1
|
Olasunkanmi OI, Aremu J, Wong ML, Licinio J, Zheng P. Maternal gut-microbiota impacts the influence of intrauterine environmental stressors on the modulation of human cognitive development and behavior. J Psychiatr Res 2024; 180:307-326. [PMID: 39488009 DOI: 10.1016/j.jpsychires.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/01/2023] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
This review examines the longstanding debate of nature and intrauterine environmental challenges that shapes human development and behavior, with a special focus on the influence of maternal prenatal gut microbes. Recent research has revealed the critical role of the gut microbiome in human neurodevelopment, and evidence suggest that maternal microbiota can impact fetal gene and microenvironment composition, as well as immunophysiology and neurochemical responses. Furthermore, intrauterine neuroepigenetic regulation may be influenced by maternal microbiota, capable of having long-lasting effects on offspring behavior and cognition. By examining the complex relationship between maternal prenatal gut microbes and human development, this review highlights the importance of early-life environmental factors in shaping neurodevelopment and cognition.
Collapse
Affiliation(s)
- Oluwatayo Israel Olasunkanmi
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education) Chongqing Medical University, Chongqing, China.
| | - John Aremu
- Department of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Ma-Li Wong
- Department of Psychiatry, College of Medicine, Upstate Medical University, Syracuse, NY, USA
| | - Julio Licinio
- Department of Psychiatry, College of Medicine, Upstate Medical University, Syracuse, NY, USA.
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education) Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Migliorini A, Ge S, Atkins MH, Oakie A, Sambathkumar R, Kent G, Huang H, Sing A, Chua C, Gehring AJ, Keller GM, Notta F, Nostro MC. Embryonic macrophages support endocrine commitment during human pancreatic differentiation. Cell Stem Cell 2024; 31:1591-1611.e8. [PMID: 39406230 DOI: 10.1016/j.stem.2024.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/02/2024] [Accepted: 09/12/2024] [Indexed: 11/10/2024]
Abstract
Organogenesis is a complex process that relies on a dynamic interplay between extrinsic factors originating from the microenvironment and tissue-specific intrinsic factors. For pancreatic endocrine cells, the local niche consists of acinar and ductal cells as well as neuronal, immune, endothelial, and stromal cells. Hematopoietic cells have been detected in human pancreas as early as 6 post-conception weeks, but whether they play a role during human endocrinogenesis remains unknown. To investigate this, we performed single-nucleus RNA sequencing (snRNA-seq) of the second-trimester human pancreas and identified a wide range of hematopoietic cells, including two distinct subsets of tissue-resident macrophages. Leveraging this discovery, we developed a co-culture system of human embryonic stem cell-derived endocrine-macrophage organoids to model their interaction in vitro. Here, we show that macrophages support the differentiation and viability of endocrine cells in vitro and enhance tissue engraftment, highlighting their potential role in tissue engineering strategies for diabetes.
Collapse
Affiliation(s)
- Adriana Migliorini
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada.
| | - Sabrina Ge
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Michael H Atkins
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Amanda Oakie
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | | | - Gregory Kent
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Haiyang Huang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Angel Sing
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Conan Chua
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Adam J Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gordon M Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Faiyaz Notta
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Maria Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Ajmera Transplant Centre, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada.
| |
Collapse
|
3
|
Clements RL, Kennedy EA, Song D, Campbell A, An HH, Amses KR, Miller-Ensminger T, Addison MM, Eisenlohr LC, Chou ST, Jurado KA. Human erythroid progenitors express antigen presentation machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601047. [PMID: 39005276 PMCID: PMC11244935 DOI: 10.1101/2024.06.27.601047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Early-life immune exposures can profoundly impact lifelong health. However, functional mechanisms underlying fetal immune development remain incomplete. Erythrocytes are not typically considered active immune mediators, primarily because erythroid precursors discard their organelles as they mature, thus losing the ability to alter gene expression in response to stimuli. Erythroid progenitors and precursors circulate in human fetuses and neonates. Although there is limited evidence that erythroid precursors are immunomodulatory, our understanding of the underlying mechanisms remains inadequate. To define the immunobiological role of fetal and perinatal erythroid progenitors and precursors, we analyzed single cell RNA-sequencing data and found that transcriptomics support erythroid progenitors as putative immune mediators. Unexpectedly, we discovered that human erythroid progenitors constitutively express Major Histocompatibility Complex (MHC) class II antigen processing and presentation machinery, which are hallmarks of specialized antigen presenting immune cells. Furthermore, we demonstrate that erythroid progenitors internalize and cleave foreign proteins into peptide antigens. Unlike conventional antigen presenting cells, erythroid progenitors express atypical costimulatory molecules and immunoregulatory cytokines that direct the development of regulatory T cells, which are critical for establishing maternal-fetal tolerance. Expression of MHC II in definitive erythroid progenitors begins during the second trimester, coinciding with the appearance of mature T cells in the fetus, and is absent in primitive progenitors. Lastly, we demonstrate physical and molecular interaction potential of erythroid progenitors and T cells in the fetal liver. Our findings shed light on a unique orchestrator of fetal immunity and provide insight into the mechanisms by which erythroid cells contribute to host defense.
Collapse
|
4
|
Ignacio A, Czyz S, McCoy KD. Early life microbiome influences on development of the mucosal innate immune system. Semin Immunol 2024; 73:101885. [PMID: 38788491 DOI: 10.1016/j.smim.2024.101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
The gut microbiota is well known to possess immunomodulatory capacities, influencing a multitude of cellular signalling pathways to maintain host homeostasis. Although the formation of the immune system initiates before birth in a sterile environment, an emerging body of literature indicates that the neonatal immune system is influenced by a first wave of external stimuli that includes signals from the maternal microbiota. A second wave of stimulus begins after birth and must be tightly regulated during the neonatal period when colonization of the host occurs concomitantly with the maturation of the immune system, requiring a fine adjustment between establishing tolerance towards the commensal microbiota and preserving inflammatory responses against pathogenic invaders. Besides integrating cues from commensal microbes, the neonatal immune system must also regulate responses triggered by other environmental signals, such as dietary antigens, which become more complex with the introduction of solid food during the weaning period. This "window of opportunity" in early life is thought to be crucial for the proper development of the immune system, setting the tone of subsequent immune responses in adulthood and modulating the risk of developing chronic and metabolic inflammatory diseases. Here we review the importance of host-microbiota interactions for the development and maturation of the immune system, particularly in the early-life period, highlighting the known mechanisms involved in such communication. This discussion is focused on recent data demonstrating microbiota-mediated education of innate immune cells and its role in the development of lymphoid tissues.
Collapse
Affiliation(s)
- Aline Ignacio
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sonia Czyz
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
5
|
Gui L, Luo X, Zhou L, Wei Q, Gu J. Peripheral CD4 + /CD8 + T cell composition distinct from healthy individuals is shared by ankylosing spondylitis and rheumatoid arthritis. Int J Rheum Dis 2023; 26:2014-2023. [PMID: 37635355 DOI: 10.1111/1756-185x.14860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/04/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023]
Abstract
OBJECTIVE Ankylosing spondylitis (AS) and rheumatoid arthritis (RA) are chronic inflammatory joint diseases, linking to the alterations of immune cells. We attempted to assess whether the alterations in the composition of CD4+ /CD8+ T cells are different between AS and RA and identify the characteristic cells between male and female patients. METHODS The proportions of CD3+ or double positive T cells, 6 CD4+ T subsets and 9 CD8+ T cell subsets were detected by flow cytometry and compared in 30 healthy individuals, 42 AS patients and 45 RA patients. The differentially altered cells were individually analyzed for associations with disease activity parameters. In addition, their proportions were compared between different genders in the 3 groups. RESULTS The proportions of CD4+ T cells, naive CD4+ T cells and central memory CD4+ T cells were lower in AS patients (P = 0.001, P = 0.002 and P = 0.007, respectively) and RA patients (P = 0.032, P < 0.001 and P = 0.016, respectively), but the proportion of effector memory ones was higher when compared with healthy populations (both P < 0.001), as were the decrease of naive/central memory CD8+ T cells in AS (P = 0.003 and P = 0.016, respectively) and RA (P < 0.001 and P = 0.006, respectively), and the increased tendency of terminally differentiated CD8+ T cells. However, these above-mentioned cells, regulatory T (Treg) cells and CD8+ T cells with different CD127 expressions between AS and RA were similar in proportion. Furthermore, naive CD4+ T cells were positively associated with C-reactive protein (CRP) in AS, whereas CD4+ T cells and terminally differentiated CD8+ T of RA patients were associated with CRP in RA. The gender-related alterations predominantly displayed the overexpressions of Treg cells and naive CD8+ T cells in female patients with AS and RA, respectively. CONCLUSIONS AS patients and RA patients have some similar peripheral CD4+ /CD8+ T cell subsets but are distinct from healthy individuals, which may contribute to disease severity. Females are respectively characterized by the up-regulation of Treg cells and naive CD8+ T cells in AS patients and RA patients. The study offers an in-depth understanding of the role of T cell subsets in the similarities of the disorders and helps us to monitor disease changes and may offer a theoretical basis of developing novel therapies against common targets.
Collapse
Affiliation(s)
- Lian Gui
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiqing Luo
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liuzhong Zhou
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiujing Wei
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jieruo Gu
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Knoedler L, Knoedler S, Panayi AC, Lee CAA, Sadigh S, Huelsboemer L, Stoegner VA, Schroeter A, Kern B, Mookerjee V, Lian CG, Tullius SG, Murphy GF, Pomahac B, Kauke-Navarro M. Cellular activation pathways and interaction networks in vascularized composite allotransplantation. Front Immunol 2023; 14:1179355. [PMID: 37266446 PMCID: PMC10230044 DOI: 10.3389/fimmu.2023.1179355] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Vascularized composite allotransplantation (VCA) is an evolving field of reconstructive surgery that has revolutionized the treatment of patients with devastating injuries, including those with limb losses or facial disfigurement. The transplanted units are typically comprised of different tissue types, including skin, mucosa, blood and lymphatic vasculature, muscle, and bone. It is widely accepted that the antigenicity of some VCA components, such as skin, is particularly potent in eliciting a strong recipient rejection response following transplantation. The fine line between tolerance and rejection of the graft is orchestrated by different cell types, including both donor and recipient-derived lymphocytes, macrophages, and other immune and donor-derived tissue cells (e.g., endothelium). Here, we delineate the role of different cell and tissue types during VCA rejection. Rejection of VCA grafts and the necessity of life-long multidrug immunosuppression remains one of the major challenges in this field. This review sheds light on recent developments in decoding the cellular signature of graft rejection in VCA and how these may, ultimately, influence the clinical management of VCA patients by way of novel therapies that target specific cellular processes.
Collapse
Affiliation(s)
- Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Adriana C. Panayi
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Catherine A. A. Lee
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Sam Sadigh
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Lioba Huelsboemer
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Viola A. Stoegner
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
| | - Andreas Schroeter
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Barbara Kern
- Department of Plastic Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Vikram Mookerjee
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Christine G. Lian
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - George F. Murphy
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Bohdan Pomahac
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Martin Kauke-Navarro
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
7
|
McCartney SA, Kolarova T, Kanaan SB, Chae A, Laughney CI, Nelson JL, Gammill HS, Shree R. Increased fetal microchimerism in immune and stem cell subsets in preeclampsia. Am J Reprod Immunol 2023; 89:e13666. [PMID: 36482289 PMCID: PMC10413445 DOI: 10.1111/aji.13666] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
PROBLEM Preeclampsia (PE) is associated with an increased risk of maternal cardiovascular disease (CVD), however, it is unclear whether this is due to shared underlying physiology or changes which occur during the disease process. Fetal microchimerism (FMc) within the maternal circulation can durably persist decades after pregnancy, is known to occur at greater frequency in PE, and can potentially affect local and systemic immune programming, thus changes in cellular FMc may provide a mechanism for long-term health outcomes associated with PE. METHOD OF STUDY We investigated whether PE is associated with alterations in FMc immune and stem cell populations. We analyzed maternal peripheral blood mononuclear cells (PBMC) from PE cases (n = 16) and matched controls from normal pregnancies (n = 16), from which immune and stem cell subsets were isolated by flow cytometry. Genomic DNA was extracted from total PMBC and individual cell subsets, and FMc frequency was quantified by quantitative polymerase chain reaction assays targeting a fetal-specific non-shared polymorphism identified from family genotyping. RESULTS There was a significant increase in FMc concentration in immune cell subsets in PE cases compared to controls, predominantly in B cell, and NK cell lymphocyte populations. There was no significant difference in FMc frequency or concentration within the stem cell population between PE and controls. CONCLUSIONS The altered concentrations of immune cells within FMc in the maternal blood provides a potential mechanism for the inflammation which occurs during PE to induce long-lasting changes to the maternal immune system and may potentially promote chronic maternal disease.
