1
|
Dasriya VL, Samtiya M, Ranveer S, Dhillon HS, Devi N, Sharma V, Nikam P, Puniya M, Chaudhary P, Chaudhary V, Behare PV, Dhewa T, Vemuri R, Raposo A, Puniya DV, Khedkar GD, Vishweswaraiah RH, Vij S, Alarifi SN, Han H, Puniya AK. Modulation of gut-microbiota through probiotics and dietary interventions to improve host health. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6359-6375. [PMID: 38334314 DOI: 10.1002/jsfa.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/10/2024]
Abstract
Dietary patterns play an important role in regards to the modulation and control of the gut microbiome composition and function. The interaction between diet and microbiota plays an important role in order to maintain intestinal homeostasis, which ultimately affect the host's health. Diet directly impacts the microbes that inhabit the gastrointestinal tract (GIT), which then contributes to the production of secondary metabolites, such as short-chain fatty acids, neurotransmitters, and antimicrobial peptides. Dietary consumption with genetically modified probiotics can be the best vaccine delivery vector and protect cells from various illnesses. A holistic approach to disease prevention, treatment, and management takes these intrinsically linked diet-microbes, microbe-microbe interactions, and microbe-host interactions into account. Dietary components, such as fiber can modulate beneficial gut microbiota, and they have resulting ameliorative effects against metabolic disorders. Medical interventions, such as antibiotic drugs can conversely have detrimental effects on gut microbiota by disputing the balance between Bacteroides and firmicute, which contribute to continuing disease states. We summarize the known effects of various dietary components, such as fibers, carbohydrates, fatty acids, vitamins, minerals, proteins, phenolic acids, and antibiotics on the composition of the gut microbiota in this article in addition to the beneficial effect of genetically modified probiotics and consequentially their role in regards to shaping human health. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Mrinal Samtiya
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, India
| | - Soniya Ranveer
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | | | - Nishu Devi
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Vikas Sharma
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Pranali Nikam
- College of Dairy Science and Food Technology, Dau Shri Vasudev Chandrakar, Kamdhenu University, Raipur, India
| | - Monica Puniya
- Science and Standards Division, Food Safety and Standards Authority of India, FDA Bhawan, New Delhi, India
| | - Priya Chaudhary
- Microbiology Department, VCSG Government Institute of Medical Science and Research, Srinagar, India
| | - Vishu Chaudhary
- University Institute of Biotechnology, Chandigarh University, Sahibzada Ajit Singh Nagar, India
| | - Pradip V Behare
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Tejpal Dhewa
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, India
| | - Ravichandra Vemuri
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | - Dharun Vijay Puniya
- Center of One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Gulab D Khedkar
- Paul Hebert Center for DNA Barcoding and Biodiversity Studies, Dr Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | | | - Shilpa Vij
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Sehad N Alarifi
- Department of Food and Nutrition Science, Al-Quwayiyah College of Sciences and Humanities, Shaqra University, Shaqraa, Saudi Arabia
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, Seoul, South Korea
| | - Anil Kumar Puniya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
2
|
Machado F, Gómez-Domínguez I, Hurtado-Ribeira R, Martin D, Coimbra MA, Del Castillo MD, Coreta-Gomes F. In vitro human colonic fermentation of coffee arabinogalactan and melanoidin-rich fractions. Int J Biol Macromol 2024; 275:133740. [PMID: 38986986 DOI: 10.1016/j.ijbiomac.2024.133740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/28/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Coffee beverage is a source of dietary fiber composed by arabinogalactans, which can also be associated to proteins and phenolic compounds, originating melanoidins. Human colonic in vitro fermentations of coffee fractions, one rich in melanoidins (Mel) and the other in its parental polysaccharide arabinogalactans (AG), were performed in order to evaluate the metabolites produced by microbiota, namely short-chain fatty acids (SCFA), phenolic compounds, and bile acids. After 48 h of fermentation, a higher fermentability of the carbohydrate fraction of AG (62 %) than that of Mel (27 %) was observed, resulting in a SCFA content of 63 mM and 22 mM, respectively. Supplementation with AG and Mel fractions decreased the acetate:propionate ratio from 4.7 (in the absence of coffee fractions) to 2.5 and 3.5, respectively, suggesting a potential inhibition of HMG-CoA reductase, a rate-limiting enzyme for cholesterol synthesis. The fermentation of coffee fractions yielded dihydroferulic and dihydrocaffeic acids, known to have antioxidant properties. In the presence of Mel, it was observed a decrease (from 0.25 to 0.16 mg/mL) in the production of secondary bile acids, whose high content is associated to the development of several diseases, such as colorectal cancer, neurodegenerative and cardiovascular.
Collapse
Affiliation(s)
- Fernanda Machado
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Irene Gómez-Domínguez
- Institute of Food Science Research (CIAL) (CSIC-UAM), Calle Nicolás Cabrera Madrid, Spain
| | - Raul Hurtado-Ribeira
- Institute of Food Science Research (CIAL) (CSIC-UAM), Calle Nicolás Cabrera Madrid, Spain
| | - Diana Martin
- Institute of Food Science Research (CIAL) (CSIC-UAM), Calle Nicolás Cabrera Madrid, Spain
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Filipe Coreta-Gomes
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
3
|
Horasan Sagbasan B, Williams CM, Bell L, Barfoot KL, Poveda C, Walton GE. Inulin and Freeze-Dried Blueberry Intervention Lead to Changes in the Microbiota and Metabolites within In Vitro Studies and in Cognitive Function within a Small Pilot Trial on Healthy Children. Microorganisms 2024; 12:1501. [PMID: 39065269 PMCID: PMC11279127 DOI: 10.3390/microorganisms12071501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The relationship between the gut microbiota and cognitive health is complex and bidirectional, being significantly impacted by our diet. Evidence indicates that polyphenols and inulin can impact cognitive function via various mechanisms, one of which is the gut microbiota. In this study, effects of a wild blueberry treatment (WBB) and enriched chicory inulin powder were investigated both in vitro and in vivo. Gut microbiota composition and metabolites, including neurotransmitters, were assessed upon faecal microbial fermentation of WBB and inulin in a gut model system. Secondly, microbiota changes and cognitive function were assessed in children within a small pilot (n = 13) trial comparing WBB, inulin, and a maltodextrin placebo, via a series of tests measuring executive function and memory function, with faecal sampling at baseline, 4 weeks post-intervention and after a 4 week washout period. Both WBB and inulin led to microbial changes and increases in levels of short chain fatty acids in vitro. In vivo significant improvements in executive function and memory were observed following inulin and WBB consumption as compared to placebo. Cognitive benefits were accompanied by significant increases in Faecalibacterium prausnitzii in the inulin group, while in the WBB group, Bacteroidetes significantly increased and Firmicutes significantly decreased (p < 0.05). As such, WBB and inulin both impact the microbiota and may impact cognitive function via different gut-related or other mechanisms. This study highlights the important influence of diet on cognitive function that could, in part, be mediated by the gut microbiota.
Collapse
Affiliation(s)
- Buket Horasan Sagbasan
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AP, UK
| | - Claire M Williams
- Department of Psychology, University of Reading, Earley Gate, Whiteknights, Reading RG6 6AL, UK
| | - Lynne Bell
- Department of Psychology, University of Reading, Earley Gate, Whiteknights, Reading RG6 6AL, UK
| | - Katie L Barfoot
- Department of Psychology, University of Reading, Earley Gate, Whiteknights, Reading RG6 6AL, UK
| | - Carlos Poveda
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AP, UK
| | - Gemma E Walton
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AP, UK
| |
Collapse
|
4
|
Jacquier EF, van de Wouw M, Nekrasov E, Contractor N, Kassis A, Marcu D. Local and Systemic Effects of Bioactive Food Ingredients: Is There a Role for Functional Foods to Prime the Gut for Resilience? Foods 2024; 13:739. [PMID: 38472851 DOI: 10.3390/foods13050739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Scientific advancements in understanding the impact of bioactive components in foods on the gut microbiota and wider physiology create opportunities for designing targeted functional foods. The selection of bioactive ingredients with potential local or systemic effects holds promise for influencing overall well-being. An abundance of studies demonstrate that gut microbiota show compositional changes that correlate age and disease. However, navigating this field, especially for non-experts, remains challenging, given the abundance of bioactive ingredients with varying levels of scientific substantiation. This narrative review addresses the current knowledge on the potential impact of the gut microbiota on host health, emphasizing gut microbiota resilience. It explores evidence related to the extensive gut health benefits of popular dietary components and bioactive ingredients, such as phytochemicals, fermented greens, fibres, prebiotics, probiotics, and postbiotics. Importantly, this review distinguishes between the potential local and systemic effects of both popular and emerging ingredients. Additionally, it highlights how dietary hormesis promotes gut microbiota resilience, fostering better adaptation to stress-a hallmark of health. By integrating examples of bioactives, this review provides insights to guide the design of evidence-based functional foods aimed at priming the gut for resilience.
Collapse
Affiliation(s)
| | - Marcel van de Wouw
- Department of Pediatrics, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | | | - Amira Kassis
- Neat Science, 1618 Chatel-Saint-Denis, Switzerland
| | - Diana Marcu
- School of Molecular Biosciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
5
|
Baron G, Altomare A, Della Vedova L, Gado F, Quagliano O, Casati S, Tosi N, Bresciani L, Del Rio D, Roda G, D'Amato A, Lammi C, Macorano A, Vittorio S, Vistoli G, Fumagalli L, Carini M, Leone A, Marino M, Del Bo' C, Miotto G, Ursini F, Morazzoni P, Aldini G. Unraveling the parahormetic mechanism underlying the health-protecting effects of grapeseed procyanidins. Redox Biol 2024; 69:102981. [PMID: 38104483 PMCID: PMC10770607 DOI: 10.1016/j.redox.2023.102981] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023] Open
Abstract
Proanthocyanidins (PACs), the predominant constituents within Grape Seed Extract (GSE), are intricate compounds composed of interconnected flavan-3-ol units. Renowned for their health-affirming properties, PACs offer a shield against a spectrum of inflammation associated diseases, such as diabetes, obesity, degenerations and possibly cancer. While monomeric and dimeric PACs undergo some absorption within the gastrointestinal tract, their larger oligomeric and polymeric counterparts are not bioavailable. However, higher molecular weight PACs engage with the colonic microbiota, fostering the production of bioavailable metabolites that undergo metabolic processes, culminating in the emergence of bioactive agents capable of modulating physiological processes. Within this investigation, a GSE enriched with polymeric PACs was employed to explore in detail their impact. Through comprehensive analysis, the present study unequivocally verified the gastrointestinal-mediated transformation of medium to high molecular weight polymeric PACs, thereby establishing the bioaccessibility of a principal catabolite termed 5-(3',4'-dihydroxyphenyl)-γ-valerolactone (VL). Notably, our findings, encompassing cell biology, chemistry and proteomics, converge to the proposal of the notion of the capacity of VL to activate, upon oxidation to the corresponding quinone, the nuclear factor E2-related factor 2 (Nrf2) pathway-an intricate process that incites cellular defenses and mitigates stress-induced responses, such as a challenge brought by TNFα. This mechanistic paradigm seamlessly aligns with the concept of para-hormesis, ultimately orchestrating the resilience to stress and the preservation of cellular redox equilibrium and homeostasis as benchmarks of health.
