1
|
Poonsiri T, Stransky J, Demitri N, Haas H, Cianci M, Benini S. SidF, a dual substrate N5-acetyl-N5-hydroxy-L-ornithine transacetylase involved in Aspergillus fumigatus siderophore biosynthesis. J Struct Biol X 2025; 11:100119. [PMID: 39845173 PMCID: PMC11751504 DOI: 10.1016/j.yjsbx.2024.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/24/2025] Open
Abstract
Siderophore-mediated iron acquisition is essential for the virulence of Aspergillus fumigatus, a fungus causing life-threatening aspergillosis. Drugs targeting the siderophore biosynthetic pathway could help improve disease management. The transacetylases SidF and SidL generate intermediates for different siderophores in A. fumigatus. A. fumigatus has a yet unidentified transacetylase that complements SidL during iron deficiency in SidL-lacking mutants. We present the first X-ray structure of SidF, revealing a two-domain architecture with tetrameric assembly. The N-terminal domain contributes to protein solubility and oligomerization, while the C-terminal domain containing the GCN5-related N-acetyltransferase (GNAT) motif is crucial for the enzymatic activity and mediates oligomer formation. Notably, AlphaFold modelling demonstrates structural similarity between SidF and SidL. Enzymatic assays showed that SidF can utilize acetyl-CoA as a donor, previously thought to be a substrate of SidL but not SidF, and selectively uses N5-hydroxy-L-ornithine as an acceptor. This study elucidates the structure of SidF and reveals its role in siderophore biosynthesis. We propose SidF as the unknown transacetylase complementing SidL activity, highlighting its central role in A. fumigatus siderophore biosynthesis. Investigation of this uncharacterized GNAT protein enhances our understanding of fungal virulence and holds promise for its potential application in developing antifungal therapies.
Collapse
Affiliation(s)
- Thanalai Poonsiri
- Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl) Faculty of Agricultural, Environmental and Food Sciences, Libera Università di Bolzano, Piazza Università, 1, 39100 Bolzano, Italy
| | - Jan Stransky
- Institute of Biotechnology, AS CR, Centre of Molecular Structure, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Nicola Demitri
- Elettra –Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, Basovizza, Trieste I-34149, Italy
| | - Hubertus Haas
- Institute of Molecular Biology/Biocenter, Medical University Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Stefano Benini
- Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl) Faculty of Agricultural, Environmental and Food Sciences, Libera Università di Bolzano, Piazza Università, 1, 39100 Bolzano, Italy
| |
Collapse
|
2
|
Lenton S, Chaaban H, Khaled M, van de Weert M, Strodel B, Foderà V. Insulin amyloid morphology is encoded in H-bonds and electrostatics interactions ruling protein phase separation. J Colloid Interface Sci 2025; 683:1175-1187. [PMID: 39778472 DOI: 10.1016/j.jcis.2024.12.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/29/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025]
Abstract
Ion-protein interactions regulate biological processes and are the basis of key strategies of modulating protein phase diagrams and stability in drug development. Here, we report the mechanisms by which H-bonds and electrostatic interactions in ion-protein systems determine phase separation and amyloid formation. Using microscopy, small-angle X-ray scattering, circular dichroism and atomistic molecular dynamics (MD) simulations, we found that anions specifically interacting with insulin induced phase separation by neutralising the protein charge and forming H-bond bridges between insulin molecules. The same interaction was responsible for an enhanced insulin conformational stability and resistance to oligomerisation. Under aggregation conditions, the anion-protein interaction translated into the activation of a coalescence process, leading to amyloid-like microparticles. This reaction is alternative to conformationally-driven pathways, giving rise to elongated amyloid-like fibrils and occurs in the absence of preferential ion-protein binding. Our findings depict a unifying scenario in which common interactions dictated both phase separation at low temperatures and the occurrence of pronounced heterogeneity in the amyloid morphology at high temperatures, similar to what has previously been reported for protein crystal growth.
Collapse
Affiliation(s)
- Samuel Lenton
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Hussein Chaaban
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Mohammed Khaled
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Marco van de Weert
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Birgit Strodel
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany; Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Vito Foderà
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
3
|
Lang W, Watanabe T, Lee C, Fukushima S, Li F, Yamamoto T, Tajima K, Tagami T, Borsali R, Takahashi K, Satoh T, Isono T. Self-assembly of malto-oligosaccharide-block-solanesol in aqueous solutions: Investigating morphology and sugar-based physiological compatibility. Carbohydr Polym 2025; 352:123207. [PMID: 39843108 DOI: 10.1016/j.carbpol.2024.123207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025]
Abstract
Starch-derived hydrophilic malto-oligosaccharides (Glcn, where n = 1-7) conjugated to hydrophobic solanesol through click chemistry, i.e., Glcn-b-Sol copolymers, have demonstrated significant promise in developing fully natural block co-oligomers for solid-state nanopatterning applications. This study explores in detail the solution self-assembly, lectin recognition, and pancreatic digestion of Glc6- and Glc7-b-Sol. Above a critical micelle concentration (CMC) of 0.3 g/L, both systems demonstrated self-assembly into diverse morphologies. Using the pyrene probe method, a polarity parameter of 1.2 was observed at 1 mM samples. Dynamic light scattering experiments, which measured autocorrelation functions and relaxation times at various angles, revealed the anisotropic and heterogeneous characteristics of the morphologies. Specifically, Glc6-b-Sol predominantly exhibited spherical and elongated worm-like micelles with considerable heterogeneity across the entire range of concentrations studied. In contrast, Glc7-b-Sol primarily formed stable, shorter, worm-like structures at lower concentrations, as observed by transmission electron microscopy. However, small-angle X-ray scattering showed that higher concentrations led to the formation of longer worm-like structures, with Glc7-b-Sol forming thicker diameters. Notably, interaction with Concanavalin A above the CMC resulted in complete agglutination. Pancreatic digestion with hog pancreas α-amylase resulted in morphological alterations, with Glc3- and Glc4-b-Sol emerging as the primary digestion products for Glc6- and Glc7-b-Sol, respectively.
Collapse
Affiliation(s)
- Weeranuch Lang
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Tomohisa Watanabe
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Chaehun Lee
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Sho Fukushima
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Feng Li
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Yamamoto
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Kenji Tajima
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takayoshi Tagami
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | - Kenji Takahashi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Toshifumi Satoh
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan; ICReDD List-PF, Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan; Department of Chemical & Materials Engineering, National Central University, Taoyuan 320317, Taiwan.
| | - Takuya Isono
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| |
Collapse
|
4
|
Nicholson V, Nguyen K, Gollub E, McCoy M, Yu F, Holehouse AS, Sukenik S, Boothby TC. LEA_4 motifs function alone and in conjunction with synergistic cosolutes to protect a labile enzyme during desiccation. Protein Sci 2025; 34:e70028. [PMID: 39840786 PMCID: PMC11751883 DOI: 10.1002/pro.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/22/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025]
Abstract
Organisms from all kingdoms of life depend on Late Embryogenesis Abundant (LEA) proteins to survive desiccation. LEA proteins are divided into broad families distinguished by the presence of family-specific motif sequences. The LEA_4 family, characterized by 11-residue motifs, plays a crucial role in the desiccation tolerance of numerous species. However, the role of these motifs in the function of LEA_4 proteins is unclear, with some studies finding that they recapitulate the function of full-length LEA_4 proteins in vivo, and other studies finding the opposite result. In this study, we characterize the ability of LEA_4 motifs to protect a desiccation-sensitive enzyme, citrate synthase (CS), from loss of function during desiccation. We show here that LEA_4 motifs not only prevent the loss of function of CS during desiccation but also that they can do so more robustly via synergistically interactions with cosolutes. Our analysis further suggests that cosolutes induce synergy with LEA_4 motifs in a manner that correlates with transfer free energy. This research advances our understanding of LEA_4 proteins by demonstrating that during desiccation their motifs can protect specific clients to varying degrees and that their protective capacity is modulated by their chemical environment. Our findings extend beyond the realm of desiccation tolerance, offering insights into the interplay between IDPs and cosolutes. By investigating the function of LEA_4 motifs, we highlight broader strategies for understanding protein stability and function.
Collapse
Affiliation(s)
- Vincent Nicholson
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - Kenny Nguyen
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - Edith Gollub
- Department of Chemistry and BiochemistryUniversity of California MercedMercedCaliforniaUSA
| | - Mary McCoy
- Department of Chemistry and BiochemistryUniversity of California MercedMercedCaliforniaUSA
| | - Feng Yu
- Department of Chemistry and BiochemistryUniversity of California MercedMercedCaliforniaUSA
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular BiophysicsWashington University in St. LouisSt. LouisMissouriUSA
- Center for Biomolecular CondensatesWashington University in St. LouisSt. LouisMissouriUSA
| | - Shahar Sukenik
- Department of Chemistry and BiochemistryUniversity of California MercedMercedCaliforniaUSA
| | - Thomas C. Boothby
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| |
Collapse
|
5
|
Taron W, Kasemphong T, Sunon P, Kaewket K, Kamonsutthipaijit N, Ketudat-Cairns JR, Bhakdisongkhram G, Tulalamba W, Sanguansuk S, Viprakasit V, Ngamchuea K. Bioanalytical method for NAD + detection in blood plasma utilizing solution-phase Candida boidinii formate dehydrogenase and electrochemical detection. Analyst 2025. [PMID: 39878777 DOI: 10.1039/d4an01560f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Nicotinamide adenine dinucleotide is a crucial coenzyme in cellular metabolism and is implicated in various diseases. This work introduces an electrochemical bioanalytical method utilizing solution-phase Candida boidinii formate dehydrogenase (CbFDH) for detecting its oxidized form (NAD+) in human blood plasma samples. The detection mechanism involves the catalytic conversion of NAD+ to NADH, facilitated by CbFDH in the presence of formate. This NADH is then quantified by electrochemical measurements at disposable carbon screen-printed electrodes. The reaction is completed within one minute. The assay exhibits a linear response range from 3.74 μM to 2.00 mM, a sensitivity of 8.98 ± 0.18 μA mM-1, and a limit of detection (3sb/m) of 1.12 μM. It demonstrates selectivity against common interferences found in plasma samples, including glucose, urea, creatinine, guanosine 5'-monophosphate, cytidine 5'-monophosphate, flavin adenine dinucleotide, adenosine 5'-triphosphate, and lactate, with interference levels below 5% relative to the unperturbed NAD+ signal. Recovery studies showed 98.0-104.4% recoveries, with further validation against a colorimetric alcohol dehydrogenase assay confirming accuracy in plasma samples.
Collapse
Affiliation(s)
- Wichit Taron
- Institute of Research and Development, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Tharinda Kasemphong
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand.
| | - Pachanuporn Sunon
- Institute of Research and Development, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Keerakit Kaewket
- Institute of Research and Development, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Nuntaporn Kamonsutthipaijit
- Synchrotron Light Research Institute, 111 University Avenue, Suranaree, Muang District, Nakhon Ratchasima 30000, Thailand
| | - James R Ketudat-Cairns
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand.
| | - Gun Bhakdisongkhram
- School of Medicine, Institute of Medicine, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Warut Tulalamba
- Siriraj Thalassemia Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Vip Viprakasit
- Siriraj Thalassemia Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kamonwad Ngamchuea
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
6
|
Padilla MS, Shepherd SJ, Hanna AR, Kurnik M, Zhang X, Chen M, Byrnes J, Joseph RA, Yamagata HM, Ricciardi AS, Mrksich K, Issadore D, Gupta K, Mitchell MJ. Solution biophysics identifies lipid nanoparticle non-sphericity, polydispersity, and dependence on internal ordering for efficacious mRNA delivery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.19.629496. [PMID: 39763759 PMCID: PMC11702722 DOI: 10.1101/2024.12.19.629496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Lipid nanoparticles (LNPs) are the most advanced delivery system currently available for RNA therapeutics. Their development has accelerated since the success of Patisiran, the first siRNA-LNP therapeutic, and the mRNA vaccines that emerged during the COVID-19 pandemic. Designing LNPs with specific targeting, high potency, and minimal side effects is crucial for their successful clinical use. These characteristics have been improved through the development of microfluidic platforms, which have enhanced the efficacy and uniformity of LNP batches. However, our understanding of how the composition and mixing method influences the structural, biophysical, and biological properties of the resulting particles remains limited, hindering the development of LNPs. Our lack of structural understanding extends from the physical and compositional polydispersity of LNPs, which render traditional characterization methods, such as dynamic light scattering (DLS), unable to accurately quantitate the physicochemical characteristics of LNPs. In this study, we address the challenge of structurally characterizing polydisperse LNP formulations using emerging solution-based biophysical methods that have higher resolution and provide biophysical data beyond size and polydispersity. These techniques include sedimentation velocity analytical ultracentrifugation (SV-AUC), field flow fractionation followed by multi-angle light scattering (FFF-MALS), and size-exclusion chromatography in-line with synchrotron small-angle X-ray scattering (SEC-SAXS). Here, we show that the LNPs have intrinsic polydispersity in size, RNA loading, and shape, and that these parameters are dependent on both the formulation technique and lipid composition. Lastly, we demonstrate that these biophysical methods can be employed to predict transfection in three biological models by examining the relationship between mRNA translation and physicochemical characteristics. We envision that employing solution-based biophysical methods will be essential for determining LNP structure-function relationships, facilitating the creation of new design rules for future LNPs.
