1
|
Carter RC, Yang Z, Akkaya-Hocagil T, Jacobson SW, Jacobson JL, Dodge NC, Hoyme HE, Zeisel SH, Meintjes EM, Kizil C, Tosto G. Genetic admixture predictors of fetal alcohol spectrum disorders (FASD) in the South African Cape Coloured population. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.31.24305130. [PMID: 38633769 PMCID: PMC11023663 DOI: 10.1101/2024.03.31.24305130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Ancestrally admixed populations are underrepresented in genetic studies of complex diseases, which are still dominated by European-descent populations. This is relevant not only from a representation standpoint but also because of admixed populations' unique features, including being enriched for rare variants, for which effect sizes are disproportionately larger than common polymorphisms. Furthermore, results from these populations may be generalizable to other populations. The South African Cape Coloured (SACC) population is genetically admixed, with one of the highest prevalences of fetal alcohol spectrum disorders (FASD) worldwide. We profiled its admixture and examined associations between ancestry profiles and FASD outcomes using two longitudinal birth cohorts ( N =308 mothers, 280 children) designed to examine effects of prenatal alcohol exposure on development. Participants were genotyped via MEGA-ex array to capture common and rare variants. Rare variants were overrepresented in our SACC cohorts, with numerous polymorphisms being monomorphic in other reference populations (e.g., ∼30,000 and ∼221,000 variants in gnomAD European and Asian populations, respectively). The cohorts showed global African (51%; Bantu and San); European (26%; Northern/Western); South Asian (18%); and East Asian (5%; largely Southern regions) ancestries. The cohorts exhibited high rates of homozygosity (6%), with regions of homozygosity harboring more deleterious variants when lying within African local-ancestry genomic segments. Both maternal and child ancestry profiles were associated with FASD risk and altered severity of prenatal alcohol exposure-related cognitive deficits in the child. Our findings indicate that the SACC population may be a valuable asset to identify novel disease-associated genetic loci for FASD and other diseases.
Collapse
|
2
|
Obeid R, Derbyshire E, Schön C. Association between Maternal Choline, Fetal Brain Development, and Child Neurocognition: Systematic Review and Meta-Analysis of Human Studies. Adv Nutr 2022; 13:2445-2457. [PMID: 36041182 PMCID: PMC9776654 DOI: 10.1093/advances/nmac082] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/01/2021] [Accepted: 07/25/2022] [Indexed: 01/29/2023] Open
Abstract
We studied associations between prenatal and early postnatal choline intake, brain development, and neurocognitive function of children. We conducted a systematic review followed by a meta-analysis and critical appraisal of human studies published from 1997 to 2021. Thirty publications were identified. The meta-analysis included 5 of 7 case-control studies studying neural tube defects (NTDs) in relation to maternal choline intakes/circulating concentrations. Low maternal choline intake/circulating concentrations were associated with a higher OR for NTDs among 1131 mothers of newborns with NTDs and 4439 control mothers (pooled estimate = 1.36; 95% CI: 1.11, 1.67). The 95% prediction intervals were 0.78, 2.36. Findings and critical evaluation of 10 publications with interventional designs showed that higher maternal choline intakes during the second half of pregnancy and early postnatal period (550 mg up to 1 g/d on top of the diet) or a child intake of 513 to 625 mg/d from supplements were safe and likely to demonstrate favorable effects on several domains of child neurocognition, such as memory, attention, and visuospatial learning versus the comparators. Findings from observational studies (n = 13) partly supported the association between maternal choline intake/serum concentrations and child neurocognition, but there was low confidence in the use of plasma choline concentrations as a choline intake marker. In conclusion, low maternal choline intakes were associated with a higher OR for NTDs. The risk could be up to 2.36-fold in some populations. Despite limitations of available trials and observational studies, higher maternal choline intake was likely to be associated with better child neurocognition/neurodevelopment. The results should be used to guide choline intake recommendations in pregnancy and lactation, especially because most young women are not achieving the reference intake of choline. This meta-analysis is registered at PROSPERO as CRD42021233790.
Collapse
|
3
|
Berger MM, Shenkin A, Schweinlin A, Amrein K, Augsburger M, Biesalski HK, Bischoff SC, Casaer MP, Gundogan K, Lepp HL, de Man AME, Muscogiuri G, Pietka M, Pironi L, Rezzi S, Cuerda C. ESPEN micronutrient guideline. Clin Nutr 2022; 41:1357-1424. [PMID: 35365361 DOI: 10.1016/j.clnu.2022.02.015] [Citation(s) in RCA: 218] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Trace elements and vitamins, named together micronutrients (MNs), are essential for human metabolism. Recent research has shown the importance of MNs in common pathologies, with significant deficiencies impacting the outcome. OBJECTIVE This guideline aims to provide information for daily clinical nutrition practice regarding assessment of MN status, monitoring, and prescription. It proposes a consensus terminology, since many words are used imprecisely, resulting in confusion. This is particularly true for the words "deficiency", "repletion", "complement", and "supplement". METHODS The expert group attempted to apply the 2015 standard operating procedures (SOP) for ESPEN which focuses on disease. However, this approach could not be applied due to the multiple diseases requiring clinical nutrition resulting in one text for each MN, rather than for diseases. An extensive search of the literature was conducted in the databases Medline, PubMed, Cochrane, Google Scholar, and CINAHL. The search focused on physiological data, historical evidence (published before PubMed release in 1996), and observational and/or randomized trials. For each MN, the main functions, optimal analytical methods, impact of inflammation, potential toxicity, and provision during enteral or parenteral nutrition were addressed. The SOP wording was applied for strength of recommendations. RESULTS There was a limited number of interventional trials, preventing meta-analysis and leading to a low level of evidence. The recommendations underwent a consensus process, which resulted in a percentage of agreement (%): strong consensus required of >90% of votes. Altogether the guideline proposes sets of recommendations for 26 MNs, resulting in 170 single recommendations. Critical MNs were identified with deficiencies being present in numerous acute and chronic diseases. Monitoring and management strategies are proposed. CONCLUSION This guideline should enable addressing suboptimal and deficient status of a bundle of MNs in at-risk diseases. In particular, it offers practical advice on MN provision and monitoring during nutritional support.