Collapse
Affiliation(s)
- G Baron
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - A Altomare
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - L Della Vedova
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - F Gado
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - O Quagliano
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - S Casati
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Luigi Mangiagalli 37, 20133, Milan, Italy
| | - N Tosi
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - L Bresciani
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - D Del Rio
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - G Roda
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - A D'Amato
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - C Lammi
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - A Macorano
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - S Vittorio
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - G Vistoli
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - L Fumagalli
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - M Carini
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - A Leone
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Via Sandro Botticelli 21, 20133, Milan, Italy; Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, Via Luigi Mangiagalli 25, 20133, Milan, Italy
| | - M Marino
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, Via Luigi Mangiagalli 25, 20133, Milan, Italy
| | - C Del Bo'
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, Via Luigi Mangiagalli 25, 20133, Milan, Italy
| | - G Miotto
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy
| | - F Ursini
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy
| | - P Morazzoni
- Divisione Nutraceutica, Distillerie Umberto Bonollo S.p.A, 35035, Mestrino, Italy
| | - G Aldini
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy.
| |
Collapse
|
6
|
Rodriquez-Saavedra M, Tamargo A, Molinero N, Relaño de la Guía E, Jiménez-Arroyo C, Bartolomé B, González de Llano D, Victoria Moreno-Arribas M. Simulated gastrointestinal digestion of beer using the simgi® model. Investigation of colonic phenolic metabolism and impact on human gut microbiota. Food Res Int 2023; 173:113228. [PMID: 37803545 DOI: 10.1016/j.foodres.2023.113228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 10/08/2023]
Abstract
Beer is a source of bioactive compounds, mainly polyphenols, which can reach the large intestine and interact with colonic microbiota. However, the effects of beer consumption in the gastrointestinal function have scarcely been studied. This paper reports, for the first time, the in vitro digestion of beer and its impact on intestinal microbiota metabolism. Three commercial beers of different styles were subjected to gastrointestinal digestion using the simgi® model, and the digested fluids were further fermented in triplicate with faecal microbiota from a healthy volunteer. The effect of digested beer on human gut microbiota was evaluated in terms of microbial metabolism (short-chain fatty acids (SCFAs) and ammonium ion), microbial diversity and bacterial populations (plate counting and 16S rRNA gene sequencing). Monitoring beer polyphenols through the different digestion phases showed their extensive metabolism, mainly at the colonic stage. In addition, a higher abundance of taxa related to gut health, especially Bacteroides, Bifidobacterium, Mitsuokella and Succinilasticum at the genus level, and the Ruminococcaceae and Prevotellaceae families were found in the presence of beers. Regarding microbial metabolism, beer feeding significantly increased microbial SCFA production (mainly butyric acid) and decreased ammonium content. Overall, these results evidence the positive actions of moderate beer consumption on the metabolic activity of colonic microbiota, suggesting that the raw materials and brewing methods used may affect the beer gut effects.
Collapse
Affiliation(s)
| | - Alba Tamargo
- Institute of Food Science Research (CIAL), CSIC-UAM, c/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Natalia Molinero
- Institute of Food Science Research (CIAL), CSIC-UAM, c/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | | | - Cristina Jiménez-Arroyo
- Institute of Food Science Research (CIAL), CSIC-UAM, c/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Begoña Bartolomé
- Institute of Food Science Research (CIAL), CSIC-UAM, c/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | | | | |
Collapse
|
7
|
Rawi MH, Tan HY, Sarbini SR. Identification of acacia gum fermenting bacteria from pooled human feces using anaerobic enrichment culture. Front Microbiol 2023; 14:1245042. [PMID: 37881253 PMCID: PMC10597704 DOI: 10.3389/fmicb.2023.1245042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
Commercial acacia gum (AG) used in this study is a premium-grade free-flowing powder. It is a gummy exudate composed of arabinogalactan branched polysaccharide, a biopolymer of arabinose and galactose. Also known as food additive, acacia gum (E414), which is presently marketed as a functional dietary fiber to improve overall human gut health. The health effects may be related to the luminal pH regulation from the short-chain fatty acids (SCFA) production. Studies suggested that amylolytic and butyrogenic pathways are the major factors determining the SCFA outcome of AG in the lower gut. However, the primary bacteria involved in the fermentation have not been studied. This study aimed to investigate the putative primary degraders of acacia gum in the gut ecosystem. Isolation and identification of gum-fermenting bacteria were performed through enrichment culture fermentation. The experiment was conducted in an anaerobic chamber for 144 h in three stages. The study was conducted in triplicate using an anaerobic chamber system. This culture system allows specific responses to support only bacteria that are responsible for gum fermentation among the gut microbiota. Five bacterial strains were isolated and found to be gum-fermenting bacteria. Based on the 16s RNA sequence, the isolates matched to butyrate-producing Escherichia fergusonii, ATCC 35469.
Collapse
Affiliation(s)
- Muhamad Hanif Rawi
- Innovative Food Processing and Ingredients Research Group, Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Hui Yan Tan
- Department of Crop Science, Faculty of Agricultural Science and Forestry, Universiti Putra Malaysia Bintulu Campus, Bintulu, Sarawak, Malaysia
| | - Shahrul Razid Sarbini
- Department of Crop Science, Faculty of Agricultural Science and Forestry, Universiti Putra Malaysia Bintulu Campus, Bintulu, Sarawak, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
8
|
Grohmann T, Walker AW, Russell WR, Hoggard N, Zhang X, Horgan G, de Roos B. A grape seed and bilberry extract reduces blood pressure in individuals at risk of developing type 2 diabetes: the PRECISE study, a double-blind placebo-controlled cross-over intervention study. Front Nutr 2023; 10:1139880. [PMID: 37351191 PMCID: PMC10283353 DOI: 10.3389/fnut.2023.1139880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/26/2023] [Indexed: 06/24/2023] Open
Abstract
Background Type 2 Diabetes Mellitus (T2DM) is a major risk factor for the development of cardiometabolic diseases. T2DM prevention is largely based on weight-loss and whole diet changes, but intervention with dietary plant bioactives may also improve metabolic health. Objective To assess whether supplementation with bilberry and grape seed extract for 12 weeks improves cardiometabolic outcomes in individuals at risk of developing T2DM, and to determine whether individual treatment response is associated with differences in gut microbiota composition and levels of phenolic metabolites in blood and feces. Methods In the randomized, double-blind, placebo-controlled, cross-over PRECISE intervention study, 14 participants, aged ≥45 years, with a BMI >28 kg/m2, and having an increased risk of T2DM, received a supplement containing 250 mg of bilberry plus 300 mg of grape seed extract, or 550 mg of a control extract, per day, for 12 weeks each. Blood samples were obtained for the assessment of HbA1c, fasting glucose, oral glucose tolerance tests, insulin, glucagon levels, total, LDL and HDL cholesterol, and phenolic acids. We also assessed advanced glycation end products in the skin, ambulatory 24 hours blood pressure, 7-day dietary intake by weighed food diaries, fecal levels of phenolic metabolites using LC-MS/MS and gut microbiota composition using 16S rRNA gene sequencing analysis. Results The combined bilberry and grape seed extract did not affect glucose and cholesterol outcomes, but it decreased systolic and diastolic ambulatory blood pressure by 4.7 (p < 0.001) and 2.3 (p = 0.0009) mmHg, respectively. Eight out of fourteen participants were identified as blood pressure 'responders'. These responders had higher levels of phenylpropionic and phenyllactic acids in their fecal samples, and a higher proportional abundance of Fusicatenibacter-related bacteria (p < 0.01) in their baseline stool samples. Conclusion Long-term supplementation with bilberry and grape seed extract can improve systolic and diastolic blood pressure in individuals at risk of T2DM. Individual responsiveness was correlated with the presence of certain fecal bacterial strains, and an ability to metabolize (epi)catechin into smaller phenolic metabolites.Clinical trial registry number: Research Registry (number 4084).
Collapse
Affiliation(s)
- Teresa Grohmann
- Rowett Institute, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Alan W. Walker
- Rowett Institute, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Wendy R. Russell
- Rowett Institute, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Nigel Hoggard
- Rowett Institute, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | | | - Graham Horgan
- Biomathematics and Statistics Scotland, Aberdeen, United Kingdom
| | - Baukje de Roos
- Rowett Institute, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| |
Collapse
|
9
|
Bešlo D, Golubić N, Rastija V, Agić D, Karnaš M, Šubarić D, Lučić B. Antioxidant Activity, Metabolism, and Bioavailability of Polyphenols in the Diet of Animals. Antioxidants (Basel) 2023; 12:1141. [PMCID: PMC10294820 DOI: 10.3390/antiox12061141] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 06/29/2023] Open
Abstract
As the world’s population grows, so does the need for more and more animal feed. In 2006, the EU banned the use of antibiotics and other chemicals in order to reduce chemical residues in food consumed by humans. It is well known that oxidative stress and inflammatory processes must be combated to achieve higher productivity. The adverse effects of the use of pharmaceuticals and other synthetic compounds on animal health and product quality and safety have increased interest in phytocompounds. With the use of plant polyphenols in animal nutrition, they are gaining more attention as a supplement to animal feed. Livestock feeding based on a sustainable, environmentally friendly approach (clean, safe, and green agriculture) would also be a win–win for farmers and society. There is an increasing interest in producing healthier products of animal origin with a higher ratio of polyunsaturated fatty acids (PUFAs) to saturated fatty acids by modulating animal nutrition. Secondary plant metabolites (polyphenols) are essential chemical compounds for plant physiology as they are involved in various functions such as growth, pigmentation, and resistance to pathogenic organisms. Polyphenols are exogenous antioxidants that act as one of the first lines of cell defense. Therefore, the discoveries on the intracellular antioxidant activity of polyphenols as a plant supplement have contributed significantly to the improvement of antioxidant activity, as polyphenols prevent oxidative stress damage and eliminate excessively produced free radicals. To achieve animal welfare, reduce stress and the need for medicines, and increase the quality of food of animal origin, the addition of polyphenols to research and breeding can be practised in part with a free-choice approach to animal nutrition.