Collapse
Affiliation(s)
- Stephen A McCartney
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Teodora Kolarova
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Sami B Kanaan
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Angel Chae
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Caitlin I Laughney
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - J Lee Nelson
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Hilary S Gammill
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Raj Shree
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
8
|
Liu J, Liu Y, Kirschen G, Liu A, Lei J, Burd I. Sex-specific differences in T-cell immune dysregulation and aberrant response to inflammatory stimuli in offspring exposed to maternal chronic inflammation. Am J Reprod Immunol 2023; 89:e13665. [PMID: 36504421 DOI: 10.1111/aji.13665] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
PROBLEMS Maternal chronic inflammation (MI) can adversely affect offspring's immune development resulting in dysregulation of splenic T cells. Interleukin 1 beta (IL-1β) contributes to mediating inflammation in the placenta to induce fetal toxicity and cause long-term postnatal sequelae. In this study, we investigated how MI affects the T-cell immune development from the fetal to the neonatal period and how offspring responded to postnatal IL-1β challenge when exposed to an adverse intrauterine environment. We also extend these studies to examine the sex-specific differences. METHODS OF STUDY Time-pregnant CD1 dams were administrated with four consecutive injections of mouse recombinant Interleukin-1β (rIL-1β) or phosphate-buffered saline (PBS) from embryonic day (E)14 to E17. Pups were treated with rIL-1β or PBS at postnatal day (PND)11 (pre-weaning) or PND24 (post-weaning). Pups' splenic immune cells were isolated and then characterized using flow cytometry. RESULTS At PND12, no differences were observed either in Ctrl or MI offspring. At PND25, we observed elevated amount of CD8+ T cells, descending CD4+ /CD8+ and Treg/Teff ratio in MI offspring. Pre-weaning rIL-1β administration did not affect T-cell subpopulation in Ctrl pups while post-weaning rIL-1β administration increased T cells and CD8+ T cells and decreased CD4+ /CD8+ and Treg/Teff ratio in Ctrl offspring. Furthermore, pre-weaning rIL-1β administration decreased the frequency of T cells and Treg/Teff ratio in MI pups while post-weaning rIL-1β administration increased Tregs and Treg/Teff in MI pups. Regarding sex-specific changes, we observed that at PND12, MI females exhibited higher CD4+ /CD8+ and Treg/Teff ratio than Ctrl females. At PND25, we observed elevated amount of CD8+ T cells, descending CD4+ /CD8+ and Treg/Teff ratio in MI Females, while MI males did not show any changes in T-cell population. Pre-weaning rIL-1β administration decreased T-cell frequency in both MI males and females and decreased Treg/Teff ratio only in MI females. Post-weaning rIL-1β administration increased Tregs and Treg/Teff ratio, and decreased CD4+ /CD8+ ratio in MI females. CONCLUSIONS Prenatal-inflammation-exposed offspring exhibited dysfunctional T-cell immunity and regulatory immune responses to postnatal challenges, showing both sex-specific and age-dependent differences. It could be speculated from our results that experiencing environmental challenges or adverse stimuli during the vulnerable intrauterine period, such as maternal chronic inflammation, stress, preterm birth, and chronic infections, might induce fetal immune reprogramming and potentially cause long-term adverse immune consequences, such as a predisposition to allergic diseases, autoimmune diseases, asthma and pediatric mortality of unknown etiology.
Collapse
Affiliation(s)
- Jin Liu
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yang Liu
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gregory Kirschen
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anguo Liu
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jun Lei
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Irina Burd
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, Baltimore, USA
| |
Collapse
|
9
|
Horner D, Hjelmsø MH, Thorsen J, Rasmussen M, Eliasen A, Vinding RK, Schoos AMM, Brustad N, Sunde RB, Bønnelykke K, Chawes BL, Stokholm J, Bisgaard H. Supplementation With Fish Oil in Pregnancy Reduces Gastroenteritis in Early Childhood. J Infect Dis 2023; 227:448-456. [PMID: 34927195 DOI: 10.1093/infdis/jiab607] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/17/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND We hypothesized that insufficient intake of fish oil-derived omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs) during pregnancy is a contributing factor to gastroenteritis in early childhood. We examined the effect of n-3 LCPUFA supplementation on gastroenteritis symptoms in the offspring's first 3 years of life. METHODS This was a double-blinded, randomized controlled trial whereby 736 mothers were administered n-3 LCPUFA or control from pregnancy week 24 until 1 week after birth. We measured the number of days with gastroenteritis, number of episodes with gastroenteritis, and the risk of having a gastroenteritis episode in the first 3 years of life. RESULTS A median reduction of 2.5 days with gastroenteritis (P = .018) was shown, corresponding to a 14% reduction in the n-3 LCPUFA group compared with controls in the first 3 years of life (P = .037). A reduction in the number of gastroenteritis episodes (P = .027) and a reduced risk of having an episode (hazard ratio, 0.80 [95% confidence interval, .66-.97]; P = .023) were also shown. CONCLUSIONS Fish oil supplementation from the 24th week of pregnancy led to a reduction in the number of days and episodes with gastroenteritis symptoms in the first 3 years of life. The findings suggest n-3 LCPUFA supplementation as a preventive measure against gastrointestinal infections in early childhood. CLINICAL TRIALS REGISTRATION NCT00798226.
Collapse
Affiliation(s)
- David Horner
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Mathis Hjort Hjelmsø
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Thorsen
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Morten Rasmussen
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.,Section of Chemometrics and Analytical Technologies, Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Anders Eliasen
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Lyngby, Denmark
| | - Rebecca Kofod Vinding
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ann-Marie Malby Schoos
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Pediatrics, Slagelse Sygehus, Slagelse, Denmark
| | - Nicklas Brustad
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Bjersand Sunde
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Pediatrics, Slagelse Sygehus, Slagelse, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Bo L Chawes
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Pediatrics, Slagelse Sygehus, Slagelse, Denmark.,Section of Food, Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Regulatory T Cells: Liquid and Living Precision Medicine for the Future of VCA. Transplantation 2023; 107:86-97. [PMID: 36210500 DOI: 10.1097/tp.0000000000004342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transplant rejection remains a challenge especially in the field of vascularized composite allotransplantation (VCA). To blunt the alloreactive immune response' stable levels of maintenance immunosupression are required. However' the need for lifelong immunosuppression poses the risk of severe side effects, such as increased risk of infection, metabolic complications, and malignancies. To balance therapeutic efficacy and medication side effects, immunotolerance promoting immune cells (especially regulatory T cells [Treg]) have become of great scientific interest. This approach leverages immune system mechanisms that usually ensure immunotolerance toward self-antigens and prevent autoimmunopathies. Treg can be bioengineered to express a chimeric antigen receptor or a T-cell receptor. Such bioengineered Treg can target specific antigens and thereby reduce unwanted off-target effects. Treg have demonstrated beneficial clinical effects in solid organ transplantation and promising in vivo data in VCAs. In this review, we summarize the functional, phenotypic, and immunometabolic characteristics of Treg and outline recent advancements and current developments regarding Treg in the field of VCA and solid organ transplantation.
Collapse
|
11
|
Madani J, Aghebati-Maleki L, Gharibeh N, Pourakbari R, Yousefi M. Fetus, as an allograft, evades the maternal immunity. Transpl Immunol 2022; 75:101728. [DOI: 10.1016/j.trim.2022.101728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/09/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|
12
|
The Impact of Short-Chain Fatty Acids on Neonatal Regulatory T Cells. Nutrients 2022; 14:nu14183670. [PMID: 36145046 PMCID: PMC9503436 DOI: 10.3390/nu14183670] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
Over the first weeks of life, the neonatal gastrointestinal tract is rapidly colonised by a diverse range of microbial species that come to form the ‘gut microbiota’. Microbial colonisation of the neonatal gut is a well-established regulator of several physiological processes that contribute to immunological protection in postnatal life, including the development of the intestinal mucosa and adaptive immunity. However, the specific microbiota-derived signals that mediate these processes have not yet been fully characterised. Accumulating evidence suggests short-chain fatty acids (SCFAs), end-products of intestinal bacterial metabolism, as one of the key mediators of immune development in early life. Critical to neonatal health is the development of regulatory T (Treg) cells that promote and maintain immunological tolerance against self and innocuous antigens. Several studies have shown that SCFAs can induce the differentiation and expansion of Tregs but also mediate pathological effects in abnormal amounts. However, the exact mechanisms through which SCFAs regulate Treg development and pathologies in early life remain poorly defined. In this review, we summarise the current knowledge surrounding SCFAs and their potential impact on the neonatal immune system with a particular focus on Tregs, and the possible mechanisms through which SCFAs achieve their immune modulatory effect.
Collapse
|
13
|
Understanding the Immune System in Fetal Protection and Maternal Infections during Pregnancy. J Immunol Res 2022; 2022:7567708. [PMID: 35785037 PMCID: PMC9249541 DOI: 10.1155/2022/7567708] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
The fetal-maternal immune system determines the fate of pregnancy. The trophoblast cells not only give an active response against external stimuli but are also involved in secreting most of the cytokines. These cells have an essential function in fetal acceptance or fetal rejection. Other immune cells also play a pivotal role in carrying out a successful pregnancy. The disruption in this mechanism may lead to harmful effects on pregnancy. The placenta serves as an immune barrier in fetus protection against invading pathogens. Once the infections prevail, they may localize in placental and fetal tissues, and the presence of inflammation due to cytokines may have detrimental effects on pregnancy. Moreover, some pathogens are responsible for congenital fetal anomalies and affect almost all organs of the developing fetus. This review article is designed to address the bacterial and viral infections that threaten pregnancy and their possible outcomes. Moreover, training of the fetal immune system against the exposure of infections and the role of CD49a + NK cells in embryonic development will also be highlighted.
Collapse
|
14
|
Shi X, Ma W, Duan S, Shi Q, Wu S, Hao S, Dong G, Li J, Song Y, Liu C, Lin X, Yuan Y, Deng Q, Xu J, Bai S, Hou Y, Liu C, Liu L. Single-cell transcriptional diversity of neonatal umbilical cord blood immune cells reveals neonatal immune tolerance. Biochem Biophys Res Commun 2022; 608:14-22. [DOI: 10.1016/j.bbrc.2022.03.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/24/2022] [Indexed: 11/02/2022]
|
15
|
Benedicto-Matambo P, Bines JE, Malamba-Banda C, Shawa IT, Barnes K, Kamng’ona AW, Hungerford D, Jambo KC, Iturriza-Gomara M, Cunliffe NA, Flanagan KL, Jere KC. Leveraging Beneficial Off-Target Effects of Live-Attenuated Rotavirus Vaccines. Vaccines (Basel) 2022; 10:418. [PMID: 35335050 PMCID: PMC8948921 DOI: 10.3390/vaccines10030418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
Following the introduction of live-attenuated rotavirus vaccines in many countries, a notable reduction in deaths and hospitalisations associated with diarrhoea in children <5 years of age has been reported. There is growing evidence to suggest that live-attenuated vaccines also provide protection against other infections beyond the vaccine-targeted pathogens. These so called off-target effects of vaccination have been associated with the tuberculosis vaccine Bacille Calmette Guérin (BCG), measles, oral polio and recently salmonella vaccines, and are thought to be mediated by modified innate and possibly adaptive immunity. Indeed, rotavirus vaccines have been reported to provide greater than expected reductions in acute gastroenteritis caused by other enteropathogens, that have mostly been attributed to herd protection and prior underestimation of rotavirus disease. Whether rotavirus vaccines also alter the immune system to reduce non targeted gastrointestinal infections has not been studied directly. Here we review the current understanding of the mechanisms underlying off-target effects of vaccines and propose a mechanism by which the live-attenuated neonatal rotavirus vaccine, RV3-BB, could promote protection beyond the targeted pathogen. Finally, we consider how vaccine developers may leverage these properties to improve health outcomes in children, particularly those in low-income countries where disease burden and mortality is disproportionately high relative to developed countries.
Collapse
Affiliation(s)
- Prisca Benedicto-Matambo
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (D.H.); (M.I.-G.); (N.A.C.)
