College, Nyingchi of Tibet 860000, China
| | - Min Chen
- College of Pharmaceutical Sciences, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Zhihua Liao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
- Chongqing Academy of Science and Technology, Chongqing 401123, China
| |
Collapse
|
23
|
Gabotti D, Locatelli F, Cusano E, Baldoni E, Genga A, Pucci L, Consonni R, Mattana M. Cell Suspensions of Cannabis sativa (var. Futura): Effect of Elicitation on Metabolite Content and Antioxidant Activity. Molecules 2019; 24:molecules24224056. [PMID: 31717508 PMCID: PMC6891269 DOI: 10.3390/molecules24224056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022] Open
Abstract
Cannabis sativa L. is one of the most-studied species for its phytochemistry due to the abundance of secondary metabolites, including cannabinoids, terpenes and phenolic compounds. In the last decade, fiber-type hemp varieties have received interest for the production of many specialized secondary metabolites derived from the phenylpropanoid pathway. The interest in these molecules is due to their antioxidant activity. Since secondary metabolite synthesis occurs at a very low level in plants, the aim of this study was to develop a strategy to increase the production of such compounds and to elucidate the biochemical pathways involved. Therefore, cell suspensions of industrial hemp (C. sativa L. var. Futura) were produced, and an advantageous elicitation strategy (methyl jasmonate, MeJA) in combination with precursor feeding (tyrosine, Tyr) was developed. The activity and expression of phenylalanine ammonia-lyase (PAL) and tyrosine aminotransferase (TAT) increased upon treatment. Through 1H-NMR analyses, some aromatic compounds were identified, including, for the first time, 4-hydroxyphenylpyruvate (4-HPP) in addition to tyrosol. The 4-day MeJA+Tyr elicited samples showed a 51% increase in the in vitro assay (2,2-diphenyl-1-picrylhydrazyl, DPPH) radical scavenging activity relative to the control and a 80% increase in the cellular antioxidant activity estimated on an ex vivo model of human erythrocytes. Our results outline the active metabolic pathways and the antioxidant properties of hemp cell extracts under the effect of specific elicitors.
Collapse
Affiliation(s)
- Damiano Gabotti
- Institute of Agricultural Biology and Biotechnology, National Research Council, Via Bassini 15, 20133 Milan, Italy; (D.G.); (F.L.); (E.B.); (A.G.)
| | - Franca Locatelli
- Institute of Agricultural Biology and Biotechnology, National Research Council, Via Bassini 15, 20133 Milan, Italy; (D.G.); (F.L.); (E.B.); (A.G.)
| | - Erica Cusano
- Institute of Chemical Sciences and Technologies “Giulio Natta”, Lab. NMR, National Research Council, Via Bassini 15, 20133 Milan, Italy; (E.C.); (R.C.)
| | - Elena Baldoni
- Institute of Agricultural Biology and Biotechnology, National Research Council, Via Bassini 15, 20133 Milan, Italy; (D.G.); (F.L.); (E.B.); (A.G.)
| | - Annamaria Genga
- Institute of Agricultural Biology and Biotechnology, National Research Council, Via Bassini 15, 20133 Milan, Italy; (D.G.); (F.L.); (E.B.); (A.G.)
| | - Laura Pucci
- Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy;
| | - Roberto Consonni
- Institute of Chemical Sciences and Technologies “Giulio Natta”, Lab. NMR, National Research Council, Via Bassini 15, 20133 Milan, Italy; (E.C.); (R.C.)
| | - Monica Mattana
- Institute of Agricultural Biology and Biotechnology, National Research Council, Via Bassini 15, 20133 Milan, Italy; (D.G.); (F.L.); (E.B.); (A.G.)
- Correspondence: ; Tel.: +39-02-23699677
| |
Collapse
|
24
|
Engineering a microbial biosynthesis platform for de novo production of tropane alkaloids. Nat Commun 2019; 10:3634. [PMID: 31406117 PMCID: PMC6690885 DOI: 10.1038/s41467-019-11588-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023] Open
Abstract
Tropane alkaloids (TAs) are a class of phytochemicals produced by plants of the nightshade family used for treating diverse neurological disorders. Here, we demonstrate de novo production of tropine, a key intermediate in the biosynthetic pathway of medicinal TAs such as scopolamine, from simple carbon and nitrogen sources in yeast (Saccharomyces cerevisiae). Our engineered strain incorporates 15 additional genes, including 11 derived from diverse plants and bacteria, and 7 disruptions to yeast regulatory or biosynthetic proteins to produce tropine at titers of 6 mg/L. We also demonstrate the utility of our engineered yeast platform for the discovery of TA derivatives by combining biosynthetic modules from distant plant lineages to achieve de novo production of cinnamoyltropine, a non-canonical TA. Our engineered strain constitutes a starting point for future optimization efforts towards realizing industrial fermentation of medicinal TAs and a platform for the synthesis of TA derivatives with enhanced bioactivities. Tropane alkaloids (TAs) are a group of phytochemicals that are used to treat neurological disorders. Here, the authors engineer baker’s yeast to produce tropine, a key intermediate in the biosynthetic pathway of TAs, and cinnamoyltropine, a non-canonical TA, from simple carbon and nitrogen sources.
Collapse
|
25
|
Ping Y, Li X, You W, Li G, Yang M, Wei W, Zhou Z, Xiao Y. De Novo Production of the Plant-Derived Tropine and Pseudotropine in Yeast. ACS Synth Biol 2019; 8:1257-1262. [PMID: 31181154 DOI: 10.1021/acssynbio.9b00152] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tropine and pseudotropine with opposite stereospecific configurations as platform compounds are central building blocks in both biosynthesis and chemical synthesis of pharmacologically important tropane and nortropane alkaloids. The supply of plant-derived tropine and pseudotropine still heavily depends on either plant extraction or chemical synthesis. Advances in synthetic biology prompt the microbial synthesis of various valuable chemicals. With the biosynthetic pathway elucidation of tropine and pseudotropine in several Solanaceae plants, the key genes were sequentially identified. Here, the enzymes responsible for converting N-methylpyrrolinium into tropine and pseudotropine from Anisodus acutangulus were characterized. Reconstruction of the six-step biosynthetic pathways into Saccharomyces cerevisiae provides cell chassis producing tropine and pseudotropine with 0.13 and 0.08 mg/L titers from simple feedstocks in a shake flask, respectively. The strains described not only offer alternative sources of these central intermediates and their derived alkaloids but also provide platforms for pathway enzyme discovery.
Collapse
Affiliation(s)
- Yu Ping
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xiaodong Li
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Wenjing You
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Guoqiang Li
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Mengquan Yang
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Wenping Wei
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Zhihua Zhou
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Youli Xiao
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
26
|
Chen Y, Wang Y, Lyu P, Chen L, Shen C, Sun C. Comparative transcriptomic analysis reveal the regulation mechanism underlying MeJA-induced accumulation of alkaloids in Dendrobium officinale. JOURNAL OF PLANT RESEARCH 2019. [PMID: 30903398 DOI: 10.1007/s10265-019-01099-6/1618-0860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Dendrobium officinale is a traditional medicinal herb with a variety of bioactive components. Alkaloid is one of the major active ingredients of Dendrobium plants, and its immune regulatory effects have been well-studied. Although a number of genes involved in the biosynthetic pathway of alkaloids have been elucidated, the regulation mechanism underlying the methyl-jasmonate (MeJA)-induced accumulation of alkaloids in D. officinale is largely unknown. In our study, a total of 4,857 DEGs, including 2,943 up- and 1,932 down-regulated genes, were identified between the control and MeJA-treated groups. Kyoto Encyclopedia of Genes and Genomes annotation showed that a number of DEGs were associated with the putative alkaloid biosynthetic pathway in D. officinale. The main group of Dendrobium alkaloids are sesquiterpene alkaloids, which are the downstream products of mevalonate (MVA) and methylerythritol 4-phosphate (MEP) pathway. Several MVA and MEP pathway genes were significantly up-regulated by the MeJA treatment, suggesting an active precursor supply for the alkaloid biosynthesis under MeJA treatment. A number of MeJA-induced P450 family genes, aminotransferase genes and methyltransferase genes were identified, providing several important candidates to further elucidate the sesquiterpene alkaloid biosynthetic pathway of D. officinale. Furthermore, a large number of MeJA-induced transcript factor encoding genes were identified, suggesting a complex genetic network affecting the sesquiterpene alkaloid metabolism in D. officinale. Our data aids to reveal the regulation mechanism underlying the MeJA-induced accumulation of sesquiterpene alkaloids in D. officinale.
