1
|
Wang Y, Zou Y, Wei Y, Meng L. Crosstalk Between Ethylene and JA/ABA/Sugar Signalling in Plants Under Physiological and Stress Conditions. MOLECULAR PLANT PATHOLOGY 2025; 26:e70048. [PMID: 40059084 PMCID: PMC11890979 DOI: 10.1111/mpp.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/13/2024] [Accepted: 12/15/2024] [Indexed: 05/13/2025]
Abstract
Growth, development and defence responses of plants are governed through signalling networks that connect inputs from nutrient status, hormone cues and environmental signals. Plant hormones as endogenous signals are essential for modulating plant defence responses and developmental processes. Ethylene (ET), a gaseous hormone, is widely established as a regulator of these processes. Over the last two decades, substantial research reports have revealed the interaction between ET and other endogenous cues, including abscisic acid (ABA), sugars and jasmonates (JAs). However, these reports showed numerous conflicting or contrasting conclusions. For example, some reports revealed that ET and ABA/sugar/JA signalling synergistically regulate plant growth, development and defence responses, whereas other reports demonstrated that these cues antagonistically modulate these processes. This suggests that the crosstalk between ET and JA/ABA/sugar signalling is very complex, that is, these hormones can function either antagonistically or coordinately, dependent on the given biological process (e.g., under physiological or stress conditions). Further analysis found that whether synergistic or antagonistic actions exist between ET and JA/ABA/sugar signalling is determined by the induction/inhibition of their respective master transcription factors in these pathways. We here summarise the most recent advances and outstanding questions and/or challenges in the area of crosstalk between ET and ABA/sugar/JA signalling under physiological or stress conditions.
Collapse
Affiliation(s)
- Yi‐Bo Wang
- College of Bioengineering and BiotechnologyTianshui Normal UniversityTianshuiGansuChina
| | - Ya‐Li Zou
- College of Bioengineering and BiotechnologyTianshui Normal UniversityTianshuiGansuChina
| | - Yu‐Ting Wei
- School of Life ScienceJiangsu Normal UniversityXuzhouJiangsuChina
| | - Lai‐Sheng Meng
- College of Bioengineering and BiotechnologyTianshui Normal UniversityTianshuiGansuChina
- School of Life ScienceJiangsu Normal UniversityXuzhouJiangsuChina
| |
Collapse
|
2
|
Asad MAU, Guan X, Zhang Y, Zhou L, Bartas M, Ullah N, Zhou W, Cheng F. Nitrogen Deficiency Accelerates Rice Leaf Senescence Through ABA Signaling and Sugar Metabolic Shifts. PHYSIOLOGIA PLANTARUM 2025; 177:e70124. [PMID: 39968837 DOI: 10.1111/ppl.70124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 02/20/2025]
Abstract
Nitrogen (N) deficiency is one of the critical factors that induce leaf senescence by integrating with abscisic acid (ABA) metabolism, which results in a shortened leaf photosynthetic period and markedly lowered grain yield. However, the metabolic pathway by which ABA signaling participates in the regulation of senescence-associated change in sugar metabolism and its relationship with N allocation in plant tissues are not well understood. In this paper, the effect of supply level on leaf C/N allocation and its relation to ABA signalling, sugar metabolism, and N assimilation were investigated by using two rice genotypes subjected to four N treatments. Results indicated that N-deficiency markedly induced PYR1-like (PYL) expression and ABA biosynthesis, consequently leading to the activation of ABA signaling. The increased ABA concentration in leaf tissues triggered the catabolic pathways of sugar and N metabolisms, resulting in the reduced photosynthetic pigments and intensified oxidative damage in N-deficient leaves. ABA signaling induced by N-deficiency upregulates the expression of senescence-associated genes (SAGs) and C/N allocation by mediating several senescence-promoting factors, such as NAC, bZIP, and WRKY TFs, along with the suppression of PP2Cs. Therefore, N-deficiency impairs chlorophyll biosynthesis and triggers chlorophyll degradation to accelerate the timing and rate of leaf senescence. This metabolic network could provide helpful information for understanding the regulatory mechanism of leaf senescence in relation to sugar signaling, N-assimilation and N-use efficiency.
Collapse
Affiliation(s)
- Muhmmad Asad Ullah Asad
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xianyue Guan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Zhang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lujian Zhou
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Martin Bartas
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Najeeb Ullah
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, Doha, Qatar
| | - Weijun Zhou
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fangmin Cheng
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing, China
| |
Collapse
|
3
|
Yu S, Li T, Teng X, Yang F, Ma X, Han J, Zhou L, Bian Z, Wei H, Deng H, Zhu Y, Yu X. Autotetraploidy of rice does not potentiate the tolerance to drought stress in the seedling stage. RICE (NEW YORK, N.Y.) 2024; 17:40. [PMID: 38888627 PMCID: PMC11189374 DOI: 10.1186/s12284-024-00716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024]
Abstract
Polyploid is considered an advantage that has evolved to be more environmentally adaptable than its diploid. To understand if doubled chromosome of diploid rice can improve drought tolerance, we evaluated the diploid (2X) and autotetraploid (4X) plants of three indica and three japonica varieties. Drought stress in the plastic bucket of four-leaf stage revealed that the drought tolerance of 4X plants was lower than that of its diploid donor plants. The assay of photosynthetic rate of all varieties showed that all 4X varieties had lower rates than their diploid donors. The capacity for reactive oxygen species production and scavenging varied among different 2X and 4X varieties. Further, transcriptomic analysis of 2X and 4X plants of four varieties under normal and drought condition showed that the wide variation of gene expression was caused by difference of varieties, not by chromosome ploidy. However, weighted gene co-expression network analysis (WGCNA) revealed that the severe interference of photosynthesis-related genes in tetraploid plants under drought stress is the primary reason for the decrease of drought tolerance in autotetraploid lines. Consistently, new transcripts analysis in autotetraploid revealed that the gene transcription related with mitochondrion and plastid of cell component was influenced most significantly. The results indicated that chromosome doubling of diploid rice weakened their drought tolerance, primarily due to disorder of photosynthesis-related genes in tetraploid plants under drought stress. Maintain tetraploid drought tolerance through chromosome doubling breeding in rice needs to start with the selection of parental varieties and more efforts.
Collapse
Affiliation(s)
- Shunwu Yu
- Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Tianfei Li
- Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Xiaoying Teng
- Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Fangwen Yang
- Shanghai Agrobiological Gene Center, Shanghai, 201106, China
| | - Xiaosong Ma
- Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Jing Han
- Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Li Zhou
- Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Zhijuan Bian
- Shanghai Agrobiological Gene Center, Shanghai, 201106, China
| | - Haibin Wei
- Shanghai Agrobiological Gene Center, Shanghai, 201106, China
| | - Hui Deng
- Institute of Crop Sciences, Wuhan Acadamy of Agricultual Sciences, Wuhan, 430345, China
| | - Yongsheng Zhu
- Institute of Crop Sciences, Wuhan Acadamy of Agricultual Sciences, Wuhan, 430345, China.
| | - Xinqiao Yu
- Shanghai Agrobiological Gene Center, Shanghai, 201106, China.
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China.
| |
Collapse
|
4
|
Leisner CP, Potnis N, Sanz-Saez A. Crosstalk and trade-offs: Plant responses to climate change-associated abiotic and biotic stresses. PLANT, CELL & ENVIRONMENT 2023; 46:2946-2963. [PMID: 36585762 DOI: 10.1111/pce.14532] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/07/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
As sessile organisms, plants are constantly challenged by a dynamic growing environment. This includes fluctuations in temperature, water availability, light levels, and changes in atmospheric constituents such as carbon dioxide (CO2 ) and ozone (O3 ). In concert with changes in abiotic conditions, plants experience changes in biotic stress pressures, including plant pathogens and herbivores. Human-induced increases in atmospheric CO2 levels have led to alterations in plant growth environments that impact their productivity and nutritional quality. Additionally, it is predicted that climate change will alter the prevalence and virulence of plant pathogens, further challenging plant growth. A knowledge gap exists in the complex interplay between plant responses to biotic and abiotic stress conditions. Closing this gap is crucial for developing climate resilient crops in the future. Here, we briefly review the physiological responses of plants to elevated CO2 , temperature, tropospheric O3 , and drought conditions, as well as the interaction of these abiotic stress factors with plant pathogen pressure. Additionally, we describe the crosstalk and trade-offs involved in plant responses to both abiotic and biotic stress, and outline targets for future work to develop a more sustainable future food supply considering future climate change.
Collapse
Affiliation(s)
- Courtney P Leisner
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Alvaro Sanz-Saez
- Department of Crop, Soil and Environmental Science, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
5
|
Park J, Lee HH, Moon H, Lee N, Kim S, Kim JE, Lee Y, Min K, Kim H, Choi GJ, Lee YW, Seo YS, Son H. A combined transcriptomic and physiological approach to understanding the adaptive mechanisms to cope with oxidative stress in Fusarium graminearum. Microbiol Spectr 2023; 11:e0148523. [PMID: 37671872 PMCID: PMC10581207 DOI: 10.1128/spectrum.01485-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/04/2023] [Indexed: 09/07/2023] Open
Abstract
In plant-pathogen interactions, oxidative bursts are crucial for plants to defend themselves against pathogen infections. Rapid production and accumulation of reactive oxygen species kill pathogens directly and cause local cell death, preventing pathogens from spreading to adjacent cells. Meanwhile, the pathogens have developed several mechanisms to tolerate oxidative stress and successfully colonize plant tissues. In this study, we investigated the mechanisms responsible for resistance to oxidative stress by analyzing the transcriptomes of six oxidative stress-sensitive strains of the plant pathogenic fungus Fusarium graminearum. Weighted gene co-expression network analysis identified several pathways related to oxidative stress responses, including the DNA repair system, autophagy, and ubiquitin-mediated proteolysis. We also identified hub genes with high intramodular connectivity in key modules and generated deletion or conditional suppression mutants. Phenotypic characterization of those mutants showed that the deletion of FgHGG4, FgHGG10, and FgHGG13 caused sensitivity to oxidative stress, and further investigation on those genes revealed that transcriptional elongation and DNA damage responses play roles in oxidative stress response and pathogenicity. The suppression of FgHGL7 also led to hypersensitivity to oxidative stress, and we demonstrated that FgHGL7 plays a crucial role in heme biosynthesis and is essential for peroxidase activity. This study increases the understanding of the adaptive mechanisms to cope with oxidative stress in plant pathogenic fungi. IMPORTANCE Fungal pathogens have evolved various mechanisms to overcome host-derived stresses for successful infection. Oxidative stress is a representative defense system induced by the host plant, and fungi have complex response systems to cope with it. Fusarium graminearum is one of the devastating plant pathogenic fungi, and understanding its pathosystem is crucial for disease control. In this study, we investigated adaptive mechanisms for coping with oxidative stress at the transcriptome level using oxidative stress-sensitive strains. In addition, by introducing genetic modification technique such as CRISPR-Cas9 and the conditional gene expression system, we identified pathways/genes required for resistance to oxidative stress and also for virulence. Overall, this study advances the understanding of the oxidative stress response and related mechanisms in plant pathogenic fungi.
Collapse
Affiliation(s)
- Jiyeun Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Hee Lee
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Heeji Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Nahyun Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Sieun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jung-Eun Kim
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Jeju, Republic of Korea
| | - Yoonji Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Kyunghun Min
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Hun Kim
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Gyung Ja Choi
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Kumar S, Gupta N, Chakraborty S. Geminiviral betasatellites: critical viral ammunition to conquer plant immunity. Arch Virol 2023; 168:196. [PMID: 37386317 DOI: 10.1007/s00705-023-05776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/30/2023] [Indexed: 07/01/2023]
Abstract
Geminiviruses have mastered plant cell modulation and immune invasion to ensue prolific infection. Encoding a relatively small number of multifunctional proteins, geminiviruses rely on satellites to efficiently re-wire plant immunity, thereby fostering virulence. Among the known satellites, betasatellites have been the most extensively investigated. They contribute significantly to virulence, enhance virus accumulation, and induce disease symptoms. To date, only two betasatellite proteins, βC1, and βV1, have been shown to play a crucial role in virus infection. In this review, we offer an overview of plant responses to betasatellites and counter-defense strategies deployed by betasatellites to overcome those responses.