Collapse
Affiliation(s)
- Marshall S. Padilla
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah J. Shepherd
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew R. Hanna
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Xujun Zhang
- Wyatt Technology, LLC, Goleta, CA 93117, USA
| | | | - James Byrnes
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Ryann A. Joseph
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hannah M. Yamagata
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adele S. Ricciardi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Surgery, University of Pennsylvania Health System, Philadelphia, PA 19104, USA
- Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kaitlin Mrksich
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kushol Gupta
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J. Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Sachar K, Kanarek K, Colautti J, Kim Y, Bosis E, Prehna G, Salomon D, Whitney JC. A conserved chaperone protein is required for the formation of a non-canonical type VI secretion system spike tip complex. J Biol Chem 2025:108242. [PMID: 39880087 DOI: 10.1016/j.jbc.2025.108242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
Type VI secretion systems (T6SS) are dynamic protein nanomachines found in Gram-negative bacteria that deliver toxic effector proteins into target cells in a contact-dependent manner. Prior to secretion, many T6SS effector proteins require chaperones and/or accessory proteins for proper loading onto the structural components of the T6SS apparatus. However, despite their established importance, the precise molecular function of several T6SS accessory protein families remains unclear. In this study, we set out to characterize the DUF2169 family of T6SS accessory proteins. Using gene co-occurrence analyses, we find that DUF2169-encoding genes strictly co-occur with genes encoding T6SS spike complexes formed by VgrG and 'PAAR-like' DUF4150 domains. Although structural similar to PAAR domains, DUF4150 domains lack PAAR motifs and instead contain a conserved PIPY motif, leading us to designate them PIPY domains. Next, we present both genetic and biochemical evidence that PIPY domains require a cognate DUF2169 protein to form a functional T6SS spike complex with VgrG. This contrasts with canonical PAAR proteins, which bind VgrG on their own to form functional spike complexes. By solving the first crystal structure of a DUF2169 protein, we show that this T6SS accessory protein adopts a novel protein fold. Furthermore, biophysical and structural modeling data suggest that DUF2169 contains a dynamic loop that physically interacts with a hydrophobic patch on the surface of its cognate PIPY domain. Based on these findings, we propose a model whereby DUF2169 proteins function as molecular chaperones that maintain VgrG-PIPY spike complexes in a secretion-competent state prior to their export by the T6SS apparatus.
Collapse
Affiliation(s)
- Kartik Sachar
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1; Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Katarzyna Kanarek
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jake Colautti
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Youngchang Kim
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois, 60439, USA
| | - Eran Bosis
- Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel
| | - Gerd Prehna
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dor Salomon
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - John C Whitney
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1; Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada L8S 4K1.
| |
Collapse
|
8
|
Monsen R, Sabo T, Gray R, Hopkins J, Chaires J. Early events in G-quadruplex folding captured by time-resolved small-angle X-ray scattering. Nucleic Acids Res 2025; 53:gkaf043. [PMID: 39883009 PMCID: PMC11780883 DOI: 10.1093/nar/gkaf043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/29/2024] [Accepted: 01/16/2025] [Indexed: 01/31/2025] Open
Abstract
Time-resolved small-angle X-ray experiments are reported here that capture and quantify a previously unknown rapid collapse of the unfolded oligonucleotide as an early step in the folding of hybrid 1 and hybrid 2 telomeric G-quadruplex structures. The rapid collapse, initiated by a pH jump, is characterized by an exponential decrease in the radius of gyration from 24.3 to 12.6 Å. The collapse is monophasic and is complete in <600 ms. Additional hand-mixing pH-jump kinetic studies show that slower kinetic steps follow the collapse. The folded and unfolded states at equilibrium were further characterized by SAXS studies and other biophysical tools, showing that G4 unfolding was complete at alkaline pH, but not in LiCl solution as is often claimed. The SAXS Ensemble Optimization Method analysis reveals models of the unfolded state as a dynamic ensemble of flexible oligonucleotide chains with a variety of transient hairpin structures. These results suggest a G4 folding pathway in which a rapid collapse, analogous to molten globule formation seen in proteins, is followed by a confined conformational search within the collapsed particle to form the native contacts ultimately found in the stable folded form.
Collapse
Affiliation(s)
- Robert C Monsen
- Department of Medicine, UofL Health Brown Cancer Center, University of Louisville, Louisville KY, 505 S Hancock St, Louisville, KY 40202, United States
| | - T Michael Sabo
- Department of Medicine, UofL Health Brown Cancer Center, University of Louisville, Louisville KY, 505 S Hancock St, Louisville, KY 40202, United States
| | - Robert Gray
- Department of Medicine, UofL Health Brown Cancer Center, University of Louisville, Louisville KY, 505 S Hancock St, Louisville, KY 40202, United States
| | - Jesse B Hopkins
- The Biophysics Collaborative Access Team (BioCAT), Department of Physics, Illinois Institute of Technology, Chicago, IL 60616, United States
| | - Jonathan B Chaires
- Department of Medicine, UofL Health Brown Cancer Center, University of Louisville, Louisville KY, 505 S Hancock St, Louisville, KY 40202, United States
| |
Collapse
|
9
|
Martinez Grundman JE, Schultz TD, Schlessman JL, Johnson EA, Gillilan RE, Lecomte JTJ. Extremophilic hemoglobins: The structure of Shewanella benthica truncated hemoglobin N. J Biol Chem 2025:108223. [PMID: 39864624 DOI: 10.1016/j.jbc.2025.108223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 01/28/2025] Open
Abstract
Truncated hemoglobins (TrHbs) have an ancient origin and are widely distributed in microorganisms where they often serve roles other than dioxygen transport and storage. In extremophiles, these small heme proteins must have features that secure function under challenging conditions: at minimum, they must be folded, retain the heme group, allow substrates to access the heme cavity, and maintain their quaternary structure if present and essential. The genome of the obligate psychropiezophile Shewanella benthica strain KT99 harbors a gene for a TrHb belonging to a little-studied clade of globins (subgroup 2 of group N). In the present work, we characterized the structure of this protein (SbHbN) with electronic absorption spectroscopy and X-ray crystallography, and inspected its structural integrity under hydrostatic pressure with NMR spectroscopy and small-angle X-ray scattering. We found that SbHbN self-associates weakly in solution and contains an extensive network of hydrophobic tunnels connecting the active site to the surface. Amino acid replacements at the dimeric interface formed by helices G and H in the crystal confirmed this region to be the site of intermolecular interactions. High hydrostatic pressure dissociated the assemblies while the porous subunits resisted unfolding and heme loss. Preservation of structural integrity under pressure is also observed in non-piezophilic TrHbs, which suggests that this ancient property is derived from functional requirements. Added to the inability of SbHbN to combine reversibly with dioxygen and a propensity to form heme d, the study broadens our perception of the TrHb lineage and the resistance of globins to extreme environmental conditions.
Collapse
Affiliation(s)
| | - Thomas D Schultz
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Jamie L Schlessman
- Chemistry Department, U.S. Naval Academy, Annapolis, Maryland, 21402, USA
| | - Eric A Johnson
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Richard E Gillilan
- Center for High Energy X-ray Sciences, CHEXS, Ithaca, New York, 14853, USA
| | - Juliette T J Lecomte
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, 21218, USA.
| |
Collapse
|
10
|
Baral R, Ho K, Kumar RP, Hopkins JB, Watkins MB, LaRussa S, Caban-Penix S, Calderone LA, Bradshaw N. A General Mechanism for Initiating the General Stress Response in Bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.16.580724. [PMID: 38405867 PMCID: PMC10889023 DOI: 10.1101/2024.02.16.580724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The General Stress Response promotes survival of bacteria in adverse conditions, but how sensor proteins transduce species-specific signals to initiate the response is not known. The serine/threonine phosphatase RsbU initiates the General Stress Response in B. subtilis upon binding a partner protein (RsbT) that is released from sequestration by environmental stresses. We report that RsbT activates RsbU by inducing otherwise flexible linkers of RsbU to form a short coiled-coil that dimerizes and activates the phosphatase domains. Importantly, we present evidence that related coiled-coil linkers and phosphatase dimers transduce signals from diverse sensor domains to control the General Stress Response and other signaling across bacterial phyla. This coiled-coil linker transduction mechanism additionally suggests a resolution to the mystery of how shared sensory domains control serine/threonine phosphatases, diguanylate cyclases and histidine kinases. We propose that this provides bacteria with a modularly exchangeable toolkit for the evolution of diverse signaling pathways.
Collapse
|
11
|
Koning H, Lai J, Marshall A, Stroeher E, Monahan G, Pullakhandam A, Knott G, Ryan T, Fox A, Whitten A, Lee M, Bond C. Structural plasticity of the coiled-coil interactions in human SFPQ. Nucleic Acids Res 2025; 53:gkae1198. [PMID: 39698821 PMCID: PMC11754644 DOI: 10.1093/nar/gkae1198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/10/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
The proteins SFPQ (splicing Factor Proline/Glutamine rich) and NONO (non-POU domain-containing octamer-binding protein) are mammalian members of the Drosophila Behaviour/Human Splicing (DBHS) protein family, which share 76% sequence identity in their conserved 320 amino acid DBHS domain. SFPQ and NONO are involved in all steps of post-transcriptional regulation and are primarily located in mammalian paraspeckles: liquid phase-separated, ribonucleoprotein sub-nuclear bodies templated by NEAT1 long non-coding RNA. A combination of structured and low-complexity regions provide polyvalent interaction interfaces that facilitate homo- and heterodimerisation, polymerisation, interactions with oligonucleotides, mRNA, long non-coding RNA, and liquid phase-separation, all of which have been implicated in cellular homeostasis and neurological diseases including neuroblastoma. The strength and competition of these interaction modes define the ability of DBHS proteins to dissociate from paraspeckles to fulfil functional roles throughout the nucleus or the cytoplasm. In this study, we define and dissect the coiled-coil interactions which promote the polymerisation of DBHS proteins, using a crystal structure of an SFPQ/NONO heterodimer which reveals a flexible coiled-coil interaction interface which differs from previous studies. We support this through extensive solution small-angle X-ray scattering experiments using a panel of SFPQ/NONO heterodimer variants which are capable of tetramerisation to varying extents. The QM mutant displayed a negligible amount of tetramerisation (quadruple loss of function coiled-coil mutant L535A/L539A/L546A/M549A), the Charged Single Alpha Helix (ΔCSAH) variant displayed a dimer-tetramer equilibrium interaction, and the disulfide-forming variant displayed constitutive tetramerisation (R542C which mimics the pathological Drosophila nonAdiss allele). We demonstrate that newly characterised coiled-coil interfaces play a role in the polymerisation of DBHS proteins in addition to the previously described canonical coiled-coil interface. The detail of these interactions provides insight into a process critical for the assembly of paraspeckles as well as the behaviour of SFPQ as a transcription factor, and general multipurpose auxiliary protein with functions essential to mammalian life. Our understanding of the coiled coil behaviour of SFPQ also enhances the explanatory power of mutations (often disease-associated) observed in the DBHS family, potentially allowing for the development of future medical options such as targeted gene therapy.
Collapse
Affiliation(s)
- Heidar J Koning
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Jia Y Lai
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Andrew C Marshall
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Elke Stroeher
- WA Proteomics Facility, School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Gavin Monahan
- Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands WA 6009, Australia
| | - Anuradha Pullakhandam
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Gavin J Knott
- Monash Biomedicine Discovery Institute, Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Timothy M Ryan
- Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Archa H Fox
- School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Andrew Whitten
- ANSTONew Illawarra Rd, Lucas Heights, NSW 2234, Australia
| | - Mihwa Lee
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
12
|
Ren Q, Li L, Liu L, Li J, Shi C, Sun Y, Yao X, Hou Z, Xiang S. The molecular mechanism of temperature-dependent phase separation of heat shock factor 1. Nat Chem Biol 2025:10.1038/s41589-024-01806-y. [PMID: 39794489 DOI: 10.1038/s41589-024-01806-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 11/22/2024] [Indexed: 01/13/2025]
Abstract
Heat shock factor 1 (HSF1) is the critical orchestrator of cell responses to heat shock, and its dysfunction is linked to various diseases. HSF1 undergoes phase separation upon heat shock, and its activity is regulated by post-translational modifications (PTMs). The molecular details underlying HSF1 phase separation, temperature sensing and PTM regulation remain poorly understood. Here, we discovered that HSF1 exhibits temperature-dependent phase separation with a lower critical solution temperature behavior, providing a new conceptual mechanism accounting for HSF1 activation. We revealed the residue-level molecular details of the interactions driving the phase separation of wild-type HSF1 and its distinct PTM patterns at various temperatures. The mapped interfaces were validated experimentally and accounted for the reported HSF1 functions. Importantly, the molecular grammar of temperature-dependent HSF1 phase separation is species specific and physiologically relevant. These findings delineate a chemical code that integrates accurate phase separation with physiological body temperature control in animals.
Collapse
Affiliation(s)
- Qiunan Ren
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Linge Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei, China
| | - Lei Liu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Juan Li
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Chaowei Shi
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Yujie Sun
- National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, China
- State Key Laboratory of Membrane Biology & Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei, China.
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China.
| | - Zhonghuai Hou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China.