- Department of Medical Laboratory Sciences, Faculty of Biomedical Sciences and Health Professions, College of Medicine, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
| | - Julie E. Bines
- Enteric Diseases Group, Murdoch Children’s Research Institute, Department of Gastroenterology and Clinical Nutrition, Royal Children’s Hospital and Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia;
| | - Chikondi Malamba-Banda
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (D.H.); (M.I.-G.); (N.A.C.)
- Department of Medical Laboratory Sciences, Faculty of Biomedical Sciences and Health Professions, College of Medicine, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
- Department of Biological Sciences, Academy of Medical Sciences, Malawi University of Science and Technology, Blantyre 312225, Malawi
| | - Isaac T. Shawa
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Department of Medical Laboratory Sciences, Faculty of Biomedical Sciences and Health Professions, College of Medicine, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
| | - Kayla Barnes
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Harvard School of Public Health, Boston, MA 02115, USA
| | - Arox W. Kamng’ona
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Health Profession, College of Medicine, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
| | - Daniel Hungerford
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (D.H.); (M.I.-G.); (N.A.C.)
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool L69 7BE, UK
| | - Kondwani C. Jambo
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Miren Iturriza-Gomara
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (D.H.); (M.I.-G.); (N.A.C.)
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool L69 7BE, UK
- Centre for Vaccine Innovation and Access, Program for Appropriate Technology in Health (PATH), 1218 Geneva, Switzerland
| | - Nigel A. Cunliffe
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (D.H.); (M.I.-G.); (N.A.C.)
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool L69 7BE, UK
| | - Katie L. Flanagan
- School of Medicine, University of Tasmania, Hobart, TAS 7005, Australia;
- School of Health and Biomedical Science, Royal Melbourne Institute of Technology (RMIT), Bundoora, VIC 3083, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia
| | - Khuzwayo C. Jere
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (D.H.); (M.I.-G.); (N.A.C.)
- Department of Medical Laboratory Sciences, Faculty of Biomedical Sciences and Health Professions, College of Medicine, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool L69 7BE, UK
| |
Collapse
|
16
|
Kennedy KM, Bellissimo CJ, Breznik JA, Barrett J, Braun T, Bushman FD, De Goffau M, Elovitz MA, Heimesaat MM, Konnikova L, Koren O, Parry S, Rossi L, Segata N, Simmons RA, Surette MG, Walter J, Sloboda DM. Over-celling fetal microbial exposure. Cell 2021; 184:5839-5841. [PMID: 34822779 DOI: 10.1016/j.cell.2021.10.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/05/2021] [Accepted: 10/26/2021] [Indexed: 12/21/2022]
Affiliation(s)
- Katherine M Kennedy
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Christian J Bellissimo
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Jessica A Breznik
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada; Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jon Barrett
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Thorsten Braun
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Obstetrics and 'Experimental Obstetrics', Berlin, Germany
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcus De Goffau
- Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Wellcome Sanger Institute, Cambridge, UK
| | - Michal A Elovitz
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Maternal and Child Health Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Markus M Heimesaat
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Obstetrics and 'Experimental Obstetrics', Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Micro-biology, Infectious Diseases and Immunology, Berlin, Germany
| | - Liza Konnikova
- Department of Pediatrics, Department of Obstetrics, Gynecology and Reproductive Sciences, Human and Translational Immunology, Yale Medical School, New Haven, CT, USA
| | - Omry Koren
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Samuel Parry
- Maternal and Child Health Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Rossi
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada; Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada; Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jens Walter
- APC Microbiome Ireland, School of Microbiology and Department of Medicine, University College Cork - National University of Ireland, Cork, Ireland
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada; Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada; Department of Pediatrics, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
17
|
Bake S, Pinson MR, Pandey S, Chambers JP, Mota R, Fairchild AE, Miranda RC, Sohrabji F. Prenatal alcohol-induced sex differences in immune, metabolic and neurobehavioral outcomes in adult rats. Brain Behav Immun 2021; 98:86-100. [PMID: 34390803 PMCID: PMC8591773 DOI: 10.1016/j.bbi.2021.08.207] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/10/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022] Open
Abstract
Prenatal alcohol exposure (PAE) can result in neurobehavioral anomalies, that may be exacerbated by co-occurring metabolic and immune system deficits. To test the hypothesis that the peripheral inflammation in adult PAE offspring is linked to poor glucose metabolism and neurocognitive deficits, pregnant Sprague-Dawley rats were exposed to ethanol vapor or ambient air during the latter half of gestation. We assessed, in adult offspring of both sexes, performance on a battery of neurocognitive behaviors, glucose tolerance, circulating and splenic immune cells by flow-cytometry, and circulating and tissue (liver, mesenteric adipose, and spleen) cytokines by multiplexed assays. PAE reduced both the ratio of spleen to body weight and splenic regulatory T-cell (Treg) numbers. PAE males, but not females exhibited an increase in circulating monocytes. Overall, PAE males exhibited a suppression of cytokine levels, while PAE females exhibited elevated cytokines in mesenteric adipose tissue (IL-6 and IL1α) and liver (IFN-γ, IL-1β, IL-13, IL-18, IL-12p70, and MCP-1), along with increased glucose intolerance. Behavioral analysis also showed sex-dependent PAE effects. PAE-males exhibited increased anxiety-like behavior while PAE-females showed decreased social interaction. PAE offspring of both sexes exhibited impaired recognition of novel objects. Multilinear regression modeling to predict the association between peripheral immune status, glucose intolerance and behavioral outcomes, showed that in PAE offspring, higher levels of adipose leptin and liver TNF- α predicted higher circulating glucose levels. Lower liver IL-1 α and higher plasma fractalkine predicted more time spent in the center of an open-field with sex being an additional predictor. Higher circulating and splenic Tregs predicted better social interaction in the PAE-offspring. Collectively, our data show that peripheral immune status is a persistent, sex-dependent predictor of glucose intolerance and neurobehavioral function in adult PAE offspring.
Collapse
Affiliation(s)
- Shameena Bake
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Marisa R Pinson
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Sivani Pandey
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Joanna P Chambers
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Roxanna Mota
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Ashlyn E Fairchild
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Rajesh C Miranda
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX 77807, USA.
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX 77807, USA.
| |
Collapse
|
18
|
Green S, Politis M, Rallis KS, Saenz de Villaverde Cortabarria A, Efthymiou A, Mureanu N, Dalrymple KV, Scottà C, Lombardi G, Tribe RM, Nicolaides KH, Shangaris P. Regulatory T Cells in Pregnancy Adverse Outcomes: A Systematic Review and Meta-Analysis. Front Immunol 2021; 12:737862. [PMID: 34777347 PMCID: PMC8586555 DOI: 10.3389/fimmu.2021.737862] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022] Open
Abstract
Background Several studies report the role of Regulatory T-cells (Tregs) in the pathophysiology of pregnancy adverse outcomes. Objective The aim of this systematic review and meta-analysis was to determine whether there is an association between regulatory T cell levels and pregnancy adverse outcomes (PAOs), including pre-eclampsia and preterm birth (PTB). Method Literature searches were conducted in PubMed/MEDLINE, Embase, and Cochrane CENTRAL databases. Inclusion criteria were original articles (clinical trials, case-control studies and cohort studies) comparing Tregs, sampled from the decidua or maternal blood, in healthy pregnant women versus women with pre-eclampsia or PTB. The outcome was standardised mean difference (SMD) in Treg numbers. The tau-squared (Tau²), inconsistency index (I²), and chi-squared (χ²) test quantified heterogeneity among different studies. Analyses were performed in RevMan software V.5.4.0 for Mac using a random-effects model with outcome data reported with 95% confidence intervals (CI). This study was prospectively registered with PROSPERO (CRD42020205469). PRISMA guidelines were followed. Results From 4,085 unique studies identified, 36 were included in qualitative synthesis, and 34 were included in quantitative synthesis (meta-analysis). In total, there were 1,783 participants in these studies: healthy controls=964, pre-eclampsia=759, PTB=60. Thirty-two studies compared Tregs in healthy pregnant women and women with pre-eclampsia, and 30 of these sampled Tregs from peripheral blood showing significantly higher Treg numbers in healthy pregnancies (SMD; 1.46; 95% CI, 1.03-1.88; I²=92%). Four studies sampled Tregs from the maternal decidua showing higher Tregs in healthy pregnancies (SMD, 0.76; 95% CI, -0.13-1.65; I²=84%). No difference was found in the number of Tregs between early versus late pre-eclampsia (SMD,-1.17; 95% CI, -2.79-0.44; I²=94%). For PTB, two studies compared Tregs sampled from the peripheral blood with a tendency for higher Tregs in healthy pregnancies but this did not reach significance (SMD, 2.18; 95% CI, -1.34-5.70; I²=96%). Subcohort analysis using Treg analysis (flow cytometry vs. qPCR vs. immunofluorescence tissue staining) showed similar associations. Conclusion Lower Tregs in pregnancy, sampled from the maternal peripheral blood, are associated with pre-eclampsia. There is a need for further studies to confirm a relationship between low Tregs and PTB. As the precise mechanisms by which Tregs may mediate pre-eclampsia and PTB remain unclear, further fundamental research is necessary to elucidate the underlying processes and highlight the causative link. Systematic Review Registration PROSPERO, identifier CRD42020205469.
Collapse
Affiliation(s)
- Samantha Green
- University of Aberdeen School of Medicine and Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Marina Politis
- Undergraduate Medical School, University of Glasgow, Glasgow, United Kingdom
| | - Kathrine S. Rallis
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Athina Efthymiou
- Department of Women and Children’s Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine King’s College London, London, United Kingdom
| | - Nicoleta Mureanu
- Department of Women and Children’s Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine King’s College London, London, United Kingdom
| | - Kathryn V. Dalrymple
- Department of Women and Children’s Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine King’s College London, London, United Kingdom
| | - Cristiano Scottà
- School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Giovanna Lombardi
- School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Rachel M. Tribe
- Department of Women and Children’s Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine King’s College London, London, United Kingdom
| | - Kypros H. Nicolaides
- Department of Women and Children’s Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine King’s College London, London, United Kingdom
| | - Panicos Shangaris
- Department of Women and Children’s Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine King’s College London, London, United Kingdom
- School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
19
|
Silva CS, Reis RL, Martins A, Neves NM. Recapitulation of Thymic Function by Tissue Engineering Strategies. Adv Healthc Mater 2021; 10:e2100773. [PMID: 34197034 DOI: 10.1002/adhm.202100773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Indexed: 11/06/2022]
Abstract
The thymus is responsible for the development and selection of T lymphocytes, which in turn also participate in the maturation of thymic epithelial cells. These events occur through the close interactions between hematopoietic stem cells and developing thymocytes with the thymic stromal cells within an intricate 3D network. The complex thymic microenvironment and function, and the current therapies to induce thymic regeneration or to overcome the lack of a functional thymus are herein reviewed. The recapitulation of the thymic function using tissue engineering strategies has been explored as a way to control the body's tolerance to external grafts and to generate ex vivo T cells for transplantation. In this review, the main advances in the thymus tissue engineering field are disclosed, including both scaffold- and cell-based strategies. In light of the current gaps and limitations of the developed systems, the design of novel biomaterials for this purpose with unique features is also discussed.
