1
|
Xue Y, Xue B, Zhang L. Multi-Omics Integrative Analysis to Reveal the Impacts of Shewanella algae on the Development and Lifespan of Marine Nematode Litoditis marina. Int J Mol Sci 2024; 25:9111. [PMID: 39201797 PMCID: PMC11354469 DOI: 10.3390/ijms25169111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Understanding how habitat bacteria affect animal development, reproduction, and aging is essential for deciphering animal biology. Our recent study showed that Shewanella algae impaired Litoditis marina development and lifespan, compared with Escherichia coli OP50 feeding; however, the underlying mechanisms remain unclear. Here, multi-omics approaches, including the transcriptome of both L. marina and bacteria, as well as the comparative bacterial metabolome, were utilized to investigate how bacterial food affects animal fitness and physiology. We found that genes related to iron ion binding and oxidoreductase activity pathways, such as agmo-1, cdo-1, haao-1, and tdo-2, were significantly upregulated in L. marina grown on S. algae, while extracellular structural components-related genes were significantly downregulated. Next, we observed that bacterial genes belonging to amino acid metabolism and ubiquinol-8 biosynthesis were repressed, while virulence genes were significantly elevated in S. algae. Furthermore, metabolomic analysis revealed that several toxic metabolites, such as puromycin, were enriched in S. algae, while many nucleotides were significantly enriched in OP50. Moreover, we found that the "two-component system" was enriched in S. algae, whereas "purine metabolism" and "one-carbon pool by folate" were significantly enriched in E. coli OP50. Collectively, our data provide new insights to decipher how diet modulates animal fitness and biology.
Collapse
Affiliation(s)
- Yiming Xue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.X.); (B.X.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Beining Xue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.X.); (B.X.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liusuo Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.X.); (B.X.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| |
Collapse
|
2
|
Coler-Reilly A, Pincus Z, Scheller EL, Civitelli R. Six drivers of aging identified among genes differentially expressed with age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606402. [PMID: 39149379 PMCID: PMC11326176 DOI: 10.1101/2024.08.02.606402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Many studies have compared gene expression in young and old samples to gain insights on aging, the primary risk factor for most major chronic diseases. However, these studies only describe associations, failing to distinguish drivers of aging from compensatory geroprotective responses and incidental downstream effects. Here, we introduce a workflow to characterize the causal effects of differentially expressed genes on lifespan. First, we performed a meta-analysis of 25 gene expression datasets comprising samples of various tissues from healthy, untreated adult mammals (humans, dogs, and rodents) at two distinct ages. We ranked each gene according to the number of distinct datasets in which the gene was differentially expressed with age in a consistent direction. The top age-upregulated genes were TMEM176A, EFEMP1, CP, and HLA-A; the top age-downregulated genes were CA4, SIAH, SPARC, and UQCR10. Second, the effects of the top ranked genes on lifespan were measured by applying post-developmental RNA interference of the corresponding ortholog in the nematode C. elegans (two trials, with roughly 100 animals per genotype per trial). Out of 10 age-upregulated and 9 age-downregulated genes that were tested, two age-upregulated genes (csp-3/CASP1 and spch-2/RSRC1) and four age-downregulated genes (C42C1.8/DIRC2, ost-1/SPARC, fzy-1/CDC20, and cah-3/CA4) produced significant and reproducible lifespan extension. Notably, the data do not suggest that the direction of differential expression with age is predictive of the effect on lifespan. Our study provides novel insight into the relationship between differential gene expression and aging phenotypes, pilots an unbiased workflow that can be easily repeated and expanded, and pinpoints six genes with evolutionarily conserved, causal roles in the aging process for further study.
Collapse
Affiliation(s)
- Ariella Coler-Reilly
- Division of Bone and Mineral Diseases, Musculoskeletal Research Center
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Zachary Pincus
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Musculoskeletal Research Center
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology; Washington University School of Medicine, St. Louis, MO, USA
| | - Roberto Civitelli
- Division of Bone and Mineral Diseases, Musculoskeletal Research Center
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology; Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
3
|
Yarmey VR, San-Miguel A. Biomarkers for aging in Caenorhabditis elegans high throughput screening. Biochem Soc Trans 2024; 52:1405-1418. [PMID: 38884801 DOI: 10.1042/bst20231303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Aging is characterized by a functional decline in organism fitness over time due to a complex combination of genetic and environmental factors [ 1-4]. With an increasing elderly population at risk of age-associated diseases, there is a pressing need for research dedicated to promoting health and longevity through anti-aging interventions. The roundworm Caenorhabditis elegans is an established model organism for aging studies due to its short life cycle, ease of culture, and conserved aging pathways. These benefits also make the worm well-suited for high-throughput screening (HTS) methods to study biomarkers of the molecular changes, cellular dysfunction, and physiological decline associated with aging. Within this review, we offer a summary of recent advances in HTS techniques to study biomarkers of aging in C. elegans.
Collapse
Affiliation(s)
- Victoria R Yarmey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27603, U.S.A
| | - Adriana San-Miguel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27603, U.S.A
| |
Collapse
|
4
|
Hull BT, Miller KM, Corban C, Backer G, Sheehan S, Korstanje R, Sutphin GL. 3-Hydroxyanthranilic Acid Delays Paralysis in Caenorhabditis elegans Models of Amyloid-Beta and Polyglutamine Proteotoxicity. Biomolecules 2024; 14:599. [PMID: 38786006 PMCID: PMC11117628 DOI: 10.3390/biom14050599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Age is the primary risk factor for neurodegenerative diseases such as Alzheimer's and Huntington's disease. Alzheimer's disease is the most common form of dementia and a leading cause of death in the elderly population of the United States. No effective treatments for these diseases currently exist. Identifying effective treatments for Alzheimer's, Huntington's, and other neurodegenerative diseases is a major current focus of national scientific resources, and there is a critical need for novel therapeutic strategies. Here, we investigate the potential for targeting the kynurenine pathway metabolite 3-hydroxyanthranilic acid (3HAA) using Caenorhabditis elegans expressing amyloid-beta or a polyglutamine peptide in body wall muscle, modeling the proteotoxicity in Alzheimer's and Huntington's disease, respectively. We show that knocking down the enzyme that degrades 3HAA, 3HAA dioxygenase (HAAO), delays the age-associated paralysis in both models. This effect on paralysis was independent of the protein aggregation in the polyglutamine model. We also show that the mechanism of protection against proteotoxicity from HAAO knockdown is mimicked by 3HAA supplementation, supporting elevated 3HAA as the mediating event linking HAAO knockdown to delayed paralysis. This work demonstrates the potential for 3HAA as a targeted therapeutic in neurodegenerative disease, though the mechanism is yet to be explored.
Collapse
Affiliation(s)
- Bradford T. Hull
- Molecular and Cellular Biology Department, University of Arizona, Tucson, AZ 85721, USA
| | - Kayla M. Miller
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721, USA
| | | | - Grant Backer
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | - George L. Sutphin
- Molecular and Cellular Biology Department, University of Arizona, Tucson, AZ 85721, USA
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
5
|
Espejo LS, DeNicola D, Chang LM, Hofschneider V, Haskins AE, Balsa J, Freitas SS, Antenor A, Hamming S, Hull B, Castro-Portuguez R, Dang H, Sutphin GL. The Emerging Role of 3-Hydroxyanthranilic Acid on C. elegans Aging Immune Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574394. [PMID: 38260592 PMCID: PMC10802494 DOI: 10.1101/2024.01.07.574394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
3-hydroxyanthranilic acid (3HAA) is considered to be a fleeting metabolic intermediate along tryptophan catabolism through the kynurenine pathway. 3HAA and the rest of the kynurenine pathway have been linked to immune response in mammals yet whether it is detrimental or advantageous is a point of contention. Recently we have shown that accumulation of this metabolite, either through supplementation or prevention of its degradation, extends healthy lifespan in C. elegans and mice, while the mechanism remained unknown. Utilizing C. elegans as a model we investigate how 3HAA and haao-1 inhibition impact the host and the potential pathogens. What we find is that 3HAA improves host immune function with aging and serves as an antimicrobial against gram-negative bacteria. Regulation of 3HAA's antimicrobial activity is accomplished via tissue separation. 3HAA is synthesized in the C. elegans hypodermal tissue, localized to the site of pathogen interaction within the gut granules, and degraded in the neuronal cells. This tissue separation creates a new possible function for 3HAA that may give insight to a larger evolutionarily conserved function within the immune response.
Collapse
Affiliation(s)
- Luis S Espejo
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Destiny DeNicola
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Leah M Chang
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | | | - Anne E Haskins
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Jonah Balsa
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Samuel S Freitas
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Angelo Antenor
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Sage Hamming
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Bradford Hull
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | | | - Hope Dang
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - George L Sutphin
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
6
|
Dabravolski SA. Chaperone Activators. Subcell Biochem 2024; 107:43-62. [PMID: 39693019 DOI: 10.1007/978-3-031-66768-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Ageing is a complex yet universal and inevitable degenerative process that results in a decline in the cellular capacity for repair and adaptation to external stresses. Therefore, maintaining the appropriate balance of the cellular proteome is crucial. In addition to the ubiquitin-proteasome and autophagy-lysosomal systems, molecular chaperones play a vital role in a sophisticated protein quality control system. Chaperones are responsible for the correct protein assembly, folding, and translocation of other proteins when cells are subjected to various stresses. The equilibrium of chaperones is pivotal for maintaining health and longevity, as a deficiency in their function and quantity can contribute to the development of various diseases and accelerate the ageing processes. Conversely, their overexpression has been associated with tumour growth and progression. In this work, we discuss recent research focused on the application of various natural and artificial substances, as well as physical and nutritional stresses, to activate molecular chaperones and prolong both life- and healthspan. Furthermore, we emphasise the significance of autophagy, apoptosis, mTOR and inflammation signalling pathways in chaperone-mediated extension of life- and healthspan.
