1
|
Camon C, Prescott M, Neyt C, Decourt C, Stout MB, Campbell RE, Garratt M. Systemic metabolic benefits of 17α-estradiol are not exclusively mediated by ERα in glutamatergic or GABAergic neurons. GeroScience 2024; 46:6127-6140. [PMID: 38776045 PMCID: PMC11493872 DOI: 10.1007/s11357-024-01192-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/02/2024] [Indexed: 10/23/2024] Open
Abstract
17α-Estradiol (17αE2), a less-feminising enantiomer of 17β-estradiol, has been shown to prolong lifespan and improve metabolic health in a sex-specific manner in male, but not in female mice. Recent studies have demonstrated the pivotal role of estrogen receptor α (ERα) in mediating the effects of 17αE2 on metabolic health. However, the specific tissues and/or neuronal signalling pathways that 17αE2 acts through remain to be elucidated. ERα expression in glutamatergic and GABAergic neurons (principal excitatory and inhibitory neurons respectively) in the hypothalamus is essential for estradiol signalling. Therefore, we hypothesised that knocking out ERα from one of these neuronal populations would attenuate the established beneficial metabolic effects of 17αE2 in male mice exposed to a high fat diet. To test this hypothesis we used two established brain specific ERα KO models, targeting either glutamatergic or GABAergic neurons (Vglut2/Vgat-ERαKO). We show that both of these ERα KO models exhibit a strong reduction in ERα expression in the arcuate nucleus of the hypothalamus, a control centre for metabolic regulation. Deletion of ERα from GABAergic neurons significantly diminished the effect of 17αE2 on body weight relative to controls, although these animals still show metabolic benefits with 17αE2 treatment. The response to 17αE2 was unaffected by ERα deletion in glutamatergic neurons. Our results support a benefit of 17αE2 treatment in protection against metabolic dysfunction, but these effects do not depend on exclusive ERα expression in glutamatergic and GABAergic neurons and persist when ERα expression is strongly reduced in the arcuate nucleus of the hypothalamus.
Collapse
Affiliation(s)
- Celine Camon
- Department of Anatomy, University of Otago, Dunedin, New Zealand.
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand.
| | - Mel Prescott
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Christine Neyt
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - Caroline Decourt
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Rebecca E Campbell
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Michael Garratt
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Fritz García JHG, Keller Valsecchi CI, Basilicata MF. Sex as a biological variable in ageing: insights and perspectives on the molecular and cellular hallmarks. Open Biol 2024; 14:240177. [PMID: 39471841 PMCID: PMC11521605 DOI: 10.1098/rsob.240177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 11/01/2024] Open
Abstract
Sex-specific differences in lifespan and ageing are observed in various species. In humans, women generally live longer but are frailer and suffer from different age-related diseases compared to men. The hallmarks of ageing, such as genomic instability, telomere attrition or loss of proteostasis, exhibit sex-specific patterns. Sex chromosomes and sex hormones, as well as the epigenetic regulation of the inactive X chromosome, have been shown to affect lifespan and age-related diseases. Here we review the current knowledge on the biological basis of sex-biased ageing. While our review is focused on humans, we also discuss examples of model organisms such as the mouse, fruit fly or the killifish. Understanding these molecular differences is crucial as the elderly population is expected to double worldwide by 2050, making sex-specific approaches in the diagnosis, treatment, therapeutic development and prevention of age-related diseases a pressing need.
Collapse
Affiliation(s)
| | | | - M. Felicia Basilicata
- Institute of Molecular Biology (IMB), Mainz, Germany
- University Medical Center (UMC), Mainz, Germany
| |
Collapse
|
3
|
Sonsalla MM, Babygirija R, Johnson M, Cai S, Cole M, Yeh CY, Grunow I, Liu Y, Vertein D, Calubag MF, Trautman ME, Green CL, Rigby MJ, Puglielli L, Lamming DW. Acarbose ameliorates Western diet-induced metabolic and cognitive impairments in the 3xTg mouse model of Alzheimer's disease. GeroScience 2024:10.1007/s11357-024-01337-3. [PMID: 39271570 DOI: 10.1007/s11357-024-01337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Age is the greatest risk factor for Alzheimer's disease (AD) as well as for other disorders that increase the risk of AD such as diabetes and obesity. There is growing interest in determining if interventions that promote metabolic health can prevent or delay AD. Acarbose is an anti-diabetic drug that not only improves glucose homeostasis, but also extends the lifespan of wild-type mice. Here, we test the hypothesis that acarbose will not only preserve metabolic health, but also slow or prevent AD pathology and cognitive deficits in 3xTg mice, a model of AD, fed either a Control diet or a high-fat, high-sucrose Western diet (WD). We find that acarbose decreases the body weight and adiposity of WD-fed 3xTg mice, increasing energy expenditure while also stimulating food consumption, and improves glycemic control. Both male and female WD-fed 3xTg mice have worsened cognitive deficits than Control-fed mice, and these deficits are ameliorated by acarbose treatment. Molecular and histological analysis of tau and amyloid pathology identified sex-specific effects of acarbose which are uncoupled from the dramatic improvements in cognition in females, suggesting that the benefits of acarbose on AD may be largely driven by improved metabolic health. In conclusion, our results suggest that acarbose may be a promising intervention to prevent, delay, or even treat AD, especially in individuals consuming a WD.
Collapse
Affiliation(s)
- Michelle M Sonsalla
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave, MFCB Rm 4147, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Comparative Biomedical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave, MFCB Rm 4147, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Madeline Johnson
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave, MFCB Rm 4147, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Samuel Cai
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave, MFCB Rm 4147, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Mari Cole
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave, MFCB Rm 4147, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave, MFCB Rm 4147, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Isaac Grunow
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave, MFCB Rm 4147, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Yang Liu
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave, MFCB Rm 4147, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Diana Vertein
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave, MFCB Rm 4147, Madison, WI, 53705, USA
| | - Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave, MFCB Rm 4147, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Michaela E Trautman
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave, MFCB Rm 4147, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Cara L Green
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave, MFCB Rm 4147, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Michael J Rigby
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave, MFCB Rm 4147, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave, MFCB Rm 4147, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave, MFCB Rm 4147, Madison, WI, 53705, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
- Comparative Biomedical Sciences, University of Wisconsin-Madison, Madison, WI, USA.
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA.
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, USA.
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, 53705, USA.
- University of Wisconsin-Madison Comprehensive Diabetes Center, Madison, WI, 53705, USA.
| |
Collapse
|
4
|
Sathiaseelan R, Isola JVV, Santín-Márquez R, Adekunbi D, Fornalik M, Salmon AB, Stout MB. A pilot study evaluating dosing tolerability of 17α-estradiol in male common marmosets (Callithrix jacchus). GeroScience 2024:10.1007/s11357-024-01311-z. [PMID: 39107620 DOI: 10.1007/s11357-024-01311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024] Open
Abstract
17α-estradiol extends healthspan and lifespan in male mice without significant feminization or deleterious effects on reproductive function, making it a candidate for human translation. However, studies in animal models that more accurately replicate human physiology are necessary to establish 17α-estradiol dosing standards for clinical trials. This study evaluated the tolerability of 17α-estradiol treatment in the common marmoset over a short treatment duration. We found that male marmosets tolerated two dosing regimens (0.37-0.47 or 0.62-0.72 mg/kg/day) as evidenced by the absence of gastrointestinal distress, changes in vital signs, or overall health conditions. 17α-estradiol treatment mildly decreased body mass, adiposity, and glycosylated hemoglobin, although these changes were not statistically significant in most instances. However, neither dose of 17α-estradiol elicited feminization in our study, thereby suggesting that optimized dosing regimens may provide health benefits without feminization in primates. Additional studies are needed to determine if longer duration treatments would also be nonfeminizing and elicit significant health benefits, which would aid in developing dosing regimens targeting healthy aging in humans.
Collapse
Affiliation(s)
- Roshini Sathiaseelan
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA
| | - Jose V V Isola
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA
| | - Roberto Santín-Márquez
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA
| | - Daniel Adekunbi
- Barshop Institute for Longevity & Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Michal Fornalik
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA
| | - Adam B Salmon
- Barshop Institute for Longevity & Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
- South Texas Veterans Affairs Medical Center, San Antonio, TX, USA
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
5
|
Sonsalla MM, Babygirija R, Johnson M, Cai S, Cole M, Yeh CY, Grunow I, Liu Y, Vertein D, Calubag MF, Trautman ME, Green CL, Rigby MJ, Puglielli L, Lamming DW. Acarbose ameliorates Western diet-induced metabolic and cognitive impairments in the 3xTg mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.600472. [PMID: 39005334 PMCID: PMC11244897 DOI: 10.1101/2024.06.27.600472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Age is the greatest risk factor for Alzheimer's disease (AD) as well as for other disorders that increase the risk of AD such as diabetes and obesity. There is growing interest in determining if interventions that promote metabolic health can prevent or delay AD. Acarbose is an anti-diabetic drug that not only improves glucose homeostasis, but also extends the lifespan of wild-type mice. Here, we test the hypothesis that acarbose will not only preserve metabolic health, but also slow or prevent AD pathology and cognitive deficits in 3xTg mice, a model of AD, fed either a Control diet or a high-fat, high-sucrose Western diet (WD). We find that acarbose decreases the body weight and adiposity of WD-fed 3xTg mice, increasing energy expenditure while also stimulating food consumption, and improves glycemic control. Both male and female WD-fed 3xTg mice have worsened cognitive deficits than Control-fed mice, and these deficits are ameliorated by acarbose treatment. Molecular and histological analysis of tau and amyloid pathology identified sex-specific effects of acarbose which are uncoupled from the dramatic improvements in cognition, suggesting that the benefits of acarbose on AD are largely driven by improved metabolic health. In conclusion, our results suggest that acarbose may be a promising intervention to prevent, delay, or even treat AD, especially in individuals consuming a Western diet.
Collapse
|
6
|
Moses E, Atlan T, Sun X, Franěk R, Siddiqui A, Marinov GK, Shifman S, Zucker DM, Oron-Gottesman A, Greenleaf WJ, Cohen E, Ram O, Harel I. The killifish germline regulates longevity and somatic repair in a sex-specific manner. NATURE AGING 2024; 4:791-813. [PMID: 38750187 DOI: 10.1038/s43587-024-00632-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/10/2024] [Indexed: 05/22/2024]
Abstract
Classical evolutionary theories propose tradeoffs among reproduction, damage repair and lifespan. However, the specific role of the germline in shaping vertebrate aging remains largely unknown. In this study, we used the turquoise killifish (Nothobranchius furzeri) to genetically arrest germline development at discrete stages and examine how different modes of infertility impact life history. We first constructed a comprehensive single-cell gonadal atlas, providing cell-type-specific markers for downstream phenotypic analysis. We show here that germline depletion-but not arresting germline differentiation-enhances damage repair in female killifish. Conversely, germline-depleted males instead showed an extension in lifespan and rejuvenated metabolic functions. Through further transcriptomic analysis, we highlight enrichment of pro-longevity pathways and genes in germline-depleted male killifish and demonstrate functional conservation of how these factors may regulate longevity in germline-depleted Caenorhabditis elegans. Our results, therefore, demonstrate that different germline manipulation paradigms can yield pronounced sexually dimorphic phenotypes, implying alternative responses to classical evolutionary tradeoffs.
Collapse
Affiliation(s)
- Eitan Moses
- Department of Genetics, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Tehila Atlan
- Department of Genetics, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Xue Sun
- Department of Biochemistry, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Roman Franěk
- Department of Genetics, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Atif Siddiqui
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University School of Medicine, Jerusalem, Israel
| | | | - Sagiv Shifman
- Department of Genetics, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - David M Zucker
- Department of Statistics and Data Science, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Oron-Gottesman
- Department of Genetics, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University School of Medicine, Jerusalem, Israel
| | - Oren Ram
- Department of Biochemistry, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Itamar Harel
- Department of Genetics, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel.
| |
Collapse
|
7
|
Moses E, Atlan T, Sun X, Franek R, Siddiqui A, Marinov GK, Shifman S, Zucker DM, Oron-Gottesman A, Greenleaf WJ, Cohen E, Ram O, Harel I. The killifish germline regulates longevity and somatic repair in a sex-specific manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.18.572041. [PMID: 38187630 PMCID: PMC10769255 DOI: 10.1101/2023.12.18.572041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Classical evolutionary theories propose tradeoffs between reproduction, damage repair, and lifespan. However, the specific role of the germline in shaping vertebrate aging remains largely unknown. Here, we use the turquoise killifish ( N. furzeri ) to genetically arrest germline development at discrete stages, and examine how different modes of infertility impact life-history. We first construct a comprehensive single-cell gonadal atlas, providing cell-type-specific markers for downstream phenotypic analysis. Next, we show that germline depletion - but not arresting germline differentiation - enhances damage repair in female killifish. Conversely, germline-depleted males instead showed an extension in lifespan and rejuvenated metabolic functions. Through further transcriptomic analysis, we highlight enrichment of pro-longevity pathways and genes in germline-depleted male killifish and demonstrate functional conservation of how these factors may regulate longevity in germline-depleted C. elegans . Our results therefore demonstrate that different germline manipulation paradigms can yield pronounced sexually dimorphic phenotypes, implying alternative responses to classical evolutionary tradeoffs.