Collapse
Affiliation(s)
- Drago Bešlo
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Nataša Golubić
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Vesna Rastija
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Dejan Agić
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Maja Karnaš
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Domagoj Šubarić
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Bono Lučić
- NMR Center, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia;
| |
Collapse
|
10
|
Tamargo A, de Llano DG, Cueva C, Del Hierro JN, Martin D, Molinero N, Bartolomé B, Victoria Moreno-Arribas M. Deciphering the interactions between lipids and red wine polyphenols through the gastrointestinal tract. Food Res Int 2023; 165:112524. [PMID: 36869526 DOI: 10.1016/j.foodres.2023.112524] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 01/29/2023]
Abstract
This paper investigates the mutual interactions between lipids and red wine polyphenols at different stages of the gastrointestinal tract by using the simgi® dynamic simulator. Three food models were tested: a Wine model, a Lipid model (olive oil + cholesterol) and a Wine + Lipid model (red wine + olive oil + cholesterol). With regard to wine polyphenols, results showed that co-digestion with lipids slightly affected the phenolic profile after gastrointestinal digestion. In relation to lipid bioaccessibility, the co-digestion with red wine tended to increase the percentage of bioaccessible monoglycerides, although significant differences were not found (p > 0.05). Furthermore, co-digestion with red wine tended to reduce cholesterol bioaccessibility (from 80 to 49 %), which could be related to the decrease in bile salt content observed in the micellar phase. For free fatty acids, almost no changes were observed. At the colonic level, the co-digestion of red wine and lipids conditioned the composition and metabolism of colonic microbiota. For instance, the growth [log (ufc/mL)] of lactic acid bacteria (6.9 ± 0.2) and bifidobacteria (6.8 ± 0.1) populations were significantly higher for the Wine + Lipid food model respect to the control colonic fermentation (5.2 ± 0.1 and 5.3 ± 0.2, respectively). Besides, the production of total SCFAs was greater for the Wine + Lipid food model. Also, the cytotoxicity of the colonic-digested samples towards human colon adenocarcinoma cells (HCT-116 and HT-29) was found to be significantly lower for the Wine and Wine + Lipid models than for the Lipid model and the control (no food addition). Overall, the results obtained using the simgi® model were consistent with those reported in vivo in the literature. In particular, they suggest that red wine may favourably modulate lipid bioaccessibility - a fact that could explain the hypocholesterolemic effects of red wine and red wine polyphenols observed in humans.
Collapse
Affiliation(s)
- Alba Tamargo
- Institute of Food Science Research, CIAL, CSIC-UAM, C/Nicolas Cabrera 9, 28049 Madrid, Spain
| | | | - Carolina Cueva
- Institute of Food Science Research, CIAL, CSIC-UAM, C/Nicolas Cabrera 9, 28049 Madrid, Spain
| | | | - Diana Martin
- Institute of Food Science Research, CIAL, CSIC-UAM, C/Nicolas Cabrera 9, 28049 Madrid, Spain
| | - Natalia Molinero
- Institute of Food Science Research, CIAL, CSIC-UAM, C/Nicolas Cabrera 9, 28049 Madrid, Spain
| | - Begoña Bartolomé
- Institute of Food Science Research, CIAL, CSIC-UAM, C/Nicolas Cabrera 9, 28049 Madrid, Spain
| | | |
Collapse
|
11
|
Di Pede G, Bresciani L, Brighenti F, Clifford MN, Crozier A, Del Rio D, Mena P. In Vitro Faecal Fermentation of Monomeric and Oligomeric Flavan-3-ols: Catabolic Pathways and Stoichiometry. Mol Nutr Food Res 2022; 66:e2101090. [PMID: 35107868 PMCID: PMC9786279 DOI: 10.1002/mnfr.202101090] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/07/2022] [Indexed: 12/30/2022]
Abstract
SCOPE The study evaluates the influence of flavan-3-ol structure on the production of phenolic catabolites, principally phenyl-γ-valerolactones (PVLs), and phenylvaleric acids (PVAs). METHODS AND RESULTS A set of 12 monomeric flavan-3-ols and proanthocyanidins (degree of polymerization (DP) of 2-5), are fermented in vitro for 24 h using human faecal microbiota, and catabolism is analyzed by UHPLC-ESI-MS/MS. Up to 32 catabolites strictly related to microbial catabolism of parent compounds are detected. (+)-Catechin and (-)-epicatechin have the highest molar mass recoveries, expressed as a percentage with respect to the incubated concentration (75 µmol L-1 ) of the parent compound, for total PVLs and PVAs, both at 5 h (about 20%) and 24 h (about 40%) of faecal incubation. Only A-type dimer and B-type procyanidins underwent the ring fission step, and no differences are found in total PVL and PVA production (≃1.5% and 6.0% at 5 and 24 h faecal incubation, respectively) despite the different DPs. CONCLUSION The flavan-3-ol structure strongly affects the colonic catabolism of the native compounds, influencing the profile of PVLs and PVAs produced in vitro. This study opens new perspectives to further elucidate the colonic fate of oligomeric flavan-3-ols and their availability in producing bioactive catabolites.
Collapse
Affiliation(s)
- Giuseppe Di Pede
- Human Nutrition UnitDepartment of Food and Drug University of ParmaVia Volturno 39Parma43125Italy
| | - Letizia Bresciani
- Human Nutrition UnitDepartment of Food and Drug University of ParmaVia Volturno 39Parma43125Italy
| | - Furio Brighenti
- Human Nutrition UnitDepartment of Food and Drug University of ParmaVia Volturno 39Parma43125Italy
| | - Michael N. Clifford
- School of Bioscience and MedicineFaculty of Health and Medical SciencesUniversity of SurreyGuildfordGU2 7XHUK
- Department of NutritionDietetics and FoodSchool of Clinical Sciences at Monash HealthFaculty of MedicineNursing and Health SciencesMonash UniversityBASE Facility, 264 Ferntree Gully RoadNotting HillVictoria3168Australia
| | - Alan Crozier
- Department of ChemistryKing Saud UniversityRiyadh11451Saudi Arabia
- School of MedicineDentistry and NursingUniversity of GlasgowGlasgowG12 8QQUK
| | - Daniele Del Rio
- Human Nutrition UnitDepartment of Food and Drug University of ParmaVia Volturno 39Parma43125Italy
- Microbiome Research HubUniversity of ParmaParco Area delle Scienze 11/AParma43124Italy
| | - Pedro Mena
- Human Nutrition UnitDepartment of Food and Drug University of ParmaVia Volturno 39Parma43125Italy
- Microbiome Research HubUniversity of ParmaParco Area delle Scienze 11/AParma43124Italy
| |
Collapse
|
12
|
Luo C, Wei X, Song J, Xu X, Huang H, Fan S, Zhang D, Han L, Lin J. Interactions between Gut Microbiota and Polyphenols: New Insights into the Treatment of Fatigue. Molecules 2022; 27:7377. [PMID: 36364203 PMCID: PMC9653952 DOI: 10.3390/molecules27217377] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 09/02/2023] Open
Abstract
Fatigue seriously affects people's work efficiency and quality of life and has become a common health problem in modern societies around the world. The pathophysiology of fatigue is complex and not fully clear. To some degree, interactions between gut microbiota and host may be the cause of fatigue progression. Polyphenols such as tannin, tea polyphenols, curcumin, and soybean isoflavones relieve fatigue significantly. Studies have shown that the gut microbiota is able to convert these active compounds into more active metabolites through intestinal fermentation. However, the mechanism of anti-fatigue polyphenols is currently mainly analyzed from the perspective of antioxidant and anti-inflammatory effects, and changes in gut microbiota are rarely considered. This review focuses on gut microecology and systematically summarizes the latest theoretical and research findings on the interaction of gut microbiota, fatigue, and polyphenols. First, we outline the relationship between gut microbiota and fatigue, including changes in the gut microbiota during fatigue and how they interact with the host. Next, we describe the interactions between the gut microbiota and polyphenols in fatigue treatment (regulation of the gut microbiota by polyphenols and metabolism of polyphenols by the gut microbiota), and how the importance of potential active metabolites (such as urolithin) produced by the decomposition of polyphenols by gut microbiota is emerging. Based on the new perspective of gut microbiota, this review provides interesting insights into the mechanism of polyphenols in fatigue treatment and clarifies the potential of polyphenols as targets for anti-fatigue product development, aiming to provide a useful basis for further research and design.
Collapse
Affiliation(s)
- Chuanhong Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xichuan Wei
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610051, China
| | - Jiao Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaorong Xu
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haozhou Huang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sanhu Fan
- Sichuan Huamei Pharmaceutical Co., Ltd., Sanajon Pharmaceutical Group, Chengdu 610045, China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| |
Collapse
|
13
|
Ma H, Hou A, Tang J, Zhong A, Li K, Xiao Y, Li Z. Antioxidant Activity of Vitis davidii Foex Seed and Its Effects on Gut Microbiota during Colonic Fermentation after In Vitro Simulated Digestion. Foods 2022; 11:foods11172615. [PMID: 36076800 PMCID: PMC9455166 DOI: 10.3390/foods11172615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Vitis davidii Foex whole seed (VWS) is a by-product during the processing of grape products, which is rich in bioactive compounds that have great potential in the food industry. In this study, the bioactive compounds and antioxidant activity of VWS were determined, and their dynamic changes during in vitro colonic fermentation were also investigated after VWS subjected to in vitro simulated digestion. Results showed that VWS were rich in polyphenols (23.67 ± 0.52 mg GAE/g), flavonoids (13.13 ± 1.22 mg RE/g), and proanthocyanidins (8.36 ± 0.14 mg CE/g). It also had good DPPH and ABTS radical scavenging activity, which reached 82.10% and 76.10% at 1000 μg/mL. The alteration trend of the antioxidant activity during in vitro fermentation for 24 h was consistent with that of the content of bioactive substances, such as polyphenols, with the extension of fermentation time. The bioactive compounds and antioxidant activity showed a trend of increasing and then decreasing, reaching the highest value at 8 h. The high-throughput sequencing analysis of the regulatory effect of VWS on intestinal micro-organisms revealed that VWS influenced intestinal microbiota diversity. The relative abundance of beneficial microbiota, such as Blautia and Parabacteroides, increased by 4.1- and 1.65-fold after 24 h of fermentation compared with that of the control group. It also reduced Escherichia-Shigella by 11.23% and effectively reduced host inflammation, while increasing the contents of acetic acid, propionic acid, and other metabolites. Taken together, these results reveal the value of VWS utilization and provide new insights into the nutritional and microbiota modulation effects of VWS, which could therefore serve as a nutraceutical ingredient in health promotion.