Collapse
Affiliation(s)
- Mette M Berger
- Department of Adult Intensive Care, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| | - Alan Shenkin
- Institute of Aging and Chronic Disease, University of Liverpool, Liverpool, UK.
| | - Anna Schweinlin
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Karin Amrein
- Medical University of Graz, Department of Internal Medicine, Division of Endocrinology and Diabetology, Austria.
| | - Marc Augsburger
- University Centre of Legal Medicine Lausanne-Geneva, Lausanne University Hospital and University of Lausanne, Geneva University Hospital and University of Geneva, Lausanne-Geneva, Switzerland.
| | | | - Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Michael P Casaer
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Intensive Care Medicine, Leuven, Belgium.
| | - Kursat Gundogan
- Division of Intensive Care Medicine, Department of Internal Medicine, Erciyes University School of Medicine, Kayseri, Turkey.
| | | | - Angélique M E de Man
- Department of Intensive Care Medicine, Research VUmc Intensive Care (REVIVE), Amsterdam Cardiovascular Science (ACS), Amsterdam Infection and Immunity Institute (AI&II), Amsterdam Medical Data Science (AMDS), Amsterdam UMC, Location VUmc, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.
| | - Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università di Napoli (Federico II), Naples, Italy; United Nations Educational, Scientific and Cultural Organization (UNESCO) Chair for Health Education and Sustainable Development, Federico II, University, Naples, Italy.
| | - Magdalena Pietka
- Pharmacy Department, Stanley Dudrick's Memorial Hospital, Skawina, Poland.
| | - Loris Pironi
- Alma Mater Studiorum - University of Bologna, Department of Medical and Surgical Sciences, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Centre for Chronic Intestinal Failure - Clinical Nutrition and Metabolism Unit, Italy.
| | - Serge Rezzi
- Swiss Nutrition and Health Foundation (SNHf), Epalinges, Switzerland.
| | - Cristina Cuerda
- Departamento de Medicina, Universidad Complutense de Madrid, Nutrition Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| |
Collapse
|
4
|
Grafe EL, Wade MMM, Hodson CE, Thomas JD, Christie BR. Postnatal Choline Supplementation Rescues Deficits in Synaptic Plasticity Following Prenatal Ethanol Exposure. Nutrients 2022; 14:2004. [PMID: 35631142 PMCID: PMC9146219 DOI: 10.3390/nu14102004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 02/06/2023] Open
Abstract
Prenatal ethanol exposure (PNEE) is a leading cause of neurodevelopmental impairments, yet treatments for individuals with PNEE are limited. Importantly, postnatal supplementation with the essential nutrient choline can attenuate some adverse effects of PNEE on cognitive development; however, the mechanisms of action for choline supplementation remain unclear. This study used an animal model to determine if choline supplementation could restore hippocampal synaptic plasticity that is normally impaired by prenatal alcohol. Throughout gestation, pregnant Sprague Dawley rats were fed an ethanol liquid diet (35.5% ethanol-derived calories). Offspring were injected with choline chloride (100 mg/kg/day) from postnatal days (PD) 10-30, and then used for in vitro electrophysiology experiments as juveniles (PD 31-35). High-frequency conditioning stimuli were used to induce long-term potentiation (LTP) in the medial perforant path input to the dentate gyrus of the hippocampus. PNEE altered synaptic transmission in female offspring by increasing excitability, an effect that was mitigated with choline supplementation. In contrast, PNEE juvenile males had decreased LTP compared to controls, and this was rescued by choline supplementation. These data demonstrate sex-specific changes in plasticity following PNEE, and provide evidence that choline-related improvements in cognitive functioning may be due to its positive impact on hippocampal synaptic physiology.