Collapse
Affiliation(s)
- Sunil Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Neha Gupta
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
7
|
Zhao Q, Liu F, Song C, Zhai T, He Z, Ma L, Zhao X, Jia Z, Song S. Diffusible signal factor primes plant immunity against Xanthomonas campestris pv. campestris ( Xcc) via JA signaling in Arabidopsis and Brassica oleracea. Front Cell Infect Microbiol 2023; 13:1203582. [PMID: 37404719 PMCID: PMC10315614 DOI: 10.3389/fcimb.2023.1203582] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/16/2023] [Indexed: 07/06/2023] Open
Abstract
Background Many Gram-negative bacteria use quorum sensing (QS) signal molecules to monitor their local population density and to coordinate their collective behaviors. The diffusible signal factor (DSF) family represents an intriguing type of QS signal to mediate intraspecies and interspecies communication. Recently, accumulating evidence demonstrates the role of DSF in mediating inter-kingdom communication between DSF-producing bacteria and plants. However, the regulatory mechanism of DSF during the Xanthomonas-plant interactions remain unclear. Methods Plants were pretreated with different concentration of DSF and subsequent inoculated with pathogen Xanthomonas campestris pv. campestris (Xcc). Pathogenicity, phynotypic analysis, transcriptome combined with metabolome analysis, genetic analysis and gene expression analysis were used to evaluate the priming effects of DSF on plant disease resistance. Results We found that the low concentration of DSF could prime plant immunity against Xcc in both Brassica oleracea and Arabidopsis thaliana. Pretreatment with DSF and subsequent pathogen invasion triggered an augmented burst of ROS by DCFH-DA and DAB staining. CAT application could attenuate the level of ROS induced by DSF. The expression of RBOHD and RBOHF were up-regulated and the activities of antioxidases POD increased after DSF treatment followed by Xcc inoculation. Transcriptome combined with metabolome analysis showed that plant hormone jasmonic acid (JA) signaling involved in DSF-primed resistance to Xcc in Arabidopsis. The expression of JA synthesis genes (AOC2, AOS, LOX2, OPR3 and JAR1), transportor gene (JAT1), regulator genes (JAZ1 and MYC2) and responsive genes (VSP2, PDF1.2 and Thi2.1) were up-regulated significantly by DSF upon Xcc challenge. The primed effects were not observed in JA relevant mutant coi1-1 and jar1-1. Conclusion These results indicated that DSF-primed resistance against Xcc was dependent on the JA pathway. Our findings advanced the understanding of QS signal-mediated communication and provide a new strategy for the control of black rot in Brassica oleracea.
Collapse
Affiliation(s)
- Qian Zhao
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
- Hebei Technology Innovation Center of Microbiological Control on Main Crop Disease, Shijiazhuang, China
| | - Fang Liu
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Cong Song
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
- Hebei Technology Innovation Center of Microbiological Control on Main Crop Disease, Shijiazhuang, China
| | - Tingting Zhai
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
| | - Ziwei He
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
| | - Limei Ma
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
- Hebei Technology Innovation Center of Microbiological Control on Main Crop Disease, Shijiazhuang, China
| | - Xuemeng Zhao
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
| | - Zhenhua Jia
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
- Hebei Technology Innovation Center of Microbiological Control on Main Crop Disease, Shijiazhuang, China
| | - Shuishan Song
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
- Hebei Technology Innovation Center of Microbiological Control on Main Crop Disease, Shijiazhuang, China
| |
Collapse
|
8
|
Liang Y, Huang Y, Liu C, Chen K, Li M. Functions and interaction of plant lipid signalling under abiotic stresses. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:361-378. [PMID: 36719102 DOI: 10.1111/plb.13507] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Lipids are the primary form of energy storage and a major component of plasma membranes, which form the interface between the cell and the extracellular environment. Several lipids - including phosphoinositide, phosphatidic acid, sphingolipids, lysophospholipids, oxylipins, and free fatty acids - also serve as substrates for the generation of signalling molecules. Abiotic stresses, such as drought and temperature stress, are known to affect plant growth. In addition, abiotic stresses can activate certain lipid-dependent signalling pathways that control the expression of stress-responsive genes and contribute to plant stress adaptation. Many studies have focused either on the enzymatic production and metabolism of lipids, or on the mechanisms of abiotic stress response. However, there is little information regarding the roles of plant lipids in plant responses to abiotic stress. In this review, we describe the metabolism of plant lipids and discuss their involvement in plant responses to abiotic stress. As such, this review provides crucial background for further research on the interactions between plant lipids and abiotic stress.
Collapse
Affiliation(s)
- Y Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, College of Life Science, Guilin, China
| | - Y Huang
- Guilin University of Electronic Technology, School of Mechanical and Electrical Engineering, Guilin, China
| | - C Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, College of Life Science, Guilin, China
| | - K Chen
- Department of Biotechnology, Huazhong University of Science and Technology, College of Life Science and Technology, Wuhan, China
| | - M Li
- Department of Biotechnology, Huazhong University of Science and Technology, College of Life Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Jardim-Messeder D, Caverzan A, Balbinott N, Menguer PK, Paiva ALS, Lemos M, Cunha JR, Gaeta ML, Costa M, Zamocky M, Saibo NJM, Silveira JAG, Margis R, Margis-Pinheiro M. Stromal Ascorbate Peroxidase ( OsAPX7) Modulates Drought Stress Tolerance in Rice ( Oryza sativa). Antioxidants (Basel) 2023; 12:antiox12020387. [PMID: 36829946 PMCID: PMC9952370 DOI: 10.3390/antiox12020387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Chloroplast ascorbate peroxidases exert an important role in the maintenance of hydrogen peroxide levels in chloroplasts by using ascorbate as the specific electron donor. In this work, we performed a functional study of the stromal APX in rice (OsAPX7) and demonstrated that silencing of OsAPX7 did not impact plant growth, redox state, or photosynthesis parameters. Nevertheless, when subjected to drought stress, silenced plants (APX7i) show a higher capacity to maintain stomata aperture and photosynthesis performance, resulting in a higher tolerance when compared to non-transformed plants. RNA-seq analyses indicate that the silencing of OsAPX7 did not lead to changes in the global expression of genes related to reactive oxygen species metabolism. In addition, the drought-mediated induction of several genes related to the proteasome pathway and the down-regulation of genes related to nitrogen and carotenoid metabolism was impaired in APX7i plants. During drought stress, APX7i showed an up-regulation of genes encoding flavonoid and tyrosine metabolism enzymes and a down-regulation of genes related to phytohormones signal transduction and nicotinate and nicotinamide metabolism. Our results demonstrate that OsAPX7 might be involved in signaling transduction pathways related to drought stress response, contributing to the understanding of the physiological role of chloroplast APX isoforms in rice.
Collapse
Affiliation(s)
- Douglas Jardim-Messeder
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, RS, Brazil
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil
| | - Andreia Caverzan
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, RS, Brazil
| | - Natalia Balbinott
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, RS, Brazil
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, RS, Brazil
| | - Paloma K. Menguer
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, RS, Brazil
| | - Ana L. S. Paiva
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza 60020-181, CE, Brazil
| | - Moaciria Lemos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza 60020-181, CE, Brazil
| | - Juliana R. Cunha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza 60020-181, CE, Brazil
| | - Marcos L. Gaeta
- Departamento de Botânica, Universidade Federal Rio Grande do Sul, Porto Alegre 90010-150, RS, Brazil
| | - Miguel Costa
- LEAF, TERRA, Instituto Superior de Agronomia, University of Lisbon, 1349-017 Lisboa, Portugal
| | - Marcel Zamocky
- Laboratory of Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Nelson J. M. Saibo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Joaquim A. G. Silveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza 60020-181, CE, Brazil
| | - Rogério Margis
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, RS, Brazil
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, RS, Brazil
| | - Márcia Margis-Pinheiro
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, RS, Brazil
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, RS, Brazil
- Correspondence:
| |
Collapse
|
10
|
Kumar R, Dasgupta I. Geminiviral C4/AC4 proteins: An emerging component of the viral arsenal against plant defence. Virology 2023; 579:156-168. [PMID: 36693289 DOI: 10.1016/j.virol.2023.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/26/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Virus infection triggers a plethora of defence reactions in plants to incapacitate the intruder. Viruses, in turn, have added additional functions to their genes so that they acquire capabilities to neutralize the above defence reactions. In plant-infecting viruses, the family Geminiviridae comprises members, majority of whom encode 6-8 genes in their small single-stranded DNA genomes. Of the above genes, one which shows the most variability in its amino acid sequence is the C4/AC4. Recent studies have uncovered evidence, which point towards a wide repertoire of functions performed by C4/AC4 revealing its role as a major player in suppressing plant defence. This review summarizes the various plant defence mechanisms against viruses and highlights how C4/AC4 has evolved to counter most of them.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
11
|
Ma J, Morel JB, Riemann M, Nick P. Jasmonic acid contributes to rice resistance against Magnaporthe oryzae. BMC PLANT BIOLOGY 2022; 22:601. [PMID: 36539712 PMCID: PMC9764487 DOI: 10.1186/s12870-022-03948-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The annual yield losses caused by the Rice Blast Fungus, Magnaporthe oryzae, range to the equivalent for feeding 60 million people. To ward off infection by this fungus, rice has evolved a generic basal immunity (so called compatible interaction), which acts in concert with strain-specific defence (so-called incompatible interaction). The plant-defence hormone jasmonic acid (JA) promotes the resistance to M. oryzae, but the underlying mechanisms remain elusive. To get more insight into this open question, we employ the JA-deficient mutants, cpm2 and hebiba, and dissect the JA-dependent defence signalling in rice for both, compatible and incompatible interactions. RESULTS We observe that both JA-deficient mutants are more susceptible to M. oryzae as compared to their wild-type background, which holds true for both types of interactions as verified by cytological staining. Secondly, we observe that transcripts for JA biosynthesis (OsAOS2 and OsOPR7), JA signalling (OsJAZ8, OsJAZ9, OsJAZ11 and OsJAZ13), JA-dependent phytoalexin synthesis (OsNOMT), and JA-regulated defence-related genes, such as OsBBTI2 and OsPR1a, accumulate after fungal infection in a pattern that correlates with the amplitude of resistance. Thirdly, induction of defence transcripts is weaker during compatible interaction. CONCLUSION The study demonstrates the pivotal role of JA in basal immunity of rice in the resistance to M. oryzae in both, compatible and incompatible interactions.
Collapse
Affiliation(s)
- Junning Ma
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jean-Benoît Morel
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Michael Riemann
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Peter Nick
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
12
|
Jardim-Messeder D, Caverzan A, Bastos GA, Galhego V, Souza-Vieira YD, Lazzarotto F, Felix-Mendes E, Lavaquial L, Nicomedes Junior J, Margis-Pinheiro M, Sachetto-Martins G. Genome-wide, evolutionary, and functional analyses of ascorbate peroxidase (APX) family in Poaceae species. Genet Mol Biol 2022; 46:e20220153. [PMID: 36512713 DOI: 10.1590/1678-4685-gmb-2022-0153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/06/2022] [Indexed: 12/14/2022] Open
Abstract
Ascorbate peroxidases (APXs) are heme peroxidases involved in the control of hydrogen peroxide levels and signal transduction pathways related to development and stress responses. Here, a total of 238 APX, 30 APX-related (APX-R), and 34 APX-like (APX-L) genes were identified from 24 species from the Poaceae family. Phylogenetic analysis of APX indicated five distinct clades, equivalent to cytosolic (cAPX), peroxisomal (pAPX), mitochondrial (mitAPX), stromal (sAPX), and thylakoidal (tAPX) isoforms. Duplication events contributed to the expansion of this family and the divergence times. Different from other APX isoforms, the emergence of Poaceae mitAPXs occurred independently after eudicot and monocot divergence. Our results showed that the constitutive silencing of mitAPX genes is not viable in rice plants, suggesting that these isoforms are essential for rice regeneration or development. We also obtained rice plants silenced individually to sAPX isoforms, demonstrating that, different to plants double silenced to both sAPX and tAPX or single silenced to tAPX previously obtained, these plants do not show changes in the total APX activity and hydrogen peroxide content in the shoot. Among rice plants silenced to different isoforms, plants silenced to cAPX showed a higher decrease in total APX activity and an increase in hydrogen peroxide levels. These results suggest that the cAPXs are the main isoforms responsible for regulating hydrogen peroxide levels in the cell, whereas in the chloroplast, this role is provided mainly by the tAPX isoform. In addition to broadening our understanding of the core components of the antioxidant defense in Poaceae species, the present study also provides a platform for their functional characterization.
