1
|
Naik AR, Save SN, Sahoo SS, Yadav SS, Kumar A, Chugh J, Sharma S. Metabolic perturbations associated with hIAPP-induced insulin resistance in skeletal muscles: Implications to the development of type 2 diabetes. Int J Biochem Cell Biol 2024; 176:106665. [PMID: 39322038 DOI: 10.1016/j.biocel.2024.106665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
The human islet amyloid polypeptide (hIAPP) tends to misfold and self-assemble to form amyloid fibrils, which has been associated with the loss of function and viability of pancreatic β-cells in type 2 diabetes mellitus (T2DM). The role of hIAPP in the development of insulin resistance (a hallmark of T2DM) in skeletal muscles - the major sites for glucose utilization - needs further investigation. Even though, insulin-resistant conditions have been known to stimulate hIAPP aggregation, the events that lead to the development of insulin resistance due to hIAPP aggregation in skeletal muscles remain unidentified. Here, we have attempted to identify metabolic perturbations in L6 myotubes that were exposed to increasing concentrations of recombinant hIAPP for different time durations. It was observed that hIAPP exposure was associated with increased mitochondrial and cellular ROS levels, loss in mitochondrial membrane potential and viability of the myotubes. Metabolomic investigations of hIAPP-treated myotubes revealed significant perturbations in o-phosphocholine, sn-glycero-3-phosphocholine and dimethylamine levels (p < 0.05). Therefore, we anticipate that defects in glycerophospholipid metabolism and the associated oxidative stress and membrane damage may play key roles in the development of insulin resistance due to protein misfolding in skeletal muscles. In summary, the perturbed metabolites and their pathways have not only the potential to be used as early biomarkers to predict the onset of insulin resistance and T2DM but also as therapeutic targets for the effective management of the same.
Collapse
Affiliation(s)
- Arya R Naik
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India
| | - Shreyada N Save
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India
| | - Soumya S Sahoo
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Saurabh S Yadav
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, Indian institute of technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Jeetender Chugh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Shilpy Sharma
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India.
| |
Collapse
|
2
|
Adams L, Li X, Burchmore R, Goodwin RJA, Wall DM. Microbiome-derived metabolite effects on intestinal barrier integrity and immune cell response to infection. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001504. [PMID: 39392674 PMCID: PMC11469068 DOI: 10.1099/mic.0.001504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
The gut microbiota exerts a significant influence on human health and disease. While compositional changes in the gut microbiota in specific diseases can easily be determined, we lack a detailed mechanistic understanding of how these changes exert effects at the cellular level. However, the putative local and systemic effects on human physiology that are attributed to the gut microbiota are clearly being mediated through molecular communication. Here, we determined the effects of gut microbiome-derived metabolites l-tryptophan, butyrate, trimethylamine (TMA), 3-methyl-4-(trimethylammonio)butanoate (3,4-TMAB), 4-(trimethylammonio)pentanoate (4-TMAP), ursodeoxycholic acid (UDCA), glycocholic acid (GCA) and benzoate on the first line of defence in the gut. Using in vitro models of intestinal barrier integrity and studying the interaction of macrophages with pathogenic and non-pathogenic bacteria, we could ascertain the influence of these metabolites at the cellular level at physiologically relevant concentrations. Nearly all metabolites exerted positive effects on barrier function, but butyrate prevented a reduction in transepithelial resistance in the presence of the pathogen Escherichia coli, despite inducing increased apoptosis and exerting increased cytotoxicity. Induction of IL-8 was unaffected by all metabolites, but GCA stimulated increased intra-macrophage growth of E. coli and tumour necrosis-alpha (TNF-α) release. Butyrate, 3,4-TMAB and benzoate all increased TNF-α release independent of bacterial replication. These findings reiterate the complexity of understanding microbiome effects on host physiology and underline that microbiome metabolites are crucial mediators of barrier function and the innate response to infection. Understanding these metabolites at the cellular level will allow us to move towards a better mechanistic understanding of microbiome influence over host physiology, a crucial step in advancing microbiome research.
Collapse
Affiliation(s)
- Lauren Adams
- School of Infection and Immunology, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, UK
| | - Xiang Li
- School of Infection and Immunology, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, UK
| | - Richard Burchmore
- School of Infection and Immunology, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, UK
| | - Richard J. A. Goodwin
- School of Infection and Immunology, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, UK
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, CB4 0WG, UK
| | - Daniel M. Wall
- School of Infection and Immunology, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
3
|
Sun C, Hu G, Yi L, Ge W, Yang Q, Yang X, He Y, Liu Z, Chen WH. Integrated analysis of facial microbiome and skin physio-optical properties unveils cutotype-dependent aging effects. MICROBIOME 2024; 12:163. [PMID: 39232827 PMCID: PMC11376020 DOI: 10.1186/s40168-024-01891-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Our facial skin hosts millions of microorganisms, primarily bacteria, crucial for skin health by maintaining the physical barrier, modulating immune response, and metabolizing bioactive materials. Aging significantly influences the composition and function of the facial microbiome, impacting skin immunity, hydration, and inflammation, highlighting potential avenues for interventions targeting aging-related facial microbes amidst changes in skin physiological properties. RESULTS We conducted a multi-center and deep sequencing survey to investigate the intricate interplay of aging, skin physio-optical conditions, and facial microbiome. Leveraging a newly-generated dataset of 2737 species-level metagenome-assembled genomes (MAGs), our integrative analysis highlighted aging as the primary driver, influencing both facial microbiome composition and key skin characteristics, including moisture, sebum production, gloss, pH, elasticity, and sensitivity. Further mediation analysis revealed that skin characteristics significantly impacted the microbiome, mostly as a mediator of aging. Utilizing this dataset, we uncovered two consistent cutotypes across sampling cities and identified aging-related microbial MAGs. Additionally, a Facial Aging Index (FAI) was formulated based on the microbiome, uncovering the cutotype-dependent effects of unhealthy lifestyles on skin aging. Finally, we distinguished aging related microbial pathways influenced by lifestyles with cutotype-dependent effect. CONCLUSIONS Together, our findings emphasize aging's central role in facial microbiome dynamics, and support personalized skin microbiome interventions by targeting lifestyle, skin properties, and aging-related microbial factors. Video Abstract.
Collapse
Affiliation(s)
- Chuqing Sun
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Guoru Hu
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liwen Yi
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Ge
- Department of Dermatology, Huazhong University of Science and Technology Hospital, Wuhan, 430074, China
| | - Qingyu Yang
- Department of Dermatology, Huazhong University of Science and Technology Hospital, Wuhan, 430074, China
| | - Xiangliang Yang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- National Engineering Research Center for Nanomedicine, Wuhan, 430074, China
| | - Yifan He
- The GBA National Institute for Nanotechnology Innovation, Guangzhou, 510799, China.
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, 100048, People's Republic of China.
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Wei-Hua Chen
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Institution of Medical Artificial Intelligence, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
4
|
Navas-Enamorado C, Capo X, Galmes-Panades AM, Ortega-Moral A, Sánchez-Polo A, Masmiquel L, Torrens-Mas M, Navas P, Gonzalez-Freire M. The association of circulating bioenergetic metabolites with healthy human aging. Exp Gerontol 2024; 194:112488. [PMID: 38879093 DOI: 10.1016/j.exger.2024.112488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/25/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Aging is an inevitable and gradual decline in several biological functions. Mitochondrial dysfunction is one of the most important hallmarks of aging. In this context, alterations in metabolites associated with mitochondrial dysfunction may serve as a significant biomarker. This study aimed to investigate the existence of a relationship between the key metabolites involved in bioenergetics metabolism and aging. 53 volunteers ranged 20-85 years participated in the study. We tested the association between different tricarboxylic acid (TCA) cycle metabolites, fatty acid metabolism, and amino acid metabolism with age, sex, body composition, and proxy markers of aging such as walking speed, grip strength and chair test. We found that lactic acid negatively correlated with age while several fatty acid metabolites, such as azelaic, sebacic, and linoleic acids, showed positive correlations with age (p < 0.05). Sex-specific trends, such as glycerol, and dodecanoic acid, were also observed for certain metabolites. Furthermore, citric acid levels were found to have a significant association with physical function and body composition measures. Participants with higher citric acid levels displayed improved performance in physical tests and favorable body composition indices. Additionally, fumaric acid and adipic acid showed positive correlations with fat-free body mass, while sebacic acid was negatively associated with measures of fat mass. These findings underscore the importance of understanding the role of circulating bioenergetics metabolites with age, sex variations, and their potential implications in body composition and physical performance.
Collapse
Affiliation(s)
- C Navas-Enamorado
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - X Capo
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - A M Galmes-Panades
- Physical Activity and Sport Sciences Research Group (GICAFE), Institute for Educational Research and Innovation (IRIE), University of the Balearic Islands, 07120 Palma de Mallorca, Spain; Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - A Ortega-Moral
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - A Sánchez-Polo
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - L Masmiquel
- Vascular and Metabolic Pathologies Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - M Torrens-Mas
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain.
| | - P Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide- Consejo superior de Investigaciones Científicas- Junta de Andalucía, Sevilla, Spain; CIBERER, Instituto de Salud Carlos III, Madrid, Spain.
| | - M Gonzalez-Freire
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcon, Madrid, Spain.
| |
Collapse
|
5
|
Kuerec AH, Lim XK, Khoo AL, Sandalova E, Guan L, Feng L, Maier AB. Targeting aging with urolithin A in humans: A systematic review. Ageing Res Rev 2024; 100:102406. [PMID: 39002645 DOI: 10.1016/j.arr.2024.102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
Urolithin A (UA) is a gut metabolite derived from ellagic acid. This systematic review assesses the potential geroprotective effect of UA in humans. In five studies including 250 healthy individuals, UA (10-1000 mg/day) for a duration ranging from 28 days to 4 months, showed a dose-dependent anti-inflammatory effect and upregulated some mitochondrial genes, markers of autophagy, and fatty acid oxidation. It did not affect mitochondrial maximal adenosine triphosphate production, biogenesis, dynamics, or gut microbiota composition. UA increased muscle strength and endurance, however, had no effect on anthropometrics, cardiovascular outcomes, and physical function. Unrelated adverse events were mild or moderate. Further research across more physiological systems and longer intervention periods is required.
Collapse
Affiliation(s)
- Ajla Hodzic Kuerec
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, 10 Medical Drive, Singapore 117597, Singapore
| | - Xuan K Lim
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, 10 Medical Drive, Singapore 117597, Singapore
| | - Anderson Ly Khoo
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, 10 Medical Drive, Singapore 117597, Singapore
| | - Elena Sandalova
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, 10 Medical Drive, Singapore 117597, Singapore
| | - Lihuan Guan
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, 10 Medical Drive, Singapore 117597, Singapore
| | - Lei Feng
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, 10 Medical Drive, Singapore 117597, Singapore; Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrea B Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, 10 Medical Drive, Singapore 117597, Singapore; Department of Human Movement Sciences, @AgeAmsterdam, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Van der Boechorststraat 7, Amsterdam 1081 BT, the Netherlands.
| |
Collapse
|
6
|
Choi YJ, Yun SH, Yu J, Mun Y, Lee W, Park CJ, Han BW, Lee BH. Chaperone-mediated autophagy dysregulation during aging impairs hepatic fatty acid oxidation via accumulation of NCoR1. Mol Metab 2023; 76:101784. [PMID: 37524243 PMCID: PMC10448198 DOI: 10.1016/j.molmet.2023.101784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023] Open
Abstract
OBJECTIVE Alterations in lipid metabolism are associated with aging and age-related diseases. Chaperone-mediated autophagy (CMA) is a lysosome-dependent process involved in specific protein degradation. Heat shock cognate 71 kDa protein (Hsc70) recognizes cytosolic proteins with KFERQ motif and allows them to enter the lysosome via lysosome-associated membrane glycoprotein 2 isoform A (LAMP2A). CMA deficiency is associated with dysregulated lipid metabolism in the liver. In this study, we examined the effect of CMA on lipid metabolism in the aged liver. METHODS 12-week-old and 88-week-old mice were employed to assess the effect of aging on hepatic CMA activity. We generated CMA-deficient mouse primary hepatocytes using siRNA for Lamp2a and liver-specific LAMP2A knockdown mice via adeno-associated viruses expressing short hairpin RNAs to investigate the influence of CMA on lipid metabolism. RESULTS We noted aging-induced progression toward fatty liver and a decrease in LAMP2A levels in total protein and lysosomes. The expression of genes associated with fatty acid oxidation was markedly downregulated in the aged liver, as verified in CMA-deficient mouse primary hepatocytes. In addition, the aged liver accumulated nuclear receptor corepressor 1 (NCoR1), a negative regulator of peroxisome proliferator-activated receptor α (PPARα). We found that Hsc70 binds to NCoR1 via the KFERQ motif. Lamp2a siRNA treatment accumulated NCoR1 and decreased the fatty acid oxidation rate. Pharmacological activation of CMA by AR7 treatment increased LAMP2A expression, leading to NCoR1 degradation. A liver-specific LAMP2A knockdown via adeno-associated viruses expressing short hairpin RNAs caused NCoR1 accumulation, inactivated PPARα, downregulated the expression of fatty acid oxidation-related genes and significantly increased liver triglyceride levels. CONCLUSIONS Our results elucidated a novel PPARα regulatory mechanism involving CMA-mediated NCoR1 degradation during aging. These findings demonstrate that CMA dysregulation is crucial for the progression of aging-related fatty liver diseases.
Collapse
Affiliation(s)
- You-Jin Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Ho Yun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jihyeon Yu
- Division of Life Science, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Yewon Mun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Wonseok Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Cheon Jun Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung Woo Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung-Hoon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
7
|
Axelrod CL, Dantas WS, Kirwan JP. Sarcopenic obesity: emerging mechanisms and therapeutic potential. Metabolism 2023; 146:155639. [PMID: 37380015 PMCID: PMC11448314 DOI: 10.1016/j.metabol.2023.155639] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/08/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
Sarcopenic obesity, or the loss of muscle mass and function associated with excess adiposity, is a largely untreatable medical condition associated with diminished quality of life and increased risk of mortality. To date, it remains somewhat paradoxical and mechanistically undefined as to why a subset of adults with obesity develop muscular decline, an anabolic stimulus generally associated with retention of lean mass. Here, we review evidence surrounding the definition, etiology, and treatment of sarcopenic obesity with an emphasis on emerging regulatory nodes with therapeutic potential. We review the available clinical evidence largely focused on diet, lifestyle, and behavioral interventions to improve quality of life in patients with sarcopenic obesity. Based upon available evidence, relieving consequences of energy burden, such as oxidative stress, myosteatosis, and/or mitochondrial dysfunction, is a promising area for therapeutic development in the treatment and management of sarcopenic obesity.