Collapse
|
8
|
McGill CJ, Christensen A, Qian W, Thorwald MA, Lugo JG, Namvari S, White OS, Finch CE, Benayoun BA, Pike CJ. Protection against APOE4 -associated aging phenotypes with the longevity-promoting intervention 17α-estradiol in male mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584678. [PMID: 38559059 PMCID: PMC10980056 DOI: 10.1101/2024.03.12.584678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The apolipoprotein ε4 allele ( APOE4 ) is associated with decreased longevity, increased vulnerability to age-related declines, and disorders across multiple systems. Interventions that promote healthspan and lifespan represent a promising strategy to attenuate the development of APOE4 -associated aging phenotypes. Here we studied the ability of the longevity-promoting intervention 17α-estradiol (17αE2) to protect against age-related impairments in APOE4 versus the predominant APOE3 genotype using early middle-aged mice with knock-in of human APOE alleles. Beginning at age 10 months, male APOE3 or APOE4 mice were treated for 20 weeks with 17αE2 or vehicle then compared for indices of aging phenotypes body-wide. Across peripheral and neural measures, APOE4 was associated with poorer outcomes. Notably, 17αE2 treatment improved outcomes in a genotype-dependent manner favoring APOE4 mice. These data demonstrate a positive APOE4 bias in 17αE2-mediated healthspan actions, suggesting that longevity-promoting interventions may be useful in mitigating deleterious age-related risks associated with APOE4 genotype.
Collapse
|
9
|
Bubak MP, Mann SN, Borowik AK, Pranay A, Batushansky A, Vieira de Sousa Neto I, Mondal SA, Doidge SM, Davidyan A, Szczygiel MM, Peelor FF, Rigsby S, Broomfield ME, Lacy CI, Rice HC, Stout MB, Miller BF. 17α-Estradiol alleviates high-fat diet-induced inflammatory and metabolic dysfunction in skeletal muscle of male and female mice. Am J Physiol Endocrinol Metab 2024; 326:E226-E244. [PMID: 38197793 PMCID: PMC11193529 DOI: 10.1152/ajpendo.00215.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
17α-estradiol (17α-E2) is a naturally occurring nonfeminizing diastereomer of 17β-estradiol that has life span-extending effects in rodent models. To date, studies of the systemic and tissue-specific benefits of 17α-E2 have largely focused on the liver, brain, and white adipose tissue with far less focus on skeletal muscle. Skeletal muscle has an important role in metabolic and age-related disease. Therefore, this study aimed to determine whether 17α-E2 treatment has positive, tissue-specific effects on skeletal muscle during a high-fat feeding. We hypothesized that male, but not female, mice, would benefit from 17α-E2 treatment during a high-fat diet (HFD) with changes in the mitochondrial proteome to support lipid oxidation and subsequent reductions in diacylglycerol (DAG) and ceramide content. To test this hypothesis, we used a multiomics approach to determine changes in lipotoxic lipid intermediates, metabolites, and proteins related to metabolic homeostasis. Unexpectedly, we found that 17α-E2 had marked, but different, beneficial effects within each sex. In male mice, we show that 17α-E2 alleviates HFD-induced metabolic detriments of skeletal muscle by reducing the accumulation of diacylglycerol (DAG), and inflammatory cytokine levels, and altered the abundance of most of the proteins related to lipolysis and β-oxidation. Similar to male mice, 17α-E2 treatment reduced fat mass while protecting muscle mass in female mice but had little muscle inflammatory cytokine levels. Although female mice were resistant to HFD-induced changes in DAGs, 17α-E2 treatment induced the upregulation of six DAG species. In female mice, 17α-E2 treatment changed the relative abundance of proteins involved in lipolysis, β-oxidation, as well as structural and contractile proteins but to a smaller extent than male mice. These data demonstrate the metabolic benefits of 17α-E2 in skeletal muscle of male and female mice and contribute to the growing literature of the use of 17α-E2 for multi tissue health span benefits.NEW & NOTEWORTHY Using a multiomics approach, we show that 17α-E2 alleviates HFD-induced metabolic detriments in skeletal muscle by altering bioactive lipid intermediates, inflammatory cytokines, and the abundance of proteins related to lipolysis and muscle contraction. The positive effects of 17α-E2 in skeletal muscle occur in both sexes but differ in their outcome.
Collapse
Affiliation(s)
- Matthew P Bubak
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Shivani N Mann
- Department of Neuroscience, University of Arizona, Tucson, Arizona, United States
| | - Agnieszka K Borowik
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Atul Pranay
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Albert Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheba, Israel
| | - Ivo Vieira de Sousa Neto
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Samim A Mondal
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Stephen M Doidge
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Arik Davidyan
- Department of Biological Sciences, California State University, Sacramento, California, United States
| | - Marcelina M Szczygiel
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Sandra Rigsby
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Matle E Broomfield
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Charles I Lacy
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Geroscience and Healthy Brain Aging, Oklahoma City, Oklahoma, United States
| | - Heather C Rice
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Geroscience and Healthy Brain Aging, Oklahoma City, Oklahoma, United States
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma, United States
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
10
|
Bartke A, Hascup E, Hascup K. Responses to Many Anti-Aging Interventions Are Sexually Dimorphic. World J Mens Health 2024; 42:29-38. [PMID: 37118966 PMCID: PMC10782120 DOI: 10.5534/wjmh.230015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 04/30/2023] Open
Abstract
There is increasing appreciation that sex differences are not limited to reproductive organs or traits related to reproduction and that sex is an important biological variable in most characteristics of a living organism. The biological process of aging and aging-related traits are no exception and exhibit numerous, often major, sex differences. This article explores one aspect of these differences, namely sex differences in the responses to anti-aging interventions. Aging can be slowed down and/or postponed by a variety of environmental ("lifestyle"), genetic or pharmacological interventions. Although many, particularly older studies utilized only one sex of experimental animals, there is considerable evidence that responses to these interventions can be very different in females and males. Calorie restriction (CR), that is reducing food intake without malnutrition can extend longevity in both sexes, but specific metabolic alterations and health benefits induced by CR are not the same in women and men. In laboratory mice, several of the genetic alterations that reduce insulin-like growth factor I (IGF-1) signaling extend longevity more effectively in females or in females only. Beneficial effects of rapamycin, an inhibitor of mTOR signaling, on mouse longevity are greater in females. In contrast, several anti-aging compounds, including a weak estrogen, 17 alpha estradiol, extend longevity of male, but not female, mice. Apparently, fundamental mechanisms of aging are not identical in females and males and it is essential to use both sexes in studies aimed at identifying novel anti-aging interventions. Recommendations for lifestyle modifications, drugs, and dietary supplements to maintain good health and functionality into advanced age and to live longer will likely need to be tailored to the sex of the user.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA.
| | - Erin Hascup
- Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Department of Neurology, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Kevin Hascup
- Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Department of Neurology, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
11
|
Elliehausen CJ, Anderson RM, Diffee GM, Rhoads TW, Lamming DW, Hornberger TA, Konopka AR. Geroprotector drugs and exercise: friends or foes on healthy longevity? BMC Biol 2023; 21:287. [PMID: 38066609 PMCID: PMC10709984 DOI: 10.1186/s12915-023-01779-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Physical activity and several pharmacological approaches individually combat age-associated conditions and extend healthy longevity in model systems. It is tantalizing to extrapolate that combining geroprotector drugs with exercise could extend healthy longevity beyond any individual treatment. However, the current dogma suggests that taking leading geroprotector drugs on the same day as exercise may limit several health benefits. Here, we review leading candidate geroprotector drugs and their interactions with exercise and highlight salient gaps in knowledge that need to be addressed to identify if geroprotector drugs can have a harmonious relationship with exercise.
Collapse
Affiliation(s)
- Christian J Elliehausen
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Rozalyn M Anderson
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Gary M Diffee
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Timothy W Rhoads
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Dudley W Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Adam R Konopka
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
- Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
12
|
Jiang E, Dinesh A, Jadhav S, Miller RA, Garcia GG. Canagliflozin shares common mTOR and MAPK signaling mechanisms with other lifespan extension treatments. Life Sci 2023; 328:121904. [PMID: 37406767 PMCID: PMC11351721 DOI: 10.1016/j.lfs.2023.121904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
Long-lived mouse models and treatments that extend lifespan, such as Rapamycin, acarbose and 17α- -estradiol, lead to reduction in mTORC1 activity, declines in cap-dependent translation and increases in cap-independent translation. In addition, these treatments reduce the MEK-ERK-MNK (ERK1-2) signaling cascade, leading to reduction in eIF4E phosphorylation, which also regulates mRNA translation. Here, we report that Canagliflozin, a drug that extends lifespan only in male mice reduces mTORC1 and ERK1-2 signaling in male mice only. The data suggest reduction in mTORC1 and ERK pathways are common mechanisms shared by both genetic and pharmacological models of slowed aging in mice. Our data also reveal a significant sexual dimorphism in the ERK1-2 signaling pathway which might help to explain why some drugs can extend lifespan in males but have no effects in female mice.
Collapse
Affiliation(s)
- Eric Jiang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan College of Literature, Science, and the Arts, USA
| | - Arjun Dinesh
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan College of Literature, Science, and the Arts, USA
| | - Sohan Jadhav
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan College of Literature, Science, and the Arts, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan School of Medicine, USA; University of Michigan Geriatrics Center, Ann Arbor, MI 48109, USA
| | - Gonzalo G Garcia
- Department of Pathology, University of Michigan School of Medicine, USA.
| |
Collapse
|
13
|
Stout MB, Vaughan KL, Isola JVV, Mann SN, Wellman B, Hoffman JM, Porter HL, Freeman WM, Mattison JA. Assessing tolerability and physiological responses to 17α-estradiol administration in male rhesus macaques. GeroScience 2023; 45:2337-2349. [PMID: 36897526 PMCID: PMC10651821 DOI: 10.1007/s11357-023-00767-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
17α-estradiol has recently been shown to extend healthspan and lifespan in male mice through multiple mechanisms. These benefits occur in the absence of significant feminization or deleterious effects on reproductive function, which makes 17α-estradiol a candidate for translation into humans. However, human dosing paradigms for the treatment of aging and chronic disease are yet to be established. Therefore, the goals of the current studies were to assess tolerability of 17α-estradiol treatment, in addition to evaluating metabolic and endocrine responses in male rhesus macaque monkeys during a relatively short treatment period. We found that our dosing regimens (0.30 and 0.20 mg/kg/day) were tolerable as evidenced by a lack of GI distress, changes in blood chemistry or complete blood counts, and unaffected vital signs. We also found that the higher dose did elicit mild benefits on metabolic parameters including body mass, adiposity, and glycosylated hemoglobin. However, both of our 17α-estradiol trial doses elicited significant feminization to include testicular atrophy, increased circulating estrogens, and suppressed circulating androgens and gonadotropins. We suspect that the observed level of feminization results from a saturation of the endogenous conjugation enzymes, thereby promoting a greater concentration of unconjugated 17α-estradiol in serum, which has more biological activity. We also surmise that the elevated level of unconjugated 17α-estradiol was subjected to a greater degree of isomerization to 17β-estradiol, which is aligned with the sevenfold increase in serum 17β-estradiol in 17α-estradiol treated animals in our first trial. Future studies in monkeys, and certainly humans, would likely benefit from the development and implementation of 17α-estradiol transdermal patches, which are commonly prescribed in humans and would circumvent potential issues with bolus dosing effects.
Collapse
Affiliation(s)
- Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, US.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, US.
- Oklahoma Medical Research Foundation, 825 NE 13Th Street Chapman S212, 73104, Oklahoma City, OK, US.
| | - Kelli L Vaughan
- Laboratory of Experimental Gerontology, National Institute On Aging, Dickerson, MD, US
| | - Jose V V Isola
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, US
| | - Shivani N Mann
- Department of Neuroscience, University of Arizona, Tucson, AZ, US
| | - Bayli Wellman
- Laboratory of Experimental Gerontology, National Institute On Aging, Dickerson, MD, US
| | - Jessica M Hoffman
- Department of Biological Sciences, Augusta University, Augusta, GA, US
| | - Hunter L Porter
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, US
| | - Willard M Freeman
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, US
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, US
| | - Julie A Mattison
- Laboratory of Experimental Gerontology, National Institute On Aging, Dickerson, MD, US.