Collapse
Affiliation(s)
- Douglas Jardim-Messeder
- Universidade Federal do Rio de Janeiro, Departamento de Genética, Rio de Janeiro, RJ, Brazil.,Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Rio de Janeiro, RJ, Brazil
| | - Andreia Caverzan
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Gabriel Afonso Bastos
- Universidade Federal do Rio de Janeiro, Departamento de Genética, Rio de Janeiro, RJ, Brazil
| | - Vanessa Galhego
- Universidade Federal do Rio de Janeiro, Departamento de Genética, Rio de Janeiro, RJ, Brazil
| | - Ygor de Souza-Vieira
- Universidade Federal do Rio de Janeiro, Departamento de Genética, Rio de Janeiro, RJ, Brazil
| | - Fernanda Lazzarotto
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Esther Felix-Mendes
- Universidade Federal do Rio de Janeiro, Departamento de Genética, Rio de Janeiro, RJ, Brazil
| | - Lucas Lavaquial
- Universidade Federal do Rio de Janeiro, Departamento de Genética, Rio de Janeiro, RJ, Brazil
| | - José Nicomedes Junior
- Universidade Federal do Rio de Janeiro, Departamento de Genética, Rio de Janeiro, RJ, Brazil
| | - Márcia Margis-Pinheiro
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | | |
Collapse
|
13
|
Genome-Wide Identification of Auxin-Responsive GH3 Gene Family in Saccharum and the Expression of ScGH3-1 in Stress Response. Int J Mol Sci 2022; 23:ijms232112750. [PMID: 36361540 PMCID: PMC9654502 DOI: 10.3390/ijms232112750] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Gretchen Hagen3 (GH3), one of the three major auxin-responsive gene families, is involved in hormone homeostasis in vivo by amino acid splicing with the free forms of salicylic acid (SA), jasmonic acid (JA) or indole-3-acetic acid (IAA). Until now, the functions of sugarcane GH3 (SsGH3) family genes in response to biotic stresses have been largely unknown. In this study, we performed a systematic identification of the SsGH3 gene family at the genome level and identified 41 members on 19 chromosomes in the wild sugarcane species, Saccharum spontaneum. Many of these genes were segmentally duplicated and polyploidization was the main contributor to the increased number of SsGH3 members. SsGH3 proteins can be divided into three major categories (SsGH3-I, SsGH3-II, and SsGH3-III) and most SsGH3 genes have relatively conserved exon-intron arrangements and motif compositions. Diverse cis-elements in the promoters of SsGH3 genes were predicted to be essential players in regulating SsGH3 expression patterns. Multiple transcriptome datasets demonstrated that many SsGH3 genes were responsive to biotic and abiotic stresses and possibly had important functions in the stress response. RNA sequencing and RT-qPCR analysis revealed that SsGH3 genes were differentially expressed in sugarcane tissues and under Sporisorium scitamineum stress. In addition, the SsGH3 homolog ScGH3-1 gene (GenBank accession number: OP429459) was cloned from the sugarcane cultivar (Saccharum hybrid) ROC22 and verified to encode a nuclear- and membrane-localization protein. ScGH3-1 was constitutively expressed in all tissues of sugarcane and the highest amount was observed in the stem pith. Interestingly, it was down-regulated after smut pathogen infection but up-regulated after MeJA and SA treatments. Furthermore, transiently overexpressed Nicotiana benthamiana, transduced with the ScGH3-1 gene, showed negative regulation in response to the infection of Ralstonia solanacearum and Fusarium solani var. coeruleum. Finally, a potential model for ScGH3-1-mediated regulation of resistance to pathogen infection in transgenic N. benthamiana plants was proposed. This study lays the foundation for a comprehensive understanding of the sequence characteristics, structural properties, evolutionary relationships, and expression of the GH3 gene family and thus provides a potential genetic resource for sugarcane disease-resistance breeding.
Collapse
|
14
|
Leppälä J, Gaupels F, Xu E, Morales LO, Durner J, Brosché M. Ozone and nitrogen dioxide regulate similar gene expression responses in Arabidopsis but natural variation in the extent of cell death is likely controlled by different genetic loci. FRONTIERS IN PLANT SCIENCE 2022; 13:994779. [PMID: 36340361 PMCID: PMC9627343 DOI: 10.3389/fpls.2022.994779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
High doses of ozone (O3) and nitrogen dioxide (NO2) cause damage and cell death in plants. These two gases are among the most harmful air pollutants for ecosystems and therefore it is important to understand how plant resistance or sensitivity to these gases work at the molecular level and its genetic control. We compared transcriptome data from O3 and NO2 fumigations to other cell death related treatments, as well as individual marker gene transcript level in different Arabidopsis thaliana accessions. Our analysis revealed that O3 and NO2 trigger very similar gene expression responses that include genes involved in pathogen resistance, cell death and ethylene signaling. However, we also identified exceptions, for example RBOHF encoding a reactive oxygen species producing RESPIRATORY BURST OXIDASE PROTEIN F. This gene had increased transcript levels by O3 but decreased transcript levels by NO2, showing that plants can identify each of the gases separately and activate distinct signaling pathways. To understand the genetics, we conducted a genome wide association study (GWAS) on O3 and NO2 tolerance of natural Arabidopsis accessions. Sensitivity to both gases seem to be controlled by several independent small effect loci and we did not find an overlap in the significantly associated regions. Further characterization of the GWAS candidate loci identified new regulators of O3 and NO2 induced cell death including ABH1, a protein that functions in abscisic acid signaling, mRNA splicing and miRNA processing. The GWAS results will facilitate further characterization of the control of programmed cell death and differences between oxidative and nitrosative stress in plants.
Collapse
Affiliation(s)
- Johanna Leppälä
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Frank Gaupels
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Enjun Xu
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Luis O. Morales
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Mikael Brosché
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Acidovorax citrulli Effector AopV Suppresses Plant Immunity and Interacts with Aromatic Dehydratase ADT6 in Watermelon. Int J Mol Sci 2022; 23:ijms231911719. [PMID: 36233021 PMCID: PMC9570411 DOI: 10.3390/ijms231911719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Bacterial fruit blotch (BFB) is a disease of cucurbit plants caused by Acidovorax citrulli. Although A. citrulli has great destructive potential, the molecular mechanisms of pathogenicity of A. citrulli are not clear, particularly with regard to its type III secreted effectors. In this study, we characterized the type III secreted effector protein, AopV, from A. citrulli strain Aac5. We show that AopV significantly inhibits reactive oxygen species and the expression of PTI marker genes, and helps the growth of Pseudomonas syringae D36E in Nicotiana benthamiana. In addition, we found that the aromatic dehydratase ADT6 from watermelon was a target of AopV. AopV interacts with ADT6 in vivo and in vitro. Subcellular localization indicated ADT6 and AopV were co-located at the cell membrane. Together, our results reveal that AopV suppresses plant immunity and targets ADT6 in the cell membrane. These findings provide an new characterization of the molecular interaction of A. citrulli effector protein AopV with host cells.
Collapse
|
16
|
Liu G, Liu F, Wang Y, Liu X. A novel long noncoding RNA CIL1 enhances cold stress tolerance in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111370. [PMID: 35788028 DOI: 10.1016/j.plantsci.2022.111370] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
With the intensification of global warming, extreme weather events have occurred more frequently, among which cold stress has become one of the major environmental factors that restrict global crop yield and production. Multiple long noncoding RNAs (lncRNAs) have been predicted or recognized in the plant response to cold stress, however, the molecular biological functions of most of these RNAs are still poorly understood. Here, we identified a novel lncRNA, COLD INDUCED lncRNA 1 (CIL1), as a positive regulator of the plant response to cold stress in Arabidopsis. CIL1 was significantly induced when the plant was exposed to cold stress. Moreover, knockdown mutants showed more sensitivity to cold stress than the wild type did, accompanied by an increased content of endogenous ROS (reactive oxygen species) and reduced osmoregulatory substances. Genome-wide transcriptome analysis indicated that 256 genes were downregulated and 34 genes were upregulated in cil1 mutants under cold stress, which were mainly involved in hormone signal transduction, ROS homeostasis and glucose metabolism. Our study implies that CIL1 has a positive effect on the plant response to cold stress by regulating the expression of multiple stress-related genes during the seedling stage.
Collapse
Affiliation(s)
- Guangchao Liu
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Fuxia Liu
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Yue Wang
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Xin Liu
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
17
|
Kim I, Kim EH, Choi YR, Kim HU. Fibrillin2 in chloroplast plastoglobules participates in photoprotection and jasmonate-induced senescence. PLANT PHYSIOLOGY 2022; 189:1363-1379. [PMID: 35404409 PMCID: PMC9237730 DOI: 10.1093/plphys/kiac166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Fibrillins (FBNs) are the major structural proteins of plastoglobules (PGs) in chloroplasts. PGs are associated with defense against abiotic and biotic stresses, as well as lipid storage. Although FBN2 is abundant in PGs, its independent function under abiotic stress has not yet been identified. In this study, the targeting of FBN2 to PGs was clearly demonstrated using an FBN2-YFP fusion protein. FBN2 showed higher expression in green photosynthetic tissues and was upregulated at the transcriptional level under high-light stress. The photosynthetic capacity of fbn2 knockout mutants generated using CRISPR/Cas9 technology decreased rapidly compared with that of wild-type (WT) plants under high-light stress. In addition to the photoprotective function of FBN2, fbn2 mutants had lower levels of plastoquinone-9 and plastochromanol-8. The fbn2 mutants were highly sensitive to methyl jasmonate (MeJA) and exhibited root growth inhibition and a pale-green phenotype due to reduced chlorophyll content. Consistently, upon MeJA treatment, the fbn2 mutants showed faster leaf senescence and more rapid chlorophyll degradation with decreased photosynthetic ability compared with the WT plants. The results of this study suggest that FBN2 is involved in protection against high-light stress and acts as an inhibitor of jasmonate-induced senescence in Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Inyoung Kim
- Department of Molecular Biology, Sejong University, Seoul 05006, South Korea
| | - Eun-Ha Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, South Korea
| | - Yu-ri Choi
- Department of Molecular Biology, Sejong University, Seoul 05006, South Korea
| | | |
Collapse
|
18
|
Tao S, Zhang Y, Tian C, Duplessis S, Zhang N. Elevated Ozone Concentration and Nitrogen Addition Increase Poplar Rust Severity by Shifting the Phyllosphere Microbial Community. J Fungi (Basel) 2022; 8:jof8050523. [PMID: 35628778 PMCID: PMC9148057 DOI: 10.3390/jof8050523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 12/04/2022] Open
Abstract
Tropospheric ozone and nitrogen deposition are two major environmental pollutants. A great deal of research has focused on the negative impacts of elevated O3 and the complementary effect of soil N addition on the physiological properties of trees. However, it has been overlooked how elevated O3 and N addition affect tree immunity in face of pathogen infection, as well as of the important roles of phyllosphere microbiome community in host–pathogen–environment interplay. Here, we examined the effects of elevated O3 and soil N addition on poplar leaf rust [Melampsora larici-populina] severity of two susceptible hybrid poplars [clone ‘107’: Populus euramericana cv. ‘74/76’; clone ‘546’: P. deltoides Í P. cathayana] in Free-Air-Controlled-Environment plots, in addition, the link between Mlp-susceptibility and changes in microbial community was determined using Miseq amplicon sequencing. Rust severity of clone ‘107’ significantly increased under elevated O3 or N addition only; however, the negative impact of elevated O3 could be significantly mitigated when accompanied by N addition, likewise, this trade-off was reflected in its phyllosphere microbial α-diversity responding to elevated O3 and N addition. However, rust severity of clone ‘546’ did not differ significantly in the cases of elevated O3 and N addition. Mlp infection altered microbial community composition and increased its sensitivity to elevated O3, as determined by the markedly different abundance of taxa. Elevated O3 and N addition reduced the complexity of microbial community, which may explain the increased severity of poplar rust. These findings suggest that poplars require a changing phyllosphere microbial associations to optimize plant immunity in response to environmental changes.