- Department of Chemical Physics, University of Science and Technology of China, Hefei, China.
| | - ShengQi Xiang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
13
|
Kurniyati K, Clark ND, Wang H, Deng Y, Sze CW, Visser MB, Malkowski MG, Li C. A bipartite bacterial virulence factor targets the complement system and neutrophil activation. EMBO J 2025:10.1038/s44318-024-00342-8. [PMID: 39753953 DOI: 10.1038/s44318-024-00342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
The complement system and neutrophils constitute the two main pillars of the host innate immune defense against infection by bacterial pathogens. Here, we identify T-Mac, a novel virulence factor of the periodontal pathogen Treponema denticola that allows bacteria to evade both defense systems. We show that T-Mac is expressed as a pre-protein that is cleaved into two functional units. The N-terminal fragment has two immunoglobulin-like domains and binds with high affinity to the major neutrophil chemokine receptors FPR1 and CXCR1, blocking N-formyl-Met-Leu-Phe- and IL-8-induced neutrophil chemotaxis and activation. The C-terminal fragment functions as a cysteine protease with a unique proteolytic activity and structure, which degrades several components of the complement system, such as C3 and C3b. Murine infection studies further reveal a critical T-Mac role in tissue damage and inflammation caused by bacterial infection. Collectively, these results disclose a novel innate immunity-evasion strategy, and open avenues for investigating the role of cysteine proteases and immunoglobulin-like domains of gram-positive and -negative bacterial pathogens.
Collapse
Affiliation(s)
- Kurni Kurniyati
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Nicholas D Clark
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, the State University of New York, Buffalo, NY, USA
| | - Hongxia Wang
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Yijie Deng
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Ching Wooen Sze
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Michelle B Visser
- Department of Oral Biology, School of Dentistry, University of Buffalo, the State University of New York, Buffalo, NY, USA
| | - Michael G Malkowski
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, the State University of New York, Buffalo, NY, USA.
| | - Chunhao Li
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
14
|
Martín-González A, Méndez-Guzmán I, Zabala-Zearreta M, Quintanilla A, García-López A, Martínez-Lombardía E, Albesa-Jové D, Acosta JC, Lucas M. Selective cargo and membrane recognition by SNX17 regulates its interaction with Retriever. EMBO Rep 2025; 26:470-493. [PMID: 39653850 PMCID: PMC11772769 DOI: 10.1038/s44319-024-00340-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 01/29/2025] Open
Abstract
The Retriever complex recycles a wide range of transmembrane proteins from endosomes to the plasma membrane. The cargo adapter protein SNX17 has been implicated in recruiting the Retriever complex to endosomal membranes, yet the details of this interaction have remained elusive. Through biophysical and structural model-guided mutagenesis studies with recombinant proteins and liposomes, we have gained a deeper understanding of this process. Here, we demonstrate a direct interaction between SNX17 and Retriever, specifically between the C-terminal region of SNX17 and the interface of the Retriever subunits VPS35L and VPS26C. This interaction is enhanced upon the binding of SNX17 to its cargo in solution, due to the disruption of an intramolecular autoinhibitory interaction between the C-terminal region of SNX17 and the cargo binding pocket. In addition, SNX17 binding to membranes containing phosphatidylinositol-3-phosphate also promotes Retriever recruitment in a cargo-independent manner. Therefore, this work provides evidence of the dual activation mechanisms by which SNX17 modulates Retriever recruitment to the proximity of cargo and membranes, offering significant insights into the regulatory mechanisms of protein recycling at endosomes.
Collapse
Affiliation(s)
- Aurora Martín-González
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, 39011, Spain
| | - Iván Méndez-Guzmán
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, 39011, Spain
| | - Maialen Zabala-Zearreta
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB) and Departamento de Bioquímica y Biología Molecular, University of the Basque Country, 48940, Leioa, Spain
| | - Andrea Quintanilla
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, 39011, Spain
| | - Arturo García-López
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, 39011, Spain
| | - Eva Martínez-Lombardía
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, 39011, Spain
| | - David Albesa-Jové
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB) and Departamento de Bioquímica y Biología Molecular, University of the Basque Country, 48940, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Juan Carlos Acosta
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, 39011, Spain
| | - María Lucas
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, 39011, Spain.
| |
Collapse
|
15
|
Botting JM, Rahman MK, Xu H, Yue J, Guo W, Del Mundo JT, Hammel M, Motaleb MA, Liu J. FlbB forms a distinctive ring essential for periplasmic flagellar assembly and motility in Borrelia burgdorferi. PLoS Pathog 2025; 21:e1012812. [PMID: 39777417 PMCID: PMC11750108 DOI: 10.1371/journal.ppat.1012812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/21/2025] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Spirochetes are a widespread group of bacteria with a distinct morphology. Some spirochetes are important human pathogens that utilize periplasmic flagella to achieve motility and host infection. The motors that drive the rotation of periplasmic flagella have a unique spirochete-specific feature, termed the collar, crucial for the flat-wave morphology and motility of the Lyme disease spirochete Borrelia burgdorferi. Here, we deploy cryo-electron tomography and subtomogram averaging to determine high-resolution in-situ structures of the B. burgdorferi flagellar motor. Comparative analysis and molecular modeling of in-situ flagellar motor structures from B. burgdorferi mutants lacking each of the known collar proteins (FlcA, FlcB, FlcC, FlbB, and Bb0236/FlcD) uncover a complex protein network at the base of the collar. Importantly, our data suggest that FlbB forms a novel periplasmic ring around the rotor but also acts as a scaffold supporting collar assembly and subsequent recruitment of stator complexes. The complex protein network based on the FlbB ring effectively bridges the rotor and 16 torque-generating stator complexes in each flagellar motor, thus contributing to the specialized motility and lifestyle of spirochetes in complex environments.
Collapse
Affiliation(s)
- Jack M. Botting
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Md Khalesur Rahman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Hui Xu
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Jian Yue
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Wangbiao Guo
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Joshua T. Del Mundo
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Md A. Motaleb
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Jun Liu
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
16
|
Patt E, Classen S, Hammel M, Schneidman-Duhovny D. Predicting RNA structure and dynamics with deep learning and solution scattering. Biophys J 2024:S0006-3495(24)04105-5. [PMID: 39722452 DOI: 10.1016/j.bpj.2024.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/15/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024] Open
Abstract
Advanced deep learning and statistical methods can predict structural models for RNA molecules. However, RNAs are flexible, and it remains difficult to describe their macromolecular conformations in solutions where varying conditions can induce conformational changes. Small-angle x-ray scattering (SAXS) in solution is an efficient technique to validate structural predictions by comparing the experimental SAXS profile with those calculated from predicted structures. There are two main challenges in comparing SAXS profiles to RNA structures: the absence of cations essential for stability and charge neutralization in predicted structures and the inadequacy of a single structure to represent RNA's conformational plasticity. We introduce a solution conformation predictor for RNA (SCOPER) to address these challenges. This pipeline integrates kinematics-based conformational sampling with the innovative deep learning model, IonNet, designed for predicting Mg2+ ion binding sites. Validated through benchmarking against 14 experimental data sets, SCOPER significantly improved the quality of SAXS profile fits by including Mg2+ ions and sampling of conformational plasticity. We observe that an increased content of monovalent and bivalent ions leads to decreased RNA plasticity. Therefore, carefully adjusting the plasticity and ion density is crucial to avoid overfitting experimental SAXS data. SCOPER is an efficient tool for accurately validating the solution state of RNAs given an initial, sufficiently accurate structure and provides the corrected atomistic model, including ions.
Collapse
Affiliation(s)
- Edan Patt
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Scott Classen
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California.
| | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
17
|
Holla A, Martin EW, Dannenhoffer-Lafage T, Ruff KM, König SLB, Nüesch MF, Chowdhury A, Louis JM, Soranno A, Nettels D, Pappu RV, Best RB, Mittag T, Schuler B. Identifying Sequence Effects on Chain Dimensions of Disordered Proteins by Integrating Experiments and Simulations. JACS AU 2024; 4:4729-4743. [PMID: 39735932 PMCID: PMC11672150 DOI: 10.1021/jacsau.4c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/13/2024] [Accepted: 10/09/2024] [Indexed: 12/31/2024]
Abstract
It has become increasingly evident that the conformational distributions of intrinsically disordered proteins or regions are strongly dependent on their amino acid compositions and sequence. To facilitate a systematic investigation of these sequence-ensemble relationships, we selected a set of 16 naturally occurring intrinsically disordered regions of identical length but with large differences in amino acid composition, hydrophobicity, and charge patterning. We probed their conformational ensembles with single-molecule Förster resonance energy transfer (FRET), complemented by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy as well as small-angle X-ray scattering (SAXS). The set of disordered proteins shows a strong dependence of the chain dimensions on sequence composition, with chain volumes differing by up to a factor of 6. The residue-specific intrachain interaction networks that underlie these pronounced differences were identified using atomistic simulations combined with ensemble reweighting, revealing the important role of charged, aromatic, and polar residues. To advance a transferable description of disordered protein regions, we further employed the experimental data to parametrize a coarse-grained model for disordered proteins that includes an explicit representation of the FRET fluorophores and successfully describes experiments with different dye pairs. Our findings demonstrate the value of integrating experiments and simulations for advancing our quantitative understanding of the sequence features that determine the conformational ensembles of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Andrea Holla
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Erik W. Martin
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Thomas Dannenhoffer-Lafage
- Laboratory
of Chemical Physics, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892-0520, United States
| | - Kiersten M. Ruff
- Department
of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Sebastian L. B. König
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Mark F. Nüesch
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Aritra Chowdhury
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - John M. Louis
- Laboratory
of Chemical Physics, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892-0520, United States
| | - Andrea Soranno
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department
of Biochemistry and Molecular Biophysics, Center for Biomolecular
Condensates, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| | - Daniel Nettels
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Rohit V. Pappu
- Department
of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Robert B. Best
- Laboratory
of Chemical Physics, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892-0520, United States
| | - Tanja Mittag
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Benjamin Schuler
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department
of Physics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
18
|
Patt E, Classen S, Hammel M, Schneidman-Duhovny D. Predicting RNA Structure and Dynamics with Deep Learning and Solution Scattering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.08.598075. [PMID: 39764023 PMCID: PMC11702515 DOI: 10.1101/2024.06.08.598075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Advanced deep learning and statistical methods can predict structural models for RNA molecules. However, RNAs are flexible, and it remains difficult to describe their macromolecular conformations in solutions where varying conditions can induce conformational changes. Small-angle X-ray scattering (SAXS) in solution is an efficient technique to validate structural predictions by comparing the experimental SAXS profile with those calculated from predicted structures. There are two main challenges in comparing SAXS profiles to RNA structures: the absence of cations essential for stability and charge neutralization in predicted structures and the inadequacy of a single structure to represent RNA's conformational plasticity. We introduce Solution Conformation Predictor for RNA (SCOPER) to address these challenges. This pipeline integrates kinematics-based conformational sampling with the innovative deep-learning model, IonNet, designed for predicting Mg2+ ion binding sites. Validated through benchmarking against fourteen experimental datasets, SCOPER significantly improved the quality of SAXS profile fits by including Mg2+ ions and sampling of conformational plasticity. We observe that an increased content of monovalent and bivalent ions leads to decreased RNA plasticity. Therefore, carefully adjusting the plasticity and ion density is crucial to avoid overfitting experimental SAXS data. SCOPER is an efficient tool for accurately validating the solution state of RNAs given an initial, sufficiently accurate structure and provides the corrected atomistic model, including ions.
Collapse
Affiliation(s)
- Edan Patt
- School of Computer Science and Engineering, The Hebrew University of Jerusalem
| | - Scott Classen
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | |
Collapse
|
19
|
Mitra R, Usher ET, Dedeoğlu S, Crotteau MJ, Fraser OA, Yennawar NH, Gadkari VV, Ruotolo BT, Holehouse AS, Salmon L, Showalter SA, Bardwell JCA. Molecular insights into the interaction between a disordered protein and a folded RNA. Proc Natl Acad Sci U S A 2024; 121:e2409139121. [PMID: 39589885 PMCID: PMC11626198 DOI: 10.1073/pnas.2409139121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Intrinsically disordered protein regions (IDRs) are well established as contributors to intermolecular interactions and the formation of biomolecular condensates. In particular, RNA-binding proteins (RBPs) often harbor IDRs in addition to folded RNA-binding domains that contribute to RBP function. To understand the dynamic interactions of an IDR-RNA complex, we characterized the RNA-binding features of a small (68 residues), positively charged IDR-containing protein, Small ERDK-Rich Factor (SERF). At high concentrations, SERF and RNA undergo charge-driven associative phase separation to form a protein- and RNA-rich dense phase. A key advantage of this model system is that this threshold for demixing is sufficiently high that we could use solution-state biophysical methods to interrogate the stoichiometric complexes of SERF with RNA in the one-phase regime. Herein, we describe our comprehensive characterization of SERF alone and in complex with a small fragment of the HIV-1 Trans-Activation Response (TAR) RNA with complementary biophysical methods and molecular simulations. We find that this binding event is not accompanied by the acquisition of structure by either molecule; however, we see evidence for a modest global compaction of the SERF ensemble when bound to RNA. This behavior likely reflects attenuated charge repulsion within SERF via binding to the polyanionic RNA and provides a rationale for the higher-order assembly of SERF in the context of RNA. We envision that the SERF-RNA system will lower the barrier to accessing the details that support IDR-RNA interactions and likewise deepen our understanding of the role of IDR-RNA contacts in complex formation and liquid-liquid phase separation.
