1
|
Nieves C, Victoria da Costa Ghignatti P, Aji N, Bertagnolli M. Immune Cells and Infectious Diseases in Preeclampsia Susceptibility. Can J Cardiol 2024; 40:2340-2355. [PMID: 39304126 DOI: 10.1016/j.cjca.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/26/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024] Open
Abstract
Preeclampsia is a severe pregnancy disorder, affecting approximately 10% of pregnancies worldwide, characterised by hypertension and proteinuria after the 20th week of gestation. The condition poses significant risks to both maternal and fetal health, including cardiovascular complications and impaired fetal development. Recent trends indicate a rising incidence of preeclampsia, correlating with factors such as advanced maternal age and cardiovascular comorbidities. Emerging evidence also highlights a notable increase in the association between autoimmune and infectious diseases with preeclampsia. Autoimmune conditions, such as type 1 diabetes and systemic lupus erythematosus, and infections triggered by global health challenges, including leptospirosis, Zika, toxoplasmosis, and Chagas disease, are now recognised as significant contributors to preeclampsia susceptibility by affecting placental formation and function. This review focuses on the immunologic mechanisms underpinning preeclampsia, exploring how immune system dysregulation and infectious triggers exacerbate the condition. It also discusses the pathologic mechanisms, including galectins, that preeclampsia shares with autoimmune and infectious diseases, and their significant risk for adverse pregnancy outcomes. We emphasise the necessity for accurate diagnosis and vigilant monitoring of immune and infectious diseases during pregnancy to optimise management and reduce risks. By raising awareness about these evolving risks and their impact on pregnancy, we aim to enhance diagnostic practices and preventive strategies, ultimately improving outcomes for pregnant women, especially in regions affected by environmental changes and endemic diseases.
Collapse
Affiliation(s)
- Cecilia Nieves
- Cardiovascular Health Across the Lifespan Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada.
| | - Paola Victoria da Costa Ghignatti
- Cardiovascular Health Across the Lifespan Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Narjiss Aji
- Cardiovascular Health Across the Lifespan Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Mariane Bertagnolli
- Cardiovascular Health Across the Lifespan Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
2
|
Ren C, Zhang S, Chen Y, Deng K, Kuang M, Gong Z, Zhang K, Wang P, Huang P, Zhou Z, Gong A. Exploring nicotinamide adenine dinucleotide precursors across biosynthesis pathways: Unraveling their role in the ovary. FASEB J 2024; 38:e23804. [PMID: 39037422 DOI: 10.1096/fj.202400453r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/31/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
Natural Nicotinamide Adenine Dinucleotide (NAD+) precursors have attracted much attention due to their positive effects in promoting ovarian health. However, their target tissue, synthesis efficiency, advantages, and disadvantages are still unclear. This review summarizes the distribution of NAD+ at the tissue, cellular and subcellular levels, discusses its biosynthetic pathways and the latest findings in ovary, include: (1) NAD+ plays distinct roles both intracellularly and extracellularly, adapting its distribution in response to requirements. (2) Different precursors differs in target tissues, synthetic efficiency, biological utilization, and adverse effects. Importantly: tryptophan is primarily utilized in the liver and kidneys, posing metabolic risks in excess; nicotinamide (NAM) is indispensable for maintaining NAD+ levels; nicotinic acid (NA) constructs a crucial bridge between intestinal microbiota and the host with diverse functions; nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN) increase NAD+ systemically and can be influenced by delivery route, tissue specificity, and transport efficiency. (3) The biosynthetic pathways of NAD+ are intricately intertwined. They provide multiple sources and techniques for NAD+ synthesis, thereby reducing the dependence on a single molecule to maintain cellular NAD+ levels. However, an excess of a specific precursor potentially influencing other pathways. In addition, Protein expression analysis suggest that ovarian tissues may preferentially utilize NAM and NMN. These findings summarize the specific roles and potential of NAD+ precursors in enhancing ovarian health. Future research should delve into the molecular mechanisms and intervention strategies of different precursors, aiming to achieve personalized prevention or treatment of ovarian diseases, and reveal their clinical application value.
Collapse
Affiliation(s)
- Caifang Ren
- School of Medicine, Jiangsu University, Zhenjiang, China
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Shuang Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yanyan Chen
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Kaiping Deng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Meiqian Kuang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zihao Gong
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ke Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Panqi Wang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Pan Huang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhengrong Zhou
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Aihua Gong
- School of Medicine, Jiangsu University, Zhenjiang, China
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Sha Q, Escobar Galvis ML, Madaj ZB, Keaton SA, Smart L, Edgerly YM, Anis E, Leach R, Osborne LM, Achtyes E, Brundin L. Dysregulated placental expression of kynurenine pathway enzymes is associated with inflammation and depression in pregnancy. Brain Behav Immun 2024; 119:146-153. [PMID: 38555986 PMCID: PMC11210184 DOI: 10.1016/j.bbi.2024.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Perinatal depression (including antenatal-, postnatal-, and depression that spans both timepoints) is a prevalent disorder with high morbidity that affects both mother and child. Even though the full biological blueprints of perinatal depression remain incomplete, multiple studies indicate that, at least for antenatal depression, the disorder has an inflammatory component likely linked to a dysregulation of the enzymatic kynurenine pathway. The production of neuroactive metabolites in this pathway, including quinolinic acid (QUIN), is upregulated in the placenta due to the multiple immunological roles of the metabolites during pregnancy. Since neuroactive metabolites produced by the pathway also may affect mood by directly affecting glutamate neurotransmission, we sought to investigate whether the placental expression of kynurenine pathway enzymes controlling QUIN production was associated with both peripheral inflammation and depressive symptoms during pregnancy. METHODS 68 placentas obtained at birth were analyzed using qPCR to determine the expression of kynurenine pathway enzymes. Cytokines and metabolites were quantified in plasma using high-sensitivity electroluminescence and ultra-performance liquid chromatography, respectively. Maternal depressive symptoms were assessed using the Edinburgh Postnatal Depression Scale (EPDS) throughout pregnancy and the post-partum. Associations between these factors were assessed using robust linear regression with ranked enzymes. RESULTS Low placental quinolinate phosphoribosyl transferase (QPRT), the enzyme responsible for degrading QUIN, was associated with higher IL-6 and higher QUIN/kynurenic acid ratios at the 3rd trimester. Moreover, women with severe depressive symptoms in the 3rd trimester had significantly lower placental expression of both QPRT and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase (ACMSD); impaired activity of these two enzymes leads to QUIN accumulation. CONCLUSION Overall, our data support that a compromised placental environment, featuring low expression of critical kynurenine pathway enzymes is associated with increased levels of plasma cytokines and the dysregulated kynurenine metabolite pattern observed in depressed women during pregnancy.
Collapse
Affiliation(s)
- Qiong Sha
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Zachary B Madaj
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Sarah A Keaton
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - LeAnn Smart
- Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA
| | | | - Ehraz Anis
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Richard Leach
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA
| | - Lauren M Osborne
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Eric Achtyes
- Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA; Department of Psychiatry, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Lena Brundin
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
4
|
Wang Y, Zhao X, Li Z, Wang W, Jiang Y, Zhang H, Liu X, Ren Y, Xu X, Hu X. Decidual natural killer cells dysfunction is caused by IDO downregulation in dMDSCs with Toxoplasma gondii infection. Commun Biol 2024; 7:669. [PMID: 38822095 PMCID: PMC11143278 DOI: 10.1038/s42003-024-06365-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/21/2024] [Indexed: 06/02/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) play a crucial role in maintaining maternal-fetal tolerance by expressing some immune-suppressive molecules, such as indoleamine 2,3-dioxygenase (IDO). Toxoplasma gondii (T. gondii) infection can break the immune microenvironment of maternal-fetal interface, resulting in adverse pregnancy outcomes. However, whether T. gondii affects IDO expression in dMDSCs and the molecular mechanism of its effect are still unclear. Here we show, the mRNA level of IDO is increased but the protein level decreased in infected dMDSCs. Mechanistically, the upregulation of transcriptional levels of IDO in dMDSCs is regulated through STAT3/p52-RelB pathway and the decrease of IDO expression is due to its degradation caused by increased SOCS3 after T. gondii infection. In vivo, the adverse pregnancy outcomes of IDO-/- infected mice are more severe than those of wide-type infected mice and obviously improved after exogenous kynurenine treatment. Also, the reduction of IDO in dMDSCs induced by T. gondii infection results in the downregulation of TGF-β and IL-10 expression in dNK cells regulated through Kyn/AhR/SP1 signal pathway, eventually leading to the dysfunction of dNK cells and contributing the occurrence of adverse pregnancy outcomes. This study reveals a novel molecular mechanism in adverse pregnancy outcome induced by T. gondii infection.
Collapse
Affiliation(s)
- Yu Wang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, PR China
| | - Xiaoyue Zhao
- Department of Clinical Psychology, Yantai Affiliated hospital of Binzhou Medial University, Yantai, 264100, Shandong, PR China
| | - Zhidan Li
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, PR China
| | - Wenxiao Wang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, PR China
| | - Yuzhu Jiang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, PR China
| | - Haixia Zhang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, PR China
| | - Xianbing Liu
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, PR China
| | - Yushan Ren
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, PR China
| | - Xiaoyan Xu
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, PR China
| | - Xuemei Hu
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, PR China.
| |
Collapse
|
5
|
Gangwar M, Kumar S, Ahmad SF, Singh A, Agrawal S, Anitta PL, Kumar A. Identification of genetic variants affecting reproduction traits in Vrindavani cattle. Mamm Genome 2024; 35:99-111. [PMID: 37924370 DOI: 10.1007/s00335-023-10023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/08/2023] [Indexed: 11/06/2023]
Abstract
Genome-wide association studies (GWAS) are one of the best ways to look into the connection between single-nucleotide polymorphisms (SNPs) and the phenotypic performance. This study aimed to identify the genetic variants that significantly affect the important reproduction traits in Vrindavani cattle using genome-wide SNP chip array data. In this study, 96 randomly chosen Vrindavani cows were genotyped using the Illumina Bovine50K BeadChip platform. A linear regression model of the genome-wide association study was fitted in the PLINK program between genome-wide SNP markers and reproduction traits, including age at first calving (AFC), inter-calving period (ICP), dry days (DD), and service period (SP) across the first three lactations. Information on different QTLs and genes, overlapping or adjacent to genomic coordinates of significant SNPs, was also mined from relevant databases in order to identify the biological pathways associated with reproductive traits in bovine. The Bonferroni correction resulted in total 39 SNP markers present on different chromosomes being identified that significantly affected the variation in AFC (6 SNPs), ICP (7 SNPs), DD (9 SNPs), and SP (17 SNPs). Novel potential candidate genes associated with reproductive traits that were identified using the GWAS methodology included UMPS, ITGB5, ADAM2, UPK1B, TEX55, bta-mir-708, TMPO, TDRD5, MAPRE2, PTER, AP3B1, DPP8, PLAT, TXN2, NDUFAF1, TGFA, DTNA, RSU1, KCNQ1, ADAM32, and CHST8. The significant SNPs and genes associated with the reproductive traits and the enriched genes may be exploited as candidate biomarkers in animal improvement programs, especially for improved reproduction performance in bovines.
Collapse
Affiliation(s)
- Munish Gangwar
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Izatnangar, Bareilly, 243122, India
| | - Subodh Kumar
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Izatnangar, Bareilly, 243122, India.
| | - Sheikh Firdous Ahmad
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Izatnangar, Bareilly, 243122, India
| | - Akansha Singh
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Izatnangar, Bareilly, 243122, India
| | - Swati Agrawal
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Izatnangar, Bareilly, 243122, India
| | - P L Anitta
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Izatnangar, Bareilly, 243122, India
| | - Amit Kumar
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Izatnangar, Bareilly, 243122, India
| |
Collapse
|
6
|
Boulanger H, Bounan S, Mahdhi A, Drouin D, Ahriz-Saksi S, Guimiot F, Rouas-Freiss N. Immunologic aspects of preeclampsia. AJOG GLOBAL REPORTS 2024; 4:100321. [PMID: 38586611 PMCID: PMC10994979 DOI: 10.1016/j.xagr.2024.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024] Open
Abstract
Preeclampsia is a syndrome with multiple etiologies. The diagnosis can be made without proteinuria in the presence of dysfunction of at least 1 organ associated with hypertension. The common pathophysiological pathway includes endothelial cell activation, intravascular inflammation, and syncytiotrophoblast stress. There is evidence to support, among others, immunologic causes of preeclampsia. Unlike defense immunology, reproductive immunology is not based on immunologic recognition systems of self/non-self and missing-self but on immunotolerance and maternal-fetal cellular interactions. The main mechanisms of immune escape from fetal to maternal immunity at the maternal-fetal interface are a reduction in the expression of major histocompatibility complex molecules by trophoblast cells, the presence of complement regulators, increased production of indoleamine 2,3-dioxygenase, activation of regulatory T cells, and an increase in immune checkpoints. These immune protections are more similar to the immune responses observed in tumor biology than in allograft biology. The role of immune and nonimmune decidual cells is critical for the regulation of trophoblast invasion and vascular remodeling of the uterine spiral arteries. Regulatory T cells have been found to play an important role in suppressing the effectiveness of other T cells and contributing to local immunotolerance. Decidual natural killer cells have a cytokine profile that is favored by the presence of HLA-G and HLA-E and contributes to vascular remodeling. Studies on the evolution of mammals show that HLA-E, HLA-G, and HLA-C1/C2, which are expressed by trophoblasts and their cognate receptors on decidual natural killer cells, are necessary for the development of a hemochorial placenta with vascular remodeling. The activation or inhibition of decidual natural killer cells depends on the different possible combinations between killer cell immunoglobulin-like receptors, expressed by uterine natural killer cells, and the HLA-C1/C2 antigens, expressed by trophoblasts. Polarization of decidual macrophages in phenotype 2 and decidualization of stromal cells are also essential for high-quality vascular remodeling. Knowledge of the various immunologic mechanisms required for adequate vascular remodeling and their dysfunction in case of preeclampsia opens new avenues of research to identify novel biological markers or therapeutic targets to predict or prevent the onset of preeclampsia.
