1
|
Yudenko A, Bukhdruker S, Shishkin P, Rodin S, Burtseva A, Petrov A, Pigareva N, Sokolov A, Zinovev E, Eliseev I, Remeeva A, Marin E, Mishin A, Gordeliy V, Gushchin I, Ischenko A, Borshchevskiy V. Structural basis of signaling complex inhibition by IL-6 domain-swapped dimers. Structure 2025; 33:171-180.e5. [PMID: 39566503 DOI: 10.1016/j.str.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/16/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024]
Abstract
Interleukin-6 (IL-6) is a multifaceted cytokine essential in many immune system processes and their regulation. It also plays a key role in hematopoiesis, and in triggering the acute phase reaction. IL-6 overproduction is critical in chronic inflammation associated with autoimmune diseases like rheumatoid arthritis and contributes to cytokine storms in COVID-19 patients. Over 20 years ago, researchers proposed that IL-6, which is typically monomeric, can also form dimers via a domain-swap mechanism, with indirect evidence supporting their existence. The physiological significance of IL-6 dimers was shown in B-cell chronic lymphocytic leukemia. However, no structures have been reported so far. Here, we present the crystal structure of an IL-6 domain-swapped dimer that computational approaches could not predict. The structure explains why the IL-6 dimer is antagonistic to the IL-6 monomer in signaling complex formation and provides insights for IL-6 targeted therapies.
Collapse
Affiliation(s)
- Anna Yudenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
| | - Sergey Bukhdruker
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
| | - Pavel Shishkin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
| | - Sergey Rodin
- Institute of Experimental Medicine, St. Petersburg 197022, Russia; Research Institute of Highly Pure Biopreparations, St. Petersburg 197110, Russia
| | - Anastasia Burtseva
- St. Petersburg Pasteur Institute, St. Petersburg 197101, Russia; Research Institute of Highly Pure Biopreparations, St. Petersburg 197110, Russia
| | - Aleksandr Petrov
- Research Institute of Highly Pure Biopreparations, St. Petersburg 197110, Russia; Medicinal Chemistry Center, Togliatti State University, Togliatti, Samara Region 445020, Russia
| | - Natalia Pigareva
- St. Petersburg Pasteur Institute, St. Petersburg 197101, Russia; Research Institute of Highly Pure Biopreparations, St. Petersburg 197110, Russia
| | - Alexey Sokolov
- Institute of Experimental Medicine, St. Petersburg 197022, Russia
| | - Egor Zinovev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
| | - Igor Eliseev
- Alferov University, St. Petersburg 194021, Russia; St. Petersburg School of Physics, Mathematics, and Computer Science, HSE University, St. Petersburg 194100, Russia
| | - Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
| | - Egor Marin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
| | - Alexey Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
| | - Valentin Gordeliy
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
| | - Aleksandr Ischenko
- St. Petersburg Pasteur Institute, St. Petersburg 197101, Russia; Research Institute of Highly Pure Biopreparations, St. Petersburg 197110, Russia.
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia; Joint Institute for Nuclear Research, Dubna, Moscow Region 141980, Russia.
| |
Collapse
|
2
|
Kaščáková B, Koutská A, Burdová M, Havlíčková P, Kutá Smatanová I. Revealing protein structures: crystallization of protein-ligand complexes - co-crystallization and crystal soaking. FEBS Open Bio 2024. [PMID: 39428257 DOI: 10.1002/2211-5463.13913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024] Open
Abstract
Protein crystallogenesis represents a key step in X-ray crystallography studies that employ co-crystallization and ligand soaking for investigating ligand binding to proteins. Co-crystallization is a method that enables the precise determination of binding positions, although it necessitates a significant degree of optimization. The utilization of microseeding can facilitate a reduction in sample requirements and accelerate the co-crystallization process. Ligand soaking is the preferred method due to its simplicity; however, it requires careful control of soaking conditions to ensure the successful integration of the ligands. This research protocol details the procedures for co-crystallization and soaking to achieve protein-ligand complex formation, which is essential for advancing drug discovery. Additionally, a simple protocol for demonstrating soaking for educational purposes is described.
Collapse
Affiliation(s)
- Barbora Kaščáková
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Czech Republic
| | - Anna Koutská
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Czech Republic
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in České Budějovice, Czech Republic
| | - Michaela Burdová
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Czech Republic
| | - Petra Havlíčková
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Czech Republic
| | - Ivana Kutá Smatanová
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Czech Republic
| |
Collapse
|
3
|
Kashima T, Akama M, Wakinaka T, Arakawa T, Ashida H, Fushinobu S. Crystal Structure of Bifidobacterium bifidum Glycoside Hydrolase Family 110 α-Galactosidase Specific for Blood Group B Antigen. J Appl Glycosci (1999) 2024; 71:81-90. [PMID: 39234034 PMCID: PMC11368712 DOI: 10.5458/jag.jag.jag-2024_0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/18/2024] [Indexed: 09/06/2024] Open
Abstract
To overcome incompatibility issues and increase the possibility of blood transfusion, technologies that enable efficient conversion of A- and B-type red blood cells to the universal donor O-type is desirable. Although several blood type-converting enzymes have been identified, detailed understanding about their molecular functions is limited. α-Galactosidase from Bifidobacterium bifidum JCM 1254 (AgaBb), belonging to glycoside hydrolase (GH) 110 subfamily A, specifically acts on blood group B antigen. Here we present the crystal structure of AgaBb, including the catalytic GH110 domain and part of the C-terminal uncharacterized regions. Based on this structure, we deduced a possible binding mechanism of blood group B antigen to the active site. Site-directed mutagenesis confirmed that R270 and E380 recognize the fucose moiety in the B antigen. Thermal shift assay revealed that the C-terminal uncharacterized region significantly contributes to protein stability. This region is shared only among GH110 enzymes from B. bifidum and some Ruminococcus species. The elucidation of the molecular basis for the specific recognition of blood group B antigen is expected to lead to the practical application of blood group conversion enzymes in the future.
Collapse
Affiliation(s)
- Toma Kashima
- Department of Biotechnology, The University of Tokyo
| | - Megumi Akama
- Department of Biotechnology, The University of Tokyo
| | | | | | - Hisashi Ashida
- Faculty of Biology-Oriented Science and Technology, Kindai University
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| |
Collapse
|
4
|
Sampathkumar P, Jung H, Chen H, Zhang Z, Suen N, Yang Y, Huang Z, Lopez T, Benisch R, Lee SJ, Ye J, Yeh WC, Li Y. Targeted protein degradation systems to enhance Wnt signaling. eLife 2024; 13:RP93908. [PMID: 38847394 PMCID: PMC11161174 DOI: 10.7554/elife.93908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024] Open
Abstract
Molecules that facilitate targeted protein degradation (TPD) offer great promise as novel therapeutics. The human hepatic lectin asialoglycoprotein receptor (ASGR) is selectively expressed on hepatocytes. We have previously engineered an anti-ASGR1 antibody-mutant RSPO2 (RSPO2RA) fusion protein (called SWEETS) to drive tissue-specific degradation of ZNRF3/RNF43 E3 ubiquitin ligases, which achieved hepatocyte-specific enhanced Wnt signaling, proliferation, and restored liver function in mouse models, and an antibody-RSPO2RA fusion molecule is currently in human clinical trials. In the current study, we identified two new ASGR1- and ASGR1/2-specific antibodies, 8M24 and 8G8. High-resolution crystal structures of ASGR1:8M24 and ASGR2:8G8 complexes revealed that these antibodies bind to distinct epitopes on opposing sides of ASGR, away from the substrate-binding site. Both antibodies enhanced Wnt activity when assembled as SWEETS molecules with RSPO2RA through specific effects sequestering E3 ligases. In addition, 8M24-RSPO2RA and 8G8-RSPO2RA efficiently downregulate ASGR1 through TPD mechanisms. These results demonstrate the possibility of combining different therapeutic effects and degradation mechanisms in a single molecule.
Collapse
Affiliation(s)
| | | | - Hui Chen
- Surrozen, IncSouth San FranciscoUnited States
| | | | | | - Yiran Yang
- Surrozen, IncSouth San FranciscoUnited States
| | - Zhong Huang
- Surrozen, IncSouth San FranciscoUnited States
| | - Tom Lopez
- Surrozen, IncSouth San FranciscoUnited States
| | | | | | - Jay Ye
- Surrozen, IncSouth San FranciscoUnited States
| | | | - Yang Li
- Surrozen, IncSouth San FranciscoUnited States
| |
Collapse
|
5
|
Pentari C, Zerva A, Kosinas C, Karampa P, Puchart V, Dimarogona M, Topakas E. The role of CE16 exo-deacetylases in hemicellulolytic enzyme mixtures revealed by the biochemical and structural study of the novel TtCE16B esterase. Carbohydr Polym 2024; 327:121667. [PMID: 38171682 DOI: 10.1016/j.carbpol.2023.121667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Acetyl esterases belonging to the carbohydrate esterase family 16 (CE16) is a growing group of enzymes, with exceptional diversity regarding substrate specificity and regioselectivity. However, further insight into the CE16 specificity is required for their efficient biotechnological exploitation. In this work, exo-deacetylase TtCE16B from Thermothelomyces thermophila was heterologously expressed and biochemically characterized. The esterase targets positions O-3 and O-4 of singly and doubly acetylated non-reducing-end xylopyranosyl residues, provided the presence of a free vicinal hydroxyl group at position O-4 and O-3, respectively. Crystal structure of TtCE16B, the first representative among the CE16 enzymes, in apo- and product-bound form, allowed the identification of residues forming the catalytic triad and oxyanion hole, as well as the structural elements related to the enzyme preference for oligomers. The role of TtCE16B in hemicellulose degradation was investigated on acetylated xylan from birchwood and pre-treated beechwood biomass. TtCE16B exhibited complementary activity to commercially available OCE6 acetylxylan esterase. Moreover, it showed synergistic effects with SrXyl43 β-xylosidase. Overall, supplementation of xylan-targeting enzymatic mixtures with both TtCE16B and OCE6 esterases led to a 3-fold or 4-fold increase in xylose release, when using TmXyn10 and TtXyn30A xylanases respectively.
Collapse
Affiliation(s)
- Christina Pentari
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Anastasia Zerva
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece; Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece
| | - Christos Kosinas
- Laboratory of Structural Biology and Biotechnology, Department of Chemical Engineering, University of Patras, Patras, Greece
| | - Panagiota Karampa
- Laboratory of Structural Biology and Biotechnology, Department of Chemical Engineering, University of Patras, Patras, Greece
| | - Vladimír Puchart
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovak Republic
| | - Maria Dimarogona
- Laboratory of Structural Biology and Biotechnology, Department of Chemical Engineering, University of Patras, Patras, Greece.
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece.
| |
Collapse
|
6
|
Baumann P, Jin Y. Far-reaching effects of tyrosine64 phosphorylation on Ras revealed with BeF 3- complexes. Commun Chem 2024; 7:19. [PMID: 38297137 PMCID: PMC10830474 DOI: 10.1038/s42004-024-01105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Tyrosine phosphorylation on Ras by Src kinase is known to uncouple Ras from upstream regulation and downstream communication. However, the mechanisms by which phosphorylation modulates these interactions have not been detailed. Here, the major mono-phosphorylation level on tyrosine64 is quantified by 31P NMR and mutagenesis. Crystal structures of unphosphorylated and tyrosine64-phosphorylated Ras in complex with a BeF3- ground state analogue reveal "closed" Ras conformations very different from those of the "open" conformations previously observed for non-hydrolysable GTP analogue structures of Ras. They deliver new mechanistic and conformational insights into intrinsic GTP hydrolysis. Phosphorylation of tyrosine64 delivers conformational changes distant from the active site, showing why phosphorylated Ras has reduced affinity to its downstream effector Raf. 19F NMR provides evidence for changes in the intrinsic GTPase and nucleotide exchange rate and identifies the concurrent presence of a major "closed" conformation alongside a minor yet functionally important "open" conformation at the ground state of Ras. This study expands the application of metal fluoride complexes in revealing major and minor conformational changes of dynamic and modified Ras proteins.
Collapse
Affiliation(s)
- Patrick Baumann
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK
- Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, M13 9PL, Manchester, UK
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Yi Jin
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
- Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, M13 9PL, Manchester, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
7
|
Fernández FJ, Querol-García J, Navas-Yuste S, Martino F, Vega MC. X-Ray Crystallography for Macromolecular Complexes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:125-140. [PMID: 38507204 DOI: 10.1007/978-3-031-52193-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
X-ray crystallography has for most of the last century been the standard technique to determine the high-resolution structure of biological macromolecules, including multi-subunit protein-protein and protein-nucleic acids as large as the ribosome and viruses. As such, the successful application of X-ray crystallography to many biological problems revolutionized biology and biomedicine by solving the structures of small molecules and vitamins, peptides and proteins, DNA and RNA molecules, and many complexes-affording a detailed knowledge of the structures that clarified biological and chemical mechanisms, conformational changes, interactions, catalysis and the biological processes underlying DNA replication, translation, and protein synthesis. Now reaching well into the first quarter of the twenty-first century, X-ray crystallography shares the structural biology stage with cryo-electron microscopy and other innovative structure determination methods, as relevant and central to our understanding of biological function and structure as ever. In this chapter, we provide an overview of modern X-ray crystallography and how it interfaces with other mainstream structural biology techniques, with an emphasis on macromolecular complexes.