Collapse
Affiliation(s)
- Siqi Tao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (S.T.); (Y.Z.); (C.T.)
| | - Yunxia Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (S.T.); (Y.Z.); (C.T.)
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (S.T.); (Y.Z.); (C.T.)
| | | | - Naili Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (S.T.); (Y.Z.); (C.T.)
- Correspondence:
| |
Collapse
|
19
|
Cortleven A, Roeber VM, Frank M, Bertels J, Lortzing V, Beemster GTS, Schmülling T. Photoperiod Stress in Arabidopsis thaliana Induces a Transcriptional Response Resembling That of Pathogen Infection. FRONTIERS IN PLANT SCIENCE 2022; 13:838284. [PMID: 35646013 PMCID: PMC9134115 DOI: 10.3389/fpls.2022.838284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/07/2022] [Indexed: 06/15/2023]
Abstract
Plants are exposed to regular diurnal rhythms of light and dark. Changes in the photoperiod by the prolongation of the light period cause photoperiod stress in short day-adapted Arabidopsis thaliana. Here, we report on the transcriptional response to photoperiod stress of wild-type A. thaliana and photoperiod stress-sensitive cytokinin signaling and clock mutants and identify a core set of photoperiod stress-responsive genes. Photoperiod stress caused altered expression of numerous reactive oxygen species (ROS)-related genes. Photoperiod stress-sensitive mutants displayed similar, but stronger transcriptomic changes than wild-type plants. The alterations showed a strong overlap with those occurring in response to ozone stress, pathogen attack and flagellin peptide (flg22)-induced PAMP triggered immunity (PTI), which have in common the induction of an apoplastic oxidative burst. Interestingly, photoperiod stress triggers transcriptional changes in jasmonic acid (JA) and salicylic acid (SA) biosynthesis and signaling and results in increased JA, SA and camalexin levels. These responses are typically observed after pathogen infections. Consequently, photoperiod stress increased the resistance of Arabidopsis plants to a subsequent infection by Pseudomonas syringae pv. tomato DC3000. In summary, we show that photoperiod stress causes transcriptional reprogramming resembling plant pathogen defense responses and induces systemic acquired resistance (SAR) in the absence of a pathogen.
Collapse
Affiliation(s)
- Anne Cortleven
- Dahlem Centre of Plant Sciences, Institute of Biology/Applied Genetics, Freie Universität Berlin, Berlin, Germany
| | - Venja M. Roeber
- Dahlem Centre of Plant Sciences, Institute of Biology/Applied Genetics, Freie Universität Berlin, Berlin, Germany
| | - Manuel Frank
- Dahlem Centre of Plant Sciences, Institute of Biology/Applied Genetics, Freie Universität Berlin, Berlin, Germany
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jonas Bertels
- Laboratory for Integrated Molecular Plant Physiology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Vivien Lortzing
- Institute of Biology/Applied Zoology—Animal Ecology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Gerrit T. S. Beemster
- Laboratory for Integrated Molecular Plant Physiology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Thomas Schmülling
- Dahlem Centre of Plant Sciences, Institute of Biology/Applied Genetics, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
20
|
Li C, Xu M, Cai X, Han Z, Si J, Chen D. Jasmonate Signaling Pathway Modulates Plant Defense, Growth, and Their Trade-Offs. Int J Mol Sci 2022; 23:ijms23073945. [PMID: 35409303 PMCID: PMC8999811 DOI: 10.3390/ijms23073945] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023] Open
Abstract
Lipid-derived jasmonates (JAs) play a crucial role in a variety of plant development and defense mechanisms. In recent years, significant progress has been made toward understanding the JA signaling pathway. In this review, we discuss JA biosynthesis, as well as its core signaling pathway, termination mechanisms, and the evolutionary origin of JA signaling. JA regulates not only plant regeneration, reproductive growth, and vegetative growth but also the responses of plants to stresses, including pathogen as well as virus infection, herbivore attack, and abiotic stresses. We also focus on the JA signaling pathway, considering its crosstalk with the gibberellin (GA), auxin, and phytochrome signaling pathways for mediation of the trade-offs between growth and defense. In summary, JA signals regulate multiple outputs of plant defense and growth and act to balance growth and defense in order to adapt to complex environments.
Collapse
Affiliation(s)
- Cong Li
- Correspondence: (C.L.); (D.C.)
| | | | | | | | | | | |
Collapse
|
21
|
Tuan PA, Shafai T, Kaur G, Grenier G, Ayele BT. Molecular and functional characterization of a jasmonate resistant gene of wheat (Triticum aestivum L.). JOURNAL OF PLANT PHYSIOLOGY 2022; 270:153637. [PMID: 35144140 DOI: 10.1016/j.jplph.2022.153637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Jasmonates play important roles in several plant developmental processes and responses to biotic and abiotic stresses. This study identified a gene encoding jasmonate resistant 1 (JAR1) protein that catalyzes the production of bioactive jasmonoyl-isoleucine (JA-Ile) from hexaploid wheat (Triticum aestivum L), designated as TaJAR1B. The nucleotide sequence of TaJAR1B and amino acid sequence of the corresponding protein exhibited high identity and similarity with other plant JAR1s. Feeding the culture of E. coli cells heterologously expressing TaJAR1B with jasmonic acid (JA) resulted in the production of JA-Ile, indicating the functionality of TaJAR1B in converting JA to JA-Ile. TaJAR1B was highly expressed in the internodes of adult plants and maturing seeds. Salt treatment induced the expression level of TaJAR1B in seedling tissues. Our results indicate that TaJAR1B encodes a functional JAR and is involved in the regulation of plant growth and developmental processes and response to salinity in wheat.
Collapse
Affiliation(s)
- Pham Anh Tuan
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Talia Shafai
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Gurkamal Kaur
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Ginelle Grenier
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Belay T Ayele
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, Manitoba, R3T 2N2, Canada.
| |
Collapse
|
22
|
Park JR, Kim EG, Jang YH, Jan R, Farooq M, Ubaidillah M, Kim KM. Applications of CRISPR/Cas9 as New Strategies for Short Breeding to Drought Gene in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:850441. [PMID: 35283882 PMCID: PMC8908215 DOI: 10.3389/fpls.2022.850441] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/02/2022] [Indexed: 05/25/2023]
Abstract
Recent unpredictable climate change is the main reason for the decline in rice yield. In particular, drought stress is a major constraint in reducing yield and quality for rice at rainfed agriculture areas, such as Asia and South America. CRISPR/Cas9 provides an effective solution for gene function study and molecular breeding due to specific editing of targeted genome sequences. In addition, CRISPR/Cas9 application can significantly reduce the time required to develop new cultivars with improved traits compared to conventional complex and time-consuming breeding. Here, drought-induced gene Oryza sativa Senescence-associated protein (OsSAP) was edited by CRISPR/Cas9. To investigate the possible role of OsSAP in drought stress, genome-editing plants were subjected to drought stress until the soil moisture content reached 20%, and the reactive oxygen species (ROS) scavenging efficiency of genome-editing plants were decreased. When the genome-editing plants were subjected to drought stress, survival rate, shoot length, root length, content of chlorophyll number of tiller, and 1,000-grain weight decreased, and more H2O2 and O2 - were detected in leaves. In addition, expression levels of several critical stress-related transcription factors were decreased in the OsSAP genome-editing plant. These results suggest that OsSAP function as a positive regulator during drought stress response in rice. We analyzed the expression of OsSAP and Cas9 in T0 and T1 plants as well as T2 seeds. As the course of generation advancement progressed, Cas9 expression remained stable or weakened but the OsSAP expression was continuously removed from the T0 plant. The coefficient of variation (CV) in both T1 plants and T2 seeds was lower than 5%. Overall, our results suggest that CRISPR/Cas9 could be a novel and important tool for efficiently generating specific and inheritable targeted genome editing in rice, with short breeding cycles.
Collapse
Affiliation(s)
- Jae-Ryoung Park
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, South Korea
| | - Eun-Gyeong Kim
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Yoon-Hee Jang
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Rahmatullah Jan
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Muhammad Farooq
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Mohammad Ubaidillah
- Department of Agronomy, Faculty of Agriculture, Jember University, Jember, Indonesia
| | - Kyung-Min Kim
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
23
|
Jing W, Zhao Q, Zhang S, Zeng D, Xu J, Zhou H, Wang F, Liu Y, Li Y. RhWRKY33 Positively Regulates Onset of Floral Senescence by Responding to Wounding- and Ethylene-Signaling in Rose Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:726797. [PMID: 34804083 PMCID: PMC8602865 DOI: 10.3389/fpls.2021.726797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Rose plants are one of the most important horticultural crops, whose commercial value mainly depends on long-distance transportation, and wounding and ethylene are the main factors leading to their quality decline and accelerated senescence in the process. However, underlying molecular mechanisms of crosstalk between wounding and ethylene in the regulation of flower senescence remain poorly understood. In relation to this, transcriptome analysis was performed on rose flowers subjected to various treatments, including control, wounding, ethylene, and wounding- and ethylene- (EW) dual treatment. A large number of differentially expressed genes (DEGs) were identified, ranging from 2,442 between the ethylene- and control-treated groups to 4,055 between the EW- and control-treated groups. Using weighted gene co-expression network analysis (WGCNA), we identified a hub gene RhWRKY33 (rchiobhmchr5g0071811), accumulated in the nucleus, where it may function as a transcription factor. Moreover, quantitative reverse transcription PCR (RT-qPCR) results showed that the expression of RhWRKY33 was higher in the wounding-, ethylene, and EW-treated petals than in the control-treated petals. We also functionally characterized the RhWRKY33 gene through virus-induced gene silencing (VIGS). The silencing of RhWRKY33 significantly delayed the senescence process in the different treatments (control, wounding, ethylene, and EW). Meanwhile, we found that the effect of RhWRKY33-silenced petals under ethylene and EW dual-treatment were stronger than those under wounding treatment in delaying the petal senescence process, implying that RhWRKY33 is closely involved with ethylene and wounding mediated petal senescence. Overall, the results indicate that RhWRKY33 positively regulates the onset of floral senescence mediated by both ethylene and wounding signaling, but relies heavily on ethylene signaling.
Collapse
Affiliation(s)
- Weikun Jing
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen, China
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, China
| | - Qingcui Zhao
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen, China
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, China
| | - Shuai Zhang
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen, China
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, China
| | - Daxing Zeng
- School of Construction Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Jiehua Xu
- School of Construction Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Hougao Zhou
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Fenglan Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yang Liu
- School of Construction Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Yonghong Li
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen, China
| |
Collapse
|
24
|
Huang LQ, Chen DK, Li PP, Bao HN, Liu HZ, Yin J, Zeng HY, Yang YB, Li YK, Xiao S, Yao N. Jasmonates modulate sphingolipid metabolism and accelerate cell death in the ceramide kinase mutant acd5. PLANT PHYSIOLOGY 2021; 187:1713-1727. [PMID: 34618068 PMCID: PMC8566286 DOI: 10.1093/plphys/kiab362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Sphingolipids are structural components of the lipid bilayer that acts as signaling molecules in many cellular processes, including cell death. Ceramides, key intermediates in sphingolipid metabolism, are phosphorylated by the ceramide kinase ACCELERATED CELL DEATH5 (ACD5). The loss of ACD5 function leads to ceramide accumulation and spontaneous cell death. Here, we report that the jasmonate (JA) pathway is activated in the Arabidopsis (Arabidopsis thaliana) acd5 mutant and that methyl JA treatment accelerates ceramide accumulation and cell death in acd5. Moreover, the double mutants of acd5 with jasmonate resistant1-1 and coronatine insensitive1-2 exhibited delayed cell death, suggesting that the JA pathway is involved in acd5-mediated cell death. Quantitative sphingolipid profiling of plants treated with methyl JA indicated that JAs influence sphingolipid metabolism by increasing the levels of ceramides and hydroxyceramides, but this pathway is dramatically attenuated by mutations affecting JA pathway proteins. Furthermore, we showed that JAs regulate the expression of genes encoding enzymes in ceramide metabolism. Together, our findings show that JAs accelerate cell death in acd5 mutants, possibly by modulating sphingolipid metabolism and increasing ceramide levels.