Collapse
Affiliation(s)
- Henri Boulanger
- Department of Nephrology and Dialysis, Clinique de l'Estrée, Stains, France (Drs Boulanger and Ahriz-Saksi)
| | - Stéphane Bounan
- Department of Obstetrics and Gynecology, Saint-Denis Hospital Center, Saint-Denis, France (Drs Bounan and Mahdhi)
| | - Amel Mahdhi
- Department of Obstetrics and Gynecology, Saint-Denis Hospital Center, Saint-Denis, France (Drs Bounan and Mahdhi)
| | - Dominique Drouin
- Department of Obstetrics and Gynecology, Clinique de l'Estrée, Stains, France (Dr Drouin)
| | - Salima Ahriz-Saksi
- Department of Nephrology and Dialysis, Clinique de l'Estrée, Stains, France (Drs Boulanger and Ahriz-Saksi)
| | - Fabien Guimiot
- Fetoplacental Unit, Robert-Debré Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France (Dr Guimiot)
| | - Nathalie Rouas-Freiss
- Fundamental Research Division, CEA, Institut de biologie François Jacob, Hemato-Immunology Research Unit, Inserm UMR-S 976, Institut de Recherche Saint-Louis, Paris University, Saint-Louis Hospital, Paris, France (Dr Rouas-Freiss)
| |
Collapse
|
7
|
Saito S. Role of immune cells in the establishment of implantation and maintenance of pregnancy and immunomodulatory therapies for patients with repeated implantation failure and recurrent pregnancy loss. Reprod Med Biol 2024; 23:e12600. [PMID: 39091423 PMCID: PMC11292669 DOI: 10.1002/rmb2.12600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
Background Immune cells play an important role in the establishment of pregnancy, and abnormalities in the immune system can cause implantation failure and miscarriage. Methods Previous papers have been summarized and the role of immune cells in reproduction is reviewed. Results The immune environment in the uterus changes drastically from before implantation to after pregnancy to maintain pregnancy. In allogeneic pregnancies, immature dendritic cells (DCs) that induce immune tolerance from outside the uterus flow into the uterus, and mature DCs that remain in the uterus express programmed cell death ligand 2, which suppresses the immune response. Macrophages are classified into M1-macrophages, which induce inflammation, and M2-macrophages, which suppress inflammation; M1-macrophages are required for luteinization, and M2-macrophages induce the differentiation of endometrial epithelial cells to enable implantation. Regulatory T cells, which suppress rejection, are essential for the implantation and maintenance of allogeneic pregnancies. Implantation failure and fetal loss are associated with decreased numbers or qualitative abnormalities of DCs, macrophages, and regulatory T cells. The clinical usefulness of immunomodulatory therapies in patients with repeated implantation failure and recurrent pregnancy loss has been reported. Conclusion The provision of individualized medical care in cases of implantation failure or miscarriage may improve clinical outcomes.
Collapse
|
8
|
Shen J, Zhao W, Cheng J, Cheng J, Zhao L, Dai C, Fu Y, Li B, Chen Z, Shi D, Li H, Deng Y. Lipopolysaccharide accelerates tryptophan degradation in the ovary and the derivative kynurenine disturbs hormone biosynthesis and reproductive performance. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131988. [PMID: 37418963 DOI: 10.1016/j.jhazmat.2023.131988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/01/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Lipopolysaccharide (LPS), also known as endotoxin, is a component of the outer membrane of gram-negative bacteria. LPS is released into the surrounding environment during bacterial death and lysis. Due to its chemical and thermal stability, LPS can be detected anywhere and easily exposed to humans and animals. Previous studies have shown that LPS causes hormonal imbalances, ovarian failure, and infertility in mammals. However, the potential mechanisms remain unclear. In this study, we investigated the effects and mechanisms of LPS on tryptophan degradation, both in vivo and in vitro. The effects of kynurenine, a tryptophan derivative, on granulosa cell function and reproductive performance were explored. Results showed that p38, NF-κB, and JNK signaling pathways were involved in LPS-induced Ido1 expressions and kynurenine accumulation. Furthermore, the kynurenine decreased estradiol production, but increased granulosa cell proliferation. In vivo, experiments showed that kynurenine decreased estradiol and FSH production and inhibited ovulation and corpus luteum formation. Additionally, pregnancy and offspring survival rates decreased considerably after kynurenine treatment. Our findings suggest that kynurenine accumulation disrupts hormone secretion, ovulation, corpus luteal formation, and reproductive performance in mammals.
Collapse
Affiliation(s)
- Jie Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Weimin Zhao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Juanru Cheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jinhua Cheng
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Chaohui Dai
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yanfeng Fu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bixia Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhe Chen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Hui Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
9
|
Mohapatra SK, Chaudhary D, Panda BSK, Kamboj A, Kapila R, Dang AK. Indoleamine 2, 3-dioxygenase 1 mediated alterations in the functionality of immune cells, deciphers the pregnancy outcomes in crossbred dairy cows. J Reprod Immunol 2023; 158:103972. [PMID: 37302363 DOI: 10.1016/j.jri.2023.103972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/13/2023]
Abstract
Pregnancy establishment in bovines requires maternal immune cell modulation. Present study investigated possible role of immunosuppressive indolamine-2, 3-dioxygenase 1 (IDO1) enzyme in the alteration of neutrophil (NEUT) and peripheral blood mononuclear cells (PBMCs) functionality of crossbred cows. Blood was collected from non-pregnant (NP) and pregnant (P) cows, followed by isolation of NEUT and PBMCs. Plasma pro-inflammatory (IFNγ and TNFα) and anti-inflammatory cytokines (IL-4 and IL-10) were estimated by ELISA and analysis of IDO1 gene in NEUT and PBMCs by RT-qPCR. Neutrophil functionality was assessed by chemotaxis, measuring activity of myeloperoxidase and β-D glucuronidase enzyme and evaluating nitric oxide production. Changes in PBMCs functionality was determined by transcriptional expression of pro-inflammatory (IFNγ, TNFα) and anti-inflammatory cytokine (IL-4, IL-10, TGFβ1) genes. Significantly elevated (P < 0.05) anti-inflammatory cytokines, increased IDO1 expression, reduced NEUT velocity, MPO activity and NO production observed only in P cows. Significantly higher (P < 0.05) expression of anti-inflammatory cytokines and TNFα genes were observed in PBMCs. Study highlights possible role of IDO1 in modulating the immune cell and cytokine activity during early pregnancy and may be targeted as early pregnancy biomarkers.
Collapse
Affiliation(s)
- Sunil Kumar Mohapatra
- Department of Animal Biochemistry, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Dheeraj Chaudhary
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Bibhudatta S K Panda
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Aarti Kamboj
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Rajeev Kapila
- Department of Animal Biochemistry, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Ajay Kumar Dang
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India.
| |
Collapse
|
10
|
Greenbaum S, Averbukh I, Soon E, Rizzuto G, Baranski A, Greenwald NF, Kagel A, Bosse M, Jaswa EG, Khair Z, Kwok S, Warshawsky S, Piyadasa H, Goldston M, Spence A, Miller G, Schwartz M, Graf W, Van Valen D, Winn VD, Hollmann T, Keren L, van de Rijn M, Angelo M. A spatially resolved timeline of the human maternal-fetal interface. Nature 2023; 619:595-605. [PMID: 37468587 PMCID: PMC10356615 DOI: 10.1038/s41586-023-06298-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 06/08/2023] [Indexed: 07/21/2023]
Abstract
Beginning in the first trimester, fetally derived extravillous trophoblasts (EVTs) invade the uterus and remodel its spiral arteries, transforming them into large, dilated blood vessels. Several mechanisms have been proposed to explain how EVTs coordinate with the maternal decidua to promote a tissue microenvironment conducive to spiral artery remodelling (SAR)1-3. However, it remains a matter of debate regarding which immune and stromal cells participate in these interactions and how this evolves with respect to gestational age. Here we used a multiomics approach, combining the strengths of spatial proteomics and transcriptomics, to construct a spatiotemporal atlas of the human maternal-fetal interface in the first half of pregnancy. We used multiplexed ion beam imaging by time-of-flight and a 37-plex antibody panel to analyse around 500,000 cells and 588 arteries within intact decidua from 66 individuals between 6 and 20 weeks of gestation, integrating this dataset with co-registered transcriptomics profiles. Gestational age substantially influenced the frequency of maternal immune and stromal cells, with tolerogenic subsets expressing CD206, CD163, TIM-3, galectin-9 and IDO-1 becoming increasingly enriched and colocalized at later time points. By contrast, SAR progression preferentially correlated with EVT invasion and was transcriptionally defined by 78 gene ontology pathways exhibiting distinct monotonic and biphasic trends. Last, we developed an integrated model of SAR whereby invasion is accompanied by the upregulation of pro-angiogenic, immunoregulatory EVT programmes that promote interactions with the vascular endothelium while avoiding the activation of maternal immune cells.
Collapse
Affiliation(s)
- Shirley Greenbaum
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | - Inna Averbukh
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Erin Soon
- Department of Pathology, Stanford University, Stanford, CA, USA
- Immunology Program, Stanford University, Stanford, CA, USA
| | - Gabrielle Rizzuto
- Department of Pathology, University of Californica San Francisco, San Francisco, CA, USA
| | - Alex Baranski
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Noah F Greenwald
- Department of Pathology, Stanford University, Stanford, CA, USA
- Cancer Biology Program, Stanford University, Stanford, CA, USA
| | - Adam Kagel
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Marc Bosse
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Eleni G Jaswa
- Department of Obstetrics Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Zumana Khair
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Shirley Kwok
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | | | - Mako Goldston
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Angie Spence
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Geneva Miller
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Morgan Schwartz
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Will Graf
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - David Van Valen
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Virginia D Winn
- Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, USA
| | - Travis Hollmann
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Leeat Keren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Michael Angelo
- Department of Pathology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
11
|
Human Chorionic Gonadotropin-Stimulated Interleukin-4-Induced-1 (IL4I1) Promotes Human Decidualization via Aryl Hydrocarbon Receptor. Int J Mol Sci 2023; 24:ijms24043163. [PMID: 36834576 PMCID: PMC9959871 DOI: 10.3390/ijms24043163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
Decidualization is necessary for the successful establishment of early pregnancy in rodents and humans. Disturbed decidualization results in recurrent implantation failure, recurrent spontaneous abortion, and preeclampsia. Tryptophan (Trp), one of the essential amino acids in humans, has a positive effect on mammalian pregnancy. Interleukin 4-induced gene 1 (IL4I1) is a recently identified enzyme that can metabolize L-Trp to activate aryl hydrocarbon receptor (AHR). Although IDO1-catalyzed kynurenine (Kyn) from Trp has been shown to enhance human in vitro decidualization via activating AHR, whether IL4I1-catalyzed metabolites of Trp are involved in human decidualization is still unknown. In our study, human chorionic gonadotropin stimulates IL4I1 expression and secretion from human endometrial epithelial cells through ornithine decarboxylase-induced putrescine production. Either IL4I1-catalyzed indole-3-pyruvic acid (I3P) or its metabolite indole-3-aldehyde (I3A) from Trp is able to induce human in vitro decidualization by activating AHR. As a target gene of AHR, Epiregulin induced by I3P and I3A promotes human in vitro decidualization. Our study indicates that IL4I1-catalyzed metabolites from Trp can enhance human in vitro decidualization through AHR-Epiregulin pathway.