Collapse
Affiliation(s)
- Rishav Mitra
- HHMI, University of Michigan, Ann Arbor, MI48109
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Emery T. Usher
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO63110
| | - Selin Dedeoğlu
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, UMR 5082, CNRS, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne69100, France
| | - Matthew J. Crotteau
- HHMI, University of Michigan, Ann Arbor, MI48109
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Olivia A. Fraser
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA16802
| | - Neela H. Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA16802
| | - Varun V. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | | | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO63110
| | - Loïc Salmon
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, UMR 5082, CNRS, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne69100, France
| | - Scott A. Showalter
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA16802
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
| | - James C. A. Bardwell
- HHMI, University of Michigan, Ann Arbor, MI48109
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
20
|
Wang T, He W, Pabit SA, Pollack L, Kirmizialtin S. Sequence-dependent conformational preferences of disordered single-stranded RNA. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:102264. [PMID: 39726808 PMCID: PMC11671127 DOI: 10.1016/j.xcrp.2024.102264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Disordered single-stranded RNA (ssRNA) molecules, like their well-folded counterparts, have crucial functions that depend on their structures. However, since native ssRNAs constitute a highly heterogeneous conformer population, their structural characterization poses challenges. One important question regards the role of sequence in influencing ssRNA structure. Here, we adopt an integrated approach that combines solution-based measurements, including small-angle X-ray scattering (SAXS) and Förster resonance energy transfer (FRET), with experimentally guided all-atom molecular dynamics (MD) simulations, to construct structural ensembles of a 30-nucleotide RNA homopolymer (rU30) and a 30-nucleotide RNA heteropolymer with an A-/C-rich sequence. We compare the size, shape, and flexibility of the two different ssRNAs. While the average properties align with polymer-physics descriptions of flexible polymers, we discern distinct, sequence-dependent conformations at the molecular level that demand a more detailed representation than provided by polymer models. These findings emphasize the role of sequence in shaping the overall properties of ssRNA.
Collapse
Affiliation(s)
- Tong Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
- These authors contributed equally
| | - Weiwei He
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, UAE
- Department of Chemistry, New York University, New York, NY 10003, USA
- These authors contributed equally
| | - Suzette A. Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Serdal Kirmizialtin
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, UAE
- Department of Chemistry, New York University, New York, NY 10003, USA
- Lead contact
| |
Collapse
|
21
|
Beyens O, Corthaut S, Lambeir AM, Van Der Veken P, Sterckx YGJ, De Meester I, De Winter H. An Interdisciplinary Approach Provides Insights into the Pronounced Selectivity of Compound 42 for DPP9. ChemMedChem 2024:e202400700. [PMID: 39552560 DOI: 10.1002/cmdc.202400700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
Dipeptidyl peptidase 8 (DPP8) and 9 (DPP9) are proteases gaining significant attention for their role in health and disease. Distinctive studies of these proteases are hampered by their close homology. Furthermore, designing selective compounds is a major challenge due to the highly conserved catalytic site. Here, we provide mechanistic insights underlying the DPP9-over-DPP8 selectivity of the semi-selective inhibitor "Compound 42". We performed enhanced sampling molecular dynamics simulations to investigate the binding pose of "Compound 42", which enabled the design of various DPP9 mutants that were characterized through a combination of biochemical (Ki determinations) and in silico approaches. Our findings show that DPP9 residue F253 is an important selectivity-determining factor. This work marks the discovery and validation of a structural feature that can be exploited for the design of DPP8 or DPP9 selective inhibitors.
Collapse
Affiliation(s)
- Olivier Beyens
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Sam Corthaut
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Pieter Van Der Veken
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Yann G-J Sterckx
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Hans De Winter
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| |
Collapse
|
22
|
Zhu Y, Chaubey B, Olsen GL, Varani G. Structure of Essential RNA Regulatory Elements in the West Nile Virus 3'-Terminal Stem Loop. J Mol Biol 2024; 436:168767. [PMID: 39214284 PMCID: PMC11563921 DOI: 10.1016/j.jmb.2024.168767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Flaviviruses, such as West Nile and Dengue Virus, pose a significant and growing threat to global health. Central to the flavivirus life cycle are highly structured 5'- and 3'-untranslated regions (UTRs), which harbor conserved cis-acting RNA elements critical for viral replication and host adaptation. Despite their essential roles, detailed molecular insights into these RNA elements have been limited. By employing nuclear magnetic resonance (NMR) spectroscopy in conjunction with SAXS experiments, we determined the three-dimensional structure of the West Nile Virus (WNV) 3'-terminal stem-loop core, a highly conserved element critical for viral genome cyclization and replication. Single nucleotide mutations at several sites within this RNA abolish the ability of the virus to replicate. These critical sites are located within a short 18-nucleotide hairpin stem, a substructure notable for its conformational flexibility, while the adjoining main stem-loop adopts a well-defined extended helix interrupted by three non-Watson-Crick pairs. This study enhances our understanding of several metastable RNA structures that play key roles in regulating the flavivirus lifecycle, and thereby also opens up potential new avenues for the development of antivirals targeting these conserved RNA structures. In particular, the structure we observe suggests that the plastic junction between the small hairpin and the tail of the longer stem-loop could provide a binding pocket for small molecules, for example potentially stabilizing the RNA in a conformation which hinders the conformational rearrangements critical for viral replication.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Bhawna Chaubey
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Gregory L Olsen
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
23
|
Nong J, Gong X, Dang QM, Tiwari S, Patel M, Wu J, Hanna A, Park WJ, Atochina-Vasserman EN, Huang HT, Marcos-Contreras OA, Morris-Blanco KC, Miner JJ, Weissman D, Muzykantov VR, Gupta K, Issadore D, Myerson JW, Wang Z, Brenner JS. Multi-stage-mixing to create a core-then-shell structure improves DNA-loaded lipid nanoparticles' transfection by orders of magnitude. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623321. [PMID: 39605450 PMCID: PMC11601355 DOI: 10.1101/2024.11.12.623321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The unprecedented success of mRNA-lipid nanoparticles (LNPs) has highlighted their power for protein expression, but the hours-long half-life of mRNA severely limits their use in chronic diseases. In contrast, DNA LNPs display months-long expression and genetically encode cell type specificity, but their use has been hindered by poor protein expression (orders of magnitude lower than mRNA LNPs). To overcome this, we introduce multi-stage mixing (MSM) microfluidics to control the internal structure of LNPs and use it to create core-then-shell (CTS) structured DNA LNPs. CTS LNPs display distinct thermal transitions and internal organization compared to the amorphous structure of conventional LNPs. CTS improves transfection by three orders of magnitude in vitro , outperforming gold standard reagents in hard-to-transfect cells like primary neurons. In vivo , CTS DNA LNPs augment expression by two orders of magnitude, achieving peak expression levels comparable to mRNA LNPs, but with prolonged expression. This work demonstrates how microfluidic control over nanoparticle assembly kinetics can access otherwise unattainable particle architectures, advancing both materials science and therapeutic applications.
Collapse
|
24
|
Cottom CO, Stephenson R, Ricci D, Yang L, Gumbart JC, Noinaj N. Structural characterization of the POTRA domains from A. baumannii reveals new conformations in BamA. Structure 2024; 32:2038-2048.e3. [PMID: 39293443 PMCID: PMC11560574 DOI: 10.1016/j.str.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/17/2024] [Accepted: 08/22/2024] [Indexed: 09/20/2024]
Abstract
Recent studies have demonstrated BamA, the central component of the β-barrel assembly machinery (BAM), as an important therapeutic target to combat infections caused by Acinetobacter baumannii and other Gram-negative pathogens. Homology modeling indicates BamA in A. baumannii consists of five polypeptide transport-associated (POTRA) domains and a β-barrel membrane domain. We characterized the POTRA domains of BamA from A. baumannii in solution using size-exclusion chromatography small angle X-ray scattering (SEC-SAXS) analysis and determined crystal structures in two conformational states that are drastically different than those previously observed in BamA from other bacteria, indicating that the POTRA domains are even more conformationally dynamic than has been observed previously. Molecular dynamics simulations of the POTRA domains from A. baumannii and Escherichia coli allowed us to identify key structural features that contribute to the observed novel states. Together, these studies expand on our current understanding of the conformational plasticity within BamA across differing bacterial species.
Collapse
Affiliation(s)
| | - Robert Stephenson
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Dante Ricci
- Achaogen, Inc., South San Francisco, CA, USA
| | - Lixinhao Yang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - James C Gumbart
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA; School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nicholas Noinaj
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA; Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
25
|
Smith KP, Chakravarthy S, Rahi A, Chakraborty M, Vosberg KM, Tonelli M, Plach MG, Grigorescu AA, Curtis JE, Varma D. SEC-SAXS/MC Ensemble Structural Studies of the Microtubule Binding Protein Cdt1 Show Monomeric, Folded-Over Conformations. Cytoskeleton (Hoboken) 2024. [PMID: 39503309 DOI: 10.1002/cm.21954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
Cdt1 is a mixed folded protein critical for DNA replication licensing and it also has a "moonlighting" role at the kinetochore via direct binding to microtubules and the Ndc80 complex. However, it is unknown how the structure and conformations of Cdt1 could allow it to participate in these multiple, unique sets of protein complexes. While robust methods exist to study entirely folded or unfolded proteins, structure-function studies of combined, mixed folded/disordered proteins remain challenging. In this work, we employ orthogonal biophysical and computational techniques to provide structural characterization of mitosis-competent human Cdt1. Thermal stability analyses shows that both folded winged helix domains1 are unstable. CD and NMR show that the N-terminal and linker regions are intrinsically disordered. DLS shows that Cdt1 is monomeric and polydisperse, while SEC-MALS confirms that it is monomeric at high concentrations, but without any apparent inter-molecular self-association. SEC-SAXS enabled computational modeling of the protein structures. Using the program SASSIE, we performed rigid body Monte Carlo simulations to generate a conformational ensemble of structures. We observe that neither fully extended nor extremely compact Cdt1 conformations are consistent with SAXS. The best-fit models have the N-terminal and linker disordered regions extended into the solution and the two folded domains close to each other in apparent "folded over" conformations. We hypothesize the best-fit Cdt1 conformations could be consistent with a function as a scaffold protein that may be sterically blocked without binding partners. Our study also provides a template for combining experimental and computational techniques to study mixed-folded proteins.
Collapse
Affiliation(s)
- Kyle P Smith
- Department of Cell & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Srinivas Chakravarthy
- Biophysics Collaborative Access Team, Argonne National Laboratory, Argonne, Illinois, USA
| | - Amit Rahi
- Department of Cell & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Manas Chakraborty
- Department of Cell & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kristen M Vosberg
- Department of Cell & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Arabela A Grigorescu
- Keck Biophysics Facility, Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - Joseph E Curtis
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Dileep Varma
- Department of Cell & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
26
|
Pettitt AJ, Shukla VK, Figueiredo AM, Newton LS, McCarthy S, Tabor AB, Heller GT, Lorenz CD, Hansen DF. An integrative characterization of proline cis and trans conformers in a disordered peptide. Biophys J 2024; 123:3798-3811. [PMID: 39340152 PMCID: PMC11560310 DOI: 10.1016/j.bpj.2024.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024] Open
Abstract
Intrinsically disordered proteins (IDPs) often contain proline residues that undergo cis/trans isomerization. While molecular dynamics (MD) simulations have the potential to fully characterize the proline cis and trans subensembles, they are limited by the slow timescales of isomerization and force field inaccuracies. NMR spectroscopy can report on ensemble-averaged observables for both the cis-proline and trans-proline states, but a full atomistic characterization of these conformers is challenging. Given the importance of proline cis/trans isomerization for influencing the conformational sampling of disordered proteins, we employed a combination of all-atom MD simulations with enhanced sampling (metadynamics), NMR, and small-angle x-ray scattering (SAXS) to characterize the two subensembles of the ORF6 C-terminal region (ORF6CTR) from SARS-CoV-2 corresponding to the proline-57 (P57) cis and trans states. We performed MD simulations in three distinct force fields: AMBER03ws, AMBER99SB-disp, and CHARMM36m, which are all optimized for disordered proteins. Each simulation was run for an accumulated time of 180-220 μs until convergence was reached, as assessed by blocking analysis. A good agreement between the cis-P57 populations predicted from metadynamic simulations in AMBER03ws was observed with populations obtained from experimental NMR data. Moreover, we observed good agreement between the radius of gyration predicted from the metadynamic simulations in AMBER03ws and that measured using SAXS. Our findings suggest that both the cis-P57 and trans-P57 conformations of ORF6CTR are extremely dynamic and that interdisciplinary approaches combining both multiscale computations and experiments offer avenues to explore highly dynamic states that cannot be reliably characterized by either approach in isolation.