Collapse
|
7
|
Dang H, Castro-Portuguez R, Espejo L, Backer G, Freitas S, Spence E, Meyers J, Shuck K, Gardea EA, Chang LM, Balsa J, Thorns N, Corban C, Liu T, Bean S, Sheehan S, Korstanje R, Sutphin GL. On the benefits of the tryptophan metabolite 3-hydroxyanthranilic acid in Caenorhabditis elegans and mouse aging. Nat Commun 2023; 14:8338. [PMID: 38097593 PMCID: PMC10721613 DOI: 10.1038/s41467-023-43527-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Tryptophan metabolism through the kynurenine pathway influences molecular processes critical to healthy aging including immune signaling, redox homeostasis, and energy production. Aberrant kynurenine metabolism occurs during normal aging and is implicated in many age-associated pathologies including chronic inflammation, atherosclerosis, neurodegeneration, and cancer. We and others previously identified three kynurenine pathway genes-tdo-2, kynu-1, and acsd-1-for which decreasing expression extends lifespan in invertebrates. Here we report that knockdown of haao-1, a fourth gene encoding the enzyme 3-hydroxyanthranilic acid (3HAA) dioxygenase (HAAO), extends lifespan by ~30% and delays age-associated health decline in Caenorhabditis elegans. Lifespan extension is mediated by increased physiological levels of the HAAO substrate 3HAA. 3HAA increases oxidative stress resistance and activates the Nrf2/SKN-1 oxidative stress response. In pilot studies, female Haao knockout mice or aging wild type male mice fed 3HAA supplemented diet were also long-lived. HAAO and 3HAA represent potential therapeutic targets for aging and age-associated disease.
Collapse
Affiliation(s)
- Hope Dang
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | | | - Luis Espejo
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | | | - Samuel Freitas
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Erica Spence
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Jeremy Meyers
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Karissa Shuck
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Emily A Gardea
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Leah M Chang
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Jonah Balsa
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Niall Thorns
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | | | - Teresa Liu
- The Jackson Laboratory, Bar Harbor, ME, USA
| | | | | | | | - George L Sutphin
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
8
|
Ng D, Pawling J, Dennis JW. Gene purging and the evolution of Neoave metabolism and longevity. J Biol Chem 2023; 299:105409. [PMID: 37918802 PMCID: PMC10722388 DOI: 10.1016/j.jbc.2023.105409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023] Open
Abstract
Maintenance of the proteasome requires oxidative phosphorylation (ATP) and mitigation of oxidative damage, in an increasingly dysfunctional relationship with aging. SLC3A2 plays a role on both sides of this dichotomy as an adaptor to SLC7A5, a transporter of branched-chain amino acids (BCAA: Leu, Ile, Val), and to SLC7A11, a cystine importer supplying cysteine to the synthesis of the antioxidant glutathione. Endurance in mammalian muscle depends in part on oxidation of BCAA; however, elevated serum levels are associated with insulin resistance and shortened lifespans. Intriguingly, the evolution of modern birds (Neoaves) has entailed the purging of genes including SLC3A2, SLC7A5, -7, -8, -10, and SLC1A4, -5, largely removing BCAA exchangers and their interacting Na+/Gln symporters in pursuit of improved energetics. Additional gene purging included mitochondrial BCAA aminotransferase (BCAT2), pointing to reduced oxidation of BCAA and increased hepatic conversion to triglycerides and glucose. Fat deposits are anhydrous and highly reduced, maximizing the fuel/weight ratio for prolonged flight, but fat accumulation in muscle cells of aging humans contributes to inflammation and senescence. Duplications of the bidirectional α-ketoacid transporters SLC16A3, SLC16A7, the cystine transporters SLC7A9, SLC7A11, and N-glycan branching enzymes MGAT4B, MGAT4C in Neoaves suggests a shift to the transport of deaminated essential amino acid, and stronger mitigation of oxidative stress supported by the galectin lattice. We suggest that Alfred Lotka's theory of natural selection as a maximum power organizer (PNAS 8:151,1922) made an unusually large contribution to Neoave evolution. Further molecular analysis of Neoaves may reveal novel rewiring with applications for human health and longevity.
Collapse
Affiliation(s)
- Deanna Ng
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Judy Pawling
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - James W Dennis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto Ontario, Canada.
| |
Collapse
|
9
|
Hajdú G, Somogyvári M, Csermely P, Sőti C. Lysosome-related organelles promote stress and immune responses in C. elegans. Commun Biol 2023; 6:936. [PMID: 37704756 PMCID: PMC10499889 DOI: 10.1038/s42003-023-05246-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/15/2023] [Indexed: 09/15/2023] Open
Abstract
Lysosome-related organelles (LROs) play diverse roles and their dysfunction causes immunodeficiency. However, their primordial functions remain unclear. Here, we report that C. elegans LROs (gut granules) promote organismal defenses against various stresses. We find that toxic benzaldehyde exposure induces LRO autofluorescence, stimulates the expression of LRO-specific genes and enhances LRO transport capacity as well as increases tolerance to benzaldehyde, heat and oxidative stresses, while these responses are impaired in glo-1/Rab32 and pgp-2 ABC transporter LRO biogenesis mutants. Benzaldehyde upregulates glo-1- and pgp-2-dependent expression of heat shock, detoxification and antimicrobial effector genes, which requires daf-16/FOXO and/or pmk-1/p38MAPK. Finally, benzaldehyde preconditioning increases resistance against Pseudomonas aeruginosa PA14 in a glo-1- and pgp-2-dependent manner, and PA14 infection leads to the deposition of fluorescent metabolites in LROs and induction of LRO genes. Our study suggests that LROs may play a role in systemic responses to stresses and in pathogen resistance.
Collapse
Affiliation(s)
- Gábor Hajdú
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Milán Somogyvári
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Péter Csermely
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Csaba Sőti
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
10
|
Späth MR, Hoyer-Allo KJR, Seufert L, Höhne M, Lucas C, Bock T, Isermann L, Brodesser S, Lackmann JW, Kiefer K, Koehler FC, Bohl K, Ignarski M, Schiller P, Johnsen M, Kubacki T, Grundmann F, Benzing T, Trifunovic A, Krüger M, Schermer B, Burst V, Müller RU. Organ Protection by Caloric Restriction Depends on Activation of the De Novo NAD+ Synthesis Pathway. J Am Soc Nephrol 2023; 34:772-792. [PMID: 36758124 PMCID: PMC10125653 DOI: 10.1681/asn.0000000000000087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 01/10/2023] [Indexed: 02/11/2023] Open
Abstract
SIGNIFICANCE STATEMENT AKI is a major clinical complication leading to high mortality, but intensive research over the past decades has not led to targeted preventive or therapeutic measures. In rodent models, caloric restriction (CR) and transient hypoxia significantly prevent AKI and a recent comparative transcriptome analysis of murine kidneys identified kynureninase (KYNU) as a shared downstream target. The present work shows that KYNU strongly contributes to CR-mediated protection as a key player in the de novo nicotinamide adenine dinucleotide biosynthesis pathway. Importantly, the link between CR and NAD+ biosynthesis could be recapitulated in a human cohort. BACKGROUND Clinical practice lacks strategies to treat AKI. Interestingly, preconditioning by hypoxia and caloric restriction (CR) is highly protective in rodent AKI models. However, the underlying molecular mechanisms of this process are unknown. METHODS Kynureninase (KYNU) knockout mice were generated by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and comparative transcriptome, proteome and metabolite analyses of murine kidneys pre- and post-ischemia-reperfusion injury in the context of CR or ad libitum diet were performed. In addition, acetyl-lysin enrichment and mass spectrometry were used to assess protein acetylation. RESULTS We identified KYNU as a downstream target of CR and show that KYNU strongly contributes to the protective effect of CR. The KYNU-dependent de novo nicotinamide adenine dinucleotide (NAD+) biosynthesis pathway is necessary for CR-associated maintenance of NAD+ levels. This finding is associated with reduced protein acetylation in CR-treated animals, specifically affecting enzymes in energy metabolism. Importantly, the effect of CR on de novo NAD+ biosynthesis pathway metabolites can be recapitulated in humans. CONCLUSIONS CR induces the de novo NAD+ synthesis pathway in the context of IRI and is essential for its full nephroprotective potential. Differential protein acetylation may be the molecular mechanism underlying the relationship of NAD+, CR, and nephroprotection.