Collapse
Affiliation(s)
- Christopher L Axelrod
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Wagner S Dantas
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - John P Kirwan
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| |
Collapse
|
8
|
Paoletti A, Pencharz PB, Ball RO, Kong D, Xu L, Elango R, Courtney-Martin G. The dietary requirement for total sulfur amino acids in adults aged ≥60 years appears to be higher in males than in females. Am J Clin Nutr 2023; 118:538-548. [PMID: 37356549 DOI: 10.1016/j.ajcnut.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 05/09/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND The total sulfur amino acid (TSAA) recommendation in older adults is based on data from young adults. Physiological evidence suggests that older adults have a higher requirement than young adults. OBJECTIVES The objective of this study was to determine the TSAA requirement in healthy men and women aged ≥60 y. METHODS The TSAA requirement was determined using the indicator amino acid oxidation method with L-[1-13C]phenylalanine as the indicator. At recruitment, 15 older adults (n = 7 men and n = 8 women; BMI < 30 kg/m2) were assigned to receive 7 methionine intakes (5, 10, 15, 19, 25, 35, and 40 mg/kg/d) without dietary cysteine. Intake levels were randomly assigned to each subject. Following enrollment, 2 subjects completed 2 intakes and 3 completed 3, while the remainder completed all 7. Mean TSAA requirement was determined from oxidation of L-[1-13C]phenylalanine using a mixed-effect change-point model. The 95% CI was calculated using parametric bootstrap. To test whether breakpoints were different between men and women, the overlap in the 95% CI was calculated. RESULTS The mean TSAA requirement was 26.2 (Rm2 = 0.39, Rc2 = 0.89; P < 0.001) and 17.1 mg/kg/d (Rm2 = 0.22, Rc2 = 0.79; P < 0.001) for men and women, respectively. The requirement was significantly higher in men than in women (difference in CI: 9.1 ± 8.85). CONCLUSIONS To our knowledge, this is the first study to determine the TSAA requirement in older adults. The requirement in older women is similar to current recommendations but is 75% higher in older men. These findings are important given recommendations for increased plant protein consumption. They will help in the assessment of diet quality and provide the basis of dietary guidelines for older adults consuming a plant-based diet. This trial was registered at clinicaltrials.gov as NCT04595188.
Collapse
Affiliation(s)
- Alyssa Paoletti
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Paul B Pencharz
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Ronald O Ball
- Department of Agriculture, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Dehan Kong
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Libai Xu
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Rajavel Elango
- Department of Pediatrics, School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Glenda Courtney-Martin
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Sahasrabudhe SA, Terluk MR, Kartha RV. N-acetylcysteine Pharmacology and Applications in Rare Diseases-Repurposing an Old Antioxidant. Antioxidants (Basel) 2023; 12:1316. [PMID: 37507857 PMCID: PMC10376274 DOI: 10.3390/antiox12071316] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 07/30/2023] Open
Abstract
N-acetylcysteine (NAC), a precursor of cysteine and, thereby, glutathione (GSH), acts as an antioxidant through a variety of mechanisms, including oxidant scavenging, GSH replenishment, antioxidant signaling, etc. Owing to the variety of proposed targets, NAC has a long history of use as a prescription product and in wide-ranging applications that are off-label as an over-the-counter (OTC) product. Despite its discovery in the early 1960s and its development for various indications, systematic clinical pharmacology explorations of NAC pharmacokinetics (PK), pharmacodynamic targets, drug interactions, and dose-ranging are sorely limited. Although there are anecdotal instances of NAC benefits in a variety of diseases, a comprehensive review of the use of NAC in rare diseases does not exist. In this review, we attempt to summarize the existing literature focused on NAC explorations in rare diseases targeting mitochondrial dysfunction along with the history of NAC usage, approved indications, mechanisms of action, safety, and PK characterization. Further, we introduce the research currently underway on other structural derivatives of NAC and acknowledge the continuum of efforts through pre-clinical and clinical research to facilitate further therapeutic development of NAC or its derivatives for rare diseases.
Collapse
Affiliation(s)
- Siddhee A Sahasrabudhe
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, Rm 4-214, McGuire Translational Research Facility, 2001 6th St. SE, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marcia R Terluk
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, Rm 4-214, McGuire Translational Research Facility, 2001 6th St. SE, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Reena V Kartha
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, Rm 4-214, McGuire Translational Research Facility, 2001 6th St. SE, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
Kumar P, Osahon OW, Sekhar RV. GlyNAC (Glycine and N-Acetylcysteine) Supplementation in Old Mice Improves Brain Glutathione Deficiency, Oxidative Stress, Glucose Uptake, Mitochondrial Dysfunction, Genomic Damage, Inflammation and Neurotrophic Factors to Reverse Age-Associated Cognitive Decline: Implications for Improving Brain Health in Aging. Antioxidants (Basel) 2023; 12:antiox12051042. [PMID: 37237908 DOI: 10.3390/antiox12051042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Cognitive decline frequently occurs with increasing age, but mechanisms contributing to age-associated cognitive decline (ACD) are not well understood and solutions are lacking. Understanding and reversing mechanisms contributing to ACD are important because increased age is identified as the single most important risk factor for dementia. We reported earlier that ACD in older humans is associated with glutathione (GSH) deficiency, oxidative stress (OxS), mitochondrial dysfunction, glucose dysmetabolism and inflammation, and that supplementing GlyNAC (glycine and N-acetylcysteine) improved these defects. To test whether these defects occur in the brain in association with ACD, and could be improved/reversed with GlyNAC supplementation, we studied young (20-week) and old (90-week) C57BL/6J mice. Old mice received either regular or GlyNAC supplemented diets for 8 weeks, while young mice received the regular diet. Cognition and brain outcomes (GSH, OxS, mitochondrial energetics, autophagy/mitophagy, glucose transporters, inflammation, genomic damage and neurotrophic factors) were measured. Compared to young mice, the old-control mice had significant cognitive impairment and multiple brain defects. GlyNAC supplementation improved/corrected the brain defects and reversed ACD. This study finds that naturally-occurring ACD is associated with multiple abnormalities in the brain, and provides proof-of-concept that GlyNAC supplementation corrects these defects and improves cognitive function in aging.
Collapse
Affiliation(s)
- Premranjan Kumar
- Translational Metabolism Unit, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ob W Osahon
- Translational Metabolism Unit, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rajagopal V Sekhar
- Translational Metabolism Unit, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
11
|
Yang Y, Reid MA, Hanse EA, Li H, Li Y, Ruiz BI, Fan Q, Kong M. SAPS3 subunit of protein phosphatase 6 is an AMPK inhibitor and controls metabolic homeostasis upon dietary challenge in male mice. Nat Commun 2023; 14:1368. [PMID: 36914647 PMCID: PMC10011557 DOI: 10.1038/s41467-023-36809-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Inhibition of AMPK is tightly associated with metabolic perturbations upon over nutrition, yet the molecular mechanisms underlying are not clear. Here, we demonstrate the serine/threonine-protein phosphatase 6 regulatory subunit 3, SAPS3, is a negative regulator of AMPK. SAPS3 is induced under high fat diet (HFD) and recruits the PP6 catalytic subunit to deactivate phosphorylated-AMPK, thereby inhibiting AMPK-controlled metabolic pathways. Either whole-body or liver-specific deletion of SAPS3 protects male mice against HFD-induced detrimental consequences and reverses HFD-induced metabolic and transcriptional alterations while loss of SAPS3 has no effects on mice under balanced diets. Furthermore, genetic inhibition of AMPK is sufficient to block the protective phenotype in SAPS3 knockout mice under HFD. Together, our results reveal that SAPS3 is a negative regulator of AMPK and suppression of SAPS3 functions as a guardian when metabolism is perturbed and represents a potential therapeutic strategy to treat metabolic syndromes.
Collapse
Affiliation(s)
- Ying Yang
- Department of Molecular Biology and Biochemistry; School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Michael A Reid
- Department of Cancer Biology, Beckman Research Institute of City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Eric A Hanse
- Department of Molecular Biology and Biochemistry; School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Haiqing Li
- Integrative Genomics Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Yuanding Li
- Department of Molecular Biology and Biochemistry; School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Bryan I Ruiz
- Department of Molecular Biology and Biochemistry; School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Qi Fan
- Department of Molecular Biology and Biochemistry; School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Mei Kong
- Department of Molecular Biology and Biochemistry; School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
12
|
Mitochondrial DNA Polymorphism in HV1 and HV2 Regions and 12S rDNA in Perimenopausal Hypertensive Women. Biomedicines 2023; 11:biomedicines11030823. [PMID: 36979802 PMCID: PMC10044999 DOI: 10.3390/biomedicines11030823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Estrogens enhance cellular mitochondrial activity. The diminution of female hormones during menopause may have an effect on the mitochondrial genome and the expression of mitochondrial proteins. Hence, oxidative stress and the pro-inflammatory state contribute to the formation of systemic illnesses including arterial hypertension (AH). This study aimed to determine the types and frequency of mutations in the mitochondrial DNA (mtDNA) nucleotide sequence in the hypervariable regions 1 and 2 (HV1 and HV2) and the 12S RNA coding sequence of the D-loop in postmenopausal women with hypertension. In our study, 100 women were investigated, 53 of whom were postmenopausal and 47 of whom were premenopausal (53.9 ± 3.7 years vs. 47.7 ± 4.2 years, respectively). Of those studied, 35 premenopausal and 40 postmenopausal women were diagnosed with AH. A medical checkup with 24 h monitoring of blood pressure (RR) and heart rate was undertaken (HR). The polymorphism of the D-loop and 12S rDNA region of mtDNA was examined. Changes in the nucleotide sequence of mtDNA were observed in 23% of the group of 100 women. The changes were identified in 91.3% of HV1 and HV2 regions, 60.9% of HV1 segments, 47.5% of HV2 regions, and 43.5% of 12S rDNA regions. The frequency of nucleotide sequence alterations in mtDNA was substantially higher in postmenopausal women (34%) than in premenopausal women (10.6%), p = 0.016. A higher frequency of changes in HV1 + HV2 sections in postmenopausal women (30.2%) compared to the premenopausal group (10.6%) was detected, p = 0.011. Only postmenopausal women were found to have modifications to the HV2 segment and the 12S rDNA region. After menopause, polymorphism in the mtDNA region was substantially more frequent in women with arterial hypertension than before menopause (p = 0.030; 37.5% vs. 11.5%). Comparable findings were observed in the HV2 and HV1 regions of the AH group (35% vs. 11.5%), p = 0.015, in the HV1 segment (25% vs. 11.5%), p = 0.529, and in the HV2 segment, 12S rDNA (25% vs. 0%). More than 80% of all changes in nucleotide sequence were homoplasmic. The mtDNA polymorphisms of the nucleotide sequence in the HV1 and HV2 regions, the HV2 region alone, and the 12S RNA coding sequence were associated with estrogen deficiency and a more severe course of arterial hypertension, accompanied by symptoms of adrenergic stimulation.
Collapse
|
13
|
Bakhtina AA, Pharaoh GA, Campbell MD, Keller A, Stuppard RS, Marcinek DJ, Bruce JE. Skeletal muscle mitochondrial interactome remodeling is linked to functional decline in aged female mice. NATURE AGING 2023; 3:313-326. [PMID: 37118428 PMCID: PMC10154043 DOI: 10.1038/s43587-023-00366-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 01/10/2023] [Indexed: 04/30/2023]
Abstract
Genomic, transcriptomic and proteomic approaches have been used to gain insight into molecular underpinnings of aging in laboratory animals and in humans. However, protein function in biological systems is under complex regulation and includes factors besides abundance levels, such as modifications, localization, conformation and protein-protein interactions. By making use of quantitative chemical cross-linking technologies, we show that changes in the muscle mitochondrial interactome contribute to mitochondrial functional decline in aging in female mice. Specifically, we identify age-related changes in protein cross-links relating to assembly of electron transport system complexes I and IV, activity of glutamate dehydrogenase, and coenzyme-A binding in fatty acid β-oxidation and tricarboxylic acid cycle enzymes. These changes show a remarkable correlation with complex I respiration differences within the same young-old animal pairs. Each observed cross-link can serve as a protein conformational or protein-protein interaction probe in future studies, which will provide further molecular insights into commonly observed age-related phenotypic differences. Therefore, this data set could become a valuable resource for additional in-depth molecular studies that are needed to better understand complex age-related molecular changes.
Collapse
Affiliation(s)
- Anna A Bakhtina
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Gavin A Pharaoh
- Department of Radiology, University of Washington, Seattle, WA, USA
| | | | - Andrew Keller
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA, USA.
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
14
|
Kumar P, Liu C, Suliburk J, Hsu JW, Muthupillai R, Jahoor F, Minard CG, Taffet GE, Sekhar RV. Supplementing Glycine and N-Acetylcysteine (GlyNAC) in Older Adults Improves Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Inflammation, Physical Function, and Aging Hallmarks: A Randomized Clinical Trial. J Gerontol A Biol Sci Med Sci 2023; 78:75-89. [PMID: 35975308 PMCID: PMC9879756 DOI: 10.1093/gerona/glac135] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Elevated oxidative stress (OxS), mitochondrial dysfunction, and hallmarks of aging are identified as key contributors to aging, but improving/reversing these defects in older adults (OA) is challenging. In prior studies, we identified that deficiency of the intracellular antioxidant glutathione (GSH) could play a role and reported that supplementing GlyNAC (combination of glycine and N-acetylcysteine [NAC]) in aged mice improved GSH deficiency, OxS, mitochondrial fatty-acid oxidation (MFO), and insulin resistance (IR). To test whether GlyNAC supplementation in OA could improve GSH deficiency, OxS, mitochondrial dysfunction, IR, physical function, and aging hallmarks, we conducted a placebo-controlled randomized clinical trial. METHODS Twenty-four OA and 12 young adults (YA) were studied. OA was randomized to receive either GlyNAC (N = 12) or isonitrogenous alanine placebo (N = 12) for 16-weeks; YA (N = 12) received GlyNAC for 2-weeks. Participants were studied before, after 2-weeks, and after 16-weeks of supplementation to assess GSH concentrations, OxS, MFO, molecular regulators of energy metabolism, inflammation, endothelial function, IR, aging hallmarks, gait speed, muscle strength, 6-minute walk test, body composition, and blood pressure. RESULTS Compared to YA, OA had GSH deficiency, OxS, mitochondrial dysfunction (with defective molecular regulation), inflammation, endothelial dysfunction, IR, multiple aging hallmarks, impaired physical function, increased waist circumference, and systolic blood pressure. GlyNAC (and not placebo) supplementation in OA improved/corrected these defects. CONCLUSION GlyNAC supplementation in OA for 16-weeks was safe and well-tolerated. By combining the benefits of glycine, NAC and GSH, GlyNAC is an effective nutritional supplement that improves and reverses multiple age-associated abnormalities to promote health in aging humans. Clinical Trials Registration Number: NCT01870193.