Collapse
Affiliation(s)
- Catarina S. Silva
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine ICVS/3B's – PT Government Associate Laboratory AvePark, Parque da Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine ICVS/3B's – PT Government Associate Laboratory AvePark, Parque da Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
| | - Albino Martins
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine ICVS/3B's – PT Government Associate Laboratory AvePark, Parque da Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
| | - Nuno M. Neves
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine ICVS/3B's – PT Government Associate Laboratory AvePark, Parque da Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
| |
Collapse
|
20
|
Kandasamy K, Tan LG, B Johana N, Tan YW, Foo W, Yeo JSL, Ravikumar V, Ginhoux F, Choolani M, Chan JKY, Mattar CNZ. Maternal microchimerism and cell-mediated immune-modulation enhance engraftment following semi-allogenic intrauterine transplantation. FASEB J 2021; 35:e21413. [PMID: 33570785 DOI: 10.1096/fj.202002185rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/04/2021] [Accepted: 01/20/2021] [Indexed: 11/11/2022]
Abstract
Successful intrauterine hematopoietic cell transplantation (IUT) for congenital hemoglobinopathies is hampered by maternal alloresponsiveness. We investigate these interactions in semi-allogenic murine IUT. E14 fetuses (B6 females × BALB/c males) were each treated with 5E+6 maternal (B6) or paternal (BALB/c) bone marrow cells and serially monitored for chimerism (>1% engraftment), trafficked maternal immune cells, and immune responsiveness to donor cells. A total of 41.0% of maternal IUT recipients (mIUT) were chimeras (mean donor chimerism 3.0 ± 1.3%) versus 75.0% of paternal IUT recipients (pIUT, 3.6 ± 1.1%). Chimeras showed higher maternal microchimerism of CD4, CD8, and CD19 than non-chimeras. These maternal cells showed minimal responsiveness to B6 or BALB/c stimulation. To interrogate tolerance, mIUT were injected postnatally with 5E+6 B6 cells/pup; pIUT received BALB/c cells. IUT-treated pups showed no changes in trafficked maternal or fetal immune cell levels compared to controls. Donor-specific IgM and IgG were expressed by 1%-3% of recipients. mIUT splenocytes showed greater proliferation of regulatory T cells (Treg) upon BALB/c stimulation, while B6 stimulation upregulated the pro-inflammatory cytokines more than BALB/c. pIUT splenocytes produced identical Treg and cytokine responses to BALB/c and B6 cells, with higher Treg activity and lower pro-inflammatory cytokine expression upon exposure to BALB/c. In contrast, naïve fetal splenocytes demonstrated greater alloresponsiveness to BALB/c compared to B6 cells. Thus pIUT, associated with increased maternal cell trafficking, modulates fetal Treg, and cytokine responsiveness to donor cells more efficiently than mIUT, resulting in improved engraftment. Paternal donor cells may be considered alternatively to maternal donor cells for intrauterine and postnatal transplantation to induce tolerance and maintain engraftment.
Collapse
Affiliation(s)
- Karthikeyan Kandasamy
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lay Geok Tan
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Obstetrics and Gynaecology, National University Hospital, National University Health System, Singapore, Singapore
| | - Nuryanti B Johana
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Yi Wan Tan
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Wanling Foo
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Julie S L Yeo
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Vikashini Ravikumar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Mahesh Choolani
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Obstetrics and Gynaecology, National University Hospital, National University Health System, Singapore, Singapore
| | - Jerry K Y Chan
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Citra N Z Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Obstetrics and Gynaecology, National University Hospital, National University Health System, Singapore, Singapore
| |
Collapse
|
21
|
Dong M, Mallet Gauthier È, Fournier M, Melichar HJ. Developing the right tools for the job: Lin28 regulation of early life T-cell development and function. FEBS J 2021; 289:4416-4429. [PMID: 34077615 DOI: 10.1111/febs.16045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/29/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022]
Abstract
T cells comprise a functionally heterogeneous cell population that has important roles in the immune system. While T cells are broadly considered to be a component of the antigen-specific adaptive immune response, certain T-cell subsets display innate-like effector characteristics whereas others perform immunosuppressive functions. These functionally diverse T-cell populations preferentially arise at different stages of ontogeny and are tailored to the immunological priorities of the organism over time. Many differences in early life versus adult T-cell phenotypes can be attributed to the cell-intrinsic properties of the distinct progenitors that seed the thymus throughout development. It is becoming clear that Lin28, an evolutionarily conserved, heterochronic RNA-binding protein that is differentially expressed among early life and adult hematopoietic progenitor cells, plays a substantial role in influencing early T-cell development and function. Here, we discuss the mechanisms by which Lin28 shapes the T-cell landscape to protect the developing fetus and newborn. Manipulation of the Lin28 gene regulatory network is being considered as one means of improving hematopoietic stem cell transplant outcomes; as such, understanding the impact of Lin28 on T-cell function is of clinical relevance.
Collapse
Affiliation(s)
- Mengqi Dong
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada.,Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Ève Mallet Gauthier
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada.,Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Marilaine Fournier
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada
| | - Heather J Melichar
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada.,Département de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
22
|
Yin Y, Qu L, Zhu D, Wu Y, Zhou X. Effect of SOCS3 on apoptosis of human trophoblasts via adjustment of the JAK2/STAT3 signaling pathway in preterm birth. Transl Pediatr 2021; 10:1637-1646. [PMID: 34295778 PMCID: PMC8261589 DOI: 10.21037/tp-21-39] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/12/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The expression of suppressor of cytokine signaling 3 (SOCS3) was induced by interleukin-6 (IL-6) in preterm placental tissues. However, its role in IL-6 induced apoptosis of trophoblast cells derived from preterm placental tissues remains to be elucidated. METHODS Primary cytotrophoblasts from human preterm placental tissues were used to stably knock down and overexpress the level of SOCS3 by corresponding lentiviral vectors and the expression of SOCS3 was validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot. The effect of SOCS3 overexpression or knockdown on the proliferation and apoptosis of IL-6 treated human cytotrophoblasts were determined by Cell Counting Kit-8 (CCK8) assay and Annexin-V/Propidium Iodide (PI) double-staining assay, respectively. Based on it, we detected the proteins associated with the Janus Tyrosine Kinase (JAK)/Signal Transducer and Activator of Transcription (STAT) pathway and apoptosis, such as JAK2, p-JAK2, STAT3, p-STAT3, B-cell lymphoma-2 (Bcl-2) and BCL2-associated X (Bax) by Western blot. RESULTS IL-6-treatment resulted in significant apoptosis of human cytotrophoblasts. Overexpressing SOCS3 in the cytotrophoblasts reduced cell apoptosis, while the knockdown of SCOS3 had the opposite effects. Further analyses showed that SOCS3 overexpression inhibited JAK2 and STAT3 phosphorylation, which was induced by IL-6 stimulation. CONCLUSIONS SOCS3 plays a protective role in human preterm placental tissue-derived cytotrophoblasts from IL-6 induced apoptosis by feedback inhibition of JAK2/STAT3 signaling.
Collapse
Affiliation(s)
- Yin Yin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Qu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dicong Zhu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yang Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Briceno Noriega D, Savelkoul HFJ. Vitamin D and Allergy Susceptibility during Gestation and Early Life. Nutrients 2021; 13:1015. [PMID: 33801051 PMCID: PMC8003945 DOI: 10.3390/nu13031015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Worldwide, the prevalence of allergies in young children, but also vitamin D deficiency during pregnancy and in newborns is rising. Vitamin D modulates the development and activity of the immune system and a low vitamin D status during pregnancy and in early life might be associated with an increased risk to develop an allergy during early childhood. This review studies the effects of vitamin D during gestation and early life, on allergy susceptibility in infants. The bioactive form of vitamin D, 1,25(OH)2D, inhibits maturation and results in immature dendritic cells that cause a decreased differentiation of naive T cells into effector T cells. Nevertheless, the development of regulatory T cells and the production of interleukin-10 was increased. Consequently, a more tolerogenic immune response developed against antigens. Secondly, binding of 1,25(OH)2D to epithelial cells induces the expression of tight junction proteins resulting in enhanced epithelial barrier function. Thirdly, 1,25(OH)2D increased the expression of anti-microbial peptides by epithelial cells that also promoted the defense mechanism against pathogens, by preventing an invasive penetration of pathogens. Immune intervention by vitamin D supplementation can mitigate the disease burden from asthma and allergy. In conclusion, our review indicates that a sufficient vitamin D status during gestation and early life can lower the susceptibility to develop an allergy in infants although there remains a need for more causal evidence.
Collapse
Affiliation(s)
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology Group, Wageningen University & Research, 6708 WD Wageningen, The Netherlands;
| |
Collapse
|
24
|
Corsi-Zuelli F, Deakin B. Impaired regulatory T cell control of astroglial overdrive and microglial pruning in schizophrenia. Neurosci Biobehav Rev 2021; 125:637-653. [PMID: 33713699 DOI: 10.1016/j.neubiorev.2021.03.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/16/2021] [Accepted: 03/06/2021] [Indexed: 02/07/2023]
Abstract
It is widely held that schizophrenia involves an active process of peripheral inflammation that induces or reflects brain inflammation with activation of microglia, the brain's resident immune cells. However, recent in vivo radioligand binding studies and large-scale transcriptomics in post-mortem brain report reduced markers of microglial inflammation. The findings suggest a contrary hypothesis; that microglia are diverted into their non-inflammatory synaptic remodelling phenotype that interferes with neurodevelopment and perhaps contributes to the relapsing nature of schizophrenia. Recent discoveries on the regulatory interactions between micro- and astroglial cells and immune regulatory T cells (Tregs) cohere with clinical omics data to suggest that: i) disinhibited astrocytes mediate the shift in microglial phenotype via the production of transforming growth factor-beta, which also contributes to the disturbances of dopamine and GABA function in schizophrenia, and ii) systemically impaired functioning of Treg cells contributes to the dysregulation of glial function, the low-grade peripheral inflammation, and the hitherto unexplained predisposition to auto-immunity and reduced life-expectancy in schizophrenia, including greater COVID-19 mortality.
Collapse
Affiliation(s)
- Fabiana Corsi-Zuelli
- Department of Neuroscience and Behaviour, Division of Psychiatry, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Ribeirão Preto, São Paulo, Brazil
| | - Bill Deakin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
| |
Collapse
|
25
|
Lee JG, Jaeger KE, Seki Y, Wei Lim Y, Cunha C, Vuchkovska A, Nelson AJ, Nikolai A, Kim D, Nishimura M, Knight KL, White P, Iwashima M. Human CD36 hi monocytes induce Foxp3 + CD25 + T cells with regulatory functions from CD4 and CD8 subsets. Immunology 2021; 163:293-309. [PMID: 33524161 DOI: 10.1111/imm.13316] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/31/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
The fetal and neonatal immune systems are uniquely poised to generate tolerance to self, maternal and environmental antigens encountered in the womb and shortly after birth. However, the tolerogenic nature of fetal and neonatal immunity can be detrimental in the context of pathogens, leading to overwhelming bacterial infections or chronic viral infections. A variety of mechanisms contribute to fetal and neonatal tolerance, including a propensity to generate Foxp3+ regulatory T cells (Treg cells). However, the mechanism(s) of fetal Foxp3+ T-cell differentiation, the specific antigen-presenting cells required and factors that inhibit Treg generation after the neonatal period are poorly understood. Here, we demonstrate that a subset of CD14+ monocytes expressing the scavenger molecule, CD36, can generate CD4+ and CD8+ T cells that coexpress Foxp3 and T-bet from both umbilical cord blood. These Foxp3+ T-bet+ T cells potently suppress T-cell proliferation and ameliorate xenogeneic graft-versus-host disease. CD14+ CD36+ monocytes provide known Treg-inducing signals: membrane-bound transforming growth factor-beta and retinoic acid. Unexpectedly, adult peripheral blood monocytes are also capable of inducing Foxp3+ T cells from both cord blood and adult peripheral naïve T cells. The induction of Foxp3+ T cells in umbilical cord blood by monocytes was inhibited by the lymphoid fraction of adult peripheral blood cells. These studies highlight a novel immunoregulatory role of monocytes and suggest that antigen presentation by CD36hi monocytes may contribute to the peripheral development of Foxp3+ T-bet+ T cells with regulatory functions in both neonates and adults.
Collapse
Affiliation(s)
- Jessica G Lee
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Van Kampen Cardio-Pulmonary Research Laboratory, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Kathleen E Jaeger
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Van Kampen Cardio-Pulmonary Research Laboratory, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Yoichi Seki
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Yi Wei Lim
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Van Kampen Cardio-Pulmonary Research Laboratory, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Christina Cunha
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Van Kampen Cardio-Pulmonary Research Laboratory, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Aleksandra Vuchkovska
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Van Kampen Cardio-Pulmonary Research Laboratory, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Alexander J Nelson
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Van Kampen Cardio-Pulmonary Research Laboratory, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Anya Nikolai
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Van Kampen Cardio-Pulmonary Research Laboratory, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Dan Kim
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Michael Nishimura
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Katherine L Knight
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Paula White
- Department of Obstetrics and Gynecology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Makio Iwashima
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Van Kampen Cardio-Pulmonary Research Laboratory, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
26
|
Pierau M, Arra A, Brunner-Weinzierl MC. Preventing Atopic Diseases During Childhood - Early Exposure Matters. Front Immunol 2021; 12:617731. [PMID: 33717110 PMCID: PMC7946845 DOI: 10.3389/fimmu.2021.617731] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Atopic diseases in childhood are a major burden worldwide and there is still a lack of knowledge about treatable causes. In industrialized countries such as Germany, almost every second child is sensitized to at least one common allergen. Recent studies show that although the predisposition to allergies is inherited, the adaptive immune system of neonates and infants follows a developmental trajectory and whether an allergy actually occurs depends also on timing of allergen exposure including diet as well as environmental factors. New recommendations are far from being rigid of allergen avoidance; it is rather moving toward conditions that stand for more biodiversity. The observation that introduction of peanuts or eggs early in life significantly reduced the development of a later allergy will change our recommendations for the introduction of complementary foods. This is consistent with the hygiene hypothesis that early provocation shapes the developing immune system so that it reacts appropriately. Therefore, promoting the development of tolerance is at the heart of sensible allergy prevention - and this begins with the last trimester of pregnancy. In light of this concept, actual recommendations are discussed.