Collapse
Affiliation(s)
- Yue Chen
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, People's Republic of China
| | - Yunzhu Wang
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, People's Republic of China
| | - Ping Lyu
- Lin'an Agricultural and Forestry Technology Extension Center, Hangzhou, Zhejiang, People's Republic of China
| | - Liping Chen
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, People's Republic of China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Chongbo Sun
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China.
- Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, People's Republic of China.
| |
Collapse
|
27
|
Chen Y, Wang Y, Lyu P, Chen L, Shen C, Sun C. Comparative transcriptomic analysis reveal the regulation mechanism underlying MeJA-induced accumulation of alkaloids in Dendrobium officinale. JOURNAL OF PLANT RESEARCH 2019; 132:419-429. [PMID: 30903398 DOI: 10.1007/s10265-019-01099-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 02/25/2019] [Indexed: 05/12/2023]
Abstract
Dendrobium officinale is a traditional medicinal herb with a variety of bioactive components. Alkaloid is one of the major active ingredients of Dendrobium plants, and its immune regulatory effects have been well-studied. Although a number of genes involved in the biosynthetic pathway of alkaloids have been elucidated, the regulation mechanism underlying the methyl-jasmonate (MeJA)-induced accumulation of alkaloids in D. officinale is largely unknown. In our study, a total of 4,857 DEGs, including 2,943 up- and 1,932 down-regulated genes, were identified between the control and MeJA-treated groups. Kyoto Encyclopedia of Genes and Genomes annotation showed that a number of DEGs were associated with the putative alkaloid biosynthetic pathway in D. officinale. The main group of Dendrobium alkaloids are sesquiterpene alkaloids, which are the downstream products of mevalonate (MVA) and methylerythritol 4-phosphate (MEP) pathway. Several MVA and MEP pathway genes were significantly up-regulated by the MeJA treatment, suggesting an active precursor supply for the alkaloid biosynthesis under MeJA treatment. A number of MeJA-induced P450 family genes, aminotransferase genes and methyltransferase genes were identified, providing several important candidates to further elucidate the sesquiterpene alkaloid biosynthetic pathway of D. officinale. Furthermore, a large number of MeJA-induced transcript factor encoding genes were identified, suggesting a complex genetic network affecting the sesquiterpene alkaloid metabolism in D. officinale. Our data aids to reveal the regulation mechanism underlying the MeJA-induced accumulation of sesquiterpene alkaloids in D. officinale.
Collapse
Affiliation(s)
- Yue Chen
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, People's Republic of China
| | - Yunzhu Wang
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, People's Republic of China
| | - Ping Lyu
- Lin'an Agricultural and Forestry Technology Extension Center, Hangzhou, Zhejiang, People's Republic of China
| | - Liping Chen
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, People's Republic of China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Chongbo Sun
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China.
- Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, People's Republic of China.
| |
Collapse
|
28
|
Zenkner FF, Margis-Pinheiro M, Cagliari A. Nicotine Biosynthesis inNicotiana: A Metabolic Overview. ACTA ACUST UNITED AC 2019. [DOI: 10.3381/18-063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alkaloids are important compounds found in Nicotiana plants, essential in plant defense against herbivores. The main alkaloid of Nicotiana tabacum, nicotine, is produced in roots and translocated to the leaves. Nicotine is formed by a pyrrolidine and a pyridine ring in a process involving several enzymes. The pyridine ring of nicotine is derived from nicotinic acid, whereas the pyrrolidine ring originates from polyamine putrescine metabolism. After synthesis in root cortical cells, a set of transporters is known to transport nicotine upward to the aerial part and store it in leaf vacuoles. Moreover, nicotine can be metabolized in leaves, giving rise to nornicotine through the N-demethylation process. Some Nicotiana wild species produce acyltransferase enzymes, which allow the plant to make N-acyl-nornicotine, an alkaloid with more potent insecticidal properties than nicotine. However, although we can find a wealth of information about the alkaloid production in Nicotiana spp., our understanding about nicotine biosynthesis, transport, and metabolism is still incomplete. This review will summarize these pathways on the basis on recent literature, as well as highlighting questions that need further investigation.
Collapse
Affiliation(s)
- Fernanda Fleig Zenkner
- Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15053, Porto Alegre, RS CEP 91501-970, Brazil
- JTI Processadora de Tabaco do Brasil LTDA, Santa Cruz do Sul, RS, Brazil
| | - Márcia Margis-Pinheiro
- Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15053, Porto Alegre, RS CEP 91501-970, Brazil
| | - Alexandro Cagliari
- Universidade Estadual do Rio Grande do Sul (UERGS), Santa Cruz do Sul, RS, Brazil
| |
Collapse
|
29
|
Zhao T, Wang C, Bai F, Li S, Yang C, Zhang F, Bai G, Chen M, Lan X, Liao Z. Metabolic Characterization of Hyoscyamus niger Ornithine Decarboxylase. FRONTIERS IN PLANT SCIENCE 2019; 10:229. [PMID: 30873201 PMCID: PMC6400997 DOI: 10.3389/fpls.2019.00229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Ornithine decarboxylase (ODC) catalyzes ornithine decarboxylation to yield putrescine, a key precursor of polyamines, and tropane alkaloids (TAs). Here, to investigate in depth the role of ODC in polyamine/TA biosynthesis and to provide a candidate gene for engineering polyamine/TA production, the ODC gene (HnODC) was characterized from Hyoscyamus niger, a TA-producing plant. Our phylogenetic analysis revealed that HnODC was clustered with ODC enzymes of plants. Experimental work showed HnODC highly expressed in H. niger roots and induced by methyl jasmonate (MeJA). In the MeJA treatment, the production of both putrescine and N-methylputrescine were markedly promoted in roots, while contents of putrescine, spermidine, and spermine were all significantly increased in leaves. By contrast, MeJA did not significantly change the production of either hyoscyamine or scopolamine in H. niger plants. Building on these results, the 50-kDa His-tagged HnODC proteins were purified for enzymatic assays. When ornithine was fed to HnODC, the putrescine product was detected by HPLC, indicating HnODC catalyzed ornithine to form putrescine. Finally, we also investigated the enzymatic kinetics of HnODC. Its K m, V max, and K cat values for ornithine were respectively 2.62 ± 0.11 mM, 1.87 ± 0.023 nmol min-1 μg-1 and 1.57 ± 0.015 s-1, at pH 8.0 and at 30°C. The HnODC enzyme displays a much higher catalytic efficiency than most reported plant ODCs, suggesting it may be an ideal candidate gene for engineering polyamine/TA biosynthesis.