- National Institute On Aging, 16701 Elmer School Road, Building 103, 20842, Dickerson, MD, US.
| |
Collapse
|
14
|
Isola JVV, Veiga GB, de Brito CRC, Alvarado-Rincón JA, Garcia DN, Zanini BM, Hense JD, Vieira AD, Garratt M, Gasperin BG, Schneider A, Stout MB. 17α-estradiol does not adversely affect sperm parameters or fertility in male mice: implications for reproduction-longevity trade-offs. GeroScience 2023; 45:2109-2120. [PMID: 35689785 PMCID: PMC10651587 DOI: 10.1007/s11357-022-00601-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/04/2022] [Indexed: 11/30/2022] Open
Abstract
17α-estradiol (17α-E2) is referred to as a nonfeminizing estrogen that was recently found to extend healthspan and lifespan in male, but not female, mice. Despite an abundance of data indicating that 17α-E2 attenuates several hallmarks of aging in male rodents, very little is known with regard to its effects on feminization and fertility. In these studies, we evaluated the effects of 17α-E2 on several markers of male reproductive health in two independent cohorts of mice. In alignment with our previous reports, chronic 17α-E2 treatment prevented gains in body mass, but did not adversely affect testes mass or seminiferous tubule morphology. We subsequently determined that chronic 17α-E2 treatment also did not alter plasma 17β-estradiol or estrone concentrations, while mildly increasing plasma testosterone levels. We also determined that chronic 17α-E2 treatment did not alter plasma follicle-stimulating hormone or luteinizing hormone concentrations, which suggests 17α-E2 treatment does not alter gonadotropin-releasing hormone neuronal function. Sperm quantity, morphology, membrane integrity, and various motility measures were also unaffected by chronic 17α-E2 treatment in our studies. Lastly, two different approaches were used to evaluate male fertility in these studies. We found that chronic 17α-E2 treatment did not diminish the ability of male mice to impregnate female mice, or to generate successfully implanted embryos in the uterus. We conclude that chronic treatment with 17α-E2 at the dose most commonly employed in aging research does not adversely affect reproductive fitness in male mice, which suggests 17α-E2 does not extend lifespan or curtail disease parameters through tradeoff effects with reproduction.
Collapse
Affiliation(s)
- José V V Isola
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Gabriel B Veiga
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1, Pelotas, RS, 96010-610, Brazil
| | - Camila R C de Brito
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Joao A Alvarado-Rincón
- Facultad de Ciencias Agropecuarias, Universidad de La Salle, Campus Utopía, Yopal, Casanare, Colombia
| | - Driele N Garcia
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1, Pelotas, RS, 96010-610, Brazil
| | - Bianka M Zanini
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Jéssica D Hense
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1, Pelotas, RS, 96010-610, Brazil
| | - Arnaldo D Vieira
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Michael Garratt
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Bernardo G Gasperin
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Augusto Schneider
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1, Pelotas, RS, 96010-610, Brazil.
| | - Michael B Stout
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
15
|
Mondal SA, Mann SN, van der Linden C, Sathiaseelan R, Kamal M, Das S, Bubak MP, Logan S, Miller BF, Stout MB. Metabolic benefits of 17α-estradiol in liver are partially mediated by ERβ in male mice. Sci Rep 2023; 13:9841. [PMID: 37330610 PMCID: PMC10276872 DOI: 10.1038/s41598-023-37007-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023] Open
Abstract
Metabolic dysfunction underlies several chronic diseases. Dietary interventions can reverse metabolic declines and slow aging but remaining compliant is difficult. 17α-estradiol (17α-E2) treatment improves metabolic parameters and slows aging in male mice without inducing significant feminization. We recently reported that estrogen receptor α is required for the majority of 17α-E2-mediated benefits in male mice, but that 17α-E2 also attenuates fibrogenesis in liver, which is regulated by estrogen receptor β (ERβ)-expressing hepatic stellate cells (HSC). The current studies sought to determine if 17α-E2-mediated benefits on systemic and hepatic metabolism are ERβ-dependent. We found that 17α-E2 treatment reversed obesity and related systemic metabolic sequela in both male and female mice, but this was partially blocked in female, but not male, ERβKO mice. ERβ ablation in male mice attenuated 17α-E2-mediated benefits on hepatic stearoyl-coenyzme A desaturase 1 (SCD1) and transforming growth factor β1 (TGF-β1) production, which play critical roles in HSC activation and liver fibrosis. We also found that 17α-E2 treatment suppresses SCD1 production in cultured hepatocytes and hepatic stellate cells, indicating that 17α-E2 directly signals in both cell-types to suppress drivers of steatosis and fibrosis. We conclude that ERβ partially controls 17α-E2-mediated benefits on systemic metabolic regulation in female, but not male, mice, and that 17α-E2 likely signals through ERβ in HSCs to attenuate pro-fibrotic mechanisms.
Collapse
Affiliation(s)
- Samim Ali Mondal
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA
| | - Shivani N Mann
- Department of Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Carl van der Linden
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA
| | - Roshini Sathiaseelan
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Maria Kamal
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Snehasis Das
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Matthew P Bubak
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA
| | - Sreemathi Logan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
16
|
Bubak MP, Mann SN, Borowik AK, Pranay A, Batushansky A, Mondal SA, Diodge SM, Davidyan A, Szczygiel MM, Peelor FR, Rigsby S, Broomfield M, Lacy CI, Rice HC, Stout MB, Miller BF. 17α-estradiol Alleviates High-Fat Diet-Induced Inflammatory and Metabolic Dysfunction in Skeletal Muscle of Male and Female Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542870. [PMID: 37398463 PMCID: PMC10312580 DOI: 10.1101/2023.05.30.542870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Skeletal muscle has a central role in maintaining metabolic homeostasis. 17α-estradiol (17α-E2), a naturally-occurring non-feminizing diastereomer of 17β-estradiol that demonstrates efficacy for improving metabolic outcomes in male, but not female, mice. Despite several lines of evidence showing that 17α-E2 treatment improves metabolic parameters in middle-aged obese and old male mice through effects in brain, liver, and white adipose tissue little is known about how 17α-E2 alters skeletal muscle metabolism, and what role this may play in mitigating metabolic declines. Therefore, this study aimed to determine if 17α-E2 treatment improves metabolic outcomes in skeletal muscle from obese male and female mice following chronic high fat diet (HFD) administration. We hypothesized that male, but not female, mice, would benefit from 17α-E2 treatment during HFD. To test this hypothesis, we used a multi-omics approach to determine changes in lipotoxic lipid intermediates, metabolites, and proteins related to metabolic homeostasis. In male mice, we show that 17α-E2 alleviates HFD-induced metabolic detriments of skeletal muscle by reducing the accumulation of diacylglycerol (DAGs) and ceramides, inflammatory cytokine levels, and reduced the abundance of most of the proteins related to lipolysis and beta-oxidation. In contrast to males, 17α-E2 treatment in female mice had little effect on the DAGs and ceramides content, muscle inflammatory cytokine levels, or changes to the relative abundance of proteins involved in beta-oxidation. These data support to the growing evidence that 17α-E2 treatment could be beneficial for overall metabolic health in male mammals.
Collapse
|
17
|
Isola JVV, Ko S, Ocañas SR, Stout MB. Role of Estrogen Receptor α in Aging and Chronic Disease. ADVANCES IN GERIATRIC MEDICINE AND RESEARCH 2023; 5:e230005. [PMID: 37425648 PMCID: PMC10327608 DOI: 10.20900/agmr20230005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Estrogen receptor alpha (ERα) plays a crucial role in reproductive function in both sexes. It also mediates cellular responses to estrogens in multiple nonreproductive organ systems, many of which regulate systemic metabolic homeostasis and inflammatory processes in mammals. The loss of estrogens and/or ERα agonism during aging is associated with the emergence of several comorbid conditions, particularly in females undergoing the menopausal transition. Emerging data also suggests that male mammals likely benefit from ERα agonism if done in a way that circumvents feminizing characteristics. This has led us, and others, to speculate that tissue-specific ERα agonism may hold therapeutic potential for curtailing aging and chronic disease burden in males and females that are at high-risk of cancer and/or cardiovascular events with traditional estrogen replacement therapies. In this mini-review, we emphasize the role of ERα in the brain and liver, summarizing recent evidence that indicates these two organs systems mediate the beneficial effects of estrogens on metabolism and inflammation during aging. We also discuss how 17α-estradiol administration elicits health benefits in an ERα-dependent manner, which provides proof-of-concept that ERα may be a druggable target for attenuating aging and age-related disease burden.
Collapse
Affiliation(s)
- José V. V. Isola
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Sunghwan Ko
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Sarah R. Ocañas
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Michael B. Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
18
|
Sathiaseelan R, Ahn B, Stout M, Logan S, Wanagat J, Nguyen H, Hord N, Vandiver A, Selvarani R, Ranjit R, Yarbrough H, Masingale A, Miller B, Wolf R, Austad S, Richardson A. A Genetically Heterogeneous Rat Model with Divergent Mitochondrial Genomes. J Gerontol A Biol Sci Med Sci 2023; 78:771-779. [PMID: 36762848 PMCID: PMC10172978 DOI: 10.1093/gerona/glad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Indexed: 02/11/2023] Open
Abstract
We generated a genetically heterogenous rat model by a 4-way cross strategy using 4 inbred strains (Brown Norway [BN], Fischer 344 [F344], Lewis [LEW], and Wistar Kyoto [KY]) to provide investigators with a highly genetically diverse rat model from commercially available inbred rats. We made reciprocal crosses between males and females from the 2 F1 hybrids to generate genetically heterogeneous rats with mitochondrial genomes from either the BN (OKC-HETB, a.k.a "B" genotype) or WKY (OKC-HETW a.k.a "W" genotype) parental strains. These two mitochondrial genomes differ at 94 nucleotides, more akin to human mitochondrial genome diversity than that available in classical laboratory mouse strains. Body weights of the B and W genotypes were similar. However, mitochondrial genotype antagonistically affected grip strength and treadmill endurance in females only. In addition, mitochondrial genotype significantly affected multiple responses to a high-fat diet (HFD) and treatment with 17α-estradiol. Contrary to findings in mice in which males only are affected by 17α-estradiol supplementation, female rats fed a HFD beneficially responded to 17α-estradiol treatment as evidenced by declines in body mass, adiposity, and liver mass. Male rats, by contrast, differed in a mitochondrial genotype-specific manner, with only B males responding to 17α-estradiol treatment. Mitochondrial genotype and sex differences were also observed in features of brain-specific antioxidant response to a HFD and 17α-estradiol as shown by hippocampal levels of Sod2 acetylation, JNK, and FoxO3a. These results emphasize the importance of mitochondrial genotype in assessing responses to putative interventions in aging processes.
Collapse
Affiliation(s)
- Roshini Sathiaseelan
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Bumsoo Ahn
- Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Michael B Stout
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Oklahoma City VA Medical Center, Oklahoma City, Oklahoma, USA
| | - Sreemathi Logan
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jonathan Wanagat
- Divisions of Geriatrics and Dermatology, Department of Medicine, University of California Los Angeles and Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Hoang Van M Nguyen
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Norman G Hord
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Amy R Vandiver
- Divisions of Geriatrics and Dermatology, Department of Medicine, University of California Los Angeles and Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Ramasamy Selvarani
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Rojina Ranjit
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Hannah Yarbrough
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Anthony Masingale
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Benjamin F Miller
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Oklahoma City VA Medical Center, Oklahoma City, Oklahoma, USA
| | - Roman F Wolf
- Oklahoma City VA Medical Center, Oklahoma City, Oklahoma, USA
| | - Steven N Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Arlan Richardson
- Oklahoma City VA Medical Center, Oklahoma City, Oklahoma, USA
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
19
|
Fu W, Wu G. Targeting mTOR for Anti-Aging and Anti-Cancer Therapy. Molecules 2023; 28:molecules28073157. [PMID: 37049920 PMCID: PMC10095787 DOI: 10.3390/molecules28073157] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
The balance between anabolism and catabolism is disrupted with aging, with the rate of anabolism being faster than that of catabolism. Therefore, mTOR, whose major function is to enhance anabolism and inhibit catabolism, has become a potential target of inhibition for anti-aging therapy. Interestingly, it was found that the downregulation of the mTOR signaling pathway had a lifespan-extending effect resembling calorie restriction. In addition, the mTOR signaling pathway promotes cell proliferation and has been regarded as a potential anti-cancer target. Rapamycin and rapalogs, such as everolimus, have proven to be effective in preventing certain tumor growth. Here, we reviewed the basic knowledge of mTOR signaling, including both mTORC1 and mTORC2. Then, for anti-aging, we cited a lot of evidence to discuss the role of targeting mTOR and its anti-aging mechanism. For cancer therapy, we also discussed the role of mTOR signaling in different types of cancers, including idiopathic pulmonary fibrosis, tumor immunity, etc. In short, we discussed the research progress and both the advantages and disadvantages of targeting mTOR in anti-aging and anti-cancer therapy. Hopefully, this review may promote more ideas to be generated for developing inhibitors of mTOR signaling to fight cancer and extend lifespan.