Collapse
Affiliation(s)
- Martin R. Späth
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - K. Johanna R. Hoyer-Allo
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lisa Seufert
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Höhne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christina Lucas
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Theresa Bock
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Genetics, University of Cologne, Cologne, Germany
| | - Lea Isermann
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Medical Faculty, Institute for Mitochondrial Diseases and Aging, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Susanne Brodesser
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jan-Wilm Lackmann
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Katharina Kiefer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Felix C. Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Katrin Bohl
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael Ignarski
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Petra Schiller
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Marc Johnsen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Torsten Kubacki
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Franziska Grundmann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Aleksandra Trifunovic
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Medical Faculty, Institute for Mitochondrial Diseases and Aging, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Marcus Krüger
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Volker Burst
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Emergency Department, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Oxenkrug G, Navrotska V. Extension of life span by down-regulation of enzymes catalyzing tryptophan conversion into kynurenine: Possible implications for mechanisms of aging. Exp Biol Med (Maywood) 2023; 248:573-577. [PMID: 37300401 PMCID: PMC10350802 DOI: 10.1177/15353702231179411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023] Open
Abstract
The end products of catabolism of tryptophan (Trp), an essential amino acid, are known to affect mechanism(s) of aging, a neurodegenerative condition. This review focuses on the possible role of the initial step of Trp catabolism, kynurenine (Kyn) formation from Trp, in aging mechanism(s). Rate-limiting enzymes of Trp conversion into Kyn are tryptophan 2,3-dioxygenase 2 (TDO) or indoleamine 2,3-dioxygenase (IDO). Aging is associated with up-regulated production of cortisol, an activator of TDO, and pro-inflammatory cytokines, inducers of IDO. The other rate-limiting enzyme of Kyn formation from Trp is ATP-binding cassette (ABC) transporter that regulates Trp availability as a substrate for TDO. Inhibitors of TDO (alpha-methyl tryptophan) and ABC transporter (5-methyltryptophan) extended life span of wild-type Drosophila. Life span prolongation was observed in TDO knockdown of Caenorhabditis elegans and in TDO or ABC transporter-deficient Drosophila mutants. Down-regulation of enzymes catalyzing Kyn conversion into kynurenic acid (KYNA) and 3-hydroxykynurenine decreases life span. Considering that down-regulation of Methuselah (MTH) gene prolonged life span, aging-accelerating effect of KYNA, a GPR35/MTH agonist, might depend on MTH gene activation. Mice treated with TDO inhibitor, benserazide, an ingredient of anti-Parkinson medication carbidopa, and TDO-deficient Drosophila mutants were resistant to inducement of aging-associated Metabolic Syndrome by high-sugar or high-fat diets. Up-regulation of Kyn formation was associated with accelerated aging and increased mortality in human subjects. Trp-Kyn pathway is evolutionary conserved (from yeasts, through insects, worms, vertebrates to humans). Further studies might explore possible antiaging effect of down-regulation of Kyn formation from Trp by dietary, pharmacological, and genetic interventions.
Collapse
|
12
|
Shen H, Xu X, Bai Y, Wang X, Wu Y, Zhong J, Wu Q, Luo Y, Shang T, Shen R, Xi M, Sun H. Therapeutic potential of targeting kynurenine pathway in neurodegenerative diseases. Eur J Med Chem 2023; 251:115258. [PMID: 36917881 DOI: 10.1016/j.ejmech.2023.115258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Kynurenine pathway (KP), the primary pathway of L-tryptophan (Trp) metabolism in mammals, contains several neuroactive metabolites such as kynurenic acid (KA) and quinolinic acid (QA). Its imbalance involved in aging and neurodegenerative diseases (NDs) has attracted much interest in therapeutically targeting KP enzymes and KP metabolite-associated receptors, especially kynurenine monooxygenase (KMO). Currently, many agents have been discovered with significant improvement in animal models but only one aryl hydrocarbon receptor (AHR) agonist 30 (laquinimod) has entered clinical trials for treating Huntington's disease (HD). In this review, we describe neuroactive KP metabolites, discuss the dysregulation of KP in aging and NDs and summarize the development of KP regulators in preclinical and clinical studies, offering an outlook of targeting KP for NDs treatment in future.
Collapse
Affiliation(s)
- Hualiang Shen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Xinde Xu
- Zhejiang Medicine Co. Ltd., Shaoxing, 312500, China
| | - Yalong Bai
- Zhejiang Medicine Co. Ltd., Shaoxing, 312500, China
| | | | - Yibin Wu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Jia Zhong
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Qiyi Wu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Yanjuan Luo
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Tianbo Shang
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Runpu Shen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Meiyang Xi
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China.
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
13
|
Choi HS, Bhat A, Howington MB, Schaller ML, Cox RL, Huang S, Beydoun S, Miller HA, Tuckowski AM, Mecano J, Dean ES, Jensen L, Beard DA, Evans CR, Leiser SF. FMO rewires metabolism to promote longevity through tryptophan and one carbon metabolism in C. elegans. Nat Commun 2023; 14:562. [PMID: 36732543 PMCID: PMC9894935 DOI: 10.1038/s41467-023-36181-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Flavin containing monooxygenases (FMOs) are promiscuous enzymes known for metabolizing a wide range of exogenous compounds. In C. elegans, fmo-2 expression increases lifespan and healthspan downstream of multiple longevity-promoting pathways through an unknown mechanism. Here, we report that, beyond its classification as a xenobiotic enzyme, fmo-2 expression leads to rewiring of endogenous metabolism principally through changes in one carbon metabolism (OCM). These changes are likely relevant, as we find that genetically modifying OCM enzyme expression leads to alterations in longevity that interact with fmo-2 expression. Using computer modeling, we identify decreased methylation as the major OCM flux modified by FMO-2 that is sufficient to recapitulate its longevity benefits. We further find that tryptophan is decreased in multiple mammalian FMO overexpression models and is a validated substrate for FMO-2. Our resulting model connects a single enzyme to two previously unconnected key metabolic pathways and provides a framework for the metabolic interconnectivity of longevity-promoting pathways such as dietary restriction. FMOs are well-conserved enzymes that are also induced by lifespan-extending interventions in mice, supporting a conserved and important role in promoting health and longevity through metabolic remodeling.
Collapse
Affiliation(s)
- Hyo Sub Choi
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ajay Bhat
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Marshall B Howington
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Megan L Schaller
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rebecca L Cox
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shijiao Huang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Safa Beydoun
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hillary A Miller
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Angela M Tuckowski
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joy Mecano
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Elizabeth S Dean
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lindy Jensen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Daniel A Beard
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Charles R Evans
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Scott F Leiser
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
14
|
Espejo L, Hull B, Chang LM, DeNicola D, Freitas S, Silbar V, Haskins A, Turner EA, Sutphin GL. Long-Term Culture of Individual Caenorhabditis elegans on Solid Media for Longitudinal Fluorescence Monitoring and Aversive Interventions. J Vis Exp 2022:10.3791/64682. [PMID: 36533827 PMCID: PMC10368144 DOI: 10.3791/64682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
Caenorhabditis elegans are widely used to study aging biology. The standard practice in C. elegans aging studies is to culture groups of worms on solid nematode growth media (NGM), allowing the efficient collection of population-level data for survival and other physiological phenotypes, and periodic sampling of subpopulations for fluorescent biomarker quantification. Limitations to this approach are the inability to (1) follow individual worms over time to develop age trajectories for phenotypes of interest and (2) monitor fluorescent biomarkers directly in the context of the culture environment. Alternative culture approaches use liquid culture or microfluidics to monitor individual animals over time, in some cases including fluorescence quantification, with the tradeoff that the culture environment is contextually distinct from solid NGM. The WorMotel is a previously described microfabricated multi-well device for culturing isolated worms on solid NGM. Each worm is maintained in a well containing solid NGM surrounded by a moat filled with copper sulfate, a contact repellent for C. elegans, allowing longitudinal monitoring of individual animals. We find copper sulfate insufficient to prevent worms from fleeing when subjected to aversive interventions common in aging research, including dietary restriction, pathogenic bacteria, and chemical agents that induce cellular stress. The multi-well devices are also molded from polydimethylsiloxane, which produces high background artifacts in fluorescence imaging. This protocol describes a new approach for culturing isolated roundworms on solid NGM using commercially available polystyrene microtrays, originally designed for human leukocyte antigen (HLA) typing, allowing the measurement of survival, physiological phenotypes, and fluorescence across the lifespan. A palmitic acid barrier prevents worms from fleeing, even in the presence of aversive conditions. Each plate can culture up to 96 animals and easily adapts to a variety of conditions, including dietary restriction, RNAi, and chemical additives, and is compatible with automated systems for collecting lifespan and activity data.
Collapse
Affiliation(s)
- Luis Espejo
- Department of Molecular & Cellular Biology, University of Arizona, Tucson
| | - Bradford Hull
- Department of Molecular & Cellular Biology, University of Arizona, Tucson
| | - Leah M Chang
- Department of Molecular & Cellular Biology, University of Arizona, Tucson
| | - Destiny DeNicola
- Department of Molecular & Cellular Biology, University of Arizona, Tucson
| | - Samuel Freitas
- Department of Molecular & Cellular Biology, University of Arizona, Tucson
| | - Vanessa Silbar
- Department of Molecular & Cellular Biology, University of Arizona, Tucson
| | - Anne Haskins
- Department of Molecular & Cellular Biology, University of Arizona, Tucson
| | - Emily A Turner
- Department of Molecular & Cellular Biology, University of Arizona, Tucson
| | - George L Sutphin
- Department of Molecular & Cellular Biology, University of Arizona, Tucson;
| |
Collapse
|
15
|
Loose JA, Amrit FRG, Patil T, Yanowitz JL, Ghazi A. Meiotic dysfunction accelerates somatic aging in Caenorhabditis elegans. Aging Cell 2022; 21:e13716. [PMID: 36176234 PMCID: PMC9649607 DOI: 10.1111/acel.13716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 08/07/2022] [Accepted: 08/31/2022] [Indexed: 01/25/2023] Open
Abstract
An expanding body of evidence, from studies in model organisms to human clinical data, reveals that reproductive health influences organismal aging. However, the impact of germline integrity on somatic aging is poorly understood. Moreover, assessing the causal relationship of such an impact is challenging to address in human and vertebrate models. Here, we demonstrate that disruption of meiosis, a germline restricted process, shortened lifespan, impaired individual aspects of healthspan, and accelerated somatic aging in Caenorhabditis elegans. Young meiotic mutants exhibited transcriptional profiles that showed remarkable overlap with the transcriptomes of old worms and shared similarities with transcriptomes of aging human tissues as well. We found that meiosis dysfunction caused increased expression of functionally relevant longevity determinants whose inactivation enhanced the lifespan of normal animals. Further, meiotic mutants manifested destabilized protein homeostasis and enhanced proteasomal activity partially rescued the associated lifespan defects. Our study demonstrates a role for meiotic integrity in controlling somatic aging and reveals proteostasis control as a potential mechanism through which germline status impacts overall organismal health.