Collapse
|
12
|
Zhang L, Jiang T, Yang Y, Deng W, Lu H, Wang S, Liu R, Chang M, Wu S, Gao Y, Hao H, Shen G, Xu M, Chen X, Hu L, Yang L, Bi X, Lin Y, Lu Y, Jiang Y, Li M, Xie Y. Postpartum hepatitis and host immunity in pregnant women with chronic HBV infection. Front Immunol 2023; 13:1112234. [PMID: 36685527 PMCID: PMC9846060 DOI: 10.3389/fimmu.2022.1112234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
In order to develop immune tolerant to the fetal, maternal immune system will have some modification comparing to the time before pregnancy. Immune tolerance starts and develops at the maternal placental interface. In innate immunity, decidual natural killer (dNK) cells, macrophages and dendritic cells play a key role in immue tolerance. In adaptive immunity, a moderate increase of number and immune inhibition function of regulatory T cells (Treg) are essential for immune tolerance. The trophoblast cells and immune cells expressing indoleamine 2,3-dioxygenase (IDO), the trophoblast cells expressing HLA-G, and Th1/Th2 shifting to Th2 dominant and Th17/Treg shifting to Treg domiant are in favor of maternal fetal immune tolerance. Steroids (estrogen and progesterone) and human chorionic gonadotropin (HCG) also participate in immune tolerance by inducing Treg cells or upregulating immunosuppressive cytokines. Most of the patients with chronic HBV infection are in the "HBV immune tolerance period" before pregnancy, and the liver disease is relatively stable during pregnancy. In chronic HBV infection women, after delivery, the relative immunosuppression in vivo is reversed, and Th1 is dominant in Th1/Th2 and Th17 is dominant in Th17/Treg balance. After delivery, the number of Treg decrease and NK cells increase in quantity and cytotoxicity in peripheral blood. Liver NK cells may cause liver inflammation through a non-antigen specific mechanism. After delivery, the number of CD8+ T cells will increase and HBV specific T cell response recovers from the disfunction in pregnancy. Under the background of postpartum inflammation, the rapid decrease of cortisol after delivery, and especially the enhancement of HBV specific T cell response induced by HBV DNA and cytokines, are the main reasons for postpartum hepatitis. HBeAg positive, especially HBeAg<700 S/CO, and HBV DNA>3-5Log10IU/ml are risk factors for postpartum hepatitis. Antiviral treatment in late pregnancy can reduce the incidence of mother to child transmission (MTCT) in chronic HBV infection women. Chronic HBV infection women have hepatitis both during pregnancy and more often in 12 weeks postpartum. It is generally agreed that postpartum hepatitis is mild symptoms and self-limited. Delaying drug withdrawal to 48 weeks can increase the seroconversion rate of HBeAg in delivery women with elevated alanine aminotransferase (ALT) in pregnancy.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Tingting Jiang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ying Yang
- Hepatology Department 2, Xingtai Second Hospital, Xingtai, China
| | - Wen Deng
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Huihui Lu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China,Department of Obstetrics and Gynecology, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyu Wang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ruyu Liu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Min Chang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shuling Wu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuanjiao Gao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongxiao Hao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ge Shen
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Mengjiao Xu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoxue Chen
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Leiping Hu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Liu Yang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyue Bi
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yanjie Lin
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Yao Lu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China,*Correspondence: Yao Lu, ; Yuyong Jiang, ; Minghui Li, ; Yao Xie,
| | - Yuyong Jiang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China,*Correspondence: Yao Lu, ; Yuyong Jiang, ; Minghui Li, ; Yao Xie,
| | - Minghui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China,Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China,*Correspondence: Yao Lu, ; Yuyong Jiang, ; Minghui Li, ; Yao Xie,
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China,Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China,*Correspondence: Yao Lu, ; Yuyong Jiang, ; Minghui Li, ; Yao Xie,
| |
Collapse
|
13
|
Marić I, Contrepois K, Moufarrej MN, Stelzer IA, Feyaerts D, Han X, Tang A, Stanley N, Wong RJ, Traber GM, Ellenberger M, Chang AL, Fallahzadeh R, Nassar H, Becker M, Xenochristou M, Espinosa C, De Francesco D, Ghaemi MS, Costello EK, Culos A, Ling XB, Sylvester KG, Darmstadt GL, Winn VD, Shaw GM, Relman DA, Quake SR, Angst MS, Snyder MP, Stevenson DK, Gaudilliere B, Aghaeepour N. Early prediction and longitudinal modeling of preeclampsia from multiomics. PATTERNS (NEW YORK, N.Y.) 2022; 3:100655. [PMID: 36569558 PMCID: PMC9768681 DOI: 10.1016/j.patter.2022.100655] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 09/28/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022]
Abstract
Preeclampsia is a complex disease of pregnancy whose physiopathology remains unclear. We developed machine-learning models for early prediction of preeclampsia (first 16 weeks of pregnancy) and over gestation by analyzing six omics datasets from a longitudinal cohort of pregnant women. For early pregnancy, a prediction model using nine urine metabolites had the highest accuracy and was validated on an independent cohort (area under the receiver-operating characteristic curve [AUC] = 0.88, 95% confidence interval [CI] [0.76, 0.99] cross-validated; AUC = 0.83, 95% CI [0.62,1] validated). Univariate analysis demonstrated statistical significance of identified metabolites. An integrated multiomics model further improved accuracy (AUC = 0.94). Several biological pathways were identified including tryptophan, caffeine, and arachidonic acid metabolisms. Integration with immune cytometry data suggested novel associations between immune and proteomic dynamics. While further validation in a larger population is necessary, these encouraging results can serve as a basis for a simple, early diagnostic test for preeclampsia.
Collapse
Affiliation(s)
- Ivana Marić
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kévin Contrepois
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mira N. Moufarrej
- Departments of Bioengineering and Applied Physics, Stanford University and Chan Zuckerberg Biohub, Stanford, CA 94305, USA
| | - Ina A. Stelzer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dorien Feyaerts
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xiaoyuan Han
- University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA 94103, USA
| | - Andy Tang
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Natalie Stanley
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ronald J. Wong
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gavin M. Traber
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mathew Ellenberger
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan L. Chang
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ramin Fallahzadeh
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Huda Nassar
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Martin Becker
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maria Xenochristou
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Camilo Espinosa
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Davide De Francesco
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mohammad S. Ghaemi
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Digital Technologies Research Centre, National Research Council Canada, Toronto, Canada
| | - Elizabeth K. Costello
- Departments of Medicine, and of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anthony Culos
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xuefeng B. Ling
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karl G. Sylvester
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gary L. Darmstadt
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Virginia D. Winn
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gary M. Shaw
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David A. Relman
- Departments of Medicine, and of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Stephen R. Quake
- Departments of Bioengineering and Applied Physics, Stanford University and Chan Zuckerberg Biohub, Stanford, CA 94305, USA
| | - Martin S. Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David K. Stevenson
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brice Gaudilliere
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nima Aghaeepour
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Tang K, Wang S, Gao W, Song Y, Yu B. Harnessing the cyclization strategy for new drug discovery. Acta Pharm Sin B 2022; 12:4309-4326. [PMID: 36562004 PMCID: PMC9764076 DOI: 10.1016/j.apsb.2022.09.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/07/2022] [Accepted: 09/23/2022] [Indexed: 12/25/2022] Open
Abstract
The design of new ligands with high affinity and specificity against the targets of interest has been a central focus in drug discovery. As one of the most commonly used methods in drug discovery, the cyclization represents a feasible strategy to identify new lead compounds by increasing structural novelty, scaffold diversity and complexity. Such strategy could also be potentially used for the follow-on drug discovery without patent infringement. In recent years, the cyclization strategy has witnessed great success in the discovery of new lead compounds against different targets for treating various diseases. Herein, we first briefly summarize the use of the cyclization strategy in the discovery of new small-molecule lead compounds, including the proteolysis targeting chimeras (PROTAC) molecules. Particularly, we focus on four main strategies including fused ring cyclization, chain cyclization, spirocyclization and macrocyclization and highlight the use of the cyclization strategy in lead generation. Finally, the challenges including the synthetic intractability, relatively poor pharmacokinetics (PK) profiles and the absence of the structural information for rational structure-based cyclization are also briefly discussed. We hope this review, not exhaustive, could provide a timely overview on the cyclization strategy for the discovery of new lead compounds.
Collapse
|
15
|
Xie H, Li Z, Zheng G, Yang C, Liu X, Xu X, Ren Y, Wang C, Hu X. Tim-3 downregulation by Toxoplasma gondii infection contributes to decidual dendritic cell dysfunction. Parasit Vectors 2022; 15:393. [PMID: 36303229 PMCID: PMC9615254 DOI: 10.1186/s13071-022-05506-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
Background Women in early pregnancy infected by Toxoplasma gondii may have severe adverse pregnancy outcomes, such as spontaneous abortion and fetal malformation. The inhibitory molecule T cell immunoglobulin and mucin domain 3 (Tim-3) is highly expressed on decidual dendritic cells (dDCs) and plays an important role in maintaining immune tolerance. However, whether T. gondii infection can cause dDC dysfunction by influencing the expression of Tim-3 and further participate in adverse pregnancy outcomes is still unclear. Methods An abnormal pregnancy model in Tim-3-deficient mice and primary human dDCs treated with Tim-3 neutralizing antibodies were used to examine the effect of Tim-3 expression on dDC dysfunction after T. gondii infection. Results Following T. gondii infection, the expression of Tim-3 on dDCs was downregulated, those of the pro-inflammatory functional molecules CD80, CD86, MHC-II, tumor necrosis factor-α (TNF-α), and interleukin-12 (IL-12) were increased, while those of the tolerant molecules indoleamine 2,3-dioxygenase (IDO) and interleukin-10 (IL-10) were significantly reduced. Tim-3 downregulation by T. gondii infection was closely associated with an increase in proinflammatory molecules and a decrease in tolerant molecules, which further resulted in dDC dysfunction. Moreover, the changes in Tim-3 induced by T. gondii infection further reduced the secretion of the cytokine IL-10 via the SRC-signal transducer and activator of transcription 3 (STAT3) pathway, which ultimately contributed to abnormal pregnancy outcomes. Conclusions Toxoplasma gondii infection can significantly downregulate the expression of Tim-3 and cause the aberrant expression of functional molecules in dDCs. This leads to dDC dysfunction, which can ultimately contribute to abnormal pregnancy outcomes. Further, the expression of the anti-inflammatory molecule IL-10 was significantly decreased by Tim-3 downregulation, which was mediated by the SRC-STAT3 signaling pathway in dDCs after T. gondii infection. Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05506-1.
Collapse
Affiliation(s)
- Hongbing Xie
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Zhidan Li
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Guangmei Zheng
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Chunyan Yang
- Department of Oral Biology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Xianbing Liu
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Xiaoyan Xu
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Yushan Ren
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Chao Wang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Xuemei Hu
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China.
| |
Collapse
|
16
|
Silvano A, Seravalli V, Strambi N, Tartarotti E, Tofani L, Calosi L, Parenti A, Di Tommaso M. Tryptophan degradation enzymes and Angiotensin (1-7) expression in human placenta. J Reprod Immunol 2022; 153:103692. [DOI: 10.1016/j.jri.2022.103692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 11/26/2022]
|
17
|
Krstic J, Deutsch A, Fuchs J, Gauster M, Gorsek Sparovec T, Hiden U, Krappinger JC, Moser G, Pansy K, Szmyra M, Gold D, Feichtinger J, Huppertz B. (Dis)similarities between the Decidual and Tumor Microenvironment. Biomedicines 2022; 10:1065. [PMID: 35625802 PMCID: PMC9138511 DOI: 10.3390/biomedicines10051065] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 02/05/2023] Open
Abstract
Placenta-specific trophoblast and tumor cells exhibit many common characteristics. Trophoblast cells invade maternal tissues while being tolerated by the maternal immune system. Similarly, tumor cells can invade surrounding tissues and escape the immune system. Importantly, both trophoblast and tumor cells are supported by an abetting microenvironment, which influences invasion, angiogenesis, and immune tolerance/evasion, among others. However, in contrast to tumor cells, the metabolic, proliferative, migrative, and invasive states of trophoblast cells are under tight regulatory control. In this review, we provide an overview of similarities and dissimilarities in regulatory processes that drive trophoblast and tumor cell fate, particularly focusing on the role of the abetting microenvironments.
Collapse
Affiliation(s)
- Jelena Krstic
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Alexander Deutsch
- Division of Hematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; (A.D.); (K.P.); (M.S.)
| | - Julia Fuchs
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
- Division of Biophysics, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Tina Gorsek Sparovec
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria; (T.G.S.); (U.H.); (D.G.)