Collapse
Affiliation(s)
- Tengfei Zhao
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Engineering Research Centre for Sweet Potato, TAAHC-SWU Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Changjian Wang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Engineering Research Centre for Sweet Potato, TAAHC-SWU Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Feng Bai
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Engineering Research Centre for Sweet Potato, TAAHC-SWU Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Siqi Li
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Engineering Research Centre for Sweet Potato, TAAHC-SWU Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Chunxian Yang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Engineering Research Centre for Sweet Potato, TAAHC-SWU Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Fangyuan Zhang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Engineering Research Centre for Sweet Potato, TAAHC-SWU Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Ge Bai
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, China
| | - Min Chen
- College of Pharmaceutical Sciences, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing, China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant Joint R&D Centre, Xizang Agricultural and Husbandry College, Nyingchi of Tibet, China
| | - Zhihua Liao
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Engineering Research Centre for Sweet Potato, TAAHC-SWU Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
30
|
Kohnen-Johannsen KL, Kayser O. Tropane Alkaloids: Chemistry, Pharmacology, Biosynthesis and Production. Molecules 2019; 24:E796. [PMID: 30813289 PMCID: PMC6412926 DOI: 10.3390/molecules24040796] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 12/18/2022] Open
Abstract
Tropane alkaloids (TA) are valuable secondary plant metabolites which are mostly found in high concentrations in the Solanaceae and Erythroxylaceae families. The TAs, which are characterized by their unique bicyclic tropane ring system, can be divided into three major groups: hyoscyamine and scopolamine, cocaine and calystegines. Although all TAs have the same basic structure, they differ immensely in their biological, chemical and pharmacological properties. Scopolamine, also known as hyoscine, has the largest legitimate market as a pharmacological agent due to its treatment of nausea, vomiting, motion sickness, as well as smooth muscle spasms while cocaine is the 2nd most frequently consumed illicit drug globally. This review provides a comprehensive overview of TAs, highlighting their structural diversity, use in pharmaceutical therapy from both historical and modern perspectives, natural biosynthesis in planta and emerging production possibilities using tissue culture and microbial biosynthesis of these compounds.
Collapse
Affiliation(s)
- Kathrin Laura Kohnen-Johannsen
- Technical Biochemistry, Department of Biochemical and Chemical Engineering, Technical University Dortmund, D-44227 Dortmund, Germany.
| | - Oliver Kayser
- Technical Biochemistry, Department of Biochemical and Chemical Engineering, Technical University Dortmund, D-44227 Dortmund, Germany.
| |
Collapse
|
31
|
Dommes AB, Gross T, Herbert DB, Kivivirta KI, Becker A. Virus-induced gene silencing: empowering genetics in non-model organisms. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:757-770. [PMID: 30452695 DOI: 10.1093/jxb/ery411] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/08/2018] [Indexed: 05/19/2023]
Abstract
Virus-induced gene silencing (VIGS) is an RNA interference-based technology used to transiently knock down target gene expression by utilizing modified plant viral genomes. VIGS can be adapted to many angiosperm species that cover large phylogenetic distances, allowing the analysis of gene functions in species that are not amenable to stable genetic transformation. With a vast amount of sequence information already available and even more likely to become available in the future, VIGS provides a means to analyze the functions of candidate genes identified in large genomic or transcriptomic screens. Here, we provide a comprehensive overview of target species and VIGS vector systems, assess recent key publications in the field, and explain how plant viruses are modified to serve as VIGS vectors. As many reports on the VIGS technique are being published, we also propose minimal reporting guidelines for carrying out these experiments, with the aim of increasing comparability between experiments. Finally, we propose methods for the statistical evaluation of phenotypic results obtained with VIGS-treated plants, as analysis is challenging due to the predominantly transient nature of the silencing effect.
Collapse
Affiliation(s)
- Anna B Dommes
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring, Gießen, Germany
| | - Thomas Gross
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring, Gießen, Germany
| | - Denise B Herbert
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring, Gießen, Germany
| | - Kimmo I Kivivirta
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring, Gießen, Germany
| | - Annette Becker
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring, Gießen, Germany
| |
Collapse
|
32
|
Guo Z, Tan H, Lv Z, Ji Q, Huang Y, Liu J, Chen D, Diao Y, Si J, Zhang L. Targeted expression of Vitreoscilla hemoglobin improves the production of tropane alkaloids in Hyoscyamus niger hairy roots. Sci Rep 2018; 8:17969. [PMID: 30568179 PMCID: PMC6299274 DOI: 10.1038/s41598-018-36156-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 10/30/2018] [Indexed: 01/20/2023] Open
Abstract
Under hypoxic conditions, the expression of Vitreoscilla hemoglobin (VHb) in plants is proposed to increase the productivity of certain oxygen-requiring metabolic pathways by promoting the delivery of oxygen. Tropane alkaloids (TAs) are a class of important plant secondary metabolites with significant medicinal value; the final step in their biosynthesis requires oxygen. Whether heterologous expression of VHb, especially in different subcellular compartments, can accelerate the accumulation of TAs is not known. Herein, the effect of heterologous expression of VHb in different subcellular locations on the TA profile of H. niger hairy roots was investigated. The targeted expression of VHb in the plastids (using pVHb-RecA construct), led to the accumulation of 197.68 μg/g hyoscyamine in the transgenic H. niger hairy roots, which was 1.25-fold of the content present in the lines in which VHb expression was not targeted, and 3.66-fold of that present in the wild type (WT) lines. The content of scopolamine was increased by 2.20- and 4.70-fold in the pVHb-RecA transgenic lines compared to that in the VHb transgenic and WT lines. Our results demonstrate that VHb could stimulate the accumulation of TAs in the transgenic H. niger hairy roots. Quantitative RT-PCR analysis revealed that the expression of key genes involved in TA biosynthesis increased significantly in the VHb transgenic lines. We present the first description of a highly efficient strategy to increase TA content in H. niger. Moreover, our results also shed light on how the production of desired metabolites can be efficiently enhanced by using more accurate and appropriate genetic engineering strategies.
Collapse
Affiliation(s)
- Zhiying Guo
- School of Medicine, School of Biomedical Science, Huaqiao University, Quanzhou, Fujian, 362021, China.,State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.,Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Hexin Tan
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Zongyou Lv
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Qian Ji
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Yuxiang Huang
- School of Medicine, School of Biomedical Science, Huaqiao University, Quanzhou, Fujian, 362021, China
| | - Jingjing Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Donghong Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Yong Diao
- School of Medicine, School of Biomedical Science, Huaqiao University, Quanzhou, Fujian, 362021, China
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Lei Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China. .,Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China.
| |
Collapse
|
33
|
Bedewitz MA, Jones AD, D'Auria JC, Barry CS. Tropinone synthesis via an atypical polyketide synthase and P450-mediated cyclization. Nat Commun 2018; 9:5281. [PMID: 30538251 PMCID: PMC6290073 DOI: 10.1038/s41467-018-07671-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/15/2018] [Indexed: 11/09/2022] Open
Abstract
Tropinone is the first intermediate in the biosynthesis of the pharmacologically important tropane alkaloids that possesses the 8-azabicyclo[3.2.1]octane core bicyclic structure that defines this alkaloid class. Chemical synthesis of tropinone was achieved in 1901 but the mechanism of tropinone biosynthesis has remained elusive. In this study, we identify a root-expressed type III polyketide synthase from Atropa belladonna (AbPYKS) that catalyzes the formation of 4-(1-methyl-2-pyrrolidinyl)-3-oxobutanoic acid. This catalysis proceeds through a non-canonical mechanism that directly utilizes an unconjugated N-methyl-Δ1-pyrrolinium cation as the starter substrate for two rounds of malonyl-Coenzyme A mediated decarboxylative condensation. Subsequent formation of tropinone from 4-(1-methyl-2-pyrrolidinyl)-3-oxobutanoic acid is achieved through cytochrome P450-mediated catalysis by AbCYP82M3. Silencing of AbPYKS and AbCYP82M3 reduces tropane levels in A. belladonna. This study reveals the mechanism of tropinone biosynthesis, explains the in planta co-occurrence of pyrrolidines and tropanes, and demonstrates the feasibility of tropane engineering in a non-tropane producing plant. Tropinone is an intermediate in the biosynthesis of tropane alkaloids. Here, the authors discovered the enzymes AbPYKS and AbCYP82M3, a non-canonical polyketide synthase and a cytochrome P450, that work sequentially to form tropinone from N-methyl-Δ1-pyrrolinium cation.
