1
|
Chen CC, Yeh YM, Chen KJ, Chang HJ, Cheng ML, Lo CJ, Lai HC. Gut Microbiota and Related Metabolites in Children With Egg White Sensitization. Pediatr Infect Dis J 2024:00006454-990000000-01105. [PMID: 39637305 DOI: 10.1097/inf.0000000000004628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
BACKGROUND We hypothesized that food sensitization in children could be linked to specific gut microbiota. The objective of this study is to assess a group of children with egg white sensitization (ES) from the microbiological and biochemical-metabolic standpoint, applying the microbiota and metabolomics approach to studying the intestinal contents of the feces. METHODS Twenty-eight toddlers with ES (mean age 13.08 months) and 24 healthy controls (mean age 12.85 months) were recruited for feces collection, serum IgE measurement, gut microbiota and metabolomics analysis. Individual microbial diversity and composition were analyzed via targeting the 16S rRNA gene hypervariable V3-V5 regions. The metabolite profiles of human feces were explored by 1H nuclear magnetic resonance. RESULTS Children with ES exhibited relatively high levels of Firmicutes at the phylum level and relatively low levels of Bacteroidetes. Moreover, children with ES exhibited significantly reduced overall gut microbiota diversity and richness compared with healthy children. At the family level, we observed significant increases in the numbers of Clostridiaceae, Lachnospiraceae, Pasteurellaceae and Ruminococcaceae in children with ES. Egg white sensitivity increases orotic acid, nicotinate, methyl succinate, urocanic acid, xanthine, amino acids (tyrosine, lysine, tryptophan, phenylalanine) and short-chain fatty acids (n-butyrate, valerate) levels according to the results of metabolomics analysis. CONCLUSIONS In summary, some specific families and genera (dysbiosis) are enriched in the gut microbiota, and increases in the mean concentrations of organic compounds in the fecal metabolite profile are associated with ES in children. These findings may provide evidence of potential strategies to control the development of ES or other atopies by modifying the gut microbiota.
Collapse
Affiliation(s)
- Chien-Chang Chen
- From the Division of Gastroenterology, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yuan-Ming Yeh
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kun-Jei Chen
- From the Division of Gastroenterology, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Hung-Ju Chang
- From the Division of Gastroenterology, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Mei-Ling Cheng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine
- Metabolomics Core Laboratory, Healthy Aging Research Center
| | - Chi-Jen Lo
- Department of Medical Biotechnology and Laboratory Science, College of Medicine
- Metabolomics Core Laboratory, Healthy Aging Research Center
| | - Hsin-Chih Lai
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
2
|
Zubeldia-Varela E, Blanco-Pérez F, Barker-Tejeda TC, Rojo D, Villaseñor A, Islam J, Gonzalez-Menendez I, Laiño J, Krause M, Steigerwald H, Martella M, Quintanilla-Martinez L, Yu P, Barbas C, Vieths S, Nochi T, Barber D, Toda M, Pérez-Gordo M. The impact of high-IgE levels on metabolome and microbiome in experimental allergic enteritis. Allergy 2024; 79:3430-3447. [PMID: 38932655 DOI: 10.1111/all.16202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/03/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND The pathological mechanism of the gastrointestinal forms of food allergies is less understood in comparison to other clinical phenotypes, such as asthma and anaphylaxis Importantly, high-IgE levels are a poor prognostic factor in gastrointestinal allergies. METHODS This study investigated how high-IgE levels influence the development of intestinal inflammation and the metabolome in allergic enteritis (AE), using IgE knock-in (IgEki) mice expressing high levels of IgE. In addition, correlation of the altered metabolome with gut microbiome was analysed. RESULTS Ovalbumin-sensitized and egg-white diet-fed (OVA/EW) BALB/c WT mice developed moderate AE, whereas OVA/EW IgEki mice induced more aggravated intestinal inflammation with enhanced eosinophil accumulation. Untargeted metabolomics detected the increased levels of N-tau-methylhistamine and 2,3-butanediol, and reduced levels of butyric acid in faeces and/or sera of OVA/EW IgEki mice, which was accompanied with reduced Clostridium and increased Lactobacillus at the genus level. Non-sensitized and egg-white diet-fed (NC/EW) WT mice did not exhibit any signs of AE, whereas NC/EW IgEki mice developed marginal degrees of AE. Compared to NC/EW WT mice, enhanced levels of lysophospholipids, sphinganine and sphingosine were detected in serum and faecal samples of NC/EW IgEki mice. In addition, several associations of altered metabolome with gut microbiome-for example Akkermansia with lysophosphatidylserine-were detected. CONCLUSIONS Our results suggest that high-IgE levels alter intestinal and systemic levels of endogenous and microbiota-associated metabolites in experimental AE. This study contributes to deepening the knowledge of molecular mechanisms for the development of AE and provides clues to advance diagnostic and therapeutic strategies of allergic diseases.