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria; (T.G.S.); (U.H.); (D.G.)
| | - Julian Christopher Krappinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Gerit Moser
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Katrin Pansy
- Division of Hematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; (A.D.); (K.P.); (M.S.)
| | - Marta Szmyra
- Division of Hematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; (A.D.); (K.P.); (M.S.)
| | - Daniela Gold
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria; (T.G.S.); (U.H.); (D.G.)
| | - Julia Feichtinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| |
Collapse
|
18
|
Ziganshina MM, Shilova NV, Khasbiullina NR, Terentyeva AV, Dolgopolova EL, Nokel AY, Yarotskaya EL, Shmakov RG, Bovin NV, Sukhikh GT. Repertoire of glycan‐binding placenta‐associated antibodies in healthy pregnancy and in preeclampsia. Scand J Immunol 2022; 95:e13157. [DOI: 10.1111/sji.13157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/04/2022] [Accepted: 03/06/2022] [Indexed: 12/09/2022]
Affiliation(s)
- Marina M. Ziganshina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation Moscow Russia
| | - Nadezhda V. Shilova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation Moscow Russia
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS Moscow Russia
| | - Nailia R. Khasbiullina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation Moscow Russia
| | - Anastasia V. Terentyeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation Moscow Russia
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University) Moscow Russia
| | - Elena L. Dolgopolova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation Moscow Russia
| | - Alexey Yu. Nokel
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation Moscow Russia
| | - Ekaterina L. Yarotskaya
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation Moscow Russia
| | - Roman G. Shmakov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation Moscow Russia
| | - Nicolai V. Bovin
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS Moscow Russia
- Centre for Kode Technology Innovation School of Engineering, Computer and Mathematical Sciences Auckland University of Technology Auckland New Zealand
| | - Gennady T. Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation Moscow Russia
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University) Moscow Russia
| |
Collapse
|
19
|
Liu A, Raja xavier J, Singh Y, Brucker SY, Salker MS. Molecular and Physiological Aspects of SARS-CoV-2 Infection in Women and Pregnancy. Front Glob Womens Health 2022; 3:756362. [PMID: 35284910 PMCID: PMC8908006 DOI: 10.3389/fgwh.2022.756362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/01/2022] [Indexed: 01/08/2023] Open
Abstract
Whilst scientific knowledge about SARS-CoV-2 and COVID-19 is rapidly increasing, much of the effects on pregnant women is still unknown. To accommodate pregnancy, the human endometrium must undergo a physiological transformation called decidualization. These changes encompass the remodeling of endometrial immune cells leading to immunotolerance of the semi-allogenic conceptus as well as defense against pathogens. The angiotensin converting enzyme 2 (ACE2) plays an important regulatory role in the renin-angiotensin-system (RAS) and has been shown to be protective against comorbidities known to worsen COVID-19 outcomes. Furthermore, ACE2 is also crucial for decidualization and thus for early gestation. An astounding gender difference has been found in COVID-19 with male patients presenting with more severe cases and higher mortality rates. This could be attributed to differences in sex chromosomes, hormone levels and behavior patterns. Despite profound changes in the female body during pregnancy, expectant mothers do not face worse outcomes compared with non-pregnant women. Whereas mother-to-child transmission through respiratory droplets during labor or in the postnatal period is known, another question of in utero transmission remains unanswered. Evidence of placental SARS-CoV-2 infection and expression of viral entry receptors at the maternal-fetal interface suggests the possibility of in utero transmission. SARS-CoV-2 can cause further harm through placental damage, maternal systemic inflammation, and hindered access to health care during the pandemic. More research on the effects of COVID-19 during early pregnancy as well as vaccination and treatment options for gravid patients is urgently needed.
Collapse
Affiliation(s)
- Anna Liu
- Research Institute of Women's Health, Eberhard Karls University, Tübingen, Germany
| | - Janet Raja xavier
- Research Institute of Women's Health, Eberhard Karls University, Tübingen, Germany
| | - Yogesh Singh
- Research Institute of Women's Health, Eberhard Karls University, Tübingen, Germany
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls University, Tübingen, Germany
| | - Sara Y. Brucker
- Research Institute of Women's Health, Eberhard Karls University, Tübingen, Germany
| | - Madhuri S. Salker
- Research Institute of Women's Health, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
20
|
Examination of the TIGIT, CD226, CD112, and CD155 Immune Checkpoint Molecules in Peripheral Blood Mononuclear Cells in Women Diagnosed with Early-Onset Preeclampsia. Biomedicines 2021; 9:biomedicines9111608. [PMID: 34829838 PMCID: PMC8615567 DOI: 10.3390/biomedicines9111608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 11/25/2022] Open
Abstract
Early-onset preeclampsia is a common obstetrical disease with a potential genetic background and is characterized by the predominance of Th1 immune response. However, although many studies investigated the immunological environment in preeclamptic patients, no information is available about the potential role of the TIGIT/CD226/CD112/CD155 immune checkpoint pathway. A total of 37 pregnant women diagnosed with early-onset preeclampsia and 36 control women with appropriately matched gestational age were enrolled in this study. From venous blood, mononuclear cells were isolated and stored in the freezer. Using multicolor flow cytometry T-, NK cell and monocyte subpopulations were determined. After characterization of the immune cell subsets, TIGIT, CD226, CD112, and CD155 surface expression and intracellular granzyme B content were determined by flow cytometer. Significantly decreased CD226 expression and increased CD112 and CD155 surface expression were detected in almost all investigated T-cell, NK cell, and monocyte subpopulations in women diagnosed with preeclampsia compared to the healthy group. Furthermore, reduced TIGIT and granzyme B expression were measured only in preeclamptic CD8+ T cells compared to healthy pregnant women. A decreased level of the activatory receptor CD226 in effector lymphocytes accompanied with an elevated surface presence of the CD112 and CD155 ligands in monocytes could promote the TIGIT/CD112 and/or TIGIT/CD155 ligation, which mediates inhibitory signals. We assume that the inhibition of the immune response via this immune checkpoint pathway might contribute to compensate for the Th1 predominance during early-onset preeclampsia.
Collapse
|
21
|
Adu-Gyamfi C, Savulescu D, Mikhathani L, Otwombe K, Salazar-Austin N, Chaisson R, Martinson N, George J, Suchard M. Plasma Kynurenine-to-Tryptophan Ratio, a Highly Sensitive Blood-Based Diagnostic Tool for Tuberculosis in Pregnant Women Living With Human Immunodeficiency Virus (HIV). Clin Infect Dis 2021; 73:1027-1036. [PMID: 33718949 PMCID: PMC8442800 DOI: 10.1093/cid/ciab232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND For pregnant women living with human immunodeficiency virus (HIV), concurrent active tuberculosis (TB) disease increases the risk of maternal mortality and poor pregnancy outcomes. Plasma indoleamine 2,3-dioxygenase (IDO) activity measured by kynurenine-to-tryptophan (K/T) ratio has been proposed as a blood-based TB biomarker. We investigated whether plasma K/T ratio could be used to diagnose active TB among pregnant women with HIV. METHODS Using an enzyme-linked immunosorbent assay (ELISA), we measured K/T ratio in 72 pregnant women with and active TB and compared them to 117 pregnant women with HIB but without TB, matched by age and gestational age. RESULTS Plasma K/T ratio was significantly elevated during pregnancy compared to sampling done after pregnancy (P < .0001). Pregnant women who had received isoniazid preventive therapy (IPT) before enrollment had decreased plasma K/T ratio compared to those who had not received IPT (P = .0174). Plasma K/T ratio was elevated in women with active TB at time of diagnosis compared to those without TB (P < .0001). Using a cutoff of 0.100, plasma K/T ratio gave a diagnostic sensitivity of 94% (95% confidence interval [CI]: 82-95), specificity of 90% (95% CI: 80-91), positive predictive value (PPV) 85% and negative predictive value (NPV) 98%. A receiver operating characteristic curve (ROC) gave an area under the curve of 0.95 (95% CI: .92-.97, P < .0001).In conclusion, plasma K/T ratio is a sensitive blood-based diagnostic test for active TB disease in pregnant women living with HIV. Plasma K/T ratio should be further evaluated as an initial TB diagnostic test to determine its impact on patient care.
Collapse
Affiliation(s)
- Clement Adu-Gyamfi
- Center for Vaccines and Immunology, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of The Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
| | - Dana Savulescu
- Center for Vaccines and Immunology, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Lillian Mikhathani
- Center for Vaccines and Immunology, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Kennedy Otwombe
- Perinatal Health Research Unit (PHRU), Soweto Matlosana Collaborating Centre for HIV/AIDS and TB, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, South Africa
| | - Nicole Salazar-Austin
- Johns Hopkins University Centre for TB Research, Baltimore, MarylandUSA
- Johns Hopkins School of Medicine, Baltimore, MarylandUSA
| | - Richard Chaisson
- Johns Hopkins University Centre for TB Research, Baltimore, MarylandUSA
| | - Neil Martinson
- Perinatal Health Research Unit (PHRU), Soweto Matlosana Collaborating Centre for HIV/AIDS and TB, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, South Africa
- Johns Hopkins University Centre for TB Research, Baltimore, MarylandUSA
| | - Jaya George
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of The Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
| | - Melinda Suchard
- Center for Vaccines and Immunology, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of The Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
22
|
Huang HL, Yang HL, Lai ZZ, Yang SL, Li MQ, Li DJ. Decidual IDO + macrophage promotes the proliferation and restricts the apoptosis of trophoblasts. J Reprod Immunol 2021; 148:103364. [PMID: 34482001 DOI: 10.1016/j.jri.2021.103364] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/14/2021] [Accepted: 08/18/2021] [Indexed: 12/29/2022]
Abstract
Indoleamine 2, 3-dioxygenase (IDO), a tryptophan-catabolizing enzyme, is essential in physiological immunoregulation. The present research was conducted to elucidate the expression and roles of IDO in decidual macrophages (dMφ) during early pregnancy. Here, we observed a remarkable decrease of IDO+ dMφ from patients with unexplained recurrent spontaneous abortion (URSA). IDO+ dMφ displayed M2 phenotype with higher CD206, CD209 and CD163, and lower CD86. Interestingly, treatment with 1-methyl-d-tryptophan (1-MT, an IDO pathway inhibitor) led to the M1 bias of dMφ. Further analysis of the cytokine array and the qPCR showed decreased levels of trophoblast proliferation or invasion-related molecules (e.g., CXCL12 and BMP2) in 1-MT-treated dMφ. The data of co-culture system showed that 1-MT-pretreated dMφ decreased the proliferation and the expression of Ki-67 and Bcl-2, and increased cell apoptosis of HTR-8/Snveo cells. Additionally, the expression of IDO in U937 cells was up-regulated by decidual stromal cells (DSC) and HTR-8/Snveo cells in vitro, as well as estradiol and medroxyprogesterone. These data suggest that endocrine environment, DSC and trophoblasts should contribute to the high level of IDO in dMφ, and IDO+ dMφ with M2 dominant phenotype promote the survival of trophoblasts during early pregnancy. The abnormal lower level of IDO should trigger the dysfunction of dMφ, further suppress the survival of trophoblasts and increase the risk of miscarriage.
Collapse
Affiliation(s)
- Hong-Lan Huang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, 200080, People's Republic of China
| | - Hui-Li Yang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, 200080, People's Republic of China
| | - Zhen-Zhen Lai
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, 200080, People's Republic of China
| | - Shao-Liang Yang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, 200080, People's Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, 200080, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, 200080, People's Republic of China.
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, 200080, People's Republic of China.
| |
Collapse
|
23
|
Silvano A, Seravalli V, Strambi N, Cecchi M, Tartarotti E, Parenti A, Di Tommaso M. Tryptophan metabolism and immune regulation in the human placenta. J Reprod Immunol 2021; 147:103361. [PMID: 34365162 DOI: 10.1016/j.jri.2021.103361] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022]
Abstract
The placenta represents the maternal-fetal vascular interface. It is capable of supplying the bioenergetic needs of the developing conceptus. It is composed of different cell types that engage in highly varied functions, ranging from attachment, invasion and vascular remodeling to cell fusion, hormone production, and nutrient transport. A deep knowledge of the immunological mechanisms responsible for maintaining an active tolerance towards an allogeneic fetus and the anti-inflammatory properties of the placenta can be useful to clarify the pathogenesis of adverse events in pregnancy. While the systemic mechanisms of this immunological regulation in pregnancy have been well studied, the metabolic processes involved in the placental immune response are still poorly understood. The aim of this review is to summarize the most important information concerning the immune regulation in pregnancy, focusing on the role of tryptophan (Trp) catabolism performed by indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) in the placenta.