Collapse
Affiliation(s)
- Huiqin Ma
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Aixiang Hou
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| | - Jiaojiao Tang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Aiai Zhong
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Ke Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| | - Yu Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Correspondence: (Y.X.); (Z.L.); Tel.: +86-731-8461-7007 (Z.L.)
| | - Zongjun Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
- Correspondence: (Y.X.); (Z.L.); Tel.: +86-731-8461-7007 (Z.L.)
| |
Collapse
|
14
|
Fruit Bioactive Compounds: Effect on Lactic Acid Bacteria and on Intestinal Microbiota. Food Res Int 2022; 161:111809. [DOI: 10.1016/j.foodres.2022.111809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
|
15
|
Santhiravel S, Bekhit AEDA, Mendis E, Jacobs JL, Dunshea FR, Rajapakse N, Ponnampalam EN. The Impact of Plant Phytochemicals on the Gut Microbiota of Humans for a Balanced Life. Int J Mol Sci 2022; 23:ijms23158124. [PMID: 35897699 PMCID: PMC9332059 DOI: 10.3390/ijms23158124] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
The gastrointestinal tract of humans is a complex microbial ecosystem known as gut microbiota. The microbiota is involved in several critical physiological processes such as digestion, absorption, and related physiological functions and plays a crucial role in determining the host’s health. The habitual consumption of specific dietary components can impact beyond their nutritional benefits, altering gut microbiota diversity and function and could manipulate health. Phytochemicals are non-nutrient biologically active plant components that can modify the composition of gut microflora through selective stimulation of proliferation or inhibition of certain microbial communities in the intestine. Plants secrete these components, and they accumulate in the cell wall and cell sap compartments (body) for their development and survival. These compounds have low bioavailability and long time-retention in the intestine due to their poor absorption, resulting in beneficial impacts on gut microbiota population. Feeding diets containing phytochemicals to humans and animals may offer a path to improve the gut microbiome resulting in improved performance and/or health and wellbeing. This review discusses the effects of phytochemicals on the modulation of the gut microbiota environment and the resultant benefits to humans; however, the effect of phytochemicals on the gut microbiota of animals is also covered, in brief.
Collapse
Affiliation(s)
- Sarusha Santhiravel
- Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Alaa El-Din A Bekhit
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Eresha Mendis
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Joe L Jacobs
- Animal Production Sciences, Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Ellinbank, VIC 3821, Australia
- Centre for Agricultural Innovation, School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Frank R Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Niranjan Rajapakse
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Eric N Ponnampalam
- Animal Production Sciences, Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Bundoora, VIC 3083, Australia
| |
Collapse
|
16
|
Facciotti F. Modulation of intestinal immune cell responses by eubiotic or dysbiotic microbiota in inflammatory bowel diseases. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Tamargo A, Cueva C, Silva M, Molinero N, Miralles B, Bartolomé B, Moreno-Arribas MV. Gastrointestinal co-digestion of wine polyphenols with glucose/whey proteins affects their bioaccessibility and impact on colonic microbiota. Food Res Int 2022; 155:111010. [DOI: 10.1016/j.foodres.2022.111010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 12/23/2022]
|
18
|
El‐Sayed SM, El‐Sayed HS, Elgamily HM, Youssef AM. Preparation and Evaluation of Yogurt fortified with Probiotics Jelly Candy Enriched with Grape Seeds Extract Nanoemulsion. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Samah M. El‐Sayed
- Dairy science Department, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), Dokki Giza, P.O. 12622 Egypt
| | - Hoda S. El‐Sayed
- Dairy science Department, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), Dokki Giza, P.O. 12622 Egypt
| | - Hanaa M. Elgamily
- Restorative and Dental Materials Department, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), Dokki Giza, P.O. 12622 Egypt
| | - Ahmed. M. Youssef
- Packaging Materials Department, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), Dokki Giza, P.O. 12622 Egypt
| |
Collapse
|
19
|
Silva F, de Souza E, Queiroga R, Voss GB, Pintado M, Vasconcelos M. A fiber and phenolic‐rich flour from Isabel grape by‐products with stimulatory effects on distinct probiotics and beneficial impacts on human colonic microbiota
in vitro. Lett Appl Microbiol 2022; 75:249-260. [DOI: 10.1111/lam.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Affiliation(s)
- F.A. Silva
- Department of Nutrition Federal University of Pernambuco Recife PE Brazil
| | - E.L. de Souza
- Department of Nutrition Health Sciences Center Federal University of Paraíba PB João Pessoa Brazil
| | - R.C.R.E. Queiroga
- Department of Nutrition Health Sciences Center Federal University of Paraíba PB João Pessoa Brazil
| | - G. B. Voss
- Universidade Católica Portuguesa CBQF ‐ Centro de Biotecnologia e Química Fina – Laboratório Associado Escola Superior de Biotecnologia Porto Portugal
| | - M.M.E. Pintado
- Universidade Católica Portuguesa CBQF ‐ Centro de Biotecnologia e Química Fina – Laboratório Associado Escola Superior de Biotecnologia Porto Portugal
| | - M.A.S. Vasconcelos
- Department of Nutrition Federal University of Pernambuco Recife PE Brazil
| |
Collapse
|
20
|
Gut microbiome-modulating properties of a polyphenol-enriched dietary supplement comprised of hibiscus and lemon verbena extracts. Monitoring of phenolic metabolites. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
21
|
Simulated gastrointestinal digestion of cranberry polyphenols under dynamic conditions. Impact on antiadhesive activity against uropathogenic bacteria. Food Chem 2022; 368:130871. [PMID: 34438174 DOI: 10.1016/j.foodchem.2021.130871] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/12/2021] [Accepted: 08/12/2021] [Indexed: 02/08/2023]
Abstract
This study is the first dynamic simulation of gastrointestinal digestion of cranberry polyphenols [1 g cranberry extract per day (206.2 mg polyphenols) for 18 days]. Samples from the simulated ascending, transverse, and descending colon of the dynamic gastrointestinal simulator simgi® were analyzed. Results showed that 67% of the total cranberry polyphenols were recovered after simulated gastrointestinal digestion. Specifically, benzoic acids, hydroxycinnamic acids, phenylpropionic acids, phenylacetic acids, and simple phenols were identified. Cranberry feeding modified colonic microbiota composition of Enterococcaceae population significantly. However, increments in microbial-derived short-chain fatty acids, particularly in butyric acid, were observed. Finally, the simgi® effluent during cranberry feeding showed significant antiadhesive activity against uropathogenic Escherichia coli (13.7 ± 1.59 % of inhibition). Understanding the role that gut microbiota plays in cranberry metabolism could help to elucidate its interaction with the human body and explain cranberry protective effects against urinary tract infections.
Collapse
|
22
|
Are We What We Eat? Impact of Diet on the Gut-Brain Axis in Parkinson's Disease. Nutrients 2022; 14:nu14020380. [PMID: 35057561 PMCID: PMC8780419 DOI: 10.3390/nu14020380] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease is characterized by motor and non-motor symptoms, such as defects in the gut function, which may occur before the motor symptoms. To date, there are therapies that can improve these symptoms, but there is no cure to avoid the development or exacerbation of this disorder. Dysbiosis of gut microbiota could have a crucial role in the gut–brain axis, which is a bidirectional communication between the central nervous system and the enteric nervous system. Diet can affect the microbiota composition, impacting gut–brain axis functionality. Gut microbiome restoration through probiotics, prebiotics, synbiotics or other dietary means could have the potential to slow PD progression. In this review, we will discuss the influence of diet on the bidirectional communication between gut and brain, thus supporting the hypothesis that this disorder could begin in the gut. We also focus on how food-based therapies might then have an influence on PD and could ameliorate non-motor as well as motor symptoms.
Collapse
|
23
|
Cosme F, Inês A, Vilela A. Consumer's acceptability and health consciousness of probiotic and prebiotic of non-dairy products. Food Res Int 2022; 151:110842. [PMID: 34980381 DOI: 10.1016/j.foodres.2021.110842] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/01/2021] [Accepted: 11/27/2021] [Indexed: 12/12/2022]
Abstract
Human gut microbiota is a protective agent of intestinal and systemic health, and its modulation is of great interest for human wellbeing. In the world of biotics, besides probiotics, prebiotics, and synbiotics, also appears the denomination of "postbiotics" and "psychobiotics". Fermented dairy products are, traditionally, the major source of probiotics. Nevertheless, due to the increasing number of lactose-intolerant individuals and strict vegetarians, there is a need for innovative non-dairy products. Non-dairy biotics are being included in the normal diet and due to technological advances, many products are created using non-conventional food matrices like kombucha tea, herbal tea, baking mix, and cereal-based products. The microorganisms most used as probiotics in many of the non-dairy products are strains belonging to the genera Bifidobacterium, Enterococcus, Lactobacillus, Lactococcus, Streptococcus, and Bacillus, and some yeast strains namely Saccharomyces cerevisiae var. boulardii. Recently, several other yeasts have been described as having probiotic properties. This review describes gut-derived effects in humans of possible microorganisms, such as yeasts, and bacteria, isolated from non-dairy fermented and non-fermented foods and beverages. The microorganisms responsible for the processing of these non-dairy fermented products, together with the prebiotics, form a class of nutrients that have been proven to be beneficial for our gut health.
Collapse
Affiliation(s)
- Fernanda Cosme
- Chemistry Research Centre-Vila Real (CQ-VR), Dep. of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - António Inês
- Chemistry Research Centre-Vila Real (CQ-VR), Dep. of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Alice Vilela
- Chemistry Research Centre-Vila Real (CQ-VR), Dep. of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.
| |
Collapse
|
24
|
LIU J, LV YJ, PAN JX, JIANG YL, ZHU YJ, ZHANG SK. Effects of tea polyphenols and EGCG on glucose metabolism and intestinal flora in diabetic mice fed a cornstarch-based functional diet. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.50821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jun LIU
- Hangzhou Tea Research Institute, China
| | | | | | | | | | | |
Collapse
|
25
|
Wang L, Gao M, Kang G, Huang H. The Potential Role of Phytonutrients Flavonoids Influencing Gut Microbiota in the Prophylaxis and Treatment of Inflammatory Bowel Disease. Front Nutr 2021; 8:798038. [PMID: 34970585 PMCID: PMC8713745 DOI: 10.3389/fnut.2021.798038] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel disease (IBD), characterized by the chronic inflammation of the gastrointestinal tract, is comprised of two idiopathic chronic intestinal inflammatory diseases. As the incidence of IBD increases, so does the need for safe and effective treatments. Trillions of microorganisms are colonized in the mammalian intestine, coevolve with the host in a symbiotic relationship. Gut microbiota has been reported to be involved in the pathophysiology of IBD. In this regard, phytonutrients flavonoids have received increasing attention for their anti-oxidant and anti-inflammatory activities. In this review, we address recent advances in the interactions among flavonoids, gut microbiota, and IBD. Moreover, their possible potential mechanisms of action in IBD have been discussed. We conclude that there is a complex interaction between flavonoids and gut microbiota. It is expected that flavonoids can change or reshape the gut microbiota to provide important considerations for developing treatments for IBD.