Collapse
Affiliation(s)
| | | | - Sergio Navas-Yuste
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Fabrizio Martino
- Structural Biology Research Centre, Human Technopole, Milan, Italy
| | - M Cristina Vega
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain.
| |
Collapse
|
8
|
Borlandelli V, Offen W, Moroz O, Nin-Hill A, McGregor N, Binkhorst L, Ishiwata A, Armstrong Z, Artola M, Rovira C, Davies GJ, Overkleeft HS. β-l- Arabinofurano-cyclitol Aziridines Are Covalent Broad-Spectrum Inhibitors and Activity-Based Probes for Retaining β-l-Arabinofuranosidases. ACS Chem Biol 2023; 18:2564-2573. [PMID: 38051515 PMCID: PMC10728902 DOI: 10.1021/acschembio.3c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023]
Abstract
GH127 and GH146 microorganismal retaining β-l-arabinofuranosidases, expressed by human gut microbiomes, feature an atypical catalytic domain and an unusual mechanism of action. We recently reported that both Bacteroides thetaiotaomicron BtGH146 and Bifidobacterium longum HypBA1 are inhibited by β-l-arabinofuranosyl cyclophellitol epoxide, supporting the action of a zinc-coordinated cysteine as a catalytic nucleophile, where in most retaining GH families, an aspartate or glutamate is employed. This work presents a panel of β-l-arabinofuranosyl cyclophellitol epoxides and aziridines as mechanism-based BtGH146/HypBA1 inhibitors and activity-based probes. The β-l-arabinofuranosyl cyclophellitol aziridines both inhibit and label β-l-arabinofuranosidase efficiently (however with different activities), whereas the epoxide-derived probes favor BtGH146 over HypBA1. These findings are accompanied by X-ray structural analysis of the unmodified β-l-arabinofuranosyl cyclophellitol aziridine in complex with both isozymes, which were shown to react by nucleophilic opening of the aziridine, at the pseudoanomeric carbon, by the active site cysteine nucleophile to form a stable thioether bond. Altogether, our activity-based probes may serve as chemical tools for the detection and identification of low-abundance β-l-arabinofuranosidases in complex biological samples.
Collapse
Affiliation(s)
- Valentina Borlandelli
- Bio-organic
Synthesis, Leiden Institute of Chemistry (LIC), Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Wendy Offen
- Department
of Chemistry, York Structural Biology Laboratory, University of York, Heslington, York YO10
5DD, United Kingdom
| | - Olga Moroz
- Department
of Chemistry, York Structural Biology Laboratory, University of York, Heslington, York YO10
5DD, United Kingdom
| | - Alba Nin-Hill
- Departament
de Química Inorgànica i Orgànica (Secció
de Química Orgànica), Institut
de Química Teòrica i Computacional (IQTCUB), Universitat
de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Nicholas McGregor
- Department
of Chemistry, York Structural Biology Laboratory, University of York, Heslington, York YO10
5DD, United Kingdom
| | - Lars Binkhorst
- Bio-organic
Synthesis, Leiden Institute of Chemistry (LIC), Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Akihiro Ishiwata
- RIKEN
Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Zachary Armstrong
- Bio-organic
Synthesis, Leiden Institute of Chemistry (LIC), Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Marta Artola
- Bio-organic
Synthesis, Leiden Institute of Chemistry (LIC), Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Carme Rovira
- Departament
de Química Inorgànica i Orgànica (Secció
de Química Orgànica), Institut
de Química Teòrica i Computacional (IQTCUB), Universitat
de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Gideon J. Davies
- Department
of Chemistry, York Structural Biology Laboratory, University of York, Heslington, York YO10
5DD, United Kingdom
| | - Herman S. Overkleeft
- Bio-organic
Synthesis, Leiden Institute of Chemistry (LIC), Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| |
Collapse
|
9
|
Stegmann DP, Steuber J, Fritz G, Wojdyla JA, Sharpe ME. Fast fragment and compound screening pipeline at the Swiss Light Source. Methods Enzymol 2023; 690:235-284. [PMID: 37858531 DOI: 10.1016/bs.mie.2023.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Crystallography-based fragment screening is a highly effective technique employed in structure-based drug discovery to expand the range of lead development opportunities. It allows screening and sorting of weakly binding, low molecular mass fragments, which can be developed into larger high-affinity lead compounds. Technical improvements at synchrotron beamlines, design of innovative libraries mapping chemical space efficiently, effective soaking methods and enhanced data analysis have enabled the implementation of high-throughput fragment screening pipelines at multiple synchrotron facilities. This widened access to CBFS beyond the pharma industry has allowed academic users to rapidly screen large quantities of fragment-soaked protein crystals. The positive outcome of a CBFS campaign is a set of structures that present the three-dimensional arrangement of fragment-protein complexes in detail, thereby providing information on the location and the mode of interaction of bound fragments. Through this review, we provide users with a comprehensive guide that sets clear expectations before embarking on a crystallography-based fragment screening campaign. We present a list of essential pre-requirements that must be assessed, including the suitability of your current crystal system for a fragment screening campaign. Furthermore, we extensively discuss the available methodological options, addressing their limitations and providing strategies to overcome them. Additionally, we provide a brief perspective on how to proceed once hits are obtained. Notably, we emphasize the solutions we have implemented for instrumentation and software development within our Fast Fragment and Compound Screening pipeline. We also highlight third-party software options that can be utilized for rapid refinement and hit assessment.
Collapse
Affiliation(s)
| | - Julia Steuber
- Institute of Biology, Department of Cellular Microbiology, University of Hohenheim, Stuttgart, Germany
| | - Günter Fritz
- Institute of Biology, Department of Cellular Microbiology, University of Hohenheim, Stuttgart, Germany.
| | | | | |
Collapse
|
10
|
Kolyadenko I, Tishchenko S, Gabdulkhakov A. Structural Insight into the Amino Acid Environment of the Two-Domain Laccase's Trinuclear Copper Cluster. Int J Mol Sci 2023; 24:11909. [PMID: 37569288 PMCID: PMC10419308 DOI: 10.3390/ijms241511909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 08/13/2023] Open
Abstract
Laccases are industrially relevant enzymes. However, their range of applications is limited by their functioning and stability. Most of the currently known laccases function in acidic conditions at temperatures below 60 °C, but two-domain laccases (2D) oxidize some substrates in alkaline conditions and above 70 °C. In this study, we aim to establish the structural factors affecting the alkaline activity of the 2D laccase from Streptomyces griseoflavus (SgfSL). The range of methods used allowed us to show that the alkaline activity of SgfSL is influenced by the polar residues located close to the trinuclear center (TNC). Structural and functional studies of the SgfSL mutants Met199Ala/Asp268Asn and Met199Gly/Asp268Asn revealed that the substitution Asp268Asn (11 Å from the TNC) affects the orientation of the Asn261 (the second coordination sphere of the TNC), resulting in hydrogen-bond-network reorganization, which leads to a change in the SgfSL-activity pH profile. The combination of the Met199Gly/Arg240His and Asp268Asn substitutions increased the efficiency (kcat/KM) of the 2,6-DMP oxidation by 34-fold compared with the SgfSL. Our results extend the knowledge about the structure and functioning of 2D laccases' TNC active sites and open up new possibilities for the directed engineering of laccases.
Collapse
Affiliation(s)
- Ilya Kolyadenko
- Institute of Protein Research RAS, 142290 Pushchino, Russia; (S.T.); (A.G.)
| | | | | |
Collapse
|
11
|
Kołaczkowski BM, Moroz OV, Blagova E, Davies GJ, Møller MS, Meyer AS, Westh P, Jensen K, Wilson KS, Krogh KBRM. Structural and functional characterization of a multi-domain GH92 α-1,2-mannosidase from Neobacillus novalis. Acta Crystallogr D Struct Biol 2023; 79:387-400. [PMID: 37071393 PMCID: PMC10167667 DOI: 10.1107/s2059798323001663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/23/2023] [Indexed: 04/19/2023] Open
Abstract
Many secreted eukaryotic proteins are N-glycosylated with oligosaccharides composed of a high-mannose N-glycan core and, in the specific case of yeast cell-wall proteins, an extended α-1,6-mannan backbone carrying a number of α-1,2- and α-1,3-mannose substituents of varying lengths. α-Mannosidases from CAZy family GH92 release terminal mannose residues from these N-glycans, providing access for the α-endomannanases, which then degrade the α-mannan backbone. Most characterized GH92 α-mannosidases consist of a single catalytic domain, while a few have extra domains including putative carbohydrate-binding modules (CBMs). To date, neither the function nor the structure of a multi-domain GH92 α-mannosidase CBM has been characterized. Here, the biochemical investigation and crystal structure of the full-length five-domain GH92 α-1,2-mannosidase from Neobacillus novalis (NnGH92) with mannoimidazole bound in the active site and an additional mannoimidazole bound to the N-terminal CBM32 are reported. The structure of the catalytic domain is very similar to that reported for the GH92 α-mannosidase Bt3990 from Bacteroides thetaiotaomicron, with the substrate-binding site being highly conserved. The function of the CBM32s and other NnGH92 domains was investigated by their sequential deletion and suggested that whilst their binding to the catalytic domain was crucial for the overall structural integrity of the enzyme, they appear to have little impact on the binding affinity to the yeast α-mannan substrate. These new findings provide a better understanding of how to select and optimize other multi-domain bacterial GH92 α-mannosidases for the degradation of yeast α-mannan or mannose-rich glycans.
Collapse
Affiliation(s)
- Bartłomiej M. Kołaczkowski
- Department of Science and Environment, Roskilde University, Universitetsvej 1, Building 28, 4000 Roskilde, Denmark
- Novozymes A/S, Biologiens Vej 2, 2800 Kongens Lyngby, Denmark
| | - Olga V. Moroz
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Elena Blagova
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Gideon J. Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Marie Sofie Møller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, 2800 Kongens Lyngby, Denmark
| | - Anne S. Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, 2800 Kongens Lyngby, Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, 2800 Kongens Lyngby, Denmark
| | - Kenneth Jensen
- Novozymes A/S, Biologiens Vej 2, 2800 Kongens Lyngby, Denmark
| | - Keith S. Wilson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | | |
Collapse
|
12
|
Saha S, Özden C, Samkutty A, Russi S, Cohen A, Stratton MM, Perry SL. Polymer-based microfluidic device for on-chip counter-diffusive crystallization and in situ X-ray crystallography at room temperature. LAB ON A CHIP 2023; 23:2075-2090. [PMID: 36942575 PMCID: PMC10631519 DOI: 10.1039/d2lc01194h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Proteins are long chains of amino acid residues that perform a myriad of functions in living organisms, including enzymatic reactions, signalling, and maintaining structural integrity. Protein function is determined directly by the protein structure. X-ray crystallography is the primary technique for determining the 3D structure of proteins, and facilitates understanding the effects of protein structure on function. The first step towards structure determination is crystallizing the protein of interest. We have developed a centrifugally-actuated microfluidic device that incorporates the fluid handling and metering necessary for protein crystallization. Liquid handling takes advantage of surface forces to control fluid flow and enable metering, without the need for any fluidic or pump connections. Our approach requires only the simple steps of pipetting the crystallization reagents into the device followed by either spinning or shaking to set up counter-diffusive protein crystallization trials. The use of thin, UV-curable polymers with a high level of X-ray transparency allows for in situ X-ray crystallography, eliminating the manual handling of fragile protein crystals and streamlining the process of protein structure analysis. We demonstrate the utility of our device using hen egg white lysozyme as a model system, followed by the crystallization and in situ, room temperature structural analysis of the hub domain of calcium-calmodulin dependent kinase II (CaMKIIβ).