Collapse
Affiliation(s)
- Alice J Pettitt
- Department of Structural and Molecular Biology, Division of Biosciences, London, United Kingdom; Department of Engineering, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, London, United Kingdom; The Francis Crick Institute, London, United Kingdom
| | - Vaibhav Kumar Shukla
- Department of Structural and Molecular Biology, Division of Biosciences, London, United Kingdom; The Francis Crick Institute, London, United Kingdom
| | | | - Lydia S Newton
- Department of Structural and Molecular Biology, Division of Biosciences, London, United Kingdom
| | - Stephen McCarthy
- Department of Chemistry, Faculty of Mathematical and Physical Sciences, London, United Kingdom
| | - Alethea B Tabor
- Department of Chemistry, Faculty of Mathematical and Physical Sciences, London, United Kingdom
| | - Gabriella T Heller
- Department of Structural and Molecular Biology, Division of Biosciences, London, United Kingdom
| | - Christian D Lorenz
- Department of Engineering, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, London, United Kingdom.
| | - D Flemming Hansen
- Department of Structural and Molecular Biology, Division of Biosciences, London, United Kingdom; The Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
27
|
Monge N, Amini MR, Deschamps A. Influence of device configuration and noise on a machine learning predictor for the selection of nanoparticle small-angle X-ray scattering models. Acta Crystallogr A Found Adv 2024; 80:405-413. [PMID: 39311060 PMCID: PMC11532926 DOI: 10.1107/s2053273324007988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/13/2024] [Indexed: 11/05/2024] Open
Abstract
Small-angle X-ray scattering (SAXS) is a widely used method for nanoparticle characterization. A common approach to analysing nanoparticles in solution by SAXS involves fitting the curve using a parametric model that relates real-space parameters, such as nanoparticle size and electron density, to intensity values in reciprocal space. Selecting the optimal model is a crucial step in terms of analysis quality and can be time-consuming and complex. Several studies have proposed effective methods, based on machine learning, to automate the model selection step. Deploying these methods in software intended for both researchers and industry raises several issues. The diversity of SAXS instrumentation requires assessment of the robustness of these methods on data from various machine configurations, involving significant variations in the q-space ranges and highly variable signal-to-noise ratios (SNR) from one data set to another. In the case of laboratory instrumentation, data acquisition can be time-consuming and there is no universal criterion for defining an optimal acquisition time. This paper presents an approach that revisits the nanoparticle model selection method proposed by Monge et al. [Acta Cryst. (2024), A80, 202-212], evaluating and enhancing its robustness on data from device configurations not seen during training, by expanding the data set used for training. The influence of SNR on predictor robustness is then assessed, improved, and used to propose a stopping criterion for optimizing the trade-off between exposure time and data quality.
Collapse
Affiliation(s)
- Nicolas Monge
- Xenocs, Grenoble, France
- LIG, University of Grenoble Alpes, CNRS, Grenoble, France
- SIMaP, University of Grenoble Alpes, CNRS, Grenoble INP, Grenoble, France
| | | | - Alexis Deschamps
- SIMaP, University of Grenoble Alpes, CNRS, Grenoble INP, Grenoble, France
| |
Collapse
|
28
|
Myers MJ, Xu Z, Ryan BJ, DeMars ZR, Ridder MJ, Johnson DK, Krute CN, Flynn TS, Kashipathy MM, Battaile KP, Schnicker N, Lovell S, Freudenthal BD, Bose JL. Molecular insights into the structure and function of the Staphylococcus aureus fatty acid kinase. J Biol Chem 2024; 300:107920. [PMID: 39454961 PMCID: PMC11617999 DOI: 10.1016/j.jbc.2024.107920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/30/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Gram-positive bacteria utilize a Fatty Acid Kinase (FAK) complex to harvest fatty acids from the environment. This complex consists of the fatty acid kinase, FakA, and an acyl carrier protein, FakB, and is known to impact virulence and disease outcomes. Despite some recent studies, there remain many outstanding questions as to the enzymatic mechanism and structure of FAK. To better address this knowledge gap, we used a combination of modeling, biochemical, and cell-based approaches to build on prior proposed models and identify critical details of FAK activity. Using bio-layer interferometry, we demonstrated nanomolar affinity between FakA and FakB which also indicates that FakA is dimer when binding FakB. Additionally, targeted mutagenesis of the FakA Middle domain demonstrates it possesses a metal binding pocket that is critical for FakA dimer stability and FAK function in vitro and in vivo. Lastly, we solved structures of the apo and ligand-bound FakA kinase domain to capture the molecular changes in the protein following ATP binding and hydrolysis. Together, these data provide critical insight into the structure and function of the FAK complex which is essential for understanding its mechanism.
Collapse
Affiliation(s)
- Megan J Myers
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Zhen Xu
- Protein and Crystallography Facility, University of Iowa, Iowa City, Iowa, USA
| | - Benjamin J Ryan
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Zachary R DeMars
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Miranda J Ridder
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - David K Johnson
- Computational Chemical Biology Core, University of Kansas, Lawrence, Kansas, USA
| | - Christina N Krute
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Tony S Flynn
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Maithri M Kashipathy
- Protein Structure & X-Ray Crystallography Laboratory, University of Kansas, Lawrence, Kansas, USA
| | | | - Nicholas Schnicker
- Protein and Crystallography Facility, University of Iowa, Iowa City, Iowa, USA
| | - Scott Lovell
- Protein Structure & X-Ray Crystallography Laboratory, University of Kansas, Lawrence, Kansas, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jeffrey L Bose
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
29
|
Khan SA, Hicks A, Leite WC, Byrnes J, Gorai B, Mroginski MA, O'Neill H, Miller AF. Extended conformations of bifurcating electron transfer flavoprotein constitute up to half the population, possibly mediating conformational change. Chem Sci 2024:d4sc04544k. [PMID: 39512923 PMCID: PMC11536132 DOI: 10.1039/d4sc04544k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Electron transfer bifurcation enables biological systems to drive unfavourable (endergonic) electron transfer by coupling it to favourable (exergonic) transfer of a second electron. In electron transfer flavoproteins (ETFs), a domain-scale conformational change is believed to sever the favourable pathway after a single electron has used it, thereby preventing the energy dissipation that would accompany exergonic transfer of the second electron. To understand the conformation change that participates in turnover, we have deployed small-angle neutron scattering (SANS) and computational techniques to characterize the bifurcating ETF from Acidaminococcus fermentans (AfeETF). SANS data reveal an overall radius of gyration (R g) of 30.1 ± 0.2 Å and a maximum dimension (D max) of 100 Å for oxidized AfeETF. These measurements are 4 Å and 30 Å larger, respectively, than those of any published bifurcating ETF structure. Thus, we find that none of the reported ETF structures can explain the observed scattering, nor can any individual conformation generated by either of our molecular dynamics protocols. To optimize ensembles best able to explain the SANS data, we adapted a genetic algorithm. Successful ensembles contained a compact conformation comparable to one of the crystallographically documented conformations, accompanied by a much more extended one, and these two conformations sufficed to account for the data. The extended conformations identified all have R gs at least 4 Å larger than those of any currently published ETF structures. However, they are strongly populated, constituting 20% of the population of reduced ETF and over 50% of the population of oxidized AfeETF. Thus, the published (compact) structures provide a seriously incomplete picture of the conformation of AfeETF in solution. Moreover, because the composition of the conformational ensemble changes upon reduction of AfeETF's flavins, interconversion of the conformations may contribute to turnover. We propose that the extended conformations can provide energetically accessible paths for rapid interconversion of the open and closed compact conformations that are believed essential at alternating points in turnover.
Collapse
Affiliation(s)
- Sharique A Khan
- Department of Chemistry, University of Kentucky Lexington KY 40506 USA
- Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Alan Hicks
- Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Wellington C Leite
- Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - James Byrnes
- National Synchrotron Light Source II, Brookhaven National Laboratory Upton NY 11973 USA
| | - Biswajit Gorai
- Department of Chemistry, Technische Universität Berlin 10623 Berlin Germany
| | | | - Hugh O'Neill
- Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | | |
Collapse
|
30
|
Ko YH, Lokareddy RK, Doll SG, Yeggoni DP, Girdhar A, Mawn I, Klim JR, Rizvi NF, Meyers R, Gillilan RE, Guo L, Cingolani G. Single Acetylation-mimetic Mutation in TDP-43 Nuclear Localization Signal Disrupts Importin α1/β Signaling. J Mol Biol 2024; 436:168751. [PMID: 39181183 PMCID: PMC11443512 DOI: 10.1016/j.jmb.2024.168751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/19/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Cytoplasmic aggregation of the TAR-DNA binding protein of 43 kDa (TDP-43) is the hallmark of sporadic amyotrophic lateral sclerosis (ALS). Most ALS patients with TDP-43 aggregates in neurons and glia do not have mutations in the TDP-43 gene but contain aberrantly post-translationally modified TDP-43. Here, we found that a single acetylation-mimetic mutation (K82Q) near the TDP-43 minor Nuclear Localization Signal (NLS) box, which mimics a post-translational modification identified in an ALS patient, can lead to TDP-43 mislocalization to the cytoplasm and irreversible aggregation. We demonstrate that the acetylation mimetic disrupts binding to importins, halting nuclear import and preventing importin α1/β anti-aggregation activity. We propose that perturbations near the NLS are an additional mechanism by which a cellular insult other than a genetically inherited mutation leads to TDP-43 aggregation and loss of function. Our findings are relevant to deciphering the molecular etiology of sporadic ALS.
Collapse
Affiliation(s)
- Ying-Hui Ko
- Dept. of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| | - Ravi K Lokareddy
- Dept. of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| | - Steven G Doll
- Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA; Dept. of Neurology, Johns Hopkins University School of Medicine, 1800 Orleans St Baltimore, Baltimore, MD 21287, USA
| | - Daniel P Yeggoni
- Dept. of Cell Biology, UConn Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Amandeep Girdhar
- Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Ian Mawn
- Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | | | | | | - Richard E Gillilan
- Macromolecular Diffraction Facility, Cornell High Energy Synchrotron Source (MacCHESS), Cornell University, 161 Synchrotron Drive, Ithaca, NY 14853, USA
| | - Lin Guo
- Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| | - Gino Cingolani
- Dept. of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA.
| |
Collapse
|
31
|
Hall I, Zablock K, Sobetski R, Weidmann CA, Keane SC. Functional Validation of SAM Riboswitch Element A from Listeria monocytogenes. Biochemistry 2024; 63:2621-2631. [PMID: 39323220 DOI: 10.1021/acs.biochem.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
SreA is one of seven candidate S-adenosyl methionine (SAM) class I riboswitches identified in Listeria monocytogenes, a saprophyte and opportunistic foodborne pathogen. SreA precedes genes encoding a methionine ATP-binding cassette (ABC) transporter, which imports methionine and is presumed to regulate transcription of its downstream genes in a SAM-dependent manner. The proposed role of SreA in controlling the transcription of genes encoding an ABC transporter complex may have important implications for how the bacteria senses and responds to the availability of the metabolite SAM in the diverse environments in which L. monocytogenes persists. Here we validate SreA as a functional SAM-I riboswitch through ligand binding studies, structure characterization, and transcription termination assays. We determined that SreA has both a structure and SAM binding properties similar to those of other well-characterized SAM-I riboswitches. Despite the apparent structural similarities to previously described SAM-I riboswitches, SreA induces transcription termination in response to comparatively lower (nanomolar) ligand concentrations. Furthermore, SreA is a leaky riboswitch that permits some transcription of the downstream gene even in the presence of millimolar SAM, suggesting that L. monocytogenes may "dampen" the expression of genes for methionine import but likely does not turn them "OFF".
Collapse
Affiliation(s)
- Ian Hall
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kaitlyn Zablock
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Raeleen Sobetski
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chase A Weidmann
- Department of Biological Chemistry, Center for RNA Biomedicine, Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Sarah C Keane
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
32
|
Mohammed ASA, Soloviov D, Jeffries CM. Perspectives on solution-based small angle X-ray scattering for protein and biological macromolecule structural biology. Phys Chem Chem Phys 2024; 26:25268-25286. [PMID: 39323216 DOI: 10.1039/d4cp02001d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Small-angle X-ray scattering (SAXS) is used to extract structural information from a wide variety of non-crystalline samples in different fields (e.g., materials science, physics, chemistry, and biology). This review provides an overview of SAXS as applied to structural biology, specifically for proteins and other biomacromolecules in solution with an emphasis on extracting key structural parameters and the interpretation of SAXS data using a diverse array of techniques. These techniques cover aspects of building and assessing models to describe data measured from monodispersed and ideal dilute samples through to more complicated structurally polydisperse systems. Ab initio modelling, rigid body modelling as well as normal-mode analysis, molecular dynamics, mixed component and structural ensemble modelling are discussed. Dealing with polydispersity both physically in terms of component separation as well as approaching the analysis and modelling of data of mixtures and evolving systems are described, including methods for data decomposition such as single value decomposition/principle component analysis and evolving factor analysis. This review aims to highlight that solution SAXS, with the cohort of developments in data analysis and modelling, is well positioned to build upon the traditional 'single particle view' foundation of structural biology to take the field into new areas for interpreting the structures of proteins and biomacromolecules as population-states and dynamic structural systems.
Collapse
Affiliation(s)
- Ahmed S A Mohammed
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, co/DESY, Notkestrasse 85, D-22607 Hamburg, Germany.
- Physics Department, Faculty of Science, Fayoum University, 63514 Fayoum, Egypt
- Department of Biomedical Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Dmytro Soloviov
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, co/DESY, Notkestrasse 85, D-22607 Hamburg, Germany.
| | - Cy M Jeffries
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, co/DESY, Notkestrasse 85, D-22607 Hamburg, Germany.
| |
Collapse
|
33
|
Srivastava D, Gowribidanur-Chinnaswamy P, Gaur P, Spies M, Swaroop A, Artemyev NO. Molecular basis of CRX/DNA recognition and stoichiometry at the Ret4 response element. Structure 2024; 32:1751-1759.e4. [PMID: 39084215 PMCID: PMC11455607 DOI: 10.1016/j.str.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/03/2024] [Accepted: 07/04/2024] [Indexed: 08/02/2024]
Abstract
Two retinal transcription factors, cone-rod homeobox (CRX) and neural retina leucine zipper (NRL), cooperate functionally and physically to control photoreceptor development and homeostasis. Mutations in CRX and NRL cause severe retinal diseases. Despite the roles of NRL and CRX, insight into their functions at the molecular level is lacking. Here, we have solved the crystal structure of the CRX homeodomain in complex with its cognate response element (Ret4) from the rhodopsin proximal promoter region. The structure reveals an unexpected 2:1 stoichiometry of CRX/Ret4 and unique orientation of CRX molecules on DNA, and it explains the mechanisms of pathogenic mutations in CRX. Mutations R41Q and E42K disrupt the CRX protein-protein contacts based on the structure and reduce the CRX/Ret4 binding stoichiometry, suggesting a novel disease mechanism. Furthermore, we show that NRL alters the stoichiometry and increases affinity of CRX binding at the rhodopsin promoter, which may enhance transcription of rod-specific genes and suppress transcription of cone-specific genes.