Collapse
Affiliation(s)
- Erin L. Grafe
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada; (E.L.G.); (M.M.M.W.); (C.E.H.); (B.R.C.)
| | - Mira M. M. Wade
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada; (E.L.G.); (M.M.M.W.); (C.E.H.); (B.R.C.)
| | - Claire E. Hodson
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada; (E.L.G.); (M.M.M.W.); (C.E.H.); (B.R.C.)
| | - Jennifer D. Thomas
- Department of Psychology, San Diego State University, San Diego, CA 92120, USA
| | - Brian R. Christie
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada; (E.L.G.); (M.M.M.W.); (C.E.H.); (B.R.C.)
| |
Collapse
|
5
|
Carter RC, Senekal M, Duggan CP, Dodge NC, Meintjes EM, Molteno CD, Jacobson JL, Jacobson SW. Gestational weight gain and dietary energy, iron, and choline intake predict severity of fetal alcohol growth restriction in a prospective birth cohort. Am J Clin Nutr 2022; 116:460-469. [PMID: 35441212 PMCID: PMC9348980 DOI: 10.1093/ajcn/nqac101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/11/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Animal models have demonstrated that maternal nutrition can alter fetal vulnerability to prenatal alcohol exposure (PAE). Few human studies have examined the role of nutrition in fetal alcohol spectrum disorders (FASD). OBJECTIVES Our objectives were to examine whether fetal vulnerability to PAE-related growth restriction is modified by: 1) rate of gestational weight gain; or prenatal dietary intakes of 2) energy, 3) iron, or 4) choline. METHODS In a prospective longitudinal birth cohort in Cape Town, South Africa, 118 heavy-drinking and 71 abstaining/light-drinking pregnant women were weighed and interviewed regarding demographics, alcohol, cigarette/other drug use, and diet at prenatal visits. Infant length, weight, and head circumference were measured at 2 wk and 12 mo postpartum. RESULTS Heavy-drinking mothers reported a binge pattern of drinking [Mean = 129 mL (∼7.2 drinks)/occasion on 1.3 d/wk). Rate of gestational weight gain and average daily dietary energy, iron, and choline intakes were similar between heavy-drinking women and controls. In regression models adjusting for maternal age, socioeconomic status, cigarette use, and weeks gestation at delivery, PAE [ounces (30 mL) absolute alcohol per day] was related to smaller 2-wk length and head circumference and 12-mo length, weight, and head circumference z-scores (β = -0.43 to -0.67; all P values <0.05). In stratified analyses for each maternal nutritional measure (inadequate compared with adequate weight gain; tertiles for dietary energy, iron, and choline intakes), PAE-related growth restriction was more severe in women with poorer nutrition, with effect modification seen by weight gain, energy, iron, and/or choline for several anthropometric outcomes. CONCLUSIONS Gestational weight gain and dietary intakes of energy, choline, and iron appeared to modify fetal vulnerability to PAE-related growth restriction. These findings suggest a need for screening programs for pregnant women at higher risk of having a child with FASD to identify alcohol-using women who could benefit from nutritional interventions.
Collapse
Affiliation(s)
| | - Marjanne Senekal
- Department of Human Biology, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| | - Christopher P Duggan
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Neil C Dodge
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ernesta M Meintjes
- Department of Human Biology, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| | - Christopher D Molteno
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA, USA,Departments of Nutrition and Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Department of Psychiatry and Mental Health, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| | - Joseph L Jacobson
- Department of Human Biology, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sandra W Jacobson
- Department of Human Biology, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA,Department of Psychiatry and Mental Health, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| |
Collapse
|
6
|
Macht VA, Vetreno RP, Crews FT. Cholinergic and Neuroimmune Signaling Interact to Impact Adult Hippocampal Neurogenesis and Alcohol Pathology Across Development. Front Pharmacol 2022; 13:849997. [PMID: 35308225 PMCID: PMC8926387 DOI: 10.3389/fphar.2022.849997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/14/2022] [Indexed: 01/21/2023] Open
Abstract
Alcohol (ethanol) use and misuse is a costly societal issue that can affect an individual across the lifespan. Alcohol use and misuse typically initiates during adolescence and generally continues into adulthood. Not only is alcohol the most widely abused drug by adolescents, but it is also one of the most widely abused drugs in the world. In fact, high rates of maternal drinking make developmental ethanol exposure the most preventable cause of neurological deficits in the Western world. Preclinical studies have determined that one of the most consistent effects of ethanol is its disruption of hippocampal neurogenesis. However, the severity, persistence, and reversibility of ethanol’s effects on hippocampal neurogenesis are dependent on developmental stage of exposure and age at assessment. Complicating the neurodevelopmental effects of ethanol is the concurrent development and maturation of neuromodulatory systems which regulate neurogenesis, particularly the cholinergic system. Cholinergic signaling in the hippocampus directly regulates hippocampal neurogenesis through muscarinic and nicotinic receptor actions and indirectly regulates neurogenesis by providing anti-inflammatory regulatory control over the hippocampal environmental milieu. Therefore, this review aims to evaluate how shifting maturational patterns of the cholinergic system and its regulation of neuroimmune signaling impact ethanol’s effects on adult neurogenesis. For example, perinatal ethanol exposure decreases basal forebrain cholinergic neuron populations, resulting in long-term developmental disruptions to the hippocampus that persist into adulthood. Exaggerated neuroimmune responses and disruptions in adult hippocampal neurogenesis are evident after environmental, developmental, and pharmacological challenges, suggesting that perinatal ethanol exposure induces neurogenic deficits in adulthood that can be unmasked under conditions that strain neural and immune function. Similarly, adolescent ethanol exposure persistently decreases basal forebrain cholinergic neuron populations, increases hippocampal neuroimmune gene expression, and decreases hippocampal neurogenesis in adulthood. The effects of neither perinatal nor adolescent ethanol are mitigated by abstinence whereas adult ethanol exposure-induced reductions in hippocampal neurogenesis are restored following abstinence, suggesting that ethanol-induced alterations in neurogenesis and reversibility are dependent upon the developmental period. Thus, the focus of this review is an examination of how ethanol exposure across critical developmental periods disrupts maturation of cholinergic and neuroinflammatory systems to differentially affect hippocampal neurogenesis in adulthood.