Collapse
Affiliation(s)
- Lina Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Mengxue Gao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Guangbo Kang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| |
Collapse
|
26
|
Sirven MA, Venancio VP, Shankar S, Klemashevich C, Castellón-Chicas MJ, Fang C, Mertens-Talcott SU, Talcott ST. Ulcerative colitis results in differential metabolism of cranberry polyphenols by the colon microbiome in vitro. Food Funct 2021; 12:12751-12764. [PMID: 34847216 DOI: 10.1039/d1fo03047g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The microbiome plays a major role in polyphenol metabolism, producing metabolites that are bioavailable and potentially more bioactive than the compounds from which they are derived. However, the microbiome can vary among individuals, and especially for those with co-morbidities, such as ulcerative colitis. In subjects with ulcerative colitis, the consequence of a 'dysbiotic' microbiome is characterized by decreased diversity of microbiota that may impact their capability to metabolize polyphenols into bioavailable metabolites. On this premise, the microbiome metabolism of cranberry polyphenols between healthy individuals and those with ulcerative colitis was compared in vitro. Fecal samples from volunteers, with or without diagnosed ulcerative colitis, were cultured anaerobically in the presence of cranberry polyphenols. The resulting metabolites were then quantified via LC-ESI-MS/MS. 16S rRNA metagenomics analysis was also utilized to assess differences in microbiota composition between healthy and ulcerative colitis microbiomes and the modulatory effects of cranberry polyphenols on microbiota composition. Healthy microbiomes produced higher (p < 0.05) concentrations of 5-(3',4'-dihydroxyphenyl)-gamma-valerolactone and 3-hydroxyphenylacetic acid in comparison to ulcerative colitis microbiomes. Additionally, healthy microbiomes contained a higher (p < 0.05) abundance of Ruminococcaceae, which could explain their ability to produce higher concentrations of cranberry polyphenol metabolites. Health status and the presence of cranberry polyphenols also significantly impacted the production of several short-chain and branched-chain fatty acids. These results suggest that efficiency of polyphenol metabolism is dependent on microbiota composition and future works should include metabolite data to account for inter-individual differences in polyphenol metabolism.
Collapse
Affiliation(s)
- Maritza Ashton Sirven
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA.
| | - Vinicius Paula Venancio
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA.
| | - Smriti Shankar
- Integrated Metabolomics Analysis Core, Texas A&M University, College Station, TX, USA
| | - Cory Klemashevich
- Integrated Metabolomics Analysis Core, Texas A&M University, College Station, TX, USA
| | | | - Chuo Fang
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA.
| | | | - Stephen T Talcott
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
27
|
Frausto DM, Forsyth CB, Keshavarzian A, Voigt RM. Dietary Regulation of Gut-Brain Axis in Alzheimer's Disease: Importance of Microbiota Metabolites. Front Neurosci 2021; 15:736814. [PMID: 34867153 PMCID: PMC8639879 DOI: 10.3389/fnins.2021.736814] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that impacts 45 million people worldwide and is ranked as the 6th top cause of death among all adults by the Centers for Disease Control and Prevention. While genetics is an important risk factor for the development of AD, environment and lifestyle are also contributing risk factors. One such environmental factor is diet, which has emerged as a key influencer of AD development/progression as well as cognition. Diets containing large quantities of saturated/trans-fats, refined carbohydrates, limited intake of fiber, and alcohol are associated with cognitive dysfunction while conversely diets low in saturated/trans-fats (i.e., bad fats), high mono/polyunsaturated fats (i.e., good fats), high in fiber and polyphenols are associated with better cognitive function and memory in both humans and animal models. Mechanistically, this could be the direct consequence of dietary components (lipids, vitamins, polyphenols) on the brain, but other mechanisms are also likely to be important. Diet is considered to be the single greatest factor influencing the intestinal microbiome. Diet robustly influences the types and function of micro-organisms (called microbiota) that reside in the gastrointestinal tract. Availability of different types of nutrients (from the diet) will favor or disfavor the abundance and function of certain groups of microbiota. Microbiota are highly metabolically active and produce many metabolites and other factors that can affect the brain including cognition and the development and clinical progression of AD. This review summarizes data to support a model in which microbiota metabolites influence brain function and AD.
Collapse
Affiliation(s)
- Dulce M. Frausto
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Christopher B. Forsyth
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Ali Keshavarzian
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
- Department of Physiology, Rush University Medical Center, Chicago, IL, United States
| | - Robin M. Voigt
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
28
|
Pérez-Jiménez M, Muñoz-González C, Pozo-Bayón MÁ. Specificity of Saliva Esterases by Wine Carboxylic Esters and Inhibition by Wine Phenolic Compounds Under Simulated Oral Conditions. Front Nutr 2021; 8:761830. [PMID: 34805247 PMCID: PMC8599952 DOI: 10.3389/fnut.2021.761830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/04/2021] [Indexed: 01/07/2023] Open
Abstract
The specificity of human esterase activity (EA) from the stimulated (SS) and non-stimulated (NSS) saliva toward different typical wine odorant carboxylic esters and its inhibition by the wine phenolic compounds has been evaluated. For the specificity, six p-nitrophenyl linked esters with different carbon chain lengths (from 2 to 12 carbons) were employed. The five single phenolic compounds (catechin, quercetin, kaempferol, myricetin, and resveratrol) at typical wine concentrations were assayed in the salivary EA inhibition study. Additionally, the inhibition exerted by the mixtures of wine polyphenols was evaluated using four commercial phenolic extracts [a grape seed extract (GSE), the monomers and oligomer fraction of the GSE, and a red wine extract (RWE)]. Finally, the saliva EA under the wine consumption conditions (pH = 5 and 11.3% ethanol) was evaluated. The results showed a higher EA in SS than NSS. It was also shown that the EA was higher toward the smaller than bigger esters regardless of the saliva types (SS or NSS). However, the inhibition exerted on saliva EA by the individual and mixtures of phenolic compounds was proven. Catechin was the phenolic compound that mostly inhibited saliva EA, while resveratrol showed the lowest EA inhibition. This inhibition was mainly related to the concentration of the phenolic compounds, but also with its structure. Finally, under simulated wine consumption, a decrease in EA was produced, which was mainly provoked by the decrease in the salivary pH. Nonetheless, since salivary pH recovers a few seconds after wine consumption, saliva EA might be relevant for the long-lasting perception of wine esters.
Collapse
Affiliation(s)
| | | | - María Ángeles Pozo-Bayón
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), Consejo Superior de Investiagciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| |
Collapse
|
29
|
Osborn LJ, Claesen J, Brown JM. Microbial Flavonoid Metabolism: A Cardiometabolic Disease Perspective. Annu Rev Nutr 2021; 41:433-454. [PMID: 34633856 DOI: 10.1146/annurev-nutr-120420-030424] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cardiometabolic disease (CMD) is a leading cause of death worldwide and encompasses the inflammatory metabolic disorders of obesity, type 2 diabetes mellitus, nonalcoholic fatty liver disease, and cardiovascular disease. Flavonoids are polyphenolic plant metabolites that are abundantly present in fruits and vegetables and have biologically relevant protective effects in a number of cardiometabolic disorders. Several epidemiological studies underscored a negative association between dietary flavonoid consumption and the propensity to develop CMD. Recent studies elucidated the contribution of the gut microbiota in metabolizing dietary intake as it relates to CMD. Importantly, the biological efficacy of flavonoids in humans and animal models alike is linked to the gut microbial community. Herein, we discuss the opportunities and challenges of leveraging flavonoid intake as a potential strategy to prevent and treat CMD in a gut microbe-dependent manner, with special emphasis on flavonoid-derived microbial metabolites.
Collapse
Affiliation(s)
- Lucas J Osborn
- Department of Cardiovascular and Metabolic Sciences and Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio 44195, USA; , , .,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, USA
| | - Jan Claesen
- Department of Cardiovascular and Metabolic Sciences and Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio 44195, USA; , , .,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, USA
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences and Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio 44195, USA; , , .,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, USA
| |
Collapse
|
30
|
Effects of Wine Components in Inflammatory Bowel Diseases. Molecules 2021; 26:molecules26195891. [PMID: 34641434 PMCID: PMC8512001 DOI: 10.3390/molecules26195891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
With the rising prevalence of Inflammatory bowel disease (IBD) worldwide, and the rising cost of treatment with novel biological drugs, there is an increasing interest in various diets and natural foods as a potential way to control/modulate IBD. As recent data indicates that diet can modify the metabolic responses essential for the resolution of inflammation, and as wine compounds have been shown to provide substantial anti-inflammatory effect, in this review we aimed to discuss the current evidence concerning the impact of biological compounds present in wine on IBD. A number of preclinical studies brought forth strong evidence on the mechanisms by which molecules in wine, such as resveratrol or piceatannol, provide their anti-inflammatory, anti-oxidative, anti-tumor, and microbiota-modulation effects. However, concerning the effects of alcohol, it is still unclear how the amount of ethanol ingested within the framework of moderate wine consumption (1–2 glasses a day) affects patients with IBD, as human studies regarding the effects of wine on patients with IBD are scarce. Nevertheless, available evidence justifies the conductance of large-scale RCT trials on human subjects that will finally elucidate whether wine can offer real benefits to the IBD population.