Collapse
Affiliation(s)
- Wencheng Fu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, the Joint International Research Laboratory of Metabolic & Developmental Sciences MOE, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, the Joint International Research Laboratory of Metabolic & Developmental Sciences MOE, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
20
|
Mondal SA, Mann SN, van der Linden C, Sathiaseelan R, Kamal M, Das S, Bubak MP, Logan S, Miller BF, Stout MB. Metabolic benefits of 17α-estradiol in liver are partially mediated by ERβ in male mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.25.534216. [PMID: 36993459 PMCID: PMC10055366 DOI: 10.1101/2023.03.25.534216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Metabolic dysfunction underlies several chronic diseases. Dietary interventions can reverse metabolic declines and slow aging but remaining compliant is difficult. 17α-estradiol (17α-E2) treatment improves metabolic parameters and slows aging in male mice without inducing significant feminization. We recently reported that estrogen receptor α is required for the majority of 17α-E2-mediated benefits in male mice, but that 17α-E2 also attenuates fibrogenesis in liver, which is regulated by estrogen receptor β (ERβ)-expressing hepatic stellate cells (HSC). The current studies sought to determine if 17α-E2-mediated benefits on systemic and hepatic metabolism are ERβ-dependent. We found that 17α-E2 treatment reversed obesity and related systemic metabolic sequela in both male and female mice, but this was partially blocked in female, but not male, ERβKO mice. ERβ ablation in male mice attenuated 17α-E2-mediated benefits on hepatic stearoyl-coenyzme A desaturase 1 (SCD1) and transforming growth factor β1 (TGF-β1) production, which play critical roles in HSC activation and liver fibrosis. We also found that 17α-E2 treatment suppresses SCD1 production in cultured hepatocytes and hepatic stellate cells, indicating that 17α-E2 directly signals in both cell-types to suppress drivers of steatosis and fibrosis. We conclude that ERβ partially controls 17α-E2-mediated benefits on systemic metabolic regulation in female, but not male, mice, and that 17α-E2 likely signals through ERβ in HSCs to attenuate pro-fibrotic mechanisms.
Collapse
Affiliation(s)
- Samim Ali Mondal
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Shivani N. Mann
- Department of Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Carl van der Linden
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Roshini Sathiaseelan
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Maria Kamal
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Snehasis Das
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Matthew P. Bubak
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Sreemathi Logan
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Benjamin F. Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Michael B. Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
21
|
Herrera JJ, Pifer K, Louzon S, Leander D, Fiehn O, Day SM, Miller RA, Garratt M. Early or Late-Life Treatment With Acarbose or Rapamycin Improves Physical Performance and Affects Cardiac Structure in Aging Mice. J Gerontol A Biol Sci Med Sci 2023; 78:397-406. [PMID: 36342748 PMCID: PMC9977253 DOI: 10.1093/gerona/glac221] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 11/09/2022] Open
Abstract
Pharmacological treatments can extend the life span of mice. For optimal translation in humans, treatments should improve health during aging, and demonstrate efficacy when started later in life. Acarbose (ACA) and rapamycin (RAP) extend life span in mice when treatment is started early or later in life. Both drugs can also improve some indices of healthy aging, although there has been little systematic study of whether health benefits accrue differently depending on the age at which treatment is started. Here we compare the effects of early (4 months) versus late (16 months) onset ACA or RAP treatment on physical function and cardiac structure in genetically heterogeneous aged mice. ACA or RAP treatment improve rotarod acceleration and endurance capacity compared to controls, with effects that are largely similar in mice starting treatment from early or late in life. Compared to controls, cardiac hypertrophy is reduced by ACA or RAP in both sexes regardless of age at treatment onset. ACA has a greater effect on the cardiac lipidome than RAP, and the effects of early-life treatment are recapitulated by late-life treatment. These results indicate that late-life treatment with these drugs provide at least some of the benefits of life long treatment, although some of the benefits occur only in males, which could lead to sex differences in health outcomes later in life.
Collapse
Affiliation(s)
- Jonathan J Herrera
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kaitlyn Pifer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sean Louzon
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Danielle Leander
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Oliver Fiehn
- Genome Center, University of California Davis, Davis, California, USA
| | - Sharlene M Day
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Geriatrics Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael Garratt
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
22
|
Ali Mondal S, Sathiaseelan R, Mann SN, Kamal M, Luo W, Saccon TD, Isola JVV, Peelor FF, Li T, Freeman WM, Miller BF, Stout MB. 17α-estradiol, a lifespan-extending compound, attenuates liver fibrosis by modulating collagen turnover rates in male mice. Am J Physiol Endocrinol Metab 2023; 324:E120-E134. [PMID: 36516471 PMCID: PMC9902223 DOI: 10.1152/ajpendo.00256.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Estrogen signaling is protective against chronic liver diseases, although men and a subset of women are contraindicated for chronic treatment with 17β-estradiol (17β-E2) or combination hormone replacement therapies. We sought to determine if 17α-estradiol (17α-E2), a naturally occurring diastereomer of 17β-E2, could attenuate liver fibrosis. We evaluated the effects of 17α-E2 treatment on collagen synthesis and degradation rates using tracer-based labeling approaches in male mice subjected to carbon tetrachloride (CCl4)-induced liver fibrosis. We also assessed the effects of 17α-E2 on markers of hepatic stellate cell (HSC) activation, collagen cross-linking, collagen degradation, and liver macrophage content and polarity. We found that 17α-E2 significantly reduced collagen synthesis rates and increased collagen degradation rates, which was mirrored by declines in transforming growth factor β1 (TGF-β1) and lysyl oxidase-like 2 (LOXL2) protein content in liver. These improvements were associated with increased matrix metalloproteinase 2 (MMP2) activity and suppressed stearoyl-coenzyme A desaturase 1 (SCD1) protein levels, the latter of which has been linked to the resolution of liver fibrosis. We also found that 17α-E2 increased liver fetuin-A protein, a strong inhibitor of TGF-β1 signaling, and reduced proinflammatory macrophage activation and cytokines expression in the liver. We conclude that 17α-E2 reduces fibrotic burden by suppressing HSC activation and enhancing collagen degradation mechanisms. Future studies will be needed to determine if 17α-E2 acts directly in hepatocytes, HSCs, and/or immune cells to elicit these benefits.
Collapse
Affiliation(s)
- Samim Ali Mondal
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Roshini Sathiaseelan
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Shivani N Mann
- Department of Neuroscience, University of Arizona, Tucson, Arizona
| | - Maria Kamal
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Wenyi Luo
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tatiana D Saccon
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - José V V Isola
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Tiangang Li
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Willard M Freeman
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| |
Collapse
|
23
|
Mitochondrial function and nutrient sensing pathways in ageing: enhancing longevity through dietary interventions. Biogerontology 2022; 23:657-680. [PMID: 35842501 DOI: 10.1007/s10522-022-09978-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022]
Abstract
Ageing is accompanied by alterations in several biochemical processes, highly influenced by its environment. It is controlled by the interactions at various levels of biological hierarchy. To maintain homeostasis, a number of nutrient sensors respond to the nutritional status of the cell and control its energy metabolism. Mitochondrial physiology is influenced by the energy status of the cell. The alterations in mitochondrial physiology and the network of nutrient sensors result in mitochondrial damage leading to age related metabolic degeneration and diseases. Calorie restriction (CR) has proved to be as the most successful intervention to achieve the goal of longevity and healthspan. CR elicits a hormetic response and regulates metabolism by modulating these networks. In this review, the authors summarize the interdependent relationship between mitochondrial physiology and nutrient sensors during the ageing process and their role in regulating metabolism.
Collapse
|
24
|
Palmer RD. Three Tiers to biological escape velocity: The quest to outwit aging. Aging Med (Milton) 2022; 5:281-286. [PMID: 36606268 PMCID: PMC9805293 DOI: 10.1002/agm2.12231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/14/2022] [Accepted: 11/20/2022] [Indexed: 12/14/2022] Open
Abstract
As longevity companies emerge with new products and the fields of anti-aging research develop new cutting-edge therapies, three distinct classes of longevity methodologies emerge. This discussion finds that there are three clear classes (Tiers) of longevity systems that are currently under development, and all three will be paramount to achieve biological escape velocity (where tissues can be repaired faster than aging can damage them). These classes are referred to as Tier 1, Tier 2, and Tier 3 treatments and are described in detail below. These three Tiers are required for easy identification for pharmaceutical companies and research companies to determine the type of therapy they may choose to deliver being noninvasive, invasive, time consuming, or simple end user products. Specific targets and goals need to be defined clearly from an early perspective in the development of these technologies for future precision medicines. This allows consumers of future anti-aging technologies to consider which Tier a particular therapy may be, delivering a more informed choice.
Collapse
Affiliation(s)
- Raymond D. Palmer
- Full Spectrum BiologicsSouth PerthWestern AustraliaAustralia
- School of Aging, Science of AgingSouth PerthWestern AustraliaAustralia
| |
Collapse
|
25
|
Wezeman J, Ladiges W. Sex Matters in Aging. The Canagliflozin Story. AGING PATHOBIOLOGY AND THERAPEUTICS 2022; 4:84-86. [PMID: 36540066 PMCID: PMC9762679 DOI: 10.31491/apt.2022.09.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A promising and novel approach for identifying anti-aging therapeutics has been the repurposing of clinically approved and readily available drugs in mice. Canagliflozin, a clinically approved safe, and effective drug for type 2 diabetic patients, was recently shown to robustly retard age-related lesions in male mice but less so in female mice. While this type of sex disparity is often seen in the field of aging, it does represent a dilemma of not knowing the cause or how translationally relevant the sex differences would be in older humans treated with Canagliflozin. Thoughtful and mechanistic investigations are needed to understand why these differences are present and whether they can be eliminated by new drugs or drug combinations. Success in using repurposed drugs for aging intervention studies in humans will depend on preclinical research to uncover pathways that can be targeted for the benefit of both sexes.
Collapse
Affiliation(s)
- Jackson Wezeman
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Warren Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
26
|
Sleiman MB, Roy S, Gao AW, Sadler MC, von Alvensleben GVG, Li H, Sen S, Harrison DE, Nelson JF, Strong R, Miller RA, Kutalik Z, Williams RW, Auwerx J. Sex- and age-dependent genetics of longevity in a heterogeneous mouse population. Science 2022; 377:eabo3191. [PMID: 36173858 PMCID: PMC9905652 DOI: 10.1126/science.abo3191] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
DNA variants that modulate life span provide insight into determinants of health, disease, and aging. Through analyses in the UM-HET3 mice of the Interventions Testing Program (ITP), we detected a sex-independent quantitative trait locus (QTL) on chromosome 12 and identified sex-specific QTLs, some of which we detected only in older mice. Similar relations between life history and longevity were uncovered in mice and humans, underscoring the importance of early access to nutrients and early growth. We identified common age- and sex-specific genetic effects on gene expression that we integrated with model organism and human data to create a hypothesis-building interactive resource of prioritized longevity and body weight genes. Finally, we validated Hipk1, Ddost, Hspg2, Fgd6, and Pdk1 as conserved longevity genes using Caenorhabditis elegans life-span experiments.
Collapse
Affiliation(s)
- Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Suheeta Roy
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN 38163, USA
| | - Arwen W. Gao
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Marie C. Sadler
- Institute of Primary Care and Public Health (Unisante), University of Lausanne, Lausanne 1011, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland
| | - Giacomo V. G. von Alvensleben
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Hao Li
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Saunak Sen
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | - James F. Nelson
- Barshop Center for Longevity Studies at the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Randy Strong
- Barshop Center for Longevity Studies at the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- South Texas Veterans Healthcare System, San Antonio, TX 78229, USA
| | - Richard A. Miller
- Department of Pathology, University of Michigan Geriatrics Center, Ann Arbor, MI 48109-2200, USA
| | - Zoltán Kutalik
- Institute of Primary Care and Public Health (Unisante), University of Lausanne, Lausanne 1011, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN 38163, USA
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
27
|
Li X, Shi X, McPherson M, Hager M, Garcia GG, Miller RA. Cap-independent translation of GPLD1 enhances markers of brain health in long-lived mutant and drug-treated mice. Aging Cell 2022; 21:e13685. [PMID: 35930768 PMCID: PMC9470888 DOI: 10.1111/acel.13685] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/20/2022] [Accepted: 07/08/2022] [Indexed: 01/25/2023] Open
Abstract
Glycosylphosphatidylinositol-specific phospholipase D1 (GPLD1) hydrolyzes inositol phosphate linkages in proteins anchored to the cell membrane. Mice overexpressing GPLD1 show enhanced neurogenesis and cognition. Snell dwarf (DW) and growth hormone receptor knockout (GKO) mice show delays in age-dependent cognitive decline. We hypothesized that augmented GPLD1 might contribute to retained cognitive function in these mice. We report that DW and GKO show higher GPLD1 levels in the liver and plasma. These mice also have elevated levels of hippocampal brain-derived neurotrophic factor (BDNF) and of doublecortin (DCX), suggesting a mechanism for maintenance of cognitive function at older ages. GPLD1 was not increased in the hippocampus of DW or GKO mice, suggesting that plasma GPLD1 increases elevated these brain proteins. Alteration of the liver and plasma GPLD1 was unaltered in mice with liver-specific GHR deletion, suggesting that the GH effect was not intrinsic to the liver. GPLD1 was also induced by caloric restriction and by each of four drugs that extend lifespan. The proteome of DW and GKO mice is molded by selective translation of mRNAs, involving cap-independent translation (CIT) of mRNAs marked by N6 methyladenosine. Because GPLD1 protein increases were independent of the mRNA level, we tested the idea that GPLD1 might be regulated by CIT. 4EGI-1, which enhances CIT, increased GPLD1 protein without changes in GPLD1 mRNA in cultured fibroblasts and mice. Furthermore, transgenic overexpression of YTHDF1, which promotes CIT by reading m6A signals, also led to increased GPLD1 protein, showing that elevation of GPLD1 reflects selective mRNA translation.