Collapse
|
27
|
Callaway PC, Farrington LA, Feeney ME. Malaria and Early Life Immunity: Competence in Context. Front Immunol 2021; 12:634749. [PMID: 33679787 PMCID: PMC7933008 DOI: 10.3389/fimmu.2021.634749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/02/2021] [Indexed: 12/31/2022] Open
Abstract
Childhood vaccines have been the cornerstone tool of public health over the past century. A major barrier to neonatal vaccination is the “immaturity” of the infant immune system and the inefficiency of conventional vaccine approaches at inducing immunity at birth. While much of the literature on fetal and neonatal immunity has focused on the early life propensity toward immune tolerance, recent studies indicate that the fetus is more immunologically capable than previously thought, and can, in some circumstances, mount adaptive B and T cell responses to perinatal pathogens in utero. Although significant hurdles remain before these findings can be translated into vaccines and other protective strategies, they should lend optimism to the prospect that neonatal and even fetal vaccination is achievable. Next steps toward this goal should include efforts to define the conditions for optimal stimulation of infant immune responses, including antigen timing, dose, and route of delivery, as well as antigen presentation pathways and co-stimulatory requirements. A better understanding of these factors will enable optimal deployment of vaccines against malaria and other pathogens to protect infants during their period of greatest vulnerability.
Collapse
Affiliation(s)
- Perri C Callaway
- Infectious Diseases and Immunity Graduate Group, University of California, Berkeley, Berkeley, CA, United States.,Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Lila A Farrington
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Margaret E Feeney
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
28
|
Bugya Z, Prechl J, Szénási T, Nemes É, Bácsi A, Koncz G. Multiple Levels of Immunological Memory and Their Association with Vaccination. Vaccines (Basel) 2021; 9:174. [PMID: 33669597 PMCID: PMC7922266 DOI: 10.3390/vaccines9020174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/25/2022] Open
Abstract
Immunological memory is divided into many levels to counteract the provocations of diverse and ever-changing infections. Fast functions of effector memory and the superposition of both quantitatively and qualitatively plastic anticipatory memory responses together form the walls of protection against pathogens. Here we provide an overview of the role of different B and T cell subsets and their interplay, the parallel and independent functions of the B1, marginal zone B cells, T-independent- and T-dependent B cell responses, as well as functions of central and effector memory T cells, tissue-resident and follicular helper T cells in the memory responses. Age-related limitations in the immunological memory of these cell types in neonates and the elderly are also discussed. We review how certain aspects of immunological memory and the interactions of components can affect the efficacy of vaccines, in order to link our knowledge of immunological memory with the practical application of vaccination.
Collapse
Affiliation(s)
- Zsófia Bugya
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (Z.B.); (T.S.); (A.B.)
| | - József Prechl
- R&D Laboratory, Diagnosticum Zrt, H-1047 Budapest, Hungary;
| | - Tibor Szénási
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (Z.B.); (T.S.); (A.B.)
| | - Éva Nemes
- Clinical Center, Department of Pediatrics, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (Z.B.); (T.S.); (A.B.)
| | - Gábor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (Z.B.); (T.S.); (A.B.)
| |
Collapse
|
29
|
Yu Y, Valderrama AV, Han Z, Uzan G, Naserian S, Oberlin E. Human fetal liver MSCs are more effective than adult bone marrow MSCs for their immunosuppressive, immunomodulatory, and Foxp3 + T reg induction capacity. Stem Cell Res Ther 2021; 12:138. [PMID: 33597011 PMCID: PMC7888159 DOI: 10.1186/s13287-021-02176-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) exhibit active abilities to suppress or modulate deleterious immune responses by various molecular mechanisms. These cells are the subject of major translational efforts as cellular therapies for immune-related diseases and transplantations. Plenty of preclinical studies and clinical trials employing MSCs have shown promising safety and efficacy outcomes and also shed light on the modifications in the frequency and function of regulatory T cells (T regs). Nevertheless, the mechanisms underlying these observations are not well known. Direct cell contact, soluble factor production, and turning antigen-presenting cells into tolerogenic phenotypes, have been proposed to be among possible mechanisms by which MSCs produce an immunomodulatory environment for T reg expansion and activity. We and others demonstrated that adult bone marrow (BM)-MSCs suppress adaptive immune responses directly by inhibiting the proliferation of CD4+ helper and CD8+ cytotoxic T cells but also indirectly through the induction of T regs. In parallel, we demonstrated that fetal liver (FL)-MSCs demonstrates much longer-lasting immunomodulatory properties compared to BM-MSCs, by inhibiting directly the proliferation and activation of CD4+ and CD8+ T cells. Therefore, we investigated if FL-MSCs exert their strong immunosuppressive effect also indirectly through induction of T regs. METHODS MSCs were obtained from FL and adult BM and characterized according to their surface antigen expression, their multilineage differentiation, and their proliferation potential. Using different in vitro combinations, we performed co-cultures of FL- or BM-MSCs and murine CD3+CD25-T cells to investigate immunosuppressive effects of MSCs on T cells and to quantify their capacity to induce functional T regs. RESULTS We demonstrated that although both types of MSC display similar cell surface phenotypic profile and differentiation capacity, FL-MSCs have significantly higher proliferative capacity and ability to suppress both CD4+ and CD8+ murine T cell proliferation and to modulate them towards less active phenotypes than adult BM-MSCs. Moreover, their substantial suppressive effect was associated with an outstanding increase of functional CD4+CD25+Foxp3+ T regs compared to BM-MSCs. CONCLUSIONS These results highlight the immunosuppressive activity of FL-MSCs on T cells and show for the first time that one of the main immunoregulatory mechanisms of FL-MSCs passes through active and functional T reg induction.
Collapse
Affiliation(s)
- Yi Yu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
- Beijing Institute of Stem Cells, Health & Biotech Co., Ltd, Beijing, People’s Republic of China
| | | | - Zhongchao Han
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Beijing Institute of Stem Cells, Health & Biotech Co., Ltd, Beijing, People’s Republic of China
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
- Paris-Saclay University, Villejuif, France
| | - Sina Naserian
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
- Paris-Saclay University, Villejuif, France
- CellMedEx, Saint Maur des Fossés, France
| | - Estelle Oberlin
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
- Paris-Saclay University, Villejuif, France
| |
Collapse
|
30
|
Cortabarria ASDV, Makhoul L, Strouboulis J, Lombardi G, Oteng-Ntim E, Shangaris P. In utero Therapy for the Treatment of Sickle Cell Disease: Taking Advantage of the Fetal Immune System. Front Cell Dev Biol 2021; 8:624477. [PMID: 33553164 PMCID: PMC7862553 DOI: 10.3389/fcell.2020.624477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/23/2020] [Indexed: 01/16/2023] Open
Abstract
Sickle Cell Disease (SCD) is an autosomal recessive disorder resulting from a β-globin gene missense mutation and is among the most prevalent severe monogenic disorders worldwide. Haematopoietic stem cell transplantation remains the only curative option for the disease, as most management options focus solely on symptom control. Progress in prenatal diagnosis and fetal therapeutic intervention raises the possibility of in utero treatment. SCD can be diagnosed prenatally in high-risk patients using chorionic villus sampling. Among the possible prenatal treatments, in utero stem cell transplantation (IUSCT) shows the most promise. IUSCT is a non-myeloablative, non-immunosuppressive alternative conferring various unique advantages and may also offer safer postnatal management. Fetal immunologic immaturity could allow engraftment of allogeneic cells before fetal immune system maturation, donor-specific tolerance and lifelong chimerism. In this review, we will discuss SCD, screening and current treatments. We will present the therapeutic rationale for IUSCT, examine the early experimental work and initial human experience, as well as consider primary barriers of clinically implementing IUSCT and the promising approaches to address them.
Collapse
Affiliation(s)
| | - Laura Makhoul
- GKT School of Medical Education, King's College London, London, United Kingdom
| | - John Strouboulis
- School of Cancer & Pharmaceutical Sciences, Kings College London, London, United Kingdom
| | - Giovanna Lombardi
- School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Eugene Oteng-Ntim
- School of Life Course Sciences, Kings College London, London, United Kingdom
| | - Panicos Shangaris
- School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
- School of Life Course Sciences, Kings College London, London, United Kingdom
| |
Collapse
|
31
|
Semmes EC, Chen JL, Goswami R, Burt TD, Permar SR, Fouda GG. Understanding Early-Life Adaptive Immunity to Guide Interventions for Pediatric Health. Front Immunol 2021; 11:595297. [PMID: 33552052 PMCID: PMC7858666 DOI: 10.3389/fimmu.2020.595297] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/04/2020] [Indexed: 01/16/2023] Open
Abstract
Infants are capable of mounting adaptive immune responses, but their ability to develop long-lasting immunity is limited. Understanding the particularities of the neonatal adaptive immune system is therefore critical to guide the design of immune-based interventions, including vaccines, in early life. In this review, we present a thorough summary of T cell, B cell, and humoral immunity in early life and discuss infant adaptive immune responses to pathogens and vaccines. We focus on the differences between T and B cell responses in early life and adulthood, which hinder the generation of long-lasting adaptive immune responses in infancy. We discuss how knowledge of early life adaptive immunity can be applied when developing vaccine strategies for this unique period of immune development. In particular, we emphasize the use of novel vaccine adjuvants and optimization of infant vaccine schedules. We also propose integrating maternal and infant immunization strategies to ensure optimal neonatal protection through passive maternal antibody transfer while avoiding hindering infant vaccine responses. Our review highlights that the infant adaptive immune system is functionally distinct and uniquely regulated compared to later life and that these particularities should be considered when designing interventions to promote pediatric health.
Collapse
Affiliation(s)
- Eleanor C. Semmes
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
- Medical Scientist Training Program, Duke University, Durham, NC, United States
- Children’s Health and Discovery Initiative, Department of Pediatrics, Duke University, Durham, NC, United States
| | - Jui-Lin Chen
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| | - Ria Goswami
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| | - Trevor D. Burt
- Children’s Health and Discovery Initiative, Department of Pediatrics, Duke University, Durham, NC, United States
- Division of Neonatology, Department of Pediatrics, Duke University, Durham, NC, United States
| | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
- Children’s Health and Discovery Initiative, Department of Pediatrics, Duke University, Durham, NC, United States
| | - Genevieve G. Fouda
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
- Children’s Health and Discovery Initiative, Department of Pediatrics, Duke University, Durham, NC, United States
| |
Collapse
|
32
|
Prahl M, Odorizzi P, Gingrich D, Muhindo M, McIntyre T, Budker R, Jagannathan P, Farrington L, Nalubega M, Nankya F, Sikyomu E, Musinguzi K, Naluwu K, Auma A, Kakuru A, Kamya MR, Dorsey G, Aweeka F, Feeney ME. Exposure to pesticides in utero impacts the fetal immune system and response to vaccination in infancy. Nat Commun 2021; 12:132. [PMID: 33420104 PMCID: PMC7794579 DOI: 10.1038/s41467-020-20475-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/01/2020] [Indexed: 12/30/2022] Open
Abstract
The use of pesticides to reduce mosquito vector populations is a cornerstone of global malaria control efforts, but the biological impact of most pesticides on human populations, including pregnant women and infants, is not known. Some pesticides, including carbamates, have been shown to perturb the human immune system. We measure the systemic absorption and immunologic effects of bendiocarb, a commonly used carbamate pesticide, following household spraying in a cohort of pregnant Ugandan women and their infants. We find that bendiocarb is present at high levels in maternal, umbilical cord, and infant plasma of individuals exposed during pregnancy, indicating that it is systemically absorbed and trans-placentally transferred to the fetus. Moreover, bendiocarb exposure is associated with numerous changes in fetal immune cell homeostasis and function, including a dose-dependent decrease in regulatory CD4 T cells, increased cytokine production, and inhibition of antigen-driven proliferation. Additionally, prenatal bendiocarb exposure is associated with higher post-vaccination measles titers at one year of age, suggesting that its impact on functional immunity may persist for many months after birth. These data indicate that in utero bendiocarb exposure has multiple previously unrecognized biological effects on the fetal immune system.