Collapse
Affiliation(s)
- Premranjan Kumar
- Translational Metabolism Unit, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine
- Baylor College of Medicine, Houston, TX, USA
| | - Chun Liu
- Translational Metabolism Unit, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine
- Baylor College of Medicine, Houston, TX, USA
| | - James Suliburk
- Department of Surgery
- Baylor College of Medicine, Houston, TX, USA
| | - Jean W Hsu
- Baylor College of Medicine, Houston, TX, USA
- Baylor-St. Luke’s Medical Center
| | - Raja Muthupillai
- Baylor-St. Luke’s Medical Center
- Baylor College of Medicine, Houston, TX, USA
| | - Farook Jahoor
- USDA/ARS Children’s Nutrition Research Center
- Baylor College of Medicine, Houston, TX, USA
| | - Charles G Minard
- Institute of Clinical and Translational Research
- Baylor College of Medicine, Houston, TX, USA
| | - George E Taffet
- Section of Geriatrics, Department of Medicine
- Baylor College of Medicine, Houston, TX, USA
| | - Rajagopal V Sekhar
- Translational Metabolism Unit, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine
- Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
15
|
Harmsen JF, van Weeghel M, Parsons R, Janssens GE, Wefers J, van Moorsel D, Hansen J, Hoeks J, Hesselink MKC, Houtkooper RH, Schrauwen P. Divergent remodeling of the skeletal muscle metabolome over 24 h between young, healthy men and older, metabolically compromised men. Cell Rep 2022; 41:111786. [PMID: 36516749 DOI: 10.1016/j.celrep.2022.111786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/28/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
24 h whole-body substrate metabolism and the circadian clock within skeletal muscle are both compromised upon metabolic disease in humans. Here, we assessed the 24 h muscle metabolome by serial muscle sampling performed under 24 h real-life conditions in young, healthy (YH) men versus older, metabolically compromised (OMC) men. We find that metabolites associated with the initial steps of glycolysis and hexosamine biosynthesis are higher in OMC men around the clock, whereas metabolites associated with glutamine-alpha-ketoglutarate, ketone, and redox metabolism are lower in OMC men. The night period shows the largest number of differently expressed metabolites. Both groups demonstrate 24 h rhythmicity in half of the metabolome, but rhythmic metabolites only partially overlap. Specific metabolites are only rhythmic in YH men (adenosine), phase shifted in OMC men (cis-aconitate, flavin adenine dinucleotide [FAD], and uridine diphosphate [UDP]), or have a reduced 24 h amplitude in OMC men (hydroxybutyrate and hippuric acid). Our data highlight the plasticity of the skeletal muscle metabolome over 24 h and large divergence across the metabolic health spectrum.
Collapse
Affiliation(s)
- Jan-Frieder Harmsen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rex Parsons
- Australian Centre for Health Services Innovation and Centre for Healthcare Transformation, School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Jakob Wefers
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Dirk van Moorsel
- Division of Endocrinology, Department of Internal Medicine, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Jan Hansen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Joris Hoeks
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Matthijs K C Hesselink
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands.
| |
Collapse
|
16
|
Study of the Association between Thiols and Oxidative Stress Markers in Children with Obesity. Nutrients 2022; 14:nu14173637. [PMID: 36079892 PMCID: PMC9460844 DOI: 10.3390/nu14173637] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 12/03/2022] Open
Abstract
Obesity has reached epidemic proportions, and the World Health Organization defined childhood overweight and obesity as a noncommunicable disease that represents the most serious public health challenges of the twenty-first century. Oxidative stress, defined as an imbalance between oxidants and antioxidants causing an impairment of the redox signals, is linked to the development of metabolic diseases. In addition, reactive oxygen species generated during metabolic disorder could increase inflammation, causing the development of insulin resistance, diabetes, and cardiovascular disease. We analyze serum levels of cysteine (Cys), cysteinyl-glycine (Cys-Gly), homocysteine (Hcy), and glutathione (GSH), and other markers of oxidative stress, such as thiobarbituric acid reactive substances (T-BARS), 8-isoprostane, and protein carbonyl in our children with obesity. Total antioxidant status was also determined. We found lower GSH and Cys-Gly levels, and higher Hcy and oxidative stress markers levels. We also found a positive correlation between Body Mass Index (BMI), Cys, GSH, and Hcy levels, between insulin and Cys levels, and between BMI and the homeostasis model assessment-estimated insulin resistance (HOMA-IR) with 8-isoprostane levels. Finally, we found a correlation between age and GSH and Cys levels. The deficiency of GSH could be restored by dietary supplementation with GSH precursors, supplying an inexpensive approach to oppose oxidative stress, thus avoiding obesity complications.
Collapse
|
17
|
Disturbance of Fatty Acid Metabolism Promoted Vascular Endothelial Cell Senescence via Acetyl-CoA-Induced Protein Acetylation Modification. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1198607. [PMID: 35993026 PMCID: PMC9385365 DOI: 10.1155/2022/1198607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022]
Abstract
Endothelial cell senescence is the main risk factor contributing to vascular dysfunction and the progression of aging-related cardiovascular diseases. However, the relationship between endothelial cell metabolism and endothelial senescence remains unclear. The present study provides novel insight into fatty acid metabolism in the regulation of endothelial senescence. In the replicative senescence model and H2O2-induced premature senescence model of primary cultured human umbilical vein endothelial cells (HUVECs), fatty acid oxidation (FAO) was suppressed and fatty acid profile was disturbed, accompanied by downregulation of proteins associated with fatty acid uptake and mitochondrial entry, in particular the FAO rate-limiting enzyme carnitine palmitoyl transferase 1A (CPT1A). Impairment of fatty acid metabolism by silencing CPT1A or CPT1A inhibitor etomoxir facilitated the development of endothelial senescence, as implied by the increase of p53, p21, and senescence-associated β-galactosidase, as well as the decrease of EdU-positive proliferating cells. In the contrary, rescue of FAO by overexpression of CPT1A or supplement of short chain fatty acids (SCFAs) acetate and propionate ameliorated endothelial senescence. In vivo, treatment of acetate for 4 weeks lowered the blood pressure and alleviated the senescence-related phenotypes in aortas of Ang II-infused mice. Mechanistically, fatty acid metabolism regulates endothelial senescence via acetyl-coenzyme A (acetyl-CoA), as implied by the observations that suppression of acetyl-CoA production using the inhibitor of ATP citrate lyase NDI-091143 accelerated senescence of HUVECs and that supplementation of acetyl-CoA prevented H2O2-induced endothelial senescence. Deficiency of acetyl-CoA resulted in alteration of acetylated protein profiles which are associated with cell metabolism and cell cycle. These findings thus suggest that improvement of fatty acid metabolism might ameliorate endothelial senescence-associated cardiovascular diseases.
Collapse
|
18
|
Lizzo G, Migliavacca E, Lamers D, Frézal A, Corthesy J, Vinyes-Parès G, Bosco N, Karagounis LG, Hövelmann U, Heise T, von Eynatten M, Gut P. A Randomized Controlled Clinical Trial in Healthy Older Adults to Determine Efficacy of Glycine and N-Acetylcysteine Supplementation on Glutathione Redox Status and Oxidative Damage. FRONTIERS IN AGING 2022; 3:852569. [PMID: 35821844 PMCID: PMC9261343 DOI: 10.3389/fragi.2022.852569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 01/23/2023]
Abstract
Glycine and cysteine are non-essential amino acids that are required to generate glutathione, an intracellular tripeptide that neutralizes reactive oxygen species and prevents tissue damage. During aging glutathione demand is thought to increase, but whether additional dietary intake of glycine and cysteine contributes towards the generation of glutathione in healthy older adults is not well understood. We investigated supplementation with glycine and n-acetylcysteine (GlyNAC) at three different daily doses for 2 weeks (low dose: 2.4 g, medium dose: 4.8 g, or high dose: 7.2 g/day, 1:1 ratio) in a randomized, controlled clinical trial in 114 healthy volunteers. Despite representing a cohort of healthy older adults (age mean = 65 years), we found significantly higher baseline levels of markers of oxidative stress, including that of malondialdehyde (MDA, 0.158 vs. 0.136 µmol/L, p < 0.0001), total cysteine (Cysteine-T, 314.8 vs. 276 µM, p < 0.0001), oxidized glutathione (GSSG, 174.5 vs. 132.3 µmol/L, p < 0.0001), and a lower ratio of reduced to oxidized glutathione (GSH-F:GSSG) (11.78 vs. 15.26, p = 0.0018) compared to a young reference group (age mean = 31.7 years, n = 20). GlyNAC supplementation was safe and well tolerated by the subjects, but did not increase levels of GSH-F:GSSG (end of study, placebo = 12.49 vs. 7.2 g = 12.65, p-value = 0.739) or that of total glutathione (GSH-T) (end of study, placebo = 903.5 vs. 7.2 g = 959.6 mg/L, p-value = 0.278), the primary endpoint of the study. Post-hoc analyses revealed that a subset of subjects characterized by high oxidative stress (above the median for MDA) and low baseline GSH-T status (below the median), who received the medium and high doses of GlyNAC, presented increased glutathione generation (end of study, placebo = 819.7 vs. 4.8g/7.2 g = 905.4 mg/L, p-value = 0.016). In summary GlyNAC supplementation is safe, well tolerated, and may increase glutathione levels in older adults with high glutathione demand. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT05041179, NCT05041179.
Collapse
Affiliation(s)
- Giulia Lizzo
- Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | | | | | - Adrien Frézal
- Nestlé Institute of Food Safety and Analytical Sciences, Lausanne, Switzerland
| | - John Corthesy
- Nestlé Institute of Food Safety and Analytical Sciences, Lausanne, Switzerland
| | | | - Nabil Bosco
- Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Leonidas G Karagounis
- Nestlé Health Science, Vevey, Switzerland.,Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | | | | | | | - Philipp Gut
- Nestlé Institute of Health Sciences, Lausanne, Switzerland
| |
Collapse
|
19
|
Li Y, Adeniji NT, Fan W, Kunimoto K, Török NJ. Non-alcoholic Fatty Liver Disease and Liver Fibrosis during Aging. Aging Dis 2022; 13:1239-1251. [PMID: 35855331 PMCID: PMC9286912 DOI: 10.14336/ad.2022.0318] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/18/2022] [Indexed: 01/10/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its progressive form non-alcoholic steatohepatitis (NASH) have emerged as the leading causes of chronic liver disease-related mortality. The prevalence of NAFLD/NASH is expected to increase given the epidemics of obesity and type 2 diabetes mellitus. Older patients are disproportionally affected by NASH and related complications such as progressive fibrosis, cirrhosis and hepatocellular carcinoma; however, they are often ineligible for liver transplantation due to their frailty and comorbidities, and effective medical treatments are still lacking. In this review we focused on pathways that are key to the aging process in the liver and perpetuate NAFLD/NASH, leading to fibrosis. In addition, we highlighted recent findings and cross-talks of normal and/or senescent liver cells, dysregulated nutrient sensing, proteostasis and mitochondrial dysfunction in the framework of changing metabolic milieu. Better understanding these pathways during preclinical and clinical studies will be essential to design novel and specific therapeutic strategies to treat NASH in the elderly.
Collapse
Affiliation(s)
- Yuan Li
- Gastroenterology and Hepatology, Stanford University, Palo Alto, CA 94305, USA
| | - Nia T. Adeniji
- Gastroenterology and Hepatology, Stanford University, Palo Alto, CA 94305, USA
| | - Weiguo Fan
- Gastroenterology and Hepatology, Stanford University, Palo Alto, CA 94305, USA
| | - Koshi Kunimoto
- Gastroenterology and Hepatology, Stanford University, Palo Alto, CA 94305, USA
| | - Natalie J. Török
- Gastroenterology and Hepatology, Stanford University, Palo Alto, CA 94305, USA
| |
Collapse
|
20
|
Myostatin Deficiency Enhances Antioxidant Capacity of Bovine Muscle via the SMAD-AMPK-G6PD Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3497644. [PMID: 35663205 PMCID: PMC9159831 DOI: 10.1155/2022/3497644] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/26/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022]
Abstract
During exercise, the body’s organs and skeletal muscles produce reactive oxygen species (ROS). Excessive ROS can destroy cellular lipids, sugars, proteins, and nucleotides and lead to cancer. The production of nicotinamide adenine dinucleotide phosphate (NADPH) by the pentose phosphate pathway (PPP) is an auxiliary process of the cellular antioxidant system that supplements the reducing power of glutathione (GSH) to eliminate ROS in the cell. Myostatin (MSTN) is mainly expressed in skeletal muscle and participates in the regulation of skeletal muscle growth and development. Loss of MSTN leads to muscular hypertrophy, and MSTN deficiency upregulates glycolysis. However, the effect of MSTN on the PPP has not been reported. This study investigated the effect of MSTN on muscle antioxidant capacity from a metabolic perspective. We found that reducing MSTN modulates AMP-activated protein kinase (AMPK), a key molecule in cellular energy metabolism that directly regulates glucose metabolism through phosphorylation. Downregulation of MSTN promotes tyrosine modification of glucose-6-phosphate-dehydrogenase (G6PD) by AMPK and is regulated by the Smad signaling pathway. The Smad2/3 complex acts as a transcription factor to inhibit the AMPK expression. These results suggest that reduced MSTN expression inhibits the Smad signaling pathway, promotes AMPK expression, enhances the activity of G6PD enzyme, and enhances the antioxidant capacity of nonenzymatic GSH.