Collapse
Affiliation(s)
- Matthew A Bedewitz
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - John C D'Auria
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Cornelius S Barry
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
34
|
Qiu F, Yang C, Yuan L, Xiang D, Lan X, Chen M, Liao Z. A Phenylpyruvic Acid Reductase Is Required for Biosynthesis of Tropane Alkaloids. Org Lett 2018; 20:7807-7810. [PMID: 30511859 DOI: 10.1021/acs.orglett.8b03236] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Solanaceous medicinal plants produce tropane alkaloids (TAs). We discovered a novel gene from Atropa belladonna, AbPPAR, which encodes a phenylpyruvic acid reductase required for TA biosynthesis. AbPPAR was specifically expressed in root pericycles and endodermis. AbPPAR was shown to catalyze reduction of phenylpyruvic acid to phenyllactic acid, a precursor of TAs. Suppression of AbPPAR disrupted TA biosynthesis through reduction of phenyllactic acid levels. In summary, we identified a novel enzyme involved in TA biosynthesis.
Collapse
Affiliation(s)
- Fei Qiu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences , Southwest University , Chongqing 400715 , China
| | - Chunxian Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences , Southwest University , Chongqing 400715 , China
| | - Lina Yuan
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences , Southwest University , Chongqing 400715 , China
| | - Dan Xiang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences , Southwest University , Chongqing 400715 , China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant Joint R&D Centre , Xizang Agricultural and Husbandry College , Nyingchi of Tibet 860000 , China
| | - Min Chen
- College of Pharmaceutical Sciences, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education) , Southwest University , Chongqing 400715 , China
| | - Zhihua Liao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences , Southwest University , Chongqing 400715 , China
| |
Collapse
|
35
|
Schenck CA, Maeda HA. Tyrosine biosynthesis, metabolism, and catabolism in plants. PHYTOCHEMISTRY 2018; 149:82-102. [PMID: 29477627 DOI: 10.1016/j.phytochem.2018.02.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 05/22/2023]
Abstract
L-Tyrosine (Tyr) is an aromatic amino acid (AAA) required for protein synthesis in all organisms, but synthesized de novo only in plants and microorganisms. In plants, Tyr also serves as a precursor of numerous specialized metabolites that have diverse physiological roles as electron carriers, antioxidants, attractants, and defense compounds. Some of these Tyr-derived plant natural products are also used in human medicine and nutrition (e.g. morphine and vitamin E). While the Tyr biosynthesis and catabolic pathways have been extensively studied in microbes and animals, respectively, those of plants have received much less attention until recently. Accumulating evidence suggest that the Tyr biosynthetic pathways differ between microbes and plants and even within the plant kingdom, likely to support the production of lineage-specific plant specialized metabolites derived from Tyr. The interspecies variations of plant Tyr pathway enzymes can now be used to enhance the production of Tyr and Tyr-derived compounds in plants and other synthetic biology platforms.
Collapse
Affiliation(s)
- Craig A Schenck
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
36
|
Nadakuduti SS, Uebler JB, Liu X, Jones AD, Barry CS. Characterization of Trichome-Expressed BAHD Acyltransferases in Petunia axillaris Reveals Distinct Acylsugar Assembly Mechanisms within the Solanaceae. PLANT PHYSIOLOGY 2017; 175:36-50. [PMID: 28701351 PMCID: PMC5580754 DOI: 10.1104/pp.17.00538] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/07/2017] [Indexed: 05/12/2023]
Abstract
Acylsugars are synthesized in the glandular trichomes of the Solanaceae family and are implicated in protection against abiotic and biotic stress. Acylsugars are composed of either sucrose or glucose esterified with varying numbers of acyl chains of differing length. In tomato (Solanum lycopersicum), acylsugar assembly requires four acylsugar acyltransferases (ASATs) of the BAHD superfamily. Tomato ASATs catalyze the sequential esterification of acyl-coenzyme A thioesters to the R4, R3, R3', and R2 positions of sucrose, yielding a tetra-acylsucrose. Petunia spp. synthesize acylsugars that are structurally distinct from those of tomato. To explore the mechanisms underlying this chemical diversity, a Petuniaaxillaris transcriptome was mined for trichome preferentially expressed BAHDs. A combination of phylogenetic analyses, gene silencing, and biochemical analyses coupled with structural elucidation of metabolites revealed that acylsugar assembly is not conserved between tomato and petunia. In P. axillaris, tetra-acylsucrose assembly occurs through the action of four ASATs, which catalyze sequential addition of acyl groups to the R2, R4, R3, and R6 positions. Notably, in P. axillaris, PaxASAT1 and PaxASAT4 catalyze the acylation of the R2 and R6 positions of sucrose, respectively, and no clear orthologs exist in tomato. Similarly, petunia acylsugars lack an acyl group at the R3' position, and congruently, an ortholog of SlASAT3, which catalyzes acylation at the R3' position in tomato, is absent in P. axillaris Furthermore, where putative orthologous relationships of ASATs are predicted between tomato and petunia, these are not supported by biochemical assays. Overall, these data demonstrate the considerable evolutionary plasticity of acylsugar biosynthesis.
Collapse
Affiliation(s)
| | - Joseph B Uebler
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824
| | - Xiaoxiao Liu
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
| | - A Daniel Jones
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Cornelius S Barry
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
37
|
Ru M, Wang K, Bai Z, Peng L, He S, Wang Y, Liang Z. A tyrosine aminotransferase involved in rosmarinic acid biosynthesis in Prunella vulgaris L. Sci Rep 2017; 7:4892. [PMID: 28687763 PMCID: PMC5501851 DOI: 10.1038/s41598-017-05290-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/25/2017] [Indexed: 12/16/2022] Open
Abstract
Rosmarinic acid (RA) and its derivants are medicinal compounds that comprise the active components of several therapeutics. We isolated and characterised a tyrosine aminotransferase of Prunella vulgaris (PvTAT). Deduced PvTAT was markedly homologous to other known/putative plant TATs. Cytoplasmic localisation of PvTAT was observed in tobacco protoplasts. Recombinantly expressed and purified PvTAT had substrates preference for L-tyrosine and phenylpyruvate, with apparent K m of 0.40 and 0.48 mM, and favoured the conversion of tyrosine to 4-hydroxyphenylpyruvate. In vivo activity was confirmed by functional restoration of the Escherichia coli tyrosine auxotrophic mutant DL39. Agrobacterium rhizogenes-mediated antisense/sense expression of PvTAT in hairy roots was used to evaluate the contribution of PvTAT to RA synthesis. PvTAT were reduced by 46-95% and RA were decreased by 36-91% with low catalytic activity in antisense transgenic hairy root lines; furthermore, PvTAT were increased 0.77-2.6-fold with increased 1.3-1.8-fold RA and strong catalytic activity in sense transgenic hairy root lines compared with wild-type counterparts. The comprehensive physiological and catalytic evidence fills in the gap in RA-producing plants which didn't provide evidence for TAT expression and catalytic activities in vitro and in vivo. That also highlights RA biosynthesis pathway in P. vulgaris and provides useful information to engineer natural products.