Collapse
|
31
|
Knezevic S, Ghafoor A, Mehri S, Barazi A, Dziura M, Trant JF, Dieni CA. Catechin and other catechol-containing secondary metabolites: Bacterial biotransformation and regulation of carbohydrate metabolism. PHARMANUTRITION 2021. [DOI: 10.1016/j.phanu.2021.100273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
|
33
|
Rawi M, Abdullah A, Ismail A, Sarbini SR. Manipulation of Gut Microbiota Using Acacia Gum Polysaccharide. ACS OMEGA 2021; 6:17782-17797. [PMID: 34308014 PMCID: PMC8296006 DOI: 10.1021/acsomega.1c00302] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/19/2021] [Indexed: 05/16/2023]
Abstract
Acacia gum (AG) is a branched-polysaccharide gummy exudate that consists of arabinose and galactose. The traditional practice in African-Middle Eastern countries uses this gum as medicine. Traditional use of AG is to treat stomach disease, which can be a potential functional food. In this research, commercially available AG from Acacia senegal and Acacia seyal was investigated as the prebiotic. The experiment employed a pH-controlled in vitro colon model inoculated with human fecal microbiota to mimic the human colon. Fermentation samples at 0, 6, 12, and 24 h were brought for short-chain fatty acid (SCFA) analysis using high-performance liquid chromatography and bacterial enumeration via fluorescent in situ hybridization. Results showed that AG significantly promotes Bifidobacteria proliferation similar to fructo-oligosaccharides (FOS) while inhibiting the Clostridium histolyticum group, commonly associated with gut dysbiosis. Acetate, propionate, and butyrate showed a similar trend to FOS (p > 0.05). The AG shows potential against gut dysbiosis, as it promotes gut-probiotics, through modulation of microbial population and SCFA production, especially butyrate.
Collapse
Affiliation(s)
- Muhamad
Hanif Rawi
- Faculty
of Agricultural Science and Forestry, Universiti
Putra Malaysia Kampus Bintulu Sarawak, Bintulu, Sarawak 97008, Malaysia
| | - Aminah Abdullah
- Faculty
of Science and Technology, Universiti Kebangsaan
Malaysia, Bangi, Selangor 43600, Malaysia
| | - Amin Ismail
- Faculty
of Medicine and Health Sciences, Universiti
Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Shahrul Razid Sarbini
- Faculty
of Agricultural Science and Forestry, Universiti
Putra Malaysia Kampus Bintulu Sarawak, Bintulu, Sarawak 97008, Malaysia
- Halal
Products Research Institute, Universiti
Putra Malaysia, Putra
Infoport, Serdang, Selangor 43400 UPM, Malaysia
| |
Collapse
|
34
|
Zhang W, Qi S, Xue X, Al Naggar Y, Wu L, Wang K. Understanding the Gastrointestinal Protective Effects of Polyphenols using Foodomics-Based Approaches. Front Immunol 2021; 12:671150. [PMID: 34276660 PMCID: PMC8283765 DOI: 10.3389/fimmu.2021.671150] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Plant polyphenols are rich sources of natural anti-oxidants and prebiotics. After ingestion, most polyphenols are absorbed in the intestine and interact with the gut microbiota and modulated metabolites produced by bacterial fermentation, such as short-chain fatty acids (SCFAs). Dietary polyphenols immunomodulatory role by regulating intestinal microorganisms, inhibiting the etiology and pathogenesis of various diseases including colon cancer, colorectal cancer, inflammatory bowel disease (IBD) and colitis. Foodomics is a novel high-throughput analysis approach widely applied in food and nutrition studies, incorporating genomics, transcriptomics, proteomics, metabolomics, and integrating multi-omics technologies. In this review, we present an overview of foodomics technologies for identifying active polyphenol components from natural foods, as well as a summary of the gastrointestinal protective effects of polyphenols based on foodomics approaches. Furthermore, we critically assess the limitations in applying foodomics technologies to investigate the protective effect of polyphenols on the gastrointestinal (GI) system. Finally, we outline future directions of foodomics techniques to investigate GI protective effects of polyphenols. Foodomics based on the combination of several analytical platforms and data processing for genomics, transcriptomics, proteomics and metabolomics studies, provides abundant data and a more comprehensive understanding of the interactions between polyphenols and the GI tract at the molecular level. This contribution provides a basis for further exploring the protective mechanisms of polyphenols on the GI system.
Collapse
Affiliation(s)
- Wenwen Zhang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suzhen Qi
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
35
|
Rodríguez-Daza MC, Pulido-Mateos EC, Lupien-Meilleur J, Guyonnet D, Desjardins Y, Roy D. Polyphenol-Mediated Gut Microbiota Modulation: Toward Prebiotics and Further. Front Nutr 2021; 8:689456. [PMID: 34268328 PMCID: PMC8276758 DOI: 10.3389/fnut.2021.689456] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
The genome of gut microbes encodes a collection of enzymes whose metabolic functions contribute to the bioavailability and bioactivity of unabsorbed (poly)phenols. Datasets from high throughput sequencing, metabolome measurements, and other omics have expanded the understanding of the different modes of actions by which (poly)phenols modulate the microbiome conferring health benefits to the host. Progress have been made to identify direct prebiotic effects of (poly)phenols; albeit up to date, these compounds are not recognized as prebiotics sensu stricto. Interestingly, certain probiotics strains have an enzymatic repertoire, such as tannase, α-L-rhamnosidase, and phenolic acid reductase, involved in the transformation of different (poly)phenols into bioactive phenolic metabolites. In vivo studies have demonstrated that these (poly)phenol-transforming bacteria thrive when provided with phenolic substrates. However, other taxonomically distinct gut symbionts of which a phenolic-metabolizing activity has not been demonstrated are still significantly promoted by (poly)phenols. This is the case of Akkermansia muciniphila, a so-called antiobesity bacterium, which responds positively to (poly)phenols and may be partially responsible for the health benefits formerly attributed to these molecules. We surmise that (poly)phenols broad antimicrobial action free ecological niches occupied by competing bacteria, thereby allowing the bloom of beneficial gut bacteria. This review explores the capacity of (poly)phenols to promote beneficial gut bacteria through their direct and collaborative bacterial utilization and their inhibitory action on potential pathogenic species. We propose the term duplibiotic, to describe an unabsorbed substrate modulating the gut microbiota by both antimicrobial and prebiotic modes of action. (Poly)phenol duplibiotic effect could participate in blunting metabolic disturbance and gut dysbiosis, positioning these compounds as dietary strategies with therapeutic potential.
Collapse
Affiliation(s)
- Maria Carolina Rodríguez-Daza
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Elena C Pulido-Mateos
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Joseph Lupien-Meilleur
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Denis Guyonnet
- Diana Nova, Symrise Nutrition, Clichy-la-Garenne, France
| | - Yves Desjardins
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Denis Roy
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| |
Collapse
|
36
|
Ray SK, Mukherjee S. Evolving Interplay Between Dietary Polyphenols and Gut Microbiota-An Emerging Importance in Healthcare. Front Nutr 2021; 8:634944. [PMID: 34109202 PMCID: PMC8180580 DOI: 10.3389/fnut.2021.634944] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Polyphenols are natural plant compounds and are the most abundant antioxidants in the human diet. As the gastrointestinal tract is the primary organ provided to diet sections, the diet may be regarded as one of the essential factors in the functionality, integrity, and composition of intestinal microbiota. In the gastrointestinal tract, many polyphenols remain unabsorbed and may accumulate in the large intestine, where the intestinal microbiota are most widely metabolized. When assuming primary roles for promoting host well-being, this intestinal health environment is presented to the effect of external influences, including dietary patterns. A few different methodologies have been developed to increase solvency and transport across the gastrointestinal tract and move it to targeted intestinal regions to resolve dietary polyphenols at the low bioavailability. Polyphenols form a fascinating community among the different nutritional substances, as some of them have been found to have critical biological activities that include antioxidant, antimicrobial, or anticarcinogenic activities. Besides, it affects metabolism and immunity of the intestines and has anti-inflammatory properties. The well-being status of subjects can also benefit from the development of bioactive polyphenol-determined metabolites, although the mechanisms have not been identified. Even though the incredible variety of health-advancing activities of dietary polyphenols has been widely studied, their effect on intestinal biology adaptation, and two-way relationship between polyphenols and microbiota is still poorly understood. We focused on results of polyphenols in diet with biological activities, gut ecology, and the influence of their proportional links on human well-being and disease in this study.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, India
| |
Collapse
|
37
|
Wine Polyphenols and Health: Quantitative Research Literature Analysis. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11114762] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The relationship between wine polyphenols and health has been receiving growing scientific attention in the last few years. To confirm this point, the proposed paper identifies the major contributors to academic journals regarding the relationships between wine polyphenols and health. The endpoints of the proposed study are to provide a comprehensive overview and analysis of the literature regarding the relationships between wine polyphenol and health based on a bibliometric analysis. Bibliometric data were extracted from the Scopus online database using the search string TITLE-ABS-KEY (wine AND polyphenol* AND health OR (“french paradox” OR “cardiovascular disease*” OR atherosclerosis OR microbiota) and analyzed using the VOSviewer bibliometric software to generate bubble maps and to visualize the obtained results. This perspective paper analyzes: (i) the research themes addressing the relationships between wine polyphenols and health; (ii) the major contributors’ origin, e.g., country and/or regions; (iii) the institutions where the research is based; (iv) the authors; and (v) the type of paper. These results represent a useful tool to identify emerging research directions, collaboration networks, and suggestions for more in-depth literature searches.
Collapse
|
38
|
Corb Aron RA, Abid A, Vesa CM, Nechifor AC, Behl T, Ghitea TC, Munteanu MA, Fratila O, Andronie-Cioara FL, Toma MM, Bungau S. Recognizing the Benefits of Pre-/Probiotics in Metabolic Syndrome and Type 2 Diabetes Mellitus Considering the Influence of Akkermansia muciniphila as a Key Gut Bacterium. Microorganisms 2021; 9:microorganisms9030618. [PMID: 33802777 PMCID: PMC8002498 DOI: 10.3390/microorganisms9030618] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic syndrome (MetS) and type 2 diabetes mellitus (T2DM) are diseases that can be influenced by the structure of gut microbiota, whose improvement is often neglected in metabolic pathology. This review highlights the following main aspects: the relationship between probiotics/gut microbes with the pathogenesis of MetS, the particular positive roles of Akkermansia muciniphila supplementation in the onset of MetS, and the interaction between dietary polyphenols (prebiotics) with gut microbiota. Therefore, an extensive and in-depth analysis of the often-neglected correlation between gut microbiota and chronic metabolic diseases was conducted, considering that this topic continues to fascinate and stimulate researchers through the discovery of novel strains and their beneficial properties.
Collapse
Affiliation(s)
- Raluca Anca Corb Aron
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (R.A.C.A.); (C.M.V.)
| | - Areha Abid
- Department of Food Science, Faculty of Agricultural and Food Sciences, University of Debrecen, 4032 Debrecen, Hungary;
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (R.A.C.A.); (C.M.V.)
| | - Aurelia Cristina Nechifor
- Department of Analytical Chemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Timea Claudia Ghitea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (T.C.G.); (M.M.T.)
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.A.M.); (O.F.)
| | - Ovidiu Fratila
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.A.M.); (O.F.)