Collapse
Affiliation(s)
- Victoria A Macht
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Fulton T Crews
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
7
|
Grafe EL, Fontaine CJ, Thomas JD, Christie BR. Effects of prenatal ethanol exposure on choline-induced long-term depression in the hippocampus. J Neurophysiol 2021; 126:1622-1634. [PMID: 34495785 DOI: 10.1152/jn.00136.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Choline is an essential nutrient under evaluation as a cognitive enhancing treatment for fetal alcohol spectrum disorders (FASD) in clinical trials. As a result, there is increased pressure to identify therapeutic mechanism(s) of action. Choline is not only a precursor for several essential cell membrane components and signaling molecules but also has the potential to directly affect synaptic mechanisms that are believed important for cognitive processes. In the current work, we study how the direct application of choline can affect synaptic transmission in the dentate gyrus (DG) of hippocampal slices obtained from adolescent (postnatal days 21-28) Sprague-Dawley rats (Rattus norvegicus). The acute administration of choline chloride (2 mM) reliably induced a long-term depression (LTD) of field excitatory postsynaptic potentials (fEPSPs) in the DG in vitro. The depression required the involvement of M1 receptors, and the magnitude of the effect was similar in slices obtained from male and female animals. To further study the impact of choline in an animal model of FASD, we examined offspring from dams fed an ethanol-containing diet (35.5% ethanol-derived calories) throughout gestation. In slices from the adolescent animals that experienced prenatal ethanol exposure (PNEE), we found that the choline induced an LTD that uniquely involved the activation of N-methyl-d-aspartate (NMDA) and M1 receptors. This study provides a novel insight into how choline can modulate hippocampal transmission at the level of the synapse and that it can have unique effects following PNEE.NEW & NOTEWORTHY Choline supplementation is a nutraceutical therapy with significant potential for a variety of developmental disorders; however, the mechanisms involved in its therapeutic effects remain poorly understood. Our research shows that choline directly impacts synaptic communication in the brain, inducing a long-term depression of synaptic efficacy in brain slices. The depression is equivalent in male and female animals, involves M1 receptors in control animals, but uniquely involves NMDA receptors in a model of FASD.
Collapse
Affiliation(s)
- Erin L Grafe
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Christine J Fontaine
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Jennifer D Thomas
- Department of Psychology, San Diego State University, San Diego, California
| | - Brian R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Island Medical Program, Department of Cellular and Physiological Sciences, University of British Columbia, Victoria, British Columbia, Canada
| |
Collapse
|
8
|
Exploring the Role of Alcohol Metabolizing Genotypes in a 12-Week Clinical Trial of Naltrexone for Alcohol Use Disorder. Biomolecules 2021; 11:biom11101495. [PMID: 34680127 PMCID: PMC8533258 DOI: 10.3390/biom11101495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/26/2021] [Accepted: 10/03/2021] [Indexed: 11/16/2022] Open
Abstract
Background: The efficacy of naltrexone in the treatment of alcohol use disorder (AUD) has been associated with a set of variables not directly related with the expression of opioid receptors. All the variables have been found to be highly associated with AUD itself or more severe clinical levels of AUD. Objectives: Given the high association between alcohol metabolizing enzymes (AME) and the outcome of AUD, the present study aims to investigate the role of AME genotype variants in the treatment of AUD with naltrexone. Methods: We carried out a 12-week longitudinal clinical trial based on the treatment of AUD patients with naltrexone (N = 101), stratified by different alcohol metabolization genotypes. Genotyping was performed after the inclusion of the patients in the study, based on the individual presence of single nucleotide polymorphisms (SNPs) in the ADH (alcohol dehydrogenase)1B (ADH1B*2 and ADH1B*3), ADH1C (ADHC*1) and ALDH (aldehyde dehydrogenase) 2 (ALDH2*2) genes. The outcome of alcohol use has been monitored employing the timeline follow-back during the treatment. Results: The ADH1C*1 (Ile350Val, rs698) and ALDH2*2 (Glu504Lys, rs671) polymorphisms were associated with a better response to naltrexone treatment, whereas the ADH1B*3 (Arg370Cys, rs2066702) allelic variant showed a negative outcome. Conclusions: The present study explores a genomic setting for the treatment of AUD with naltrexone. According to our findings, the association between ADH1C*1 and ALDH2*2 variants and better outcomes suggests a successful treatment, whereas the ADH1B*3 mutated allele might lead to an unsuccessful treatment. Further studies should be performed to investigate the relationship between alcohol metabolizing genotypes, the family history of alcohol use disorders and the effect of naltrexone on the outcomes. Genotyping may be a valuable tool for precision-medicine and individualized approach, especially in the context of alcohol use disorders. The small number of subjects was the main limitation of the present study.