Collapse
Affiliation(s)
- Dhiraj Srivastava
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | - Paras Gaur
- Department of Biochemistry and Molecular Biology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Maria Spies
- Department of Biochemistry and Molecular Biology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
34
|
Cavini IA, Fontes MG, Zeraik AE, Lopes JLS, Araujo APU. Novel lipid-interaction motifs within the C-terminal domain of Septin10 from Schistosoma mansoni. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184371. [PMID: 39025256 DOI: 10.1016/j.bbamem.2024.184371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Septins are cytoskeletal proteins and their interaction with membranes is crucial for their role in various cellular processes. Septins have polybasic regions (PB1 and PB2) which are important for lipid interaction. Earlier, we and others have highlighted the role of the septin C-terminal domain (CTD) to membrane interaction. However, detailed information on residues/group of residues important for such feature is lacking. In this study, we investigate the lipid-binding profile of Schistosoma mansoni Septin10 (SmSEPT10) using PIP strip and Langmuir monolayer adsorption assays. Our findings highlight the CTD as the primary domain responsible for lipid interaction in SmSEPT10, showing binding to phosphatidylinositol phosphates. SmSEPT10 CTD contains a conserved polybasic region (PB3) present in both animals and fungi septins, and a Lys (K367) within its putative amphipathic helix (AH) that we demonstrate as important for lipid binding. PB3 deletion or mutation of this Lys (K367A) strongly impairs lipid interaction. Remarkably, we observe that the AH within a construct lacking the final 43 amino acid residues is insufficient for lipid binding. Furthermore, we investigate the homocomplex formed by SmSEPT10 CTD in solution by cross-linking experiments, CD spectroscopy, SEC-MALS and SEC-SAXS. Taken together, our studies define the lipid-binding region in SmSEPT10 and offer insights into the molecular basis of septin-membrane binding. This information is particularly relevant for less-studied non-human septins, such as SmSEPT10.
Collapse
Affiliation(s)
- Italo A Cavini
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13560-970, Brazil; School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Marina G Fontes
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13560-970, Brazil; Department of Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Ana Eliza Zeraik
- Laboratory of Chemistry and Function of Proteins and Peptides, Center for Biosciences and Biotechnology, North Fluminense State University Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil
| | - Jose L S Lopes
- Laboratory of Molecular Biophysics, Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Ana Paula U Araujo
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13560-970, Brazil.
| |
Collapse
|
35
|
Narayanan D, Larsen ASG, Gauger SJ, Adafia R, Hammershøi RB, Hamborg L, Bruus‐Jensen J, Griem‐Krey N, Gee CL, Frølund B, Stratton MM, Kuriyan J, Kastrup JS, Langkilde AE, Wellendorph P, Solbak SMØ. Ligand-induced CaMKIIα hub Trp403 flip, hub domain stacking, and modulation of kinase activity. Protein Sci 2024; 33:e5152. [PMID: 39275999 PMCID: PMC11400628 DOI: 10.1002/pro.5152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 09/16/2024]
Abstract
γ-Hydroxybutyric acid (GHB) analogs are small molecules that bind competitively to a specific cavity in the oligomeric CaMKIIα hub domain. Binding affects conformation and stability of the hub domain, which may explain the neuroprotective action of some of these compounds. Here, we describe molecular details of interaction of the larger-type GHB analog 2-(6-(4-chlorophenyl)imidazo[1,2-b]pyridazine-2-yl)acetic acid (PIPA). Like smaller-type analogs, PIPA binding to the CaMKIIα hub domain promoted thermal stability. PIPA additionally modulated CaMKIIα activity under sub-maximal CaM concentrations and ultimately led to reduced substrate phosphorylation. A high-resolution X-ray crystal structure of a stabilized CaMKIIα (6x mutant) hub construct revealed details of the binding mode of PIPA, which involved outward placement of tryptophan 403 (Trp403), a central residue in a flexible loop close to the upper hub cavity. Small-angle X-ray scattering (SAXS) solution structures and mass photometry of the CaMKIIα wild-type hub domain in the presence of PIPA revealed a high degree of ordered self-association (stacks of CaMKIIα hub domains). This stacking neither occurred with the smaller compound 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA), nor when Trp403 was replaced with leucine (W403L). Additionally, CaMKIIα W403L hub was stabilized to a larger extent by PIPA compared to CaMKIIα hub wild type, indicating that loop flexibility is important for holoenzyme stability. Thus, we propose that ligand-induced outward placement of Trp403 by PIPA, which promotes an unforeseen mechanism of hub domain stacking, may be involved in the observed reduction in CaMKIIα kinase activity. Altogether, this sheds new light on allosteric regulation of CaMKIIα activity via the hub domain.
Collapse
Affiliation(s)
- Dilip Narayanan
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Anne Sofie G. Larsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Stine Juul Gauger
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Ruth Adafia
- Department of Biochemistry and Molecular BiologyUniversity of MassachusettsAmherstMassachusettsUSA
- Chemistry‐Biology Interface Training ProgramUniversity of MassachusettsAmherstMassachusettsUSA
| | - Rikke Bartschick Hammershøi
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Louise Hamborg
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Jesper Bruus‐Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Nane Griem‐Krey
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Christine L. Gee
- HHMIUniversity of CaliforniaBerkeleyCaliforniaUSA
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- California Institute for Quantitative BiosciencesUniversity of CaliforniaBerkeleyCaliforniaUSA
- Department of BiochemistryVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Margaret M. Stratton
- Department of Biochemistry and Molecular BiologyUniversity of MassachusettsAmherstMassachusettsUSA
| | - John Kuriyan
- HHMIUniversity of CaliforniaBerkeleyCaliforniaUSA
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- California Institute for Quantitative BiosciencesUniversity of CaliforniaBerkeleyCaliforniaUSA
- Department of BiochemistryVanderbilt University School of MedicineNashvilleTennesseeUSA
- Department of ChemistryUniversity of CaliforniaBerkeleyCaliforniaUSA
- Physical Biosciences DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Jette Sandholm Kastrup
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Annette E. Langkilde
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Sara M. Ø. Solbak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
36
|
Michael Sabo T, Trent JO, Chaires JB, Monsen RC. Strategy for modeling higher-order G-quadruplex structures recalcitrant to NMR determination. Methods 2024; 230:9-20. [PMID: 39032720 DOI: 10.1016/j.ymeth.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/22/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024] Open
Abstract
Guanine-rich nucleic acids can form intramolecularly folded four-stranded structures known as G-quadruplexes (G4s). Traditionally, G4 research has focused on short, highly modified DNA or RNA sequences that form well-defined homogeneous compact structures. However, the existence of longer sequences with multiple G4 repeats, from proto-oncogene promoters to telomeres, suggests the potential for more complex higher-order structures with multiple G4 units that might offer selective drug-targeting sites for therapeutic development. These larger structures present significant challenges for structural characterization by traditional high-resolution methods like multi-dimensional NMR and X-ray crystallography due to their molecular complexity. To address this current challenge, we have developed an integrated structural biology (ISB) platform, combining experimental and computational methods to determine self-consistent molecular models of higher-order G4s (xG4s). Here we outline our ISB method using two recent examples from our lab, an extended c-Myc promoter and long human telomere G4 repeats, that highlights the utility and generality of our approach to characterizing biologically relevant xG4s.
Collapse
Affiliation(s)
- T Michael Sabo
- UofL Health Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - John O Trent
- UofL Health Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Jonathan B Chaires
- UofL Health Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Robert C Monsen
- UofL Health Brown Cancer Center, University of Louisville, Louisville, KY, United States.
| |
Collapse
|
37
|
Zuo X, Tiede DM. Coordinate-based simulation of pair distance distribution functions for small and large molecular assemblies: implementation and applications. J Appl Crystallogr 2024; 57:1446-1455. [PMID: 39387080 PMCID: PMC11460383 DOI: 10.1107/s1600576724007222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/21/2024] [Indexed: 10/12/2024] Open
Abstract
X-ray scattering has become a major tool in the structural characterization of nanoscale materials. Thanks to the widely available experimental and computational atomic models, coordinate-based X-ray scattering simulation has played a crucial role in data interpretation in the past two decades. However, simulation of real-space pair distance distribution functions (PDDFs) from small- and wide-angle X-ray scattering, SAXS/WAXS, has been relatively less exploited. This study presents a comparison of PDDF simulation methods, which are applied to molecular structures that range in size from β-cyclo-dextrin [1 kDa molecular weight (MW), 66 non-hydrogen atoms] to the satellite tobacco mosaic virus capsid (1.1 MDa MW, 81 960 non-hydrogen atoms). The results demonstrate the power of interpretation of experimental SAXS/WAXS from the real-space view, particularly by providing a more intuitive method for understanding of partial structure contributions. Furthermore, the computational efficiency of PDDF simulation algorithms makes them attractive as approaches for the analysis of large nanoscale materials and biological assemblies. The simulation methods demonstrated in this article have been implemented in stand-alone software, SolX 3.0, which is available to download from https://12idb.xray.aps.anl.gov/solx.html.
Collapse
Affiliation(s)
- Xiaobing Zuo
- X-ray Science DivisionArgonne National LaboratoryLemontIllinoisUSA
| | - David M. Tiede
- Chemical Sciences and Engineering DivisionArgonne National LaboratoryLemontIllinoisUSA
| |
Collapse
|
38
|
Krokengen OC, Touma C, Mularski A, Sutinen A, Dunkel R, Ytterdal M, Raasakka A, Mertens HDT, Simonsen AC, Kursula P. The cytoplasmic tail of myelin protein zero induces morphological changes in lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184368. [PMID: 38971517 DOI: 10.1016/j.bbamem.2024.184368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
The major myelin protein expressed by the peripheral nervous system Schwann cells is protein zero (P0), which represents 50% of the total protein content in myelin. This 30-kDa integral membrane protein consists of an immunoglobulin (Ig)-like domain, a transmembrane helix, and a 69-residue C-terminal cytoplasmic tail (P0ct). The basic residues in P0ct contribute to the tight packing of myelin lipid bilayers, and alterations in the tail affect how P0 functions as an adhesion molecule necessary for the stability of compact myelin. Several neurodegenerative neuropathies are related to P0, including the more common Charcot-Marie-Tooth disease (CMT) and Dejerine-Sottas syndrome (DSS) as well as rare cases of motor and sensory polyneuropathy. We found that high P0ct concentrations affected the membrane properties of bicelles and induced a lamellar-to-inverted hexagonal phase transition, which caused bicelles to fuse into long, protein-containing filament-like structures. These structures likely reflect the formation of semicrystalline lipid domains with potential relevance for myelination. Not only is P0ct important for stacking lipid membranes, but time-lapse fluorescence microscopy also shows that it might affect membrane properties during myelination. We further describe recombinant production and low-resolution structural characterization of full-length human P0. Our findings shed light on P0ct effects on membrane properties, and with the successful purification of full-length P0, we have new tools to study the role of P0 in myelin formation and maintenance in vitro.
Collapse
Affiliation(s)
- Oda C Krokengen
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Christine Touma
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Anna Mularski
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Aleksi Sutinen
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ryan Dunkel
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Marie Ytterdal
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Haydyn D T Mertens
- European Molecular Biology Laboratory EMBL, Hamburg Site, c/o DESY, Hamburg, Germany
| | - Adam Cohen Simonsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway; Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
39
|
Caba C, Black M, Liu Y, DaDalt AA, Mallare J, Fan L, Harding RJ, Wang YX, Vacratsis PO, Huang R, Zhuang Z, Tong Y. Autoinhibition of ubiquitin-specific protease 8: Insights into domain interactions and mechanisms of regulation. J Biol Chem 2024; 300:107727. [PMID: 39214302 PMCID: PMC11467669 DOI: 10.1016/j.jbc.2024.107727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/07/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Ubiquitin-specific proteases (USPs) are a family of multi-domain deubiquitinases (DUBs) with variable architectures, some containing regulatory auxiliary domains. Among the USP family, all occurrences of intramolecular regulation presently known are autoactivating. USP8 remains the sole exception as its putative WW-like domain, conserved only in vertebrate orthologs, is autoinhibitory. Here, we present a comprehensive structure-function analysis describing the autoinhibition of USP8 and provide evidence of the physical interaction between the WW-like and catalytic domains. The solution structure of full-length USP8 reveals an extended, monomeric conformation. Coupled with DUB assays, the WW-like domain is confirmed to be the minimal autoinhibitory unit. Strikingly, autoinhibition is only observed with the WW-like domain in cis and depends on the length of the linker tethering it to the catalytic domain. Modeling of the WW:CD complex structure and mutagenesis of interface residues suggests a novel binding site in the S1 pocket. To investigate the interplay between phosphorylation and USP8 autoinhibition, we identify AMP-activated protein kinase as a highly selective modifier of S718 in the 14-3-3 binding motif. We show that 14-3-3γ binding to phosphorylated USP8 potentiates autoinhibition in a WW-like domain-dependent manner by stabilizing an autoinhibited conformation. These findings provide mechanistic details on the autoregulation of USP8 and shed light on its evolutionary significance.