Collapse
Affiliation(s)
- Sarthak Saha
- Department of Chemical Engineering, University of Massachusetts Amherst, MA 01003, USA.
| | - Can Özden
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, MA 01003, USA
| | - Alfred Samkutty
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, MA 01003, USA
| | - Silvia Russi
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Aina Cohen
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Margaret M Stratton
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, MA 01003, USA
| | - Sarah L Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, MA 01003, USA.
| |
Collapse
|
13
|
Jaramillo Ponce JR, Théobald‐Dietrich A, Bénas P, Paulus C, Sauter C, Frugier M. Solution X-ray scattering highlights discrepancies in Plasmodium multi-aminoacyl-tRNA synthetase complexes. Protein Sci 2023; 32:e4564. [PMID: 36606712 PMCID: PMC9878616 DOI: 10.1002/pro.4564] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
tRip is a tRNA import protein specific to Plasmodium, the causative agent of malaria. In addition to its membrane localization and tRNA trafficking properties, tRip has the capacity to associate with three aminoacyl-tRNA synthetases (aaRS), the glutamyl- (ERS), glutaminyl- (QRS), and methionyl- (MRS) tRNA synthetases. In eukaryotes, such multi-aaRSs complexes (MSC) regulate the moonlighting activities of aaRSs. In Plasmodium, tRip and the three aaRSs all contain an N-terminal GST-like domain involved in the assembly of two independent complexes: the Q-complex (tRip:ERS:QRS) and the M-complex (tRip:ERS:MRS) with a 2:2:2 stoichiometry and in which the association of the GST-like domains of tRip and ERS (tRip-N:ERS-N) is central. In this study, the crystal structure of the N-terminal GST-like domain of ERS was solved and made possible further investigation of the solution architecture of the Q- and M-complexes by small-angle x-ray scattering (SAXS). This strategy relied on the engineering of a tRip-N-ERS-N chimeric protein to study the structural scaffold of both Plasmodium MSCs and confirm the unique homodimerization pattern of tRip in solution. The biological impact of these structural arrangements is discussed.
Collapse
Affiliation(s)
- José R. Jaramillo Ponce
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002StrasbourgFrance
| | - Anne Théobald‐Dietrich
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002StrasbourgFrance
| | - Philippe Bénas
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002StrasbourgFrance
| | - Caroline Paulus
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002StrasbourgFrance
| | - Claude Sauter
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002StrasbourgFrance
| | - Magali Frugier
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002StrasbourgFrance
| |
Collapse
|
14
|
Bonsor DA, Alexander P, Snead K, Hartig N, Drew M, Messing S, Finci LI, Nissley DV, McCormick F, Esposito D, Rodriguez-Viciana P, Stephen AG, Simanshu DK. Structure of the SHOC2-MRAS-PP1C complex provides insights into RAF activation and Noonan syndrome. Nat Struct Mol Biol 2022; 29:966-977. [PMID: 36175670 PMCID: PMC10365013 DOI: 10.1038/s41594-022-00841-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/12/2022] [Indexed: 11/08/2022]
Abstract
SHOC2 acts as a strong synthetic lethal interactor with MEK inhibitors in multiple KRAS cancer cell lines. SHOC2 forms a heterotrimeric complex with MRAS and PP1C that is essential for regulating RAF and MAPK-pathway activation by dephosphorylating a specific phosphoserine on RAF kinases. Here we present the high-resolution crystal structure of the SHOC2-MRAS-PP1C (SMP) complex and apo-SHOC2. Our structures reveal that SHOC2, MRAS, and PP1C form a stable ternary complex in which all three proteins synergistically interact with each other. Our results show that dephosphorylation of RAF substrates by PP1C is enhanced upon interacting with SHOC2 and MRAS. The SMP complex forms only when MRAS is in an active state and is dependent on SHOC2 functioning as a scaffolding protein in the complex by bringing PP1C and MRAS together. Our results provide structural insights into the role of the SMP complex in RAF activation and how mutations found in Noonan syndrome enhance complex formation, and reveal new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Daniel A Bonsor
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Patrick Alexander
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kelly Snead
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nicole Hartig
- UCL Cancer Institute, University College London, London, UK
| | - Matthew Drew
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Simon Messing
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Lorenzo I Finci
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
15
|
Yu G, Hao J, Pan X, Shi L, Zhang Y, Wang J, Fan H, Xiao Y, Yang F, Lou J, Chang W, Malnoë A, Li M. Structure of Arabidopsis SOQ1 lumenal region unveils C-terminal domain essential for negative regulation of photoprotective qH. NATURE PLANTS 2022; 8:840-855. [PMID: 35798975 DOI: 10.1038/s41477-022-01177-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Non-photochemical quenching (NPQ) plays an important role for phototrophs in decreasing photo-oxidative damage. qH is a sustained form of NPQ and depends on the plastid lipocalin (LCNP). A thylakoid membrane-anchored protein SUPPRESSOR OF QUENCHING1 (SOQ1) prevents qH formation by inhibiting LCNP. SOQ1 suppresses qH with its lumen-located thioredoxin (Trx)-like and NHL domains. Here we report structural data, genetic modification and biochemical characterization of Arabidopsis SOQ1 lumenal domains. Our results show that the Trx-like and NHL domains are associated together, with the cysteine motif located at their interface. Residue E859, required for SOQ1 function, is pivotal for maintaining the Trx-NHL association. Importantly, the C-terminal region of SOQ1 forms an independent β-stranded domain that has structural homology to the N-terminal domain of bacterial disulfide bond protein D and is essential for negative regulation of qH. Furthermore, SOQ1 is susceptible to cleavage at the loops connecting the neighbouring lumenal domains both in vitro and in vivo, which could be a regulatory process for its suppression function of qH.
Collapse
Affiliation(s)
- Guimei Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Jingfang Hao
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Xiaowei Pan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Science, Capital Normal University, Beijing, China
| | - Lifang Shi
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Yong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Jifeng Wang
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Hongcheng Fan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Yang Xiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Fuquan Yang
- University of Chinese Academy of Sciences, Beijing, P.R. China
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Jizhong Lou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Wenrui Chang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Alizée Malnoë
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, Umeå, Sweden.
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China.
| |
Collapse
|
16
|
Roterman I, Stapor K, Fabian P, Konieczny L. Connexins and Pannexins—Similarities and Differences According to the FOD-M Model. Biomedicines 2022; 10:biomedicines10071504. [PMID: 35884807 PMCID: PMC9313468 DOI: 10.3390/biomedicines10071504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022] Open
Abstract
Connexins and pannexins are the transmembrane proteins of highly distinguished biological activity in the form of transport of molecules and electrical signals. Their common role is to connect the external environment with the cytoplasm of the cell, while connexin is also able to link two cells together allowing the transport from one to another. The analysis presented here aims to identify the similarities and differences between connexin and pannexin. As a comparative criterion, the hydrophobicity distribution in the structure of the discussed proteins was used. The comparative analysis is carried out with the use of a mathematical model, the FOD-M model (fuzzy oil drop model in its Modified version) expressing the specificity of the membrane’s external field, which in the case of the discussed proteins is significantly different from the external field for globular proteins in the polar environment of water. The characteristics of the external force field influence the structure of protein allowing the activity in a different environment.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University—Medical College, Medyczna 7, 30-688 Kraków, Poland
- Correspondence:
| | - Katarzyna Stapor
- Department of Applied Informatics, Faculty of Automatic, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland;
| | - Piotr Fabian
- Department of Algorithmics and Software, Faculty of Automatic, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland;
| | - Leszek Konieczny
- Chair of Medical Biochemistry—Jagiellonian University—Medical College, Kopernika 7, 31-034 Kraków, Poland;
| |
Collapse
|
17
|
Castro F, Cunha I, Ferreira A, Teixeira JA, Rocha F. Towards an enhanced control of protein crystallization: Seeded batch lysozyme crystallization in a meso oscillatory flow reactor. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.12.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Kolyadenko I, Scherbakova A, Kovalev K, Gabdulkhakov A, Tishchenko S. Engineering the Catalytic Properties of Two-Domain Laccase from Streptomyces griseoflavus Ac-993. Int J Mol Sci 2021; 23:ijms23010065. [PMID: 35008493 PMCID: PMC8744557 DOI: 10.3390/ijms23010065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 11/16/2022] Open
Abstract
Laccases catalyze the oxidation of substrates with the concomitant reduction of oxygen to water. Recently, we found that polar residues located in tunnels leading to Cu2 and Cu3 ions control oxygen entrance (His 165) and proton transport (Arg 240) of two-domain laccase (2D) from Streptomyces griseoflavus (SgfSL). In this work, we have focused on optimizing the substrate-binding pocket (SBP) of SgfSL while simultaneously adjusting the oxygen reduction process. SgfSL variants with three single (Met199Ala, Met199Gly, and Tyr230Ala) and three double amino acid residues substitutions (Met199Gly/His165Ala, His165Ala/Arg240His, Met199Gly/Arg240His) were constructed, purified, and investigated. Combination of substitutions in the SBP and in the tunnel leading to Cu2 ion (Met199Gly/Arg240His) increased SgfSL catalytic activity towards ABTS by 5-fold, and towards 2.6-DMP by 16-fold. The high activity of the Met199Gly/Arg240His variant can be explained by the combined effect of the SBP geometry optimization (Met199Gly) and increased proton flux via the tunnel leading to Cu2 ion (Arg240His). Moreover, the variant with Met199Gly and His165Ala mutations did not significantly increase SgfSL's activity, but led to a drastic shift in the optimal pH of 2.6-DMP oxidation. These results indicate that His 165 not only regulates oxygen access, but it also participates in proton transport in 2D laccases.
Collapse
Affiliation(s)
- Ilya Kolyadenko
- Institute of Protein Research RAS, 142290 Pushchino, Russia; (A.S.); (A.G.); (S.T.)
- Correspondence:
| | | | - Kirill Kovalev
- European Molecular Biology Laboratory, 22607 Hamburg, Germany;
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Azat Gabdulkhakov
- Institute of Protein Research RAS, 142290 Pushchino, Russia; (A.S.); (A.G.); (S.T.)
| | - Svetlana Tishchenko
- Institute of Protein Research RAS, 142290 Pushchino, Russia; (A.S.); (A.G.); (S.T.)
| |
Collapse
|
19
|
Moroz OV, Blagova E, Lebedev AA, Sánchez Rodríguez F, Rigden DJ, Tams JW, Wilting R, Vester JK, Longhin E, Hansen GH, Krogh KBRM, Pache RA, Davies GJ, Wilson KS. Multitasking in the gut: the X-ray structure of the multidomain BbgIII from Bifidobacterium bifidum offers possible explanations for its alternative functions. Acta Crystallogr D Struct Biol 2021; 77:1564-1578. [PMID: 34866612 DOI: 10.1107/s2059798321010949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/20/2021] [Indexed: 11/10/2022] Open
Abstract
β-Galactosidases catalyse the hydrolysis of lactose into galactose and glucose; as an alternative reaction, some β-galactosidases also catalyse the formation of galactooligosaccharides by transglycosylation. Both reactions have industrial importance: lactose hydrolysis is used to produce lactose-free milk, while galactooligosaccharides have been shown to act as prebiotics. For some multi-domain β-galactosidases, the hydrolysis/transglycosylation ratio can be modified by the truncation of carbohydrate-binding modules. Here, an analysis of BbgIII, a multidomain β-galactosidase from Bifidobacterium bifidum, is presented. The X-ray structure has been determined of an intact protein corresponding to a gene construct of eight domains. The use of evolutionary covariance-based predictions made sequence docking in low-resolution areas of the model spectacularly easy, confirming the relevance of this rapidly developing deep-learning-based technique for model building. The structure revealed two alternative orientations of the CBM32 carbohydrate-binding module relative to the GH2 catalytic domain in the six crystallographically independent chains. In one orientation the CBM32 domain covers the entrance to the active site of the enzyme, while in the other orientation the active site is open, suggesting a possible mechanism for switching between the two activities of the enzyme, namely lactose hydrolysis and transgalactosylation. The location of the carbohydrate-binding site of the CBM32 domain on the opposite site of the module to where it comes into contact with the catalytic GH2 domain is consistent with its involvement in adherence to host cells. The role of the CBM32 domain in switching between hydrolysis and transglycosylation modes offers protein-engineering opportunities for selective β-galactosidase modification for industrial purposes in the future.
Collapse
Affiliation(s)
- Olga V Moroz
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Elena Blagova
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Andrey A Lebedev
- CCP4, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX, United Kingdom
| | - Filomeno Sánchez Rodríguez
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Daniel J Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | | | | | | | - Elena Longhin
- Novozymes A/S, Biologiens Vej 2, 2800 Kgs. Lyngby, Denmark
| | | | | | - Roland A Pache
- Novozymes A/S, Biologiens Vej 2, 2800 Kgs. Lyngby, Denmark
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Keith S Wilson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
20
|
Pedrini B, Finke AD, Marsh M, Luporini P, Vallesi A, Alimenti C. Crystal structure of the pheromone Er-13 from the ciliate Euplotes raikovi, with implications for a protein-protein association model in pheromone/receptor interactions. J Struct Biol 2021; 214:107812. [PMID: 34800649 DOI: 10.1016/j.jsb.2021.107812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 10/19/2022]
Abstract
In the ciliate Euplotes raikovi, water-borne protein pheromones promote the vegetative cell growth and mating by competitively binding as autocrine and heterologous signals to putative cell receptors represented by membrane-bound pheromone isoforms. A previously determined crystal structure of pheromone Er-1 supported a pheromone/receptor binding model in which strong protein-protein interactions result from the cooperative utilization of two distinct types of contact interfaces that arrange molecules into linear chains, and these into two-dimensional layers. We have now determined the crystal structure of a new pheromone, Er-13, isolated from cultures that are strongly mating reactive withculturessource of pheromone Er-1.The comparison between the Er-1 and Er-13 crystal structuresreinforces the fundamental of the cooperative model of pheromone/receptor binding, in that the molecules arrange into linear chains taking a rigorously alternate opposite orientation reflecting the presumed mutual orientation of pheromone and receptor molecules on the cell surface. In addition, the comparison provides two new lines of evidence for a univocal rationalization of observations on the differentbehaviourbetween the autocrine and heterologous pheromone/receptor complexes. (i) In the Er-13 crystal, chains do not form layers which thus appear to be an over-structureunique tothe Er-1 crystal, not essential for the pheromone signalling mechanisms. (ii) In both crystal structures, the intra-chain interfaces are equally derived from burying amino-acid side-chains mostly residing on helix-3 of the three-helical pheromonefold. This helix is thus identified as the key structural motif underlying the pheromone activity, in line with its tight intra- and interspecificstructuralconservation.