Collapse
Affiliation(s)
- Elisa Zubeldia-Varela
- Institute of Applied Molecular Medicine (IMMA), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Frank Blanco-Pérez
- Molecular Allergology, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Tomás Clive Barker-Tejeda
- Institute of Applied Molecular Medicine (IMMA), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - David Rojo
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Alma Villaseñor
- Institute of Applied Molecular Medicine (IMMA), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Jahidul Islam
- Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Irene Gonzalez-Menendez
- Cluster of Excellence iFIT (EXC 2180) 'Image Guided and Functionally Instructed Tumor Therapies', Tübingen, Germany
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tuebingen, Eberhard Karls University, Tübingen, Germany
| | - Jonathan Laiño
- Molecular Allergology, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Maren Krause
- Molecular Allergology, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Hanna Steigerwald
- Molecular Allergology, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Manuela Martella
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tuebingen, Eberhard Karls University, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Cluster of Excellence iFIT (EXC 2180) 'Image Guided and Functionally Instructed Tumor Therapies', Tübingen, Germany
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tuebingen, Eberhard Karls University, Tübingen, Germany
| | - Philipp Yu
- Institute for Immunology, Philipps-Universität Marburg, Marburg, Germany
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Stefan Vieths
- Molecular Allergology, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Tomonori Nochi
- Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Domingo Barber
- Institute of Applied Molecular Medicine (IMMA), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Masako Toda
- Molecular Allergology, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
- Laboratory of Food and Biomolecular Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Marina Pérez-Gordo
- Institute of Applied Molecular Medicine (IMMA), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
3
|
Sterrett JD, Quinn KD, Doenges KA, Nusbacher NM, Levens CL, Armstrong ML, Reisdorph RM, Smith H, Saba LM, Kuhn KA, Lozupone CA, Reisdorph NA. Appearance of green tea compounds in plasma following acute green tea consumption is modulated by the gut microbiome in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603097. [PMID: 39605610 PMCID: PMC11601224 DOI: 10.1101/2024.07.11.603097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Studies have suggested that phytochemicals in green tea have systemic anti-inflammatory and neuroprotective effects. However, the mechanisms behind these effects are poorly understood, possibly due to differential metabolism of phytochemicals resulting from variation in gut microbiome composition. To unravel this complex relationship, our team utilized a novel combined microbiome analysis and metabolomics approach applied to low complexity microbiome (LCM) and human colonized (HU) gnotobiotic mice treated with an acute dose of powdered matcha green tea. A total of 20 LCM mice received 10 distinct human fecal slurries for an n=2 mice per human gut microbiome; 9 LCM mice remained un-colonized with human slurries throughout the experiment. We performed untargeted metabolomics on green tea and plasma to identify green tea compounds that were found in plasma of LCM and HU mice that had consumed green tea. 16S ribosomal RNA gene sequencing was performed on feces of all mice at study end to assess microbiome composition. We found multiple green tea compounds in plasma associated with microbiome presence and diversity (including acetylagmatine, lactiflorin, and aspartic acid negatively associated with diversity). Additionally, we detected strong associations between bioactive green tea compounds in plasma and specific gut bacteria, including associations between spiramycin and Gemmiger, and between wildforlide and Anaerorhabdus. Additionally, some of the physiologically relevant green tea compounds are likely derived from plant-associated microbes, highlighting the importance of considering foods and food products as meta-organisms. Overall, we describe a novel workflow for discovering relationships between individual food compounds and composition of the gut microbiome.