Collapse
|
21
|
GlyNAC (Glycine and N-Acetylcysteine) Supplementation in Mice Increases Length of Life by Correcting Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Abnormalities in Mitophagy and Nutrient Sensing, and Genomic Damage. Nutrients 2022; 14:nu14051114. [PMID: 35268089 PMCID: PMC8912885 DOI: 10.3390/nu14051114] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/01/2023] Open
Abstract
Determinants of length of life are not well understood, and therefore increasing lifespan is a challenge. Cardinal theories of aging suggest that oxidative stress (OxS) and mitochondrial dysfunction contribute to the aging process, but it is unclear if they could also impact lifespan. Glutathione (GSH), the most abundant intracellular antioxidant, protects cells from OxS and is necessary for maintaining mitochondrial health, but GSH levels decline with aging. Based on published human studies where we found that supplementing glycine and N-acetylcysteine (GlyNAC) improved/corrected GSH deficiency, OxS and mitochondrial dysfunction, we hypothesized that GlyNAC supplementation could increase longevity. We tested our hypothesis by evaluating the effect of supplementing GlyNAC vs. placebo in C57BL/6J mice on (a) length of life; and (b) age-associated GSH deficiency, OxS, mitochondrial dysfunction, abnormal mitophagy and nutrient-sensing, and genomic-damage in the heart, liver and kidneys. Results showed that mice receiving GlyNAC supplementation (1) lived 24% longer than control mice; (2) improved/corrected impaired GSH synthesis, GSH deficiency, OxS, mitochondrial dysfunction, abnormal mitophagy and nutrient-sensing, and genomic-damage. These studies provide proof-of-concept that GlyNAC supplementation can increase lifespan and improve multiple age-associated defects. GlyNAC could be a novel and simple nutritional supplement to improve lifespan and healthspan, and warrants additional investigation.
Collapse
|
22
|
van der Vossen EWJ, Bastos D, Stols-Gonçalves D, de Goffau MC, Davids M, Pereira JPB, Li Yim AYF, Henneman P, Netea MG, de Vos WM, de Jonge W, Groen AK, Nieuwdorp M, Levin E. Effects of fecal microbiota transplant on DNA methylation in subjects with metabolic syndrome. Gut Microbes 2022; 13:1993513. [PMID: 34747338 PMCID: PMC8583152 DOI: 10.1080/19490976.2021.1993513] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Accumulating evidence shows that microbes with their theater of activity residing within the human intestinal tract (i.e., the gut microbiome) influence host metabolism. Some of the strongest results come from recent fecal microbial transplant (FMT) studies that relate changes in intestinal microbiota to various markers of metabolism as well as the pathophysiology of insulin resistance. Despite these developments, there is still a limited understanding of the multitude of effects associated with FMT on the general physiology of the host, beyond changes in gut microbiome composition. We examined the effect of either allogenic (lean donor) or autologous FMTs on the gut microbiome, plasma metabolome, and epigenomic (DNA methylation) reprogramming in peripheral blood mononuclear cells in individuals with metabolic syndrome measured at baseline (pre-FMT) and after 6 weeks (post-FMT). Insulin sensitivity was determined with a stable isotope-based 2 step hyperinsulinemic clamp and multivariate machine learning methodology was used to uncover discriminative microbes, metabolites, and DNA methylation loci. A larger gut microbiota shift was associated with an allogenic than with autologous FMT. Furthemore, the data results of the the allogenic FMT group data indicates that the introduction of new species can potentially modulate the plasma metabolome and (as a result) the epigenome. Most notably, the introduction of Prevotella ASVs directly correlated with methylation of AFAP1, a gene involved in mitochondrial function, insulin sensitivity, and peripheral insulin resistance (Rd, rate of glucose disappearance). FMT was found to have notable effects on the gut microbiome but also on the host plasma metabolome and the epigenome of immune cells providing new avenues of inquiry in the context of metabolic syndrome treatment for the manipulation of host physiology to achieve improved insulin sensitivity.
Collapse
Affiliation(s)
- Eduard W. J. van der Vossen
- Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Diogo Bastos
- Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands,Horaizon BV, Delft, The Netherlands
| | - Daniela Stols-Gonçalves
- Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marcus C. de Goffau
- Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands,Wellcome Sanger Institute, Cambridge, UK
| | - Mark Davids
- Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Joao P. B. Pereira
- Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands,Horaizon BV, Delft, The Netherlands
| | - Andrew Y. F. Li Yim
- Department of Genome Diagnostics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter Henneman
- Department of Genome Diagnostics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mihai G. Netea
- Department of Experimental Internal Medicine, Radboud University, Nijmegen, The Netherlands,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (Limes), University of Bonn, Bonn, Germany
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands,Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wouter de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Albert K. Groen
- Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands,CONTACT Max Nieuwdorp
| | - Evgeni Levin
- Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands,Horaizon BV, Delft, The Netherlands,Evgeni Levin Department of Vascular Medicine, Amsterdam University Medical Center, Meibergdreef 9, Room G1-143, Amsterdam1105 AZ, The Netherlands
| |
Collapse
|
23
|
GlyNAC (Glycine and N-Acetylcysteine) Supplementation Improves Impaired Mitochondrial Fuel Oxidation and Lowers Insulin Resistance in Patients with Type 2 Diabetes: Results of a Pilot Study. Antioxidants (Basel) 2022; 11:antiox11010154. [PMID: 35052658 PMCID: PMC8773349 DOI: 10.3390/antiox11010154] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Patients with type 2 diabetes (T2D) are known to have mitochondrial dysfunction and increased insulin resistance (IR), but the underlying mechanisms are not well understood. We reported previously that (a) adequacy of the antioxidant glutathione (GSH) is necessary for optimal mitochondrial fatty-acid oxidation (MFO); (b) supplementing the GSH precursors glycine and N-acetylcysteine (GlyNAC) in mice corrected GSH deficiency, reversed impaired MFO, and lowered oxidative stress (OxS) and IR; and (c) supplementing GlyNAC in patients with T2D improved GSH synthesis and concentrations, and lowered OxS. However, the effect of GlyNAC on MFO, MGO (mitochondrial glucose oxidation), IR and plasma FFA (free-fatty acid) concentrations in humans with T2D remains unknown. This manuscript reports the effect of supplementing GlyNAC for 14-days on MFO, MGO, IR and FFA in 10 adults with T2D and 10 unsupplemented non-diabetic controls. Fasted T2D participants had 36% lower MFO (p < 0.001), 106% higher MGO (p < 0.01), 425% higher IR (p < 0.001) and 76% higher plasma FFA (p < 0.05). GlyNAC supplementation significantly improved fasted MFO by 30% (p < 0.001), lowered MGO by 47% (p < 0.01), decreased IR by 22% (p < 0.01) and lowered FFA by 25% (p < 0.01). These results provide proof-of-concept that GlyNAC supplementation could improve mitochondrial dysfunction and IR in patients with T2D, and warrant additional research.
Collapse
|
24
|
Severe Glutathione Deficiency, Oxidative Stress and Oxidant Damage in Adults Hospitalized with COVID-19: Implications for GlyNAC (Glycine and N-Acetylcysteine) Supplementation. Antioxidants (Basel) 2021; 11:antiox11010050. [PMID: 35052554 PMCID: PMC8773164 DOI: 10.3390/antiox11010050] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022] Open
Abstract
Humanity is battling a respiratory pandemic pneumonia named COVID-19 which has resulted in millions of hospitalizations and deaths. COVID-19 exacerbations occur in waves that continually challenge healthcare systems globally. Therefore, there is an urgent need to understand all mechanisms by which COVID-19 results in health deterioration to facilitate the development of protective strategies. Oxidative stress (OxS) is a harmful condition caused by excess reactive-oxygen species (ROS) and is normally neutralized by antioxidants among which Glutathione (GSH) is the most abundant. GSH deficiency results in amplified OxS due to compromised antioxidant defenses. Because little is known about GSH or OxS in COVID-19 infection, we measured GSH, TBARS (a marker of OxS) and F2-isoprostane (marker of oxidant damage) concentrations in 60 adult patients hospitalized with COVID-19. Compared to uninfected controls, COVID-19 patients of all age groups had severe GSH deficiency, increased OxS and elevated oxidant damage which worsened with advancing age. These defects were also present in younger age groups, where they do not normally occur. Because GlyNAC (combination of glycine and N-acetylcysteine) supplementation has been shown in clinical trials to rapidly improve GSH deficiency, OxS and oxidant damage, GlyNAC supplementation has implications for combating these defects in COVID-19 infected patients and warrants urgent investigation.
Collapse
|
25
|
Sekhar RV. GlyNAC Supplementation Improves Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Inflammation, Aging Hallmarks, Metabolic Defects, Muscle Strength, Cognitive Decline, and Body Composition: Implications for Healthy Aging. J Nutr 2021; 151:3606-3616. [PMID: 34587244 DOI: 10.1093/jn/nxab309] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/10/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Cellular increases in oxidative stress (OxS) and decline in mitochondrial function are identified as key defects in aging, but underlying mechanisms are poorly understood and interventions are lacking. Defects linked to OxS and impaired mitochondrial fuel oxidation, such as inflammation, insulin resistance, endothelial dysfunction, and aging hallmarks, are present in older humans and are associated with declining strength and cognition, as well as the development of sarcopenic obesity. Investigations on the origins of elevated OxS and mitochondrial dysfunction in older humans led to the discovery that deficiencies of the antioxidant tripeptide glutathione (GSH) and its precursor amino acids glycine and cysteine may be contributory. Supplementation with GlyNAC (combination of glycine and N-acetylcysteine as a cysteine precursor) was found to improve/correct cellular glycine, cysteine, and GSH deficiencies; lower OxS; and improve mitochondrial function, inflammation, insulin resistance, endothelial dysfunction, genotoxicity, and multiple aging hallmarks; and improve muscle strength, exercise capacity, cognition, and body composition. This review discusses evidence from published rodent studies and human clinical trials to provide a detailed summary of available knowledge regarding the effects of GlyNAC supplementation on age-associated defects and aging hallmarks, as well as discussing why GlyNAC supplementation could be effective in promoting healthy aging. It is particularly exciting that GlyNAC supplementation appears to reverse multiple aging hallmarks, and if confirmed in a randomized clinical trial, it could introduce a transformative paradigm shift in aging and geriatrics. GlyNAC supplementation could be a novel nutritional approach to improve age-associated defects and promote healthy aging, and existing data strongly support the need for additional studies to explore the role and impact of GlyNAC supplementation in aging.
Collapse
Affiliation(s)
- Rajagopal V Sekhar
- Translational Metabolism Unit, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
26
|
Zhou J, Terluk MR, Orchard PJ, Cloyd JC, Kartha RV. N-Acetylcysteine Reverses the Mitochondrial Dysfunction Induced by Very Long-Chain Fatty Acids in Murine Oligodendrocyte Model of Adrenoleukodystrophy. Biomedicines 2021; 9:biomedicines9121826. [PMID: 34944641 PMCID: PMC8698433 DOI: 10.3390/biomedicines9121826] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 11/16/2022] Open
Abstract
The accumulation of saturated very long-chain fatty acids (VLCFA, ≥C22:0) due to peroxisomal impairment leads to oxidative stress and neurodegeneration in X-linked adrenoleukodystrophy (ALD). Among the neural supporting cells, myelin-producing oligodendrocytes are the most sensitive to the detrimental effect of VLCFA. Here, we characterized the mitochondrial dysfunction and cell death induced by VLFCA, and examined whether N-acetylcysteine (NAC), an antioxidant, prevents the cytotoxicity. We exposed murine oligodendrocytes (158 N) to hexacosanoic acid (C26:0, 1-100 µM) for 24 h and measured reactive oxygen species (ROS) and cell death. Low concentrations of C26:0 (≤25 µM) induced a mild effect on cell survival with no alterations in ROS or total glutathione (GSH) concentrations. However, analysis of the mitochondrial status of cells treated with C26:0 (25 µM) revealed depletion in mitochondrial GSH (mtGSH) and a decrease in the inner membrane potential. These results indicate that VLCFA disturbs the mitochondrial membrane potential causing ROS accumulation, oxidative stress, and cell death. We further tested whether NAC (500 µM) can prevent the mitochondria-specific effects of VLCFA in C26:0-treated oligodendrocytes. Our results demonstrate that NAC improves mtGSH levels and mitochondrial function in oligodendrocytes, indicating that it has potential use in the treatment of ALD and related disorders.
Collapse
Affiliation(s)
- Jie Zhou
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, 2001 6th Street SE, Minneapolis, MN 55455, USA; (J.Z.); (M.R.T.); (J.C.C.)
| | - Marcia R. Terluk
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, 2001 6th Street SE, Minneapolis, MN 55455, USA; (J.Z.); (M.R.T.); (J.C.C.)
| | - Paul J. Orchard
- Division of Pediatric Blood and Marrow Transplantation, Department of Pediatrics, Medical School, University of Minnesota, 425 East River Parkway, Minneapolis, MN 55455, USA;
| | - James C. Cloyd
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, 2001 6th Street SE, Minneapolis, MN 55455, USA; (J.Z.); (M.R.T.); (J.C.C.)
| | - Reena V. Kartha
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, 2001 6th Street SE, Minneapolis, MN 55455, USA; (J.Z.); (M.R.T.); (J.C.C.)