Collapse
Affiliation(s)
- Mei Ru
- Institute of Soil and Water Conservation, Chinese Academy of Sciences&Ministry of Water Resources, Yangling, 712100, P.R. China
| | - Kunru Wang
- Institute of Soil and Water Conservation, Chinese Academy of Sciences&Ministry of Water Resources, Yangling, 712100, P.R. China
| | - Zhenqing Bai
- Institute of Soil and Water Conservation, Chinese Academy of Sciences&Ministry of Water Resources, Yangling, 712100, P.R. China
| | - Liang Peng
- College of Pharmacy, Shannxi University of Chinese Medicine, Xi'an, 710000, P.R. China
| | - Shaoxuan He
- Ecological Environmental Monitoring Station, Environmental Protection Agency, Dazu, 402360, P.R. China
| | - Yong Wang
- Institute of Soil and Water Conservation, Chinese Academy of Sciences&Ministry of Water Resources, Yangling, 712100, P.R. China
| | - Zongsuo Liang
- Institute of Soil and Water Conservation, Chinese Academy of Sciences&Ministry of Water Resources, Yangling, 712100, P.R. China.
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310000, P.R. China.
| |
Collapse
|
38
|
Oliva M, Bar E, Ovadia R, Perl A, Galili G, Lewinsohn E, Oren-Shamir M. Phenylpyruvate Contributes to the Synthesis of Fragrant Benzenoid-Phenylpropanoids in Petunia × hybrida Flowers. FRONTIERS IN PLANT SCIENCE 2017; 8:769. [PMID: 28553303 PMCID: PMC5427144 DOI: 10.3389/fpls.2017.00769] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/24/2017] [Indexed: 05/25/2023]
Abstract
Phenylalanine (Phe) is a precursor for a large group of plant specialized metabolites, including the fragrant volatile benzenoid-phenylpropanoids (BPs). In plants, the main pathway leading to production of Phe is via arogenate, while the pathway via phenylpyruvate (PPY) is considered merely an alternative route. Unlike plants, in most microorganisms the only pathway leading to the synthesis of Phe is via PPY. Here we studied the effect of increased PPY production in petunia on the formation of BPs volatiles and other specialized metabolites originating from Phe both in flowers and leaves. Stimulation of the pathway via PPY was achieved by transforming petunia with PheA∗ , a gene encoding a bacterial feedback insensitive bi-functional chorismate mutase/prephenate dehydratase enzyme. PheA∗ overexpression caused dramatic increase in the levels of flower BP volatiles such as phenylacetaldehyde, benzaldehyde, benzyl acetate, vanillin, and eugenol. All three BP pathways characterized in petunia flowers were stimulated in PheA∗ flowers. In contrast, PheA∗ overexpression had only a minor effect on the levels of amino acids and non-volatile metabolites both in the leaves and flowers. The one exception is a dramatic increase in the level of rosmarinate, a conjugate between Phe-derived caffeate and Tyr-derived 3,4-dihydroxyphenylacetate, in PheA∗ leaves. PheA∗ petunia flowers may serve as an excellent system for revealing the role of PPY in the production of BPs, including possible routes directly converting PPY to the fragrant volatiles. This study emphasizes the potential of the PPY route in achieving fragrance enhancement in flowering plants.
Collapse
Affiliation(s)
- Moran Oliva
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, Volcani CenterRishon LeZion, Israel
- Department of Plant Sciences, The Weizmann Institute of ScienceRehovot, Israel
| | - Einat Bar
- Department of Vegetable Crops, Newe Ya’ar Research Center, Agricultural Research OrganizationRamat Yishay, Israel
| | - Rinat Ovadia
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, Volcani CenterRishon LeZion, Israel
| | - Avichai Perl
- Department of Fruit Tree Science, Agricultural Research Organization, Volcani CenterRishon LeZion, Israel
| | - Gad Galili
- Department of Plant Sciences, The Weizmann Institute of ScienceRehovot, Israel
| | - Efraim Lewinsohn
- Department of Vegetable Crops, Newe Ya’ar Research Center, Agricultural Research OrganizationRamat Yishay, Israel
| | - Michal Oren-Shamir
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, Volcani CenterRishon LeZion, Israel
| |
Collapse
|
39
|
Transcriptome Analysis of Genes Involved in Dendrobine Biosynthesis in Dendrobium nobile Lindl. Infected with Mycorrhizal Fungus MF23 (Mycena sp.). Sci Rep 2017; 7:316. [PMID: 28331229 PMCID: PMC5428410 DOI: 10.1038/s41598-017-00445-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/27/2017] [Indexed: 11/09/2022] Open
Abstract
Content determination and microscopic observation proved that dendrobine accumulation in the stem of Dendrobium nobile Lindl. increased after infection with mycorrhizal fungus MF23 (Mycena sp.). Large-scale transcriptome sequencing of symbiotic and asymbiotic D. nobile revealed that 30 unigenes encoding proteins were possibly related to the biosynthesis of dendrobine sesquiterpene backbone. A qRT-PCR experiment of 16 unigenes, selected randomly, proved that there were significant changes in the expression levels of AACT, MVD, PMK and TPS21 at 9 weeks after inoculation. These results implied that MF23 might stimulate dendrobine biosynthesis by regulating the expressions of genes involved in the mevalonate (MVA) pathway. The biogenetic pathway of dendrobine was suggested systematically according to the structural features of dendrobine alkaloids and their sesquiterpene precursors, which implied that post-modification enzymes might play a major role in dendrobine biosynthesis. Thus, genes encoding post-modification enzymes, including cytochrome P450, aminotransferase and methyltransferase, were screened for their possible involvement in dendrobine biosynthesis. This study provides a good example of endophytes promoting the formation of bioactive compounds in their host and paves the way for further investigation of the dendrobine biosynthetic pathway.
Collapse
|
40
|
Li Q, Ding G, Li B, Guo SX. Transcriptome Analysis of Genes Involved in Dendrobine Biosynthesis in Dendrobium nobile Lindl. Infected with Mycorrhizal Fungus MF23 (Mycena sp.). Sci Rep 2017. [PMID: 28331229 DOI: 10.1038/s41598-017-00445-9/2045-2322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Content determination and microscopic observation proved that dendrobine accumulation in the stem of Dendrobium nobile Lindl. increased after infection with mycorrhizal fungus MF23 (Mycena sp.). Large-scale transcriptome sequencing of symbiotic and asymbiotic D. nobile revealed that 30 unigenes encoding proteins were possibly related to the biosynthesis of dendrobine sesquiterpene backbone. A qRT-PCR experiment of 16 unigenes, selected randomly, proved that there were significant changes in the expression levels of AACT, MVD, PMK and TPS21 at 9 weeks after inoculation. These results implied that MF23 might stimulate dendrobine biosynthesis by regulating the expressions of genes involved in the mevalonate (MVA) pathway. The biogenetic pathway of dendrobine was suggested systematically according to the structural features of dendrobine alkaloids and their sesquiterpene precursors, which implied that post-modification enzymes might play a major role in dendrobine biosynthesis. Thus, genes encoding post-modification enzymes, including cytochrome P450, aminotransferase and methyltransferase, were screened for their possible involvement in dendrobine biosynthesis. This study provides a good example of endophytes promoting the formation of bioactive compounds in their host and paves the way for further investigation of the dendrobine biosynthetic pathway.