Collapse
Affiliation(s)
- Mary Prahl
- Department of Pediatrics, University of California San Francisco, San Francisco, 94143, USA
| | - Pamela Odorizzi
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, 94143, USA
| | - David Gingrich
- Department of Clinical Pharmacy, University of California San Francisco, Drug Research Unit, San Francisco, CA, 94143, USA
| | - Mary Muhindo
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Tara McIntyre
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, 94143, USA
| | - Rachel Budker
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, 94143, USA
| | | | - Lila Farrington
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, 94143, USA
| | | | | | - Esther Sikyomu
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Kate Naluwu
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Ann Auma
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Abel Kakuru
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Medicine, Makerere University, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, 94143, USA
| | - Francesca Aweeka
- Department of Clinical Pharmacy, University of California San Francisco, Drug Research Unit, San Francisco, CA, 94143, USA
| | - Margaret E Feeney
- Department of Pediatrics, University of California San Francisco, San Francisco, 94143, USA. .,Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, 94143, USA.
| |
Collapse
|
33
|
Bunis DG, Bronevetsky Y, Krow-Lucal E, Bhakta NR, Kim CC, Nerella S, Jones N, Mendoza VF, Bryson YJ, Gern JE, Rutishauser RL, Ye CJ, Sirota M, McCune JM, Burt TD. Single-Cell Mapping of Progressive Fetal-to-Adult Transition in Human Naive T Cells. Cell Rep 2021; 34:108573. [PMID: 33406429 PMCID: PMC10263444 DOI: 10.1016/j.celrep.2020.108573] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/01/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Whereas the human fetal immune system is poised to generate immune tolerance and suppress inflammation in utero, an adult-like immune system emerges to orchestrate anti-pathogen immune responses in post-natal life. It has been posited that cells of the adult immune system arise as a discrete ontological "layer" of hematopoietic stem-progenitor cells (HSPCs) and their progeny; evidence supporting this model in humans has, however, been inconclusive. Here, we combine bulk and single-cell transcriptional profiling of lymphoid cells, myeloid cells, and HSPCs from fetal, perinatal, and adult developmental stages to demonstrate that the fetal-to-adult transition occurs progressively along a continuum of maturity-with a substantial degree of inter-individual variation at the time of birth-rather than via a transition between discrete waves. These findings have important implications for the design of strategies for prophylaxis against infection in the newborn and for the use of umbilical cord blood (UCB) in the setting of transplantation.
Collapse
Affiliation(s)
- Daniel G Bunis
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Yelena Bronevetsky
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Elisabeth Krow-Lucal
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Nirav R Bhakta
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Charles C Kim
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Srilaxmi Nerella
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Norman Jones
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Ventura F Mendoza
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Yvonne J Bryson
- Division of Pediatric Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Mattel Children's Hospital UCLA, Los Angeles, CA, USA
| | - James E Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Rachel L Rutishauser
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Chun Jimmie Ye
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA; Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, Division of Neonatology, University of California, San Francisco, San Francisco, CA, USA.
| | - Joseph M McCune
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | - Trevor D Burt
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, Division of Neonatology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
34
|
Prigge AD, Ma R, Coates BM, Singer BD, Ridge KM. Age-Dependent Differences in T-Cell Responses to Influenza A Virus. Am J Respir Cell Mol Biol 2020; 63:415-423. [PMID: 32609537 DOI: 10.1165/rcmb.2020-0169tr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Respiratory infections from influenza A virus (IAV) cause substantial morbidity and mortality in children relative to adults. T cells play a critical role in the host response to IAV by supporting the innate and humoral responses, mediating cytotoxic activity, and promoting recovery. There are age-dependent differences in the number, subsets, and localization of T cells, which impact the host response to pathogens. In this article, we first review how T cells recognize IAV and examine differences in the resting T-cell populations between juveniles and adults. Next, we describe how the juvenile CD4+, CD8+, and regulatory T-cell responses compare with those in adults and discuss the potential physiologic and clinical consequences of the differences. Finally, we explore the roles of two unconventional T-cell types in the juvenile response to influenza, natural-killer T cells and γδ T cells. A clear understanding of age-dependent differences in the T-cell response is essential to developing therapies to prevent or reverse the deleterious effects of IAV in children.
Collapse
Affiliation(s)
- Andrew D Prigge
- Division of Critical Care Medicine, Department of Pediatrics.,Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Ruihua Ma
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Bria M Coates
- Division of Critical Care Medicine, Department of Pediatrics.,Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine.,Department of Biochemistry and Molecular Genetics.,Simpson Querrey Center for Epigenetics, and
| | - Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Department of Medicine.,Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and
| |
Collapse
|
35
|
Abstract
T cell-mediated immune tolerance is a state of unresponsiveness of T cells towards specific self or non-self antigens. This is particularly essential during prenatal/neonatal period when T cells are exposed to dramatically changing environment and required to avoid rejection of maternal antigens, limit autoimmune responses, tolerate inert environmental and food antigens and antigens from non-harmful commensal microorganisms, promote maturation of mucosal barrier function, yet mount an appropriate response to pathogenic microorganisms. The cell-intrinsic and cell extrinsic mechanisms promote the generation of prenatal/neonatal T cells with distinct features to meet the complex and dynamic need of tolerance during this period. Reduced exposure or impaired tolerance in early life may have significant impact on allergic or autoimmune diseases in adult life. The uniqueness of conventional and regulatory T cells in human umbilical cord blood (UCB) may also provide certain advantages in UCB transplantation for hematological disorders.
Collapse
Affiliation(s)
- Lijun Yang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Rong Jin
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Dan Lu
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Qing Ge
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
36
|
Hsu H, Boudova S, Mvula G, Divala TH, Rach D, Mungwira RG, Boldrin F, Degiacomi G, Manganelli R, Laufer MK, Cairo C. Age-related changes in PD-1 expression coincide with increased cytotoxic potential in Vδ2 T cells during infancy. Cell Immunol 2020; 359:104244. [PMID: 33248366 DOI: 10.1016/j.cellimm.2020.104244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/08/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022]
Abstract
Human Vγ9Vδ2 T cells respond to several diverse pathogens by sensing microbial cholesterol intermediates. Unlike CD4 T cells, they are poised for rapid Th1-like responses even before birth, which allows them to play a key role in the first line of defense against pathogens in early life. However, their regulation and functional maturation during infancy (in particular the acquisition of cytotoxic potential) remain understudied. We thus characterized their responses to cholesterol intermediates and Bacille Calmette-Guérin in a cohort of African neonates and 12-month-old infants. Infant Vδ2 lymphocytes exhibited intermediate or adult-like expression of markers associated with differentiation or function, intermediate proliferative responses, and adult-like cytotoxic potential. The enhancement of Vδ2 cell cytotoxic potential coincided with decreasing PD-1 and increasing NKG2A expression. Our results are consistent with the hypothesis that switching from a PD-1+ to a NKG2A+ phenotype during infancy indicates a shift in mechanisms regulating Vδ2 T cell function.
Collapse
Affiliation(s)
- Haoting Hsu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sarah Boudova
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Godfrey Mvula
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Titus H Divala
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - David Rach
- Molecular Microbiology and Immunology Graduate Program, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Randy G Mungwira
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Francesca Boldrin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giulia Degiacomi
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Miriam K Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Cristiana Cairo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
37
|
Dhariwala MO, Karthikeyan D, Vasquez KS, Farhat S, Weckel A, Taravati K, Leitner EG, Clancy S, Pauli M, Piper ML, Cohen JN, Ashouri JF, Lowe MM, Rosenblum MD, Scharschmidt TC. Developing Human Skin Contains Lymphocytes Demonstrating a Memory Signature. CELL REPORTS MEDICINE 2020; 1:100132. [PMID: 33294857 PMCID: PMC7691438 DOI: 10.1016/j.xcrm.2020.100132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/20/2020] [Accepted: 10/13/2020] [Indexed: 12/17/2022]
Abstract
Lymphocytes in barrier tissues play critical roles in host defense and homeostasis. These cells take up residence in tissues during defined developmental windows, when they may demonstrate distinct phenotypes and functions. Here, we utilized mass and flow cytometry to elucidate early features of human skin immunity. Although most conventional αβ T (Tconv) cells in fetal skin have a naive, proliferative phenotype, a subset of CD4+ Tconv and CD8+ cells demonstrate memory-like features and a propensity for interferon (IFN)γ production. Skin regulatory T cells dynamically accumulate over the second trimester in temporal and regional association with hair follicle development. These fetal skin regulatory T cells (Tregs) demonstrate an effector memory phenotype while differing from their adult counterparts in expression of key effector molecules. Thus, we identify features of prenatal skin lymphocytes that may have key implications for understanding antigen and allergen encounters in utero and in infancy. CyTOF reveals a complex lymphocyte landscape in developing human skin Developing skin contains CD45RO+ conventional T cells with propensity to produce IFNγ Regulatory T cells (Tregs) in skin before birth display effector memory properties Skin Tregs increase in conjunction with initial hair follicle morphogenesis
Collapse
Affiliation(s)
- Miqdad O Dhariwala
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dhuvarakesh Karthikeyan
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kimberly S Vasquez
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sepideh Farhat
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Antonin Weckel
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Keyon Taravati
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Elizabeth G Leitner
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sean Clancy
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mariela Pauli
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Merisa L Piper
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jarish N Cohen
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Judith F Ashouri
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Margaret M Lowe
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael D Rosenblum
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tiffany C Scharschmidt
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
38
|
Bikhet M, Morsi M, Hara H, Rhodes LA, Carlo WF, Cleveland D, Cooper DK, Iwase H. The immune system in infants: Relevance to xenotransplantation. Pediatr Transplant 2020; 24:e13795. [PMID: 32845539 PMCID: PMC7606572 DOI: 10.1111/petr.13795] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022]
Abstract
Despite the improvement in surgical interventions in the treatment of congenital heart disease, many life-threatening lesions (eg, hypoplastic left heart syndrome) ultimately require transplantation. However, there is a great limitation in the availability of deceased human cardiac donors of a suitable size. Hearts from genetically engineered pigs may provide an alternative source. The relatively immature immune system in infants (eg, absence of anti-carbohydrate antibodies, reduced complement activation, reduced innate immune cell activity) should minimize the risk of early antibody-mediated rejection of a pig graft. Additionally, recipient thymectomy, performed almost routinely as a preliminary to orthotopic heart transplantation in this age-group, impairs the T-cell response. Because of the increasing availability of genetically engineered pigs (eg, triple-knockout pigs that do not express any of the three known carbohydrate antigens against which humans have natural antibodies) and the ability to diagnose congenital heart disease during fetal life, cardiac xenotransplantation could be preplanned to be carried out soon after birth. Because of these several advantages, prolonged graft survival and even the induction of tolerance, for example, following donor-specific pig thymus transplantation, are more likely to be achieved in infants than in adults. In this review, we summarize the factors in the infant immune system that would be advantageous in the success of cardiac xenotransplantation in this age-group.