- Correspondence: ; Tel.: +1-612-626-2436
| |
Collapse
|
27
|
Ma Y, Sun Y, Sun L, Liu X, Zeng R, Lin X, Li Y. Effects of gut microbiota and fatty acid metabolism on dyslipidemia following weight-loss diets in women: Results from a randomized controlled trial. Clin Nutr 2021; 40:5511-5520. [PMID: 34656033 DOI: 10.1016/j.clnu.2021.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/08/2021] [Accepted: 09/10/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS In our early feeding trial among overweight and obese Chinese women, both low-carbohydrate (LC) and calorie-restricted (CR) diets reduced weight and fat mass, but only the LC diet significantly improved dyslipidemia. We aimed to investigate the impacts of altered gut microbiota, fatty acid (FAs), and acylcarnitines, markers of mitochondrial function on blood lipids. METHODS Fecal and blood samples from 48 participants at baseline and the end of a 12-week trial were used to perform metagenomics and targeted-metabolomics including erythrocyte FAs and plasma acylcarnitines, respectively. RESULTS The two diets altered microbial structure and co-abundance gene clusters (CAGs) at different magnitudes. After a 12-week intervention, the Bacteroidetes/Firmicutes ratio increased significantly in the LC diet (P = 0.015) but not in the CR diet, which only showed an increased trend (P = 0.28). At the microbial function level, the LC group showed lower branched-chain amino acid biosynthesis and higher serine biosynthesis than the CR group. Moreover, the LC diet reduced levels of 14:0 and 16:1n-7 FAs in the de novo lipogenesis pathway, but increased 20:5n-3 compared with the CR diet. Both groups had increased plasma acylcarnitines except that the LC group had larger elevated short-chain acylcarnitines. After backward stepwise selection, a cluster of changed CAGs, FAs and acylcarnitines were found to be associated with improved lipid profile. However, changed CAGs showed higher contribution rates in elevating HDL-cholesterol (81.6%) and reducing triglycerides (89.3%) than changed FAs and acylcarnitines. CONCLUSIONS The two weight-loss diets induced different changes of gut microbiota, plasma acylcarnitines, and erythrocyte FAs. Changes in gut microbiota rather than FA or acylcarnitine profiles showed greater contribution to improved lipid profile in these overweight and obese Chinese women. TRIAL REGISTRATION The trial was registered at http://clinicaltrials.gov/show/NCT01358890.
Collapse
Affiliation(s)
- Yiwei Ma
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yidi Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Liang Sun
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xin Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Rong Zeng
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xu Lin
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Yixue Li
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; Guangzhou Laboratory, Guangzhou, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, 200032, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
28
|
Yang H, Mayneris-Perxachs J, Boqué N, del Bas JM, Arola L, Yuan M, Türkez H, Uhlén M, Borén J, Zhang C, Mardinoglu A, Caimari A. Combined Metabolic Activators Decrease Liver Steatosis by Activating Mitochondrial Metabolism in Hamsters Fed with a High-Fat Diet. Biomedicines 2021; 9:1440. [PMID: 34680557 PMCID: PMC8533474 DOI: 10.3390/biomedicines9101440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/13/2023] Open
Abstract
Although the prevalence of non-alcoholic fatty liver disease (NAFLD) continues to increase, there is no effective treatment approved for this condition. We previously showed, in high-fat diet (HFD)-fed mice, that the supplementation of combined metabolic activators (CMA), including nicotinamide riboside (NAD+ precursor) and the potent glutathione precursors serine and N-acetyl-l-cysteine (NAC), significantly decreased fatty liver by promoting fat oxidation in mitochondria. Afterwards, in a one-day proof-of-concept human supplementation study, we observed that this CMA, including also L-carnitine tartrate (LCT), resulted in increased fatty acid oxidation and de novo glutathione synthesis. However, the underlying molecular mechanisms associated with supplementation of CMA have not been fully elucidated. Here, we demonstrated in hamsters that the chronic supplementation of this CMA (changing serine for betaine) at two doses significantly decreased hepatic steatosis. We further generated liver transcriptomics data and integrated these data using a liver-specific genome-scale metabolic model of liver tissue. We systemically determined the molecular changes after the supplementation of CMA and found that it activates mitochondria in the liver tissue by modulating global lipid, amino acid, antioxidant and folate metabolism. Our findings provide extra evidence about the beneficial effects of a treatment based on this CMA against NAFLD.
Collapse
Affiliation(s)
- Hong Yang
- Science for Life Laboratory, KTH Royal Institute of Technology, SE-17165 Stockholm, Sweden; (H.Y.); (M.Y.); (M.U.); (C.Z.)
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Doctor Josep Trueta, 17190 Girona, Spain;
- Center for Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Noemí Boqué
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain; (N.B.); (J.M.d.B.); (L.A.)
| | - Josep M. del Bas
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain; (N.B.); (J.M.d.B.); (L.A.)
| | - Lluís Arola
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain; (N.B.); (J.M.d.B.); (L.A.)
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Meng Yuan
- Science for Life Laboratory, KTH Royal Institute of Technology, SE-17165 Stockholm, Sweden; (H.Y.); (M.Y.); (M.U.); (C.Z.)
| | - Hasan Türkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum 25030, Turkey;
| | - Mathias Uhlén
- Science for Life Laboratory, KTH Royal Institute of Technology, SE-17165 Stockholm, Sweden; (H.Y.); (M.Y.); (M.U.); (C.Z.)
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, SE-40233 Gothenburg, Sweden;
| | - Cheng Zhang
- Science for Life Laboratory, KTH Royal Institute of Technology, SE-17165 Stockholm, Sweden; (H.Y.); (M.Y.); (M.U.); (C.Z.)
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH Royal Institute of Technology, SE-17165 Stockholm, Sweden; (H.Y.); (M.Y.); (M.U.); (C.Z.)
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London WC2R 2LS, UK
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain; (N.B.); (J.M.d.B.); (L.A.)
| |
Collapse
|
29
|
Salivary Redox Biomarkers in Insulin Resistance: Preclinical Studies in an Animal Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3734252. [PMID: 34557264 PMCID: PMC8455206 DOI: 10.1155/2021/3734252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/24/2021] [Indexed: 12/18/2022]
Abstract
Insulin resistance (IR) is a condition of impaired tissue response to insulin. Although there are many methods to diagnose IR, new biomarkers are still being sought for early and noninvasive diagnosis of the disease. Of particular interest in laboratory diagnostics is saliva collected in a stress-free, noninvasive, and straightforward manner. The purpose of the study was to evaluate the diagnostic utility of salivary redox biomarkers in preclinical studies in an animal model. The study was conducted on 20 male Wistar rats divided into two equal groups: a standard diet and a high-fat diet (HFD). In all rats fed the HFD, IR was confirmed by an elevated homeostasis model assessment (HOMA-IR) index. We have shown that IR is responsible for the depletion of the enzymatic (↓superoxide dismutase) and nonenzymatic (↓ascorbic acid, ↓reduced glutathione (GSH)) antioxidant barrier at both the central (serum/plasma) and salivary gland (saliva) levels. In IR rats, we also demonstrated significantly higher concentrations of protein/lipid oxidation (↑protein carbonyls, ↑4-hydroxynoneal (4-HNE)), glycation (↑advanced glycation end products), and nitration (↑3-nitrotyrosine) products in both saliva and blood plasma. Salivary nonenzymatic antioxidants and oxidative stress products generally correlate with their blood levels, while GSH and 4-HNE have the highest correlation coefficient. Salivary GSH and 4-HNE correlate with body weight and BMI and indices of carbohydrate metabolism (glucose, insulin, HOMA-IR) and proinflammatory adipokines (leptin, resistin, TNF-α). These biomarkers differentiate IR from healthy controls with very high sensitivity (100%) and specificity (100%). The high diagnostic utility of salivary GSH and 4-HNE is also confirmed by multivariate regression analysis. Summarizing, saliva can be used to assess the systemic antioxidant status and the intensity of systemic oxidative stress. Salivary GSH and 4-HNE may be potential biomarkers of IR progression. There is a need for human clinical trials to evaluate the diagnostic utility of salivary redox biomarkers in IR conditions.
Collapse
|
30
|
Activation of a Specific Gut Bacteroides-Folate-Liver Axis Benefits for the Alleviation of Nonalcoholic Hepatic Steatosis. Cell Rep 2021; 32:108005. [PMID: 32783933 DOI: 10.1016/j.celrep.2020.108005] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 06/24/2020] [Accepted: 07/16/2020] [Indexed: 02/08/2023] Open
Abstract
A beneficial gut Bacteroides-folate-liver pathway regulating lipid metabolism is demonstrated. Oral administration of a Ganoderma meroterpene derivative (GMD) ameliorates nonalcoholic hepatic steatosis in the liver of fa/fa rats by reducing endotoxemia, enhancing lipid oxidation, decreasing de novo lipogenesis, and suppressing lipid export from the liver. An altered gut microbiota with an increase of butyrate and folate plays a causative role in the effects of GMD. The commensal bacteria Bacteroides xylanisolvens, Bacteroides thetaiotaomicron, Bacteroides dorei, and Bacteroides uniformis, which are enriched by GMD, are major contributors to the increased gut folate. Administration of live B. xylanisolvens reduces hepatic steatosis and enhances the folate-mediated signaling pathways in mice. Knockout of the folate biosynthetic folp gene in B. xylanisolvens blocks its folate production and beneficial effects. This work confirms the therapeutic potential of GMD and B. xylanisolvens in alleviating nonalcoholic hepatic steatosis and provides evidence for benefits of the gut Bacteroides-folate-liver pathway.
Collapse
|
31
|
Chung KW. Advances in Understanding of the Role of Lipid Metabolism in Aging. Cells 2021; 10:cells10040880. [PMID: 33924316 PMCID: PMC8068994 DOI: 10.3390/cells10040880] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
During aging, body adiposity increases with changes in the metabolism of lipids and their metabolite levels. Considering lipid metabolism, excess adiposity with increased lipotoxicity leads to various age-related diseases, including cardiovascular disease, cancer, arthritis, type 2 diabetes, and Alzheimer's disease. However, the multifaceted nature and complexities of lipid metabolism make it difficult to delineate its exact mechanism and role during aging. With advances in genetic engineering techniques, recent studies have demonstrated that changes in lipid metabolism are associated with aging and age-related diseases. Lipid accumulation and impaired fatty acid utilization in organs are associated with pathophysiological phenotypes of aging. Changes in adipokine levels contribute to aging by modulating changes in systemic metabolism and inflammation. Advances in lipidomic techniques have identified changes in lipid profiles that are associated with aging. Although it remains unclear how lipid metabolism is regulated during aging, or how lipid metabolites impact aging, evidence suggests a dynamic role for lipid metabolism and its metabolites as active participants of signaling pathways and regulators of gene expression. This review describes recent advances in our understanding of lipid metabolism in aging, including established findings and recent approaches.
Collapse
Affiliation(s)
- Ki Wung Chung
- College of Pharmacy, Pusan National University, Busan 46214, Korea
| |
Collapse
|
32
|
Kumar P, Liu C, Hsu JW, Chacko S, Minard C, Jahoor F, Sekhar RV. Glycine and N-acetylcysteine (GlyNAC) supplementation in older adults improves glutathione deficiency, oxidative stress, mitochondrial dysfunction, inflammation, insulin resistance, endothelial dysfunction, genotoxicity, muscle strength, and cognition: Results of a pilot clinical trial. Clin Transl Med 2021; 11:e372. [PMID: 33783984 PMCID: PMC8002905 DOI: 10.1002/ctm2.372] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/07/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Oxidative stress (OxS) and mitochondrial dysfunction are implicated as causative factors for aging. Older adults (OAs) have an increased prevalence of elevated OxS, impaired mitochondrial fuel-oxidation (MFO), elevated inflammation, endothelial dysfunction, insulin resistance, cognitive decline, muscle weakness, and sarcopenia, but contributing mechanisms are unknown, and interventions are limited/lacking. We previously reported that inducing deficiency of the antioxidant tripeptide glutathione (GSH) in young mice results in mitochondrial dysfunction, and that supplementing GlyNAC (combination of glycine and N-acetylcysteine [NAC]) in aged mice improves naturally-occurring GSH deficiency, mitochondrial impairment, OxS, and insulin resistance. This pilot trial in OA was conducted to test the effect of GlyNAC supplementation and withdrawal on intracellular GSH concentrations, OxS, MFO, inflammation, endothelial function, genotoxicity, muscle and glucose metabolism, body composition, strength, and cognition. METHODS A 36-week open-label clinical trial was conducted in eight OAs and eight young adults (YAs). After all the participants underwent an initial (pre-supplementation) study, the YAs were released from the study. OAs were studied again after GlyNAC supplementation for 24 weeks, and GlyNAC withdrawal for 12 weeks. Measurements included red-blood cell (RBC) GSH, MFO; plasma biomarkers of OxS, inflammation, endothelial function, glucose, and insulin; gait-speed, grip-strength, 6-min walk test; cognitive tests; genomic-damage; glucose-production and muscle-protein breakdown rates; and body-composition. RESULTS GlyNAC supplementation for 24 weeks in OA corrected RBC-GSH deficiency, OxS, and mitochondrial dysfunction; and improved inflammation, endothelial dysfunction, insulin-resistance, genomic-damage, cognition, strength, gait-speed, and exercise capacity; and lowered body-fat and waist-circumference. However, benefits declined after stopping GlyNAC supplementation for 12 weeks. CONCLUSIONS GlyNAC supplementation for 24-weeks in OA was well tolerated and lowered OxS, corrected intracellular GSH deficiency and mitochondrial dysfunction, decreased inflammation, insulin-resistance and endothelial dysfunction, and genomic-damage, and improved strength, gait-speed, cognition, and body composition. Supplementing GlyNAC in aging humans could be a simple and viable method to promote health and warrants additional investigation.
Collapse
Affiliation(s)
- Premranjan Kumar
- Translational Metabolism Unit, Division of Endocrinology, Diabetes and MetabolismDepartment of Medicine, Baylor College of MedicineHoustonTexas77030USA
| | - Chun Liu
- Translational Metabolism Unit, Division of Endocrinology, Diabetes and MetabolismDepartment of Medicine, Baylor College of MedicineHoustonTexas77030USA
| | - Jean W. Hsu
- USDA/ARS Children's Nutritional Research CenterHoustonTexasUSA
| | - Shaji Chacko
- USDA/ARS Children's Nutritional Research CenterHoustonTexasUSA
| | - Charles Minard
- Institute of Clinical and Translational Research, Baylor College of MedicineHoustonTexas
| | - Farook Jahoor
- USDA/ARS Children's Nutritional Research CenterHoustonTexasUSA
| | - Rajagopal V. Sekhar
- Translational Metabolism Unit, Division of Endocrinology, Diabetes and MetabolismDepartment of Medicine, Baylor College of MedicineHoustonTexas77030USA
| |
Collapse
|
33
|
Signaling Network Centered on mTORC1 Dominates Mammalian Intestinal Stem Cell Ageing. Stem Cell Rev Rep 2020; 17:842-849. [PMID: 33201440 DOI: 10.1007/s12015-020-10073-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 12/19/2022]
Abstract
The intestine integrates the function of digestion, absorption, and barrier, which is easily damaged by the external factors upon ageing. The intestinal stem cells (ISCs) exist at the intestinal crypt base and play an indispensable role in intestinal homeostasis and regeneration. The intestine ageing contributes to malabsorption and other associated illnesses, which were considered to be related to ISCs. Here, we summarize the current research progress of mammalian ISCs ageing and pay more attention to the central regulatory role of the mTORC1 signaling pathway in regulating mammalian ISCs ageing, and its related AMPK, FOXO, Wnt signaling pathways. Furthermore, we also discuss the interventions aimed at mTORC1 and its associated signaling pathways, which may provide potential strategies for rejuvenating aged ISCs and the therapy of age-related intestinal diseases. Graphical abstract Many signaling pathways are altered in the ageing ISCs, thereby inducing the decrease of ISC self-renewal, differentiation, and regeneration, an increasing of oxidative stress may contribute to damage to the ISCs. Interventions such as calorie restriction, fasting and so on can effectively alleviate these adverse effects.