Collapse
|
9
|
Warton FL, Molteno CD, Warton CMR, Wintermark P, Lindinger NM, Dodge NC, Zöllei L, van der Kouwe AJW, Carter RC, Jacobson JL, Jacobson SW, Meintjes EM. Maternal choline supplementation mitigates alcohol exposure effects on neonatal brain volumes. Alcohol Clin Exp Res 2021; 45:1762-1774. [PMID: 34342017 DOI: 10.1111/acer.14672] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/07/2021] [Accepted: 07/01/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) is associated with smaller regional and global brain volumes. In rats, gestational choline supplementation mitigates adverse developmental effects of ethanol exposure. Our recent randomized, double-blind, placebo-controlled maternal choline supplementation trial showed improved somatic and functional outcomes in infants at 6.5 and 12 months postpartum. Here, we examined whether maternal choline supplementation protected the newborn brain from PAE-related volume reductions and, if so, whether these volume changes were associated with improved infant recognition memory. METHODS Fifty-two infants born to heavy-drinking women who had participated in a choline supplementation trial during pregnancy underwent structural magnetic resonance imaging with a multi-echo FLASH protocol on a 3T Siemens Allegra MRI (median age = 2.8 weeks postpartum). Subcortical regions were manually segmented. Recognition memory was assessed at 12 months on the Fagan Test of Infant Intelligence (FTII). We examined the effects of choline on regional brain volumes, whether choline-related volume increases were associated with higher FTII scores, and the degree to which the regional volume increases mediated the effects of choline on the FTII. RESULTS Usable MRI data were acquired in 50 infants (choline: n = 27; placebo: n = 23). Normalized volumes were larger in six of 12 regions in the choline than placebo arm (t ≥ 2.05, p ≤ 0.05) and were correlated with the degree of maternal choline adherence (β ≥ 0.28, p ≤ 0.04). Larger right putamen and corpus callosum were related to higher FTII scores (r = 0.36, p = 0.02) with a trend toward partial mediation of the choline effect on recognition memory. CONCLUSIONS High-dose choline supplementation during pregnancy mitigated PAE-related regional volume reductions, with larger volumes associated with improved 12-month recognition memory. These results provide the first evidence that choline may be neuroprotective against PAE-related brain structural deficits in humans.
Collapse
Affiliation(s)
- Fleur L Warton
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Biomedical Engineering Research Centre, Division of Biomedical Engineering, University of Cape Town, Cape Town, South Africa.,Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Christopher D Molteno
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Christopher M R Warton
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Pia Wintermark
- Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, Canada
| | - Nadine M Lindinger
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,ACSENT Laboratory, Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Neil C Dodge
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Lilla Zöllei
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Andre J W van der Kouwe
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - R Colin Carter
- Division of Pediatric Emergency Medicine, Columbia University Medical Center, New York, New York, USA
| | - Joseph L Jacobson
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sandra W Jacobson
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Ernesta M Meintjes
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Biomedical Engineering Research Centre, Division of Biomedical Engineering, University of Cape Town, Cape Town, South Africa.,Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,Cape Universities Body Imaging Centre, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
10
|
Alldred MJ, Lee SH, Ginsberg SD. Adiponectin Modulation by Genotype and Maternal Choline Supplementation in a Mouse Model of Down Syndrome and Alzheimer's Disease. J Clin Med 2021; 10:2994. [PMID: 34279477 PMCID: PMC8267749 DOI: 10.3390/jcm10132994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by the triplication of human chromosome 21, which results in neurological and physiological pathologies. These deficits increase during aging and are exacerbated by cognitive decline and increase of Alzheimer's disease (AD) neuropathology. A nontoxic, noninvasive treatment, maternal choline supplementation (MCS) attenuates cognitive decline in mouse models of DS and AD. To evaluate potential underlying mechanisms, laser capture microdissection of individual neuronal populations of MCS offspring was performed, followed by RNA sequencing and bioinformatic inquiry. Results at ~6 months of age (MO) revealed DS mice (the well-established Ts65Dn model) have significant dysregulation of select genes within the Type 2 Diabetes Mellitus (T2DM) signaling pathway relative to normal disomic (2N) littermates. Accordingly, we interrogated key T2DM protein hormones by ELISA assay in addition to gene and encoded protein levels in the brain. We found dysregulation of adiponectin (APN) protein levels in the frontal cortex of ~6 MO trisomic mice, which was attenuated by MCS. APN receptors also displayed expression level changes in response to MCS. APN is a potential biomarker for AD pathology and may be relevant in DS. We posit that changes in APN signaling may be an early marker of cognitive decline and neurodegeneration.