Collapse
Affiliation(s)
- Julia A. Loose
- Department of Pediatrics, John G. Rangos Sr. Research CenterUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Francis R. G. Amrit
- Department of Pediatrics, John G. Rangos Sr. Research CenterUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Thayjas Patil
- Department of Pediatrics, John G. Rangos Sr. Research CenterUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Judith L. Yanowitz
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee‐Womens Research InstituteUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Arjumand Ghazi
- Department of Pediatrics, John G. Rangos Sr. Research CenterUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA,Department of Developmental Biology, John G. Rangos Sr. Research CenterUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA,Department of Cell Biology & PhysiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
16
|
Regulation of Aging and Longevity by Ion Channels and Transporters. Cells 2022; 11:cells11071180. [PMID: 35406743 PMCID: PMC8997527 DOI: 10.3390/cells11071180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Despite significant advances in our understanding of the mechanisms that underlie age-related physiological decline, our ability to translate these insights into actionable strategies to extend human healthspan has been limited. One of the major reasons for the existence of this barrier is that with a few important exceptions, many of the proteins that mediate aging have proven to be undruggable. The argument put forth here is that the amenability of ion channels and transporters to pharmacological manipulation could be leveraged to develop novel therapeutic strategies to combat aging. This review delves into the established roles for ion channels and transporters in the regulation of aging and longevity via their influence on membrane excitability, Ca2+ homeostasis, mitochondrial and endolysosomal function, and the transduction of sensory stimuli. The goal is to provide the reader with an understanding of emergent themes, and prompt further investigation into how the activities of ion channels and transporters sculpt the trajectories of cellular and organismal aging.
Collapse
|
17
|
Modeling Alzheimer's Disease in Caenorhabditis elegans. Biomedicines 2022; 10:biomedicines10020288. [PMID: 35203497 PMCID: PMC8869312 DOI: 10.3390/biomedicines10020288] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer’s disease (AD) is the most frequent cause of dementia. After decades of research, we know the importance of the accumulation of protein aggregates such as β-amyloid peptide and phosphorylated tau. We also know that mutations in certain proteins generate early-onset Alzheimer’s disease (EOAD), and many other genes modulate the disease in its sporadic form. However, the precise molecular mechanisms underlying AD pathology are still unclear. Because of ethical limitations, we need to use animal models to investigate these processes. The nematode Caenorhabditis elegans has received considerable attention in the last 25 years, since the first AD models overexpressing Aβ peptide were described. We review here the main results obtained using this model to study AD. We include works studying the basic molecular mechanisms of the disease, as well as those searching for new therapeutic targets. Although this model also has important limitations, the ability of this nematode to generate knock-out or overexpression models of any gene, single or combined, and to carry out toxicity, recovery or survival studies in short timeframes with many individuals and at low cost is difficult to overcome. We can predict that its use as a model for various diseases will certainly continue to increase.
Collapse
|
18
|
Single-Cell Transcriptomics Reveals the Expression of Aging- and Senescence-Associated Genes in Distinct Cancer Cell Populations. Cells 2021; 10:cells10113126. [PMID: 34831349 PMCID: PMC8623328 DOI: 10.3390/cells10113126] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/31/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
The human aging process is associated with molecular changes and cellular degeneration, resulting in a significant increase in cancer incidence with age. Despite their potential correlation, the relationship between cancer- and ageing-related transcriptional changes is largely unknown. In this study, we aimed to analyze aging-associated transcriptional patterns in publicly available bulk mRNA-seq and single-cell RNA-seq (scRNA-seq) datasets for chronic myelogenous leukemia (CML), colorectal cancer (CRC), hepatocellular carcinoma (HCC), lung cancer (LC), and pancreatic ductal adenocarcinoma (PDAC). Indeed, we detected that various aging/senescence-induced genes (ASIGs) were upregulated in malignant diseases compared to healthy control samples. To elucidate the importance of ASIGs during cell development, pseudotime analyses were performed, which revealed a late enrichment of distinct cancer-specific ASIG signatures. Notably, we were able to demonstrate that all cancer entities analyzed in this study comprised cell populations expressing ASIGs. While only minor correlations were detected between ASIGs and transcriptome-wide changes in PDAC, a high proportion of ASIGs was induced in CML, CRC, HCC, and LC samples. These unique cellular subpopulations could serve as a basis for future studies on the role of aging and senescence in human malignancies.
Collapse
|
19
|
Marszalek-Grabska M, Walczak K, Gawel K, Wicha-Komsta K, Wnorowska S, Wnorowski A, Turski WA. Kynurenine emerges from the shadows – Current knowledge on its fate and function. Pharmacol Ther 2021; 225:107845. [DOI: 10.1016/j.pharmthera.2021.107845] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
|
20
|
Steiner J, Dobrowolny H, Guest PC, Bernstein HG, Fuchs D, Roeser J, Summergrad P, Oxenkrug GF. Plasma Anthranilic Acid and Leptin Levels Predict HAM-D Scores in Depressed Women. Int J Tryptophan Res 2021; 14:11786469211016474. [PMID: 34045868 PMCID: PMC8138296 DOI: 10.1177/11786469211016474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/18/2021] [Indexed: 11/24/2022] Open
Abstract
Objectives: Major depressive disorder (MDD) is associated with dysregulations of leptin
and tryptophan–kynurenine (Trp–Kyn) (TKP) pathways. Leptin, a
pro-inflammatory cytokine, activates Trp conversion into Kyn. However,
leptin association with down-stream Kyn metabolites in MDD is unknown. Methods: Fasting plasma samples from 29 acutely ill drug-naïve (n = 16) or currently
non-medicated (⩾6 weeks; n = 13) MDD patients were analyzed for leptin, Trp,
Kyn, its down-stream metabolites (anthranilic [AA], kynurenic [KYNA],
xanthurenic [XA] acids and 3-hydroxykynurenine [3HK]), C-reactive protein
(CRP), neopterin, body mass index (BMI), and insulin resistance (HOMA-IR).
Depression severity was assessed by HAM-D-21. Results: In female (n = 14) (but not in male) patients HAM-D-21 scores correlated with
plasma levels of AA (but not other Kyn metabolites) (rho = −0.644,
P = .009) and leptin (Spearman’s rho = −0.775,
P = .001). Inclusion of AA into regression analysis
improved leptin prediction of HAM-D from 48.5% to 65.9%. Actual HAM-D scores
highly correlated with that calculated by formula: HAM-D = 34.8518−(0.5660 ×
leptin [ng/ml] + 0.4159 × AA [nmol/l]) (Rho = 0.84, P =
.00015). In male (n = 15) (but not in female) patients leptin correlated
with BMI, waist circumference/hip ratio, CRP, and HOMA-IR. Conclusions: Present findings of gender specific AA/Leptin correlations with HAM-D are
important considering that AA and leptin are transported from plasma into
brain, and that AA formation is catalyzed by
kynureninase—the only TKP gene associated with depression
according to genome-wide analysis. High correlation between predicted and
actual HAM-D warrants further evaluation of plasma AA and leptin as an
objective laboratory test for the assessment of depression severity in
female MDD patients
Collapse
Affiliation(s)
- Johann Steiner
- Laboratory of Translational Psychiatry, University of Magdeburg, Magdeburg, Saxony-Anhalt, Germany.,Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Henrik Dobrowolny
- Laboratory of Translational Psychiatry, University of Magdeburg, Magdeburg, Saxony-Anhalt, Germany.,Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, Brazil
| | - Hans-Gert Bernstein
- Laboratory of Translational Psychiatry, University of Magdeburg, Magdeburg, Saxony-Anhalt, Germany.,Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Biocenter of the Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Julien Roeser
- Charles River Laboratories, South San Francisco, CA, USA
| | - Paul Summergrad
- Department of Psychiatry, Psychiatry and Inflammation Program, Tufts University School of Medicine, Boston, MA, USA
| | - Gregory F Oxenkrug
- Department of Psychiatry, Psychiatry and Inflammation Program, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
21
|
Targeting metabolic pathways for extension of lifespan and healthspan across multiple species. Ageing Res Rev 2020; 64:101188. [PMID: 33031925 DOI: 10.1016/j.arr.2020.101188] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/20/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Metabolism plays a significant role in the regulation of aging at different levels, and metabolic reprogramming represents a major driving force in aging. Metabolic reprogramming leads to impaired organismal fitness, an age-dependent increase in susceptibility to diseases, decreased ability to mount a stress response, and increased frailty. The complexity of age-dependent metabolic reprogramming comes from the multitude of levels on which metabolic changes can be connected to aging and regulation of lifespan. This is further complicated by the different metabolic requirements of various tissues, cross-organ communication via metabolite secretion, and direct effects of metabolites on epigenetic state and redox regulation; however, not all of these changes are causative to aging. Studies in yeast, flies, worms, and mice have played a crucial role in identifying mechanistic links between observed changes in various metabolic traits and their effects on lifespan. Here, we review how changes in the organismal and organ-specific metabolome are associated with aging and how targeting of any one of over a hundred different targets in specific metabolic pathways can extend lifespan. An important corollary is that restriction or supplementation of different metabolites can change activity of these metabolic pathways in ways that improve healthspan and extend lifespan in different organisms. Due to the high levels of conservation of metabolism in general, translating findings from model systems to human beings will allow for the development of effective strategies for human health- and lifespan extension.