Collapse
Affiliation(s)
- Cody Caba
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada
| | - Megan Black
- Department of Chemistry, University of Guelph, Guelph, Canada
| | - Yujue Liu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Ashley A DaDalt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada; Department of Biology, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Josh Mallare
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, Small-Angle X-ray Scattering Core Facility, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Rachel J Harding
- Structural Genomics Consortium, University of Toronto, Toronto, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Yun-Xing Wang
- Center for Structural Biology, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland, USA
| | | | - Rui Huang
- Department of Chemistry, University of Guelph, Guelph, Canada
| | - Zhihao Zhuang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Yufeng Tong
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada.
| |
Collapse
|
40
|
Baranova I, Angelova A, Stransky J, Andreasson J, Angelov B. Hemoglobin-PEG Interactions Probed by Small-Angle X-ray Scattering: Insights for Crystallization and Diagnostics Applications. J Phys Chem B 2024; 128:9262-9273. [PMID: 39252421 PMCID: PMC11440596 DOI: 10.1021/acs.jpcb.4c03003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Protein-protein interactions, controlling protein aggregation in the solution phase, are crucial for the formulation of protein therapeutics and the use of proteins in diagnostic applications. Additives in the solution phase are factors that may enhance the protein's conformational stability or induce crystallization. Protein-PEG interactions do not always stabilize the native protein structure. Structural information is needed to validate excipients for protein stabilization in the development of protein therapeutics or use proteins in diagnostic assays. The present study investigates the impact of polyethylene glycol (PEG) molecular weight and concentration on the spatial structure of human hemoglobin (Hb) at neutral pH. Small-angle X-ray scattering (SAXS) in combination with size-exclusion chromatography is employed to characterize the Hb structure in solution without and with the addition of PEG. Our results evidence that human hemoglobin maintains a tetrameric conformation at neutral pH. The dummy atom model, reconstructed from the SAXS data, aligns closely with the known crystallographic structure of methemoglobin (metHb) from the Protein Data Bank. We established that the addition of short-chain PEG600, at concentrations of up to 10% (w/v), acts as a stabilizer for hemoglobin, preserving its spatial structure without significant alterations. By contrast, 5% (w/v) PEG with higher molecular weights of 2000 and 4000 leads to a slight reduction in the maximum particle dimension (Dmax), while the radius of gyration (Rg) remains essentially unchanged. This implies a reduced hydration shell around the protein due to the dehydrating effect of longer PEG chains. At a concentration of 10% (w/v), PEG2000 interacts with Hb to form a complex that does not distort the protein's spatial configuration. The obtained results provide a deeper understanding of PEG's influence on the Hb structure in solution and broader knowledge regarding protein-PEG interactions.
Collapse
Affiliation(s)
- Iuliia Baranova
- Extreme
Light Infrastructure ERIC, Za Radnicí 835, Dolní Břežany 252 41, Czech Republic
- Faculty
of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague 121 16, Czech Republic
| | - Angelina Angelova
- Université
Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F-91400 Orsay, France
| | - Jan Stransky
- Institute
of Biotechnology of the Czech Academy of Sciences, v.v.i., Prumyslová 595, Vestec 252 50, Czech Republic
| | - Jakob Andreasson
- Extreme
Light Infrastructure ERIC, Za Radnicí 835, Dolní Břežany 252 41, Czech Republic
| | - Borislav Angelov
- Extreme
Light Infrastructure ERIC, Za Radnicí 835, Dolní Břežany 252 41, Czech Republic
| |
Collapse
|
41
|
Koduru T, Hantman N, Peters EV, Jaworek MW, Wang J, Zhang S, McCallum SA, Gillilan RE, Fossat MJ, Roumestand C, Sagar A, Winter R, Bernadó P, Cherfils J, Royer CA. A molten globule ensemble primes Arf1-GDP for the nucleotide switch. Proc Natl Acad Sci U S A 2024; 121:e2413100121. [PMID: 39292747 PMCID: PMC11441498 DOI: 10.1073/pnas.2413100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/31/2024] [Indexed: 09/20/2024] Open
Abstract
The adenosine di-phosphate (ADP) ribosylation factor (Arf) small guanosine tri-phosphate (GTP)ases function as molecular switches to activate signaling cascades that control membrane organization in eukaryotic cells. In Arf1, the GDP/GTP switch does not occur spontaneously but requires guanine nucleotide exchange factors (GEFs) and membranes. Exchange involves massive conformational changes, including disruption of the core β-sheet. The mechanisms by which this energetically costly switch occurs remain to be elucidated. To probe the switch mechanism, we coupled pressure perturbation with nuclear magnetic resonance (NMR), Fourier Transform infra-red spectroscopy (FTIR), small-angle X-ray scattering (SAXS), fluorescence, and computation. Pressure induced the formation of a classical molten globule (MG) ensemble. Pressure also favored the GDP to GTP transition, providing strong support for the notion that the MG ensemble plays a functional role in the nucleotide switch. We propose that the MG ensemble allows for switching without the requirement for complete unfolding and may be recognized by GEFs. An MG-based switching mechanism could constitute a pervasive feature in Arfs and Arf-like GTPases, and more generally, the evolutionarily related (Ras-like small GTPases) Rags and Gα GTPases.
Collapse
Affiliation(s)
- Tejaswi Koduru
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Noam Hantman
- Graduate Program in Biochemistry and Biophysics, School of Science, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Edgar V. Peters
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Michel W. Jaworek
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, Technical University of Dortmund University, DortmundD-44227, Germany
| | - Jinqiu Wang
- Graduate Program in Biochemistry and Biophysics, School of Science, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Siwen Zhang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Scott A. McCallum
- Shirley Ann Jackson, PhD. Center for Biotechnology and Interdisciplinary Science, Rensselaer Polytechnic Institute, Troy, NY12180
| | | | - Martin J. Fossat
- Department of Biological Physics, Max Planck Institute of Immunobiology and Epigenetic, FreiburgD-79108, Germany
| | - Christian Roumestand
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier34090, France
| | - Amin Sagar
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier34090, France
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, Technical University of Dortmund University, DortmundD-44227, Germany
| | - Pau Bernadó
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier34090, France
| | - Jacqueline Cherfils
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, Gif-sur-Yvette91190, France
| | - Catherine A. Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY12180
| |
Collapse
|
42
|
Stie MB, Cunha C, Huang Z, Kirkensgaard JJK, Tuelung PS, Wan F, Nielsen HM, Foderà V, Rønholt S. A head-to-head comparison of polymer interaction with mucin from porcine stomach and bovine submaxillary glands. Sci Rep 2024; 14:21350. [PMID: 39266622 PMCID: PMC11393313 DOI: 10.1038/s41598-024-72233-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
Native mucus is heterogeneous, displays high inter-individual variation and is prone to changes during harvesting and storage. To overcome the lack of reproducibility and availability of native mucus, commercially available purified mucins, porcine gastric mucin (PGM) and mucin from bovine submaxillary gland (BSM), have been widely used. However, the question is to which extent the choice of mucin matters in studies of their interaction with polymers as their composition, structure and hence physicochemical properties differ. Accordingly, the interactions between PGM or BSM with two widely used polymers in drug delivery, polyethylene oxide and chitosan, was studied with orthogonal methods: turbidity, dynamic light scattering, and quartz crystal microbalance with dissipation monitoring. Polymer binding and adsorption to the two commercially available and purified mucins, PGM and BSM, is different depending on the mucin type. PEO, known to interact weakly with mucin, only displayed limited interaction with both mucins as confirmed by all employed methods. In contrast, chitosan was able to bind to both PGM and BSM. Interestingly, the results suggest that chitosan interacts with BSM to a greater extent than with PGM indicating that the choice of mucin, PGM or BSM, can affect the outcome of studies of mucin interactions with polymers.
Collapse
Affiliation(s)
- Mai Bay Stie
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| | - Cristiana Cunha
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Zheng Huang
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Jacob Judas Kain Kirkensgaard
- Department of Food Science, Rolighedsvej 26, 1958, Frederiksberg, Denmark
- Niels Bohr Institute, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Pernille Sønderby Tuelung
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Feng Wan
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Hanne Mørck Nielsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Vito Foderà
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Stine Rønholt
- LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
43
|
Wang T, Coshic K, Badiee M, McDonald MR, Aksimentiev A, Pollack L, Leung AKL. Cation-induced intramolecular coil-to-globule transition in poly(ADP-ribose). Nat Commun 2024; 15:7901. [PMID: 39256374 PMCID: PMC11387394 DOI: 10.1038/s41467-024-51972-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024] Open
Abstract
Poly(ADP-ribose) (PAR), a non-canonical nucleic acid, is essential for DNA/RNA metabolism and protein condensation, and its dysregulation is linked to cancer and neurodegeneration. However, key structural insights into PAR's functions remain largely uncharacterized, hindered by the challenges in synthesizing and characterizing PAR, which are attributed to its length heterogeneity. A central issue is how PAR, comprised solely of ADP-ribose units, attains specificity in its binding and condensing proteins based on chain length. Here, we integrate molecular dynamics simulations with small-angle X-ray scattering to analyze PAR structures. We identify diverse structural ensembles of PAR that fall into distinct subclasses and reveal distinct compaction of two different lengths of PAR upon the addition of small amounts of Mg2+ ions. Unlike PAR15, PAR22 forms ADP-ribose bundles via local intramolecular coil-to-globule transitions. Understanding these length-dependent structural changes could be central to deciphering the specific biological functions of PAR.
Collapse
Affiliation(s)
- Tong Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Kush Coshic
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana Champaign, Urbana, IL, 61801, USA
| | - Mohsen Badiee
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Maranda R McDonald
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
- Chemistry-Biology Interface Graduate Program, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Aleksei Aksimentiev
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana Champaign, Urbana, IL, 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana Champaign, Urbana, IL, 61801, USA.
- Department of Physics, University of Illinois Urbana Champaign, Urbana, IL, 61801, USA.
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA.
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Chemistry-Biology Interface Graduate Program, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
44
|
Monsen RC, Sabo TM, Gray R, Hopkins JB, Chaires JB. Early Events in G-quadruplex Folding Captured by Time-Resolved Small-Angle X-Ray Scattering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611539. [PMID: 39282441 PMCID: PMC11398465 DOI: 10.1101/2024.09.05.611539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Time-resolved small-angle X-ray experiments (TR-SAXS) are reported here that capture and quantify a previously unknown rapid collapse of the unfolded oligonucleotide as an early step in G4 folding of hybrid 1 and hybrid 2 telomeric G-quadruplex structures. The rapid collapse, initiated by a pH jump, is characterized by an exponential decrease in the radius of gyration from 20.6 to 12.6 Å. The collapse is monophasic and is complete in less than 600 ms. Additional hand-mixing pH-jump kinetic studies show that slower kinetic steps follow the collapse. The folded and unfolded states at equilibrium were further characterized by SAXS studies and other biophysical tools, to show that G4 unfolding was complete at alkaline pH, but not in LiCl solution as is often claimed. The SAXS Ensemble Optimization Method (EOM) analysis reveals models of the unfolded state as a dynamic ensemble of flexible oligonucleotide chains with a variety of transient hairpin structures. These results suggest a G4 folding pathway in which a rapid collapse, analogous to molten globule formation seen in proteins, is followed by a confined conformational search within the collapsed particle to form the native contacts ultimately found in the stable folded form.
Collapse
Affiliation(s)
- Robert C Monsen
- Department of Medicine, UofL Health Brown Cancer Center, University of Louisville, Louisville KY, 505 S Hancock St, Louisville, KY 40202
| | - T Michael Sabo
- Department of Medicine, UofL Health Brown Cancer Center, University of Louisville, Louisville KY, 505 S Hancock St, Louisville, KY 40202
| | - Robert Gray
- Department of Medicine, UofL Health Brown Cancer Center, University of Louisville, Louisville KY, 505 S Hancock St, Louisville, KY 40202
| | - Jesse B Hopkins
- The Biophysics Collaborative Access Team (BioCAT) Department of Physics, Illinois Institute of Technology, Chicago, IL 60616
| | - Jonathan B Chaires
- Department of Medicine, UofL Health Brown Cancer Center, University of Louisville, Louisville KY, 505 S Hancock St, Louisville, KY 40202
| |
Collapse
|
45
|
Bagchi A, Stayrook SE, Xenaki KT, Starbird CA, Doulkeridou S, El Khoulati R, Roovers RC, Schmitz KR, van Bergen En Henegouwen PMP, Ferguson KM. Structural insights into the role and targeting of EGFRvIII. Structure 2024; 32:1367-1380.e6. [PMID: 38908376 PMCID: PMC11380598 DOI: 10.1016/j.str.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/06/2024] [Accepted: 05/28/2024] [Indexed: 06/24/2024]
Abstract
The epidermal growth factor receptor (EGFR) is a well-known oncogenic driver in lung and other cancers. In glioblastoma multiforme (GBM), the EGFR deletion variant III (EGFRvIII) is frequently found alongside EGFR amplification. Agents targeting the EGFR axis have shown limited clinical benefits in GBM and the role of EGFRvIII in GBM is poorly understood. To shed light on the role of EGFRvIII and its potential as a therapeutic target, we determined X-ray crystal structures of a monomeric EGFRvIII extracellular region (ECR). The EGFRvIII ECR resembles the unliganded conformation of EGFR, including the orientation of the C-terminal region of domain II. Domain II is mostly disordered, but the ECR structure is compact. We selected a nanobody with preferential binding to EGFRvIII relative to EGFR and structurally defined an epitope on domain IV that is occluded in the unliganded intact EGFR. These findings suggest new avenues for EGFRvIII targeting in GBM.