Collapse
Affiliation(s)
- Angela Silvano
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, Florence, Italy
| | - Viola Seravalli
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, Florence, Italy
| | - Noemi Strambi
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, Florence, Italy
| | - Marta Cecchi
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Italy
| | - Enrico Tartarotti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Italy
| | - Astrid Parenti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Italy.
| | - Mariarosaria Di Tommaso
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, Florence, Italy; Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Italy.
| |
Collapse
|
24
|
Cai M, Ni WJ, Han L, Chen WD, Peng DY. Research Progress of Therapeutic Enzymes and Their Derivatives: Based on Herbal Medicinal Products in Rheumatoid Arthritis. Front Pharmacol 2021; 12:626342. [PMID: 33796022 PMCID: PMC8008143 DOI: 10.3389/fphar.2021.626342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/07/2021] [Indexed: 12/19/2022] Open
Abstract
Rheumatoid arthritis (RA) acts as one of the most common, agnogenic and chronic inflammatory-autoimmune disorder which is characterized by persistent synovitis, cartilage destruction, and joint deformities, leads to a wide range of disabilities, and increased mortality, thus imposing enormous burdens. Several drugs with anti-inflammatory and immunomodulatory properties such as celecoxib, diclofenac and methotrexate are being selected as conventional drugs in the allopathic system of medicine for the treatment of RA in clinic. However, there are some serious side effects more or less when using these drugs because of their short poor bioavailability and biological half-life for a long time. These shortcomings greatly promote the exploration and application of new low- or no-toxicity drugs for treating the RA. Meanwhile, a growing number of studies demonstrate that several herbs present certain anti-inflammatory and anti-arthritic activities through different enzymes and their derivatives, which indicate that they are promising therapeutic strategies when targeting these mediators based on herbal medicinal products in RA research. This review article summarizes the roles of the main enzymes and their derivatives during the pathogenesis of RA, and clearly clarifies the explicit and potential targeted actions of herbal medicinal products that have anti-RA activity. Our review provides timely and critical reference for the scientific rationale use of herbal medicinal products, with the increasing basic research and clinical application of herbal medicinal products by patients with RA.
Collapse
Affiliation(s)
- Ming Cai
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.,Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, China
| | - Wei-Jian Ni
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China.,Department of Pharmacy, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Lan Han
- Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, China
| | - Wei-Dong Chen
- Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, China
| | - Dai-Yin Peng
- Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
25
|
Du H, Zheng X, Zhao Q, Hu Z, Wang H, Zhou L, Liu JF. Analysis of Structural Variants Reveal Novel Selective Regions in the Genome of Meishan Pigs by Whole Genome Sequencing. Front Genet 2021; 12:550676. [PMID: 33613628 PMCID: PMC7890942 DOI: 10.3389/fgene.2021.550676] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 01/15/2021] [Indexed: 12/17/2022] Open
Abstract
Structural variants (SVs) represent essential forms of genetic variation, and they are associated with various phenotypic traits in a wide range of important livestock species. However, the distribution of SVs in the pig genome has not been fully characterized, and the function of SVs in the economic traits of pig has rarely been studied, especially for most domestic pig breeds. Meishan pig is one of the most famous Chinese domestic pig breeds, with excellent reproductive performance. Here, to explore the genome characters of Meishan pig, we construct an SV map of porcine using whole-genome sequencing data and report 33,698 SVs in 305 individuals of 55 globally distributed pig breeds. We perform selective signature analysis using these SVs, and a number of candidate variants are successfully identified. Especially for the Meishan pig, 64 novel significant selection regions are detected in its genome. A 140-bp deletion in the Indoleamine 2,3-Dioxygenase 2 (IDO2) gene, is shown to be associated with reproduction traits in Meishan pig. In addition, we detect two duplications only existing in Meishan pig. Moreover, the two duplications are separately located in cytochrome P450 family 2 subfamily J member 2 (CYP2J2) gene and phospholipase A2 group IVA (PLA2G4A) gene, which are related to the reproduction trait. Our study provides new insights into the role of selection in SVs' evolution and how SVs contribute to phenotypic variation in pigs.
Collapse
Affiliation(s)
- Heng Du
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xianrui Zheng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiqi Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhengzheng Hu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Haifei Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Lei Zhou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian-Feng Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Liu S, Hong L, Li Y, Lian R, Wang X, Zeng Y. Association between endometrial indoleamine 2,3-dioxygenase expression level and pregnancy outcomes in women undergoing first in vitro fertilization treatment. BMC Pregnancy Childbirth 2021; 21:33. [PMID: 33413226 PMCID: PMC7792114 DOI: 10.1186/s12884-020-03511-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/21/2020] [Indexed: 11/22/2022] Open
Abstract
Background Indoleamine 2,3-dioxygenase (IDO) has been reported to play a key role in placental development during normal pregnancy. However, the question of whether endometrial IDO expression affects in vitro fertilization (IVF) pregnancy outcomes remains unclear. The current study was undertaken to investigate whether there was any association between endometrial IDO immunohistochemical staining and IVF treatment outcome. Methods This retrospective study was designed to compare pregnancy outcomes among women with different endometrial IDO expression levels under their first IVF treatment. A total of 140 women undergoing their IVF treatment were selected from January 2017 to December 2017. Endometrial samples were collected during mid-luteal phase before IVF cycle. The endometrial IDO expression levels were analyzed by immunohistochemistry, and compared between women who were pregnant or not. A logistic regression analysis was performed to determine the impact of endometrial IDO staining on live birth. Results No significant differences in the endometrial IDO immunohistochemical staining were found between women who had clinical pregnancy and those who failed (P>0.05). However, the endometrial IDO staining was significantly higher among women who had live birth compared with those who had no live birth (P=0.031). Additionally, after adjusting for differences in maternal age, BMI and duration of gonadotropin stimulation, women with higher IDO expression level had an increased live birth rate (adjusted odds ratio [aOR] 2.863, 95% confidence interval [CI] 1.180-6.947). Conclusions Higher endometrial IDO expression level during mid-luteal phase is associated with an increased live birth rate in women undergoing their first IVF treatment.
Collapse
Affiliation(s)
- Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, No.1001 Fuqiang Road Futian District, 518045, Shenzhen, China
| | - Ling Hong
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, No.1001 Fuqiang Road Futian District, 518045, Shenzhen, China
| | - Yuye Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, No.1001 Fuqiang Road Futian District, 518045, Shenzhen, China
| | - Ruochun Lian
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, No.1001 Fuqiang Road Futian District, 518045, Shenzhen, China
| | - Xiaohui Wang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, No.1001 Fuqiang Road Futian District, 518045, Shenzhen, China
| | - Yong Zeng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, No.1001 Fuqiang Road Futian District, 518045, Shenzhen, China.
| |
Collapse
|
27
|
Wei H, Liu S, Lian R, Huang C, Li Y, Chen L, Zeng Y. Abnormal Expression of Indoleamine 2, 3-Dioxygenase in Human Recurrent Miscarriage. Reprod Sci 2020; 27:1656-1664. [PMID: 32430712 DOI: 10.1007/s43032-020-00196-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Indoleamine 2, 3-dioxygenase (IDO), an immunosuppressive enzyme that mediates the conversion of tryptophan to kynurenine, was shown to play a key role in placental development during normal pregnancy. However, little is known about the pattern of IDO expression in the endometrium and its attendant functional significance in pregnancies complicated with recurrent miscarriage (RM). Immunohistochemical studies of IDO, Foxp3, CD56, and CD163 expression were performed in endometrial samples from women with RM and healthy fertile controls. Our study found that IDO was localized in glandular epithelial cells, surface epithelial cells, and a small number of cells within the stromal compartment (including stromal cells and leukocytes) in endometrium. Indoleamine 2, 3-dioxygenase expression in the RM group was significantly lower than control group. The Foxp3 and CD56 expression were significantly increased with the elevated IDO expression in controls but not in RM. The percentage of Foxp3 + Tregs was significantly correlated with the level of IDO expression in the control group. Comparatively, no correlation was found between the percentage of CD56 + cells, CD163 + cells, and the level of IDO expression, no matter in controls and RM patients. This study demonstrated that the downregulation of IDO expression and noncoordinated association between IDO and other endometrial immune cells were associated with RM. Our findings provide insights into the contribution of IDO in immune regulation to maintain normal pregnancy, which could be used to develop potential therapeutic methods for RM.
Collapse
Affiliation(s)
- Hongxia Wei
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, No. 1001 Fuqiang Road, Futian District, Shenzhen, 518045, China
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, No. 1001 Fuqiang Road, Futian District, Shenzhen, 518045, China
| | - Ruochun Lian
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, No. 1001 Fuqiang Road, Futian District, Shenzhen, 518045, China
| | - Chunyu Huang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, No. 1001 Fuqiang Road, Futian District, Shenzhen, 518045, China
| | - Yuye Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, No. 1001 Fuqiang Road, Futian District, Shenzhen, 518045, China
| | - Lanna Chen
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, No. 1001 Fuqiang Road, Futian District, Shenzhen, 518045, China
| | - Yong Zeng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, No. 1001 Fuqiang Road, Futian District, Shenzhen, 518045, China.
| |
Collapse
|
28
|
MenSCs exert a supportive role in establishing a pregnancy-friendly microenvironment by inhibiting TH17 polarization. J Reprod Immunol 2020; 144:103252. [PMID: 33549903 DOI: 10.1016/j.jri.2020.103252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/28/2020] [Accepted: 11/23/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Uncontrolled TH17 differentiation has been suggested to play a role in the pathogenesis of pregnancy loss. We recently showed that menstrual blood stromal/stem cells (MenSCs) alter functional features of natural killer cells. Here, we hypothesized that MenSCs could modulate differentiation of TH17 cells. METHOD MenSCs were collected from 18 apparently healthy women and characterized. Bone marrow mesenchymal stem cells (BMSCs) served as a control. TH17 polarization and proliferation of purified T CD4+ cells were assessed by flow cytometry in a well-defined co-culture system containing T CD4+ cells and MenSCs or BMSCs. Indoleamine 2,3-Dioxygenase (IDO) activity was evaluated in MenSC and BMSC culture supernatants by a colorimetric assay. The impact of MenSCs on expression of transcription factors, RORC, T-bet, Gata3, NRP-1 and Helios were studied by qPCR. RESULTS MenSCs significantly inhibited TH17 differentiation (p = 0.0383) and percentage of the cells co-expressing IL-17 and IFN-γ (p = 0.0023). PGE2 blockade significantly reduced percentage and proliferation of T CD4+IL-17+ (p = 0.003, p = 0.0018), T CD4+ IFN-γ+ (p = 0.002, p = 0.0022) and T CD4+IL-17+ IFN-γ+ (p = 0.004, p = 0.02) cells. MenSCs produced a considerable activity of IDO (p = 0.0002), induced a significant rise in the Treg frequency (p = 0.0091) and a sharp increase in TH17/Tregs ratio (p = 0.0022). MenSCs increased expression of NRP1 (p = 0.001), while downregulated expression of RORC in T cells (p = 0.001). CONCLUSION Our results suggest a supportive role for MenSCs in establishing a pregnancy-friendly microenvironment in the uterus and put forth the idea that inherent abnormalities of MenSCs may be a basis for dysregulated endometrial immune network leading to pregnancy loss.
Collapse
|
29
|
Abstract
In this article, the authors provide a general overview of the major immune cells present at the maternal-fetal interface, describe the key mechanisms used by the placenta to promote maternal immune regulation, tolerance, and adaptation, and discuss how dysregulation of these pathways could lead to obstetric complications such as pregnancy loss and preeclampsia. Finally, they conclude with a description of the innate immune properties of the human placenta that not only serve to protect the pregnancy from infection but also contribute to pregnancy complications such as preterm birth.
Collapse
Affiliation(s)
- Mancy Tong
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, LSOG 309A, New Haven, CT 06510, USA
| | - Vikki M Abrahams
- Division of Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, LSOG 305C, New Haven, CT 06510, USA.
| |
Collapse
|
30
|
A comparative analysis of immunomodulatory genes in two clonal subpopulations of CD90 + amniocytes isolated from human amniotic fluid. Placenta 2020; 101:234-241. [PMID: 33027742 DOI: 10.1016/j.placenta.2020.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/28/2020] [Accepted: 10/01/2020] [Indexed: 12/29/2022]
Abstract
OBJECT Immunosuppressive and immunomodulatory activity of mesenchymal stem cells derived from different sources, such as placental membranes, umbilical cord, and amniotic fluid has been proved. The heterogeneous nature of human amniocytes have been confirmed due to different clonal subpopulations found in amniotic fluid. The aim of this study was to investigate a 17-gene panel of immunomodulatory markers in two clonal subpopulations of CD90+ amniocytes, divided based on morphology into epithelioid and fibroblastoid cells. METHOD Semi-quantitative RT-PCR was used to study the expression of the chosen genes. Flow cytometry analysis confirmed the non-hematopoietic mesenchymal origin of isolated cells, based on lacking the hematopoietic marker of CD31, and the presence of mesenchymal marker of CD90 (both on more than 90% of cells). RESULTS Our results showed that besides growth characteristics, the two cell groups were different in expressional profile, so that, fibroblastoid clones displayed higher level of immunosuppression genes as well as mesenchymal surface marker of CD90 compared to epithelioid ones. Our previous investigation on these clones showed that epithelioid cells have a more potential to express the pluripotency genes. It seems there is an inverse relationship between genes associated with immunosuppression and pluripotency. CONCLUSION Although many reports have been published regarding the immunosuppressive properties of fetal stem cells, but few studies to date have explained whether the stemness state of human amniocytes may affect their immunosuppressive potential. Further study on amniocytes, which often has self-renewal ability and high immunomodulatory potential, can help to understand the details of this relationship.