Collapse
|
22
|
Lichtenberg SS, Laisney J, Elhaj Baddar Z, Tsyusko OV, Palli SR, Levard C, Masion A, Unrine JM. Comparison of Nanomaterials for Delivery of Double-Stranded RNA in Caenorhabditis elegans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7926-7934. [PMID: 32610013 DOI: 10.1021/acs.jafc.0c02840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
RNA interference is a promising crop protection technology that has seen rapid development in the past several years. Here, we investigated polyamino acid biopolymers, inorganic nanomaterials, and hybrid organic-inorganic nanomaterials for delivery of dsRNA and efficacy of gene knockdown using the model nematode Caenorhabditis elegans. Using an oral route of delivery, we are able to approximate how nanomaterials will be delivered in the environment. Of the materials investigated, only Mg-Al layered double-hydroxide nanoparticles were effective at gene knockdown in C. elegans, reducing marker gene expression to 66.8% of that of the control at the lowest tested concentration. In addition, we identified previously unreported injuries to the mouthparts of C. elegans associated with the use of a common cell-penetrating peptide, poly-l-arginine. Our results will allow the pursuit of further research into promising materials for dsRNA delivery and also allow for the exclusion of those with little efficacy or deleterious effects.
Collapse
Affiliation(s)
- Stuart S Lichtenberg
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Jerome Laisney
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Zeinah Elhaj Baddar
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Subba R Palli
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Clement Levard
- CNRS, Aix-Marseille Univ., IRD, INRAE, Coll France, CEREGE, Europole Arbois,check BP 80, Aix en Provence 13545, France
| | - Armand Masion
- CNRS, Aix-Marseille Univ., IRD, INRAE, Coll France, CEREGE, Europole Arbois,check BP 80, Aix en Provence 13545, France
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
| |
Collapse
|
23
|
Healthspan pathway maps in C. elegans and humans highlight transcription, proliferation/biosynthesis and lipids. Aging (Albany NY) 2020; 12:12534-12581. [PMID: 32634117 PMCID: PMC7377848 DOI: 10.18632/aging.103514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022]
Abstract
The molecular basis of aging and of aging-associated diseases is being unraveled at an increasing pace. An extended healthspan, and not merely an extension of lifespan, has become the aim of medical practice. Here, we define health based on the absence of diseases and dysfunctions. Based on an extensive review of the literature, in particular for humans and C. elegans, we compile a list of features of health and of the genes associated with them. These genes may or may not be associated with survival/lifespan. In turn, survival/lifespan genes that are not known to be directly associated with health are not considered. Clusters of these genes based on molecular interaction data give rise to maps of healthspan pathways for humans and for C. elegans. Overlaying healthspan-related gene expression data onto the healthspan pathway maps, we observe the downregulation of (pro-inflammatory) Notch signaling in humans and of proliferation in C. elegans. We identify transcription, proliferation/biosynthesis and lipids as a common theme on the annotation level, and proliferation-related kinases on the gene/protein level. Our literature-based data corpus, including visualization, should be seen as a pilot investigation of the molecular underpinnings of health in two different species. Web address: http://pathways.h2020awe.eu.
Collapse
|
24
|
Zhai L, Bell A, Ladomersky E, Lauing KL, Bollu L, Sosman JA, Zhang B, Wu JD, Miller SD, Meeks JJ, Lukas RV, Wyatt E, Doglio L, Schiltz GE, McCusker RH, Wainwright DA. Immunosuppressive IDO in Cancer: Mechanisms of Action, Animal Models, and Targeting Strategies. Front Immunol 2020; 11:1185. [PMID: 32612606 PMCID: PMC7308527 DOI: 10.3389/fimmu.2020.01185] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/13/2020] [Indexed: 12/24/2022] Open
Abstract
Indoleamine 2, 3-dioxygenase 1 (IDO; IDO1; INDO) is a rate-limiting enzyme that metabolizes the essential amino acid, tryptophan, into downstream kynurenines. Canonically, the metabolic depletion of tryptophan and/or the accumulation of kynurenine is the mechanism that defines how immunosuppressive IDO inhibits immune cell effector functions and/or facilitates T cell death. Non-canonically, IDO also suppresses immunity through non-enzymic effects. Since IDO targeting compounds predominantly aim to inhibit metabolic activity as evidenced across the numerous clinical trials currently evaluating safety/efficacy in patients with cancer, in addition to the recent disappointment of IDO enzyme inhibitor therapy during the phase III ECHO-301 trial, the issue of IDO non-enzyme effects have come to the forefront of mechanistic and therapeutic consideration(s). Here, we review enzyme-dependent and -independent IDO-mediated immunosuppression as it primarily relates to glioblastoma (GBM); the most common and aggressive primary brain tumor in adults. Our group's recent discovery that IDO levels increase in the brain parenchyma during advanced age and regardless of whether GBM is present, highlights an immunosuppressive synergy between aging-increased IDO activity in cells of the central nervous system that reside outside of the brain tumor but collaborate with GBM cell IDO activity inside of the tumor. Because of their potential value for the in vivo study of IDO, we also review current transgenic animal modeling systems while highlighting three new constructs recently created by our group. This work converges on the central premise that maximal immunotherapeutic efficacy in subjects with advanced cancer requires both IDO enzyme- and non-enzyme-neutralization, which is not adequately addressed by available IDO-targeting pharmacologic approaches at this time.
Collapse
Affiliation(s)
- Lijie Zhai
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - April Bell
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Erik Ladomersky
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kristen L. Lauing
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lakshmi Bollu
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jeffrey A. Sosman
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
| | - Bin Zhang
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jennifer D. Wu
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Stephen D. Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Joshua J. Meeks
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Rimas V. Lukas
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
- Division of Neuro-Oncology, Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Eugene Wyatt
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Transgenic and Targeted Mutagenesis Laboratory, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lynn Doglio
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Transgenic and Targeted Mutagenesis Laboratory, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Gary E. Schiltz
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Center for Molecular Innovation and Drug Discovery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Robert H. McCusker
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Derek A. Wainwright
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
25
|
Tan K, Deng D, Ma X, Cui Y, Tian Z. Pediococcus acidilactici P25 Protected Caenorhabditis elegans against Enterotoxigenic Escherichia coli K88 Infection and Transcriptomic Analysis of Its Potential Mechanisms. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7340312. [PMID: 32337270 PMCID: PMC7150717 DOI: 10.1155/2020/7340312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/11/2020] [Indexed: 02/07/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) K88 is a zoonotic pathogen. Previous studies have shown that lactic acid bacteria (LAB) have great potential in promoting health and resisting pathogenic infections; however, relatively little research has been done on the Pediococcus genus of LAB. This study is aimed at exploring the mechanisms imparted by Pediococcus acidilactici P25 against ETEC K88 in Caenorhabditis elegans. The probiotic performance of P25 was investigated in vitro. Colonization of K88 in the intestinal tract of C. elegans and abundance of enterotoxin genes were measured. In addition, the transcriptome of C. elegans infected by K88 was analyzed. The result showed that P25 possessed the ability to produce acid, as well as high tolerances to acidic and high bile salt concentrations. Coculture revealed that the growth of ETEC K88 was significantly inhibited by the presence of P25. The median survival of C. elegans fed P25 was 2 days longer than the group infected with K88 alone (P < 0.01). At the same time, the number of colonizing K88 and the abundances of estB and elt were reduced by up to 71.70% and 2.17 times, respectively, by P25. Transcriptome data indicated that P25 affected expression of genes relative to innate immune response and upregulated the abundance of genes in multiple pathways of C. elegans, including peroxisome, longevity, and mitogen-activated protein kinase (MAPK) pathways. These results demonstrated that in the presence of P25, K88 colonization and their expression of enterotoxin genes were reduced. This was accomplished through the alteration of environmental parameters (pH and bile salt) as well as through the promotion of the innate immune response processes, increased longevity, and increased antipathogenic bacteria-related pathways. This work highlights the potential application of P. acidilactici P25 as a probiotic resistant to ETEC K88.
Collapse
Affiliation(s)
- Keqin Tan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, The Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China 510640
| | - Dun Deng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, The Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China 510640
| | - Xianyong Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, The Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China 510640
| | - Yiyan Cui
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, The Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China 510640
| | - Zhimei Tian
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, The Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China 510640
| |
Collapse
|
26
|
Castro-Portuguez R, Sutphin GL. Kynurenine pathway, NAD + synthesis, and mitochondrial function: Targeting tryptophan metabolism to promote longevity and healthspan. Exp Gerontol 2020; 132:110841. [PMID: 31954874 DOI: 10.1016/j.exger.2020.110841] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
Aging is characterized by a progressive decline in the normal physiological functions of an organism, ultimately leading to mortality. Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor that plays a critical role in mitochondrial energy production as well as many enzymatic redox reactions. Age-associated decline in NAD+ is implicated as a driving factor in several categories of age-associated disease, including metabolic and neurodegenerative disease, as well as deficiency in the mechanisms of cellular defense against oxidative stress. The kynurenine metabolic pathway is the sole de novo NAD+ biosynthetic pathway, generating NAD+ from ingested tryptophan. Altered kynurenine pathway activity is associated with both aging and a variety of age-associated diseases. Kynurenine pathway interventions can extend lifespan in both fruit flies and nematodes, and altered NAD+ metabolism represents one potential mediating mechanism. Recent studies demonstrate that supplementation with NAD+ or NAD+-precursors increase longevity and promote healthy aging in fruit flies, nematodes, and mice. NAD+ levels and the intrinsic relationship to mitochondrial function have been widely studied in the context of aging. Mitochondrial function and dynamics have both been implicated in longevity determination in a range of organisms from yeast to humans, at least in part due to their intimate link to regulating an organism's cellular energy economy and capacity to resist oxidative stress. Recent findings support the idea that complex communication between the mitochondria and the nucleus orchestrates a series of events and stress responses involving mitophagy, mitochondrial number, mitochondrial unfolded protein response (UPRmt), and mitochondria fission and fusion events. In this review, we discuss how mitochondrial morphological changes and dynamics operate during aging, and how altered metabolism of tryptophan to NAD+ through the kynurenine pathway interacts with these processes.