Collapse
Affiliation(s)
- John D. Sterrett
- Department of Integrative Physiology, University of Colorado, Boulder, CO
- Interdisciplinary Quantitative Biology, University of Colorado, Boulder, CO
| | - Kevin D. Quinn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO
| | - Katrina A. Doenges
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO
| | - Nichole M. Nusbacher
- Department of Biomedical Informatics, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - Cassandra L. Levens
- Division of Rheumatology, Department of Medicine, University of Colorado, Aurora, CO
| | - Mike L. Armstrong
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO
| | - Richard M. Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO
| | - Harry Smith
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO
| | - Laura M. Saba
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO
| | - Kristine A. Kuhn
- Division of Rheumatology, Department of Medicine, University of Colorado, Aurora, CO
| | - Catherine A. Lozupone
- Department of Biomedical Informatics, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - Nichole A. Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO
| |
Collapse
|
4
|
Liu Y, Guan Q, Liu L, Ma L, Duan X, Che J. Metabolomic differences between exanthematous drug eruption and infectious mononucleosis. Skin Res Technol 2024; 30:e70043. [PMID: 39387831 PMCID: PMC11465872 DOI: 10.1111/srt.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/17/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Exanthematous drug eruption and infectious mononucleosis (IM) are both exanthematous diseases. Current research on exanthematous drug eruption and IM mainly targets identifying these disorders, the resulting differences at the metabolism level have not yet been systematically analyzed. MATERIALS AND METHODS A total of 30 cases of exanthematous drug eruption and IM, 10 patients without exanthema and 10 healthy volunteers were enrolled, 3 mL of fasting venous blood was collected, the serum metabolite content was detected by gas chromatography-mass spectrometry metabolomics. RESULTS A total of 165 metabolites were identified, exhibiting significant differences in plasma metabolic trends between exanthematous drug eruption and IM, and pinpointed 28 potential biomarkers. Notable changes were seen in the metabolic activities of the pentose phosphate pathway (PPP), tricarboxylic acid cycle (TCA-cycle), and galactose metabolism, characterized by increased levels of gluconate, gluconolactone, glucose, galactaric acid, and mannose, along with decreased amounts of pyruvic acid, succinic acid, malic acid, and glycerol, indicating an impairment in the exanthematous drug eruption group's capacity to endure oxidative stress and regulate energy metabolism. In contrast to its medication without rash counterpart, the exanthematous drug eruption group's plasma displayed distinct metabolic routes, predominantly in the processing of arginine and proline, along with the TCA. This resulted in a marked reduction in urea levels and a rise in pyruvate, citrate, and ornithine, indicating hypoxic stress as the primary cause of these rashes. In contrast to the healthy control group, the IM group showed 26 potential biomarkers, marked by increased levels of ketoglutaric acid, malic acid, pyruvic acid, and oxoglutaric acid, and reduced amounts of glutamine, galacturonic acid, arachidonic acid, trimethylphosphonic acid ester, gluconolactone, and indole acetic acid. Mainly, the metabolic pathways included the TCA, breaking down alanine, aspartate and glutamate metabolism, and the processing of D-glutamine and D-glutamate metabolism, underscoring the body's crucial role in generating energy and inflammatory agents through the citric acid cycle. CONCLUSIONS The comparison of serum metabolomic features of exanthematous drug eruptions and IM outlines a unique pattern closely related to the differences in the pathogenesis of these two exanthematous diseases.