Collapse
Affiliation(s)
- Atrish Bagchi
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven E Stayrook
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Katerina T Xenaki
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584CH, the Netherlands
| | - Chrystal A Starbird
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Sofia Doulkeridou
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584CH, the Netherlands
| | - Rachid El Khoulati
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584CH, the Netherlands
| | - Rob C Roovers
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584CH, the Netherlands
| | - Karl R Schmitz
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Paul M P van Bergen En Henegouwen
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584CH, the Netherlands
| | - Kathryn M Ferguson
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA.
| |
Collapse
|
46
|
Yuan G, Salipante PF, Hudson SD, Gillilan RE, Huang Q, Hatch HW, Shen VK, Grishaev AV, Pabit S, Upadhya R, Adhikari S, Panchal J, Blanco MA, Liu Y. Flow Activation Energy of High-Concentration Monoclonal Antibody Solutions and Protein-Protein Interactions Influenced by NaCl and Sucrose. Mol Pharm 2024; 21:4553-4564. [PMID: 39163212 DOI: 10.1021/acs.molpharmaceut.4c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
The solution viscosity and protein-protein interactions (PPIs) as a function of temperature (4-40 °C) were measured at a series of protein concentrations for a monoclonal antibody (mAb) with different formulation conditions, which include NaCl and sucrose. The flow activation energy (Eη) was extracted from the temperature dependence of solution viscosity using the Arrhenius equation. PPIs were quantified via the protein diffusion interaction parameter (kD) measured by dynamic light scattering, together with the osmotic second virial coefficient and the structure factor obtained through small-angle X-ray scattering. Both viscosity and PPIs were found to vary with the formulation conditions. Adding NaCl introduces an attractive interaction but leads to a significant reduction in the viscosity. However, adding sucrose enhances an overall repulsive effect and leads to a slight decrease in viscosity. Thus, the averaged (attractive or repulsive) PPI information is not a good indicator of viscosity at high protein concentrations for the mAb studied here. Instead, a correlation based on the temperature dependence of viscosity (i.e., Eη) and the temperature sensitivity in PPIs was observed for this specific mAb. When kD is more sensitive to the temperature variation, it corresponds to a larger value of Eη and thus a higher viscosity in concentrated protein solutions. When kD is less sensitive to temperature change, it corresponds to a smaller value of Eη and thus a lower viscosity at high protein concentrations. Rather than the absolute value of PPIs at a given temperature, our results show that the temperature sensitivity of PPIs may be a more useful metric for predicting issues with high viscosity of concentrated solutions. In addition, we also demonstrate that caution is required in choosing a proper protein concentration range to extract kD. In some excipient conditions studied here, the appropriate protein concentration range needs to be less than 4 mg/mL, remarkably lower than the typical concentration range used in the literature.
Collapse
Affiliation(s)
- Guangcui Yuan
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Paul F Salipante
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Steven D Hudson
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Richard E Gillilan
- Center for High-Energy X-ray Sciences at CHESS, Cornell University, Ithaca, New York 14853, United States
| | - Qingqiu Huang
- Center for High-Energy X-ray Sciences at CHESS, Cornell University, Ithaca, New York 14853, United States
| | - Harold W Hatch
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Vincent K Shen
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Alexander V Grishaev
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Suzette Pabit
- Analytical Enabling Capabilities, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Rahul Upadhya
- Analytical Enabling Capabilities, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Sudeep Adhikari
- Analytical Enabling Capabilities, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jainik Panchal
- Sterile and Specialty Products, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Marco A Blanco
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Yun Liu
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
47
|
Potter JR, Rivera S, Young PG, Patterson DC, Namitz KE, Yennawar N, Kincaid JR, Liu Y, Weinert EE. Heme pocket modulates protein conformation and diguanylate cyclase activity of a tetrameric globin coupled sensor. J Inorg Biochem 2024; 258:112638. [PMID: 38878680 DOI: 10.1016/j.jinorgbio.2024.112638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/01/2024]
Abstract
Bacteria use the second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) to control biofilm formation and other key phenotypes in response to environmental signals. Changes in oxygen levels can alter c-di-GMP signaling through a family of proteins termed globin coupled sensors (GCS) that contain diguanylate cyclase domains. Previous studies have found that GCS diguanylate cyclase activity is controlled by ligand binding to the heme within the globin domain, with oxygen binding resulting in the greatest increase in catalytic activity. Herein, we present evidence that heme-edge residues control O2-dependent signaling in PccGCS, a GCS protein from Pectobacterium carotovorum, by modulating heme distortion. Using enzyme kinetics, resonance Raman spectroscopy, small angle X-ray scattering, and multi-wavelength analytical ultracentrifugation, we have developed an integrated model of the full-length PccGCS tetramer and have identified conformational changes associated with ligand binding, heme conformation, and cyclase activity. Taken together, these studies provide new insights into the mechanism by which O2 binding modulates activity of diguanylate cyclase-containing GCS proteins.
Collapse
Affiliation(s)
- Jacob R Potter
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Shannon Rivera
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Paul G Young
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Dayna C Patterson
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin E Namitz
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Neela Yennawar
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - James R Kincaid
- Department of Chemistry, Marquette University, Milwaukee, WI 53233, USA.
| | - Yilin Liu
- Department of Chemistry, Marquette University, Milwaukee, WI 53233, USA; Department of Chemistry, University of Akron, Akron, OH 44325, USA.
| | - Emily E Weinert
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
48
|
Mishra N, Gido CD, Herdendorf TJ, Hammel M, Hura GL, Fu ZQ, Geisbrecht BV. S. aureus Eap is a polyvalent inhibitor of neutrophil serine proteases. J Biol Chem 2024; 300:107627. [PMID: 39098536 PMCID: PMC11420654 DOI: 10.1016/j.jbc.2024.107627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024] Open
Abstract
Staphylococcus aureus expresses three high-affinity neutrophil serine protease (NSP) inhibitors known as the extracellular adherence protein domain (EAPs) proteins. Whereas EapH1 and EapH2 are comprised of a single EAP domain, the modular extracellular adherence protein (Eap) from S. aureus strain Mu50 consists of four EAP domains. We recently reported that EapH2 can simultaneously bind and inhibit cathepsin-G (CG) and neutrophil elastase (NE), which are the two most abundant NSPs. This unusual property of EapH2 arises from independent CG and NE-binding sites that lie on opposing faces of its EAP domain. Here we used X-ray crystallography and enzyme assays to show that all four individual domains of Eap (i.e. Eap1, Eap2, Eap3, and Eap4) exhibit an EapH2-like ability to form ternary complexes with CG and NE that inhibit both enzymes simultaneously. We found that Eap1, Eap2, and Eap3 have similar functional profiles insofar as NSP inhibition is concerned but that Eap4 displays an unexpected ability to inhibit two NE enzymes simultaneously. Using X-ray crystallography, we determined that this second NE-binding site in Eap4 arises through the same region of its EAP domain that also comprises its CG-binding site. Interestingly, small angle X-ray scattering data showed that stable tail-to-tail dimers of the NE/Eap4/NE ternary complex exist in solution. This arrangement is compatible with NSP-binding at all available sites in a two-domain fragment of Eap. Together, our work implies that Eap is a polyvalent inhibitor of NSPs. It also raises the possibility that higher-order structures of NSP-bound Eap may have unique functional properties.
Collapse
Affiliation(s)
- Nitin Mishra
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Carson D Gido
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Timothy J Herdendorf
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Gregory L Hura
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Zheng-Qing Fu
- SER-CAT, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, USA; Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Brian V Geisbrecht
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA.
| |
Collapse
|
49
|
Wang J, Dong Z, Zhang Y, Hua W, Wang Z, Guo H, Yang Y, Bi X. StreamSAXS: a Python-based workflow platform for processing streaming SAXS/WAXS data. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:1249-1256. [PMID: 39007823 PMCID: PMC11371052 DOI: 10.1107/s1600577524005149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/30/2024] [Indexed: 07/16/2024]
Abstract
StreamSAXS is a Python-based small- and wide-angle X-ray scattering (SAXS/WAXS) data analysis workflow platform with graphical user interface (GUI). It aims to provide an interactive and user-friendly tool for analysis of both batch data files and real-time data streams. Users can easily create customizable workflows through the GUI to meet their specific needs. One characteristic of StreamSAXS is its plug-in framework, which enables developers to extend the built-in workflow tasks. Another feature is the support for both already acquired and real-time data sources, allowing StreamSAXS to function as an offline analysis platform or be integrated into large-scale acquisition systems for end-to-end data management. This paper presents the core design of StreamSAXS and provides user cases demonstrating its utilization for SAXS/WAXS data analysis in offline and online scenarios.
Collapse
Affiliation(s)
- Jiayi Wang
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049People’s Republic of China
| | - Zheng Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049People’s Republic of China
- Spallation Neutron Source Science Center, Dongguan523803, People’s Republic of China
| | - Yi Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049People’s Republic of China
- University of Chinese Academy of SciencesBeijing100049People’s Republic of China
| | - Wenqiang Hua
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204People’s Republic of China
| | - Zudeng Wang
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049People’s Republic of China
- University of Chinese Academy of SciencesBeijing100049People’s Republic of China
| | - Huilong Guo
- Global Energy Interconnection Group Co. Ltd, Beijing100031, People’s Republic of China
| | - Yiming Yang
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049People’s Republic of China
| | - Xiaoxue Bi
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049People’s Republic of China
| |
Collapse
|
50
|
Saade C, Pozza A, Bonneté F, Finet S, Lutz-Bueno V, Tully MD, Varela PF, Lacapère JJ, Combet S. Enhanced structure/function of mTSPO translocator in lipid:surfactant mixed micelles. Biochimie 2024; 224:3-15. [PMID: 38663457 DOI: 10.1016/j.biochi.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/06/2024] [Accepted: 04/19/2024] [Indexed: 05/06/2024]
Abstract
TSPO is a ubiquitous transmembrane protein used as a pharmacological marker in neuroimaging. The only known atomic structure of mammalian TSPOs comes from the solution NMR of mouse TSPO (mTSPO) bound to the PK11195 ligand and in a DPC surfactant environment. No structure is available in a biomimetic environment and without PK11195 which strongly stiffens the protein. We measured the effect of different amphiphilic environments on ligand-free mTSPO to study its structure/function and find optimal solubilization conditions. By replacing the SDS surfactant, where the recombinant protein is purified, with mixed lipid:surfactant (DMPC:DPC) micelles at different ratios (0:1, 1:2, and 2:1, w:w), the α-helix content and interactions and the intrinsic tryptophan (Trp) fluorescence of mTSPO are gradually increased. Small-angle X-ray scattering (SAXS) shows a more extended mTSPO/belt complex with the addition of lipids: Dmax ∼95 Å in DPC alone versus ∼142 Å in DMPC:DPC (1:2). SEC-MALLS shows that the molecular composition of the mTSPO belt is ∼98 molecules for DPC alone and ∼58 DMPC and ∼175 DPC for DMPC:DPC (1:2). Additionally, DMPC:DPC micelles stabilize mTSPO compared to DPC alone, where the protein has a greater propensity to aggregate. These structural changes are consistent with the increased affinity of mTSPO for the PK11195 ligand in presence of lipids (Kd ∼70 μM in DPC alone versus ∼0.91 μM in DMPC:DPC, 1:2), as measured by microscale thermophoresis (MST). In conclusion, mixed lipid:surfactant micelles open new possibilities for the stabilization of membrane proteins and for their study in solution in a more biomimetic amphiphilic environment.
Collapse
Affiliation(s)
- Christelle Saade
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA-CNRS, Université Paris-Saclay, F-91191, Gif-sur-Yvette CEDEX, France
| | - Alexandre Pozza
- Université Paris Cité, CNRS UMR7099, Biochimie des Protéines Membranaires, F-75005, Paris, France
| | - Françoise Bonneté
- Université Paris Cité, CNRS UMR7099, Biochimie des Protéines Membranaires, F-75005, Paris, France
| | - Stéphanie Finet
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR 7590 CNRS-Sorbonne Université Université, MNHN, IRD, F-75005, Paris, France
| | - Viviane Lutz-Bueno
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA-CNRS, Université Paris-Saclay, F-91191, Gif-sur-Yvette CEDEX, France; Paul Scherrer Institut (PSI), Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - Mark D Tully
- The European Synchrotron (ESRF), 71 Avenue des Martyrs, F-38043, Grenoble, France
| | - Paloma F Varela
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, F-91191, Gif-sur-Yvette CEDEX, France
| | - Jean-Jacques Lacapère
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS UMR 7203, Laboratoire des BioMolécules (LBM), 4 Place Jussieu, F-75005, Paris, France
| | - Sophie Combet
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA-CNRS, Université Paris-Saclay, F-91191, Gif-sur-Yvette CEDEX, France.
| |
Collapse
|