Collapse
Affiliation(s)
- Raul Castro-Portuguez
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, 85721, AZ, USA
| | - George L Sutphin
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, 85721, AZ, USA; Department of Molecular and Cellular Biology, University of Arizona, Tucson, 85721, AZ, USA.
| |
Collapse
|
27
|
Abstract
The kynurenine pathway (KP) plays a critical role in generating cellular energy in the form of nicotinamide adenine dinucleotide (NAD+). Because energy requirements are substantially increased during an immune response, the KP is a key regulator of the immune system. Perhaps more importantly in the context of psychiatry, many kynurenines are neuroactive, modulating neuroplasticity and/or exerting neurotoxic effects in part through their effects on NMDA receptor signaling and glutamatergic neurotransmission. As such, it is not surprising that the kynurenines have been implicated in psychiatric illness in the context of inflammation. However, because of their neuromodulatory properties, the kynurenines are not just additional members of a list of inflammatory mediators linked with psychiatric illness, but in preclinical studies have been shown to be necessary components of the behavioral analogs of depression and schizophrenia-like cognitive deficits. Further, as the title suggests, the KP is regulated by, and in turn regulates multiple other physiological systems that are commonly disrupted in psychiatric disorders, including endocrine, metabolic, and hormonal systems. This review provides a broad overview of the mechanistic pathways through which the kynurenines interact with these systems, thus impacting emotion, cognition, pain, metabolic function, and aging, and in so doing potentially increasing the risk of developing psychiatric disorders. Novel therapeutic approaches targeting the KP are discussed. Moreover, electroconvulsive therapy, ketamine, physical exercise, and certain non-steroidal anti-inflammatories have been shown to alter kynurenine metabolism, raising the possibility that kynurenine metabolites may have utility as treatment response or therapeutic monitoring biomarkers.
Collapse
Affiliation(s)
- Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK, USA.
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA.
| |
Collapse
|
28
|
Tryptophan metabolism is differently regulated between large and small dogs. GeroScience 2019; 42:881-896. [PMID: 31784886 PMCID: PMC7286990 DOI: 10.1007/s11357-019-00114-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/02/2019] [Indexed: 01/05/2023] Open
Abstract
Companion dogs have recently been promoted as an animal model for the study of aging due to their similar disease profile to humans, the sophistication of health assessment and disease diagnosis, and the shared environments with their owners. In addition, dogs show an interesting life history trait pattern where smaller individuals are up to two-fold longer lived than their larger counterparts. While some of the mechanisms underlying this size and longevity trade-off are strongly suspected (i.e., growth hormone/IGF-I), there are likely a number of undiscovered mechanisms as well. Accordingly, we have completed a large-scale global metabolomic profiling of dogs encompassing a range of sizes and ages from three cities across the USA. We found a surprisingly strong location signal in the metabolome, stronger in fact than any signal related to age, breed, or sex. However, after controlling for the effects of location, tryptophan metabolism emerged as significantly associated with weight of the dogs, with small dogs having significantly higher levels of tryptophan pathway metabolites. Overall, our results point toward novel, testable hypotheses about the underlying physiological mechanisms that influence size and longevity in the companion dog and suggest that dogs may be useful in sorting out the complexities of the tryptophan metabolic network.
Collapse
|
29
|
Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat Rev Drug Discov 2019; 18:379-401. [PMID: 30760888 DOI: 10.1038/s41573-019-0016-5] [Citation(s) in RCA: 860] [Impact Index Per Article: 143.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
L-Tryptophan (Trp) metabolism through the kynurenine pathway (KP) is involved in the regulation of immunity, neuronal function and intestinal homeostasis. Imbalances in Trp metabolism in disorders ranging from cancer to neurodegenerative disease have stimulated interest in therapeutically targeting the KP, particularly the main rate-limiting enzymes indoleamine-2,3-dioxygenase 1 (IDO1), IDO2 and tryptophan-2,3-dioxygenase (TDO) as well as kynurenine monooxygenase (KMO). However, although small-molecule IDO1 inhibitors showed promise in early-stage cancer immunotherapy clinical trials, a phase III trial was negative. This Review summarizes the physiological and pathophysiological roles of Trp metabolism, highlighting the vast opportunities and challenges for drug development in multiple diseases.
Collapse
|
30
|
C. elegans protein interaction network analysis probes RNAi validated pro-longevity effect of nhr-6, a human homolog of tumor suppressor Nr4a1. Sci Rep 2019; 9:15711. [PMID: 31673088 PMCID: PMC6823380 DOI: 10.1038/s41598-019-51649-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/30/2019] [Indexed: 02/07/2023] Open
Abstract
Protein-protein interaction (PPI) studies are gaining momentum these days due to the plethora of various high-throughput experimental methods available for detecting PPIs. Proteins create complexes and networks by functioning in harmony with other proteins and here in silico network biology hold the promise to reveal new functionality of genes as it is very difficult and laborious to carry out experimental high-throughput genetic screens in living organisms. We demonstrate this approach by computationally screening C. elegans conserved homologs of already reported human tumor suppressor and aging associated genes. We select by this nhr-6, vab-3 and gst-23 as predicted longevity genes for RNAi screen. The RNAi results demonstrated the pro-longevity effect of these genes. Nuclear hormone receptor nhr-6 RNAi inhibition resulted in a C. elegans phenotype of 23.46% lifespan reduction. Moreover, we show that nhr-6 regulates oxidative stress resistance in worms and does not affect the feeding behavior of worms. These findings imply the potential of nhr-6 as a common therapeutic target for aging and cancer ailments, stressing the power of in silico PPI network analysis coupled with RNAi screens to describe gene function.
Collapse
|
31
|
Sorgdrager FJH, Naudé PJW, Kema IP, Nollen EA, Deyn PPD. Tryptophan Metabolism in Inflammaging: From Biomarker to Therapeutic Target. Front Immunol 2019; 10:2565. [PMID: 31736978 PMCID: PMC6833926 DOI: 10.3389/fimmu.2019.02565] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammation aims to restore tissue homeostasis after injury or infection. Age-related decline of tissue homeostasis causes a physiological low-grade chronic inflammatory phenotype known as inflammaging that is involved in many age-related diseases. Activation of tryptophan (Trp) metabolism along the kynurenine (Kyn) pathway prevents hyperinflammation and induces long-term immune tolerance. Systemic Trp and Kyn levels change upon aging and in age-related diseases. Moreover, modulation of Trp metabolism can either aggravate or prevent inflammaging-related diseases. In this review, we discuss how age-related Kyn/Trp activation is necessary to control inflammaging and alters the functioning of other metabolic faiths of Trp including Kyn metabolites, microbiota-derived indoles and nicotinamide adenine dinucleotide (NAD+). We explore the potential of the Kyn/Trp ratio as a biomarker of inflammaging and discuss how intervening in Trp metabolism might extend health- and lifespan.
Collapse
Affiliation(s)
- Freek J H Sorgdrager
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Alzheimer Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Petrus J W Naudé
- Department of Neurology and Alzheimer Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ellen A Nollen
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Peter P De Deyn
- Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Alzheimer Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Neurology, Memory Clinic of Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| |
Collapse
|
32
|
Fuellen G, Jansen L, Cohen AA, Luyten W, Gogol M, Simm A, Saul N, Cirulli F, Berry A, Antal P, Köhling R, Wouters B, Möller S. Health and Aging: Unifying Concepts, Scores, Biomarkers and Pathways. Aging Dis 2019; 10:883-900. [PMID: 31440392 PMCID: PMC6675520 DOI: 10.14336/ad.2018.1030] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/30/2018] [Indexed: 12/30/2022] Open
Abstract
Despite increasing research efforts, there is a lack of consensus on defining aging or health. To understand the underlying processes, and to foster the development of targeted interventions towards increasing one's health, there is an urgent need to find a broadly acceptable and useful definition of health, based on a list of (molecular) features; to operationalize features of health so that it can be measured; to identify predictive biomarkers and (molecular) pathways of health; and to suggest interventions, such as nutrition and exercise, targeted at putative causal pathways and processes. Based on a survey of the literature, we propose to define health as a state of an individual characterized by the core features of physiological, cognitive, physical and reproductive function, and a lack of disease. We further define aging as the aggregate of all processes in an individual that reduce its wellbeing, that is, its health or survival or both. We define biomarkers of health by their attribute of predicting future health better than chronological age. We define healthspan pathways as molecular features of health that relate to each other by belonging to the same molecular pathway. Our conceptual framework may integrate diverse operationalizations of health and guide precision prevention efforts.
Collapse
Affiliation(s)
- Georg Fuellen
- Rostock University Medical Center, Institute for Biostatistics and Informatics in Medicine and Aging Research (IBIMA), Rostock, Germany.
| | - Ludger Jansen
- Institute of Philosophy, University of Rostock, Germany.
| | - Alan A Cohen
- Department of Family Medicine, University of Sherbrooke, Sherbrooke, Canada.
| | - Walter Luyten
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium.
| | - Manfred Gogol
- Institute of Gerontology, University Heidelberg, Germany.
| | - Andreas Simm
- Department of Cardiac Surgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - Nadine Saul
- Humboldt-University of Berlin, Institute of Biology, Berlin, Germany.
| | - Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Italy.
| | - Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Italy.
| | - Peter Antal
- Budapest University of Technology and Economics, Budapest, Hungary.