Collapse
|
31
|
Exosomes released from decidual macrophages deliver miR-153-3p, which inhibits trophoblastic biological behavior in unexplained recurrent spontaneous abortion. Int Immunopharmacol 2020; 88:106981. [PMID: 33182030 DOI: 10.1016/j.intimp.2020.106981] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/12/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Spontaneous abortion is a common disease in human pregnancy. Increasing evidence suggests that proper function of trophoblasts and immune balance of the maternal-fetal interface are crucial for successful pregnancy. Macrophages are involved in the maternal-fetal immune microenvironment. However, mechanisms associated with how macrophages impair trophoblasts' function in spontaneous abortion remain to be explored. METHODS Firstly, the characteristics of the isolated macrophage-derived exosomes were verified by TEM and Western blot. Then, we established the co-culture of macrophage-derived exosomes with trophoblasts, and explored the role of the exosomes in trophoblasts. Moreover, expression of miR-153-3p in the macrophage-derived exosomes was detected. A miR-153-3p mimic was transfected into trophoblasts to investigate its function in the biological functions of trophoblast cells. MRNA and protein expressions were detected by qRT-PCR and Western blot. CCK8 assay was performed to measure cell proliferation and Transwell assay was utilized to examine migration of trophoblasts. RESULTS Compared with those in normal pregnant women, decidual macrophage-derived exosomes from unexplained recurrent spontaneous abortion (URSA) patients suppressed the proliferation and migration of trophoblast cells through the IDO/STAT3 pathway. MiR-153-3p was highly expressed in exosomes released from decidual macrophages of URSA patients. Transfecting miR-153-3p mimics into trophoblast cells directly inhibited IDO genes, which suppressed STAT3 pathway activation, regulating the biological behavior of trophoblast cells. CONCLUSIONS This study outlines the role of decidual macrophage-derived exosomal miR-153-3p in successful pregnancy maintenance, paving a new approach for the development of novel treatments for URSA.
Collapse
|
32
|
van 't Hof LJ, Dijkstra KL, van der Keur C, Eikmans M, Baelde HJ, Bos M, van der Hoorn MLP. Decreased expression of ligands of placental immune checkpoint inhibitors in uncomplicated and preeclamptic oocyte donation pregnancies. J Reprod Immunol 2020; 142:103194. [PMID: 32979711 DOI: 10.1016/j.jri.2020.103194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/12/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022]
Abstract
Oocyte donation (OD) pregnancies are characterized by a complete immunogenetic dissimilarity between mother and fetus, which requires enhanced immunoregulation compared to naturally conceived (NC) pregnancies. The trophoblast expresses co-inhibitory ligands crucial for regulation of the maternal T cell response. Therefore, we studied the role of placental immune checkpoint inhibitors for the establishment of fetal tolerance and their relation to the development of preeclampsia in OD compared to NC pregnancies. Placental tissue from uncomplicated OD (n = 21) and NC (n = 21) pregnancies, and OD (n = 9) and NC (n = 15) pregnancies complicated with preeclampsia were studied. Protein expression of co-inhibitory ligands PD-L1 and CD200 was double blind semi-quantitatively determined by immunohistochemistry. Messenger RNA expression of PD-L1, CD200 and indoleamine 2,3-dioxygenase (IDO) was determined using qPCR. Decreased PD-L1 and CD200 protein expression and increased IDO mRNA expression was observed in uncomplicated OD versus NC pregnancies (all p < 0.05). CD200 protein expression was positively correlated with PD-L1 expression in all groups, with the number of HLA total mismatches and with HLA class I mismatches in uncomplicated OD cases (all p < 0.05). Preeclamptic cases showed lower PD-L1 protein and CD200 protein and mRNA expression in OD compared to NC pregnancies (all p < 0.05). This study shows that signaling by co-inhibitory PD-L1 and CD200 and by immunosuppressive IDO is altered in the placenta of OD pregnancies, suggesting a contribution to the higher risk for preeclampsia. These insights provide future prospects in unraveling the immune paradox of oocyte pregnancy, which are applicable for better risk management and treatment of uncomplicated and preeclamptic pregnancies.
Collapse
Affiliation(s)
- L J van 't Hof
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands; Department of Gynaecology and Obstetrics, Leiden University Medical Center, Leiden, The Netherlands
| | - K L Dijkstra
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - C van der Keur
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - M Eikmans
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - H J Baelde
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - M Bos
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands; Department of Gynaecology and Obstetrics, Leiden University Medical Center, Leiden, The Netherlands
| | - M L P van der Hoorn
- Department of Gynaecology and Obstetrics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
33
|
Tryptophan and kynurenine stimulate human decidualization via activating Aryl hydrocarbon receptor: Short title: Kynurenine action on human decidualization. Reprod Toxicol 2020; 96:282-292. [PMID: 32781018 DOI: 10.1016/j.reprotox.2020.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/27/2020] [Indexed: 12/30/2022]
Abstract
Decidualization is essential for successful pregnancy in rodents and primates. Although L-Tryptophan and its metabolites are essential for mammalian pregnancy, the underlying mechanism is poorly defined. We explored effects of tryptophan and kynurenine on human in vitro decidualization in human endometrial stromal cell line and primary endometrial stromal cells. Tryptophan significantly stimulates the expression of prolactin and insulin growth factor binding protein 1, reliable markers for human decidualization. When stromal cells are treated with tryptophan, tryptophan hydroxylase-1 remains unchanged, but indoleamine 2,3-dioxygenase 1 is significantly increased, suggesting tryptophan is mainly metabolized through kynurenine pathway. Kynurenine significantly stimulates insulin growth factor binding protein 1 expression. Aryl hydrocarbon receptor and its target genes (P450 1A1 and P450 1B1) are significantly increased by tryptophan and kynurenine. The induction of tryptophan and kynurenine on insulin growth factor binding protein 1 is abrogated by CH223191, an aryl hydrocarbon receptor inhibitor. Cytochrome P450 1A1 and P450 1B1 catalyze the oxidative metabolism of estradiol to catechol estrogens (2-hydroxy estradiol and 4-hydroxy estradiol), respectively. Insulin growth factor binding protein 1 is up-regulated by 2-hydroxy estradiol and 4-hydroxy estradiol. Interferon-γ significantly induces the expression of indoleamine 2,3-dioxygenase 1, aryl hydrocarbon receptor and insulin growth factor binding protein 1. All the data are also verified in primary human stromal cells. Our data indicate that Interferon-γ-induced kynurenine pathway promotes human decidualization via aryl hydrocarbon receptor signaling.
Collapse
|
34
|
Abstract
Pregnancy is a natural process that poses an immunological challenge because non-self fetus must be accepted. During the pregnancy period, the fetus as 'allograft' inherits maternal and also paternal antigens. For successful and term pregnancy, the fetus is tolerated and nurtured enjoying immune privileges that minimize the risk of being rejected by maternal immune system. Multiple mechanisms contribute to tolerate the semi-allogeneic fetus. Here, we summarize the recent progresses on how the maternal immune system actively collaborates to maintain the immune balance and maternal-fetal tolerance.
Collapse
Affiliation(s)
- Xiaopeng Li
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiayi Zhou
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Min Fang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,International College, University of the Chinese Academy of Sciences, Beijing, China
| | - Bolan Yu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
35
|
Broekhuizen M, Klein T, Hitzerd E, de Rijke YB, Schoenmakers S, Sedlmayr P, Danser AHJ, Merkus D, Reiss IKM. l-Tryptophan-Induced Vasodilation Is Enhanced in Preeclampsia: Studies on Its Uptake and Metabolism in the Human Placenta. Hypertension 2020; 76:184-194. [PMID: 32475317 DOI: 10.1161/hypertensionaha.120.14970] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
l-tryptophan induces IDO (indoleamine 2,3-dioxygenase) 1-dependent vasodilation. IDO1 is expressed in placental endothelial cells and downregulated in preeclampsia. Hypothesizing that this may contribute to diminished placental perfusion, we studied l-tryptophan-induced vasodilation in healthy and early-onset preeclampsia placental arteries, focusing on placental kynurenine pathway alterations. Despite IDO1 downregulation, kynurenine pathway metabolite concentrations (measured with ultra-performance liquid chromatography-tandem mass spectrometry) were unaltered in preeclamptic versus healthy placentas. Most likely, this is due to enhanced l-tryptophan uptake, evidenced by increased l-tryptophan levels in preeclamptic placentas. Ex vivo perfused cotyledons from healthy and preeclamptic placentas released similar amounts of l-tryptophan and kynurenine pathway metabolites into the circulations. This release was not altered by adding l-tryptophan in the maternal circulation, suggesting that l-tryptophan metabolites act intracellularly. Maternally applied l-tryptophan did appear in the fetal circulation, confirming placental passage of this essential amino acid. After in vitro incubation of placental arteries with IDO1-upregulating cytokines interferon-γ and tumor necrosis factor-α, l-tryptophan induced vasodilation. This vasodilation was attenuated by both IDO1 and nitric oxide (NO) synthase inhibitors. Despite IDO1 downregulation, l-tryptophan-induced relaxation was enhanced in preeclamptic versus healthy placental arteries. However, cytokine stimulation additionally upregulated the LAT (l-type amino acid transporter) 1 in preeclamptic placental arteries only. Vasodilation to the lipophilic, transporter independent ethyl ester of l-tryptophan was reduced in preeclamptic versus healthy placental arteries, in agreement with reduced IDO1 expression. In conclusion, l-tryptophan induces IDO1- and NO-dependent relaxation in placental arteries, which is determined by l-tryptophan uptake rather than IDO1 expression. Increased l-tryptophan uptake might compensate for reduced IDO1 expression in preeclamptic placentas.
Collapse
Affiliation(s)
- Michelle Broekhuizen
- From the Division of Neonatology, Department of Pediatrics (M.B., E.H., P.S., I.K.M.R.).,Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (M.B., E.H., A.H.J.D.).,Division of Experimental Cardiology, Department of Cardiology (M.B., D.M.)
| | - Theo Klein
- Department of Clinical Chemistry (T.K., Y.B.d.R.)
| | - Emilie Hitzerd
- From the Division of Neonatology, Department of Pediatrics (M.B., E.H., P.S., I.K.M.R.).,Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (M.B., E.H., A.H.J.D.)
| | | | | | - Peter Sedlmayr
- From the Division of Neonatology, Department of Pediatrics (M.B., E.H., P.S., I.K.M.R.)
| | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (M.B., E.H., A.H.J.D.)
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology (M.B., D.M.).,Erasmus University Medical Center, Rotterdam, the Netherlands, Walter Brendel Center of Experimental Medicine (WBex), LMU Munich, Munich, Germany (D.M.)
| | - Irwin K M Reiss
- From the Division of Neonatology, Department of Pediatrics (M.B., E.H., P.S., I.K.M.R.)
| |
Collapse
|
36
|
Williams AC, Hill LJ. The 4 D's of Pellagra and Progress. Int J Tryptophan Res 2020; 13:1178646920910159. [PMID: 32327922 PMCID: PMC7163231 DOI: 10.1177/1178646920910159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Nicotinamide homeostasis is a candidate common denominator to explain smooth transitions, whether demographic, epidemiological or economic. This 'NAD world', dependent on hydrogen-based energy, is not widely recognised as it is neither measured nor viewed from a sufficiently multi-genomic or historical perspective. Reviewing the importance of meat and nicotinamide balances during our co-evolution, recent history suggests that populations only modernise and age well with low fertility on a suitably balanced diet. Imbalances on the low meat side lead to an excess of infectious disease, short lives and boom-bust demographics. On the high side, meat has led to an excess of degenerative, allergic and metabolic disease and low fertility. A 'Goldilocks' diet derived from mixed and sustainable farming (preserving the topsoil) allows for high intellectual capital, height and good health with controlled population growth resulting in economic growth and prosperity. Implementing meat equity worldwide could lead to progress for future generations on 'spaceship' earth by establishing control over population quality, thermostat and biodiversity, if it is not already too late.