Collapse
Affiliation(s)
- Bill Pedrini
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Aaron D Finke
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland; Macromolecular X-ray Science, Cornell High-energy Synchrotron Source, 161 Synchrotron Drive, Ithaca, NY 14853, USA
| | - May Marsh
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Pierangelo Luporini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino (MC), Italy
| | - Adriana Vallesi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino (MC), Italy.
| | - Claudio Alimenti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino (MC), Italy.
| |
Collapse
|
21
|
Appel LM, Franke V, Bruno M, Grishkovskaya I, Kasiliauskaite A, Kaufmann T, Schoeberl UE, Puchinger MG, Kostrhon S, Ebenwaldner C, Sebesta M, Beltzung E, Mechtler K, Lin G, Vlasova A, Leeb M, Pavri R, Stark A, Akalin A, Stefl R, Bernecky C, Djinovic-Carugo K, Slade D. PHF3 regulates neuronal gene expression through the Pol II CTD reader domain SPOC. Nat Commun 2021; 12:6078. [PMID: 34667177 PMCID: PMC8526623 DOI: 10.1038/s41467-021-26360-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/29/2021] [Indexed: 12/16/2022] Open
Abstract
The C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) is a regulatory hub for transcription and RNA processing. Here, we identify PHD-finger protein 3 (PHF3) as a regulator of transcription and mRNA stability that docks onto Pol II CTD through its SPOC domain. We characterize SPOC as a CTD reader domain that preferentially binds two phosphorylated Serine-2 marks in adjacent CTD repeats. PHF3 drives liquid-liquid phase separation of phosphorylated Pol II, colocalizes with Pol II clusters and tracks with Pol II across the length of genes. PHF3 knock-out or SPOC deletion in human cells results in increased Pol II stalling, reduced elongation rate and an increase in mRNA stability, with marked derepression of neuronal genes. Key neuronal genes are aberrantly expressed in Phf3 knock-out mouse embryonic stem cells, resulting in impaired neuronal differentiation. Our data suggest that PHF3 acts as a prominent effector of neuronal gene regulation by bridging transcription with mRNA decay.
Collapse
Affiliation(s)
- Lisa-Marie Appel
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Vedran Franke
- The Berlin Institute for Medical Systems Biology, Max Delbrück Center, Berlin, Germany
| | - Melania Bruno
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Irina Grishkovskaya
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Aiste Kasiliauskaite
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tanja Kaufmann
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Ursula E Schoeberl
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin G Puchinger
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Sebastian Kostrhon
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Carmen Ebenwaldner
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Marek Sebesta
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Etienne Beltzung
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Gen Lin
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
| | - Anna Vlasova
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
| | - Martin Leeb
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Rushad Pavri
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
| | - Altuna Akalin
- The Berlin Institute for Medical Systems Biology, Max Delbrück Center, Berlin, Germany
| | - Richard Stefl
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Carrie Bernecky
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, Klosterneuburg, Austria
| | - Kristina Djinovic-Carugo
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
- Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Dea Slade
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
22
|
Structural basis of P[II] rotavirus evolution and host ranges under selection of histo-blood group antigens. Proc Natl Acad Sci U S A 2021; 118:2107963118. [PMID: 34475219 DOI: 10.1073/pnas.2107963118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/02/2021] [Indexed: 12/27/2022] Open
Abstract
Group A rotaviruses cause severe gastroenteritis in infants and young children worldwide, with P[II] genogroup rotaviruses (RVs) responsible for >90% of global cases. RVs have diverse host ranges in different human and animal populations determined by host histo-blood group antigen (HBGA) receptor polymorphism, but details governing diversity, host ranges, and species barriers remain elusive. In this study, crystal structures of complexes of the major P[II] genogroup P[4] and P[8] genotype RV VP8* receptor-binding domains together with Lewis epitope-containing LNDFH I glycans in combination with VP8* receptor-glycan ligand affinity measurements based on NMR titration experiments revealed the structural basis for RV genotype-specific switching between ββ and βα HBGA receptor-binding sites that determine RV host ranges. The data support the hypothesis that P[II] RV evolution progressed from animals to humans under the selection of type 1 HBGAs guided by stepwise host synthesis of type 1 ABH and Lewis HBGAs. The results help explain disease burden, species barriers, epidemiology, and limited efficacy of current RV vaccines in developing countries. The structural data has the potential to impact the design of future vaccine strategies against RV gastroenteritis.
Collapse
|
23
|
Günther S, Reinke PYA, Fernández-García Y, Lieske J, Lane TJ, Ginn HM, Koua FHM, Ehrt C, Ewert W, Oberthuer D, Yefanov O, Meier S, Lorenzen K, Krichel B, Kopicki JD, Gelisio L, Brehm W, Dunkel I, Seychell B, Gieseler H, Norton-Baker B, Escudero-Pérez B, Domaracky M, Saouane S, Tolstikova A, White TA, Hänle A, Groessler M, Fleckenstein H, Trost F, Galchenkova M, Gevorkov Y, Li C, Awel S, Peck A, Barthelmess M, Schlünzen F, Lourdu Xavier P, Werner N, Andaleeb H, Ullah N, Falke S, Srinivasan V, França BA, Schwinzer M, Brognaro H, Rogers C, Melo D, Zaitseva-Kinneberg JI, Knoska J, Peña-Murillo GE, Mashhour AR, Hennicke V, Fischer P, Hakanpää J, Meyer J, Gribbon P, Ellinger B, Kuzikov M, Wolf M, Beccari AR, Bourenkov G, von Stetten D, Pompidor G, Bento I, Panneerselvam S, Karpics I, Schneider TR, Garcia-Alai MM, Niebling S, Günther C, Schmidt C, Schubert R, Han H, Boger J, Monteiro DCF, Zhang L, Sun X, Pletzer-Zelgert J, Wollenhaupt J, Feiler CG, Weiss MS, Schulz EC, Mehrabi P, Karničar K, Usenik A, Loboda J, Tidow H, Chari A, Hilgenfeld R, Uetrecht C, Cox R, Zaliani A, Beck T, Rarey M, Günther S, Turk D, Hinrichs W, Chapman HN, Pearson AR, Betzel C, Meents A. X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease. Science 2021; 372:642-646. [PMID: 33811162 PMCID: PMC8224385 DOI: 10.1126/science.abf7945] [Citation(s) in RCA: 245] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/29/2021] [Indexed: 12/17/2022]
Abstract
The coronavirus disease (COVID-19) caused by SARS-CoV-2 is creating tremendous human suffering. To date, no effective drug is available to directly treat the disease. In a search for a drug against COVID-19, we have performed a high-throughput x-ray crystallographic screen of two repurposing drug libraries against the SARS-CoV-2 main protease (Mpro), which is essential for viral replication. In contrast to commonly applied x-ray fragment screening experiments with molecules of low complexity, our screen tested already-approved drugs and drugs in clinical trials. From the three-dimensional protein structures, we identified 37 compounds that bind to Mpro In subsequent cell-based viral reduction assays, one peptidomimetic and six nonpeptidic compounds showed antiviral activity at nontoxic concentrations. We identified two allosteric binding sites representing attractive targets for drug development against SARS-CoV-2.
Collapse
Affiliation(s)
- Sebastian Günther
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
| | - Patrick Y A Reinke
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Yaiza Fernández-García
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359 Hamburg, Germany
| | - Julia Lieske
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Thomas J Lane
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Helen M Ginn
- Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Faisal H M Koua
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Christiane Ehrt
- Universität Hamburg, Center for Bioinformatics, Bundesstr. 43, 20146 Hamburg, Germany
| | - Wiebke Ewert
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Dominik Oberthuer
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Susanne Meier
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Universität Hamburg, Institut für Nanostruktur- und Festkörperphysik, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | - Boris Krichel
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistr. 52, 20251 Hamburg, Germany
| | - Janine-Denise Kopicki
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistr. 52, 20251 Hamburg, Germany
| | - Luca Gelisio
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Wolfgang Brehm
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Ilona Dunkel
- Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Brandon Seychell
- Universität Hamburg, Department of Chemistry, Institute of Physical Chemistry, Grindelallee 117, 20146 Hamburg, Germany
| | - Henry Gieseler
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Universität Hamburg, Institut für Nanostruktur- und Festkörperphysik, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Brenna Norton-Baker
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Chemistry, UC Irvine, Irvine, CA 92697-2025, USA
| | - Beatriz Escudero-Pérez
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359 Hamburg, Germany
| | - Martin Domaracky
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Sofiane Saouane
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Alexandra Tolstikova
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Thomas A White
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Anna Hänle
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Michael Groessler
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Holger Fleckenstein
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Fabian Trost
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Marina Galchenkova
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Yaroslav Gevorkov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Vision Systems, Hamburg University of Technology, 21071 Hamburg, Germany
| | - Chufeng Li
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Salah Awel
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Ariana Peck
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Miriam Barthelmess
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Frank Schlünzen
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - P Lourdu Xavier
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Nadine Werner
- Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology and Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, 22607 Hamburg, Germany
| | - Hina Andaleeb
- Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology and Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, 22607 Hamburg, Germany
| | - Najeeb Ullah
- Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology and Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, 22607 Hamburg, Germany
| | - Sven Falke
- Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology and Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, 22607 Hamburg, Germany
| | - Vasundara Srinivasan
- Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology and Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, 22607 Hamburg, Germany
| | - Bruno Alves França
- Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology and Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, 22607 Hamburg, Germany
| | - Martin Schwinzer
- Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology and Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, 22607 Hamburg, Germany
| | - Hévila Brognaro
- Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology and Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, 22607 Hamburg, Germany
| | - Cromarte Rogers
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Universität Hamburg, Institut für Nanostruktur- und Festkörperphysik, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Diogo Melo
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Universität Hamburg, Institut für Nanostruktur- und Festkörperphysik, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Joanna Irina Zaitseva-Kinneberg
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Universität Hamburg, Institut für Nanostruktur- und Festkörperphysik, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Juraj Knoska
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Gisel E Peña-Murillo
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Aida Rahmani Mashhour
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Vincent Hennicke
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Pontus Fischer
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Johanna Hakanpää
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Jan Meyer
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Bernhard Ellinger
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Maria Kuzikov
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Markus Wolf
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Schnackenburgallee 114, 22525 Hamburg, Germany
| | | | - Gleb Bourenkov
- EMBL Outstation Hamburg, c/o DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - David von Stetten
- EMBL Outstation Hamburg, c/o DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | - Isabel Bento
- EMBL Outstation Hamburg, c/o DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | - Ivars Karpics
- EMBL Outstation Hamburg, c/o DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | | | - Stephan Niebling
- EMBL Outstation Hamburg, c/o DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Christian Günther
- EMBL Outstation Hamburg, c/o DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | - Robin Schubert
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Huijong Han
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Juliane Boger
- Institute of Molecular Medicine, University of Lübeck, 23562 Lübeck, Germany
| | - Diana C F Monteiro
- Hauptmann Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
| | - Linlin Zhang
- Institute of Molecular Medicine, University of Lübeck, 23562 Lübeck, Germany
- German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems Site, University of Lübeck, 23562 Lübeck, Germany
| | - Xinyuanyuan Sun
- Institute of Molecular Medicine, University of Lübeck, 23562 Lübeck, Germany
- German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems Site, University of Lübeck, 23562 Lübeck, Germany
| | | | - Jan Wollenhaupt
- Helmholtz Zentrum Berlin, Macromolecular Crystallography, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Christian G Feiler
- Helmholtz Zentrum Berlin, Macromolecular Crystallography, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Manfred S Weiss
- Helmholtz Zentrum Berlin, Macromolecular Crystallography, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Eike-Christian Schulz
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Pedram Mehrabi
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Katarina Karničar
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova 39, 1000 Ljubljana, Slovenia
| | - Aleksandra Usenik
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova 39, 1000 Ljubljana, Slovenia
| | - Jure Loboda
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Henning Tidow
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Ashwin Chari
- Research Group for Structural Biochemistry and Mechanisms, Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Rolf Hilgenfeld
- Institute of Molecular Medicine, University of Lübeck, 23562 Lübeck, Germany
- German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems Site, University of Lübeck, 23562 Lübeck, Germany
| | - Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistr. 52, 20251 Hamburg, Germany
| | - Russell Cox
- Institute for Organic Chemistry and BMWZ, Leibniz University of Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Tobias Beck
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Universität Hamburg, Department of Chemistry, Institute of Physical Chemistry, Grindelallee 117, 20146 Hamburg, Germany
| | - Matthias Rarey
- Universität Hamburg, Center for Bioinformatics, Bundesstr. 43, 20146 Hamburg, Germany
| | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359 Hamburg, Germany
| | - Dusan Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova 39, 1000 Ljubljana, Slovenia
| | - Winfried Hinrichs
- Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology and Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, 22607 Hamburg, Germany
- Universität Greifswald, Institute of Biochemistry, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Henry N Chapman
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Universität Hamburg, Department of Physics, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Arwen R Pearson
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Universität Hamburg, Institut für Nanostruktur- und Festkörperphysik, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Christian Betzel
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology and Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, 22607 Hamburg, Germany
| | - Alke Meents
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
| |
Collapse
|
24
|
Shibuya A, Ogo N, Sawada JI, Asai A, Yokoyama H. Structure and comparison of the motor domain of centromere-associated protein E. Acta Crystallogr D Struct Biol 2021; 77:280-287. [PMID: 33645531 PMCID: PMC7919405 DOI: 10.1107/s2059798321000176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/05/2021] [Indexed: 12/02/2022] Open
Abstract
Centromere-associated protein E (CENP-E) plays an essential role in mitosis and is a target candidate for anticancer drugs. However, it is difficult to design small-molecule inhibitors of CENP-E kinesin motor ATPase activity owing to a lack of structural information on the CENP-E motor domain in complex with its inhibitors. Here, the CENP-E motor domain was crystallized in the presence of an ATP-competitive inhibitor and the crystal structure was determined at 1.9 Å resolution. In the determined structure, ADP was observed instead of the inhibitor in the nucleotide-binding site, even though no ADP was added during protein preparation. Structural comparison with the structures of previously reported CENP-E and those of other kinesins indicates that the determined structure is nearly identical except for several loop regions. However, the retention of ADP in the nucleotide-binding site of the structure strengthens the biochemical view that the release of ADP is a rate-limiting step in the ATPase cycle of CENP-E. These results will contribute to the development of anticancer drugs targeting CENP-E and to understanding the function of kinesin motor domains.