- Abiomics Europe Ltd., Hungary.
| | - Rüdiger Köhling
- Rostock University Medical Center, Institute for Physiology, Rostock, Germany.
| | | | - Steffen Möller
- Rostock University Medical Center, Institute for Biostatistics and Informatics in Medicine and Aging Research (IBIMA), Rostock, Germany.
| |
Collapse
|
33
|
Rollins JA, Shaffer D, Snow SS, Kapahi P, Rogers AN. Dietary restriction induces posttranscriptional regulation of longevity genes. Life Sci Alliance 2019; 2:2/4/e201800281. [PMID: 31253655 PMCID: PMC6600014 DOI: 10.26508/lsa.201800281] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022] Open
Abstract
Dietary restriction (DR) increases life span through adaptive changes in gene expression. To understand more about these changes, we analyzed the transcriptome and translatome of Caenorhabditis elegans subjected to DR. Transcription of muscle regulatory and structural genes increased, whereas increased expression of amino acid metabolism and neuropeptide signaling genes was controlled at the level of translation. Evaluation of posttranscriptional regulation identified putative roles for RNA-binding proteins, RNA editing, miRNA, alternative splicing, and nonsense-mediated decay in response to nutrient limitation. Using RNA interference, we discovered several differentially expressed genes that regulate life span. We also found a compensatory role for translational regulation, which offsets dampened expression of a large subset of transcriptionally down-regulated genes. Furthermore, 3' UTR editing and intron retention increase under DR and correlate with diminished translation, whereas trans-spliced genes are refractory to reduced translation efficiency compared with messages with the native 5' UTR. Finally, we find that smg-6 and smg-7, which are genes governing selection and turnover of nonsense-mediated decay targets, are required for increased life span under DR.
Collapse
Affiliation(s)
- Jarod A Rollins
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA
| | - Dan Shaffer
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA
| | - Santina S Snow
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Aric N Rogers
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA
| |
Collapse
|
34
|
Bubier JA, Sutphin GL, Reynolds TJ, Korstanje R, Fuksman-Kumpa A, Baker EJ, Langston MA, Chesler EJ. Integration of heterogeneous functional genomics data in gerontology research to find genes and pathway underlying aging across species. PLoS One 2019; 14:e0214523. [PMID: 30978202 PMCID: PMC6461221 DOI: 10.1371/journal.pone.0214523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/15/2019] [Indexed: 11/18/2022] Open
Abstract
Understanding the biological mechanisms behind aging, lifespan and healthspan is becoming increasingly important as the proportion of the world's population over the age of 65 grows, along with the cost and complexity of their care. BigData oriented approaches and analysis methods enable current and future bio-gerontologists to synthesize, distill and interpret vast, heterogeneous data from functional genomics studies of aging. GeneWeaver is an analysis system for integration of data that allows investigators to store, search, and analyze immense amounts of data including user-submitted experimental data, data from primary publications, and data in other databases. Aging related genome-wide gene sets from primary publications were curated into this system in concert with data from other model-organism and aging-specific databases, and applied to several questions in genrontology using. For example, we identified Cd63 as a frequently represented gene among aging-related genome-wide results. To evaluate the role of Cd63 in aging, we performed RNAi knockdown of the C. elegans ortholog, tsp-7, demonstrating that this manipulation is capable of extending lifespan. The tools in GeneWeaver enable aging researchers to make new discoveries into the associations between the genes, normal biological processes, and diseases that affect aging, healthspan, and lifespan.
Collapse
Affiliation(s)
- Jason A. Bubier
- The Jackson Laboratory, Bar Harbor ME, United States of America
| | - George L. Sutphin
- The University of Arizona, Molecular and Cellular Biology, United States of America
| | | | - Ron Korstanje
- The Jackson Laboratory Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory, Bar Harbor, ME, United States of America
| | | | | | | | - Elissa J. Chesler
- The Jackson Laboratory, Bar Harbor ME, United States of America
- The Jackson Laboratory Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory, Bar Harbor, ME, United States of America
- * E-mail:
| |
Collapse
|
35
|
Wu B, Xiao X, Li S, Zuo G. Transcriptomics and metabonomics of the anti-aging properties of total flavones of Epimedium in relation to lipid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2019; 229:73-80. [PMID: 30278205 DOI: 10.1016/j.jep.2018.09.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Total flavones of Epimedium (TFE) is the main active ingredient in Herba Epimedii, which is a well-known Chinese herbal medicine that is widely used to treat certain age-related diseases in oriental countries. AIM OF THE STUDY The aim of this work was to investigate the anti-aging properties of TFE related to lipid metabolism. MATERIALS AND METHODS Both transcriptomics and metabonomics were applied in this work to investigate the anti-aging properties of TFE. Microarray and LC-MS analysis were conducted on liver samples of three groups of rats, including young (4 months), old (24 months), and old rats administrated TFE. RESULTS Transcriptomics analysis highlighted 287 transcripts related to the anti-aging effect of TFE, in which the expression ratio of 18 genes regulating lipid metabolism, including HMGCS1 and NR1H3, returned to normal levels after TFE treatment. In addition, 24 aging-related metabolites were discovered in a metabonomics study, and 15 of these were structurally identified, including palmitic amide, linoleamide, and oleamide. Bioinformatics and integral data analysis on the results of the transcriptomics and metabonomics suggest the involvement of 12 key metabolic pathways, half of which are highly related to lipid metabolism. CONCLUSIONS This study demonstrates that the role played by TFE in the lipid metabolism of aging rats is multifaceted and multi-layered.
Collapse
Affiliation(s)
- Bin Wu
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, PR China
| | - Xue Xiao
- Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Shasha Li
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, PR China.
| | - Guoqing Zuo
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, PR China.
| |
Collapse
|
36
|
Osanai T, Tanaka M, Mikami K, Kitajima M, Tomisawa T, Magota K, Tomita H, Okumura K. Novel anti-aging gene NM_026333 contributes to proton-induced aging via NCX1-pathway. J Mol Cell Cardiol 2018; 125:174-184. [DOI: 10.1016/j.yjmcc.2018.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/04/2018] [Accepted: 10/25/2018] [Indexed: 12/15/2022]
|
37
|
Eckley DM, Coletta CE, Orlov NV, Wilson MA, Iser W, Bastian P, Lehrmann E, Zhang Y, Becker KG, Goldberg IG. Transcriptome States Reflect Imaging of Aging States. J Gerontol A Biol Sci Med Sci 2018; 73:893-901. [PMID: 29216338 DOI: 10.1093/gerona/glx236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 11/22/2017] [Indexed: 01/09/2023] Open
Abstract
In this study, we describe a morphological biomarker that detects multiple discrete subpopulations (or "age-states") at several chronological ages in a population of nematodes (Caenorhabditis elegans). We determined the frequencies of three healthy adult states and the timing of the transitions between them across the lifespan. We used short-lived and long-lived strains to confirm the general applicability of the state classifier and to monitor state progression. This exploration revealed healthy and unhealthy states, the former being favored in long-lived strains and the latter showing delayed onset. Short-lived strains rapidly transitioned through the putative healthy state. We previously found that age-matched animals in different age-states have distinct transcriptome profiles. We isolated animals at the beginning and end of each identified state and performed microarray analysis (principal component analysis, relative sample to sample distance measurements, and gene set enrichment analysis). In some comparisons, chronologically identical individuals were farther apart than morphologically identical individuals isolated on different days. The age-state biomarker allowed assessment of aging in a novel manner, complementary to chronological age progression. We found hsp70 and some small heat shock protein genes are expressed later in adulthood, consistent with the proteostasis collapse model.
Collapse
Affiliation(s)
- D Mark Eckley
- Laboratory of Genetics and Genomics, Biomedical Research Center, Baltimore, Maryland
| | - Christopher E Coletta
- Laboratory of Genetics and Genomics, Biomedical Research Center, Baltimore, Maryland
| | - Nikita V Orlov
- Laboratory of Genetics and Genomics, Biomedical Research Center, Baltimore, Maryland
| | - Mark A Wilson
- Laboratory of Neuroscience, Biomedical Research Center, Baltimore, Maryland
| | - Wendy Iser
- Laboratory of Neuroscience, Biomedical Research Center, Baltimore, Maryland
| | - Paul Bastian
- Laboratory of Genetics and Genomics, Biomedical Research Center, Baltimore, Maryland
| | - Elin Lehrmann
- Laboratory of Genetics and Genomics, Biomedical Research Center, Baltimore, Maryland
| | - Yonqing Zhang
- Laboratory of Genetics and Genomics, Biomedical Research Center, Baltimore, Maryland
| | - Kevin G Becker
- Laboratory of Genetics and Genomics, Biomedical Research Center, Baltimore, Maryland
| | - Ilya G Goldberg
- Laboratory of Genetics and Genomics, Biomedical Research Center, Baltimore, Maryland.,Mindshare Medical, Inc., Baltimore, Maryland
| |
Collapse
|
38
|
Aramillo Irizar P, Schäuble S, Esser D, Groth M, Frahm C, Priebe S, Baumgart M, Hartmann N, Marthandan S, Menzel U, Müller J, Schmidt S, Ast V, Caliebe A, König R, Krawczak M, Ristow M, Schuster S, Cellerino A, Diekmann S, Englert C, Hemmerich P, Sühnel J, Guthke R, Witte OW, Platzer M, Ruppin E, Kaleta C. Transcriptomic alterations during ageing reflect the shift from cancer to degenerative diseases in the elderly. Nat Commun 2018; 9:327. [PMID: 29382830 PMCID: PMC5790807 DOI: 10.1038/s41467-017-02395-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 11/27/2017] [Indexed: 02/07/2023] Open
Abstract
Disease epidemiology during ageing shows a transition from cancer to degenerative chronic disorders as dominant contributors to mortality in the old. Nevertheless, it has remained unclear to what extent molecular signatures of ageing reflect this phenomenon. Here we report on the identification of a conserved transcriptomic signature of ageing based on gene expression data from four vertebrate species across four tissues. We find that ageing-associated transcriptomic changes follow trajectories similar to the transcriptional alterations observed in degenerative ageing diseases but are in opposite direction to the transcriptomic alterations observed in cancer. We confirm the existence of a similar antagonism on the genomic level, where a majority of shared risk alleles which increase the risk of cancer decrease the risk of chronic degenerative disorders and vice versa. These results reveal a fundamental trade-off between cancer and degenerative ageing diseases that sheds light on the pronounced shift in their epidemiology during ageing. Ageing is associated with a pronounced shift in mortality from cancer to degenerative diseases. Here, the authors show that in concordance with this shift, conserved transcriptional alterations during ageing across four vertebrates align with degenerative diseases but are opposite to those in cancer.