Collapse
Affiliation(s)
- Yanqiu Liu
- Department of Dermatology and VenereologyThe Affiliated Hospital of Chengde Medical UniversityChengdeChina
| | - Qizhen Guan
- Department of Dermatology and VenereologyThe Affiliated Hospital of Chengde Medical UniversityChengdeChina
| | - Liyuan Liu
- Department of Dermatology and VenereologyThe Affiliated Hospital of Chengde Medical UniversityChengdeChina
| | - Lina Ma
- Department of Dermatology and VenereologyThe Affiliated Hospital of Chengde Medical UniversityChengdeChina
| | - Xinsuo Duan
- Department of Dermatology and VenereologyThe Affiliated Hospital of Chengde Medical UniversityChengdeChina
| | - Jiaozi Che
- Clinical labChengde central HospitalChengdeChina
| |
Collapse
|
5
|
Zhang Q, Wang H, Zhang S, Chen M, Gao Z, Sun J, Wang J, Fu L. Metabolomics identifies phenotypic biomarkers of amino acid metabolism in milk allergy and sensitized tolerance. J Allergy Clin Immunol 2024; 154:157-167. [PMID: 38522626 DOI: 10.1016/j.jaci.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/05/2024] [Accepted: 02/12/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND A substantial proportion of sensitized individuals tolerate suspected foods without developing allergic symptoms; this phenomenon is known as sensitized tolerance. The immunogenic and metabolic features underlying the sensitized-tolerant phenotype remain largely unknown. OBJECTIVE We aimed to uncover the metabolic signatures associated with clinical milk allergy (MA) and sensitized tolerance using metabolomics. METHODS We characterized the serum metabolic and immunologic profiles of children with clinical IgE-mediated MA (n = 30) or milk-sensitized tolerance (n = 20) and healthy controls (n = 21). A comparative analysis was performed to identify dysregulated pathways associated with the clinical manifestations of food allergy. We also analyzed specific biomarkers indicative of different sensitization phenotypes in children with MA. The candidate metabolites were validated in an independent quantification cohort (n = 41). RESULTS Metabolomic profiling confirmed the presence of a distinct metabolic signature that discriminated children with MA from those with milk-sensitized tolerance. Amino acid metabolites generated via arginine, proline, and glutathione metabolism were uniquely altered in children with sensitized tolerance. Arginine depletion and metabolism through the polyamine pathway to fuel glutamate synthesis were closely associated with suppression of clinical symptoms in the presence of allergen-specific IgE. In children with MA, the polysensitized state was characterized by disturbances in tryptophan metabolism. CONCLUSIONS By combining untargeted metabolomics with targeted validation in an independent quantification cohort, we identified candidate metabolites as phenotypic and diagnostic biomarkers of food allergy. Our results provide insights into the pathologic mechanisms underlying childhood allergy and suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Qiaozhi Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Hui Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Shenyu Zhang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei, China
| | - Mingwu Chen
- Department of Pediatrics, the First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei, China
| | - Zhongshan Gao
- Allergy Research Center, Zhejiang University, Hangzhou, China
| | - Jinlyu Sun
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jizhou Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei, China.
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China.
| |
Collapse
|
6
|
Zhu X, Wang B, Yu H, Li C, Zhao Y, Zhong Y, Tang W, Zhou Y, Huang X, Zhu H, Wu Y, Yang K, Wei Y, Gao Z, Dong J. Icariin attenuates asthmatic airway inflammation via modulating alveolar macrophage activation based on network pharmacology and in vivo experiments. J Gene Med 2024; 26:e3718. [PMID: 38979822 DOI: 10.1002/jgm.3718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/23/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Icariin (ICA) inhibits inflammatory response in various diseases, but the mechanism underlying ICA treating airway inflammation in asthma needs further understood. We aimed to predict and validate the potential targets of ICA against asthma-associated airway inflammation using network pharmacology and experiments. METHODS The ovalbumin-induced asthma-associated airway inflammation mice model was established. The effects of ICA were evaluated by behavioral, airway hyperresponsiveness, lung pathological changes, inflammatory cell and cytokines counts. Next, the corresponding targets of ICA were mined via the SEA, CTD, HERB, PharmMapper, Symmap database and the literature. Pubmed-Gene and GeneCards databases were used to screen asthma and airway inflammation-related targets. The overlapping targets were used to build an interaction network, analyze gene ontology and enrich pathways. Subsequently, flow cytometry, quantitative real-time PCR and western blotting were employed for validation. RESULTS ICA alleviated the airway inflammation of asthma; 402 targets of ICA, 5136 targets of asthma and 4531 targets of airway inflammation were screened; 216 overlapping targets were matched and predicted ICA possesses the potential to modulate asthmatic airway inflammation by macrophage activation/polarization. Additionally, ICA decreased M1 but elevated M2. Potential targets that were disrupted by asthma inflammation were restored by ICA treatment. CONCLUSIONS ICA alleviates airway inflammation in asthma by inhibiting the M1 polarization of alveolar macrophages, which is related to metabolic reprogramming. Jun, Jak2, Syk, Tnf, Aldh2, Aldh9a1, Nos1, Nos2 and Nos3 represent potential targets of therapeutic intervention. The present study enhances understanding of the anti-airway inflammation effects of ICA, especially in asthma.