Collapse
|
34
|
Simmons RM, McKnight SM, Edwards AK, Wu G, Satterfield MC. Obesity increases hepatic glycine dehydrogenase and aminomethyltransferase expression while dietary glycine supplementation reduces white adipose tissue in Zucker diabetic fatty rats. Amino Acids 2020; 52:1413-1423. [PMID: 33057941 DOI: 10.1007/s00726-020-02901-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/06/2020] [Indexed: 12/31/2022]
Abstract
Obesity is associated with altered glycine metabolism in humans. This study investigated the mechanisms regulating glycine metabolism in obese rats. Eight-week-old Zucker diabetic fatty rats (ZDF; a type-II diabetic animal model) received either 1% glycine or 1.19% L-alanine (isonitrogenous control) in drinking water for 6 weeks. An additional group of lean Zucker rats also received 1.19% L-alanine as a lean control. Glycine concentrations in serum and liver were markedly lower in obese versus lean rats. Enteral glycine supplementation restored both serum and hepatic glycine levels, while reducing mesenteric and internal white fat mass compared with alanine-treated ZDF rats. Blood glucose and non-esterified fatty acid (NEFA) concentrations did not differ between the control and glycine-supplemented ZDF rats (P > 0.10). Both mRNA and protein expression of aminomethyltransferase (AMT) and glycine dehydrogenase, decarboxylating (GLDC) were increased in the livers of obese versus lean rats (P < 0.05). In contrast, glycine cleavage system H (GCSH) hepatic mRNA expression was downregulated in obese versus lean rats, although there was no change in protein expression. These findings indicate that reduced quantities of glycine observed in obese subjects likely results from an upregulation of the hepatic glycine cleavage system and that dietary glycine supplementation potentially reduces obesity in ZDF rats.
Collapse
Affiliation(s)
- Rebecca M Simmons
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Sorin M McKnight
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Ashley K Edwards
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Michael C Satterfield
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
35
|
Kumar P, Liu C, Suliburk JW, Minard CG, Muthupillai R, Chacko S, Hsu JW, Jahoor F, Sekhar RV. Supplementing Glycine and N-acetylcysteine (GlyNAC) in Aging HIV Patients Improves Oxidative Stress, Mitochondrial Dysfunction, Inflammation, Endothelial Dysfunction, Insulin Resistance, Genotoxicity, Strength, and Cognition: Results of an Open-Label Clinical Trial. Biomedicines 2020; 8:biomedicines8100390. [PMID: 33007928 PMCID: PMC7601820 DOI: 10.3390/biomedicines8100390] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/27/2020] [Accepted: 09/27/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Patients with HIV (PWH) develop geriatric comorbidities, including functional and cognitive decline at a younger age. However, contributing mechanisms are unclear and interventions are lacking. We hypothesized that deficiency of the antioxidant protein glutathione (GSH) contributes to multiple defects representing premature aging in PWH, and that these defects could be improved by supplementing the GSH precursors glycine and N-acetylcysteine (GlyNAC). Methods: We conducted an open label clinical trial where eight PWH and eight matched uninfected-controls were studied at baseline. PWH were studied again 12-weeks after receiving GlyNAC, and 8-weeks after stopping GlyNAC. Controls did not receive supplementation. Outcome measures included red-blood cell and muscle GSH concentrations, mitochondrial function, mitophagy and autophagy, oxidative stress, inflammation, endothelial function, genomic damage, insulin resistance, glucose production, muscle-protein breakdown rates, body composition, physical function and cognition. Results: PWH had significant defects in measured outcomes, which improved with GlyNAC supplementation. However, benefits receded after stopping GlyNAC. Conclusions: This open label trial finds that PWH have premature aging based on multiple biological and functional defects, and identifies novel mechanistic explanations for cognitive and physical decline. Nutritional supplementation with GlyNAC improves comorbidities suggestive of premature aging in PWH including functional and cognitive decline, and warrants additional investigation.
Collapse
Affiliation(s)
- Premranjan Kumar
- Translational Metabolism Unit, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (P.K.); (C.L.)
| | - Chun Liu
- Translational Metabolism Unit, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (P.K.); (C.L.)
| | - James W. Suliburk
- Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA;
| | - Charles G. Minard
- Institute of Clinical and Translational Research, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA;
| | | | - Shaji Chacko
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA; (S.C.); (J.W.H.); (F.J.)
| | - Jean W. Hsu
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA; (S.C.); (J.W.H.); (F.J.)
| | - Farook Jahoor
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA; (S.C.); (J.W.H.); (F.J.)
| | - Rajagopal V. Sekhar
- Translational Metabolism Unit, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (P.K.); (C.L.)
- Thomas Street HIV-Health Center, Harris Health, Houston, TX 77009, USA
- Correspondence:
| |
Collapse
|
36
|
Lomax TM, Ashraf S, Yilmaz G, Harmancey R. Loss of Uncoupling Protein 3 Attenuates Western Diet-Induced Obesity, Systemic Inflammation, and Insulin Resistance in Rats. Obesity (Silver Spring) 2020; 28:1687-1697. [PMID: 32716607 PMCID: PMC7483834 DOI: 10.1002/oby.22879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/09/2020] [Accepted: 04/29/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Uncoupling protein 3 (UCP3) is a mitochondrial carrier related to fatty acid metabolism. Although gene variants of UCP3 are associated with human obesity, their contribution to increased adiposity remains unclear. This study investigated the impact that loss of UCP3 has on diet-induced obesity in rats. METHODS Male UCP3 knockout rats (ucp3-/- ) and wild-type littermates (ucp3+/+ ) were fed a high-fat, high-carbohydrate Western diet for 21 weeks. Body composition was analyzed by EchoMRI. Whole-body insulin sensitivity and rates of tissue glucose uptake were determined by using hyperinsulinemic-euglycemic clamp. Changes in tissue physiology were interrogated by microscopy and RNA sequencing. RESULTS Loss of UCP3 decreased fat mass gain, white adipocytes size, and systemic inflammation. The ucp3-/- rats also exhibited preserved insulin sensitivity and increased glucose uptake in interscapular brown adipose tissue (iBAT). Brown adipocytes from ucp3-/- rats were protected from cellular degeneration caused by lipid accumulation and from reactive oxygen species-induced protein sulfonation. Increased glutathione levels in iBAT from ucp3-/- rats were linked to upregulation of genes encoding enzymes from the transsulfuration pathway in that tissue. CONCLUSIONS Loss of UCP3 partially protects rats from diet-induced obesity. This phenotype is related to induction of a compensatory antioxidant mechanism and prevention of iBAT whitening.
Collapse
Affiliation(s)
- Tyler M. Lomax
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA
- Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Sadia Ashraf
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA
- Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Gizem Yilmaz
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA
- Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Romain Harmancey
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA
- Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
37
|
Liu X, Zhang M, Liu X, Sun H, Guo Z, Tang X, Wang Z, Li J, He L, Zhang W, Wang Y, Li H, Fan L, Tsang SX, Zhang Y, Sun W. Investigation of Plasma Metabolic and Lipidomic Characteristics of a Chinese Cohort and a Pilot Study of Renal Cell Carcinoma Biomarker. Front Oncol 2020; 10:1507. [PMID: 33014794 PMCID: PMC7461914 DOI: 10.3389/fonc.2020.01507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/14/2020] [Indexed: 02/04/2023] Open
Abstract
Plasma metabolomics and lipidomics have been commonly used for biomarker discovery. Studies in white and Japanese populations suggested that gender and age can affect circulating plasma metabolite profiles; however, the metabolomics characteristics in Chinese population has not been surveyed. In our study, we applied liquid chromatography-mass spectrometry-based approach to analyze Chinese plasma metabolome and lipidome in a cohort of 534 healthy adults (aging from 15 to 79). Fatty-acid metabolism was found to be gender- and age-dependent in Chinese, similar with metabolomics characteristics in Japanese and white populations. Differently, lipids, such as TGs and DGs, were found to be gender-independent in Chinese population. Moreover, nicotinate and nicotinamide metabolism was found to be specifically age-related in Chinese. The application of plasma metabolome and lipidome for renal cell carcinoma diagnosis (143 RCC patients and 34 benign kidney tumor patients) showed good accuracy, with an area under the curve (AUC) of 0.971 for distinction from healthy control, and 0.839 for distinction from the benign. Bile acid metabolism was found to be related to RCC probably combination with intestinal microflora. Definition of the variation and characteristics of Chinese normal plasma metabolome and lipidome might provide a basis for disease biomarker analysis.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Mingxin Zhang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiang Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Haidan Sun
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhengguang Guo
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiaoyue Tang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhan Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Jing Li
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Lu He
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenli Zhang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yajie Wang
- Core Laboratory for Clinical Medical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hanzhong Li
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Lihua Fan
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Shirley X. Tsang
- Principal Investigator BioMatrix Rockville, Rockville, MD, United States
| | - Yushi Zhang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Wei Sun
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
38
|
Palma FR, He C, Danes JM, Paviani V, Coelho DR, Gantner BN, Bonini MG. Mitochondrial Superoxide Dismutase: What the Established, the Intriguing, and the Novel Reveal About a Key Cellular Redox Switch. Antioxid Redox Signal 2020; 32:701-714. [PMID: 31968997 PMCID: PMC7047081 DOI: 10.1089/ars.2019.7962] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Reactive oxygen species (ROS) are now widely recognized as central mediators of cell signaling. Mitochondria are major sources of ROS. Recent Advances: It is now clear that mitochondrial ROS are essential to activate responses to cellular microenvironmental stressors. Mediators of these responses reside in large part in the cytosol. Critical Issues: The primary form of ROS produced by mitochondria is the superoxide radical anion. As a charged radical anion, superoxide is restricted in its capacity to diffuse and convey redox messages outside of mitochondria. In addition, superoxide is a reductant and not particularly efficient at oxidizing targets. Because there are many opportunities for superoxide to be neutralized in mitochondria, it is not completely clear how redox cues generated in mitochondria are converted into diffusible signals that produce transient oxidative modifications in the cytosol or nucleus. Future Directions: To efficiently intervene at the level of cellular redox signaling, it seems that understanding how the generation of superoxide radicals in mitochondria is coupled with the propagation of redox messages is essential. We propose that mitochondrial superoxide dismutase (SOD2) is a major system converting diffusion-restricted superoxide radicals derived from the electron transport chain into highly diffusible hydrogen peroxide (H2O2). This enables the coupling of metabolic changes resulting in increased superoxide to the production of H2O2, a diffusible secondary messenger. As such, to determine whether there are other systems coupling metabolic changes to redox messaging in mitochondria as well as how these systems are regulated is essential.
Collapse
Affiliation(s)
- Flavio R Palma
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Chenxia He
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jeanne M Danes
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Veronica Paviani
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Diego R Coelho
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Benjamin N Gantner
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Marcelo G Bonini
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
39
|
Cytosolic 10-formyltetrahydrofolate dehydrogenase regulates glycine metabolism in mouse liver. Sci Rep 2019; 9:14937. [PMID: 31624291 PMCID: PMC6797707 DOI: 10.1038/s41598-019-51397-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022] Open
Abstract
ALDH1L1 (10-formyltetrahydrofolate dehydrogenase), an enzyme of folate metabolism highly expressed in liver, metabolizes 10-formyltetrahydrofolate to produce tetrahydrofolate (THF). This reaction might have a regulatory function towards reduced folate pools, de novo purine biosynthesis, and the flux of folate-bound methyl groups. To understand the role of the enzyme in cellular metabolism, Aldh1l1−/− mice were generated using an ES cell clone (C57BL/6N background) from KOMP repository. Though Aldh1l1−/− mice were viable and did not have an apparent phenotype, metabolomic analysis indicated that they had metabolic signs of folate deficiency. Specifically, the intermediate of the histidine degradation pathway and a marker of folate deficiency, formiminoglutamate, was increased more than 15-fold in livers of Aldh1l1−/− mice. At the same time, blood folate levels were not changed and the total folate pool in the liver was decreased by only 20%. A two-fold decrease in glycine and a strong drop in glycine conjugates, a likely result of glycine shortage, were also observed in Aldh1l1−/− mice. Our study indicates that in the absence of ALDH1L1 enzyme, 10-formyl-THF cannot be efficiently metabolized in the liver. This leads to the decrease in THF causing reduced generation of glycine from serine and impaired histidine degradation, two pathways strictly dependent on THF.
Collapse
|
40
|
Fasting Activates Fatty Acid Oxidation to Enhance Intestinal Stem Cell Function during Homeostasis and Aging. Cell Stem Cell 2019; 22:769-778.e4. [PMID: 29727683 DOI: 10.1016/j.stem.2018.04.001] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 12/19/2017] [Accepted: 03/30/2018] [Indexed: 12/12/2022]
Abstract
Diet has a profound effect on tissue regeneration in diverse organisms, and low caloric states such as intermittent fasting have beneficial effects on organismal health and age-associated loss of tissue function. The role of adult stem and progenitor cells in responding to short-term fasting and whether such responses improve regeneration are not well studied. Here we show that a 24 hr fast augments intestinal stem cell (ISC) function in young and aged mice by inducing a fatty acid oxidation (FAO) program and that pharmacological activation of this program mimics many effects of fasting. Acute genetic disruption of Cpt1a, the rate-limiting enzyme in FAO, abrogates ISC-enhancing effects of fasting, but long-term Cpt1a deletion decreases ISC numbers and function, implicating a role for FAO in ISC maintenance. These findings highlight a role for FAO in mediating pro-regenerative effects of fasting in intestinal biology, and they may represent a viable strategy for enhancing intestinal regeneration.