Collapse
Affiliation(s)
- Peer Aramillo Irizar
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-University Kiel, D-24105, Kiel, Germany
| | - Sascha Schäuble
- Jena University Language and Information Engineering Lab, Friedrich-Schiller-University Jena, D-07743, Jena, Germany.,GerontoSys JenAge Consortium, D-07745, Jena, Germany
| | - Daniela Esser
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-University Kiel, D-24105, Kiel, Germany
| | - Marco Groth
- GerontoSys JenAge Consortium, D-07745, Jena, Germany.,Genome Analysis Lab, Leibniz Institute on Aging-Fritz-Lipmann-Institute, D-07745, Jena, Germany
| | - Christiane Frahm
- GerontoSys JenAge Consortium, D-07745, Jena, Germany.,Hans Berger Department of Neurology, Jena University Hospital, D-07747, Jena, Germany
| | - Steffen Priebe
- GerontoSys JenAge Consortium, D-07745, Jena, Germany.,Systems Biology and Bioinformatics Group, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, D-07745, Jena, Germany
| | - Mario Baumgart
- GerontoSys JenAge Consortium, D-07745, Jena, Germany.,Biology of Ageing Lab, Leibniz Institute on Aging-Fritz-Lipmann-Institute, D-07745, Jena, Germany
| | - Nils Hartmann
- GerontoSys JenAge Consortium, D-07745, Jena, Germany.,Molecular Genetics Lab, Leibniz Institute on Aging-Fritz-Lipmann-Institute, D-07745, Jena, Germany
| | - Shiva Marthandan
- GerontoSys JenAge Consortium, D-07745, Jena, Germany.,Imageing Facility, Leibniz Institute on Aging-Fritz-Lipmann-Institute, D-07745, Jena, Germany
| | - Uwe Menzel
- GerontoSys JenAge Consortium, D-07745, Jena, Germany.,Systems Biology and Bioinformatics Group, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, D-07745, Jena, Germany
| | - Jule Müller
- Hans Berger Department of Neurology, Jena University Hospital, D-07747, Jena, Germany
| | - Silvio Schmidt
- GerontoSys JenAge Consortium, D-07745, Jena, Germany.,Hans Berger Department of Neurology, Jena University Hospital, D-07747, Jena, Germany
| | - Volker Ast
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747, Jena, Germany.,Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, D-07745, Jena, Germany
| | - Amke Caliebe
- Institute for Medical Informatics and Statistics, Christian-Albrechts-University Kiel, D-24105, Kiel, Germany
| | - Rainer König
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747, Jena, Germany.,Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, D-07745, Jena, Germany
| | - Michael Krawczak
- Institute for Medical Informatics and Statistics, Christian-Albrechts-University Kiel, D-24105, Kiel, Germany
| | - Michael Ristow
- GerontoSys JenAge Consortium, D-07745, Jena, Germany.,Energy Metabolism Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach/Zürich, CH-8603, Switzerland
| | - Stefan Schuster
- GerontoSys JenAge Consortium, D-07745, Jena, Germany.,Department of Bioinformatics, Friedrich-Schiller-University Jena, D-07743, Jena, Germany
| | - Alessandro Cellerino
- GerontoSys JenAge Consortium, D-07745, Jena, Germany.,Biology of Ageing Lab, Leibniz Institute on Aging-Fritz-Lipmann-Institute, D-07745, Jena, Germany.,Laboratory of Neurobiology, Scuola Normale Superiore, University of Pisa, I-56100, Pisa, Italy
| | - Stephan Diekmann
- GerontoSys JenAge Consortium, D-07745, Jena, Germany.,Molecular Biology Lab, Leibniz Institute on Aging-Fritz-Lipmann-Institute, D-07745, Jena, Germany
| | - Christoph Englert
- GerontoSys JenAge Consortium, D-07745, Jena, Germany.,Molecular Genetics Lab, Leibniz Institute on Aging-Fritz-Lipmann-Institute, D-07745, Jena, Germany.,Faculty of Biology and Pharmacy, Friedrich-Schiller-University Jena, D-07743, Jena, Germany
| | - Peter Hemmerich
- GerontoSys JenAge Consortium, D-07745, Jena, Germany.,Imageing Facility, Leibniz Institute on Aging-Fritz-Lipmann-Institute, D-07745, Jena, Germany
| | - Jürgen Sühnel
- GerontoSys JenAge Consortium, D-07745, Jena, Germany.,Biocomputing Lab, Leibniz Institute on Aging-Fritz-Lipmann-Institute, D-07745, Jena, Germany
| | - Reinhard Guthke
- GerontoSys JenAge Consortium, D-07745, Jena, Germany.,Systems Biology and Bioinformatics Group, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, D-07745, Jena, Germany
| | - Otto W Witte
- GerontoSys JenAge Consortium, D-07745, Jena, Germany.,Hans Berger Department of Neurology, Jena University Hospital, D-07747, Jena, Germany
| | - Matthias Platzer
- GerontoSys JenAge Consortium, D-07745, Jena, Germany.,Genome Analysis Lab, Leibniz Institute on Aging-Fritz-Lipmann-Institute, D-07745, Jena, Germany
| | - Eytan Ruppin
- Department of Computer Science and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, 20742, USA
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-University Kiel, D-24105, Kiel, Germany. .,GerontoSys JenAge Consortium, D-07745, Jena, Germany.
| |
Collapse
|
39
|
Salazar JL, Yamamoto S. Integration of Drosophila and Human Genetics to Understand Notch Signaling Related Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:141-185. [PMID: 30030826 PMCID: PMC6233323 DOI: 10.1007/978-3-319-89512-3_8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch signaling research dates back to more than one hundred years, beginning with the identification of the Notch mutant in the fruit fly Drosophila melanogaster. Since then, research on Notch and related genes in flies has laid the foundation of what we now know as the Notch signaling pathway. In the 1990s, basic biological and biochemical studies of Notch signaling components in mammalian systems, as well as identification of rare mutations in Notch signaling pathway genes in human patients with rare Mendelian diseases or cancer, increased the significance of this pathway in human biology and medicine. In the 21st century, Drosophila and other genetic model organisms continue to play a leading role in understanding basic Notch biology. Furthermore, these model organisms can be used in a translational manner to study underlying mechanisms of Notch-related human diseases and to investigate the function of novel disease associated genes and variants. In this chapter, we first briefly review the major contributions of Drosophila to Notch signaling research, discussing the similarities and differences between the fly and human pathways. Next, we introduce several biological contexts in Drosophila in which Notch signaling has been extensively characterized. Finally, we discuss a number of genetic diseases caused by mutations in genes in the Notch signaling pathway in humans and we expand on how Drosophila can be used to study rare genetic variants associated with these and novel disorders. By combining modern genomics and state-of-the art technologies, Drosophila research is continuing to reveal exciting biology that sheds light onto mechanisms of disease.
Collapse
Affiliation(s)
- Jose L Salazar
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA.
- Program in Developmental Biology, BCM, Houston, TX, USA.
- Department of Neuroscience, BCM, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
40
|
Bailey DC, Todt CE, Burchfield SL, Pressley AS, Denney RD, Snapp IB, Negga R, Traynor WL, Fitsanakis VA. Chronic exposure to a glyphosate-containing pesticide leads to mitochondrial dysfunction and increased reactive oxygen species production in Caenorhabditis elegans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 57:46-52. [PMID: 29190595 PMCID: PMC5803312 DOI: 10.1016/j.etap.2017.11.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/14/2017] [Indexed: 05/05/2023]
Abstract
Glyphosate-containing herbicides are among the most widely-used in the world. Although glyphosate itself is relatively non-toxic, growing evidence suggests that commercial herbicide formulations may lead to increased oxidative stress and mitochondrial inhibition. In order to assess these mechanisms in vivo, we chronically (24h) exposed Caenorhabditis elegans to various concentrations of the glyphosate-containing herbicide TouchDown (TD). Following TD exposure, we evaluated the function of specific mitochondrial electron transport chain complexes. Initial oxygen consumption studies demonstrated inhibition in mid- and high-TD concentration treatment groups compared to controls. Results from tetramethylrhodamine ethyl ester and ATP assays indicated reductions in the proton gradient and ATP levels, respectively. Additional studies were designed to determine whether TD exposure resulted in increased reactive oxygen species (ROS) production. Data from hydrogen peroxide, but not superoxide or hydroxyl radical, assays showed statistically significant increases in this specific ROS. Taken together, these data indicate that exposure of Caenorhabditis elegans to TD leads to mitochondrial inhibition and hydrogen peroxide production.
Collapse
Affiliation(s)
- Denise C Bailey
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Callie E Todt
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Shelbie L Burchfield
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Aireal S Pressley
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Rachel D Denney
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Isaac B Snapp
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Rekek Negga
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Wendy L Traynor
- King University, Department of Mathematics and Physics, 1350 King College Road, Bristol, TN 37620, USA.
| | - Vanessa A Fitsanakis
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| |
Collapse
|