Collapse
Affiliation(s)
- Xiaofei Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Bin Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Hang Yu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Congcong Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Yuhang Zhao
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Yuanyuan Zhong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Yaolong Zhou
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Xi Huang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Huahe Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Yueren Wu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Kai Yang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhen Gao
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Ko E, Kim Y, Shokoohi F, Mersha TB, Kang M. SPIN: sex-specific and pathway-based interpretable neural network for sexual dimorphism analysis. Brief Bioinform 2024; 25:bbae239. [PMID: 38807262 PMCID: PMC11133003 DOI: 10.1093/bib/bbae239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 05/30/2024] Open
Abstract
Sexual dimorphism in prevalence, severity and genetic susceptibility exists for most common diseases. However, most genetic and clinical outcome studies are designed in sex-combined framework considering sex as a covariate. Few sex-specific studies have analyzed males and females separately, which failed to identify gene-by-sex interaction. Here, we propose a novel unified biologically interpretable deep learning-based framework (named SPIN) for sexual dimorphism analysis. We demonstrate that SPIN significantly improved the C-index up to 23.6% in TCGA cancer datasets, and it was further validated using asthma datasets. In addition, SPIN identifies sex-specific and -shared risk loci that are often missed in previous sex-combined/-separate analysis. We also show that SPIN is interpretable for explaining how biological pathways contribute to sexual dimorphism and improve risk prediction in an individual level, which can result in the development of precision medicine tailored to a specific individual's characteristics.
Collapse
Affiliation(s)
- Euiseong Ko
- Department of Computer Science, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Youngsoon Kim
- Department of Information and Statistics and Department of Bio&Medical Bigdata (BK21 Four program), Gyeongsang National University, Jinju, Republic of Korea
| | - Farhad Shokoohi
- Department of Mathematical Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Tesfaye B Mersha
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Mingon Kang
- Department of Computer Science, University of Nevada, Las Vegas, Las Vegas, NV, USA
| |
Collapse
|
8
|
Correnti S, Preianò M, Gamboni F, Stephenson D, Pelaia C, Pelaia G, Savino R, D'Alessandro A, Terracciano R. An integrated metabo-lipidomics profile of induced sputum for the identification of novel biomarkers in the differential diagnosis of asthma and COPD. J Transl Med 2024; 22:301. [PMID: 38521955 PMCID: PMC10960495 DOI: 10.1186/s12967-024-05100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Due to their complexity and to the presence of common clinical features, differentiation between asthma and chronic obstructive pulmonary disease (COPD) can be a challenging task, complicated in such cases also by asthma-COPD overlap syndrome. The distinct immune/inflammatory and structural substrates of COPD and asthma are responsible for significant differences in the responses to standard pharmacologic treatments. Therefore, an accurate diagnosis is of central relevance to assure the appropriate therapeutic intervention in order to achieve safe and effective patient care. Induced sputum (IS) accurately mirrors inflammation in the airways, providing a more direct picture of lung cell metabolism in comparison to those specimen that reflect analytes in the systemic circulation. METHODS An integrated untargeted metabolomics and lipidomics analysis was performed in IS of asthmatic (n = 15) and COPD (n = 22) patients based on Ultra-High-Pressure Liquid Chromatography-Mass Spectrometry (UHPLC-MS) and UHPLC-tandem MS (UHPLC-MS/MS). Partial Least Squares-Discriminant Analysis (PLS-DA) was applied to resulting dataset. The analysis of main enriched metabolic pathways and the association of the preliminary metabolites/lipids pattern identified to clinical parameters of asthma/COPD differentiation were explored. Multivariate ROC analysis was performed in order to determine the discriminatory power and the reliability of the putative biomarkers for diagnosis between COPD and asthma. RESULTS PLS-DA indicated a clear separation between COPD and asthmatic patients. Among the 15 selected candidate biomarkers based on Variable Importance in Projection scores, putrescine showed the highest score. A differential IS bio-signature of 22 metabolites and lipids was found, which showed statistically significant variations between asthma and COPD. Of these 22 compounds, 18 were decreased and 4 increased in COPD compared to asthmatic patients. The IS levels of Phosphatidylethanolamine (PE) (34:1), Phosphatidylglycerol (PG) (18:1;18:2) and spermine were significantly higher in asthmatic subjects compared to COPD. CONCLUSIONS This is the first pilot study to analyse the IS metabolomics/lipidomics signatures relevant in discriminating asthma vs COPD. The role of polyamines, of 6-Hydroxykynurenic acid and of D-rhamnose as well as of other important players related to the alteration of glycerophospholipid, aminoacid/biotin and energy metabolism provided the construction of a diagnostic model that, if validated on a larger prospective cohort, might be used to rapidly and accurately discriminate asthma from COPD.