Collapse
Affiliation(s)
- Melissa J. Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA
- Departments of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sang Han Lee
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY 10962, USA;
- Child & Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA
- Departments of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
11
|
Hoffman MC, Freedman R, Law AJ, Clark AM, Hunter SK. Maternal nutrients and effects of gestational COVID-19 infection on fetal brain development. Clin Nutr ESPEN 2021; 43:1-8. [PMID: 34024500 PMCID: PMC8144544 DOI: 10.1016/j.clnesp.2021.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Maternal gestational infection is a well-characterized risk factor for offsprings' development of mental disorders including schizophrenia, autism, and attention deficit disorder. The inflammatory response elicited by the infection is partly directed against the placenta and fetus and is the putative pathogenic mechanism for fetal brain developmental abnormalities. Fetal brain abnormalities are generally irreversible after birth and increase risk for later mental disorders. Maternal immune activation in animals models this pathophysiology. SARS-CoV-2 produces maternal inflammatory responses during pregnancy similar to previously studied common respiratory viruses. METHOD Choline, folic acid, Vitamin D, and n-3 polyunsaturated fatty acids are among the nutrients that have been studied as possible mitigating factors for effects of maternal infection and inflammation on fetal development. Clinical and animal studies relevant to their use in pregnant women who have been infected are reviewed. RESULTS Higher maternal choline levels have positive effects on the development of brain function for infants of mothers who experienced viral infections in early pregnancy. No other nutrient has been studied in the context of viral inflammation. Vitamin D reduces pro-inflammatory cytokines in some, but not all, studies. Active folic acid metabolites decrease anti-inflammatory cytokines. N-3 polyunsaturated fatty acids have no effect. CONCLUSIONS Vitamin D and folic acid are already supplemented in food additives and in prenatal vitamins. Despite recommendations by several public health agencies and medical societies, choline intake is often inadequate in early gestation when the brain is forming. A public health initiative for choline supplements during the pandemic could be helpful for women planning or already pregnant who also become exposed or infected with SARS-CoV-2.
Collapse
Affiliation(s)
- M Camille Hoffman
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, University of Colorado Denver School of Medicine, Mail Stop F-546, Anschutz Medical Center, Aurora, CO, 80045, USA; Department of Psychiatry, University of Colorado Denver School of Medicine, Mail Stop F-546, Anschutz Medical Center, Aurora, CO, 80045, USA.
| | - Robert Freedman
- Department of Psychiatry, University of Colorado Denver School of Medicine, Mail Stop F-546, Anschutz Medical Center, Aurora, CO, 80045, USA.
| | - Amanda J Law
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, University of Colorado Denver School of Medicine, Mail Stop F-546, Anschutz Medical Center, Aurora, CO, 80045, USA; Department of Psychiatry, University of Colorado Denver School of Medicine, Mail Stop F-546, Anschutz Medical Center, Aurora, CO, 80045, USA; Department of Cell and Developmental Biology, University of Colorado Denver School of Medicine, Mail Stop F-546, Anschutz Medical Center, Aurora, CO, 80045, USA; Department of Medicine, University of Colorado Denver School of Medicine, Mail Stop F-546, Anschutz Medical Center, Aurora, CO, 80045, USA.
| | - Alena M Clark
- Department of Nutrition and Dietetics, Campus Box 93, University of Northern Colorado, Greeley, CO, 80639, USA.
| | - Sharon K Hunter
- Department of Psychiatry, University of Colorado Denver School of Medicine, Mail Stop F-546, Anschutz Medical Center, Aurora, CO, 80045, USA.
| |
Collapse
|
12
|
GOMES CDB, CARVALHAES MADBL. Insufficient choline intake during pregnancy: cohort study. REV NUTR 2021. [DOI: 10.1590/1678-9865202134e200187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT Objective To investigate the intake of choline during pregnancy and associated factors. Methods Cohort study with 353 pregnant women recruited from the primary health care network in an inland city of the State of São Paulo. In-house interviews were conducted in each of the gestational trimesters. In each of these points in time, a 24-hour dietary recall was collected. Subsequently, a new dietary recall collection was performed by telephone in the same trimester on a non-consecutive day, differentiating weekday versus weekend/holiday. Dietary intake data were included in the Nutrition Data System for Research software, and the habitual food intake throughout pregnancy was determined, with intra-individual variation correction in the MSM software. The influence of socioeconomic, obstetric and lifestyle factors, and of the actual diet, on choline intake during pregnancy was assessed using linear regression models, that were developed with the Stata software version 14.2, at a significance level of 95%. Results Choline intake (281.1±68.6 milligrams) was below the recommended adequate intake, and only energy was positively associated with this micronutrient intake. Conclusion Choline intake in the population studied fell far short of current recommendations, and only higher energy intake was found as a factor associated with a higher intake.