Collapse
Affiliation(s)
- Qing Li
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, People's Republic of China
| | - Gang Ding
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, People's Republic of China
| | - Biao Li
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, People's Republic of China.
| | - Shun-Xing Guo
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
41
|
Fowble KL, Teramoto K, Cody RB, Edwards D, Guarrera D, Musah RA. Development of “Laser Ablation Direct Analysis in Real Time Imaging” Mass Spectrometry: Application to Spatial Distribution Mapping of Metabolites Along the Biosynthetic Cascade Leading to Synthesis of Atropine and Scopolamine in Plant Tissue. Anal Chem 2017; 89:3421-3429. [DOI: 10.1021/acs.analchem.6b04137] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kristen L. Fowble
- State University of New York at Albany, Department
of Chemistry, 1400 Washington
Avenue, Albany, New York 12222, United States
| | - Kanae Teramoto
- JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo, Japan 196-8558
| | - Robert B. Cody
- JEOL USA Inc., 11 Dearborn Road, Peabody, Massachusetts 01960, United States
| | - David Edwards
- JEOL USA Inc., 11 Dearborn Road, Peabody, Massachusetts 01960, United States
| | - Donna Guarrera
- JEOL USA Inc., 11 Dearborn Road, Peabody, Massachusetts 01960, United States
| | - Rabi A. Musah
- State University of New York at Albany, Department
of Chemistry, 1400 Washington
Avenue, Albany, New York 12222, United States
| |
Collapse
|
42
|
Wang M, Toda K, Maeda HA. Biochemical properties and subcellular localization of tyrosine aminotransferases in Arabidopsis thaliana. PHYTOCHEMISTRY 2016; 132:16-25. [PMID: 27726859 DOI: 10.1016/j.phytochem.2016.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/02/2016] [Accepted: 09/12/2016] [Indexed: 05/05/2023]
Abstract
Plants produce various L-tyrosine (Tyr)-derived compounds that are of pharmaceutical or nutritional importance to humans. Tyr aminotransferase (TAT) catalyzes the reversible transamination between Tyr and 4-hydroxyphenylpyruvate (HPP), the initial step in the biosynthesis of many Tyr-derived plant natural products. Herein reported is the biochemical characterization and subcellular localization of TAT enzymes from the model plant Arabidopsis thaliana. Phylogenetic analysis showed that Arabidopsis has at least two homologous TAT genes, At5g53970 (AtTAT1) and At5g36160 (AtTAT2). Their recombinant enzymes showed distinct biochemical properties: AtTAT1 had the highest activity towards Tyr, while AtTAT2 exhibited a broad substrate specificity for both amino and keto acid substrates. Also, AtTAT1 favored the direction of Tyr deamination to HPP, whereas AtTAT2 preferred transamination of HPP to Tyr. Subcellular localization analysis using GFP-fusion proteins and confocal microscopy showed that AtTAT1, AtTAT2, and HPP dioxygenase (HPPD), which catalyzes the subsequent step of TAT, are localized in the cytosol, unlike plastid-localized Tyr and tocopherol biosynthetic enzymes. Furthermore, subcellular fractionation indicated that, while HPPD activity is restricted to the cytosol, TAT activity is detected in both cytosolic and plastidic fractions of Arabidopsis leaf tissue, suggesting that an unknown aminotransferase(s) having TAT activity is also present in the plastids. Biochemical and cellular analyses of Arabidopsis TATs provide a fundamental basis for future in vivo studies and metabolic engineering for enhanced production of Tyr-derived phytochemicals in plants.
Collapse
Affiliation(s)
- Minmin Wang
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Kyoko Toda
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA; Institute of Crop Science, NARO, 2-1-18 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan.
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
43
|
Brandariz SP, González Reymúndez A, Lado B, Malosetti M, Garcia AAF, Quincke M, von Zitzewitz J, Castro M, Matus I, del Pozo A, Castro AJ, Gutiérrez L. Ascertainment bias from imputation methods evaluation in wheat. BMC Genomics 2016; 17:773. [PMID: 27716058 PMCID: PMC5050639 DOI: 10.1186/s12864-016-3120-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 09/23/2016] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Whole-genome genotyping techniques like Genotyping-by-sequencing (GBS) are being used for genetic studies such as Genome-Wide Association (GWAS) and Genomewide Selection (GS), where different strategies for imputation have been developed. Nevertheless, imputation error may lead to poor performance (i.e. smaller power or higher false positive rate) when complete data is not required as it is for GWAS, and each marker is taken at a time. The aim of this study was to compare the performance of GWAS analysis for Quantitative Trait Loci (QTL) of major and minor effect using different imputation methods when no reference panel is available in a wheat GBS panel. RESULTS In this study, we compared the power and false positive rate of dissecting quantitative traits for imputed and not-imputed marker score matrices in: (1) a complete molecular marker barley panel array, and (2) a GBS wheat panel with missing data. We found that there is an ascertainment bias in imputation method comparisons. Simulating over a complete matrix and creating missing data at random proved that imputation methods have a poorer performance. Furthermore, we found that when QTL were simulated with imputed data, the imputation methods performed better than the not-imputed ones. On the other hand, when QTL were simulated with not-imputed data, the not-imputed method and one of the imputation methods performed better for dissecting quantitative traits. Moreover, larger differences between imputation methods were detected for QTL of major effect than QTL of minor effect. We also compared the different marker score matrices for GWAS analysis in a real wheat phenotype dataset, and we found minimal differences indicating that imputation did not improve the GWAS performance when a reference panel was not available. CONCLUSIONS Poorer performance was found in GWAS analysis when an imputed marker score matrix was used, no reference panel is available, in a wheat GBS panel.