Collapse
Affiliation(s)
- Li-Qun Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Ding-Kang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Ping-Ping Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - He-Nan Bao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Hao-Zhuo Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Jian Yin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Hong-Yun Zeng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Yu-Bing Yang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Yong-Kang Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| |
Collapse
|
25
|
Qiu Y, Guo L, Xu X, Zhang L, Zhang K, Chen M, Zhao Y, Burkey KO, Shew HD, Zobel RW, Zhang Y, Hu S. Warming and elevated ozone induce tradeoffs between fine roots and mycorrhizal fungi and stimulate organic carbon decomposition. SCIENCE ADVANCES 2021; 7:7/28/eabe9256. [PMID: 34244138 PMCID: PMC8270489 DOI: 10.1126/sciadv.abe9256] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 05/27/2021] [Indexed: 05/19/2023]
Abstract
Climate warming and elevated ozone (eO3) are important climate change components that can affect plant growth and plant-microbe interactions. However, the resulting impact on soil carbon (C) dynamics, as well as the underlying mechanisms, remains unclear. Here, we show that warming, eO3, and their combination induce tradeoffs between roots and their symbiotic arbuscular mycorrhizal fungi (AMF) and stimulate organic C decomposition in a nontilled soybean agroecosystem. While warming and eO3 reduced root biomass, tissue density, and AMF colonization, they increased specific root length and promoted decomposition of both native and newly added organic C. Also, they shifted AMF community composition in favor of the genus Paraglomus with high nutrient-absorbing hyphal surface over the genus Glomus prone to protection of soil organic C. Our findings provide deep insights into plant-microbial interactive responses to warming and eO3 and how these responses may modulate soil organic C dynamics under future climate change scenarios.
Collapse
Affiliation(s)
- Yunpeng Qiu
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lijin Guo
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan 570228, China
| | - Xinyu Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kangcheng Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengfei Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yexin Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kent O Burkey
- Plant Sciences Research Unit, USDA-ARS, Raleigh, NC 27607, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - H David Shew
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Richard W Zobel
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Yi Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shuijin Hu
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
26
|
Turc B, Vollenweider P, Le Thiec D, Gandin A, Schaub M, Cabané M, Jolivet Y. Dynamics of Foliar Responses to O 3 Stress as a Function of Phytotoxic O 3 Dose in Hybrid Poplar. FRONTIERS IN PLANT SCIENCE 2021; 12:679852. [PMID: 34262582 PMCID: PMC8273248 DOI: 10.3389/fpls.2021.679852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
With background concentrations having reached phytotoxic levels during the last century, tropospheric ozone (O3) has become a key climate change agent, counteracting carbon sequestration by forest ecosystems. One of the main knowledge gaps for implementing the recent O3 flux-based critical levels (CLs) concerns the assessment of effective O3 dose leading to adverse effects in plants. In this study, we investigate the dynamics of physiological, structural, and morphological responses induced by two levels of O3 exposure (80 and 100 ppb) in the foliage of hybrid poplar, as a function of phytotoxic O3 dose (POD0) and foliar developmental stage. After a latency period driven by foliar ontological development, the gas exchanges and chlorophyll content decreased with higher POD0 monotonically. Hypersensitive response-like lesions appeared early during exposure and showed sigmoidal-like dynamics, varying according to leaf age. At current POD1_SPEC CL, notwithstanding the aforementioned reactions and initial visible injury to foliage, the treated poplars had still not shown any growth or biomass reduction. Hence, this study demonstrates the development of a complex syndrome of early reactions below the flux-based CL, with response dynamics closely determined by the foliar ontological stage and environmental conditions. General agreement with patterns observed in the field appears indicative of early O3 impacts on processes relevant, e.g., biodiversity ecosystem services before those of economic significance - i.e., wood production, as targeted by flux-based CL.
Collapse
Affiliation(s)
- Benjamin Turc
- University of Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
- Section Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Pierre Vollenweider
- Section Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Didier Le Thiec
- University of Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| | - Anthony Gandin
- University of Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| | - Marcus Schaub
- Section Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Mireille Cabané
- University of Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| | - Yves Jolivet
- University of Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| |
Collapse
|
27
|
Gandin A, Dizengremel P, Jolivet Y. Integrative role of plant mitochondria facing oxidative stress: The case of ozone. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:202-210. [PMID: 33385703 DOI: 10.1016/j.plaphy.2020.12.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/18/2020] [Indexed: 05/27/2023]
Abstract
Ozone is a secondary air pollutant, which causes oxidative stress in plants by producing reactive oxygen species (ROS) starting by an external attack of leaf apoplast. ROS have a dual role, acting as signaling molecules, regulating different physiological processes and response to stress, but also inducing oxidative damage. The production of ROS in plant cells is compartmented and regulated by scavengers and specific enzyme pathways. Chronic doses of ozone are known to trigger an important increase of the respiratory process while decreasing photosynthesis. Mitochondria, which normally operate with usual levels of intracellular ROS, would have to play a prominent role to cope with an enhanced ozone-derived ROS production. It is thus needed to compile the available literature on the effects of ozone on mitochondria to precise their strategy facing oxidative stress. An overview of the mitochondrial fate in three steps is proposed, i) starting with the initial responses of the mitochondria for alleviating the overproduction of ROS by the enhancement of existing antioxidant metabolism and adjustments of the electron transport chain, ii) followed by the setting up of detoxifying processes through exchanges between mitochondria and the cell, and iii) ending by an accelerated senescence initiated by mitochondrial membrane permeability and leading to programmed cell death.
Collapse
Affiliation(s)
- Anthony Gandin
- Université de Lorraine, AgroParisTech, INRAE, Silva, F-54000, Nancy, France
| | - Pierre Dizengremel
- Université de Lorraine, AgroParisTech, INRAE, Silva, F-54000, Nancy, France.
| | - Yves Jolivet
- Université de Lorraine, AgroParisTech, INRAE, Silva, F-54000, Nancy, France
| |
Collapse
|
28
|
da Silva Pedrosa G, de Oliveira DP, Bison JVS, Bugarelli RM, Cruz LS, de Souza SR. Biogenic Volatile Organic Compounds Emission of Brazilian Atlantic Tree Grown Under Elevated Ozone in Ambient Controlled and Field Conditions. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:958-966. [PMID: 33226442 DOI: 10.1007/s00128-020-03056-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Croton floribundus (L.) Spreng trees were exposed to accumulated ozone (O3) levels under laboratory and field conditions and monitored the foliar visible symptoms and BVOC emissions. Plants exposed to O3 in the laboratory presented more substantial damage and significant increase in the BVOC emissions than plants in the field. Caryophyllene and 3-hexen-1-ol emissions were significantly increased in plants exposed to O3 in the laboratory. Under field conditions, methyl salicylate (MeSA) was the majority compound emitted. A positive correlation among the meteorological conditions, O3 and MeSA emission was observed in the field conditions, which may represent a mechanism of tolerance by C. floribundus to deal with long-term exposure to O3.
Collapse
Affiliation(s)
- Giselle da Silva Pedrosa
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, 09210-580, Brazil
| | - Debora Pinheiro de Oliveira
- Instituto de Botânica de São Paulo, São Paulo, SP, 01061-970, Brasil
- Programa de Pós-Graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Botânica, Av. Miguel Stefano 3687, Água Funda, São Paulo, SP, 04301-902, Brazil
| | - Josiane Valéria Soares Bison
- Instituto de Botânica de São Paulo, São Paulo, SP, 01061-970, Brasil
- Programa de Pós-Graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Botânica, Av. Miguel Stefano 3687, Água Funda, São Paulo, SP, 04301-902, Brazil
| | - Ricardo Marcondes Bugarelli
- Instituto de Botânica de São Paulo, São Paulo, SP, 01061-970, Brasil
- Programa de Pós-Graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Botânica, Av. Miguel Stefano 3687, Água Funda, São Paulo, SP, 04301-902, Brazil
| | - Luciano Soares Cruz
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, 09210-580, Brazil
| | | |
Collapse
|
29
|
Gene Mapping, Genome-Wide Transcriptome Analysis, and WGCNA Reveals the Molecular Mechanism for Triggering Programmed Cell Death in Rice Mutant pir1. PLANTS 2020; 9:plants9111607. [PMID: 33228024 PMCID: PMC7699392 DOI: 10.3390/plants9111607] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 01/13/2023]
Abstract
Programmed cell death (PCD) is involved in plant growth and development and in resistance to biotic and abiotic stress. To understand the molecular mechanism that triggers PCD, phenotypic and physiological analysis was conducted using the first three leaves of mutant rice PCD-induced-resistance 1(pir1) and its wild-type ZJ22. The 2nd and 3rd leaves of pir1 had a lesion mimic phenotype, which was shown to be an expression of PCD induced by H2O2-accumulation. The PIR1 gene was mapped in a 498 kb-interval between the molecular markers RM3321 and RM3616 on chromosome 5, and further analysis suggested that the PCD phenotype of pir1 is controlled by a novel gene for rice PCD. By comparing the mutant with wild type rice, 1679, 6019, and 4500 differentially expressed genes (DEGs) were identified in the three leaf positions, respectively. KEGG analysis revealed that DEGs were most highly enriched in phenylpropanoid biosynthesis, alpha-linolenic acid metabolism, and brassinosteroid biosynthesis. In addition, conjoint analysis of transcriptome data by weighted gene co-expression network analysis (WGCNA) showed that the turquoise module of the 18 identified modules may be related to PCD. There are close interactions or indirect cross-regulations between the differential genes that are significantly enriched in the phenylpropanoid biosynthesis pathway and the hormone biosynthesis pathway in this module, which indicates that these genes may respond to and trigger PCD.
Collapse
|
30
|
The mitochondrial isoform glutathione peroxidase 3 (OsGPX3) is involved in ABA responses in rice plants. J Proteomics 2020; 232:104029. [PMID: 33160103 DOI: 10.1016/j.jprot.2020.104029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 12/30/2022]
Abstract
Different environmental conditions can lead plants to a condition termed oxidative stress, which is characterized by a disruption in the equilibrium between the production of reactive oxygen species (ROS) and antioxidant defenses. Glutathione peroxidase (GPX), an enzyme that acts as a peroxide scavenger in different organisms, has been identified as an important component in the signaling pathway during the developmental process and in stress responses in plants and yeast. Here, we demonstrate that the mitochondrial isoform of rice (Oryza sativa L. ssp. Japonica cv. Nipponbare) OsGPX3 is induced after treatment with the phytohormone abscisic acid (ABA) and is involved in its responses and in epigenetic modifications. Plants that have been silenced for OsGPX3 (gpx3i) present substantial changes in the accumulation of proteins related to these processes. These plants also have several altered ABA responses, such as germination, ROS accumulation, stomatal closure, and dark-induced senescence. This study is the first to demonstrate that OsGPX3 plays a role in ABA signaling and corroborate that redox homeostasis enzymes can act in different and complex pathways in plant cells. SIGNIFICANCE: This work proposes the mitochondrial glutathione peroxidase (OsGPX3) as a novel ABA regulatory pathway component. Our results suggest that this antioxidant enzyme is involved in ABA-responses, highlighting the complex pathways that these proteins can participate beyond the regulation of cellular redox status.