Collapse
Affiliation(s)
- Adrian C Williams
- Department of Neurology, University
Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute
of Clinical Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
37
|
Persson G, Bork JBS, Isgaard C, Larsen TG, Bordoy AM, Bengtsson MS, Hviid TVF. Cytokine stimulation of the choriocarcinoma cell line JEG-3 leads to alterations in the HLA-G expression profile. Cell Immunol 2020; 352:104110. [PMID: 32387976 DOI: 10.1016/j.cellimm.2020.104110] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/16/2020] [Accepted: 04/05/2020] [Indexed: 12/13/2022]
Abstract
The checkpoint molecule human leukocyte antigen (HLA)-G has restricted tissue expression, and plays a role in the establishment of maternal tolerance to the semi-allogenic fetus during pregnancy by expression on the trophoblast cells in the placenta. HLA-G exists in at least seven well-described mRNA isoforms, of which four are membrane-bound and three soluble. Regulation of the tissue expression of HLA-G and its isoforms is relatively unknown. Therefore, it is important to understand the regulation of HLA-G, and the HLA-G+ choriocarcinoma cell line JEG-3 is a widely used cellular model. We hypothesized that cytokines present in the microenvironment can regulate the HLA-G expression profile. In the present study, we systematically stimulated JEG-3 cells with various concentrations of IL-2, IL-4 IL-6, IL-10, IL-12, IL-15, IL-17A, TGF-β1, TNF-α and IFN-γ1b. The results suggest that IFN-γ plays a role in maintenance of HLA-G expression, while IL-10 might be involved in regulation of the isoform profile.
Collapse
Affiliation(s)
- Gry Persson
- Center for Immune Regulation and Reproductive Immunology (CIRRI), The ReproHealth Consortium ZUH, Department of Clinical Biochemistry, Zealand University Hospital, and the Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Julie Birgit Siig Bork
- Center for Immune Regulation and Reproductive Immunology (CIRRI), The ReproHealth Consortium ZUH, Department of Clinical Biochemistry, Zealand University Hospital, and the Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Cecilie Isgaard
- Center for Immune Regulation and Reproductive Immunology (CIRRI), The ReproHealth Consortium ZUH, Department of Clinical Biochemistry, Zealand University Hospital, and the Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Tine Graakjær Larsen
- Center for Immune Regulation and Reproductive Immunology (CIRRI), The ReproHealth Consortium ZUH, Department of Clinical Biochemistry, Zealand University Hospital, and the Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Anna Maria Bordoy
- Center for Immune Regulation and Reproductive Immunology (CIRRI), The ReproHealth Consortium ZUH, Department of Clinical Biochemistry, Zealand University Hospital, and the Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Meghan Sand Bengtsson
- Center for Immune Regulation and Reproductive Immunology (CIRRI), The ReproHealth Consortium ZUH, Department of Clinical Biochemistry, Zealand University Hospital, and the Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Thomas Vauvert Faurschou Hviid
- Center for Immune Regulation and Reproductive Immunology (CIRRI), The ReproHealth Consortium ZUH, Department of Clinical Biochemistry, Zealand University Hospital, and the Department of Clinical Medicine, University of Copenhagen, Denmark
| |
Collapse
|
38
|
Hitzerd E, Broekhuizen M, Neuman RI, Colafella KMM, Merkus D, Schoenmakers S, Simons SHP, Reiss IKM, Danser AHJ. Human Placental Vascular Reactivity in Health and Disease: Implications for the Treatment of Pre-eclampsia. Curr Pharm Des 2020; 25:505-527. [PMID: 30950346 DOI: 10.2174/1381612825666190405145228] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/29/2019] [Indexed: 12/17/2022]
Abstract
Adequate development of the placenta is essential for optimal pregnancy outcome. Pre-eclampsia (PE) is increasingly recognized to be a consequence of placental dysfunction and can cause serious maternal and fetal complications during pregnancy. Furthermore, PE increases the risk of neonatal problems and has been shown to be a risk factor for cardiovascular disease of the mother later in life. Currently, there is no adequate treatment for PE, mainly because its multifactorial pathophysiology remains incompletely understood. It originates in early pregnancy with abnormal placentation and involves a cascade of dysregulated systems in the placental vasculature. To investigate therapeutic strategies it is essential to understand the regulation of vascular reactivity and remodeling of blood vessels in the placenta. Techniques using human tissue such as the ex vivo placental perfusion model provide insight in the vasoactive profile of the placenta, and are essential to study the effects of drugs on the fetal vasculature. This approach highlights the different pathways that are involved in the vascular regulation of the human placenta, changes that occur during PE and the importance of focusing on restoring these dysfunctional systems when studying treatment strategies for PE.
Collapse
Affiliation(s)
- Emilie Hitzerd
- Department of Pediatrics, Division of Neonatology, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Department of Internal Medicine; Division of Pharmacology and Vascular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Michelle Broekhuizen
- Department of Pediatrics, Division of Neonatology, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Department of Internal Medicine; Division of Pharmacology and Vascular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Department of Cardiology; Division of Experimental Cardiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Rugina I Neuman
- Department of Internal Medicine; Division of Pharmacology and Vascular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Department of Gynecology and Obstetrics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Katrina M Mirabito Colafella
- Department of Internal Medicine; Division of Pharmacology and Vascular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Cardiovascular Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Physiology, Monash University, Melbourne, Australia
| | - Daphne Merkus
- Department of Cardiology; Division of Experimental Cardiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Sam Schoenmakers
- Department of Gynecology and Obstetrics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Sinno H P Simons
- Department of Pediatrics, Division of Neonatology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Irwin K M Reiss
- Department of Pediatrics, Division of Neonatology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - A H Jan Danser
- Department of Internal Medicine; Division of Pharmacology and Vascular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
39
|
Omer M, Melo AM, Kelly L, Mac Dermott EJ, Leahy TR, Killeen O, Saugstad OD, Savani RC, Molloy EJ. Emerging Role of the NLRP3 Inflammasome and Interleukin-1β in Neonates. Neonatology 2020; 117:545-554. [PMID: 33075792 DOI: 10.1159/000507584] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/28/2020] [Indexed: 11/19/2022]
Abstract
Infection and persistent inflammation have a prominent role in the pathogenesis of brain injury and cerebral palsy, as well as other conditions associated with prematurity such as bronchopulmonary dysplasia. The NLRP3 inflammasome-interleukin (IL)-1β pathway has been extensively studied in adults and pre-clinical models, improving our understanding of innate immunity and offering an attractive therapeutic target that is already contributing to clinical management in many auto-inflammatory disorders. IL-1 blockade has transformed the course and outcome of conditions such as chronic infantile neurological, cutaneous, articular (CINCA/NOMID) syndrome. Inflammasome activation and upregulation has recently been implicated in neonatal brain and lung inflammatory disease and may be a novel therapeutic target.
Collapse
Affiliation(s)
- Murwan Omer
- Discipline of Paediatrics, Trinity College Dublin, The University of Dublin, Dublin, Ireland.,Children's Hospital Ireland (CHI) at Tallaght, Dublin, Ireland
| | - Ashanty Maggvie Melo
- Discipline of Paediatrics, Trinity College Dublin, The University of Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute, St. James Hospital, Dublin, Ireland
| | - Lynne Kelly
- Discipline of Paediatrics, Trinity College Dublin, The University of Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute, St. James Hospital, Dublin, Ireland
| | - Emma Jane Mac Dermott
- Department of Paediatrics, Coombe Women's and Infant's University Hospital, Dublin, Ireland
| | - Timothy Ronan Leahy
- Department of Paediatrics, Coombe Women's and Infant's University Hospital, Dublin, Ireland
| | - Orla Killeen
- Department of Paediatrics, Coombe Women's and Infant's University Hospital, Dublin, Ireland
| | - Ola Didrik Saugstad
- Department of Pediatric Research, University of Oslo, Oslo, Norway.,Ann and Robert H. Lurie Children's Hospital of Chicago, Department of Neonatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rashmin C Savani
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Eleanor J Molloy
- Discipline of Paediatrics, Trinity College Dublin, The University of Dublin, Dublin, Ireland, .,Children's Hospital Ireland (CHI) at Tallaght, Dublin, Ireland, .,Trinity Translational Medicine Institute, St. James Hospital, Dublin, Ireland, .,Department of Paediatrics, Coombe Women's and Infant's University Hospital, Dublin, Ireland, .,Department of Immunology, Rheumatology, and Neonatology, CHI at Crumlin, Dublin, Ireland,
| |
Collapse
|
40
|
Yang F, Zheng Q, Jin L. Dynamic Function and Composition Changes of Immune Cells During Normal and Pathological Pregnancy at the Maternal-Fetal Interface. Front Immunol 2019; 10:2317. [PMID: 31681264 PMCID: PMC6813251 DOI: 10.3389/fimmu.2019.02317] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022] Open
Abstract
A successful pregnancy requires a fine-tuned and highly regulated balance between immune activation and embryonic antigen tolerance. Since the fetus is semi-allogeneic, the maternal immune system should exert tolerant to the fetus while maintaining the defense against infection. The maternal-fetal interface consists of different immune cells, such as decidual natural killer (dNK) cells, macrophages, T cells, dendritic cells, B cells, and NKT cells. The interaction between immune cells, decidual stromal cells, and trophoblasts constitute a vast network of cellular connections. A cellular immunological imbalance may lead to adverse pregnancy outcomes, such as recurrent spontaneous abortion, pre-eclampsia, pre-term birth, intrauterine growth restriction, and infection. Dynamic changes in immune cells at the maternal-fetal interface have not been clearly stated. While many studies have described changes in the proportions of immune cells in the normal maternal-fetus interface during early pregnancy, few studies have assessed the immune cell changes in mid and late pregnancy. Research on pathological pregnancy has provided clues about these dynamic changes, but a deeper understanding of these changes is necessary. This review summarizes information from previous studies, which may lay the foundation for the diagnosis of pathological pregnancy and put forward new ideas for future studies.
Collapse
Affiliation(s)
- Fenglian Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qingliang Zheng
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liping Jin
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Zhang J, Tao J, Ling Y, Li F, Zhu X, Xu L, Wang M, Zhang S, McCall CE, Liu TF. Switch of NAD Salvage to de novo Biosynthesis Sustains SIRT1-RelB-Dependent Inflammatory Tolerance. Front Immunol 2019; 10:2358. [PMID: 31681271 PMCID: PMC6797595 DOI: 10.3389/fimmu.2019.02358] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022] Open
Abstract
A typical inflammatory response sequentially progresses from pro-inflammatory, immune suppressive to inflammatory repairing phases. Although the physiological inflammatory response resolves in time, severe acute inflammation usually sustains immune tolerance and leads to high mortality, yet the underlying mechanism is not completely understood. Here, using the leukemia-derived THP-1 human monocytes, healthy and septic human peripheral blood mononuclear cells (PBMC), we report that endotoxin dose-dependent switch of nicotinamide adenine dinucleotide (NAD) biosynthesis pathways sustain immune tolerant status. Low dose endotoxin triggered nicotinamide phosphoribosyltransferase (NAMPT)-dependent NAD salvage activity to adapt pro-inflammation. In contrast, high dose endotoxin drove a shift of NAD synthesis pathway from early NAMPT-dependent NAD salvage to late indoleamine 2,3-dioxygenase-1 (IDO1)-dependent NAD de novo biosynthesis, leading to persistent immune suppression. This is resulted from the IDO1-dependent expansion of nuclear NAD pool and nuclear NAD-dependent prolongation of sirtuin1 (SIRT1)-directed epigenetics of immune tolerance. Inhibition of IDO1 activity predominantly decreased nuclear NAD level, which promoted sequential dissociations of immunosuppressive SIRT1 and RelB from the promoter of pro-inflammatory TNF-α gene and broke endotoxin tolerance. Thus, NAMPT-NAD-SIRT1 axis adapts pro-inflammation, but IDO1-NAD-SIRT1-RelB axis sustains endotoxin tolerance during acute inflammatory response. Remarkably, in contrast to the prevention of sepsis death of animal model by IDO1 inhibition before sepsis initiation, we demonstrated that the combination therapy of IDO1 inhibition by 1-methyl-D-tryptophan (1-MT) and tryptophan supplementation rather than 1-MT administration alone after sepsis onset rescued sepsis animals, highlighting the translational significance of tryptophan restoration in IDO1 targeting therapy of severe inflammatory diseases like sepsis.
Collapse
Affiliation(s)
- Jingpu Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jie Tao
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yun Ling
- Department of Infection Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Feng Li
- Department of Critical Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xuewei Zhu
- Molecular Medicine Section, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Li Xu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Mei Wang
- Department of Critical Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuye Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Charles E. McCall
- Molecular Medicine Section, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Tie Fu Liu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Molecular Medicine Section, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
42
|
Persson G, Ekmann JR, Hviid TVF. Reflections upon immunological mechanisms involved in fertility, pregnancy and parasite infections. J Reprod Immunol 2019; 136:102610. [PMID: 31479960 DOI: 10.1016/j.jri.2019.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/25/2019] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
During a pregnancy, the mother accepts her semi-allogeneic fetus with no signs of immunological rejection. Therefore, some modulation of the maternal immune system must occur. Similarly, changes in the host's immune system occurs during infections with parasites. In a study conducted in an endemic area in Bolivia, it has been reported that women infected with either the helminthic parasite roundworm or hookworm were estimated to give birth to either two more, or three fewer, children than uninfected, endemic women, respectively. Immune regulation by helminthic parasites is a rather well-researched concept, but there are few reports on the effects on human fecundity. The current review focuses on mechanisms of possible importance for especially the increased fertility rates in women infected with roundworm. The host immune response to roundworm has been hypothesized to be more favourable for a successful pregnancy because it bears resemblance to the anti-inflammatory immunological responses observed in pregnancy, steering the immunological response away from a pro-inflammatory state that seem to suppress fecundity. Further research into parasitic worm interactions, fertility, and the molecular mechanisms that they unfold may widen our understanding of the immunomodulatory pathways in both helminthic infections and in fertility and pregnancy.