Collapse
Affiliation(s)
- Xinna Li
- Department of Pathology, School of MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Xiaofang Shi
- Department of Pathology, School of MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Madaline McPherson
- College of Literature, Sciences, & the ArtsUniversity of MichiganAnn ArborMichiganUSA
| | - Mary Hager
- College of Literature, Sciences, & the ArtsUniversity of MichiganAnn ArborMichiganUSA
| | - Gonzalo G. Garcia
- Department of Pathology, School of MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Richard A. Miller
- Department of Pathology, School of MedicineUniversity of MichiganAnn ArborMichiganUSA,University of Michigan Geriatrics CenterAnn ArborMichiganUSA
| |
Collapse
|
28
|
Jayarathne HSM, Debarba LK, Jaboro JJ, Ginsburg BC, Miller RA, Sadagurski M. Neuroprotective effects of Canagliflozin: Lessons from aged genetically diverse UM-HET3 mice. Aging Cell 2022; 21:e13653. [PMID: 35707855 PMCID: PMC9282842 DOI: 10.1111/acel.13653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 01/24/2023] Open
Abstract
The aging brain is characterized by progressive increases in neuroinflammation and central insulin resistance, which contribute to neurodegenerative diseases and cognitive impairment. Recently, the Interventions Testing Program demonstrated that the anti-diabetes drug, Canagliflozin (Cana), a sodium-glucose transporter 2 inhibitor, led to lower fasting glucose and improved glucose tolerance in both sexes, but extended median lifespan by 14% in male mice only. Here, we show that Cana treatment significantly improved central insulin sensitivity in the hypothalamus and the hippocampus of 30-month-old male mice. Aged males produce more robust neuroimmune responses than aged females. Remarkably, Cana-treated male and female mice showed significant reductions in age-associated hypothalamic gliosis with a decrease in inflammatory cytokine production by microglia. However, in the hippocampus, Cana reduced microgliosis and astrogliosis in males, but not in female mice. The decrease in microgliosis was partially correlated with reduced phosphorylation of S6 kinase in microglia of Cana-treated aged male, but not female mice. Thus, Cana treatment improved insulin responsiveness in aged male mice. Furthermore, Cana treatment improved exploratory and locomotor activity of 30-month-old male but not female mice. Taken together, we demonstrate the sex-specific neuroprotective effects of Cana treatment, suggesting its application for the potential treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hashan S. M. Jayarathne
- Department of Biological Sciences, IBio (Integrative Biosciences Center)Wayne State UniversityDetroitMichiganUSA
| | - Lucas K. Debarba
- Department of Biological Sciences, IBio (Integrative Biosciences Center)Wayne State UniversityDetroitMichiganUSA
| | - Jacob J. Jaboro
- Department of Biological Sciences, IBio (Integrative Biosciences Center)Wayne State UniversityDetroitMichiganUSA
| | - Brett C. Ginsburg
- Department of Psychiatry and Behavioral SciencesUniversity of Texas Health Science CenterSan AntonioTexasUSA
| | - Richard A. Miller
- Department of Pathology and Geriatrics CenterUniversity of MichiganAnn ArborMichiganUSA
| | - Marianna Sadagurski
- Department of Biological Sciences, IBio (Integrative Biosciences Center)Wayne State UniversityDetroitMichiganUSA
| |
Collapse
|
29
|
Jiang Z, Wang J, Imai D, Snider T, Klug J, Mangalindan R, Morton J, Zhu L, Salmon AB, Wezeman J, Hu J, Menon V, Marka N, Neidernhofer L, Ladiges W. Short term treatment with a cocktail of rapamycin, acarbose and phenylbutyrate delays aging phenotypes in mice. Sci Rep 2022; 12:7300. [PMID: 35508491 PMCID: PMC9067553 DOI: 10.1038/s41598-022-11229-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/14/2022] [Indexed: 12/18/2022] Open
Abstract
Pharmaceutical intervention of aging requires targeting multiple pathways, thus there is rationale to test combinations of drugs targeting different but overlapping processes. In order to determine if combining drugs shown to extend lifespan and healthy aging in mice would have greater impact than any individual drug, a cocktail diet containing 14 ppm rapamycin, 1000 ppm acarbose, and 1000 ppm phenylbutyrate was fed to 20-month-old C57BL/6 and HET3 4-way cross mice of both sexes for three months. Mice treated with the cocktail showed a sex and strain-dependent phenotype consistent with healthy aging including decreased body fat, improved cognition, increased strength and endurance, and decreased age-related pathology compared to mice treated with individual drugs or control. The severity of age-related lesions in heart, lungs, liver, and kidney was consistently decreased in mice treated with the cocktail compared to mice treated with individual drugs or control, suggesting an interactive advantage of the three drugs. This study shows that a combination of three drugs, each previously shown to enhance lifespan and health span in mice, is able to delay aging phenotypes in middle-aged mice more effectively than any individual drug in the cocktail over a 3-month treatment period.
Collapse
Affiliation(s)
- Zhou Jiang
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Juan Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Denise Imai
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Tim Snider
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Jenna Klug
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Ruby Mangalindan
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - John Morton
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Lida Zhu
- In Vivo Pharmacology, HD Bioscience Co., Ltd, Shanghai, China
| | - Adam B Salmon
- Department of Molecular Medicine, San Antonio Sam and Ann Barshop Institute for Longevity and Aging Studies, South Texas Veterans Health Care System, Geriatric Research Education and Clinical Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jackson Wezeman
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Jiayi Hu
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Saint Paul, MN, USA
| | - Vinal Menon
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Saint Paul, MN, USA
| | - Nicholas Marka
- Clinical and Translational Sciences Institute, Biostatistical Design and Analysis Center, University of Minnesota, Minneapolis, MN, USA
| | - Laura Neidernhofer
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Saint Paul, MN, USA
| | - Warren Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
30
|
Simcox J, Lamming DW. The central moTOR of metabolism. Dev Cell 2022; 57:691-706. [PMID: 35316619 PMCID: PMC9004513 DOI: 10.1016/j.devcel.2022.02.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/20/2022] [Accepted: 02/24/2022] [Indexed: 12/21/2022]
Abstract
The protein kinase mechanistic target of rapamycin (mTOR) functions as a central regulator of metabolism, integrating diverse nutritional and hormonal cues to control anabolic processes, organismal physiology, and even aging. This review discusses the current state of knowledge regarding the regulation of mTOR signaling and the metabolic regulation of the four macromolecular building blocks of the cell: carbohydrate, nucleic acid, lipid, and protein by mTOR. We review the role of mTOR in the control of organismal physiology and aging through its action in key tissues and discuss the potential for clinical translation of mTOR inhibition for the treatment and prevention of diseases of aging.
Collapse
Affiliation(s)
- Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| | - Dudley W Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
31
|
Rayson A, Boudiffa M, Naveed M, Griffin J, Dall’Ara E, Bellantuono I. Geroprotectors and Skeletal Health: Beyond the Headlines. Front Cell Dev Biol 2022; 10:682045. [PMID: 35223825 PMCID: PMC8864221 DOI: 10.3389/fcell.2022.682045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 01/10/2022] [Indexed: 12/19/2022] Open
Abstract
Osteoporosis and osteoarthritis are the most common age-related diseases of the musculoskeletal system. They are responsible for high level of healthcare use and are often associated with comorbidities. Mechanisms of ageing such as senescence, inflammation and autophagy are common drivers for both diseases and molecules targeting those mechanisms (geroprotectors) have potential to prevent both diseases and their co-morbidities. However, studies to test the efficacy of geroprotectors on bone and joints are scant. The limited studies available show promising results to prevent and reverse Osteoporosis-like disease. In contrast, the effects on the development of Osteoarthritis-like disease in ageing mice has been disappointing thus far. Here we review the literature and report novel data on the effect of geroprotectors for Osteoporosis and Osteoarthritis, we challenge the notion that extension of lifespan correlates with extension of healthspan in all tissues and we highlight the need for more thorough studies to test the effects of geroprotectors on skeletal health in ageing organisms.
Collapse
Affiliation(s)
- Alexandra Rayson
- Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
| | - Maya Boudiffa
- Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
| | - Maneeha Naveed
- Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
| | - Jon Griffin
- Healthy Lifespan Institute, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Enrico Dall’Ara
- Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
- Insigneo Institute for in silico Medicine, Sheffield, United Kingdom
| | - Ilaria Bellantuono
- Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
| |
Collapse
|
32
|
Wink L, Miller RA, Garcia GG. Rapamycin, Acarbose and 17α-estradiol share common mechanisms regulating the MAPK pathways involved in intracellular signaling and inflammation. Immun Ageing 2022; 19:8. [PMID: 35105357 PMCID: PMC8805398 DOI: 10.1186/s12979-022-00264-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/19/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Rapamycin (Rapa), acarbose (ACA), and 17α-estradiol (17aE2, males only) have health benefits that increase lifespan of mice. Little is known about how these three agents alter the network of pathways downstream of insulin/IGF1 signals as well as inflammatory/stress responses. RESULTS ACA, Rapa, and 17aE2 (in males, but not in females) oppose age-related increases in the MEK1- ERK1/2-MNK1/2 cascade, and thus reduce phosphorylation of eIF4E, a key component of cap-dependent translation. In parallel, these treatments (in both sexes) reduce age-related increases in the MEK3-p38MAPK-MK2 pathway, to decrease levels of the acute phase response proteins involved in inflammation. CONCLUSION Each of three drugs converges on the regulation of both the ERK1/2 signaling pathway and the p38-MAPK pathway. The changes induced by treatments in ERK1/2 signaling are seen in both sexes, but the 17aE2 effects are male-specific, consistent with the effects on lifespan. However, the inhibition of age-dependent p38MAPK pathways and acute phase responses is triggered in both sexes by all three drugs, suggesting new approaches to prevention or reversal of age-related inflammatory changes in a clinical setting independent of lifespan effects.
Collapse
Affiliation(s)
- Lily Wink
- grid.214458.e0000000086837370Department of Chemistry, University of Michigan College of Literature Science and The Arts, Ann Arbor, USA
| | - Richard A. Miller
- grid.214458.e0000000086837370Department of Pathology, University of Michigan School of Medicine, Ann Arbor, USA ,grid.214458.e0000000086837370University of Michigan Geriatrics Center, Room 3005 BSRB, Box 2200, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200 USA
| | - Gonzalo G. Garcia
- grid.214458.e0000000086837370Department of Pathology, University of Michigan School of Medicine, Ann Arbor, USA
| |
Collapse
|
33
|
Green CL, Lamming DW, Fontana L. Molecular mechanisms of dietary restriction promoting health and longevity. Nat Rev Mol Cell Biol 2022; 23:56-73. [PMID: 34518687 PMCID: PMC8692439 DOI: 10.1038/s41580-021-00411-4] [Citation(s) in RCA: 243] [Impact Index Per Article: 121.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 02/08/2023]
Abstract
Dietary restriction with adequate nutrition is the gold standard for delaying ageing and extending healthspan and lifespan in diverse species, including rodents and non-human primates. In this Review, we discuss the effects of dietary restriction in these mammalian model organisms and discuss accumulating data that suggest that dietary restriction results in many of the same physiological, metabolic and molecular changes responsible for the prevention of multiple ageing-associated diseases in humans. We further discuss how different forms of fasting, protein restriction and specific reductions in the levels of essential amino acids such as methionine and the branched-chain amino acids selectively impact the activity of AKT, FOXO, mTOR, nicotinamide adenine dinucleotide (NAD+), AMP-activated protein kinase (AMPK) and fibroblast growth factor 21 (FGF21), which are key components of some of the most important nutrient-sensing geroprotective signalling pathways that promote healthy longevity.
Collapse
Affiliation(s)
- Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Luigi Fontana
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
- Department of Clinical and Experimental Sciences, Brescia University School of Medicine, Brescia, Italy.
| |
Collapse
|
34
|
Wu B, Yan J, Yang J, Xia Y, Li D, Zhang F, Cao H. Extension of the Life Span by Acarbose: Is It Mediated by the Gut Microbiota? Aging Dis 2022; 13:1005-1014. [PMID: 35855337 PMCID: PMC9286917 DOI: 10.14336/ad.2022.0117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
Acarbose can extend the life span of mice through a process involving the gut microbiota. Several factors affect the life span, including mitochondrial function, cellular senescence, telomere length, immune function, and expression of longevity-related genes. In this review, the effects of acarbose-regulated gut microbiota on the life span-influencing factors have been discussed. In addition, a novel theoretical basis for improving our understanding of the mechanisms by which acarbose extends the life span of mice has been suggested.
Collapse
Affiliation(s)
- Baiyun Wu
- Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi, China.
- School of Medicine, Nantong University, Nantong, China.
| | - Jiai Yan
- Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi, China.
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, China.
| | - Ju Yang
- Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi, China.
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, China.
| | - Yanping Xia
- Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi, China.
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, China.
| | - Dan Li
- Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi, China.
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, China.
| | - Feng Zhang
- Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi, China.