Collapse
|
41
|
Cieslik KA, Sekhar RV, Granillo A, Reddy A, Medrano G, Heredia CP, Entman ML, Hamilton DJ, Li S, Reineke E, Gupte AA, Zhang A, Taffet GE. Improved Cardiovascular Function in Old Mice After N-Acetyl Cysteine and Glycine Supplemented Diet: Inflammation and Mitochondrial Factors. J Gerontol A Biol Sci Med Sci 2019. [PMID: 29538624 DOI: 10.1093/gerona/gly034] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Metabolic, inflammatory, and functional changes occur in cardiovascular aging which may stem from oxidative stress and be remediable with antioxidants. Glutathione, an intracellular antioxidant, declines with aging, and supplementation with glutathione precursors, N-acetyl cysteine (NAC) and glycine (Gly), increases tissue glutathione. Thirty-month old mice were fed diets supplemented with NAC or NAC+Gly and, after 7 weeks, cardiac function and molecular studies were performed. The NAC+Gly supplementation improved diastolic function, increasing peak early filling velocity, and reducing relaxation time, left atrial volume, and left ventricle end diastolic pressure. By contrast, cardiac function did not improve with NAC alone. Both diet supplementations decreased cardiac levels of inflammatory mediators; only NAC+Gly reduced leukocyte infiltration. Several mitochondrial genes reduced with aging were upregulated in hearts by NAC+Gly diet supplementation. These Krebs cycle and oxidative phosphorylation enzymes, suggesting improved mitochondrial function, and permeabilized cardiac fibers from NAC+Gly-fed mice produced ATP from carbohydrate and fatty acid sources, whereas fibers from control old mice were less able to utilize fatty acids. Our data indicate that NAC+Gly supplementation can improve diastolic function in the old mouse and may have potential to prevent important morbidities for older people.
Collapse
Affiliation(s)
- Katarzyna A Cieslik
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Rajagopal V Sekhar
- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, Texas
| | - Alejandro Granillo
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Anilkumar Reddy
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Indus Instruments, Webster, Texas
| | - Guillermo Medrano
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Celia Pena Heredia
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Mark L Entman
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Dale J Hamilton
- Department of Medicine, Houston Methodist, Texas.,Center for Bioenergetics, Houston Methodist Hospital Research Institute, Texas
| | - Shumin Li
- Center for Bioenergetics, Houston Methodist Hospital Research Institute, Texas
| | - Erin Reineke
- Center for Bioenergetics, Houston Methodist Hospital Research Institute, Texas
| | - Anisha A Gupte
- Department of Medicine, Houston Methodist, Texas.,Center for Bioenergetics, Houston Methodist Hospital Research Institute, Texas
| | - Aijun Zhang
- Department of Medicine, Houston Methodist, Texas.,Center for Bioenergetics, Houston Methodist Hospital Research Institute, Texas
| | - George E Taffet
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Houston Methodist, Texas.,Section of Geriatrics, Department of Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
42
|
Monnerat G, Evaristo GPC, Evaristo JAM, Dos Santos CGM, Carneiro G, Maciel L, Carvalho VO, Nogueira FCS, Domont GB, Campos de Carvalho AC. Metabolomic profiling suggests systemic signatures of premature aging induced by Hutchinson-Gilford progeria syndrome. Metabolomics 2019; 15:100. [PMID: 31254107 DOI: 10.1007/s11306-019-1558-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/15/2019] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Hutchinson-Gilford Progeria Syndrome (HGPS) is an extremely rare genetic disorder. HGPS children present a high incidence of cardiovascular complications along with altered metabolic processes and an accelerated aging process. No metabolic biomarker is known and the mechanisms underlying premature aging are not fully understood. OBJECTIVES The present work aims to evaluate the metabolic alterations in HGPS using high resolution mass spectrometry. METHODS The present study analyzed plasma from six HGPS patients of both sexes (7.7 ± 1.4 years old; mean ± SD) and eight controls (8.6 ± 2.3 years old) by LC-MS/MS in high-resolution non-targeted metabolomics (Q-Exactive Plus). Targeted metabolomics was used to validate some of the metabolites identified by the non-targeted method in a triple quadrupole (TSQ-Quantiva). RESULTS We found several endogenous metabolites with statistical differences between control and HGPS children. Multivariate statistical analysis showed a clear separation between groups. Potential novel metabolic biomarkers were identified using the multivariate area under ROC curve (AUROC) based analysis, showing an AUC value higher than 0.80 using only two metabolites, and tending to 1.00 when increasing the number of metabolites in the AUROC model. Taken together, changed metabolic pathways involve sphingolipids, amino acids, and oxidation of fatty acids, among others. CONCLUSION Our data show significant alterations in cellular energy use and availability, in signal transduction, and lipid metabolites, adding new insights on metabolic alterations associated with premature aging and suggesting novel putative biomarkers.
Collapse
Affiliation(s)
- Gustavo Monnerat
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373 - CCS - Bloco G, Rio de Janeiro, 21941-902, Brazil
- Laboratory of Proteomics, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - Gabriel Carneiro
- Laboratory of Proteomics, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Maciel
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373 - CCS - Bloco G, Rio de Janeiro, 21941-902, Brazil
| | | | - Fábio César Sousa Nogueira
- Laboratory of Proteomics, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Proteomics Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373 - CCS - Bloco G, Rio de Janeiro, 21941-902, Brazil
| | - Gilberto Barbosa Domont
- Proteomics Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373 - CCS - Bloco G, Rio de Janeiro, 21941-902, Brazil.
| | - Antonio Carlos Campos de Carvalho
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373 - CCS - Bloco G, Rio de Janeiro, 21941-902, Brazil.
- National Institute of Cardiology, Rio de Janeiro, Brazil.
| |
Collapse
|
43
|
Maniyadath B, Chattopadhyay T, Verma S, Kumari S, Kulkarni P, Banerjee K, Lazarus A, Kokane SS, Shetty T, Anamika K, Kolthur-Seetharam U. Loss of Hepatic Oscillatory Fed microRNAs Abrogates Refed Transition and Causes Liver Dysfunctions. Cell Rep 2019; 26:2212-2226.e7. [DOI: 10.1016/j.celrep.2019.01.087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/02/2018] [Accepted: 01/24/2019] [Indexed: 10/27/2022] Open
|
44
|
Lei P, Tian S, Teng C, Huang L, Liu X, Wang J, Zhang Y, Li B, Shan Y. Sulforaphane Improves Lipid Metabolism by Enhancing Mitochondrial Function and Biogenesis In Vivo and In Vitro. Mol Nutr Food Res 2019; 63:e1800795. [PMID: 30578708 DOI: 10.1002/mnfr.201800795] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/16/2018] [Indexed: 12/11/2022]
Abstract
SCOPE Sulforaphane (SFN) is reported to reduce the accumulation of lipids. However, the underling mechanism remains unclear. In this study, the potential of SFN to improve lipid metabolism is investigated through altering mitochondrial function and biogenesis-related mechanisms. METHODS AND RESULTS The abnormal lipid metabolism model was established both in HHL-5 cells and in rats by feeding a high-fat diet (HFD) for 10 weeks. The current findings suggest that SFN alleviates the swelling of mitochondria and stimulates mitochondrial biogenesis. The reduced expression of NRF1 and TFAM, were reversed by SFN. SFN increases the levels of antioxidant compounds via nuclear factor erythroid-2-related factor (Nrf2) activation. Furthermore, SFN improves multiple mitochondrial bioactivities, such as mitochondrial membrane potential, ATP, and the electron transfer chain based on PGC-1α pathway. SFN also activates lipolysis by transcriptionally upregulating adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL). CONCLUSIONS SFN enhances utilization of lipids via both the PGC- 1α-dependent promotion of mitochondrial biogenesis and Nrf2 dependent improvement of mitochondrial function.
Collapse
Affiliation(s)
- Peng Lei
- Department of Food Science and Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Harbin, Heilongjiang, 150001, P. R. China
| | - Sicong Tian
- Department of Food Science and Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Harbin, Heilongjiang, 150001, P. R. China
| | - Chunying Teng
- Department of Food Science and Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Harbin, Heilongjiang, 150001, P. R. China
| | - Lei Huang
- Department of Food Science and Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Harbin, Heilongjiang, 150001, P. R. China
| | - Xiaodong Liu
- Department of Food Science and Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Harbin, Heilongjiang, 150001, P. R. China
| | - Jiaojiao Wang
- Center for Drug Safety Evaluation, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, Heilongjiang, 150040, P. R. China
| | - Yao Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 92 Xidazhi Street, Harbin, Heilongjiang, 150001, P. R. China
| | - Baolong Li
- Center for Drug Safety Evaluation, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, Heilongjiang, 150040, P. R. China
| | - Yujuan Shan
- Department of Food Science and Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Harbin, Heilongjiang, 150001, P. R. China
| |
Collapse
|
45
|
Teskey G, Abrahem R, Cao R, Gyurjian K, Islamoglu H, Lucero M, Martinez A, Paredes E, Salaiz O, Robinson B, Venketaraman V. Glutathione as a Marker for Human Disease. Adv Clin Chem 2018; 87:141-159. [PMID: 30342710 DOI: 10.1016/bs.acc.2018.07.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glutathione (GSH), often referred to as "the master antioxidant," participates not only in antioxidant defense systems, but many metabolic processes, and therefore its role cannot be overstated. GSH deficiency causes cellular risk for oxidative damage and thus as expected, GSH imbalance is observed in a wide range of pathological conditions including tuberculosis (TB), HIV, diabetes, cancer, and aging. Consequently, it is not surprising that GSH has attracted the attention of biological researchers and pharmacologists alike as a possible target for medical intervention. Here, we discuss the role GSH plays amongst these pathological conditions to illuminate how it can be used as a marker for human disease.
Collapse
Affiliation(s)
- Garrett Teskey
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Rachel Abrahem
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Ruoqiong Cao
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States; College of life Sciences, Hebei University, Baoding, China
| | - Karo Gyurjian
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Hicret Islamoglu
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, United States
| | - Mariana Lucero
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Andrew Martinez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Erik Paredes
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Oscar Salaiz
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Brittanie Robinson
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Vishwanath Venketaraman
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States; Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
46
|
Gulshan M, Yaku K, Okabe K, Mahmood A, Sasaki T, Yamamoto M, Hikosaka K, Usui I, Kitamura T, Tobe K, Nakagawa T. Overexpression of Nmnat3 efficiently increases NAD and NGD levels and ameliorates age-associated insulin resistance. Aging Cell 2018; 17:e12798. [PMID: 29901258 PMCID: PMC6052485 DOI: 10.1111/acel.12798] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/09/2018] [Accepted: 05/26/2018] [Indexed: 12/11/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is an important cofactor that regulates various biological processes, including metabolism and gene expression. As a coenzyme, NAD controls mitochondrial respiration through enzymes of the tricarboxylic acid (TCA) cycle, β‐oxidation, and oxidative phosphorylation and also serves as a substrate for posttranslational protein modifications, such as deacetylation and ADP‐ribosylation by sirtuins and poly(ADP‐ribose) polymerase (PARP), respectively. Many studies have demonstrated that NAD levels decrease with aging and that these declines cause various aging‐associated diseases. In contrast, activation of NAD metabolism prevents declines in NAD levels during aging. In particular, dietary supplementation with NAD precursors has been associated with protection against age‐associated insulin resistance. However, it remains unclear which NAD synthesis pathway is important and/or efficient at increasing NAD levels in vivo. In this study, Nmnat3 overexpression in mice efficiently increased NAD levels in various tissues and prevented aging‐related declines in NAD levels. We also demonstrated that Nmnat3‐overexpressing (Nmnat3 Tg) mice were protected against diet‐induced and aging‐associated insulin resistance. Moreover, in skeletal muscles of Nmnat3 Tg mice, TCA cycle activity was significantly enhanced, and the energy source for oxidative phosphorylation was shifted toward fatty acid oxidation. Furthermore, reactive oxygen species (ROS) generation was significantly suppressed in aged Nmnat3 Tg mice. Interestingly, we also found that concentrations of the NAD analog nicotinamide guanine dinucleotide (NGD) were dramatically increased in Nmnat3 Tg mice. These results suggest that Nmnat3 overexpression improves metabolic health and that Nmnat3 is an attractive therapeutic target for metabolic disorders that are caused by aging.