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Mirela Marioara Toma
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (T.C.G.); (M.M.T.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (T.C.G.); (M.M.T.)
- Correspondence: ; Tel.: +40-726-776-588
| |
Collapse
|
39
|
Rahman Z, Dandekar MP. Crosstalk between gut microbiome and immunology in the management of ischemic brain injury. J Neuroimmunol 2021; 353:577498. [PMID: 33607506 DOI: 10.1016/j.jneuroim.2021.577498] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/30/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
Abstract
Ischemic brain injury is a serious neurological complication, which accrues an immense activation of neuroinflammatory responses. Several lines of research suggested the interconnection of gut microbiota perturbation with the activation of proinflammatory mediators. Intestinal microbial communities also interchange information with the brain through various afferent and efferent channels and microbial by-products. Herein, we discuss the different microelements of gut microbiota and its connection with the host immune system and how change in immune-microbial signatures correlates with the stroke incidence and post-injury neurological sequelae. The activated inflammatory cells increase the production of proinflammatory cytokines, chemokines, proteases and adhesive proteins that are involved in the systemic inflammation, blood brain barrier disruption, gut dysbiosis and aggravation of ischemic brain injury. We suggest that fine-tuning of commensal gut microbiota (eubiosis) may regulate the activation of CNS resident cells like microglial, astrocytes, mast cells and natural killer cells.
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Manoj P Dandekar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
40
|
Mithul Aravind S, Wichienchot S, Tsao R, Ramakrishnan S, Chakkaravarthi S. Role of dietary polyphenols on gut microbiota, their metabolites and health benefits. Food Res Int 2021; 142:110189. [PMID: 33773665 DOI: 10.1016/j.foodres.2021.110189] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/19/2022]
Abstract
The beneficial health roles of dietary polyphenols in preventing oxidative stress related chronic diseases have been subjected to intense investigation over the last two decades. As our understanding of the role of gut microbiota advances our knowledge of the antioxidant and anti-inflammatory functions of polyphenols accumulates, there emerges a need to examine the prebiotic role of dietary polyphenols. This review focused onthe role of different types and sources of dietary polyphenols on the modulation of the gut microbiota, their metabolites and how they impact on host health benefits. Inter-dependence between the gut microbiota and polyphenol metabolites and the vital balance between the two in maintaining the host gut homeostasis were discussed with reference to different types and sources of dietary polyphenols. Similarly, the mechanisms behind the health benefits by various polyphenolic metabolites bio-transformed by gut microbiota were also explained. However, further research should focus on the importance of human trials and profound links of polyphenols-gut microbiota-nerve-brain as they provide the key to unlock the mechanisms behind the observed benefits of dietary polyphenols found in vitro and in vivo studies.
Collapse
Affiliation(s)
- S Mithul Aravind
- Department of Basic and Applied Sciences, National Institute of Food Technology and Entrepreneurship Management, Haryana, India
| | - Santad Wichienchot
- Center of Excellence in Functional Food and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Korhong, Hat Yai, Songkhla 90110, Thailand
| | - Rong Tsao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada.
| | - S Ramakrishnan
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - S Chakkaravarthi
- Department of Basic and Applied Sciences, National Institute of Food Technology and Entrepreneurship Management, Haryana, India.
| |
Collapse
|
41
|
Cheng X, Zhang J, Jing H, Qi Y, Yan T, Wu B, Du Y, Xiao F, Jia Y. Pharmacokinetic Differences of Grape Seed Procyanidins According to the Gavage Administration Between Normal Rats and Alzheimer's Disease Rats. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412915666190916161225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Grape Seed Procyanidins (GSP) refers to a type of natural polyphenols
that have to roust antioxidant capacity. Studies have shed light on the fact that GSP significantly
impacts the alleviation of Alzheimer's Disease (AD).
Objective:
This study aimed at investigating whether there exists a pharmacokinetics difference in
GSP between normal and AD rats, a rapid UPLC-MS/MS methodology, for the detection of its
content in plasma samples was put forward. We carried out an analysis of the plasma concentrations
of procyanidin B2, procyanidin B3, catechin and epicatechin in normal and AD rats over time
for determining the plasma concentration of GSP.
Methods:
We made use of 400 μL of methanol for the protein precipitation solvent in the plasma
treatment. The chromatographic separation was carried out on a C18 column at a temperature of 20 °C.
The mobile phase was a gradient of 0.1% formic acid in water and methanol within 15 min.
Results:
: In the current research work, the plasma concentrations of procyanidin B2, procyanidin
B3, catechin and epicatechin in AD rats were significantly higher as compared with those in normal
rats (P < 0.05) and the content of epicatechin constituted the highest as compared with catechin,
procyanidin B2 and procyanidin B3 following the administration of GSP.
Conclusion:
We discovered the better absorptions of these analytes in the AD group as compared
with that in the normal group, providing an analytical basis for treating the AD with procyanidins.
Collapse
Affiliation(s)
- Xinhui Cheng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Jingying Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Huiting Jing
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Yu Qi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Tingxu Yan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Bo Wu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Yiyang Du
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Feng Xiao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Ying Jia
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| |
Collapse
|
42
|
Abstract
Probiotics and prebiotics are microbiota-management instruments for improving human health once they may be beneficial for maintaining a healthy community of gut microbiota and bowel function. Probiotic’s main target is the gut, via the gastrointestinal tract, although direct application to other body zones such as the vaginal tract, the oral cavity, and skin have been studied. The major source of probiotics is fermented dairy products, however, currently, there is a need for novel and non-dairy probiotics, due to the increasing number of lactose-intolerant persons in the world population, tied with the adverse effect of cholesterol contained in fermented dairy foods as well as the increasing number of strict vegetarians. In this review, we describe gut-derived effects in humans of possible microorganisms isolated from wine, such as Saccharomyces and non-Saccharomyces yeasts and bacteria, and other non-dairy fermented beverages. Those microorganisms can be grown and consumed as recommended probiotics, moreover, wine, and other beverages may also be a source of prebiotics such as polyphenols.
Collapse
|
43
|
Choo JM, Tran CD, Luscombe-Marsh ND, Stonehouse W, Bowen J, Johnson N, Thompson CH, Watson EJ, Brinkworth GD, Rogers GB. Almond consumption affects fecal microbiota composition, stool pH, and stool moisture in overweight and obese adults with elevated fasting blood glucose: A randomized controlled trial. Nutr Res 2020; 85:47-59. [PMID: 33444970 DOI: 10.1016/j.nutres.2020.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 10/22/2020] [Accepted: 11/12/2020] [Indexed: 01/12/2023]
Abstract
Regular almond consumption has been shown to improve body weight management, lipid profile and blood glucose control. We hypothesized that almond consumption would alter fecal microbiota composition, including increased abundance and activity of potentially beneficial bacterial taxa in adults who are overweight and obese with elevated fasting blood glucose. A total of 69 adults who were overweight or obese with an elevated plasma glucose (age: 60.8 ± 7.4, BMI ≥27 kg/m2, fasting plasma glucose ≥5.6 to <7.0 mmol/L) were randomized to daily consumption of either 2 servings of almonds (AS:56 g/day) or an isocaloric, high carbohydrate biscuit snack for 8 weeks. AS but not biscuit snack experienced significant changes in microbiota composition (P= .011) and increases in bacterial richness, evenness, and diversity (P< .01). Increases in both the relative and absolute abundance of operational taxonomic units in the Ruminococcaceae family, including Ruminiclostridium (false discovery rate P = .002), Ruminococcaceae NK4A214 (P = .002) and Ruminococcaceae UCG-003 (P = .002) were the principal drivers of microbiota-level changes. No changes in fecal short chain fatty acid levels, or in the carriage of the gene encoding butyryl-CoA:acetate CoA-transferase (an enzyme involved in butyrate synthesis) occurred. Almond consumption was not associated with reduced gut permeability, but fecal pH (P= .0006) and moisture content (P = .027) decreased significantly in AS when compared to BS. Regular almond consumption increased the abundance of potentially beneficial ruminococci in the fecal microbiota in individuals with elevated blood glucose. However, fecal short-chain fatty acid levels remained unaltered and the capacity for such microbiological effects to precipitate host benefit is not known.
Collapse
Affiliation(s)
- Jocelyn M Choo
- Microbiome & Host Health, South Australian Health and Medical Research Institute, Adelaide, Australia; College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Cuong D Tran
- Commonwealth Scientific and Industrial Research Organisation - Health and Biosecurity, PO Box 10041, Adelaide 5000, Australia
| | - Natalie D Luscombe-Marsh
- Commonwealth Scientific and Industrial Research Organisation - Health and Biosecurity, PO Box 10041, Adelaide 5000, Australia
| | - Welma Stonehouse
- Commonwealth Scientific and Industrial Research Organisation - Health and Biosecurity, PO Box 10041, Adelaide 5000, Australia
| | - Jane Bowen
- Commonwealth Scientific and Industrial Research Organisation - Health and Biosecurity, PO Box 10041, Adelaide 5000, Australia
| | - Nathan Johnson
- Faculty of Health Sciences and Boden Institute of Obesity, Nutrition, Exercise and Eating Disorders, University of Sydney, Lidcombe 2141, Australia
| | | | - Emma-Jane Watson
- Commonwealth Scientific and Industrial Research Organisation - Health and Biosecurity, PO Box 10041, Adelaide 5000, Australia
| | - Grant D Brinkworth
- Commonwealth Scientific and Industrial Research Organisation - Health and Biosecurity, 11 Julius Avenue, North Ryde 2113, Australia
| | - Geraint B Rogers
- Microbiome & Host Health, South Australian Health and Medical Research Institute, Adelaide, Australia; College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
44
|
Seo KH, Kim DH, Yokoyama WH, Kim H. Synbiotic Effect of Whole Grape Seed Flour and Newly Isolated Kefir Lactic Acid Bacteria on Intestinal Microbiota of Diet-Induced Obese Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13131-13137. [PMID: 32124605 DOI: 10.1021/acs.jafc.0c01240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alterations of intestinal microbiota by synbiotic action of pre- and probiotics may confer health benefits to the host. In this study, high-throughput sequencing of 16S rRNA was used to analyze intestinal microbiota in feces, and the relative abundance of intestinal bacteria was correlated with physiological data from a prior study of a synbiotic combination of flavonoid-rich wine grape seed flour (WGF) and two newly isolated kefir lactic acid bacteria (LAB) in diet-induced obese mice. The combination of WGF and LAB enhanced observed operational taxonomic units and Chao1 index compared to WGF alone, indicating an increase in the microbial community richness. The combination significantly enhanced abundance of Akkermansia muciniphila and Nocardia coeliaca and their abundance had an inverse relationship with body weight gain and adipose weight. In conclusion, the synbiotic effects of WGF and LAB on improvement of high-fat-diet-induced obesity are strongly linked to remodeling intestinal microbiota.