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, China.
- Correspondence should be addressed to: Dr. Hong Cao, () and Dr. Feng Zhang (), Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Hong Cao
- Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi, China.
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, China.
- Department of Endocrinology, Affiliated Hospital of Jiangnan University, Wuxi, China.
- Correspondence should be addressed to: Dr. Hong Cao, () and Dr. Feng Zhang (), Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
35
|
Datta G, Miller NM, Du W, Geiger JD, Chang S, Chen X. Endolysosome Localization of ERα Is Involved in the Protective Effect of 17α-Estradiol against HIV-1 gp120-Induced Neuronal Injury. J Neurosci 2021; 41:10365-10381. [PMID: 34764157 PMCID: PMC8672688 DOI: 10.1523/jneurosci.1475-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/26/2022] Open
Abstract
Neurotoxic HIV-1 viral proteins contribute to the development of HIV-associated neurocognitive disorder (HAND), the prevalence of which remains high (30-50%) with no effective treatment available. Estrogen is a known neuroprotective agent; however, the diverse mechanisms of estrogen action on the different types of estrogen receptors is not completely understood. In this study, we determined the extent to which and mechanisms by which 17α-estradiol (17αE2), a natural less-feminizing estrogen, offers neuroprotection against HIV-1 gp120-induced neuronal injury. Endolysosomes are important for neuronal function, and endolysosomal dysfunction contributes to HAND and other neurodegenerative disorders. In hippocampal neurons, estrogen receptor α (ERα) is localized to endolysosomes and 17αE2 acidifies endolysosomes. ERα knockdown or overexpressing an ERα mutant that is deficient in endolysosome localization prevents 17αE2-induced endolysosome acidification. Furthermore, 17αE2-induced increases in dendritic spine density depend on endolysosome localization of ERα. Pretreatment with 17αE2 protected against HIV-1 gp120-induced endolysosome deacidification and reductions in dendritic spines; such protective effects depended on endolysosome localization of ERα. In male HIV-1 transgenic rats, we show that 17αE2 treatment prevents the development of enlarged endolysosomes and reduction in dendritic spines. Our findings demonstrate a novel endolysosome-dependent pathway that governs the ERα-mediated neuroprotective actions of 17αE2, findings that might lead to the development of novel therapeutic strategies against HAND.SIGNIFICANCE STATEMENT Extranuclear presence of membrane-bound estrogen receptors (ERs) underlie the enhancing effect of estrogen on cognition and synaptic function. The estrogen receptor subtype ERα is present on endolysosomes and plays a critical role in the enhancing effects of 17αE2 on endolysosomes and dendritic spines. These findings provide novel insight into the neuroprotective actions of estrogen. Furthermore, 17αE2 protected against HIV-1 gp120-induced endolysosome dysfunction and reductions in dendritic spines, and these protective effects of 17αE2 were mediated via endolysosome localization of ERα. Such findings provide a rationale for developing 17αE2 as a therapeutic strategy against HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037
| | - Nicole M Miller
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037
| | - Wenjuan Du
- Institute of Neuroimmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, New Jersey 07079
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037
| | - Sulie Chang
- Institute of Neuroimmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, New Jersey 07079
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037
| |
Collapse
|
36
|
Debarba LK, Jayarathne HSM, Miller RA, Garratt M, Sadagurski M. 17-a-estradiol has sex-specific effects on neuroinflammation that are partly reversed by gonadectomy. J Gerontol A Biol Sci Med Sci 2021; 77:66-74. [PMID: 34309657 DOI: 10.1093/gerona/glab216] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
17-α-estradiol (17aE2) treatment from 4-months of age extends lifespan in male mice and can reduce neuroinflammatory responses in the hypothalamus of 12-month-old males. Although 17aE2 improves longevity in males, female mice are unaffected, suggesting a sexually dimorphic pattern of lifespan regulation. We tested whether the sex-specific effects of 17aE2 on neuroinflammatory responses are affected by gonadal removal and whether hypothalamic changes extend to other brain regions in old age. We show that sex-specific effects of 17aE2 on age-associated gliosis are brain region-specific and are partially dependent on gonadectomy. 17aE2 treatment started at 4 months of age protected 25-month-old males from hypothalamic inflammation. Castration before 17aE2 exposure reduced the effect of 17aE2 on hypothalamic astrogliosis in males. By contrast, sex-specific inhibition of microgliosis generated by 17aE2 was not significantly affected by castration. In the hippocampus, gonadectomy influenced the severity of gliosis and the responsiveness to 17aE2 in a region-dependent manner. The male-specific effects of 17aE2 correlate with increases in hypothalamic ERα expression, specifically in gonadally intact males, consistent with the idea that 17aE2 might act through this receptor. Our results indicate that neuroinflammatory responses to 17aE2 are partially controlled by the presence of sex-specific gonads. Loss of gonadal function and age-associated neuroinflammation could, therefore, influence late-life health and disease onset, leading to sexual dimorphism in both aging and in response to drugs that modify the pace of aging.
Collapse
Affiliation(s)
- Lucas K Debarba
- Department of Biological Sciences, IBio (Integrative Biosciences Center), Wayne State University, Detroit, Michigan, MI
| | - Hashan S M Jayarathne
- Department of Biological Sciences, IBio (Integrative Biosciences Center), Wayne State University, Detroit, Michigan, MI
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI
| | - Michael Garratt
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, NZ
| | - Marianna Sadagurski
- Department of Biological Sciences, IBio (Integrative Biosciences Center), Wayne State University, Detroit, Michigan, MI
| |
Collapse
|
37
|
Smith DL, Orlandella RM, Allison DB, Norian LA. Diabetes medications as potential calorie restriction mimetics-a focus on the alpha-glucosidase inhibitor acarbose. GeroScience 2021. [PMID: 33006707 DOI: 10.1007/s11357-020-00278-x/figures/1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
The field of aging research has grown rapidly over the last half-century, with advancement of scientific technologies to interrogate mechanisms underlying the benefit of life-extending interventions like calorie restriction (CR). Coincident with this increase in knowledge has been the rise of obesity and type 2 diabetes (T2D), both associated with increased morbidity and mortality. Given the difficulty in practicing long-term CR, a search for compounds (CR mimetics) which could recapitulate the health and longevity benefits without requiring food intake reductions was proposed. Alpha-glucosidase inhibitors (AGIs) are compounds that function predominantly within the gastrointestinal tract to inhibit α-glucosidase and α-amylase enzymatic digestion of complex carbohydrates, delaying and decreasing monosaccharide uptake from the gut in the treatment of T2D. Acarbose, an AGI, has been shown in pre-clinical models to increase lifespan (greater longevity benefits in males), with decreased body weight gain independent of calorie intake reduction. The CR mimetic benefits of acarbose are further supported by clinical findings beyond T2D including the risk for other age-related diseases (e.g., cancer, cardiovascular). Open questions remain regarding the exclusivity of acarbose relative to other AGIs, potential off-target effects, and combination with other therapies for healthy aging and longevity extension. Given the promising results in pre-clinical models (even in the absence of T2D), a unique mechanism of action and multiple age-related reduced disease risks that have been reported with acarbose, support for clinical trials with acarbose focusing on aging-related outcomes and incorporating biological sex, age at treatment initiation, and T2D-dependence within the design is warranted.
Collapse
Affiliation(s)
- Daniel L Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, 1720 2nd Avenue S, Webb 423, Birmingham, AL, 35294-3360, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nathan Shock Center of Excellence in the Biology of Aging, University of Alabama at Birmingham, Birmingham, AL, USA.
- Diabetes Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Rachael M Orlandella
- Graduate Biomedical Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David B Allison
- School of Public Health, Indiana University - Bloomington, Bloomington, IN, USA
| | - Lyse A Norian
- Department of Nutrition Sciences, University of Alabama at Birmingham, 1720 2nd Avenue S, Webb 423, Birmingham, AL, 35294-3360, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
38
|
Smith DL, Orlandella RM, Allison DB, Norian LA. Diabetes medications as potential calorie restriction mimetics-a focus on the alpha-glucosidase inhibitor acarbose. GeroScience 2021; 43:1123-1133. [PMID: 33006707 PMCID: PMC8190416 DOI: 10.1007/s11357-020-00278-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
The field of aging research has grown rapidly over the last half-century, with advancement of scientific technologies to interrogate mechanisms underlying the benefit of life-extending interventions like calorie restriction (CR). Coincident with this increase in knowledge has been the rise of obesity and type 2 diabetes (T2D), both associated with increased morbidity and mortality. Given the difficulty in practicing long-term CR, a search for compounds (CR mimetics) which could recapitulate the health and longevity benefits without requiring food intake reductions was proposed. Alpha-glucosidase inhibitors (AGIs) are compounds that function predominantly within the gastrointestinal tract to inhibit α-glucosidase and α-amylase enzymatic digestion of complex carbohydrates, delaying and decreasing monosaccharide uptake from the gut in the treatment of T2D. Acarbose, an AGI, has been shown in pre-clinical models to increase lifespan (greater longevity benefits in males), with decreased body weight gain independent of calorie intake reduction. The CR mimetic benefits of acarbose are further supported by clinical findings beyond T2D including the risk for other age-related diseases (e.g., cancer, cardiovascular). Open questions remain regarding the exclusivity of acarbose relative to other AGIs, potential off-target effects, and combination with other therapies for healthy aging and longevity extension. Given the promising results in pre-clinical models (even in the absence of T2D), a unique mechanism of action and multiple age-related reduced disease risks that have been reported with acarbose, support for clinical trials with acarbose focusing on aging-related outcomes and incorporating biological sex, age at treatment initiation, and T2D-dependence within the design is warranted.
Collapse
Affiliation(s)
- Daniel L Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, 1720 2nd Avenue S, Webb 423, Birmingham, AL, 35294-3360, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nathan Shock Center of Excellence in the Biology of Aging, University of Alabama at Birmingham, Birmingham, AL, USA.
- Diabetes Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Rachael M Orlandella
- Graduate Biomedical Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David B Allison
- School of Public Health, Indiana University - Bloomington, Bloomington, IN, USA
| | - Lyse A Norian
- Department of Nutrition Sciences, University of Alabama at Birmingham, 1720 2nd Avenue S, Webb 423, Birmingham, AL, 35294-3360, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
39
|
Acosta-Rodríguez VA, Rijo-Ferreira F, Green CB, Takahashi JS. Importance of circadian timing for aging and longevity. Nat Commun 2021; 12:2862. [PMID: 34001884 PMCID: PMC8129076 DOI: 10.1038/s41467-021-22922-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/29/2021] [Indexed: 12/21/2022] Open
Abstract
Dietary restriction (DR) decreases body weight, improves health, and extends lifespan. DR can be achieved by controlling how much and/or when food is provided, as well as by adjusting nutritional composition. Because these factors are often combined during DR, it is unclear which are necessary for beneficial effects. Several drugs have been utilized that target nutrient-sensing gene pathways, many of which change expression throughout the day, suggesting that the timing of drug administration is critical. Here, we discuss how dietary and pharmacological interventions promote a healthy lifespan by influencing energy intake and circadian rhythms. Circadian clocks link physiologic processes to environmental conditions and a mismatch between internal and external rhythms has negative effects on organismal health. In this review, the authors discuss the interactions between circadian clocks and dietary interventions targeted to promote healthy aging.
Collapse
Affiliation(s)
- Victoria A Acosta-Rodríguez
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Filipa Rijo-Ferreira
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carla B Green
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
40
|
Kinetic Study of 17α-Estradiol Activity in Comparison with 17β-Estradiol and 17α-Ethynylestradiol. Catalysts 2021. [DOI: 10.3390/catal11050634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
17α-estradiol (αE2), an endogenous stereoisomer of the hormone 17β-estradiol (E2), is capable of binding to estrogen receptors (ER). We aimed to mathematically describe, using experimental data, the possible interactions between αE2 and sperm ER during the process of sperm capacitation and to develop a kinetic model. The goal was to compare the suggested kinetic model with previously published results of ER interactions with E2 and 17α-ethynylestradiol (EE2). The HPLC-MS/MS method was developed to monitor the changes of αE2 concentration during capacitation. The calculated relative concentrations Bt were used for kinetic analysis. Rate constants k and molar ratio n were optimized and used for the construction of theoretical B(t) curves. Modifications in αE2–ER interactions were discovered during comparison with models for E2 and EE2. These new interactions displayed autocatalytic formation of an unstable adduct between the hormone and the cytoplasmic receptors. αE2 accumulates between the plasma membrane lipid bilayer with increasing potential, and when the critical level is reached, αE2 penetrates through the inner layer of the plasma membrane into the cytoplasm. It then rapidly reacts with the ER and creates an unstable adduct. The revealed dynamics of αE2–ER action may contribute to understanding tissue rejuvenation and the cancer-related physiology of αE2 signaling.