Collapse
Affiliation(s)
- Mohamed Bikhet
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, AL, USA
| | - Mahmoud Morsi
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, AL, USA
| | - Leslie A. Rhodes
- Division of Pediatric Cardiology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Waldemar F. Carlo
- Division of Pediatric Cardiology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David Cleveland
- Department of Pediatric Cardiovascular Surgery, Children’s Hospital of Alabama, Birmingham, AL, USA
| | - David K.C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, AL, USA
| | - Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
39
|
Manti S, Esper F, Alejandro-Rodriguez M, Leonardi S, Betta P, Cuppari C, Lanzafame A, Worley S, Salpietro C, Perez MK, Rezaee F, Piedimonte G. Respiratory syncytial virus seropositivity at birth is associated with adverse neonatal respiratory outcomes. Pediatr Pulmonol 2020; 55:3074-3079. [PMID: 32741145 PMCID: PMC7808412 DOI: 10.1002/ppul.25001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND More than 60 years since the discovery of the respiratory syncytial virus (RSV), the effects of prenatal exposure to this virus remain largely unknown. In this investigation, we sought to find evidence of RSV seroconversion in cord blood and explore its clinical implications for the newborn. METHODS Offspring from 22 pregnant women with a history of viral respiratory infection during the third trimester of pregnancy (respiratory viral illness [RVI] group) and 40 controls were enrolled in this study between 1 September 2016 and 31 March 2019. Cord blood sera were tested for anti-RSV antibodies by indirect fluorescent antibody assay. RSV seropositivity was defined as the presence of anti-RSV immunoglobulin M (IgM) or immunoglobulin A (IgA), in addition to IgG in cord blood serum at ≥1:20 dilution. RESULTS Anti-RSV IgG was present in all cord blood serum samples from infants born to RVI mothers (95% confidence interval [CI] = 82%-100%), with 16 samples also having elevated titers for either anti-RSV IgA or IgM (73%; 95% CI = 52%-87%). No controls had evidence of anti-RSV antibodies. Eight (50%) seropositive newborns developed at least one respiratory tract finding, including respiratory distress syndrome (N = 8), respiratory failure (N = 3), and pneumonia (N = 1). RSV seropositive newborns also required more days on oxygen, had leukocytosis and elevated C-reactive protein (P = .025, P = .047, and P < .001, respectively). CONCLUSION This study provides evidence of acute seropositivity against RSV in cord blood of newborns delivered from mothers with a history of upper respiratory tract illness in the third trimester. Cord blood seropositivity for anti-RSV IgA or IgM was associated with adverse clinical and laboratory outcomes in newborns.
Collapse
Affiliation(s)
- Sara Manti
- Cleveland Clinic Center for Pediatric Research, Lerner Research Institute, Cleveland, Ohio, United States
- Department of Pediatrics, Unit of Pediatric Genetics and Immunology, University of Messina, Messina, Italy
| | - Frank Esper
- Cleveland Clinic Center for Pediatric Research, Lerner Research Institute, Cleveland, Ohio, United States
- Center for Pediatric Infectious Diseases, Cleveland Clinic Children’s, Cleveland, Ohio, United States
| | | | - Salvatore Leonardi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Pasqua Betta
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Caterina Cuppari
- Department of Pediatrics, Unit of Pediatric Genetics and Immunology, University of Messina, Messina, Italy
| | - Angela Lanzafame
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sarah Worley
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, United States
| | - Carmelo Salpietro
- Department of Pediatrics, Unit of Pediatric Genetics and Immunology, University of Messina, Messina, Italy
| | - Miriam K. Perez
- Cleveland Clinic Center for Pediatric Research, Lerner Research Institute, Cleveland, Ohio, United States
| | - Fariba Rezaee
- Cleveland Clinic Center for Pediatric Research, Lerner Research Institute, Cleveland, Ohio, United States
| | - Giovanni Piedimonte
- Departments of Pediatrics, Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| |
Collapse
|
40
|
Albertini RJ, Kaden DA. Mutagenicity monitoring in humans: Global versus specific origin of mutations. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 786:108341. [PMID: 33339577 DOI: 10.1016/j.mrrev.2020.108341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 01/19/2023]
Abstract
An underappreciated aspect of human mutagenicity biomonitoring is tissue specificity reflected in different assays, especially those that measure events that can only occur in developing bone marrow (BM) cells. Reviewed here are 9 currently-employed human mutagenicity biomonitoring assays. Several assays measure chromosome-level events in circulating T-lymphocytes (T-cells), i.e., traditional analyses of aberrations, translocation studies involving chromosome painting and fluorescence in situ hybridization (FISH) and determinations of micronuclei (MN). Other T-cell assays measure gene mutations. i.e., hypoxanthine-guanine phosphoriboslytransferase (HPRT) and phosphoribosylinositol glycan class A (PIGA). In addition to the T-cell assays, also reviewed are those assays that measure events in peripheral blood cells that necessarily arose in BM cells, i.e., MN in reticulocytes; glycophorin A (GPA) gene mutations in red blood cells (RBCs), and PIGA gene mutations in RBC or granulocytes. This review considers only cell culture- or cytometry-based assays to describe endpoints measured, methods, optimal sampling times, and sample summaries of typical quantitative and qualitative results. However, to achieve its intended focus on the target cells where events occur, kinetics of the cells of peripheral blood that derive at some point from precursor cells are reviewed to identify body sites and tissues where the genotoxic events originate. Kinetics indicate that in normal adults, measured events in T-cells afford global assessments of in vivo mutagenicity but are not specific for BM effects. Therefore, an agent's capacity for inducing mutations in BM cells cannot be reliably inferred from T-cell assays as the magnitude of effect in BM, if any, is unknown. By contrast, chromosome or gene level mutations measured in RBCs/reticulocytes or granulocytes must originate in BM cells, i.e. in RBC or granulocyte precursors, thereby making them specific indicators for effects in BM. Assays of mutations arising directly in BM cells may quantitatively reflect the mutagenicity of potential leukemogenic agents.
Collapse
Affiliation(s)
- Richard J Albertini
- University of Vermont, 111 Colchester Avenue, Burlington, VT 05401, United States
| | - Debra A Kaden
- Ramboll US Consulting, Inc., 101 Federal Street, Suite 1900, Boston, MA 02110, United States.
| |
Collapse
|
41
|
Pagel J, Twisselmann N, Rausch TK, Waschina S, Hartz A, Steinbeis M, Olbertz J, Nagel K, Steinmetz A, Faust K, Demmert M, Göpel W, Herting E, Rupp J, Härtel C. Increased Regulatory T Cells Precede the Development of Bronchopulmonary Dysplasia in Preterm Infants. Front Immunol 2020; 11:565257. [PMID: 33101284 PMCID: PMC7554370 DOI: 10.3389/fimmu.2020.565257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/31/2020] [Indexed: 12/24/2022] Open
Abstract
Regulatory T cells (Tregs) are important for the ontogenetic control of immune activation and tissue damage in preterm infants. However, the role of Tregs for the development of bronchopulmonary dysplasia (BPD) is yet unclear. The aim of our study was to characterize CD4+ CD25+ forkhead box protein 3 (FoxP3)+ Tregs in peripheral blood of well-phenotyped preterm infants (n = 382; 23 + 0 – 36 + 6 weeks of gestational age) with a focus on the first 28 days of life and the clinical endpoint BPD (supplemental oxygen for longer than 28 days of age). In a subgroup of preterm infants, we characterized the immunological phenotype of Tregs (n = 23). The suppressive function of Tregs on CD4+CD25- T cells was compared in preterm, term and adult blood. We observed that extreme prematurity was associated with increased Treg frequencies which peaked in the second week of life. Independent of gestational age, increased Treg frequencies were noted to precede the development of BPD. The phenotype of preterm infant Tregs largely differed from adult Tregs and displayed an overall naïve Treg population (CD45RA+/HLA-DR-/Helios+), especially in the first days of life. On day 7 of life, a more activated Treg phenotype pattern (CCR6+, HLA-DR+, and Ki-67+) was observed. Tregs of preterm neonates had a higher immunosuppressive capacity against CD4+CD25- T cells compared to the Treg compartment of term neonates and adults. In conclusion, our data suggest increased frequencies and functions of Tregs in preterm neonates which display a distinct phenotype with dynamic changes in the first weeks of life. Hence, the continued abundance of Tregs may contribute to sustained inflammation preceding the development of BPD. Functional analyses are needed in order to elucidate whether Tregs have potential as future target for diagnostics and therapeutics.
Collapse
Affiliation(s)
- Julia Pagel
- Department of Pediatrics, University of Lübeck, Lübeck, Germany.,Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany.,Department of Pediatrics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | - Tanja K Rausch
- Department of Pediatrics, University of Lübeck, Lübeck, Germany.,Department of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Silvio Waschina
- Research Group Medical Systems Biology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Annika Hartz
- Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | | | | | - Kathrin Nagel
- Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Alena Steinmetz
- Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Kirstin Faust
- Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Martin Demmert
- Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Wolfgang Göpel
- Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Egbert Herting
- Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Christoph Härtel
- Department of Pediatrics, University of Lübeck, Lübeck, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany.,University Children's Hospital, University of Würzburg, Würzburg, Germany.,PRIMAL (Priming Immunity at the Beginning of Life) Consortium, Lübeck, Germany
| |
Collapse
|
42
|
Kushnir-Sukhov NM. A Novel Link between Early Life Allergen Exposure and Neuroimmune Development in Children. ACTA ACUST UNITED AC 2020; 5:188-195. [PMID: 33179020 DOI: 10.33140/jcei.05.04.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Purpose As COVID-19 unprecedented situation significantly increased the time families spend indoors, the awareness of unhealthy living conditions negatively impacting immune system and early neurodevelopment of children is of crucial importance. Methods We retrospectively reviewed unrelated cases of the children with confirmed multiple indoor allergen sensitization due to prolonged exposure to unhealthy indoor environment with infestation and water damage, who, in addition to multiple health problems related to allergy and asthma, also developed neuroimmune complications and growth delay. Results Documented early in life atypical neurologic and behavioral changes were common in all cases. Clinical analysis did not establish other causative reason aside from prenatal and early life exposure to unhealthy living conditions. Alternaria Alternara and Penicillium/Aspergillus molds were found in all homes and sensitization was confirmed in all cases. Significant similarities in the symptoms recorded in all three families led us to a hypothesis that, likely, a significant level of the immune response to external immunogenic pathological stimulus such as mold spore protein, mycotoxin protein, dust mite protein, decay-related volatile particles (VOC) skewed a balance of the neuroimmune interactions, and further affected neuronal network establishment. As all children exhibited significant spectrum of the systemic inflammatory conditions early in life, coupled with inability to follow normal neurodevelopment, we hypothesize that an overwhelming activation of the aggressive immune mechanisms by the epigenetic factors led to glia activation, cytokine storm and break of tolerance. Conclusions We hypothesize that developing immune system exhibited aggressive responses due to environmental danger signals, subsequently TH-1 or TH-2 switch enables multiple clinical syndromes development with atypical presentation due to the described novel mechanism. An increased due to the COVID-19 lock-down may increase an amount of exposure of vulnerable people to indoor biological particles and volatile organic compounds present in unhealthy buildings. It is of crucial importance to identify and remediate indoor exposure factors that can decrease immune protection, especially against infectious pathogens such as novel coronavirus.
Collapse
Affiliation(s)
- Nataliya M Kushnir-Sukhov
- Institute of Integrative Immunology, Berkeley, USA.,UCSF Benioff Children's Hospital Oakland, Oakland, USA
| |
Collapse
|
43
|
Ng MSF, Roth TL, Mendoza VF, Marson A, Burt TD. Helios enhances the preferential differentiation of human fetal CD4 + naïve T cells into regulatory T cells. Sci Immunol 2020; 4:4/41/eaav5947. [PMID: 31757834 DOI: 10.1126/sciimmunol.aav5947] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
Abstract
T cell receptor (TCR) stimulation and cytokine cues drive the differentiation of CD4+ naïve T cells into effector T cell populations with distinct proinflammatory or regulatory functions. Unlike adult naïve T cells, human fetal naïve CD4+ T cells preferentially differentiate into FOXP3+ regulatory T (Treg) cells upon TCR activation independent of exogenous cytokine signaling. This cell-intrinsic predisposition for Treg differentiation is implicated in the generation of tolerance in utero; however, the underlying mechanisms remain largely unknown. Here, we identify epigenetic and transcriptional programs shared between fetal naïve T and committed Treg cells that are inactive in adult naïve T cells and show that fetal-derived induced Treg (iTreg) cells retain this transcriptional program. We show that a subset of Treg-specific enhancers is accessible in fetal naïve T cells, including two active superenhancers at Helios Helios is expressed in fetal naïve T cells but not in adult naïve T cells, and fetal iTreg cells maintain Helios expression. CRISPR-Cas9 ablation of Helios in fetal naïve T cells impaired their differentiation into iTreg cells upon TCR stimulation, reduced expression of immunosuppressive genes in fetal iTreg cells such as IL10, and increased expression of proinflammatory genes including IFNG Consequently, Helios knockout fetal iTreg cells had reduced IL-10 and increased IFN-γ cytokine production. Together, our results reveal important roles for Helios in enhancing preferential fetal Treg differentiation and fine-tuning eventual Treg function. The Treg-biased programs identified within fetal naïve T cells could potentially be used to engineer enhanced iTreg populations for adoptive cellular therapies.