Collapse
Affiliation(s)
- Asuka Shibuya
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Naohisa Ogo
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Jun-ichi Sawada
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Akira Asai
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hideshi Yokoyama
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
25
|
Orientational Ambiguity in Septin Coiled Coils and its Structural Basis. J Mol Biol 2021; 433:166889. [PMID: 33639214 DOI: 10.1016/j.jmb.2021.166889] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/25/2021] [Accepted: 02/17/2021] [Indexed: 12/21/2022]
Abstract
Septins are an example of subtle molecular recognition whereby different paralogues must correctly assemble into functional filaments important for essential cellular events such as cytokinesis. Most possess C-terminal domains capable of forming coiled coils which are believed to be involved in filament formation and bundling. Here, we report an integrated structural approach which aims to unravel their architectural diversity and in so doing provide direct structural information for the coiled-coil regions of five human septins. Unexpectedly, we encounter dimeric structures presenting both parallel and antiparallel arrangements which are in consonance with molecular modelling suggesting that both are energetically accessible. These sequences therefore code for two metastable states of different orientations which employ different but overlapping interfaces. The antiparallel structures present a mixed coiled-coil interface, one side of which is dominated by a continuous chain of core hydrophilic residues. This unusual type of coiled coil could be used to expand the toolkit currently available to the protein engineer for the design of previously unforeseen coiled-coil based assemblies. Within a physiological context, our data provide the first atomic details related to the assumption that the parallel orientation is likely formed between septin monomers from the same filament whilst antiparallelism may participate in the widely described interfilament cross bridges necessary for higher order structures and thereby septin function.
Collapse
|
26
|
Mehr A, Henneberg F, Chari A, Görlich D, Huyton T. The copper(II)-binding tripeptide GHK, a valuable crystallization and phasing tag for macromolecular crystallography. Acta Crystallogr D Struct Biol 2020; 76:1222-1232. [PMID: 33263328 PMCID: PMC7709198 DOI: 10.1107/s2059798320013741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/13/2020] [Indexed: 12/04/2022] Open
Abstract
The growth of diffraction-quality crystals and experimental phasing remain two of the main bottlenecks in protein crystallography. Here, the high-affinity copper(II)-binding tripeptide GHK was fused to the N-terminus of a GFP variant and an MBP-FG peptide fusion. The GHK tag promoted crystallization, with various residues (His, Asp, His/Pro) from symmetry molecules completing the copper(II) square-pyramidal coordination sphere. Rapid structure determination by copper SAD phasing could be achieved, even at a very low Bijvoet ratio or after significant radiation damage. When collecting highly redundant data at a wavelength close to the copper absorption edge, residual S-atom positions could also be located in log-likelihood-gradient maps and used to improve the phases. The GHK copper SAD method provides a convenient way of both crystallizing and phasing macromolecular structures, and will complement the current trend towards native sulfur SAD and MR-SAD phasing.
Collapse
Affiliation(s)
- Alexander Mehr
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Fabian Henneberg
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ashwin Chari
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Trevor Huyton
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
27
|
McDonald G, Chubukov V, Coco J, Truskowski K, Narayanaswamy R, Choe S, Steadman M, Artin E, Padyana AK, Jin L, Ronseaux S, Locuson C, Fan ZP, Erdmann T, Mann A, Hayes S, Fletcher M, Nellore K, Rao SS, Subramanya H, Reddy KS, Panigrahi SK, Antony T, Gopinath S, Sui Z, Nagaraja N, Dang L, Lenz G, Hurov J, Biller SA, Murtie J, Marks KM, Ulanet DB. Selective Vulnerability to Pyrimidine Starvation in Hematologic Malignancies Revealed by AG-636, a Novel Clinical-Stage Inhibitor of Dihydroorotate Dehydrogenase. Mol Cancer Ther 2020; 19:2502-2515. [PMID: 33082276 DOI: 10.1158/1535-7163.mct-20-0550] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022]
Abstract
Agents targeting metabolic pathways form the backbone of standard oncology treatments, though a better understanding of differential metabolic dependencies could instruct more rationale-based therapeutic approaches. We performed a chemical biology screen that revealed a strong enrichment in sensitivity to a novel dihydroorotate dehydrogenase (DHODH) inhibitor, AG-636, in cancer cell lines of hematologic versus solid tumor origin. Differential AG-636 activity translated to the in vivo setting, with complete tumor regression observed in a lymphoma model. Dissection of the relationship between uridine availability and response to AG-636 revealed a divergent ability of lymphoma and solid tumor cell lines to survive and grow in the setting of depleted extracellular uridine and DHODH inhibition. Metabolic characterization paired with unbiased functional genomic and proteomic screens pointed to adaptive mechanisms to cope with nucleotide stress as contributing to response to AG-636. These findings support targeting of DHODH in lymphoma and other hematologic malignancies and suggest combination strategies aimed at interfering with DNA-damage response pathways.
Collapse
Affiliation(s)
| | | | - John Coco
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | | | | - Sung Choe
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Mya Steadman
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Erin Artin
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | | - Lei Jin
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | | | | - Zi-Peng Fan
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Tabea Erdmann
- Department of Medicine A for Hematology, Oncology, and Pneumology, Universitätsklinikum Münster, Münster, Germany
| | - Alan Mann
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | | - Mark Fletcher
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | | | | | | | | | | - Thomas Antony
- Aurigene Discovery Technologies Ltd., Bangalore, India
| | | | - Zhihua Sui
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | | - Lenny Dang
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Georg Lenz
- Department of Medicine A for Hematology, Oncology, and Pneumology, Universitätsklinikum Münster, Münster, Germany
| | | | | | - Josh Murtie
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Kevin M Marks
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | |
Collapse
|
28
|
Fedoryshchak RO, Přechová M, Butler AM, Lee R, O'Reilly N, Flynn HR, Snijders AP, Eder N, Ultanir S, Mouilleron S, Treisman R. Molecular basis for substrate specificity of the Phactr1/PP1 phosphatase holoenzyme. eLife 2020; 9:61509. [PMID: 32975518 PMCID: PMC7599070 DOI: 10.7554/elife.61509] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/24/2020] [Indexed: 01/01/2023] Open
Abstract
PPP-family phosphatases such as PP1 have little intrinsic specificity. Cofactors can target PP1 to substrates or subcellular locations, but it remains unclear how they might confer sequence-specificity on PP1. The cytoskeletal regulator Phactr1 is a neuronally enriched PP1 cofactor that is controlled by G-actin. Structural analysis showed that Phactr1 binding remodels PP1's hydrophobic groove, creating a new composite surface adjacent to the catalytic site. Using phosphoproteomics, we identified mouse fibroblast and neuronal Phactr1/PP1 substrates, which include cytoskeletal components and regulators. We determined high-resolution structures of Phactr1/PP1 bound to the dephosphorylated forms of its substrates IRSp53 and spectrin αII. Inversion of the phosphate in these holoenzyme-product complexes supports the proposed PPP-family catalytic mechanism. Substrate sequences C-terminal to the dephosphorylation site make intimate contacts with the composite Phactr1/PP1 surface, which are required for efficient dephosphorylation. Sequence specificity explains why Phactr1/PP1 exhibits orders-of-magnitude enhanced reactivity towards its substrates, compared to apo-PP1 or other PP1 holoenzymes.
Collapse
Affiliation(s)
- Roman O Fedoryshchak
- Signalling and Transcription Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Magdalena Přechová
- Signalling and Transcription Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Abbey M Butler
- Signalling and Transcription Laboratory, The Francis Crick Institute, London, United Kingdom.,Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Rebecca Lee
- Signalling and Transcription Laboratory, The Francis Crick Institute, London, United Kingdom.,Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Nicola O'Reilly
- Peptide Chemistry Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Helen R Flynn
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Ambrosius P Snijders
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Noreen Eder
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom.,Kinases and Brain Development Laboratory The Francis Crick Institute, London, United Kingdom
| | - Sila Ultanir
- Kinases and Brain Development Laboratory The Francis Crick Institute, London, United Kingdom
| | - Stephane Mouilleron
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Richard Treisman
- Signalling and Transcription Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
29
|
Wyatt JW, Korasick DA, Qureshi IA, Campbell AC, Gates KS, Tanner JJ. Inhibition, crystal structures, and in-solution oligomeric structure of aldehyde dehydrogenase 9A1. Arch Biochem Biophys 2020; 691:108477. [PMID: 32717224 DOI: 10.1016/j.abb.2020.108477] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 10/23/2022]
Abstract
Aldehyde dehydrogenase 9A1 (ALDH9A1) is a human enzyme that catalyzes the NAD+-dependent oxidation of the carnitine precursor 4-trimethylaminobutyraldehyde to 4-N-trimethylaminobutyrate. Here we show that the broad-spectrum ALDH inhibitor diethylaminobenzaldehyde (DEAB) reversibly inhibits ALDH9A1 in a time-dependent manner. Possible mechanisms of inhibition include covalent reversible inactivation involving the thiohemiacetal intermediate and slow, tight-binding inhibition. Two crystal structures of ALDH9A1 are reported, including the first of the enzyme complexed with NAD+. One of the structures reveals the active conformation of the enzyme, in which the Rossmann dinucleotide-binding domain is fully ordered and the inter-domain linker adopts the canonical β-hairpin observed in other ALDH structures. The oligomeric structure of ALDH9A1 was investigated using analytical ultracentrifugation, small-angle X-ray scattering, and negative stain electron microscopy. These data show that ALDH9A1 forms the classic ALDH superfamily dimer-of-dimers tetramer in solution. Our results suggest that the presence of an aldehyde substrate and NAD+ promotes isomerization of the enzyme into the active conformation.