Collapse
|
41
|
Shen Z, Hinson A, Miller RA, Garcia GG. Cap-independent translation: A shared mechanism for lifespan extension by rapamycin, acarbose, and 17α-estradiol. Aging Cell 2021; 20:e13345. [PMID: 33742521 PMCID: PMC8135077 DOI: 10.1111/acel.13345] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 02/10/2021] [Accepted: 02/21/2021] [Indexed: 01/24/2023] Open
Abstract
We hypothesized that rapamycin (Rapa), acarbose (ACA), which both increase mouse lifespan, and 17α-estradiol, which increases lifespan in males (17aE2) all share common intracellular signaling pathways with long-lived Snell dwarf, PAPPA-KO, and Ghr-/- mice. The long-lived mutant mice exhibit reduction in mTORC1 activity, declines in cap-dependent mRNA translation, and increases in cap-independent translation (CIT). Here, we report that Rapa and ACA prevent age-related declines in CIT target proteins in both sexes, while 17aE2 has the same effect only in males, suggesting increases in CIT. mTORC1 activity showed the reciprocal pattern, with age-related increases blocked by Rapa, ACA, and 17aE2 (in males only). METTL3, required for addition of 6-methyl-adenosine to mRNA and thus a trigger for CIT, also showed an age-dependent increase blunted by Rapa, ACA, and 17aE2 (in males). Diminution of mTORC1 activity and increases in CIT-dependent proteins may represent a shared pathway for both long-lived-mutant mice and drug-induced lifespan extension in mice.
Collapse
Affiliation(s)
- Ziqian Shen
- Department of Molecular, Cellular, and Developmental BiologyUniversity of Michigan College of Literature, Science, and the ArtsAnn ArborMichiganUSA
| | - Abby Hinson
- Department of Molecular, Cellular, and Developmental BiologyUniversity of Michigan College of Literature, Science, and the ArtsAnn ArborMichiganUSA
| | - Richard A. Miller
- Department of PathologyUniversity of Michigan School of MedicineAnn ArborMichiganUSA,University of Michigan Geriatrics CenterAnn ArborMichiganUSA
| | - Gonzalo G. Garcia
- Department of PathologyUniversity of Michigan School of MedicineAnn ArborMichiganUSA
| |
Collapse
|
42
|
Harrison DE, Strong R, Reifsnyder P, Kumar N, Fernandez E, Flurkey K, Javors MA, Lopez‐Cruzan M, Macchiarini F, Nelson JF, Markewych A, Bitto A, Sindler AL, Cortopassi G, Kavanagh K, Leng L, Bucala R, Rosenthal N, Salmon A, Stearns TM, Bogue M, Miller RA. 17-a-estradiol late in life extends lifespan in aging UM-HET3 male mice; nicotinamide riboside and three other drugs do not affect lifespan in either sex. Aging Cell 2021; 20:e13328. [PMID: 33788371 PMCID: PMC8135004 DOI: 10.1111/acel.13328] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/27/2020] [Accepted: 01/12/2021] [Indexed: 01/23/2023] Open
Abstract
In genetically heterogeneous mice produced by the CByB6F1 x C3D2F1 cross, the "non-feminizing" estrogen, 17-α-estradiol (17aE2), extended median male lifespan by 19% (p < 0.0001, log-rank test) and 11% (p = 0.007) when fed at 14.4 ppm starting at 16 and 20 months, respectively. 90th percentile lifespans were extended 7% (p = 0.004, Wang-Allison test) and 5% (p = 0.17). Body weights were reduced about 20% after starting the 17aE2 diets. Four other interventions were tested in males and females: nicotinamide riboside, candesartan cilexetil, geranylgeranylacetone, and MIF098. Despite some data suggesting that nicotinamide riboside would be effective, neither it nor the other three increased lifespans significantly at the doses tested. The 17aE2 results confirm and extend our original reports, with very similar results when started at 16 months compared with mice started at 10 months of age in a prior study. The consistently large lifespan benefit in males, even when treatment is started late in life, may provide information on sex-specific aspects of aging.
Collapse
Affiliation(s)
| | - Randy Strong
- Barshop Institute for Longevity and Aging StudiesThe University of Texas Health Science CenterSan AntonioTXUSA
- Geriatric ResearchEducation and Clinical CenterSan AntonioTXUSA
- Research ServiceSouth Texas Veterans Health Care SystemSan AntonioTXUSA
- Department of PharmacologyThe University of Texas Health Science CenterSan AntonioTXUSA
| | | | - Navasuja Kumar
- Department of Pathology and Geriatrics CenterUniversity of MichiganAnn ArborMIUSA
| | - Elizabeth Fernandez
- Barshop Institute for Longevity and Aging StudiesThe University of Texas Health Science CenterSan AntonioTXUSA
- Geriatric ResearchEducation and Clinical CenterSan AntonioTXUSA
- Department of PharmacologyThe University of Texas Health Science CenterSan AntonioTXUSA
| | | | - Martin A. Javors
- Department of PsychiatryThe University of Texas Health Science CenterSan AntonioTXUSA
| | - Marisa Lopez‐Cruzan
- Department of PsychiatryThe University of Texas Health Science CenterSan AntonioTXUSA
| | | | - James F. Nelson
- Barshop Institute for Longevity and Aging StudiesThe University of Texas Health Science CenterSan AntonioTXUSA
- Department of PhysiologyThe University of Texas Health Science CenterSan AntonioTXUSA
| | - Adrian Markewych
- Department of PathologyUniversity of Washington Medical CenterSeattleWAUSA
| | - Alessandro Bitto
- Department of PathologyUniversity of Washington Medical CenterSeattleWAUSA
| | - Amy L. Sindler
- Department of Health & Human Physiology and Department of BiochemistryUniversity of IowaIowa CityIAUSA
| | - Gino Cortopassi
- Department of Molecular BiosciencesUniversity of CaliforniaDavisCAUSA
| | - Kylie Kavanagh
- Department of Pathology and Internal MedicineWake Forest School of MedicineWinston‐SalemNCUSA
| | - Lin Leng
- Department of Internal MedicineYale UniversityNew HavenConnecticutUSA
| | - Richard Bucala
- Department of Internal MedicineYale UniversityNew HavenConnecticutUSA
| | | | - Adam Salmon
- Barshop Institute for Longevity and Aging StudiesThe University of Texas Health Science CenterSan AntonioTXUSA
- Geriatric ResearchEducation and Clinical CenterSan AntonioTXUSA
- Research ServiceSouth Texas Veterans Health Care SystemSan AntonioTXUSA
- Department of Molecular MedicineThe University of Texas Health Science CenterSan AntonioTXUSA
| | | | | | - Richard A. Miller
- Department of Pathology and Geriatrics CenterUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
43
|
Obesity and aging: Molecular mechanisms and therapeutic approaches. Ageing Res Rev 2021; 67:101268. [PMID: 33556548 DOI: 10.1016/j.arr.2021.101268] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023]
Abstract
The epidemic of obesity is a major challenge for health policymakers due to its far-reaching effects on population health and potentially overwhelming financial burden on healthcare systems. Obesity is associated with an increased risk of developing acute and chronic diseases, including hypertension, stroke, myocardial infarction, cardiovascular disease, diabetes, and cancer. Interestingly, the metabolic dysregulation associated with obesity is similar to that observed in normal aging, and substantial evidence suggests the potential of obesity to accelerate aging. Therefore, understanding the mechanism of fat tissue dysfunction in obesity could provide insights into the processes that contribute to the metabolic dysfunction associated with the aging process. Here, we review the molecular and cellular mechanisms underlying both obesity and aging, and how obesity and aging can predispose individuals to chronic health complications. The potential of lifestyle and pharmacological interventions to counter obesity and obesity-related pathologies, as well as aging, is also addressed.
Collapse
|
44
|
Sidhom S, Schneider A, Fang Y, McFadden S, Darcy J, Sathiaseelan R, Palmer AK, Steyn FJ, Grillari J, Kopchick JJ, Bartke A, Siddiqi S, Masternak MM, Stout MB. 17α-Estradiol Modulates IGF1 and Hepatic Gene Expression in a Sex-Specific Manner. J Gerontol A Biol Sci Med Sci 2021; 76:778-785. [PMID: 32857104 PMCID: PMC8087270 DOI: 10.1093/gerona/glaa215] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
Aging is the greatest risk factor for most chronic diseases. The somatotropic axis is one of the most conserved biological pathways that regulates aging across species. 17α-Estradiol (17α-E2), a diastereomer of 17β-estradiol (17β-E2), was recently found to elicit health benefits, including improved insulin sensitivity and extend longevity exclusively in male mice. Given that 17β-E2 is known to modulate somatotropic signaling in females through actions in the pituitary and liver, we hypothesized that 17α-E2 may be modulating the somatotropic axis in males, thereby contributing to health benefits. Herein, we demonstrate that 17α-E2 increases hepatic insulin-like growth factor 1 (IGF1) production in male mice without inducing any changes in pulsatile growth hormone (GH) secretion. Using growth hormone receptor knockout (GHRKO) mice, we subsequently determined that the induction of hepatic IGF1 by 17α-E2 is dependent upon GH signaling in male mice, and that 17α-E2 elicits no effects on IGF1 production in female mice. We also determined that 17α-E2 failed to feminize the hepatic transcriptional profile in normal (N) male mice, as evidenced by a clear divergence between the sexes, regardless of treatment. Conversely, significant overlap in transcriptional profiles was observed between sexes in GHRKO mice, and this was unaffected by 17α-E2 treatment. Based on these findings, we propose that 17α-E2 acts as a pleiotropic pathway modulator in male mice by uncoupling IGF1 production from insulin sensitivity. In summary, 17α-E2 treatment upregulates IGF1 production in wild-type (and N) male mice in what appears to be a GH-dependent fashion, while no effects in female IGF1 production are observed following 17α-E2 treatment.
Collapse
Affiliation(s)
- Silvana Sidhom
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil
| | - Yimin Fang
- Department of Physiology, Southern Illinois University School of Medicine, Springfield
| | - Samuel McFadden
- Department of Physiology, Southern Illinois University School of Medicine, Springfield
| | - Justin Darcy
- Department of Physiology, Southern Illinois University School of Medicine, Springfield
| | - Roshini Sathiaseelan
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center
| | - Allyson K Palmer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Frederik J Steyn
- University of Queensland Centre for Clinical Research, Faculty of Medicine, Brisbane, Australia
| | - Johannes Grillari
- Department of Biotechnology, BOKU – University of Natural Resources and Life Sciences, Vienna, Austria
| | - John J Kopchick
- Edison Biotechnology Institute & Heritage College of Osteopathic Medicine, Ohio University, Athens
| | - Andrzej Bartke
- Department of Physiology, Southern Illinois University School of Medicine, Springfield
| | - Shadab Siddiqi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando
| | - Michael B Stout
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center
- Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center
| |
Collapse
|
45
|
Li ZR, Jia RB, Wu J, Lin L, Ou ZR, Liao B, Zhang L, Zhang X, Song G, Zhao M. Sargassum fusiforme polysaccharide partly replaces acarbose against type 2 diabetes in rats. Int J Biol Macromol 2021; 170:447-458. [PMID: 33352159 DOI: 10.1016/j.ijbiomac.2020.12.126] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
The objective of present research was to explore whether Sargassum fusiforme polysaccharide (SFP) could partly replace acarbose against type 2 diabetes in rats. Results indicated that SFP co-administered with low-dose acarbose intervention typically mitigated diabetic symptoms and serum profiles and exhibited better anti-diabetic effects than single acarbose treatment in controlling fasting blood glucose, improving insulin resistance and mitigating kidney injuries. The RT-qPCR analysis indicated that SFP co-administered with low-dose acarbose administration distinctly activated the IRS/PI3K/AKT signaling pathway compared with single acarbose treatment. Moreover, the co-administration also restrained liver fat accumulation via affecting the expression of HMGCR and SREBP-1c genes. In addition, the 16S rRNA gene sequencing analysis indicated that SFP co-administered with low-dose acarbose significantly restored beneficial composition of gut flora in diabetic rats, such as the increase of Muribaculaceae, Lachnospiraceae, Bifidobacterium, Ruminococcaceae_UCG-014, Ruminococcus_1, Romboutsia, Eggerthellaceae, Alistipes and Faecalibaculum, and the decrease of Escherichia-Shigella. These results suggested that SFP, the novel natural adjuvant of acarbose, displayed the desirable benefits in minimizing the dose of drug, while improving the anti-diabetic efficiency.