Collapse
Affiliation(s)
- Melissa S F Ng
- Biomedical Sciences Graduate Program, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA.,Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore 138648, Singapore
| | - Theodore L Roth
- Biomedical Sciences Graduate Program, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA.,Department of Microbiology and Immunology, UCSF, San Francisco, CA 94143, USA.,Diabetes Center, UCSF, San Francisco, CA 94143, USA
| | - Ventura F Mendoza
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94143, USA
| | - Alexander Marson
- Department of Microbiology and Immunology, UCSF, San Francisco, CA 94143, USA.,Diabetes Center, UCSF, San Francisco, CA 94143, USA.,Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA.,Department of Medicine, UCSF, San Francisco, CA 94143, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.,UCSF Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA 94158, USA.,Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Trevor D Burt
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94143, USA. .,Department of Pediatrics, Division of Neonatology, UCSF, San Francisco, CA 94110, USA
| |
Collapse
|
44
|
Knapek KJ, Georges HM, Van Campen H, Bishop JV, Bielefeldt-Ohmann H, Smirnova NP, Hansen TR. Fetal Lymphoid Organ Immune Responses to Transient and Persistent Infection with Bovine Viral Diarrhea Virus. Viruses 2020; 12:v12080816. [PMID: 32731575 PMCID: PMC7472107 DOI: 10.3390/v12080816] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Bovine Viral Diarrhea Virus (BVDV) fetal infections occur in two forms; persistent infection (PI) or transient infection (TI), depending on what stage of gestation the fetus is infected. Examination of lymphoid organs from both PI and TI fetuses reveals drastically different fetal responses, dependent upon the developmental stage of the fetal immune system. Total RNA was extracted from the thymuses and spleens of uninfected control, PI, and TI fetuses collected on day 190 of gestation to test the hypothesis that BVDV infection impairs the innate and adaptive immune response in the fetal thymus and spleen of both infection types. Transcripts of genes representing the innate immune response and adaptive immune response genes were assayed by Reverse Transcription quatitative PCR (RT-qPCR) (2−ΔΔCq; fold change). Genes of the innate immune response, interferon (IFN) inducible genes, antigen presentation to lymphocytes, and activation of B cells were downregulated in day 190 fetal PI thymuses compared to controls. In contrast, innate immune response genes were upregulated in TI fetal thymuses compared to controls and tended to be upregulated in TI fetal spleens. Genes associated with the innate immune system were not different in PI fetal spleens; however, adaptive immune system genes were downregulated, indicating that PI fetal BVDV infection has profound inhibitory effects on the expression of genes involved in the innate and adaptive immune response. The downregulation of these genes in lymphocytes and antigen-presenting cells in the developing thymus and spleen may explain the incomplete clearance of BVDV and the persistence of the virus in PI animals while the upregulation of the TI innate immune response indicates a more mature immune system, able to clear the virus.
Collapse
Affiliation(s)
- Katie J. Knapek
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.J.K.); (H.M.G.); (H.V.C.); (J.V.B.); (N.P.S.)
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Hanah M. Georges
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.J.K.); (H.M.G.); (H.V.C.); (J.V.B.); (N.P.S.)
| | - Hana Van Campen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.J.K.); (H.M.G.); (H.V.C.); (J.V.B.); (N.P.S.)
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Jeanette V. Bishop
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.J.K.); (H.M.G.); (H.V.C.); (J.V.B.); (N.P.S.)
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre and School of Veterinary Science, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Natalia P. Smirnova
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.J.K.); (H.M.G.); (H.V.C.); (J.V.B.); (N.P.S.)
| | - Thomas R. Hansen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.J.K.); (H.M.G.); (H.V.C.); (J.V.B.); (N.P.S.)
- Correspondence: ; Tel.: +1-970-988-4582
| |
Collapse
|
45
|
Davenport MP, Smith NL, Rudd BD. Building a T cell compartment: how immune cell development shapes function. Nat Rev Immunol 2020; 20:499-506. [PMID: 32493982 DOI: 10.1038/s41577-020-0332-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
We are just beginning to understand the diversity of the peripheral T cell compartment, which arises from the specialization of different T cell subsets and the plasticity of individual naive T cells to adopt different fates. Although the progeny of a single T cell can differentiate into many phenotypes following infection, individual T cells are biased towards particular phenotypes. These biases are typically ascribed to random factors that occur during and after antigenic stimulation. However, the T cell compartment does not remain static with age, and shifting immune challenges during ontogeny give rise to T cells with distinct functional properties. Here, we argue that the developmental history of naive T cells creates a 'hidden layer' of diversity that persists into adulthood. Insight into this diversity can provide a new perspective on immunity and immunotherapy across the lifespan.
Collapse
Affiliation(s)
- Miles P Davenport
- Kirby Institute for Infection and Immunity, University of New South Wales Australia, Sydney, New South Wales, Australia.
| | - Norah L Smith
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Brian D Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
46
|
Georges HM, Knapek KJ, Bielefeldt-Ohmann H, Van Campen H, Hansen TR. Attenuated lymphocyte activation leads to the development of immunotolerance in bovine fetuses persistently infected with bovine viral diarrhea virus†. Biol Reprod 2020; 103:560-571. [PMID: 32483591 DOI: 10.1093/biolre/ioaa088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/17/2020] [Accepted: 05/28/2020] [Indexed: 11/14/2022] Open
Abstract
Bovine viral diarrhea virus continues to cost the cattle industry millions of dollars each year despite control measures. The primary reservoirs for bovine viral diarrhea virus are persistently infected animals, which are infected in utero and shed the virus throughout their lifetime. The difficulty in controlling the virus stems from a limited understanding of transplacental transmission and fetal development of immunotolerance. In this study, pregnant bovine viral diarrhea virus naïve heifers were inoculated with bovine viral diarrhea virus on day 75 of gestation and fetal spleens were collected on gestational days 82, 97, 190, and 245. Microarray analysis on splenic RNA from days 82 and 97 revealed an increase in signaling for the innate immune system and antigen presentation to T cells in day 97 persistently infected fetuses compared to controls. Reverse transcription quantitative polymerase chain reaction on select targets validated the microarray revealing a downregulation of type I interferons and lymphocyte markers in day 190 persistently infected fetuses compared to controls. Protein was visualized using western blot and tissue sections were analyzed with hematoxylin and eosin staining and immunohistochemistry. Data collected indicate that fetal immunotolerance to bovine viral diarrhea virus developed between days 97 and 190, with mass attenuation of the immune system on day 190 of gestation. Furthermore, lymphocyte transcripts were initially unchanged then downregulated, suggesting that immunotolerance to the virus stems from a blockage in lymphocyte activation and hence an inability to clear the virus. The identification of lymphocyte derived immunotolerance will aid in the development of preventative and viral control measures to implement before or during pregnancy.
Collapse
Affiliation(s)
- Hanah M Georges
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Katie J Knapek
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Helle Bielefeldt-Ohmann
- School of Veterinary Science, The University of Queensland - Gatton Campus, Gatton, QLD, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Hana Van Campen
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Thomas R Hansen
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
47
|
Maternal and fetal T cells in term pregnancy and preterm labor. Cell Mol Immunol 2020; 17:693-704. [PMID: 32467619 DOI: 10.1038/s41423-020-0471-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
Pregnancy is a state of immunological balance during which the mother and the developing fetus must tolerate each other while maintaining sufficient immunocompetence to ward off potential threats. The site of closest contact between the mother and fetus is the decidua, which represents the maternal-fetal interface. Many of the immune cell subsets present at the maternal-fetal interface have been well described; however, the importance of the maternal T cells in this compartment during late gestation and its complications, such as preterm labor and birth, has only recently been established. Moreover, pioneer and recent studies have indicated that fetal T cells are activated in different subsets of preterm labor and may elicit distinct inflammatory responses in the amniotic cavity, leading to preterm birth. In this review, we describe the established and proposed roles for maternal T cells at the maternal-fetal interface in normal term parturition, as well as the demonstrated contributions of such cells to the pathological process of preterm labor and birth. We also summarize the current knowledge of and proposed roles for fetal T cells in the pathophysiology of the preterm labor syndrome. It is our hope that this review provides a solid conceptual framework highlighting the importance of maternal and fetal T cells in late gestation and catalyzes new research questions that can further scientific understanding of these cells and their role in preterm labor and birth, the leading cause of neonatal mortality and morbidity worldwide.
Collapse
|
48
|
Merlin S, Follenzi A. Escape or Fight: Inhibitors in Hemophilia A. Front Immunol 2020; 11:476. [PMID: 32265927 PMCID: PMC7105606 DOI: 10.3389/fimmu.2020.00476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/02/2020] [Indexed: 01/07/2023] Open
Abstract
Replacement therapy with coagulation factor VIII (FVIII) represents the current clinical treatment for patients affected by hemophilia A (HA). This treatment while effective is, however, hampered by the formation of antibodies which inhibit the activity of infused FVIII in up to 30% of treated patients. Immune tolerance induction (ITI) protocols, which envisage frequent infusions of high doses of FVIII to confront this side effect, dramatically increase the already high costs associated to a patient's therapy and are not always effective in all treated patients. Therefore, there are clear unmet needs that must be addressed in order to improve the outcome of these treatments for HA patients. Taking advantage of preclinical mouse models of hemophilia, several strategies have been proposed in recent years to prevent inhibitor formation and eradicate the pre-existing immunity to FVIII inhibitor positive patients. Herein, we will review some of the most promising strategies developed to avoid and eradicate inhibitors, including the use of immunomodulatory drugs or molecules, oral or transplacental delivery as well as cell and gene therapy approaches. The goal is to improve and potentiate the current ITI protocols and eventually make them obsolete.
Collapse
Affiliation(s)
- Simone Merlin
- Laboratory of Histology, Department of Health Sciences, Università degli Studi del Piemonte Orientale "A. Avogadro", Novara, Italy.,Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Novara, Italy
| | - Antonia Follenzi
- Laboratory of Histology, Department of Health Sciences, Università degli Studi del Piemonte Orientale "A. Avogadro", Novara, Italy.,Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Novara, Italy
| |
Collapse
|
49
|
Pichichero ME. Immunologic dysfunction contributes to the otitis prone condition. J Infect 2020; 80:614-622. [PMID: 32205139 DOI: 10.1016/j.jinf.2020.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 12/11/2022]
Abstract
Acute Otitis Media (AOM) is a multifactorial disease occurring mostly in young children who are immunologically naïve to AOM pathogens. This review focuses on work from Rochester NY, USA over the past 12 years among young children who had AOM infections microbiologically-confirmed by tympanocentesis, so called "stringently-defined". Among stringently-defined otitis prone children deficiencies in fundamental immune defense mechanisms have been identified that contribute to the propensity of young children to experience recurrent AOM. Dysfunction in innate immune responses that cause an immunopathological impact in the nasopharynx have been discovered including inadequate proinflammatory cytokine response and poor epithelial cell repair. Adaptive immunity defects in B cell function and immunologic memory resulting in low levels of antibody to otopathogen-specific antigens allows repeated infections. CD4+ and CD8+ T cell function and memory defects significantly contribute. The immune profile of an otitis prone child resembles that of a neonate through the first year of life. Immunologic deficits in otitis prone children cause them to be unusually vulnerable to viral upper respiratory infections and respond inadequately to routine pediatric vaccines.
Collapse
Affiliation(s)
- Michael E Pichichero
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, NY.
| |
Collapse
|
50
|
Apostol AC, Jensen KDC, Beaudin AE. Training the Fetal Immune System Through Maternal Inflammation-A Layered Hygiene Hypothesis. Front Immunol 2020; 11:123. [PMID: 32117273 PMCID: PMC7026678 DOI: 10.3389/fimmu.2020.00123] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Over the last century, the alarming surge in allergy and autoimmune disease has led to the hypothesis that decreasing exposure to microbes, which has accompanied industrialization and modern life in the Western world, has fundamentally altered the immune response. In its current iteration, the “hygiene hypothesis” suggests that reduced microbial exposures during early life restricts the production and differentiation of immune cells suited for immune regulation. Although it is now well-appreciated that the increase in hypersensitivity disorders represents a “perfect storm” of many contributing factors, we argue here that two important considerations have rarely been explored. First, the window of microbial exposure that impacts immune development is not limited to early childhood, but likely extends into the womb. Second, restricted microbial interactions by an expectant mother will bias the fetal immune system toward hypersensitivity. Here, we extend this discussion to hypothesize that the cell types sensing microbial exposures include fetal hematopoietic stem cells, which drive long-lasting changes to immunity.
Collapse
Affiliation(s)
- April C Apostol
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, United States
| | - Kirk D C Jensen
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, United States
| | - Anna E Beaudin
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, United States
| |
Collapse
|