Collapse
Affiliation(s)
- Gry Persson
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), The ReproHealth Research Consortium ZUH, Zealand University Hospital, and Department of Clinical Medicine, University of Copenhagen, 10 Sygehusvej, 4000 Roskilde, Denmark
| | - Josephine Roth Ekmann
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), The ReproHealth Research Consortium ZUH, Zealand University Hospital, and Department of Clinical Medicine, University of Copenhagen, 10 Sygehusvej, 4000 Roskilde, Denmark
| | - Thomas Vauvert F Hviid
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), The ReproHealth Research Consortium ZUH, Zealand University Hospital, and Department of Clinical Medicine, University of Copenhagen, 10 Sygehusvej, 4000 Roskilde, Denmark.
| |
Collapse
|
43
|
Williams AC, Hill LJ. Nicotinamide as Independent Variable for Intelligence, Fertility, and Health: Origin of Human Creative Explosions? Int J Tryptophan Res 2019; 12:1178646919855944. [PMID: 31258332 PMCID: PMC6585247 DOI: 10.1177/1178646919855944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 12/28/2022] Open
Abstract
Meat and nicotinamide acquisition was a defining force during the 2-million-year evolution of the big brains necessary for, anatomically modern, Homo sapiens to survive. Our next move was down the food chain during the Mesolithic 'broad spectrum', then horticultural, followed by the Neolithic agricultural revolutions and progressively lower average 'doses' of nicotinamide. We speculate that a fertility crisis and population bottleneck around 40 000 years ago, at the time of the Last Glacial Maximum, was overcome by Homo (but not the Neanderthals) by concerted dietary change plus profertility genes and intense sexual selection culminating in behaviourally modern Homo sapiens. Increased reliance on the 'de novo' synthesis of nicotinamide from tryptophan conditioned the immune system to welcome symbionts, such as TB (that excrete nicotinamide), and to increase tolerance of the foetus and thereby fertility. The trade-offs during the warmer Holocene were physical and mental stunting and more infectious diseases and population booms and busts. Higher nicotinamide exposure could be responsible for recent demographic and epidemiological transitions to lower fertility and higher longevity, but with more degenerative and auto-immune disease.
Collapse
Affiliation(s)
- Adrian C Williams
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
44
|
Balogh A, Toth E, Romero R, Parej K, Csala D, Szenasi NL, Hajdu I, Juhasz K, Kovacs AF, Meiri H, Hupuczi P, Tarca AL, Hassan SS, Erez O, Zavodszky P, Matko J, Papp Z, Rossi SW, Hahn S, Pallinger E, Than NG. Placental Galectins Are Key Players in Regulating the Maternal Adaptive Immune Response. Front Immunol 2019; 10:1240. [PMID: 31275299 PMCID: PMC6593412 DOI: 10.3389/fimmu.2019.01240] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Galectins are potent immunomodulators that regulate maternal immune responses in pregnancy and prevent the rejection of the semi-allogeneic fetus that also occurs in miscarriages. We previously identified a gene cluster on Chromosome 19 that expresses a subfamily of galectins, including galectin-13 (Gal-13) and galectin-14 (Gal-14), which emerged in anthropoid primates. These galectins are expressed only by the placenta and induce the apoptosis of activated T lymphocytes, possibly contributing to a shifted maternal immune balance in pregnancy. The placental expression of Gal-13 and Gal-14 is decreased in preeclampsia, a life-threatening obstetrical syndrome partly attributed to maternal anti-fetal rejection. This study is aimed at revealing the effects of Gal-13 and Gal-14 on T cell functions and comparing the expression of these galectins in placentas from healthy pregnancies and miscarriages. First-trimester placentas were collected from miscarriages and elective termination of pregnancies, tissue microarrays were constructed, and then the expression of Gal-13 and Gal-14 was analyzed by immunohistochemistry and immunoscoring. Recombinant Gal-13 and Gal-14 were expressed and purified, and their effects were investigated on primary peripheral blood T cells. The binding of Gal-13 and Gal-14 to T cells and the effects of these galectins on apoptosis, activation marker (CD25, CD71, CD95, HLA-DR) expression and cytokine (IL-1β, IL-6, IL-8, IL-10, IFNγ) production of T cells were examined by flow cytometry. Gal-13 and Gal-14 are primarily expressed by the syncytiotrophoblast at the maternal-fetal interface in the first trimester, and their placental expression is decreased in miscarriages compared to first-trimester controls. Recombinant Gal-13 and Gal-14 bind to T cells in a population- and activation-dependent manner. Gal-13 and Gal-14 induce apoptosis of Th and Tc cell populations, regardless of their activation status. Out of the investigated activation markers, Gal-14 decreases the cell surface expression of CD71, Gal-13 increases the expression of CD25, and both galectins increase the expression of CD95 on T cells. Non-activated T cells produce larger amounts of IL-8 in the presence of Gal-13 or Gal-14. In conclusion, these results show that Gal-13 and Gal-14 already provide an immunoprivileged environment at the maternal-fetal interface during early pregnancy, and their reduced expression is related to miscarriages.
Collapse
Affiliation(s)
- Andrea Balogh
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Eszter Toth
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Katalin Parej
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Structural Biophysics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Diana Csala
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Nikolett L Szenasi
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Istvan Hajdu
- Structural Biophysics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kata Juhasz
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Arpad F Kovacs
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | | | - Petronella Hupuczi
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - Adi L Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, United States
| | - Sonia S Hassan
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Offer Erez
- Division of Obstetrics and Gynecology, Maternity Department "D", Faculty of Health Sciences, Soroka University Medical Center, School of Medicine, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Peter Zavodszky
- Structural Biophysics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Janos Matko
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Zoltan Papp
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary.,Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| | - Simona W Rossi
- Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Sinuhe Hahn
- Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Eva Pallinger
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Nandor Gabor Than
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary.,First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
45
|
Ye Z, Yue L, Shi J, Shao M, Wu T. Role of IDO and TDO in Cancers and Related Diseases and the Therapeutic Implications. J Cancer 2019; 10:2771-2782. [PMID: 31258785 PMCID: PMC6584917 DOI: 10.7150/jca.31727] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/10/2019] [Indexed: 02/06/2023] Open
Abstract
Kynurenine (Kyn) pathway is a significant metabolic pathway of tryptophan (Trp). The metabolites of the Kyn pathway are closely correlated with numerous diseases. Two main enzymes, indoleamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO or TDO2), regulate the first and rate-limiting step of the Kyn pathway. These enzymes are directly or indirectly involved in various diseases, including inflammatory diseases, cancer, diabetes, and mental disorders. Presently, an increasing number of potential mechanisms have been revealed. In the present review, we depict the structure of IDO and TDO and explicate their functions in various diseases to facilitate a better understanding of them and to indicate new therapeutic plans to target them. Moreover, we summarize the inhibitors of IDO/TDO that are currently under development and their efficacy in the treatment of cancer and other diseases.
Collapse
Affiliation(s)
- Zixiang Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linxiu Yue
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiachen Shi
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingmei Shao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
46
|
Tsuda S, Nakashima A, Shima T, Saito S. New Paradigm in the Role of Regulatory T Cells During Pregnancy. Front Immunol 2019; 10:573. [PMID: 30972068 PMCID: PMC6443934 DOI: 10.3389/fimmu.2019.00573] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/04/2019] [Indexed: 12/14/2022] Open
Abstract
Semi-allogenic fetuses are not rejected by the maternal immune system because feto-maternal tolerance induced by CD4+CD25+FoxP3+ regulatory T (Treg) cells is established during pregnancy. Paternal antigen-specific Treg cells accumulate during pregnancy, and seminal plasma priming plays an important role in expanding paternal antigen-specific Treg cells in mouse models. Although paternal-antigen specific Treg cells have not been identified in humans, recent studies suggest that antigen-specific Treg cells exist and expand at the feto-maternal interface in humans. Studies have also revealed that reduction of decidual functional Treg cells occurs during miscarriage with normal fetal chromosomal content, whereas insufficient clonal expansion of decidual Treg cells is observed in preeclampsia. In this review, we will discuss the recent advances in the investigation of mechanisms underlying Treg cell-dependent maintenance of feto-maternal tolerance.
Collapse
Affiliation(s)
- Sayaka Tsuda
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Tomoko Shima
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Shigeru Saito
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| |
Collapse
|
47
|
Wang M, Dong X, Huang Y, Su J, Dai X, Guo Y, Hu C, Zhou Q, Zhu B. Activation of the kynurenine pathway is associated with poor outcome in Pneumocystis pneumonia patients infected with HIV: results of 2 months cohort study. BMC Infect Dis 2019; 19:223. [PMID: 30832615 PMCID: PMC6399927 DOI: 10.1186/s12879-019-3851-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 02/25/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Indoleamine 2, 3-dioxygenase (IDO) is a key enzyme in the degradation of tryptophan (Trp) to kynurenine (Kyn). We measured IDO activity as the Kyn to Trp ratio, and investigated whether IDO could be used to assess prognosis of acquired immune deficiency Sydrome (AIDS) patients with pneumocystis pneumonia (PCP). METHODS The Kyn and Trp concentration were measured by UPLC-MS/MS in plasma samples. A total of 49 AIDS-PCP patients were included in the analysis. Clinical characteristics and Kyn/Trp ratio were compared between survivors and non-survivors. RESULTS Kyn/Trp ratio was significantly lower after anti-PCP treatment in AIDS patients with PCP (P < 0.0001). Plasma Kyn/Trp ratio was higher in patients with PaO2/FiO2 ≤ 300 mmHg than in those with PaO2/FiO2 > 300 mmHg (P = 0.007). Kyn/Trp ratio, D-dimer and CRP showed much higher AUC for predicting death of AIDS-PCP patients. Kyn/Trp ratio was useful for predicting the mortality of AIDS-PCP due to a significantly higher Kyn/Trp ratio in the non-survivors (P = 0.002). And the high Kyn/Trp ratio group had higher mortality rate than low Kyn/Trp group (32.1% vs. 9.1%, respectively, p = 0.024). CONCLUSION Activation of the kynurenine pathway is associated with the severity and fatal outcomes of AIDS patients with pneumocystis pneumonia.
Collapse
Affiliation(s)
- Mengyan Wang
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaotian Dong
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Huang
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Junwei Su
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiahong Dai
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yongzheng Guo
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Caiqin Hu
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qihui Zhou
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Biao Zhu
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
48
|
Wei H, Liu S, Lian R, Huang C, Li Y, Chen L, Zeng Y. Abnormal Expression of Indoleamine 2, 3-Dioxygenase in Human Recurrent Miscarriage. Reprod Sci 2019:1933719119833788. [PMID: 30832549 DOI: 10.1177/1933719119833788] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Indoleamine 2, 3-dioxygenase (IDO), an immunosuppressive enzyme that mediates the conversion of tryptophan to kynurenine, was shown to play a key role in placental development during normal pregnancy. However, little is known about the pattern of IDO expression in the endometrium and its attendant functional significance in pregnancies complicated with recurrent miscarriage (RM). Immunohistochemical studies of IDO, Foxp3, CD56, and CD163 expression were performed in endometrial samples from women with RM and healthy fertile controls. Our study found that IDO was localized in glandular epithelial cells, surface epithelial cells, and a small number of cells within the stromal compartment (including stromal cells and leukocytes) in endometrium. Indoleamine 2, 3-dioxygenase expression in the RM group was significantly lower than control group. The Foxp3 and CD56 expression were significantly increased with the elevated IDO expression in controls but not in RM. The percentage of Foxp3+ Tregs was significantly correlated with the level of IDO expression in the control group. Comparatively, no correlation was found between the percentage of CD56+ cells, CD163+ cells, and the level of IDO expression, no matter in controls and RM patients. This study demonstrated that the downregulation of IDO expression and noncoordinated association between IDO and other endometrial immune cells were associated with RM. Our findings provide insights into the contribution of IDO in immune regulation to maintain normal pregnancy, which could be used to develop potential therapeutic methods for RM.
Collapse
Affiliation(s)
- Hongxia Wei
- 1 Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
- These authors contributed equally to this work
| | - Su Liu
- 1 Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
- These authors contributed equally to this work
| | - Ruochun Lian
- 1 Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Chunyu Huang
- 1 Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Yuye Li
- 1 Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Lanna Chen
- 1 Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Yong Zeng
- 1 Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| |
Collapse
|