Collapse
Affiliation(s)
- Sofía P. Brandariz
- Statistics Department, Facultad de Agronomía, Universidad de la República, Garzón 780, Montevideo, 12900 Uruguay
| | - Agustín González Reymúndez
- Statistics Department, Facultad de Agronomía, Universidad de la República, Garzón 780, Montevideo, 12900 Uruguay
| | - Bettina Lado
- Statistics Department, Facultad de Agronomía, Universidad de la República, Garzón 780, Montevideo, 12900 Uruguay
| | - Marcos Malosetti
- Biometris - Applied Statistics, Department of Plant Science, Wageningen University and Research Center, P.O. Box 16, 6700 AA Wageningen, Netherlands
| | - Antonio Augusto Franco Garcia
- Departamento de Ciências Exatas, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), Universidade de São Paulo (USP), CP 9, CEP 13400-970 Piracicaba, SP Brazil
| | - Martín Quincke
- Programa Nacional de Investigación Cultivos de Secano, Instituto Nacional de investigación Agropecuaria, Est. Exp. La Estanzuela, Colonia, 70000 Uruguay
| | | | - Marina Castro
- Programa Nacional de Investigación Cultivos de Secano, Instituto Nacional de investigación Agropecuaria, Est. Exp. La Estanzuela, Colonia, 70000 Uruguay
| | - Iván Matus
- Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación Quilamapu, Casilla 426, Chillán, Chile
| | - Alejandro del Pozo
- Facultad de Ciencias Agrarias, Universidad de Talca, Casilla 747, Talca, Chile
| | - Ariel J. Castro
- Department of Plant Production, Facultad de Agronomía, Universidad de la República, Ruta 3, Km.363, Paysandú, 60000 Uruguay
| | - Lucía Gutiérrez
- Statistics Department, Facultad de Agronomía, Universidad de la República, Garzón 780, Montevideo, 12900 Uruguay
- Department of Agronomy, University of Wisconsin-Madison, 1575 Linden Dr, Madison, WI 53706 USA
| |
Collapse
|
44
|
Xia K, Liu X, Zhang Q, Qiang W, Guo J, Lan X, Chen M, Liao Z. Promoting scopolamine biosynthesis in transgenic Atropa belladonna plants with pmt and h6h overexpression under field conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 106:46-53. [PMID: 27135818 DOI: 10.1016/j.plaphy.2016.04.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/16/2016] [Accepted: 04/18/2016] [Indexed: 05/26/2023]
Abstract
Atropa belladonna is one of the most important plant sources for producing pharmaceutical tropane alkaloids (TAs). T1 progeny of transgenic A. belladonna, in which putrescine N-methyltransferase (EC. 2.1.1.53) from Nicotiana tabacum (NtPMT) and hyoscyamine 6β-hydroxylase (EC. 1.14.11.14) from Hyoscyamus niger (HnH6H) were overexpressed, were established to investigate TA biosynthesis and distribution in ripe fruits, leaves, stems, primary roots and secondary roots under field conditions. Both NtPMT and HnH6H were detected at the transcriptional level in transgenic plants, whereas they were not detected in wild-type plants. The transgenes did not influence the root-specific expression patterns of endogenous TA biosynthetic genes in A. belladonna. All four endogenous TA biosynthetic genes (AbPMT, AbTRI, AbCYP80F1 and AbH6H) had the highest/exclusive expression levels in secondary roots, suggesting that TAs were mainly synthesized in secondary roots. T1 progeny of transgenic A. belladonna showed an impressive scopolamine-rich chemotype that greatly improved the pharmaceutical value of A. belladonna. The higher efficiency of hyoscyamine conversion was found in aerial than in underground parts. In aerial parts of transgenic plants, hyoscyamine was totally converted to downstream alkaloids, especially scopolamine. Hyoscyamine, anisodamine and scopolamine were detected in underground parts, but scopolamine and anisodamine were more abundant than hyoscyamine. The exclusively higher levels of anisodamine in roots suggested that it might be difficult for its translocation from root to aerial organs. T1 progeny of transgenic A. belladonna, which produces scopolamine at very high levels (2.94-5.13 mg g(-1)) in field conditions, can provide more valuable plant materials for scopolamine production.
Collapse
Affiliation(s)
- Ke Xia
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), SWU-TAAHC Medicinal Plant Joint R&D Center, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaoqiang Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), SWU-TAAHC Medicinal Plant Joint R&D Center, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Qiaozhuo Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), SWU-TAAHC Medicinal Plant Joint R&D Center, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Wei Qiang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), SWU-TAAHC Medicinal Plant Joint R&D Center, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jianjun Guo
- Institute of Entomology, The Provincial Key Laboratory for Plant Pest Management of Mountainous Region, Guizhou University, Guiyang, 550025, China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant Joint R&D Center, Tibetan Collaborative Innovation Center of Agricultural and Animal Husbandry Resources, Agriculture and Animal Husbandry College, Tibet University, Nyingchi of Tibet, 860000, China
| | - Min Chen
- SWU-TAAHC Medicinal Plant Joint R&D Center, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zhihua Liao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), SWU-TAAHC Medicinal Plant Joint R&D Center, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
45
|
Sadre R, Magallanes-Lundback M, Pradhan S, Salim V, Mesberg A, Jones AD, DellaPenna D. Metabolite Diversity in Alkaloid Biosynthesis: A Multilane (Diastereomer) Highway for Camptothecin Synthesis in Camptotheca acuminata. THE PLANT CELL 2016; 28:1926-44. [PMID: 27432874 PMCID: PMC5006703 DOI: 10.1105/tpc.16.00193] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/20/2016] [Accepted: 07/09/2016] [Indexed: 05/27/2023]
Abstract
Camptothecin is a monoterpene indole alkaloid (MIA) used to produce semisynthetic antitumor drugs. We investigated camptothecin synthesis in Camptotheca acuminata by combining transcriptome and expression data with reverse genetics, biochemistry, and metabolite profiling. RNAi silencing of enzymes required for the indole and seco-iridoid (monoterpene) components identified transcriptional crosstalk coordinating their synthesis in roots. Metabolite profiling and labeling studies of wild-type and RNAi lines identified plausible intermediates for missing pathway steps and demonstrated nearly all camptothecin pathway intermediates are present as multiple isomers. Unlike previously characterized MIA-producing plants, C. acuminata does not synthesize 3-α(S)-strictosidine as its central MIA intermediate and instead uses an alternative seco-iridoid pathway that produces multiple isomers of strictosidinic acid. NMR analysis demonstrated that the two major strictosidinic acid isomers are (R) and (S) diastereomers at their glucosylated C21 positions. The presence of multiple diastereomers throughout the pathway is consistent with their use in synthesis before finally being resolved to a single camptothecin isomer after deglucosylation, much as a multilane highway allows parallel tracks to converge at a common destination. A model "diastereomer" pathway for camptothecin biosynthesis in C. acuminata is proposed that fundamentally differs from previously studied MIA pathways.
Collapse
Affiliation(s)
- Radin Sadre
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Maria Magallanes-Lundback
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Sujana Pradhan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1319
| | - Vonny Salim
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Alex Mesberg
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319 Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1319
| | - Dean DellaPenna
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| |
Collapse
|
46
|
Qiang W, Xia K, Zhang Q, Zeng J, Huang Y, Yang C, Chen M, Liu X, Lan X, Liao Z. Functional characterisation of a tropine-forming reductase gene from Brugmansia arborea, a woody plant species producing tropane alkaloids. PHYTOCHEMISTRY 2016; 127:12-22. [PMID: 26988730 DOI: 10.1016/j.phytochem.2016.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 03/01/2016] [Accepted: 03/08/2016] [Indexed: 06/05/2023]
Abstract
Brugmansia arborea is a woody plant species that produces tropane alkaloids (TAs). The gene encoding tropine-forming reductase or tropinone reductase I (BaTRI) in this plant species was functionally characterised. The full-length cDNA of BaTRI encoded a 272-amino-acid polypeptide that was highly similar to tropinone reductase I from TAs-producing herbal plant species. The purified 29kDa recombinant BaTRI exhibited maximum reduction activity at pH 6.8-8.0 when tropinone was used as substrate; it also exhibited maximum oxidation activity at pH 9.6 when tropine was used as substrate. The Km, Vmax and Kcat values of BaTRI for tropinone were 2.65mM, 88.3nkatmg(-1) and 2.93S(-1), respectively, at pH 6.4; the Km, Vmax and Kcat values of TRI from Datura stramonium (DsTRI) for tropinone were respectively 4.18mM, 81.20nkatmg(-1) and 2.40S(-1) at pH 6.4. At pH 6.4, 6.8 and 7.0, BaTRI had a significantly higher activity than DsTRI. Analogues of tropinone, 4-methylcyclohexanone and 3-quinuclidinone hydrochloride, were also used to investigate the enzymatic kinetics of BaTRI. The Km, Vmax and Kcat values of BaTRI for tropine were 0.56mM, 171.62nkat.mg(-1) and 5.69S(-1), respectively, at pH 9.6; the Km, Vmax and Kcat values of DsTRI for tropine were 0.34mM, 111.90nkatmg(-1) and 3.30S(-1), respectively, at pH 9.6. The tissue profiles of BaTRI differed from those in TAs-producing herbal plant species. BaTRI was expressed in all examined organs but was most abundant in secondary roots. Finally, tropane alkaloids, including hyoscyamine, anisodamine and scopolamine, were detected in various organs of B. arborea by HPLC. Interestingly, scopolamine constituted most of the tropane alkaloids content in B. arborea, which suggests that B. arborea is a scopolamine-rich plant species. The scopolamine content was much higher in the leaves and stems than in other organs. The gene expression and TAs accumulation suggest that the biosynthesis of hyoscyamine, especially scopolamine, occurred not only in the roots but also in the aerial parts of B. arborea.