Collapse
MESH Headings
- Acarbose/pharmacology
- Animals
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/microbiology
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/microbiology
- Disease Models, Animal
- Fats/metabolism
- Gastrointestinal Microbiome/drug effects
- Hypoglycemic Agents/pharmacology
- Liver/drug effects
- Polysaccharides/pharmacology
- RNA, Ribosomal, 16S/metabolism
- Rats
- Rats, Sprague-Dawley
- Sargassum/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Zhao-Rong Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China
| | - Rui-Bo Jia
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China.
| | - Juan Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China
| | - Lianzhu Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China
| | - Zhi-Rong Ou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bingwu Liao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lixia Zhang
- Institute of Agricultural Products Processing, Henan Academy of Agriculture Sciences, 116 Huayuan Road, Zhengzhou 450002, China
| | - Xun Zhang
- Institute of Agricultural Products Processing, Henan Academy of Agriculture Sciences, 116 Huayuan Road, Zhengzhou 450002, China
| | - Guohui Song
- Institute of Agricultural Products Processing, Henan Academy of Agriculture Sciences, 116 Huayuan Road, Zhengzhou 450002, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Institute of Agricultural Products Processing, Henan Academy of Agriculture Sciences, 116 Huayuan Road, Zhengzhou 450002, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China.
| |
Collapse
|
46
|
Miller BF, Pharaoh GA, Hamilton KL, Peelor FF, Kirkland JL, Freeman WM, Mann SN, Kinter M, Price JC, Stout MB. Short-term Calorie Restriction and 17α-Estradiol Administration Elicit Divergent Effects on Proteostatic Processes and Protein Content in Metabolically Active Tissues. J Gerontol A Biol Sci Med Sci 2021; 75:849-857. [PMID: 31074767 DOI: 10.1093/gerona/glz113] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Indexed: 12/11/2022] Open
Abstract
17α-Estradiol (17α-E2) is a "non-feminizing" estrogen that extends life span in male, but not female, mice. We recently reported that 17α-E2 had robust beneficial effects on metabolic and inflammatory parameters in aged male mice. However, it remains unclear if 17α-E2 also delays other "hallmarks" of aging, particularly maintaining proteostasis. Here, we used isotope labeling methods in older mice to examine proteostatic mechanisms. We compared weight-matched mild calorie restricted (CR) and 17α-E2 treated male mice with the hypothesis that 17α-E2 would increase protein synthesis for somatic maintenance. 17α-E2 had no effect on protein synthesis or DNA synthesis in multiple tissues, including white adipose tissue. Conversely, mild short-term CR decreased DNA synthesis and increased the protein to DNA synthesis ratio in multiple tissues. Examination of individual protein synthesis and content did not differentiate treatments, although it provided insight into the regulation of protein content between tissues. Contrary to our hypothesis, we did not see the predicted differences in protein to DNA synthesis following 17α-E2 treatment. However, mild short-term CR elicited differences consistent with both lifelong CR and other treatments that curtail aging processes. These data indicated that despite similar maintenance of body mass, 17α-E2 and CR treatments elicit distinctly different proteostatic outcomes.
Collapse
Affiliation(s)
- Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Fort Collins
| | - Gavin A Pharaoh
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Fort Collins.,Department of Physiology, University of Oklahoma Health Sciences Center, Fort Collins
| | - Karyn L Hamilton
- Health and Exercise Science Department, Colorado State University, Fort Collins
| | - Fredrick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Fort Collins
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Willard M Freeman
- Department of Physiology, University of Oklahoma Health Sciences Center, Fort Collins.,Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Provo, Utah.,Oklahoma City Veterans Affairs Medical Center, Provo, Utah
| | - Shivani N Mann
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Provo, Utah.,Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Provo, Utah
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Fort Collins
| | - John C Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Michael B Stout
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Provo, Utah.,Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Provo, Utah
| |
Collapse
|
47
|
Mann SN, Hadad N, Nelson Holte M, Rothman AR, Sathiaseelan R, Ali Mondal S, Agbaga MP, Unnikrishnan A, Subramaniam M, Hawse J, Huffman DM, Freeman WM, Stout MB. Health benefits attributed to 17α-estradiol, a lifespan-extending compound, are mediated through estrogen receptor α. eLife 2020; 9:59616. [PMID: 33289482 PMCID: PMC7744101 DOI: 10.7554/elife.59616] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Metabolic dysfunction underlies several chronic diseases, many of which are exacerbated by obesity. Dietary interventions can reverse metabolic declines and slow aging, although compliance issues remain paramount. 17α-estradiol treatment improves metabolic parameters and slows aging in male mice. The mechanisms by which 17α-estradiol elicits these benefits remain unresolved. Herein, we show that 17α-estradiol elicits similar genomic binding and transcriptional activation through estrogen receptor α (ERα) to that of 17β-estradiol. In addition, we show that the ablation of ERα completely attenuates the beneficial metabolic effects of 17α-E2 in male mice. Our findings suggest that 17α-E2 may act through the liver and hypothalamus to improve metabolic parameters in male mice. Lastly, we also determined that 17α-E2 improves metabolic parameters in male rats, thereby proving that the beneficial effects of 17α-E2 are not limited to mice. Collectively, these studies suggest ERα may be a drug target for mitigating chronic diseases in male mammals.
Collapse
Affiliation(s)
- Shivani N Mann
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | - Niran Hadad
- The Jackson Laboratory, Bar Harbor, United States
| | - Molly Nelson Holte
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Alicia R Rothman
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | - Roshini Sathiaseelan
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | - Samim Ali Mondal
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | - Martin-Paul Agbaga
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | - Archana Unnikrishnan
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | | | - John Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Derek M Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, United States
| | - Willard M Freeman
- Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, United States.,Oklahoma City Veterans Affairs Medical Center, Oklahoma City, United States
| | - Michael B Stout
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| |
Collapse
|
48
|
Miller RA, Harrison DE, Allison DB, Bogue M, Debarba L, Diaz V, Fernandez E, Galecki A, Garvey WT, Jayarathne H, Kumar N, Javors MA, Ladiges WC, Macchiarini F, Nelson J, Reifsnyder P, Rosenthal NA, Sadagurski M, Salmon AB, Smith DL, Snyder JM, Lombard DB, Strong R. Canagliflozin extends life span in genetically heterogeneous male but not female mice. JCI Insight 2020; 5:140019. [PMID: 32990681 PMCID: PMC7710304 DOI: 10.1172/jci.insight.140019] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/23/2020] [Indexed: 12/22/2022] Open
Abstract
Canagliflozin (Cana) is an FDA-approved diabetes drug that protects against cardiovascular and kidney diseases. It also inhibits the sodium glucose transporter 2 by blocking renal reuptake and intestinal absorption of glucose. In the context of the mouse Interventions Testing Program, genetically heterogeneous mice were given chow containing Cana at 180 ppm at 7 months of age until their death. Cana extended median survival of male mice by 14%. Cana also increased by 9% the age for 90th percentile survival, with parallel effects seen at each of 3 test sites. Neither the distribution of inferred cause of death nor incidental pathology findings at end-of-life necropsies were altered by Cana. Moreover, although no life span benefits were seen in female mice, Cana led to lower fasting glucose and improved glucose tolerance in both sexes, diminishing fat mass in females only. Therefore, the life span benefit of Cana is likely to reflect blunting of peak glucose levels, because similar longevity effects are seen in male mice given acarbose, a diabetes drug that blocks glucose surges through a distinct mechanism, i.e., slowing breakdown of carbohydrate in the intestine. Interventions that control daily peak glucose levels deserve attention as possible preventive medicines to protect from a wide range of late-life neoplastic and degenerative diseases.
Collapse
Affiliation(s)
- Richard A. Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, Michigan, USA
| | | | - David B. Allison
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, Indiana, USA
| | - Molly Bogue
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Lucas Debarba
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Detroit, Michigan, USA
| | - Vivian Diaz
- Sam and Ann Barshop Institute for Longevity and Aging Studies and Departments of Physiology and Molecular Medicine, UT Health San Antonio, San Antonio, Texas, USA; South Texas Veterans Healthcare System, San Antonio, Texas, USA
| | - Elizabeth Fernandez
- Sam and Ann Barshop Institute for Longevity and Aging Studies and Departments of Physiology and Molecular Medicine, UT Health San Antonio, San Antonio, Texas, USA; South Texas Veterans Healthcare System, San Antonio, Texas, USA
| | - Andrzej Galecki
- Departments of Internal Medicine and Biostatistics, University of Michigan School of Medicine and School of Public Health, Ann Arbor, Michigan, USA
| | - W. Timothy Garvey
- Department of Nutrition Sciences and Diabetes Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Birmingham VA Medical Center, Birmingham, Alabama, USA
| | - Hashan Jayarathne
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Detroit, Michigan, USA
| | - Navasuja Kumar
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Martin A. Javors
- Department of Psychiatry, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Warren C. Ladiges
- Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | | | - James Nelson
- Sam and Ann Barshop Institute for Longevity and Aging Research and Department of Cellular and Integrative Physiology, UT Health San Antonio, San Antonio, Texas, USA
| | | | | | - Marianna Sadagurski
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Detroit, Michigan, USA
| | - Adam B. Salmon
- Sam and Ann Barshop Institute for Longevity and Aging Studies and Departments of Physiology and Molecular Medicine, UT Health San Antonio, San Antonio, Texas, USA; South Texas Veterans Healthcare System, San Antonio, Texas, USA
| | - Daniel L. Smith
- Department of Nutrition Sciences and Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jessica M. Snyder
- Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - David B. Lombard
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Randy Strong
- Sam and Ann Barshop Institute for Longevity and Aging Studies and Departments of Physiology and Molecular Medicine, UT Health San Antonio, San Antonio, Texas, USA; South Texas Veterans Healthcare System, San Antonio, Texas, USA
| |
Collapse
|
49
|
Herrera JJ, Louzon S, Pifer K, Leander D, Merrihew GE, Park JH, Szczesniak K, Whitson J, Wilkinson JE, Fiehn O, MacCoss MJ, Day SM, Miller RA, Garratt M. Acarbose has sex-dependent and -independent effects on age-related physical function, cardiac health, and lipid biology. JCI Insight 2020; 5:137474. [PMID: 32990683 PMCID: PMC7710286 DOI: 10.1172/jci.insight.137474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/23/2020] [Indexed: 11/17/2022] Open
Abstract
With an expanding aging population burdened with comorbidities, there is considerable interest in treatments that optimize health in later life. Acarbose (ACA), a drug used clinically to treat type 2 diabetes mellitus (T2DM), can extend mouse life span with greater effect in males than in females. Using a genetically heterogeneous mouse model, we tested the ability of ACA to ameliorate functional, pathological, and biochemical changes that occur during aging, and we determined which of the effects of age and drug were sex dependent. In both sexes, ACA prevented age-dependent loss of body mass, in addition to improving balance/coordination on an accelerating rotarod, rotarod endurance, and grip strength test. Age-related cardiac hypertrophy was seen only in male mice, and this male-specific aging effect was attenuated by ACA. ACA-sensitive cardiac changes were associated with reduced activation of cardiac growth-promoting pathways and increased abundance of peroxisomal proteins involved in lipid metabolism. ACA further ameliorated age-associated changes in cardiac lipid species, particularly lysophospholipids - changes that have previously been associated with aging, cardiac dysfunction, and cardiovascular disease in humans. In the liver, ACA had pronounced effects on lipid handling in both sexes, reducing hepatic lipidosis during aging and shifting the liver lipidome in adulthood, particularly favoring reduced triglyceride (TAG) accumulation. Our results demonstrate that ACA, already in clinical use for T2DM, has broad-ranging antiaging effects in multiple tissues, and it may have the potential to increase physical function and alter lipid biology to preserve or improve health at older ages.
Collapse
Affiliation(s)
- Jonathan J Herrera
- Department of Molecular & Integrative Physiology, University of Michigan (UM), Ann Arbor, Michigan, USA
| | - Sean Louzon
- Department of Molecular & Integrative Physiology, University of Michigan (UM), Ann Arbor, Michigan, USA
| | - Kaitlyn Pifer
- Department of Pathology, UM Medical School, Ann Arbor, Michigan, USA
| | - Danielle Leander
- Department of Pathology, UM Medical School, Ann Arbor, Michigan, USA
| | | | | | - Kate Szczesniak
- Department of Molecular & Integrative Physiology, University of Michigan (UM), Ann Arbor, Michigan, USA
| | - Jeremy Whitson
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - John E Wilkinson
- Unit for Laboratory Animal Medicine and Department of Pathology, UM, Ann Arbor, Michigan, USA
| | | | | | - Sharlene M Day
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Richard A Miller
- Department of Pathology, UM Medical School, Ann Arbor, Michigan, USA.,UM Geriatrics Center, Ann Arbor, Michigan, USA
| | - Michael Garratt
- Department of Pathology, UM Medical School, Ann Arbor, Michigan, USA.,Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
50
|
Garratt M. Why do sexes differ in lifespan extension? Sex-specific pathways of aging and underlying mechanisms for dimorphic responses. ACTA ACUST UNITED AC 2020. [DOI: 10.3233/nha-190067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Males and females typically have different lifespans and frequently differ in their responses to anti-aging interventions. These sex-specific responses are documented in mice and Drosophila species, in addition to other organisms where interventions have been tested. While the prevalence of sex-specific responses to anti-aging interventions is now recognised, the underlying causes remain poorly understood. This review first summarises the main pathways and interventions that lead to sex-specific lifespan responses, including the growth-hormone/insulin-like growth factor 1 (GH-IGF1) axis, mechanistic target of rapamycin (mTOR) signalling, and nutritional and pharmacological interventions. After summarising current evidence, several different potential causes for sex-specific responses are discussed. These include sex-differences in xenobiotic metabolism, differing disease susceptibility, sex-specific hormone production and chromosomes, and the relative importance of different signalling pathways in the control of male and female life-history. Understanding why sex-differences in lifespan-extension occur should provide a greater understanding of the mechanisms that regulate the aging process in each sex, and will be crucial for understanding the full implications of these treatments if they are translated to humans.
Collapse
Affiliation(s)
- Michael Garratt
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|