Collapse
|
13
|
Guan X, Chen X, Dai L, Ma J, Zhang Q, Qu S, Bai Y, Wang Y. Low Maternal Dietary Intake of Choline Regulates Toll-Like Receptor 4 Expression Via Histone H3K27me3 in Fetal Mouse Neural Progenitor Cells. Mol Nutr Food Res 2020; 65:e2000769. [PMID: 33274576 DOI: 10.1002/mnfr.202000769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/01/2020] [Indexed: 12/18/2022]
Abstract
SCOPE Choline is an essential nutrient and a primary dietary source of methyl groups that are vital for brain development. Low choline (LC) in the maternal diet during pregnancy alters neurogenesis in the fetal brain and leads to low cognitive performance. However, the key signaling pathways that are sensitive to maternal choline supply during neural progenitor cell (NPC) development and the epigenetic mechanisms by which choline availability regulates gene expression are unclear. METHODS AND RESULTS Timed-pregnant Nestin-CFPnuc transgenic mice are fed either a control diet or LC diet during E11-17. Gene expression changes in sorted E17 NPCs are identified by RNA sequencing. A maternal LC diet significantly increases Tlr4 transcription, causing premature neuronal differentiation and enhanced ethanol-induced NLRP3 inflammasome activation. No changes in DNA methylation at the Tlr4 gene promoter region are detected; however, a 70% decrease in H3K27me3 is observed in the LC-treated NPCs. Inhibition of EZH2 decreases H3K27me3 levels and increases Tlr4 expression. Conversely, the application of catalytically inactive Cas9 with EZH2 to increase H3K27me3 at the Tlr4 promoter causes reduced Tlr4 expression. CONCLUSION These data reveal an epigenetic mechanism for the effect of maternal choline availability on brain development, suggesting a likely intervention for neurodevelopmental diseases.
Collapse
Affiliation(s)
- Xingying Guan
- Department of Medical Genetics, College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xuedan Chen
- Department of Medical Genetics, College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Limeng Dai
- Department of Medical Genetics, College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiming Ma
- Undergraduate Student Brigade, College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qiming Zhang
- Undergraduate Student Brigade, College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Song Qu
- Undergraduate Student Brigade, College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yun Bai
- Department of Medical Genetics, College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yanyan Wang
- Department of Medical Genetics, College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
14
|
Proceedings of the 2019 annual meeting of the Fetal Alcohol Spectrum Disorders Study Group. Alcohol 2020; 86:25-33. [PMID: 32171771 DOI: 10.1016/j.alcohol.2020.02.165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 11/20/2022]
Abstract
The 2019 Fetal Alcohol Spectrum Disorders Study Group (FASDSG) meeting was titled "Computational Approaches to Studying Behavioral Control and Individual Change". The theme was reflected in the presentations of two keynote speakers: A. David Redish, Ph.D., who spoke about computational psychiatry and vulnerabilities in decision-making processes, and Kevin Grimm, Ph.D., who spoke about contemporary machine learning approaches to studying individual change. The conference presented updates from three government agencies, and included short presentations by junior and senior investigators showcasing late-breaking FASD research. The conference was capped by H. Eugene Hoyme, M.D., FACMG, FAAP, the recipient of the 2019 Henry Rosett award for career-long contributions to the field.
Collapse
|
15
|
Sawant OB, Birch SM, Goodlett CR, Cudd TA, Washburn SE. Maternal choline supplementation mitigates alcohol-induced fetal cranio-facial abnormalities detected using an ultrasonographic examination in a sheep model. Alcohol 2019; 81:31-38. [PMID: 31082506 DOI: 10.1016/j.alcohol.2019.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 02/08/2023]
Abstract
Early detection of prenatal alcohol exposure is critical for designing and testing effectiveness of interventional therapeutics. Choline supplementation during and after prenatal alcohol exposure has shown promising benefits in improving outcomes in rodent models and clinical studies. A sheep model of first trimester-equivalent binge alcohol exposure was used in this study to model the dose of maternal choline supplementation used in an ongoing prospective clinical trial involving pregnancies at risk for FASD. Pregnant sheep were randomly assigned to six groups: Saline + Placebo control, Saline + Choline, binge Alcohol + Placebo (light binging), binge Alcohol + Choline, Heavy binge Alcohol + Placebo (heavy binging), and Heavy binge Alcohol + Choline. Ewes received intravenous alcohol or saline on three consecutive days per week from gestation day (GD) 4-41 to mimic a first trimester-equivalent weekend binge-drinking paradigm. Choline (10 mg/kg in the daily food ration) was administered from GD 4 until term. On GD 76, 11 fetal ultrasonographic measurements were collected transabdominally. Heavy binge alcohol exposure reduced fetal Frontothalamic Distance (FTD), Mean Orbital Diameter (MOD), and Mean Lens Diameter (MLD), and increased Interorbital Distance (IOD) and Thalamic Width (TW). Maternal choline supplementation mitigated most of these alcohol-induced effects. Maternal choline supplementation also improved overall fetal femur and humerus bone lengths, compared to their respective placebo groups. Taken together, these results indicate a potential dose-dependent effect that could impact the sensitivity of these ultrasonographic measures in predicting prenatal alcohol exposure. This is the first study in the sheep model to identify biomarkers of prenatal alcohol exposure in utero with ultrasound and co-administration of maternal choline supplementation.