Collapse
|
31
|
Wu S, Wang Y, Zhang J, Wang Y, Yang Y, Chen X, Wang Y. How does Malus crabapple resist ozone? Transcriptomics and metabolomics analyses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110832. [PMID: 32563158 DOI: 10.1016/j.ecoenv.2020.110832] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Ozone (O3), an oxidizing toxic air pollutant, is ubiquitous in industrialized and developing countries. To understand the effects of O3 exposure on apple (Malus) and to explore its defense mechanisms, we exposed 'Hongjiu' crabapple to O3 and monitored its responses using physiological, transcriptomics, and metabolomics analyses. Exposure to 300 nL L-1 O3 for 3 h caused obvious damage to the leaves of Malus crabapple, affected chlorophyll and anthocyanin contents, and activated antioxidant enzymes. The gene encoding phospholipase A was highly responsive to O3 in Malus crabapple. McWRKY75 is a key transcription factor in the response to O3 stress, and its transcript levels were positively correlated with those of flavonoid-related structural genes (McC4H, McDFR, and McANR). The ethylene response factors McERF019 and McERF109-like were also up-regulated by O3. Exogenous methyl jasmonate (MeJA) decreased the damaging effects of O3 on crabapple and was most effective at 200 μmol L -1. Treatments with MeJA altered the metabolic pathways of crabapple under O3 stress. In particular, MeJA activated the flavonoid metabolic pathway in Malus, which improved its resistance to O3 stress.
Collapse
Affiliation(s)
- Shuqing Wu
- College of Forestry, Shandong Agricultural University, Tai-An, 271000, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Tai-An, 271000, China
| | - Yao Wang
- College of Forestry, Shandong Agricultural University, Tai-An, 271000, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Tai-An, 271000, China
| | - Junkang Zhang
- College of Forestry, Shandong Agricultural University, Tai-An, 271000, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Tai-An, 271000, China
| | - Yicheng Wang
- Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271000, China
| | - Yuwei Yang
- College of Forestry, Shandong Agricultural University, Tai-An, 271000, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Tai-An, 271000, China
| | - Xuesen Chen
- Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271000, China.
| | - Yanling Wang
- College of Forestry, Shandong Agricultural University, Tai-An, 271000, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Tai-An, 271000, China.
| |
Collapse
|
32
|
Zhou Z, Zhi T, Han C, Peng Z, Wang R, Tong J, Zhu Q, Ren C. Cell death resulted from loss of fumarylacetoacetate hydrolase in Arabidopsis is related to phytohormone jasmonate but not salicylic acid. Sci Rep 2020; 10:13714. [PMID: 32792583 PMCID: PMC7426959 DOI: 10.1038/s41598-020-70567-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/30/2020] [Indexed: 12/31/2022] Open
Abstract
Fumarylacetoacetate hydrolase (FAH) catalyzes the final step in Tyr degradation pathway essential to animals but not well understood in plants. Previously, we found that mutation of SSCD1 encoding Arabidopsis FAH causes cell death under short day, which uncovered an important role of Tyr degradation pathway in plants. Since phytohormones salicylic acid (SA) and jasmonate (JA) are involved in programmed cell death, in this study, we investigated whether sscd1 cell death is related to SA and JA, and found that (1) it is accompanied by up-regulation of JA- and SA-inducible genes as well as accumulation of JA but not SA; (2) it is repressed by breakdown of JA signaling but not SA signaling; (3) the up-regulation of reactive oxygen species marker genes in sscd1 is repressed by breakdown of JA signaling; (4) treatment of wild-type Arabidopsis with succinylacetone, an abnormal metabolite caused by loss of FAH, induces expression of JA-inducible genes whereas treatment with JA induces expression of some Tyr degradation genes with dependence of JA signaling. These results demonstrated that cell death resulted from loss of FAH in Arabidopsis is related to JA but not SA, and suggested that JA signaling positively regulates sscd1 cell death by up-regulating Tyr degradation.
Collapse
Affiliation(s)
- Zhou Zhou
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China.,College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Tiantian Zhi
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China.,College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.,College of Life Sciences and Resources and Environment, Yichun University, Yichun, 336000, China
| | - Chengyun Han
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China.,College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.,College of Life Sciences and Resources and Environment, Yichun University, Yichun, 336000, China
| | - Zhihong Peng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Ruozhong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Jianhua Tong
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Qi Zhu
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, 410128, China
| | - Chunmei Ren
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China. .,College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
33
|
Völz R, Park JY, Kim S, Park SY, Harris W, Chung H, Lee YH. The rice/maize pathogen Cochliobolus spp. infect and reproduce on Arabidopsis revealing differences in defensive phytohormone function between monocots and dicots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:412-429. [PMID: 32168401 DOI: 10.1111/tpj.14743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/11/2020] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
The fungal genus Cochliobolus describes necrotrophic pathogens that give rise to significant losses on rice, wheat, and maize. Revealing plant mechanisms of non-host resistance (NHR) against Cochliobolus will help to uncover strategies that can be exploited in engineered cereals. Therefore, we developed a heterogeneous pathosystem and studied the ability of Cochliobolus to infect dicotyledons. We report here that C. miyabeanus and C. heterostrophus infect Arabidopsis accessions and produce functional conidia, thereby demonstrating the ability to accept Brassica spp. as host plants. Some ecotypes exhibited a high susceptibility, whereas others hindered the necrotrophic disease progression of the Cochliobolus strains. Natural variation in NHR among the tested Arabidopsis accessions can advance the identification of genetic loci that prime the plant's defence repertoire. We found that applied phytotoxin-containing conidial fluid extracts of C. miyabeanus caused necrotic lesions on rice leaves but provoked only minor irritations on Arabidopsis. This result implies that C. miyabeanus phytotoxins are insufficiently adapted to promote dicot colonization, which corresponds to a retarded infection progression. Previous studies on rice demonstrated that ethylene (ET) promotes C. miyabeanus infection, whereas salicylic acid (SA) and jasmonic acid (JA) exert a minor function. However, in Arabidopsis, we revealed that the genetic disruption of the ET and JA signalling pathways compromises basal resistance against Cochliobolus, whereas SA biosynthesis mutants showed a reduced susceptibility. Our results refer to the synergistic action of ET/JA and indicate distinct defence systems between Arabidopsis and rice to confine Cochliobolus propagation. Moreover, this heterogeneous pathosystem may help to reveal mechanisms of NHR and associated defensive genes against Cochliobolus infection.
Collapse
Affiliation(s)
- Ronny Völz
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea
| | - Ju-Young Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
- R&D Institute, YUHAN Inc., Yongin, 17084, Korea
| | - Soonok Kim
- Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Korea
| | - Sook-Young Park
- Department of Plant Medicine, Suncheon National University, Suncheon, 57922, Korea
| | - William Harris
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Hyunjung Chung
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Yong-Hwan Lee
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
- Center for Fungal Genetic Resources, Seoul National University, Seoul, 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
34
|
Fujikura U, Ezaki K, Horiguchi G, Seo M, Kanno Y, Kamiya Y, Lenhard M, Tsukaya H. Suppression of class I compensated cell enlargement by xs2 mutation is mediated by salicylic acid signaling. PLoS Genet 2020; 16:e1008873. [PMID: 32584819 PMCID: PMC7343186 DOI: 10.1371/journal.pgen.1008873] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/08/2020] [Accepted: 05/20/2020] [Indexed: 11/18/2022] Open
Abstract
The regulation of leaf size has been studied for decades. Enhancement of post-mitotic cell expansion triggered by impaired cell proliferation in Arabidopsis is an important process for leaf size regulation, and is known as compensation. This suggests a key interaction between cell proliferation and cell expansion during leaf development. Several studies have highlighted the impact of this integration mechanism on leaf size determination; however, the molecular basis of compensation remains largely unknown. Previously, we identified extra-small sisters (xs) mutants which can suppress compensated cell enlargement (CCE) via a specific defect in cell expansion within the compensation-exhibiting mutant, angustifolia3 (an3). Here we revealed that one of the xs mutants, namely xs2, can suppress CCE not only in an3 but also in other compensation-exhibiting mutants erecta (er) and fugu2. Molecular cloning of XS2 identified a deleterious mutation in CATION CALCIUM EXCHANGER 4 (CCX4). Phytohormone measurement and expression analysis revealed that xs2 shows hyper activation of the salicylic acid (SA) response pathway, where activation of SA response can suppress CCE in compensation mutants. All together, these results highlight the regulatory connection which coordinates compensation and SA response. Leaves are determinate organ and size of leaves are determined by intrinsic and extrinsic cues. Cell proliferation and post-mitotic cell expansion should be coordinated during leaf morphogenesis to develop appropriate size depending on its developmental programs. Recent studies highlighted the existence of integrated mechanism which coordinates cell proliferation and cell expansion during leaf development. Compensation, which is enhanced post-mitotic cell expansion accompanied by a significant decrease in cell number during leaf organogenesis, is one of the clues for such coordination. However, the molecular mechanisms linking cell proliferation and cell expansion are still poorly understood. Previously, we reported extra-small sisters 2 (xs2) mutation caused specific defect in cell expansion and it suppressed increased post-mitotic cell enlargement in angustifolia3 (an3) mutant, which exhibits typical compensation. Here we identify the affected gene of xs2 mutant encodes a member of cation calcium exchanger which is believed to be involved in cation homeostasis within cells. Loss of function of this protein causes hyper accumulation of salicylic acid (SA) and increased expression of pathogen related genes. Physiological and genetic studies revealed activated SA signal transduction reduced cell size. It suppressed post-mitotic cell expansion in several compensation mutants not only an3 but partially suppressed in another type of compensation mutant which increases size of mitotic cells. This finding suggests post-mitotic cell expansion pathway is regulated in common by SA-dependent signaling and by compensation signaling during leaf development.
Collapse
Affiliation(s)
- Ushio Fujikura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan
- * E-mail:
| | - Kazune Ezaki
- Graduate School of Science, The University of Tokyo, Japan
| | - Gorou Horiguchi
- Department of Life Science, College of Science, Rikkyo University, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, Japan
| | - Yuji Kamiya
- RIKEN Center for Sustainable Resource Science, Japan
| | - Michael Lenhard
- Institut für Biochemie und Biologie, Universität Potsdam, Potsdam-Golm, Germany
| | - Hirokazu Tsukaya
- Graduate School of Science, The University of Tokyo, Japan
- Okazaki Institute for Integrative Bioscience, Japan
| |
Collapse
|
35
|
OsJAZ13 Negatively Regulates Jasmonate Signaling and Activates Hypersensitive Cell Death Response in Rice. Int J Mol Sci 2020; 21:ijms21124379. [PMID: 32575555 PMCID: PMC7352843 DOI: 10.3390/ijms21124379] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
Jasmonate ZIM-domain (JAZ) proteins belong to the subgroup of TIFY family and act as key regulators of jasmonate (JA) responses in plants. To date, only a few JAZ proteins have been characterized in rice. Here, we report the identification and function of rice OsJAZ13 gene. The gene encodes three different splice variants: OsJAZ13a, OsJAZ13b, and OsJAZ13c. The expression of OsJAZ13 was mainly activated in vegetative tissues and transiently responded to JA and ethylene. Subcellular localization analysis indicated OsJAZ13a is a nuclear protein. Yeast two-hybrid assays revealed OsJAZ13a directly interacts with OsMYC2, and also with OsCOI1, in a COR-dependent manner. Furthermore, OsJAZ13a recruited a general co-repressor OsTPL via an adaptor protein OsNINJA. Remarkably, overexpression of OsJAZ13a resulted in the attenuation of root by methyl JA. Furthermore, OsJAZ13a-overexpressing plants developed lesion mimics in the sheath after approximately 30–45 days of growth. Tillers with necrosis died a few days later. Gene-expression analysis suggested the role of OsJAZ13 in modulating the expression of JA/ethylene response-related genes to regulate growth and activate hypersensitive cell death. Taken together, these observations describe a novel regulatory mechanism in rice and provide the basis for elucidating the function of OsJAZ13 in signal transduction and cell death in plants.