Collapse
Affiliation(s)
- Jesse W Wyatt
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, United States
| | - David A Korasick
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States
| | - Insaf A Qureshi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad, 500046, India
| | - Ashley C Campbell
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States
| | - Kent S Gates
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, United States; Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States
| | - John J Tanner
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, United States; Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States.
| |
Collapse
|
30
|
An 1,4-α-Glucosyltransferase Defines a New Maltodextrin Catabolism Scheme in Lactobacillus acidophilus. Appl Environ Microbiol 2020; 86:AEM.00661-20. [PMID: 32444471 DOI: 10.1128/aem.00661-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022] Open
Abstract
The maltooligosaccharide (MOS) utilization locus in Lactobacillus acidophilus NCFM, a model for human small-intestine lactobacilli, encodes three glycoside hydrolases (GHs): a putative maltogenic α-amylase of family 13, subfamily 20 (LaGH13_20), a maltose phosphorylase of GH65 (LaGH65), and a family 13, subfamily 31, member (LaGH13_31B), annotated as a 1,6-α-glucosidase. Here, we reveal that LaGH13_31B is a 1,4-α-glucosyltransferase that disproportionates MOS with a degree of polymerization of ≥2, with a preference for maltotriose. Kinetic analyses of the three GHs encoded by the MOS locus revealed that the substrate preference of LaGH13_31B toward maltotriose complements the ~40-fold lower k cat of LaGH13_20 toward this substrate, thereby enhancing the conversion of odd-numbered MOS to maltose. The concerted action of LaGH13_20 and LaGH13_31B confers the efficient conversion of MOS to maltose that is phosphorolyzed by LaGH65. Structural analyses revealed the presence of a flexible elongated loop that is unique for a previously unexplored clade of GH13_31, represented by LaGH13_31B. The identified loop insertion harbors a conserved aromatic residue that modulates the activity and substrate affinity of the enzyme, thereby offering a functional signature of this clade, which segregates from 1,6-α-glucosidases and sucrose isomerases previously described within GH13_31. Genomic analyses revealed that the LaGH13_31B gene is conserved in the MOS utilization loci of lactobacilli, including acidophilus cluster members that dominate the human small intestine.IMPORTANCE The degradation of starch in the small intestine generates short linear and branched α-glucans. The latter are poorly digestible by humans, rendering them available to the gut microbiota, e.g., lactobacilli adapted to the small intestine and considered beneficial to health. This study unveils a previously unknown scheme of maltooligosaccharide (MOS) catabolism via the concerted activity of an 1,4-α-glucosyltransferase together with a classical hydrolase and a phosphorylase. The intriguing involvement of a glucosyltransferase likely allows the fine-tuning of the regulation of MOS catabolism for optimal harnessing of this key metabolic resource in the human small intestine. The study extends the suite of specificities that have been identified in GH13_31 and highlights amino acid signatures underpinning the evolution of 1,4-α-glucosyl transferases that have been recruited in the MOS catabolism pathway in lactobacilli.
Collapse
|
31
|
Newman J, van Raaij MJ. Innovation versus practice in biological crystallization. Acta Crystallogr F Struct Biol Commun 2020; 76:290-291. [PMID: 32627743 PMCID: PMC7336356 DOI: 10.1107/s2053230x20008869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Improving biological crystallization by innovation and publication.
Collapse
Affiliation(s)
- Janet Newman
- Collaborative Crystallisation Centre (C3), CSIRO, 343 Royal Parade, Parkville, VIC 3052 Australia
| | - Mark J. van Raaij
- Department of Molecular Structure, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Madrid, E-28049, Spain
| |
Collapse
|
32
|
Wang Y, Jin H, Yang F, Jiang YL, Zhao YY, Chen ZP, Li WF, Chen Y, Zhou CZ, Li Q. Crystal structure of a novel fold protein Gp72 from the freshwater cyanophage Mic1. Proteins 2020; 88:1226-1232. [PMID: 32337767 DOI: 10.1002/prot.25896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/10/2020] [Indexed: 11/09/2022]
Abstract
Cyanophages, widespread in aquatic systems, are a class of viruses that specifically infect cyanobacteria. Though they play important roles in modulating the homeostasis of cyanobacterial populations, little is known about the freshwater cyanophages, especially those hypothetical proteins of unknown function. Mic1 is a freshwater siphocyanophage isolated from the Lake Chaohu. It encodes three hypothetical proteins Gp65, Gp66, and Gp72, which share an identity of 61.6% to 83%. However, we find these three homologous proteins differ from each other in oligomeric state. Moreover, we solve the crystal structure of Gp72 at 2.3 Å, which represents a novel fold in the α + β class. Structural analyses combined with redox assays enable us to propose a model of disulfide bond mediated oligomerization for Gp72. Altogether, these findings provide structural and biochemical basis for further investigations on the freshwater cyanophage Mic1.
Collapse
Affiliation(s)
- Ying Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Hua Jin
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Feng Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yong-Liang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yan-Yan Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhi-Peng Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei-Fang Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuxing Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Qiong Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
33
|
Protein X-ray Crystallography and Drug Discovery. Molecules 2020; 25:molecules25051030. [PMID: 32106588 PMCID: PMC7179213 DOI: 10.3390/molecules25051030] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/20/2022] Open
Abstract
With the advent of structural biology in the drug discovery process, medicinal chemists gained the opportunity to use detailed structural information in order to progress screening hits into leads or drug candidates. X-ray crystallography has proven to be an invaluable tool in this respect, as it is able to provide exquisitely comprehensive structural information about the interaction of a ligand with a pharmacological target. As fragment-based drug discovery emerged in the recent years, X-ray crystallography has also become a powerful screening technology, able to provide structural information on complexes involving low-molecular weight compounds, despite weak binding affinities. Given the low numbers of compounds needed in a fragment library, compared to the hundreds of thousand usually present in drug-like compound libraries, it now becomes feasible to screen a whole fragment library using X-ray crystallography, providing a wealth of structural details that will fuel the fragment to drug process. Here, we review theoretical and practical aspects as well as the pros and cons of using X-ray crystallography in the drug discovery process.
Collapse
|
34
|
Structural basis of keto acid utilization in nonribosomal depsipeptide synthesis. Nat Chem Biol 2020; 16:493-496. [PMID: 32066969 DOI: 10.1038/s41589-020-0481-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/08/2020] [Accepted: 01/22/2020] [Indexed: 12/22/2022]
Abstract
Nonribosomal depsipeptides are natural products composed of amino and hydroxy acid residues. The hydroxy acid residues often derive from α-keto acids, reduced by ketoreductase domains in the depsipeptide synthetases. Biochemistry and structures reveal the mechanism of discrimination for α-keto acids and a remarkable architecture: flanking intact adenylation and ketoreductase domains are sequences separated by >1,100 residues that form a split 'pseudoAsub' domain, structurally important for the depsipeptide module's synthetic cycle.
Collapse
|
35
|
Abstract
The process of macromolecular crystallisation almost always begins by setting up crystallisation trials using commercial or other premade screens, followed by cycles of optimisation where the crystallisation cocktails are focused towards a particular small region of chemical space. The screening process is relatively straightforward, but still requires an understanding of the plethora of commercially available screens. Optimisation is complicated by requiring both the design and preparation of the appropriate secondary screens. Software has been developed in the C3 lab to aid the process of choosing initial screens, to analyse the results of the initial trials, and to design and describe how to prepare optimisation screens.
Collapse
|
36
|
Baumer KM, Koone JC, Shaw BF. Kinetic Variability in Seeded Formation of ALS-Linked SOD1 Fibrils Across Multiple Generations. ACS Chem Neurosci 2020; 11:304-313. [PMID: 31895541 DOI: 10.1021/acschemneuro.9b00464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The unseeded aggregation of superoxide dismutase-1 (SOD1) into amyloid-like fibrils occurs stochastically in vitro and in vivo, that is, isolated populations of SOD1 proteins (within microplate wells or living cells) self-assemble into amyloid at rates that span a probability distribution. This stochasticity has been attributed to variable degrees of monomer depletion by competing pathways of amorphous and fibrillar aggregation (inter alia). Here, microplate-based thioflavin-T (ThT) fluorescence assays were performed at high iteration (∼300) to establish whether this observed stochasticity persists when progenitor ("parent") SOD1 fibrils are used to seed the formation of multiple generations of progeny fibrils (daughter, granddaughter, and great-granddaughter fibrils). Populations of progenitor fibrils formed stochastically at different rates and fluorescence intensity, however, progeny fibrils formed at more similar rates regardless of the formation rate of the progenitor fibril. For example, populations of progenitor fibrils that formed with a lag time of ∼30 h or ∼15 h both produced progeny fibrils with lag times of ∼8 h. Likewise, populations of progenitor fibrils with high or low maximum fluorescence (e.g., ∼450 or ∼75 A.U.) both produced progeny fibrils with more similar maximum fluorescence (∼125 A.U.). The rate of propagation was found to be more dependent on monomer concentration than seed concentration. These results can be rationalized by classical rate laws for primary nucleation and monomer-dependent secondary nucleation. We also find that the seeding propensity of some "families" of in vitro grown fibrils exhibit a finite lifetime (similar to that observed in the seeding of small molecule crystals and colloids). The single biological takeaway of this study is that the concentration of native SOD1 in a cell can have a stronger effect on rates of seeded aggregation than the concentration of prion-like seed that infected the cell.
Collapse
Affiliation(s)
- Katelyn M Baumer
- Department of Chemistry and Biochemistry , Baylor University , Waco , Texas 76706 , United States
| | - Jordan C Koone
- Department of Chemistry and Biochemistry , Baylor University , Waco , Texas 76706 , United States
| | - Bryan F Shaw
- Department of Chemistry and Biochemistry , Baylor University , Waco , Texas 76706 , United States
| |
Collapse
|
37
|
Barczewski AH, Ragusa MJ, Mierke DF, Pellegrini M. Production, Crystallization, and Structure Determination of the IKK-binding Domain of NEMO. J Vis Exp 2019. [PMID: 31929506 DOI: 10.3791/60339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
NEMO is a scaffolding protein which plays an essential role in the NF-κB pathway by assembling the IKK-complex with the kinases IKKα and IKKβ. Upon activation, the IKK complex phosphorylates the IκB molecules leading to NF-κB nuclear translocation and activation of target genes. Inhibition of the NEMO/IKK interaction is an attractive therapeutic paradigm for the modulation of NF-κB pathway activity, making NEMO a target for inhibitors design and discovery. To facilitate the process of discovery and optimization of NEMO inhibitors, we engineered an improved construct of the IKK-binding domain of NEMO that would allow for structure determination of the protein in the apo form and while bound to small molecular weight inhibitors. Here, we present the strategy utilized for the design, expression and structural characterization of the IKK-binding domain of NEMO. The protein is expressed in E. coli cells, solubilized under denaturing conditions and purified through three chromatographic steps. We discuss the protocols for obtaining crystals for structure determination and describe data acquisition and analysis strategies. The protocols will find wide applicability to the structure determination of complexes of NEMO and small molecule inhibitors.
Collapse
|
38
|
High-Throughput Crystallization Pipeline at the Crystallography Core Facility of the Institut Pasteur. Molecules 2019; 24:molecules24244451. [PMID: 31817305 PMCID: PMC6943606 DOI: 10.3390/molecules24244451] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 11/25/2022] Open
Abstract
The availability of whole-genome sequence data, made possible by significant advances in DNA sequencing technology, led to the emergence of structural genomics projects in the late 1990s. These projects not only significantly increased the number of 3D structures deposited in the Protein Data Bank in the last two decades, but also influenced present crystallographic strategies by introducing automation and high-throughput approaches in the structure-determination pipeline. Today, dedicated crystallization facilities, many of which are open to the general user community, routinely set up and track thousands of crystallization screening trials per day. Here, we review the current methods for high-throughput crystallization and procedures to obtain crystals suitable for X-ray diffraction studies, and we describe the crystallization pipeline implemented in the medium-scale crystallography platform at the Institut Pasteur (Paris) as an example.
Collapse
|
39
|
Structural and Functional Characterization of Three Novel Fungal Amylases with Enhanced Stability and pH Tolerance. Int J Mol Sci 2019; 20:ijms20194902. [PMID: 31623309 PMCID: PMC6801514 DOI: 10.3390/ijms20194902] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/19/2022] Open
Abstract
Amylases are probably the best studied glycoside hydrolases and have a huge biotechnological value for industrial processes on starch. Multiple amylases from fungi and microbes are currently in use. Whereas bacterial amylases are well suited for many industrial processes due to their high stability, fungal amylases are recognized as safe and are preferred in the food industry, although they lack the pH tolerance and stability of their bacterial counterparts. Here, we describe three amylases, two of which have a broad pH spectrum extending to pH 8 and higher stability well suited for a broad set of industrial applications. These enzymes have the characteristic GH13 α-amylase fold with a central (β/α)8-domain, an insertion domain with the canonical calcium binding site and a C-terminal β-sandwich domain. The active site was identified based on the binding of the inhibitor acarbose in form of a transglycosylation product, in the amylases from Thamnidium elegans and Cordyceps farinosa. The three amylases have shortened loops flanking the nonreducing end of the substrate binding cleft, creating a more open crevice. Moreover, a potential novel binding site in the C-terminal domain of the Cordyceps enzyme was identified, which might be part of a starch interaction site. In addition, Cordyceps farinosa amylase presented a successful example of using the microseed matrix screening technique to significantly speed-up crystallization.