Collapse
|
16
|
Reversal of neurobehavioral teratogenicity in animal models and human: Three decades of progress. Brain Res Bull 2019; 150:328-342. [DOI: 10.1016/j.brainresbull.2019.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/09/2019] [Accepted: 06/12/2019] [Indexed: 12/13/2022]
|
17
|
Alldred MJ, Chao HM, Lee SH, Beilin J, Powers BE, Petkova E, Strupp BJ, Ginsberg SD. Long-term effects of maternal choline supplementation on CA1 pyramidal neuron gene expression in the Ts65Dn mouse model of Down syndrome and Alzheimer's disease. FASEB J 2019; 33:9871-9884. [PMID: 31180719 DOI: 10.1096/fj.201802669rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Choline is critical for normative function of 3 major pathways in the brain, including acetylcholine biosynthesis, being a key mediator of epigenetic regulation, and serving as the primary substrate for the phosphatidylethanolamine N-methyltransferase pathway. Sufficient intake of dietary choline is critical for proper brain function and neurodevelopment. This is especially important for brain development during the perinatal period. Current dietary recommendations for choline intake were undertaken without critical evaluation of maternal choline levels. As such, recommended levels may be insufficient for both mother and fetus. Herein, we examined the impact of perinatal maternal choline supplementation (MCS) in a mouse model of Down syndrome and Alzheimer's disease, the Ts65Dn mouse relative to normal disomic littermates, to examine the effects on gene expression within adult offspring at ∼6 and 11 mo of age. We found MCS produces significant changes in offspring gene expression levels that supersede age-related and genotypic gene expression changes. Alterations due to MCS impact every gene ontology category queried, including GABAergic neurotransmission, the endosomal-lysosomal pathway and autophagy, and neurotrophins, highlighting the importance of proper choline intake during the perinatal period, especially when the fetus is known to have a neurodevelopmental disorder such as trisomy.-Alldred, M. J., Chao, H. M., Lee, S. H., Beilin, J., Powers, B. E., Petkova, E., Strupp, B. J., Ginsberg, S. D. Long-term effects of maternal choline supplementation on CA1 pyramidal neuron gene expression in the Ts65Dn mouse model of Down syndrome and Alzheimer's disease.
Collapse
Affiliation(s)
- Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, USA.,Department of Psychiatry, (NYU) Langone Medical Center, New York, New York, USA
| | - Helen M Chao
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, USA.,Department of Psychiatry, (NYU) Langone Medical Center, New York, New York, USA
| | - Sang Han Lee
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, New York, USA.,Department Neuroscience and Physiology, (NYU) Langone Medical Center, New York, New York, USA
| | - Judah Beilin
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, USA
| | - Brian E Powers
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Eva Petkova
- Child Psychiatry, Nathan Kline Institute, Orangeburg, New York, USA.,Department of Child and Adolescent Psychiatry, (NYU) Langone Medical Center, New York, New York, USA
| | - Barbara J Strupp
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA.,Department of Psychology, Cornell University, Ithaca, New York, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, USA.,Department of Psychiatry, (NYU) Langone Medical Center, New York, New York, USA.,Department Neuroscience and Physiology, (NYU) Langone Medical Center, New York, New York, USA.,New York University (NYU) Neuroscience Institute, NYU Langone Medical Center, New York, New York, USA
| |
Collapse
|
18
|
Development and validation of a quantitative choline food frequency questionnaire for use with drinking and non-drinking pregnant women in Cape Town, South Africa. Nutr J 2018; 17:108. [PMID: 30466439 PMCID: PMC6251124 DOI: 10.1186/s12937-018-0411-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/24/2018] [Indexed: 12/27/2022] Open
Abstract
Background Although animal and human studies have demonstrated interactions between dietary choline and fetal alcohol spectrum disorders, dietary choline deficiency in pregnancy is common in the US and worldwide. We sought to develop and validate a quantitative food frequency questionnaire (QFFQ) to estimate usual daily choline intake in pregnant mothers. Methods A panel of nutrition experts developed a Choline-QFFQ food item list, including sources with high choline content and the most commonly consumed choline-containing foods in the target population. A data base for choline content of each item was compiled. For reliability and validity testing in a prospective longitudinal cohort, 123 heavy drinking Cape Coloured pregnant women and 83 abstaining/light-drinking controls were recruited at their first antenatal clinic visit. At 3 prenatal study visits, each gravida was interviewed about alcohol, smoking, and drug use, and administered a 24-hour recall interview and the Choline-QFFQ. Results Across all visits and assessments, > 78% of heavy drinkers and controls reported choline intake below the Dietary Reference Intakes adequate intake level (450 mg/day). Women reported a decrease in choline intake over time on the QFFQ. Reliability of the QFFQ across visits was good-to-acceptable for 2 of 4 group-level tests and 4 of 5 individual-level tests for both drinkers and controls. When compared with 24-hr recall data, validity of the QFFQ was good-to-acceptable for 3 of 4 individual-level tests and 3 of 5 group-level tests. For controls, validity was good-to-acceptable for all 4 individual-level tests and all 5 group-level tests. Conclusions To our knowledge, this is the first quantitative choline food frequency screening questionnaire to be developed and validated for use with both heavy and non-drinking pregnant women and the first to be used in the Cape Coloured community in South Africa. Given the high prevalence of inadequate choline intake and the growing evidence that maternal choline supplementation can mitigate some of the adverse effects of prenatal alcohol exposure, this tool may be useful for both research and future clinical outreach programs.
Collapse
|