Collapse
|
36
|
Wingler A, Tijero V, Müller M, Yuan B, Munné-Bosch S. Interactions between sucrose and jasmonate signalling in the response to cold stress. BMC PLANT BIOLOGY 2020; 20:176. [PMID: 32321430 PMCID: PMC7178619 DOI: 10.1186/s12870-020-02376-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/31/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Jasmonates play an important role in plant stress and defence responses and are also involved in the regulation of anthocyanin synthesis in response to sucrose availability. Here we explore the signalling interactions between sucrose and jasmonates in response to cold stress in Arabidopsis. RESULTS Sucrose and cold treatments increased anthocyanin content additively. Comprehensive profiling of phytohormone contents demonstrated that jasmonates, salicylic acid and abscisic acid contents increased in response to sucrose treatment in plants grown on agar, but remained considerably lower than in plants grown in compost. The gibberellin GA3 accumulated in response to sucrose treatment but only at warm temperature. The role of jasmonate signalling was explored using the jasmonate response mutants jar1-1 and coi1-16. While the jar1-1 mutant lacked jasmonate-isoleucine and jasmonate-leucine, it accumulated 12-oxo-phytodienoic acid at low temperature on agar medium. Altered patterns of abscisic acid accumulation and higher sugar contents were found in the coi1-16 mutant when grown in compost. Both mutants were able to accumulate anthocyanin and to cold acclimate, but the jar-1-1 mutant showed a larger initial drop in whole-rosette photosystem II efficiency upon transfer to low temperature. CONCLUSIONS Hormone contents are determined by interactions between temperature and sucrose supply. Some of these effects may be caused indirectly through senescence initiation in response to sucrose availability. During cold stress, the adjustments of hormone contents may compensate for impaired jasmonate signalling, enabling cold acclimation and anthocyanin accumulation in Arabidopsis jasmonate response mutants, e.g. through antagonistic interactions between gibberellin and jasmonate signalling.
Collapse
Affiliation(s)
- Astrid Wingler
- School of Biological, Earth & Environmental Sciences and Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland.
| | - Verónica Tijero
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| | - Maren Müller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| | - Benqi Yuan
- School of Biological, Earth & Environmental Sciences and Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland
- Present address: Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| |
Collapse
|
37
|
Zhang W, Fu L, Men C, Yu J, Yao J, Sheng J, Xu Y, Wang Z, Liu L, Yang J, Zhang J. Response of brassinosteroids to nitrogen rates and their regulation on rice spikelet degeneration during meiosis. Food Energy Secur 2020. [DOI: 10.1002/fes3.201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Weiyang Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University Yangzhou China
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou China
| | - Lidong Fu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University Yangzhou China
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou China
| | - Chuanbao Men
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University Yangzhou China
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou China
| | - Jixiang Yu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University Yangzhou China
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou China
| | - Jiayu Yao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University Yangzhou China
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou China
| | - Jiayan Sheng
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University Yangzhou China
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou China
| | - Yunji Xu
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety The Ministry of Education of ChinaYangzhou University Yangzhou China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University Yangzhou China
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou China
| | - Lijun Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University Yangzhou China
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou China
| | - Jianchang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University Yangzhou China
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety The Ministry of Education of ChinaYangzhou University Yangzhou China
| | - Jianhua Zhang
- Department of Biology Hong Kong Baptist University Hong Kong China
| |
Collapse
|
38
|
Wang J, Song L, Gong X, Xu J, Li M. Functions of Jasmonic Acid in Plant Regulation and Response to Abiotic Stress. Int J Mol Sci 2020; 21:E1446. [PMID: 32093336 PMCID: PMC7073113 DOI: 10.3390/ijms21041446] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/09/2020] [Accepted: 02/18/2020] [Indexed: 11/16/2022] Open
Abstract
Jasmonic acid (JA) is an endogenous growth-regulating substance, initially identified as a stress-related hormone in higher plants. Similarly, the exogenous application of JA also has a regulatory effect on plants. Abiotic stress often causes large-scale plant damage. In this review, we focus on the JA signaling pathways in response to abiotic stresses, including cold, drought, salinity, heavy metals, and light. On the other hand, JA does not play an independent regulatory role, but works in a complex signal network with other phytohormone signaling pathways. In this review, we will discuss transcription factors and genes involved in the regulation of the JA signaling pathway in response to abiotic stress. In this process, the JAZ-MYC module plays a central role in the JA signaling pathway through integration of regulatory transcription factors and related genes. Simultaneously, JA has synergistic and antagonistic effects with abscisic acid (ABA), ethylene (ET), salicylic acid (SA), and other plant hormones in the process of resisting environmental stress.
Collapse
Affiliation(s)
- Jia Wang
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou 014060, China; (J.W.); (L.S.); (X.G.); (J.X.)
| | - Li Song
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou 014060, China; (J.W.); (L.S.); (X.G.); (J.X.)
| | - Xue Gong
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou 014060, China; (J.W.); (L.S.); (X.G.); (J.X.)
| | - Jinfan Xu
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou 014060, China; (J.W.); (L.S.); (X.G.); (J.X.)
| | - Minhui Li
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou 014060, China; (J.W.); (L.S.); (X.G.); (J.X.)
- Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot 010020, China
- Qiqihar Medical University, Qiqihar 161006, China
| |
Collapse
|
39
|
Huang H, Gong Y, Liu B, Wu D, Zhang M, Xie D, Song S. The DELLA proteins interact with MYB21 and MYB24 to regulate filament elongation in Arabidopsis. BMC PLANT BIOLOGY 2020; 20:64. [PMID: 32033528 PMCID: PMC7006197 DOI: 10.1186/s12870-020-2274-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 02/03/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Gibberellin (GA) and jasmonate (JA) are two essential phytohormones for filament elongation in Arabidopsis. GA and JA trigger degradation of DELLAs and JASMONATE ZIM-domain (JAZ) proteins through SCFSLY1 and SCFCOI1 separately to activate filament elongation. In JA pathway, JAZs interact with MYB21 and MYB24 to control filament elongation. However, little is known how DELLAs regulate filament elongation. RESULTS Here we showed that DELLAs interact with MYB21 and MYB24, and that R2R3 domains of MYB21 and MYB24 are responsible for interaction with DELLAs. Furthermore, we demonstrated that DELLA and JAZ proteins coordinately repress the transcriptional function of MYB21 and MYB24 to inhibit filament elongation. CONCLUSION We discovered that DELLAs interact with MYB21 and MYB24, and that DELLAs and JAZs attenuate the transcriptional function of MYB21 and MYB24 to control filament elongation. This study reveals a novel cross-talk mechanism of GA and JA in the regulation of filament elongation in Arabidopsis.
Collapse
Affiliation(s)
- Huang Huang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China.
| | - Yilong Gong
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, RNA Center, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Bei Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, RNA Center, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Dewei Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
| | - Min Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, RNA Center, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Daoxin Xie
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, RNA Center, College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
40
|
Identification and Characterization of circRNAs Responsive to Methyl Jasmonate in Arabidopsis thaliana. Int J Mol Sci 2020; 21:ijms21030792. [PMID: 31991793 PMCID: PMC7037704 DOI: 10.3390/ijms21030792] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/09/2020] [Accepted: 01/23/2020] [Indexed: 12/23/2022] Open
Abstract
Circular RNAs (circRNAs) are endogenous noncoding RNAs with covalently closed continuous loop structures that are formed by 3′–5′ ligation during splicing. These molecules are involved in diverse physiological and developmental processes in eukaryotic cells. Jasmonic acid (JA) is a critical hormonal regulator of plant growth and defense. However, the roles of circRNAs in the JA regulatory network are unclear. In this study, we performed high-throughput sequencing of Arabidopsis thaliana at 24 h, 48 h, and 96 h after methyl JA (MeJA) treatment. A total of 8588 circRNAs, which were distributed on almost all chromosomes, were identified, and the majority of circRNAs had lengths between 200 and 800 bp. We identified 385 differentially expressed circRNAs (DEcircRNAs) by comparing data between MeJA-treated and untreated samples. Gene Ontology (GO) enrichment analysis of the host genes that produced the DEcircRNAs showed that the DEcircRNAs are mainly involved in response to stimulation and metabolism. Additionally, some DEcircRNAs were predicted to act as miRNA decoys. Eight DEcircRNAs were validated by qRT-PCR with divergent primers, and the junction sites of five DEcircRNAs were validated by PCR analysis and Sanger sequencing. Our results provide insight into the potential roles of circRNAs in the MeJA regulation network.
Collapse
|
41
|
Jasmonic Acid Signaling Pathway in Response to Abiotic Stresses in Plants. Int J Mol Sci 2020; 21:ijms21020621. [PMID: 31963549 PMCID: PMC7013817 DOI: 10.3390/ijms21020621] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
Plants as immovable organisms sense the stressors in their environment and respond to them by means of dedicated stress response pathways. In response to stress, jasmonates (jasmonic acid, its precursors and derivatives), a class of polyunsaturated fatty acid-derived phytohormones, play crucial roles in several biotic and abiotic stresses. As the major immunity hormone, jasmonates participate in numerous signal transduction pathways, including those of gene networks, regulatory proteins, signaling intermediates, and proteins, enzymes, and molecules that act to protect cells from the toxic effects of abiotic stresses. As cellular hubs for integrating informational cues from the environment, jasmonates play significant roles in alleviating salt stress, drought stress, heavy metal toxicity, micronutrient toxicity, freezing stress, ozone stress, CO2 stress, and light stress. Besides these, jasmonates are involved in several developmental and physiological processes throughout the plant life. In this review, we discuss the biosynthesis and signal transduction pathways of the JAs and the roles of these molecules in the plant responses to abiotic stresses.
Collapse
|
42
|
Current Progress on Endophytic Microbial Dynamics on Dendrobium Plants. Fungal Biol 2020. [DOI: 10.1007/978-3-030-41870-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Costarelli A, Bianchet C, Ederli L, Salerno G, Piersanti S, Rebora M, Pasqualini S. Salicylic acid induced by herbivore feeding antagonizes jasmonic acid mediated plant defenses against insect attack. PLANT SIGNALING & BEHAVIOR 2019; 15:1704517. [PMID: 31852340 PMCID: PMC7012100 DOI: 10.1080/15592324.2019.1704517] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 05/25/2023]
Abstract
We recently reported the transcriptomic signature of salicylic acid (SA) and jasmonic acid (JA) biosynthetic and responsive genes in Arabidopsis thaliana plants infested with the herbivore Eurydema oleracea. We demonstrated that insect feeding causes induction of both SA- and JA-mediated signaling pathways. Using transgenic SA-deficient NahG plants, we also showed antagonistic cross-talk between these two phytohormones. To gain more insight into the roles of the SA and JA pathways in plant defenses against E. oleracea, we report here on the dynamics of SA and JA levels in the wild-type genotype Col-0 and the transgenic Arabidopsis NahG mutant that does not accumulate SA. We show that SA strongly accumulates in the wild-type plants after 24 h of herbivore infestation, while JA levels do not change significantly. On the contrary, in the infested NahG plants, SA levels were not affected by E. oleracea feeding, whereas JA levels which were constitutively higher than the wild-type did not significantly change after 6 hours of herbivore feeding. Accordingly, when the wild-type and the jar1-1 mutant (which fails to accumulate JA-Ile) Arabidopsis plants were challenged with E. oleracea in a two-choice arena, the insect fed preferentially on the jar1-1 plants over the wild-type. These data support the conclusion that E. oleracea infestation strongly induces the SA pathway in the wild-type, thus antagonizing JA-mediated plant defenses against herbivory, as a strategy to suppress plant immunity.
Collapse
Affiliation(s)
- Alma Costarelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Chantal Bianchet
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Luisa Ederli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Gianandrea Salerno
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Silvana Piersanti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Manuela Rebora
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Stefania Pasqualini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| |
Collapse
|
44
|
Cui H, Sun Y, Zhao Z, Zhang Y. The Combined Effect of Elevated O3 Levels and TYLCV Infection Increases the Fitness of Bemisia tabaci Mediterranean on Tomato Plants. ENVIRONMENTAL ENTOMOLOGY 2019; 48:1425-1433. [PMID: 31586399 PMCID: PMC6885742 DOI: 10.1093/ee/nvz113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Indexed: 05/12/2023]
Abstract
Global change and biotic stress, such as tropospheric contamination and virus infection, can individually modify the quality of host plants, thereby altering the palatability of the plant for herbivorous insects. The bottom-up effects of elevated O3 and tomato yellow leaf curl virus (TYLCV) infection on tomato plants and the associated performance of Bemisia tabaci Mediterranean (MED) were determined in open-top chambers. Elevated O3 decreased eight amino acid levels and increased the salicylic acid (SA) and jasmonic acid (JA) content and the gene expression of pathogenesis-related protein (PR1) and proteinase inhibitor (PI1) in both wild-type (CM) and JA defense-deficient tomato genotype (spr2). TYLCV infection and the combination of elevated O3 and TYLCV infection increased eight amino acids levels, SA content and PR1 expression, and decreased JA content and PI1 expression in both tomato genotypes. In uninfected tomato, elevated O3 increased developmental time and decreased fecundity by 6.1 and 18.8% in the CM, respectively, and by 6.8 and 18.9% in the spr2, respectively. In TYLCV-infected tomato, elevated O3 decreased developmental time and increased fecundity by 4.6 and 14.2%, respectively, in the CM and by 4.3 and 16.8%, respectively, in the spr2. These results showed that the interactive effects of elevated O3 and TYLCV infection partially increased the amino acid content and weakened the JA-dependent defense, resulting in increased population fitness of MED on tomato plants. This study suggests that whiteflies would be more successful at TYLCV-infected plants than at uninfected plants in elevated O3 levels.