Collapse
Affiliation(s)
- Maryam Gulshan
- Frontier Research Core for Life Sciences; University of Toyama; Toyama Japan
- Department of Metabolism and Nutrition; Graduate School of Medicine and Pharmaceutical Science for Research; University of Toyama; Toyama Japan
- First Department of Internal Medicine; Graduate School of Medicine and Pharmaceutical Science for Research; University of Toyama; Toyama Japan
| | - Keisuke Yaku
- Frontier Research Core for Life Sciences; University of Toyama; Toyama Japan
- Department of Metabolism and Nutrition; Graduate School of Medicine and Pharmaceutical Science for Research; University of Toyama; Toyama Japan
| | - Keisuke Okabe
- Frontier Research Core for Life Sciences; University of Toyama; Toyama Japan
- Department of Metabolism and Nutrition; Graduate School of Medicine and Pharmaceutical Science for Research; University of Toyama; Toyama Japan
- First Department of Internal Medicine; Graduate School of Medicine and Pharmaceutical Science for Research; University of Toyama; Toyama Japan
| | - Arshad Mahmood
- Frontier Research Core for Life Sciences; University of Toyama; Toyama Japan
- Department of Metabolism and Nutrition; Graduate School of Medicine and Pharmaceutical Science for Research; University of Toyama; Toyama Japan
- First Department of Internal Medicine; Graduate School of Medicine and Pharmaceutical Science for Research; University of Toyama; Toyama Japan
| | - Tsutomu Sasaki
- Laboratory of Metabolic Signal; Metabolic Signal Research Center; Institute for Molecular and Cellular Regulation; Gunma University; Maebashi Japan
| | - Masashi Yamamoto
- Frontier Research Core for Life Sciences; University of Toyama; Toyama Japan
- Department of Metabolism and Nutrition; Graduate School of Medicine and Pharmaceutical Science for Research; University of Toyama; Toyama Japan
- Department of Otorhinolaryngology-Head and Neck Surgery; Osaka University Graduate School of Medicine; Osaka Japan
| | - Keisuke Hikosaka
- Frontier Research Core for Life Sciences; University of Toyama; Toyama Japan
| | - Isao Usui
- First Department of Internal Medicine; Graduate School of Medicine and Pharmaceutical Science for Research; University of Toyama; Toyama Japan
| | - Tadahiro Kitamura
- Laboratory of Metabolic Signal; Metabolic Signal Research Center; Institute for Molecular and Cellular Regulation; Gunma University; Maebashi Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine; Graduate School of Medicine and Pharmaceutical Science for Research; University of Toyama; Toyama Japan
| | - Takashi Nakagawa
- Frontier Research Core for Life Sciences; University of Toyama; Toyama Japan
- Department of Metabolism and Nutrition; Graduate School of Medicine and Pharmaceutical Science for Research; University of Toyama; Toyama Japan
- Institute of Natural Medicine; University of Toyama; Toyama Japan
| |
Collapse
|
47
|
Vatner DE, Zhang J, Oydanich M, Guers J, Katsyuba E, Yan L, Sinclair D, Auwerx J, Vatner SF. Enhanced longevity and metabolism by brown adipose tissue with disruption of the regulator of G protein signaling 14. Aging Cell 2018; 17:e12751. [PMID: 29654651 PMCID: PMC6052469 DOI: 10.1111/acel.12751] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2018] [Indexed: 12/15/2022] Open
Abstract
Disruption of the regulator for G protein signaling 14 (RGS14) knockout (KO) in mice extends their lifespan and has multiple beneficial effects related to healthful aging, that is, protection from obesity, as reflected by reduced white adipose tissue, protection against cold exposure, and improved metabolism. The observed beneficial effects were mediated by improved mitochondrial function. But most importantly, the main mechanism responsible for the salutary properties of the RGS14 KO involved an increase in brown adipose tissue (BAT), which was confirmed by surgical BAT removal and transplantation to wild-type (WT) mice, a surgical simulation of a molecular knockout. This technique reversed the phenotype of the RGS14 KO and WT, resulting in loss of the improved metabolism and protection against cold exposure in RGS14 KO and conferring this protection to the WT BAT recipients. Another mechanism mediating the salutary features in the RGS14 KO was increased SIRT3. This mechanism was confirmed in the RGS14 X SIRT3 double KO, which no longer demonstrated improved metabolism and protection against cold exposure. Loss of function of the Caenorhabditis elegans RGS-14 homolog confirmed the evolutionary conservation of this mechanism. Thus, disruption of RGS14 is a model of healthful aging, as it not only enhances lifespan, but also protects against obesity and cold exposure and improves metabolism with a key mechanism of increased BAT, which, when removed, eliminates the features of healthful aging.
Collapse
Affiliation(s)
- Dorothy E. Vatner
- Department of Cell Biology & Molecular Medicine; Rutgers University-New Jersey Medical School; Newark NJ USA
| | - Jie Zhang
- Department of Cell Biology & Molecular Medicine; Rutgers University-New Jersey Medical School; Newark NJ USA
| | - Marko Oydanich
- Department of Cell Biology & Molecular Medicine; Rutgers University-New Jersey Medical School; Newark NJ USA
| | - John Guers
- Department of Cell Biology & Molecular Medicine; Rutgers University-New Jersey Medical School; Newark NJ USA
| | - Elena Katsyuba
- Laboratory of Integrative and Systems Physiology; Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
| | - Lin Yan
- Department of Cell Biology & Molecular Medicine; Rutgers University-New Jersey Medical School; Newark NJ USA
| | - David Sinclair
- Department of Genetics; Harvard Medical School; Boston MA USA
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology; Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
| | - Stephen F. Vatner
- Department of Cell Biology & Molecular Medicine; Rutgers University-New Jersey Medical School; Newark NJ USA
| |
Collapse
|
48
|
Nogueira GB, Punaro GR, Oliveira CS, Maciel FR, Fernandes TO, Lima DY, Rodrigues AM, Mouro MG, Araujo SRR, Higa EMS. N-acetylcysteine protects against diabetic nephropathy through control of oxidative and nitrosative stress by recovery of nitric oxide in rats. Nitric Oxide 2018; 78:22-31. [PMID: 29778909 DOI: 10.1016/j.niox.2018.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 04/30/2018] [Accepted: 05/14/2018] [Indexed: 12/22/2022]
Abstract
The diabetes mellitus (DM) induces several changes, with substantial increase of reactive oxygen species (ROS). The ROS cause damage to systemic and renal microvasculature, which could be one of the mechanisms involved in the development of diabetic nephropathy (DN). The ROS modulate other substances like the nitric oxide (NO), a vasodilator with important role in the renal function. N-acetylcysteine (NAC) is an antioxidant that acts replenishing intracellular cysteine levels, which is essential for glutathione formation. The aim of this study was to evaluate the effect of early or late NAC treatment on oxidative/nitrosative stress in DN progression. All rats were submitted to unilateral nephrectomy and diabetes was induced with streptozotocin. The animals were allocated into six groups: controls that received water (CTL) or NAC (CTL + NAC); diabetic groups that received early or late, water (DM-E; DM-L) or NAC (DM + NAC-E; DM + NAC-L), started on 5th day (early) or 4th week (late) after diabetes induction, during 8 weeks. After NAC treatment, the rats were placed in individual metabolic cages to obtain urine and blood samples for analysis of metabolic profile, renal function, thiobarbituric acid reactive substances (TBARS) and NO. At the end of the protocol, the renal cortex was removed for TBARS, NOS evaluation, antioxidants markers and histology. The DM-E group compared to CTL showed a significant increase in glycemia and proteinuria and impaired renal function; there was a significant increase of TBARS in plasma, urine and renal tissue, and also a significant decrease in plasma NO, which were reverted after early NAC treatment. The eNOS was decreased and iNOS was increased in DM-E vs. CTL, p < 0.05. The early NAC treatment in DM rats reduced proteinuria, creatinine, urea, TBARS and iNOS and, increased creatinine clearance, NO and eNOS, increasing significantly the antioxidant defenses, promoting elevated catalase and glutathione compared to DM-E group, all p < 0.05. The late NAC treatment in diabetic rats vs.DM-E showed reduced proteinuria and TBARS excretion and higher values of creatinine clearance and NO, all statistically significant. Histological analysis of the animals in DM-E or DM-L showed significant tubular changes with degeneration and vacuolization in tubular cells, dilated tubular lumen, intense glycosidic degeneration, and discreet mesangial expansion with interstitial fibrosis area. The DM + NAC-E group showed moderate glycosidic degeneration, however, did not present tubular degeneration or fibrosis. The DM + NAC-L group showed severe glycosidic degeneration, moderate tubular cell degeneration, light and focal dilatation of the tubules, with no fibrosis. Our study showed that NAC protected the diabetic rats against renal injury, probably due to the control of oxidative stress via recovery of the NO bioavailability, showing that early NAC was more effective than late treatment. All these data suggest that NAC may be useful in the adjuvant treatment in a safe way, in the early phase of the disease. Eventually, prolonged treatment, even if it is started later, could change the natural history of the disease, delaying the complications of diabetes in renal tissue.
Collapse
Affiliation(s)
- Guilherme B Nogueira
- Nephrology Division, Universidade Federal de Sao Paulo, Sao Paulo, Brazil; Laboratory of Nitric Oxide and Oxidative Stress, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Giovana R Punaro
- Nephrology Division, Universidade Federal de Sao Paulo, Sao Paulo, Brazil; Laboratory of Nitric Oxide and Oxidative Stress, Universidade Federal de Sao Paulo, Sao Paulo, Brazil.
| | - Clemerson S Oliveira
- Translational Medicine, Universidade Federal de Sao Paulo, Sao Paulo, Brazil; Laboratory of Nitric Oxide and Oxidative Stress, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Fabiane R Maciel
- Translational Medicine, Universidade Federal de Sao Paulo, Sao Paulo, Brazil; Laboratory of Nitric Oxide and Oxidative Stress, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Thamires O Fernandes
- Nephrology Division, Universidade Federal de Sao Paulo, Sao Paulo, Brazil; Laboratory of Nitric Oxide and Oxidative Stress, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Deyse Y Lima
- Translational Medicine, Universidade Federal de Sao Paulo, Sao Paulo, Brazil; Laboratory of Nitric Oxide and Oxidative Stress, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Adelson M Rodrigues
- Nephrology Division, Universidade Federal de Sao Paulo, Sao Paulo, Brazil; Laboratory of Nitric Oxide and Oxidative Stress, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Margaret G Mouro
- Nephrology Division, Universidade Federal de Sao Paulo, Sao Paulo, Brazil; Emergency Division, Universidade Federal de Sao Paulo, Sao Paulo, Brazil; Laboratory of Nitric Oxide and Oxidative Stress, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | | | - Elisa M S Higa
- Nephrology Division, Universidade Federal de Sao Paulo, Sao Paulo, Brazil; Emergency Division, Universidade Federal de Sao Paulo, Sao Paulo, Brazil; Translational Medicine, Universidade Federal de Sao Paulo, Sao Paulo, Brazil; Laboratory of Nitric Oxide and Oxidative Stress, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
49
|
Palmer ND, Okut H, Hsu FC, Ng MCY, Chen YDI, Goodarzi MO, Taylor KD, Norris JM, Lorenzo C, Rotter JI, Bergman RN, Langefeld CD, Wagenknecht LE, Bowden DW. Metabolomics Identifies Distinctive Metabolite Signatures for Measures of Glucose Homeostasis: The Insulin Resistance Atherosclerosis Family Study (IRAS-FS). J Clin Endocrinol Metab 2018; 103:1877-1888. [PMID: 29546329 PMCID: PMC6456957 DOI: 10.1210/jc.2017-02203] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/07/2018] [Indexed: 01/09/2023]
Abstract
CONTEXT Metabolomics provides a biochemical fingerprint that, when coupled with clinical phenotypes, can provide insight into physiological processes. OBJECTIVE Survey metabolites associated with dynamic and basal measures of glucose homeostasis. DESIGN Analysis of 733 plasma metabolites from the Insulin Resistance Atherosclerosis Family Study. SETTING Community based. PARTICIPANTS One thousand one hundred eleven Mexican Americans. MAIN OUTCOME Dynamic measures were obtained from the frequently sampled intravenous glucose tolerance test and included insulin sensitivity and acute insulin response to glucose. Basal measures included homeostatic model assessment of insulin resistance and β-cell function. RESULTS Insulin sensitivity was associated with 99 metabolites (P < 6.82 × 10-5) explaining 28% of the variance (R2adj) beyond 28% by body mass index. Beyond branched chain amino acids (BCAAs; P = 1.85 × 10-18 to 1.70 × 10-5, R2adj = 8.1%) and phospholipids (P = 3.51 × 10-17 to 3.00 × 10-5, R2adj = 14%), novel signatures of long-chain fatty acids (LCFAs; P = 4.49 × 10-23 to 4.14 × 10-7, R2adj = 11%) were observed. Conditional analysis suggested that BCAA and LCFA signatures were independent. LCFAs were not associated with homeostatic model assessment of insulin resistance (P > 0.024). Acute insulin response to glucose was associated with six metabolites; glucose had the strongest association (P = 5.68 × 10-16). Homeostatic model assessment of β-cell function had significant signatures from the urea cycle (P = 9.64 × 10-14 to 7.27 × 10-6, R2adj = 11%). Novel associations of polyunsaturated fatty acids (P = 2.58 × 10-13 to 6.70 × 10-5, R2adj = 10%) and LCFAs (P = 9.06 × 10-15 to 3.93 × 10-7, R2adj = 10%) were observed with glucose effectiveness. Assessment of the hyperbolic relationship between insulin sensitivity and secretion through the disposition index revealed a distinctive signature of polyunsaturated fatty acids (P = 1.55 × 10-12 to 5.81 × 10-6; R2adj = 3.8%) beyond that of its component measures. CONCLUSIONS Metabolomics reveals distinct signatures that differentiate dynamic and basal measures of glucose homeostasis and further identifies new metabolite classes associated with dynamic measures, providing expanded insight into the metabolic basis of insulin resistance.
Collapse
Affiliation(s)
- Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Correspondence and Reprint Requests: Nicholette D. Palmer, PhD, Department of Biochemistry, 1 Medical Center Boulevard, Winston-Salem, North Carolina 27157. E-mail:
| | - Hayrettin Okut
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Fang-Chi Hsu
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Maggie C Y Ng
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor–University of California Los Angeles Medical Center, Torrance, California
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor–University of California Los Angeles Medical Center, Torrance, California
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor–University of California Los Angeles Medical Center, Torrance, California
| | - Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado
| | - Carlos Lorenzo
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor–University of California Los Angeles Medical Center, Torrance, California
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor–University of California Los Angeles Medical Center, Torrance, California
| | - Richard N Bergman
- Department of Physiology and Biophysics, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Carl D Langefeld
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Lynne E Wagenknecht
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
50
|
Peroxisomal Acyl-CoA Oxidase Type 1: Anti-Inflammatory and Anti-Aging Properties with a Special Emphasis on Studies with LPS and Argan Oil as a Model Transposable to Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6986984. [PMID: 29765501 PMCID: PMC5889864 DOI: 10.1155/2018/6986984] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/23/2018] [Indexed: 12/11/2022]
Abstract
To clarify appropriateness of current claims for health and wellness virtues of argan oil, studies were conducted in inflammatory states. LPS induces inflammation with reduction of PGC1-α signaling and energy metabolism. Argan oil protected the liver against LPS toxicity and interestingly enough preservation of peroxisomal acyl-CoA oxidase type 1 (ACOX1) activity against depression by LPS. This model of LPS-driven toxicity circumvented by argan oil along with a key anti-inflammatory role attributed to ACOX1 has been here transposed to model aging. This view is consistent with known physiological role of ACOX1 in yielding precursors of specialized proresolving mediators (SPM) and with characteristics of aging and related disorders including reduced PGC1-α function and improvement by strategies rising ACOX1 (via hormonal gut FGF19 and nordihydroguaiaretic acid in metabolic syndrome and diabetes conditions) and SPM (neurodegenerative disorders, atherosclerosis, and stroke). Delay of aging to resolve inflammation results from altered production of SPM, SPM improving most aging disorders. The strategic metabolic place of ACOX1, upstream of SPM biosynthesis, along with ability of ACOX1 preservation/induction and SPM to improve aging-related disorders and known association of aging with drop in ACOX1 and SPM, all converge to conclude that ACOX1 represents a previously unsuspected and currently emerging antiaging protein.
Collapse
|