Collapse
Affiliation(s)
- Wei Qiang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ke Xia
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qiaozhuo Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Junlan Zeng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yuanshe Huang
- College of Agronomy, Anshun University, Anshun 561000, China
| | - Chunxian Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Min Chen
- SWU-TAAHC Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoqiang Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant Joint R&D Centre, Agricultural and Animal Husbandry College, Tibet University, Nyingchi of Tibet 860000, China
| | - Zhihua Liao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
47
|
Cook SD, Nichols DS, Smith J, Chourey PS, McAdam EL, Quittenden L, Ross JJ. Auxin Biosynthesis: Are the Indole-3-Acetic Acid and Phenylacetic Acid Biosynthesis Pathways Mirror Images? PLANT PHYSIOLOGY 2016; 171:1230-41. [PMID: 27208245 PMCID: PMC4902625 DOI: 10.1104/pp.16.00454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/21/2016] [Indexed: 05/05/2023]
Abstract
The biosynthesis of the main auxin in plants (indole-3-acetic acid [IAA]) has been elucidated recently and is thought to involve the sequential conversion of Trp to indole-3-pyruvic acid to IAA However, the pathway leading to a less well studied auxin, phenylacetic acid (PAA), remains unclear. Here, we present evidence from metabolism experiments that PAA is synthesized from the amino acid Phe, via phenylpyruvate. In pea (Pisum sativum), the reverse reaction, phenylpyruvate to Phe, is also demonstrated. However, despite similarities between the pathways leading to IAA and PAA, evidence from mutants in pea and maize (Zea mays) indicate that IAA biosynthetic enzymes are not the main enzymes for PAA biosynthesis. Instead, we identified a putative aromatic aminotransferase (PsArAT) from pea that may function in the PAA synthesis pathway.
Collapse
Affiliation(s)
- Sam D Cook
- School of Biological Sciences (S.D.C., E.L.M., L.Q., J.J.R.), Central Science Laboratory (D.S.N.), School of Chemistry (J.S.), University of Tasmania, Sandy Bay, Tasmania, Australia, 7005; and U.S. Department of Agriculture, Agricultural Research Service, Gainesville, Florida 32608 (P.S.C.)
| | - David S Nichols
- School of Biological Sciences (S.D.C., E.L.M., L.Q., J.J.R.), Central Science Laboratory (D.S.N.), School of Chemistry (J.S.), University of Tasmania, Sandy Bay, Tasmania, Australia, 7005; and U.S. Department of Agriculture, Agricultural Research Service, Gainesville, Florida 32608 (P.S.C.)
| | - Jason Smith
- School of Biological Sciences (S.D.C., E.L.M., L.Q., J.J.R.), Central Science Laboratory (D.S.N.), School of Chemistry (J.S.), University of Tasmania, Sandy Bay, Tasmania, Australia, 7005; and U.S. Department of Agriculture, Agricultural Research Service, Gainesville, Florida 32608 (P.S.C.)
| | - Prem S Chourey
- School of Biological Sciences (S.D.C., E.L.M., L.Q., J.J.R.), Central Science Laboratory (D.S.N.), School of Chemistry (J.S.), University of Tasmania, Sandy Bay, Tasmania, Australia, 7005; and U.S. Department of Agriculture, Agricultural Research Service, Gainesville, Florida 32608 (P.S.C.)
| | - Erin L McAdam
- School of Biological Sciences (S.D.C., E.L.M., L.Q., J.J.R.), Central Science Laboratory (D.S.N.), School of Chemistry (J.S.), University of Tasmania, Sandy Bay, Tasmania, Australia, 7005; and U.S. Department of Agriculture, Agricultural Research Service, Gainesville, Florida 32608 (P.S.C.)
| | - Laura Quittenden
- School of Biological Sciences (S.D.C., E.L.M., L.Q., J.J.R.), Central Science Laboratory (D.S.N.), School of Chemistry (J.S.), University of Tasmania, Sandy Bay, Tasmania, Australia, 7005; and U.S. Department of Agriculture, Agricultural Research Service, Gainesville, Florida 32608 (P.S.C.)
| | - John J Ross
- School of Biological Sciences (S.D.C., E.L.M., L.Q., J.J.R.), Central Science Laboratory (D.S.N.), School of Chemistry (J.S.), University of Tasmania, Sandy Bay, Tasmania, Australia, 7005; and U.S. Department of Agriculture, Agricultural Research Service, Gainesville, Florida 32608 (P.S.C.)
| |
Collapse
|
48
|
Abstract
Brugmansia candida (syn. Datura candida) is a South American native plant that produces tropane alkaloids. Hyoscyamine, 6β-hydroxyhyoscyamine (anisodamine), and scopolamine are the most important ones due to their anticholinergic activity. These bioactive compounds have been historically and widely applied in medicine and their demand is continuous. Their chemical synthesis is costly and complex, and thereby, these alkaloids are industrially produced from natural producer plants. The production of these secondary metabolites by plant in vitro cultures such as hairy roots presents certain advantages over the natural source and chemical synthesis. It is well known that hairy roots produced by Agrobacterium rhizogenes infection are fast-growing cultures, genetically stable and able to grow in hormone-free media. Additionally, recent progress achieved in the scaling up of hairy root cultures makes this technology an attractive tool for industrial processes. This chapter is focused on the methods for the induction and establishment of B. candida hairy roots. In addition, the scaling up of hairy root cultures in bioreactors and tropane alkaloid analysis is discussed.
Collapse
|
49
|
Characterization of aromatic aminotransferases from Ephedra sinica Stapf. Amino Acids 2016; 48:1209-20. [DOI: 10.1007/s00726-015-2156-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 12/13/2015] [Indexed: 01/12/2023]
|
50
|
Identification and developmental expression profiling of putative alkaloid biosynthetic genes in Corydalis yanhusuo bulbs. Sci Rep 2016; 6:19460. [PMID: 26777987 PMCID: PMC4726099 DOI: 10.1038/srep19460] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 12/14/2015] [Indexed: 11/08/2022] Open
Abstract
Alkaloids in bulbs of Corydalis (C.) yanhusuo are the major pharmacologically active compounds in treatment of blood vessel diseases, tumors and various pains. However, due to the absence of gene sequences in C. yanhusuo, the genes involved in alkaloid biosynthesis and their expression during bulb development remain unknown. We therefore established the first transcriptome database of C. yanhusuo via Illumina mRNA-Sequencing of a RNA composite sample collected at Bulb initiation (Day 0), early enlargement (Day 10) and maturation (Day 30). 25,013,630 clean 90 bp paired-end reads were de novo assembled into 47,081 unigenes with an average length of 489 bp, among which 30,868 unigenes (65.56%) were annotated in four protein databases. Of 526 putative unigenes involved in biosynthesis o f various alkaloids, 187 were identified as the candidate genes involved in the biosynthesis of benzylisoquinoline alkaloids (BIAs), the only alkaloid type reported in C. yanhusuo untill now. BIAs biosynthetic genes were highly upregulated in the overall pathway during bulb development. Identification of alkaloid biosynthetic genes in C. yanhusuo provide insights on pathways and molecular regulation of alkaloid biosynthesis, to initiate metabolic engineering in order to improve the yield of interesting alkaloids and to identify potentially new alkaloids predicted from the transcriptomic information.
Collapse
|