Collapse
Affiliation(s)
- Hongying Cui
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, P. R. China
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Zihua Zhao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, P. R. China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
45
|
Gu Z, Li W, Doughty J, Meng D, Yang Q, Yuan H, Li Y, Chen Q, Yu J, Liu CS, Li T. A gamma-thionin protein from apple, MdD1, is required for defence against S-RNase-induced inhibition of pollen tube prior to self/non-self recognition. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2184-2198. [PMID: 31001872 PMCID: PMC6790362 DOI: 10.1111/pbi.13131] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/09/2019] [Accepted: 04/14/2019] [Indexed: 05/09/2023]
Abstract
Apple exhibits S-RNase-mediated self-incompatibility. Although the cytotoxic effect of S-RNase inside the self-pollen tube has been studied extensively, the underlying defence mechanism in pollen tube in Rosaceae remains unclear. On exposure to stylar S-RNase, plant defence responses are activated in the pollen tube; however, how these are regulated is currently poorly understood. Here, we show that entry of both self and non-self S-RNase into pollen tubes of apple (Malus domestica) stimulates jasmonic acid (JA) production, in turn inducing the accumulation of MdMYC2 transcripts, a transcription factor in the JA signalling pathway widely considered to be involved in plant defence processes. MdMYC2 acts as a positive regulator in the pollen tube activating expression of MdD1, a gene encoding a defence protein. Importantly, MdD1 was shown to bind to the RNase activity sites of S-RNase leading to inhibition of enzymatic activity. This work provides intriguing insights into an ancient defence mechanism present in apple pollen tubes where MdD1 likely acts as a primary line of defence to inhibit S-RNase cytotoxicity prior to self/non-self recognition.
Collapse
Affiliation(s)
- Zhaoyu Gu
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Wei Li
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - James Doughty
- Department of Biology and BiochemistryUniversity of BathBathUK
| | - Dong Meng
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Qing Yang
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Hui Yuan
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Yang Li
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Qiuju Chen
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Jie Yu
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Chun sheng Liu
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| |
Collapse
|
46
|
Yang B, Chen M, Wang T, Chen X, Li Y, Wang X, Zhu W, Xia L, Hu X, Tian J. A metabolomic strategy revealed the role of JA and SA balance in Clematis terniflora DC. Response to UVB radiation and dark. PHYSIOLOGIA PLANTARUM 2019; 167:232-249. [PMID: 30467852 DOI: 10.1111/ppl.12883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Clematis terniflora DC. is a valuable resource with potential high pharmaceutical value. Proteomic, transcriptomic and metabolomic analyses of C. terniflora that has been exposed to high levels of UVB irradiation and dark conditions (HUVB + D) have revealed the mechanisms underlying its medicinal potential. However, the signal transduction pathways and the mechanisms of regulation for the accumulation of secondary metabolites remain unclear. In this study, we show that the jasmonic acid (JA) and salicylic acid (SA) signals were activated in C. terniflora in response to HUVB + D. Metabolomic analysis demonstrated that the perturbation in JA and SA balance led to additional reallocation of carbon and nitrogen resources. Evaluating the fold change ratios of differentially changed metabolites proved that JA signal enhanced the transformation of nitrogen to carbon through the 4-aminobutyric acid (GABA) shunt pathway, which increased the carbon reserve to be utilized in the production of secondary metabolites. However, SA signal induced the synthesis of proline, while avoiding the accumulation of secondary metabolites. Over all, the results indicate that the co-increase of JA and SA reconstructed the dynamic stability of transformation from nitrogen to carbon, which effectively enhanced the oxidative defense to HUVB + D in C. terniflora by increasing the secondary metabolites.
Collapse
Affiliation(s)
- Bingxian Yang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Meng Chen
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Tantan Wang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Xi Chen
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yaohan Li
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Xin Wang
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Wei Zhu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Li'an Xia
- Benxi Hi-tech Industrial Development Zone, Benxi, China
| | - Xingjiang Hu
- Research Center for Clinical Pharmacy, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
- Education Ministry Key Laboratory for Biomedical Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
Pheomphun P, Treesubsuntorn C, Thiravetyan P. Effect of exogenous catechin on alleviating O 3 stress: The role of catechin-quinone in lipid peroxidation, salicylic acid, chlorophyll content, and antioxidant enzymes of Zamioculcas zamiifolia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:374-383. [PMID: 31102845 DOI: 10.1016/j.ecoenv.2019.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 05/20/2023]
Abstract
Ozone (O3) can cause oxidative stress in plants and humans. Catechin is an antioxidant that enriches tea and can probably increase O3 tolerance in plants. To investigate the mechanism of catechin to alleviate O3 stress in plants, Zamiocalcus zamiifolia (an efficient plant for O3 phytoremediation) was sprayed with 5 mM catechin and was used to expose O3 (150-250) under long-term operation (10 cycles). We investigated whether exogenous catechin could enhance O3 removal and alleviate O3 stress through a balanced redox state in plants. Z. zamiifolia sprayed with catechin exhibited higher O3 removal (80.27±3.12%), than Z. zamiifolia without catechin (50.03±2.68%). O3 in the range of 150-250 ppb led to stress in plants, as shown by an increased malondialdehyde content (MDA) and salicylic acid (SA). Whereas under the presence of O3, exogenous catechin could maintain the MDA content and inhibit SA accumulation. Under Z. zamiifolia+catechin+O3 conditions, catechin reacted with O3, which led to the formation of catechin-quinone. The formation of catechin-quinone was confirmed by the depletion of reduced glutathione content (GSH). This catechin-quinone could induce GST and APX genes that are up-regulated approximately 35- and 5-fold, respectively. Hence, Z. zamiifolia+catechin+O3 conditions had higher performance for coping with oxidative stress than did Z. zamiifolia+O3 conditions. This evidence demonstrates that catechin could enhance O3 removal through a balanced redox state in plant cells. Finally, the application of tea extract for enhanced O3 removal is also shown in this study.
Collapse
Affiliation(s)
- Piyatida Pheomphun
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Chairat Treesubsuntorn
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| |
Collapse
|
48
|
Zhang W, Sheng J, Xu Y, Xiong F, Wu Y, Wang W, Wang Z, Yang J, Zhang J. Role of brassinosteroids in rice spikelet differentiation and degeneration under soil-drying during panicle development. BMC PLANT BIOLOGY 2019; 19:409. [PMID: 31533628 PMCID: PMC6749693 DOI: 10.1186/s12870-019-2025-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/10/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND Brassinosteroids (BRs) are a new group of plant hormones and play important roles in plant growth and development. However, little information is available if BRs could regulate spikelet development in rice (Oryza sativa L.) especially under soil-drying conditions. This study investigated whether and how BRs mediate the effect of soil-drying on spikelet differentiation and degeneration in rice. A rice cultivar was field-grown and exposed to three soil moisture treatments during panicle development, that is, well-watered (WW), moderate soil-drying (MD) and severe soil-drying (SD). RESULTS Compared with the WW treatment, the MD treatment enhanced BRs biosynthesis in young panicles, increased spikelet differentiation and reduced spikelet degeneration. The SD treatment had the opposite effects. Changes in expression levels of key rice inflorescence development genes (OsAPO2 and OsTAW1), ascorbic acid (AsA) content, and activities of enzymes involved AsA synthesis and recycle, and amount of nonstructural carbohydrates (NSC) in young panicles were consistent with those in BRs levels, whereas hydrogen peroxide (H2O2) content showed opposite trend. Knockdown of the BRs synthesis gene OsD11 or application of a BRs biosynthesis inhibitor to young panicles markedly decreased OsAPO2 and OsTAW1 expression levels, BRs and AsA contents, activities of enzymes involved AsA synthesis and recycle, NSC amount in rice panicles and spikelet differentiation but increased the H2O2 content and spikelet degeneration compared to the control (the wide type or application of water). The opposite effects were observed when exogenous BRs were applied. CONCLUSIONS The results suggest that BRs mediate the effect of soil-drying on spikelet differentiation and degeneration, and elevated BRs levels in rice panicles promote spikelet development under MD by enhancing inflorescence meristem activity, AsA recycle and NSC partitioning to the growing panicles.
Collapse
Affiliation(s)
- Weiyang Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Jiayan Sheng
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yunji Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Fei Xiong
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yunfei Wu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Weilu Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Jianchang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
49
|
Sorgini CA, Barrios-Perez I, Brown PJ, Ainsworth EA. Examining Genetic Variation in Maize Inbreds and Mapping Oxidative Stress Response QTL in B73-Mo17 Nearly Isogenic Lines. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
50
|
Yang S, Xu K, Chen S, Li T, Xia H, Chen L, Liu H, Luo L. A stress-responsive bZIP transcription factor OsbZIP62 improves drought and oxidative tolerance in rice. BMC PLANT BIOLOGY 2019; 19:260. [PMID: 31208338 PMCID: PMC6580479 DOI: 10.1186/s12870-019-1872-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 06/04/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Drought is a major abiotic stress factor that influences the yield of crops. Basic leucine zipper motif (bZIP) transcription factors play an important regulatory role in plant drought stress responses. However, the functions of a number of bZIP transcription factors in rice are still unknown. RESULTS In this study, a novel drought stress-related bZIP transcription factor, OsbZIP62, was identified in rice. This gene was selected from a transcriptome analysis of several typical rice varieties with different drought tolerances. OsbZIP62 expression was induced by drought, hydrogen peroxide, and abscisic acid (ABA) treatment. Overexpression of OsbZIP62-VP64 (OsbZIP62V) enhanced the drought tolerance and oxidative stress tolerance of transgenic rice, while osbzip62 mutants exhibited the opposite phenotype. OsbZIP62-GFP was localized to the nucleus, and the N-terminal sequence (amino acids 1-68) was necessary for the transcriptional activation activity of OsbZIP62. RNA-seq analysis showed that the expression of many stress-related genes (e.g., OsGL1, OsNAC10, and DSM2) was upregulated in OsbZIP62V plants. Moreover, OsbZIP62 could bind to the promoters of several putative target genes and could interact with stress/ABA-activated protein kinases (SAPKs). CONCLUSIONS OsbZIP62 is involved in ABA signalling pathways and positively regulates rice drought tolerance by regulating the expression of genes associated with stress, and this gene could be used for the genetic modification of crops with improved drought tolerance.
Collapse
Affiliation(s)
- Shiqin Yang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070 China
- Shanghai Agrobiological Gene Center, Shanghai, 201106 China
| | - Kai Xu
- Shanghai Agrobiological Gene Center, Shanghai, 201106 China
| | - Shoujun Chen
- Shanghai Agrobiological Gene Center, Shanghai, 201106 China
| | - Tianfei Li
- Shanghai Agrobiological Gene Center, Shanghai, 201106 China
| | - Hui Xia
- Shanghai Agrobiological Gene Center, Shanghai, 201106 China
| | - Liang Chen
- Shanghai Agrobiological Gene Center, Shanghai, 201106 China
| | - Hongyan Liu
- Shanghai Agrobiological Gene Center, Shanghai, 201106 China
| | - Lijun Luo
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070 China
- Shanghai Agrobiological Gene Center, Shanghai, 201106 China
| |
Collapse
|