Collapse
Affiliation(s)
- Kun-Ho Seo
- KU Center for One Health, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, South Korea
| | - Dong-Hyeon Kim
- KU Center for One Health, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, South Korea
| | - Wallace H Yokoyama
- Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Albany, California 94710, United States
| | - Hyunsook Kim
- Department of Food and Nutrition, Hanyang University, Seongdong-gu, Seoul 04763, South Korea
| |
Collapse
|
45
|
Moreno-Arribas MV, Bartolomé B, Peñalvo JL, Pérez-Matute P, Motilva MJ. Relationship between Wine Consumption, Diet and Microbiome Modulation in Alzheimer's Disease. Nutrients 2020; 12:E3082. [PMID: 33050383 PMCID: PMC7600228 DOI: 10.3390/nu12103082] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder leading to the most common form of dementia in elderly people. Modifiable dietary and lifestyle factors could either accelerate or ameliorate the aging process and the risk of developing AD and other age-related morbidities. Emerging evidence also reports a potential link between oral and gut microbiota alterations and AD. Dietary polyphenols, in particular wine polyphenols, are a major diver of oral and gut microbiota composition and function. Consequently, wine polyphenols health effects, mediated as a function of the individual's oral and gut microbiome are considered one of the recent greatest challenges in the field of neurodegenerative diseases as a promising strategy to prevent or slow down AD progression. This review highlights current knowledge on the link of oral and intestinal microbiome and the interaction between wine polyphenols and microbiota in the context of AD. Furthermore, the extent to which mechanisms bacteria and polyphenols and its microbial metabolites exert their action on communication pathways between the brain and the microbiota, as well as the impact of the molecular mediators to these interactions on AD patients, are described.
Collapse
Affiliation(s)
- M. Victoria Moreno-Arribas
- Institute of Food Science Research (CIAL), CSIC-UAM, c/Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain;
| | - Begoña Bartolomé
- Institute of Food Science Research (CIAL), CSIC-UAM, c/Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain;
| | - José L. Peñalvo
- Institute of Tropical Medicine, Unit Noncommunicable Diseases, Natl Str 155, B-2000 Antwerp, Belgium;
| | | | - Maria José Motilva
- Institute of Grapevine and Wine Sciences (ICVV), CSIC-University of La Rioja-Government of La Rioja, Autovía del Camino de Santiago LO-20 Exit 13, 26007 Logroño, Spain;
| |
Collapse
|
46
|
Abstract
AbstractThis paper presents the effect of polyphenols on microorganisms inhabiting the human gastrointestinal tract (mainly bacteria belonging to the Lactobacillus genus) and pathogenic microorganisms classified as the most common food contaminants. Plant secondary metabolites have the ability to modulate the growth of many microorganisms. Due to the metabolic changes induced by their presence in the environment, many pathogenic microorganisms are unable to grow, which in turn cause a significant reduction in their pathogenic potential. These processes include primarily the induction of ruptures in the cell membrane and disturbance of cell respiration. Often, the lack of integrity of cell membranes also leads to the disturbance of intracellular homeostasis and leakage of cellular components, such as proteins, ATP molecules or intracellular ions. Autoxidizing polyphenols also act as pro-oxidative substances. Hydrogen peroxide formed in the process of oxidation of polyphenolic compounds acts as a bactericidal substance (by induction of DNA breaks). With regard to intestinal microbiota, polyphenols are considered prebiotic substances that increase the number of commensal bacteria. They can positively influence the growth of Lactobacillus bacteria, which have the ability to metabolize undigested antioxidants in the digestive tract of humans and animals. Depending on the pH of the environment and the presence of ions, plant polyphenols in the human digestive tract can act as substances with antioxidant potential or become pro-oxidants. Thus, combining functional food with polyphenols and Lactobacillus bacteria not only protects food products against the development of undesirable and pathogenic microbiota, but also has a positive effect on human health. The paper also describes the possibility of changes in the genome of Lactobacillus bacteria (under the influence of polyphenols) and the influence of Lactobacillus spp. bacteria on the antimicrobial properties of polyphenols. The enzymatic abilities of bacteria of the genus Lactobacillus, which influence the transformation of polyphenolic compounds, were also described.
Collapse
|
47
|
Yanni AE, Mitropoulou G, Prapa I, Agrogiannis G, Kostomitsopoulos N, Bezirtzoglou E, Kourkoutas Y, Karathanos VT. Functional modulation of gut microbiota in diabetic rats following dietary intervention with pistachio nuts ( Pistacia vera L.). Metabol Open 2020; 7:100040. [PMID: 32812934 PMCID: PMC7424811 DOI: 10.1016/j.metop.2020.100040] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/01/2020] [Accepted: 06/13/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Gut microbiota holds a key-role in numerous biological functions and has emerged as a driving force for the development of diabetes. Diet contributes to gut microbiota diversity and functionality providing a tool for the prevention and management of the disease. The study aimed to investigate the effect of a dietary intervention with pistachio nuts, a rich source of monounsaturated fatty acids, dietary fibers and phytochemicals on gut microbiota composition in the rat model of Type 1 Diabetes. METHODS Male Wistar rats were randomly assigned into four groups: healthy animals which received control diet (CD) or pistachio diet (PD), and diabetic animals which received control diet (DCD) or pistachio diet (DPD) for 4 weeks. Plasma biochemical parameters were determined and histological examination of liver and pancreas was performed at the end of the dietary intervention. Adherent intestinal microbiota populations in jejunum, ileum, caecum and colon were analyzed. Fecal microbiota populations at the beginning and the end of the study were determined by microbiological analysis and 16S rRNA sequencing. RESULTS Diabetic animals of both groups exhibited high plasma glucose and low insulin concentrations, as well as characteristic pancreatic lesions. Pistachio supplementation significantly increased lactobacilli and bifidobacteria populations in jejunum, ileum and caecum (p < 0.05) and normalized microbial flora in all examined intestinal regions of diabetic animals. After 4 weeks of supplementation, populations of bifidobacteria and lactobacilli were increased in feces of both healthy and diabetic animals, while enterococci levels were decreased (p < 0.05). Next Generation Sequencing of fecal samples revealed increased and decreased counts of Firmicutes and Bacteroidetes, respectively, in healthy animals that received the pistachio diet. Actinobacteria OTUs were higher in diabetic animals and increased over time in the pistachio treated groups, along with increased abundance of Bifidobacterium. Lactobacillus, Turicibacter and Romboutsia populations were elevated in healthy animals administered the pistachio nuts. Of note, relative abundance of Bacteroides was higher in healthy than in diabetic rats (p < 0.05). CONCLUSION Dietary pistachio restored normal flora and enhanced the presence of beneficial microbes in the rat model of streptozotocin-induced diabetes.
Collapse
Affiliation(s)
- Amalia E. Yanni
- Laboratory of Chemistry, Biochemistry, Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| | - Gregoria Mitropoulou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, GR, 68100, Greece
| | - Ioanna Prapa
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, GR, 68100, Greece
| | - Georgios Agrogiannis
- First Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, GR, 68100, Greece
| | - Vaios T. Karathanos
- Laboratory of Chemistry, Biochemistry, Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| |
Collapse
|
48
|
Zorraquín I, Sánchez-Hernández E, Ayuda-Durán B, Silva M, González-Paramás AM, Santos-Buelga C, Moreno-Arribas MV, Bartolomé B. Current and future experimental approaches in the study of grape and wine polyphenols interacting gut microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3789-3802. [PMID: 32167171 DOI: 10.1002/jsfa.10378] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/02/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
Interactions between polyphenols and gut microbiota are indeed a major issue of current interest in food science research. Knowledge in this subject is progressing as the experimental procedures and analysis techniques do. The aim of this article is to critically review the more leading-edge approaches that have been applied so far in the study of the interactions between grape/wine polyphenols and gut microbiota. This is the case of in vitro dynamic gastrointestinal simulation models that try to mitigate the limitations of simple static models (batch culture fermentations). More complex approaches include the experimentation with animals (mice, rats, pigs, lambs and chicks) and nutritional intervention studies in humans. Main advantages and limitations as well as the most relevant findings achieved by each approach in the study of how grape/wine polyphenols can modulate the composition and/or functionality of gut microbiota, are detailed. Also, common findings obtained by the three approaches (in vitro, animal models and human nutritional interventions) such as the fact that the Firmicutes/Bacteroidetes ratio tends to decrease after the feed/intake/consumption of grape/wine polyphenols are highlighted. Additionally, a nematode (Caenorhabditis elegans) model, previously used for investigating the mechanisms of processes such as aging, neurodegeneration, oxidative stress and inflammation, is presented as an emerging approach for the study of polyphenols interacting gut microbiota. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Begoña Ayuda-Durán
- Grupo de Investigación en Polifenoles, Universidad de Salamanca, Salamanca, Spain
| | - Mariana Silva
- Institute of Food Science Research (CIAL), Madrid, Spain
| | | | | | | | | |
Collapse
|
49
|
Ding S, Xu S, Fang J, Jiang H. The Protective Effect of Polyphenols for Colorectal Cancer. Front Immunol 2020; 11:1407. [PMID: 32754151 PMCID: PMC7366338 DOI: 10.3389/fimmu.2020.01407] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/01/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers that threaten people in many countries. It is a multi-factorial chronic disease caused by a combination of genetic and environmental factors, but it is mainly related to lifestyle factors, including diet. Plentiful plant foods and beverages are abundant in polyphenols with antioxidant, anti-atherosclerotic, anti-inflammatory, and anticancer properties. These compounds participate in host nutrition and disease pathology regulation in different ways. Polyphenolic compounds have been used to prevent and inhibit the development and prognosis of cancer, and examples include green tea polyphenol (-)epigallocatechin-3-O-gallate (EGCG), curcumin, and resveratrol. Of course, there are more known and unknown polyphenol compounds that need to be further explored for their anticancer properties. This article focuses on the fact that polyphenols affect the progression of CRC by controlling intestinal inflammation, epigenetics, and the intestinal microbe in the aspects of prevention, treatment, and prognosis.
Collapse
Affiliation(s)
- Sujuan Ding
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Sheng Xu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jun Fang
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Hongmei Jiang
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
50
|
Defatted chia flour as functional ingredient in sweet cookies. How do Processing, simulated gastrointestinal digestion and colonic fermentation affect its antioxidant properties? Food Chem 2020; 316:126279. [DOI: 10.1016/j.foodchem.2020.126279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 01/04/2023]
|