Collapse
|
40
|
Tan Y, Zhang Y, Han Y, Liu H, Chen H, Ma F, Withers SG, Feng Y, Yang G. Directed evolution of an α1,3-fucosyltransferase using a single-cell ultrahigh-throughput screening method. SCIENCE ADVANCES 2019; 5:eaaw8451. [PMID: 31633018 PMCID: PMC6785251 DOI: 10.1126/sciadv.aaw8451] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/17/2019] [Indexed: 05/09/2023]
Abstract
Fucosylated glycoconjugates are involved in a variety of physiological and pathological processes. However, economical production of fucosylated drugs and prebiotic supplements has been hampered by the poor catalytic efficiency of fucosyltransferases. Here, we developed a fluorescence-activated cell sorting system that enables the ultrahigh-throughput screening (>107 mutants/hour) of such enzymes and designed a companion strategy to assess the screening performance of the system. After three rounds of directed evolution, a mutant M32 of the α1,3-FucT from Helicobacter pylori was identified with 6- and 14-fold increases in catalytic efficiency (k cat/K m) for the synthesis of Lewis x and 3'-fucosyllactose, respectively. The structure of the M32 mutant revealed that the S45F mutation generates a clamp-like structure that appears to improve binding of the galactopyranose ring of the acceptor substrate. Moreover, molecular dynamic simulations reveal that helix α5, is more mobile in the M32 mutant, possibly explaining its high fucosylation activity.
Collapse
Affiliation(s)
- Yumeng Tan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yunbin Han
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hao Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haifeng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fuqiang Ma
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, China
| | - Stephen G. Withers
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guangyu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Corresponding author.
| |
Collapse
|
41
|
de Wijn R, Hennig O, Roche J, Engilberge S, Rollet K, Fernandez-Millan P, Brillet K, Betat H, Mörl M, Roussel A, Girard E, Mueller-Dieckmann C, Fox GC, Olieric V, Gavira JA, Lorber B, Sauter C. A simple and versatile microfluidic device for efficient biomacromolecule crystallization and structural analysis by serial crystallography. IUCRJ 2019; 6:454-464. [PMID: 31098026 PMCID: PMC6503916 DOI: 10.1107/s2052252519003622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/14/2019] [Indexed: 05/15/2023]
Abstract
Determining optimal conditions for the production of well diffracting crystals is a key step in every biocrystallography project. Here, a microfluidic device is described that enables the production of crystals by counter-diffusion and their direct on-chip analysis by serial crystallography at room temperature. Nine 'non-model' and diverse biomacromolecules, including seven soluble proteins, a membrane protein and an RNA duplex, were crystallized and treated on-chip with a variety of standard techniques including micro-seeding, crystal soaking with ligands and crystal detection by fluorescence. Furthermore, the crystal structures of four proteins and an RNA were determined based on serial data collected on four synchrotron beamlines, demonstrating the general applicability of this multipurpose chip concept.
Collapse
Affiliation(s)
- Raphaël de Wijn
- Architecture et Réactivité de l’ARN, UPR 9002, CNRS, Institut de Biologie Moléculaire et Cellulaire (IBMC), Université de Strasbourg, 15 Rue René Descartes, 67084 Strasbourg, France
| | - Oliver Hennig
- Institute for Biochemistry, Leipzig University, Bruederstrasse 34, 04103 Leipzig, Germany
| | - Jennifer Roche
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257 CNRS–Aix Marseille University, 163 Avenue de Luminy, 13288 Marseille, France
| | | | - Kevin Rollet
- Architecture et Réactivité de l’ARN, UPR 9002, CNRS, Institut de Biologie Moléculaire et Cellulaire (IBMC), Université de Strasbourg, 15 Rue René Descartes, 67084 Strasbourg, France
| | - Pablo Fernandez-Millan
- Architecture et Réactivité de l’ARN, UPR 9002, CNRS, Institut de Biologie Moléculaire et Cellulaire (IBMC), Université de Strasbourg, 15 Rue René Descartes, 67084 Strasbourg, France
| | - Karl Brillet
- Architecture et Réactivité de l’ARN, UPR 9002, CNRS, Institut de Biologie Moléculaire et Cellulaire (IBMC), Université de Strasbourg, 15 Rue René Descartes, 67084 Strasbourg, France
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Bruederstrasse 34, 04103 Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Bruederstrasse 34, 04103 Leipzig, Germany
| | - Alain Roussel
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257 CNRS–Aix Marseille University, 163 Avenue de Luminy, 13288 Marseille, France
| | - Eric Girard
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | | | - Gavin C. Fox
- PROXIMA 2A beamline, Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, 91192 Gif-sur-Yvette, France
| | - Vincent Olieric
- Paul Scherrer Institute, Swiss Light Source, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - José A. Gavira
- Laboratorio de Estudios Cristalográficos, IACT, CSIC–Universidad de Granada, Avenida Las Palmeras 4, 18100 Armilla, Granada, Spain
| | - Bernard Lorber
- Architecture et Réactivité de l’ARN, UPR 9002, CNRS, Institut de Biologie Moléculaire et Cellulaire (IBMC), Université de Strasbourg, 15 Rue René Descartes, 67084 Strasbourg, France
| | - Claude Sauter
- Architecture et Réactivité de l’ARN, UPR 9002, CNRS, Institut de Biologie Moléculaire et Cellulaire (IBMC), Université de Strasbourg, 15 Rue René Descartes, 67084 Strasbourg, France
| |
Collapse
|
42
|
Padyana AK, Gross S, Jin L, Cianchetta G, Narayanaswamy R, Wang F, Wang R, Fang C, Lv X, Biller SA, Dang L, Mahoney CE, Nagaraja N, Pirman D, Sui Z, Popovici-Muller J, Smolen GA. Structure and inhibition mechanism of the catalytic domain of human squalene epoxidase. Nat Commun 2019; 10:97. [PMID: 30626872 PMCID: PMC6327030 DOI: 10.1038/s41467-018-07928-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 12/04/2018] [Indexed: 12/22/2022] Open
Abstract
Squalene epoxidase (SQLE), also known as squalene monooxygenase, catalyzes the stereospecific conversion of squalene to 2,3(S)-oxidosqualene, a key step in cholesterol biosynthesis. SQLE inhibition is targeted for the treatment of hypercholesteremia, cancer, and fungal infections. However, lack of structure-function understanding has hindered further progression of its inhibitors. We have determined the first three-dimensional high-resolution crystal structures of human SQLE catalytic domain with small molecule inhibitors (2.3 Å and 2.5 Å). Comparison with its unliganded state (3.0 Å) reveals conformational rearrangements upon inhibitor binding, thus allowing deeper interpretation of known structure-activity relationships. We use the human SQLE structure to further understand the specificity of terbinafine, an approved agent targeting fungal SQLE, and to provide the structural insights into terbinafine-resistant mutants encountered in the clinic. Collectively, these findings elucidate the structural basis for the specificity of the epoxidation reaction catalyzed by SQLE and enable further rational development of next-generation inhibitors.
Collapse
Affiliation(s)
- Anil K Padyana
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA.
| | - Stefan Gross
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Lei Jin
- Agile Biostructure Solutions Consulting, LLC, 8 Harris Ave, Wellesley, MA, 02481, USA
| | - Giovanni Cianchetta
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
- KSQ Therapeutics, 610 Main St, Cambridge, MA, 02139, USA
| | | | - Feng Wang
- Wuxi Biortus Biosciences Co. Ltd., 6 Dongsheng West Road, Jiangyin, 214437, China
| | - Rui Wang
- Wuxi Biortus Biosciences Co. Ltd., 6 Dongsheng West Road, Jiangyin, 214437, China
- Department of Stomatology, Xiamen University, 361102, Xiamen, China
| | - Cheng Fang
- Shanghai ChemPartner Co. Ltd., 998 Halei Road, 201203, Shanghai, China
| | - Xiaobing Lv
- Shanghai ChemPartner Co. Ltd., 998 Halei Road, 201203, Shanghai, China
- Sundia MediTech Company, Ltd., 917 Halei Road, 201203, Shanghai, China
| | - Scott A Biller
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Lenny Dang
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | | | | | - David Pirman
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Zhihua Sui
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Janeta Popovici-Muller
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
- Decibel Therapeutics, 1325 Boylston St Suite 500, Boston, MA, 02215, USA
| | - Gromoslaw A Smolen
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
- Celsius Therapeutics, 215 First Street, Cambridge, MA, 02142, USA
| |
Collapse
|
43
|
Agirre J, Moroz O, Meier S, Brask J, Munch A, Hoff T, Andersen C, Wilson KS, Davies GJ. The structure of the AliC GH13 α-amylase from Alicyclobacillus sp. reveals the accommodation of starch branching points in the α-amylase family. Acta Crystallogr D Struct Biol 2019; 75:1-7. [PMID: 30644839 PMCID: PMC6333287 DOI: 10.1107/s2059798318014900] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/21/2018] [Indexed: 10/06/2023] Open
Abstract
α-Amylases are glycoside hydrolases that break the α-1,4 bonds in starch and related glycans. The degradation of starch is rendered difficult by the presence of varying degrees of α-1,6 branch points and their possible accommodation within the active centre of α-amylase enzymes. Given the myriad industrial uses for starch and thus also for α-amylase-catalysed starch degradation and modification, there is considerable interest in how different α-amylases might accommodate these branches, thus impacting on the potential processing of highly branched post-hydrolysis remnants (known as limit dextrins) and societal applications. Here, it was sought to probe the branch-point accommodation of the Alicyclobacillus sp. CAZy family GH13 α-amylase AliC, prompted by the observation of a molecule of glucose in a position that may represent a branch point in an acarbose complex solved at 2.1 Å resolution. Limit digest analysis by two-dimensional NMR using both pullulan (a regular linear polysaccharide of α-1,4, α-1,4, α-1,6 repeating trisaccharides) and amylopectin starch showed how the Alicyclobacillus sp. enzyme could accept α-1,6 branches in at least the -2, +1 and +2 subsites, consistent with the three-dimensional structures with glucosyl moieties in the +1 and +2 subsites and the solvent-exposure of the -2 subsite 6-hydroxyl group. Together, the work provides a rare insight into branch-point acceptance in these industrial catalysts.
Collapse
Affiliation(s)
- Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, England
| | - Olga Moroz
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, England
| | - Sebastian Meier
- Department of Chemistry, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Jesper Brask
- Novozymes A/S, Krogshoejvej 36, 2880 Bagsvaerd, Denmark
| | - Astrid Munch
- Novozymes A/S, Krogshoejvej 36, 2880 Bagsvaerd, Denmark
| | - Tine Hoff
- Novozymes A/S, Krogshoejvej 36, 2880 Bagsvaerd, Denmark
| | | | - Keith S. Wilson
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, England
| | - Gideon J. Davies
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, England
| |
Collapse
|
44
|
De-la-Torre P, Choudhary D, Araya-Secchi R, Narui Y, Sotomayor M. A Mechanically Weak Extracellular Membrane-Adjacent Domain Induces Dimerization of Protocadherin-15. Biophys J 2018; 115:2368-2385. [PMID: 30527337 PMCID: PMC6302040 DOI: 10.1016/j.bpj.2018.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022] Open
Abstract
The cadherin superfamily of proteins is defined by the presence of extracellular cadherin (EC) "repeats" that engage in protein-protein interactions to mediate cell-cell adhesion, cell signaling, and mechanotransduction. The extracellular domains of nonclassical cadherins often have a large number of EC repeats along with other subdomains of various folds. Protocadherin-15 (PCDH15), a protein component of the inner-ear tip link filament essential for mechanotransduction, has 11 EC repeats and a membrane adjacent domain (MAD12) of atypical fold. Here we report the crystal structure of a pig PCDH15 fragment including EC10, EC11, and MAD12 in a parallel dimeric arrangement. MAD12 has a unique molecular architecture and folds as a ferredoxin-like domain similar to that found in the nucleoporin protein Nup54. Analytical ultracentrifugation experiments along with size-exclusion chromatography coupled to multiangle laser light scattering and small-angle x-ray scattering corroborate the crystallographic dimer and show that MAD12 induces parallel dimerization of PCDH15 near its membrane insertion point. In addition, steered molecular dynamics simulations suggest that MAD12 is mechanically weak and may unfold before tip-link rupture. Sequence analyses and structural modeling predict the existence of similar domains in cadherin-23, protocadherin-24, and the "giant" FAT and CELSR cadherins, indicating that some of them may also exhibit MAD-induced parallel dimerization.
Collapse
Affiliation(s)
- Pedro De-la-Torre
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Deepanshu Choudhary
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Raul Araya-Secchi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Structural Biophysics, Section for Neutron and X-ray Science, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Yoshie Narui
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
45
|
Gavira JA, Conejero-Muriel M, Delgado-López JM. Seeding from silica-reinforced lysozyme crystals for neutron crystallography. Acta Crystallogr D Struct Biol 2018; 74:1200-1207. [PMID: 30605134 DOI: 10.1107/s2059798318016054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/13/2018] [Indexed: 11/10/2022] Open
Abstract
The fragility of protein crystals plays an important role in the final quality of the diffraction data and therefore that of the derived three-dimensional structural model. The growth of protein crystals in gels of various natures has been shown to overcome this problem, facilitating the manipulation of the crystals; this is probably owing, amongst other factors, to the incorporation of the gel fibres within the body of the crystal. In this study, lysozyme crystals were grown in silica gel at a wide range of concentrations of up to 22%(v/v) to quantitatively determine the amount of gel incorporated into the crystal structure by means of thermogravimetric analysis. The interaction between the silica fibres and the lysozyme molecules within the crystals was also investigated using Raman spectroscopy and the direct influence on the crystalline protein stability was analysed using differential scanning calorimetry. Finally, the benefits of the use of gel-grown crystals to overgrow protein crystals intended for neutron diffraction are highlighted.
Collapse
Affiliation(s)
- Jose A Gavira
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-Universidad de Granada, Avenida las Palmeras 4, 18100 Granada, Spain
| | - Mayte Conejero-Muriel
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-Universidad de Granada, Avenida las Palmeras 4, 18100 Granada, Spain
| | | |
Collapse
|
46
|
Holt MC, Assar Z, Beheshti Zavareh R, Lin L, Anglin J, Mashadova O, Haldar D, Mullarky E, Kremer DM, Cantley LC, Kimmelman AC, Stein AJ, Lairson LL, Lyssiotis CA. Biochemical Characterization and Structure-Based Mutational Analysis Provide Insight into the Binding and Mechanism of Action of Novel Aspartate Aminotransferase Inhibitors. Biochemistry 2018; 57:6604-6614. [PMID: 30365304 DOI: 10.1021/acs.biochem.8b00914] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pancreatic cancer cells are characterized by deregulated metabolic programs that facilitate growth and resistance to oxidative stress. Among these programs, pancreatic cancers preferentially utilize a metabolic pathway through the enzyme aspartate aminotransferase 1 [also known as glutamate oxaloacetate transaminase 1 (GOT1)] to support cellular redox homeostasis. As such, small molecule inhibitors that target GOT1 could serve as starting points for the development of new therapies for pancreatic cancer. We ran a high-throughput screen for inhibitors of GOT1 and identified a small molecule, iGOT1-01, with in vitro GOT1 inhibitor activity. Application in pancreatic cancer cells revealed metabolic and growth inhibitory activity reflecting a promiscuous inhibitory profile. We then performed an in silico docking analysis to study inhibitor-GOT1 interactions with iGOT1-01 analogues that possess improved solubility and potency properties. These results suggested that the GOT1 inhibitor competed for binding to the pyridoxal 5-phosphate (PLP) cofactor site of GOT1. To analyze how the GOT1 inhibitor bound to GOT1, a series of GOT1 mutant enzymes that abolished PLP binding were generated. Application of the mutants in X-ray crystallography and thermal shift assays again suggested but were unable to formally conclude that the GOT1 inhibitor bound to the PLP site. Mutational studies revealed the relationship between PLP binding and the thermal stability of GOT1 while highlighting the essential nature of several residues for GOT1 catalytic activity. Insight into the mode of action of GOT1 inhibitors may provide leads to the development of drugs that target redox balance in pancreatic cancer.
Collapse
Affiliation(s)
- Melissa C Holt
- Cayman Chemical Company , 1180 East Ellsworth , Ann Arbor , Michigan 48108 , United States
| | - Zahra Assar
- Cayman Chemical Company , 1180 East Ellsworth , Ann Arbor , Michigan 48108 , United States
| | - Reza Beheshti Zavareh
- California Institute for Biomedical Research , 11119 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Lin Lin
- Department of Molecular and Integrative Physiology , University of Michigan Medical School , Ann Arbor , Michigan 48109 , United States
| | - Justin Anglin
- California Institute for Biomedical Research , 11119 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Oksana Mashadova
- Meyer Cancer Center, Department of Medicine , Weill Cornell Medical College , New York , New York 10065 , United States
| | - Daniel Haldar
- Department of Systems Biology , Harvard Medical School , Boston , Massachusetts 02215 , United States
| | - Edouard Mullarky
- Meyer Cancer Center, Department of Medicine , Weill Cornell Medical College , New York , New York 10065 , United States
| | - Daniel M Kremer
- Department of Molecular and Integrative Physiology , University of Michigan Medical School , Ann Arbor , Michigan 48109 , United States
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine , Weill Cornell Medical College , New York , New York 10065 , United States
| | - Alec C Kimmelman
- Department of Radiation Oncology, Perlmutter Cancer Center , NYU Langone Medical Center , New York , New York 10016 , United States
| | - Adam J Stein
- Cayman Chemical Company , 1180 East Ellsworth , Ann Arbor , Michigan 48108 , United States
| | - Luke L Lairson
- California Institute for Biomedical Research , 11119 North Torrey Pines Road , La Jolla , California 92037 , United States.,Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, Division of Gastroenterology, and Rogel Cancer Center , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
47
|
de Wijn R, Hennig O, Ernst FGM, Lorber B, Betat H, Mörl M, Sauter C. Combining crystallogenesis methods to produce diffraction-quality crystals of a psychrophilic tRNA-maturation enzyme. Acta Crystallogr F Struct Biol Commun 2018; 74:747-753. [PMID: 30387781 PMCID: PMC6213980 DOI: 10.1107/s2053230x18014590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/16/2018] [Indexed: 11/10/2022] Open
Abstract
The determination of conditions for the reproducible growth of well diffracting crystals is a critical step in every biocrystallographic study. On the occasion of a new structural biology project, several advanced crystallogenesis approaches were tested in order to increase the success rate of crystallization. These methods included screening by microseed matrix screening, optimization by counter-diffusion and crystal detection by trace fluorescent labeling, and are easily accessible to any laboratory. Their combination proved to be particularly efficient in the case of the target, a 48 kDa CCA-adding enzyme from the psychrophilic bacterium Planococcus halocryophilus. A workflow summarizes the overall strategy, which led to the production of crystals that diffracted to better than 2 Å resolution and may be of general interest for a variety of applications.
Collapse
Affiliation(s)
- Raphaël de Wijn
- Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, IBMC, CNRS, 15 Rue R. Descartes, 67084 Strasbourg, France
| | - Oliver Hennig
- Institute for Biochemistry, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Felix G. M. Ernst
- Institute for Biochemistry, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Bernard Lorber
- Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, IBMC, CNRS, 15 Rue R. Descartes, 67084 Strasbourg, France
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Claude Sauter
- Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, IBMC, CNRS, 15 Rue R. Descartes, 67084 Strasbourg, France
| |
Collapse
|
48
|
Biterova E, Ignatyev A, Uusimaa J, Hinttala R, Ruddock LW. Structural analysis of human NHLRC2, mutations of which are associated with FINCA disease. PLoS One 2018; 13:e0202391. [PMID: 30138417 PMCID: PMC6107167 DOI: 10.1371/journal.pone.0202391] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/02/2018] [Indexed: 11/21/2022] Open
Abstract
NHLRC2 (NHL repeat-containing protein 2) is an essential protein. Mutations of NHLRC2, including Asp148Tyr, have been recently associated with a novel FINCA disease (fibrosis, neurodegeneration, cerebral angiomatosis), which is fatal in early childhood. To gain insight into the mechanisms of action of this essential protein, we determined the crystal structure of the Trx-like and NHL repeat β-propeller domains of human NHLRC2 to a resolution of 2.7 Å. The structure reveals two domains adjacent to each other that form a cleft containing a conserved CCINC motif. A SAXS structure of full-length NHLRC2 reveals that the non-conserved C-terminal domain does not pack against the N-terminal domains. Analysis of the surface properties of the protein identifies an extended negative electrostatic potential in the surface of the cleft formed by the two domains, which likely forms a binding site for a ligand or interaction partner(s). Bioinformatics analysis discovers homologs across a range of eukaryotic and prokaryotic species and conserved residues map mostly to the adjacent surfaces of the Trx-like and β-propeller domains that form the cleft, suggesting both that this forms the potential functional site of NHLRC2 and that the function is conserved across species. Asp148 is located in the Trx-like domain and is not conserved across species. The Asp148Tyr mutation destabilizes the structure of the protein by 2°C. The NHLRC2 structure, the first of any of its homologs, provides an important step towards more focused structure-function studies of this essential protein.
Collapse
Affiliation(s)
- Ekaterina Biterova
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Alexander Ignatyev
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Johanna Uusimaa
- Biocenter Oulu, University of Oulu, Oulu, Finland
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Reetta Hinttala
- Biocenter Oulu, University of Oulu, Oulu, Finland
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Lloyd W. Ruddock
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
49
|
Yoshida T, Tsuge H. Substrate N 2 atom recognition mechanism in pierisin family DNA-targeting, guanine-specific ADP-ribosyltransferase ScARP. J Biol Chem 2018; 293:13768-13774. [PMID: 30072382 DOI: 10.1074/jbc.ac118.004412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/26/2018] [Indexed: 11/06/2022] Open
Abstract
ScARP from the bacterium Streptomyces coelicolor belongs to the pierisin family of DNA-targeting ADP-ribosyltransferases (ARTs). These enzymes ADP-ribosylate the N2 amino groups of guanine residues in DNA to yield N2-(ADP-ribos-1-yl)-2'-deoxyguanosine. Although the structures of pierisin-1 and Scabin were revealed recently, the substrate recognition mechanisms remain poorly understood because of the lack of a substrate-binding structure. Here, we report the apo structure of ScARP and of ScARP bound to NADH and its GDP substrate at 1.50 and 1.57 Å resolutions, respectively. The bound structure revealed that the guanine of GDP is trapped between N-ribose of NADH and Trp-159. Interestingly, N2 and N3 of guanine formed hydrogen bonds with the OE1 and NE2 atoms of Gln-162, respectively. We directly observed that the ADP-ribosylating toxin turn-turn (ARTT)-loop, including Trp-159 and Gln-162, plays a key role in the specificity of DNA-targeting, guanine-specific ARTs as well as protein-targeting ARTs such as the C3 exoenzyme. We propose that the ARTT-loop recognition is a common substrate-recognition mechanism in the pierisin family. Furthermore, this complex structure sheds light on similarities and differences among two subclasses that are distinguished by conserved structural motifs: H-Y-E in the ARTD subfamily and R-S-E in the ARTC subfamily. The spatial arrangements of the electrophile and nucleophile were the same, providing the first evidence for a common reaction mechanism in these ARTs. ARTC (including ScARP) uses the ARTT-loop for substrate recognition, whereas ARTD (represented by Arr) uses the C-terminal helix instead of the ARTT-loop. These observations could help inform efforts to improve ART inhibitors.
Collapse
Affiliation(s)
- Toru Yoshida
- From the Department of Bioresource and Environmental Sciences, Faculty of Life Sciences.,Institute for Protein Dynamics, and
| | - Hideaki Tsuge
- From the Department of Bioresource and Environmental Sciences, Faculty of Life Sciences, .,Institute for Protein Dynamics, and.,Center for Molecular Research in Infectious Diseases, Kyoto Sangyo University, Kyoto 603-8555, Japan
| |
Collapse
|
50
|
Moroz OV, Sobala LF, Blagova E, Coyle T, Peng W, Mørkeberg Krogh KBR, Stubbs KA, Wilson KS, Davies GJ. Structure of a Talaromyces pinophilus GH62 arabinofuranosidase in complex with AraDNJ at 1.25 Å resolution. Acta Crystallogr F Struct Biol Commun 2018; 74:490-495. [PMID: 30084398 PMCID: PMC6096477 DOI: 10.1107/s2053230x18000250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/04/2018] [Indexed: 01/09/2023] Open
Abstract
The enzymatic hydrolysis of complex plant biomass is a major societal goal of the 21st century in order to deliver renewable energy from nonpetroleum and nonfood sources. One of the major problems in many industrial processes, including the production of second-generation biofuels from lignocellulose, is the presence of `hemicelluloses' such as xylans which block access to the cellulosic biomass. Xylans, with a polymeric β-1,4-xylose backbone, are frequently decorated with acetyl, glucuronyl and arabinofuranosyl `side-chain' substituents, all of which need to be removed for complete degradation of the xylan. As such, there is interest in side-chain-cleaving enzymes and their action on polymeric substrates. Here, the 1.25 Å resolution structure of the Talaromyces pinophilus arabinofuranosidase in complex with the inhibitor AraDNJ, which binds with a Kd of 24 ± 0.4 µM, is reported. Positively charged iminosugars are generally considered to be potent inhibitors of retaining glycosidases by virtue of their ability to interact with both acid/base and nucleophilic carboxylates. Here, AraDNJ shows good inhibition of an inverting enzyme, allowing further insight into the structural basis for arabinoxylan recognition and degradation.
Collapse
Affiliation(s)
- Olga V. Moroz
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, England
| | - Lukasz F. Sobala
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, England
| | - Elena Blagova
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, England
| | - Travis Coyle
- School of Molecular Sciences, The University of Western Australia (M313), 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Wei Peng
- Fungal Diversity, Novozymes A/S, China Headquarters, 14 Xinxi Road, Shangdi Zone, Haidian District, Beijing 100085, People’s Republic of China
| | | | - Keith A. Stubbs
- School of Molecular Sciences, The University of Western Australia (M313), 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Keith S. Wilson
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, England
| | - Gideon J. Davies
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, England
| |
Collapse
|