Collapse
Affiliation(s)
- Serena Correnti
- Department of Health Sciences, Magna Græcia University, 88100, Catanzaro, Italy.
| | | | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Corrado Pelaia
- Department of Medical and Surgical Sciences, Magna Græcia University, 88100, Catanzaro, Italy
| | - Girolamo Pelaia
- Department of Health Sciences, Magna Græcia University, 88100, Catanzaro, Italy
| | - Rocco Savino
- Department of Medical and Surgical Sciences, Magna Græcia University, 88100, Catanzaro, Italy
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Rosa Terracciano
- Department of Experimental and Clinical Medicine, Magna Græcia University, 88100, Catanzaro, Italy.
| |
Collapse
|
9
|
Chen Z, Li F, Fu L, Xia Y, Luo Y, Guo A, Zhu X, Zhong H, Luo Q. Role of inflammatory lipid and fatty acid metabolic abnormalities induced by plastic additives exposure in childhood asthma. J Environ Sci (China) 2024; 137:172-180. [PMID: 37980005 DOI: 10.1016/j.jes.2023.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/17/2023] [Accepted: 02/03/2023] [Indexed: 11/20/2023]
Abstract
Lipid metabolism play an essential role in occurrence and development of asthma, and it can be disturbed by phthalate esters (PAEs) and organophosphate flame retardants (OPFRs). As a chronic inflammatory respiratory disease, the occurrence risk of childhood asthma is increased by PAEs and OPFRs exposure, but it remains not entirely clear how PAEs and OPFRs contribute the onset and progress of the disease. We have profiled the serum levels of PAEs and OPFRs congeners by liquid chromatography coupled with mass spectrometry, and its relationships with the dysregulation of lipid metabolism in asthmatic, bronchitic (acute inflammation) and healthy (non-inflammation) children. Eight PAEs and nine OPFRs congeners were found in the serum of children (1 - 5 years old) from Shenzhen, and their total median levels were 615.16 ng/mL and 17.06 ng/mL, respectively. Moreover, the serum levels of mono-methyl phthalate (MMP), tri-propyl phosphate (TPP) and tri-n-butyl phosphate (TNBP) were significant higher in asthmatic children than in healthy and bronchitic children as control. Thirty-one characteristic lipids and fatty acids of asthma were screened by machine-learning random forest model based on serum lipidome data, and the alterations of inflammatory characteristic lipids and fatty acids including palmitic acids, 12,13-DiHODE, 14,21-DiHDHA, prostaglandin D2 and LysoPA(18:2) showed significant correlated with high serum levels of MMP, TPP and TNBP. These results imply PAEs and OPFRs promote the occurrence of childhood asthma via disrupting inflammatory lipid and fatty acid metabolism, and provide a novel sight for better understanding the effects of plastic additives on childhood asthma.
Collapse
Affiliation(s)
- Zhiyu Chen
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Li
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Lei Fu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yu Xia
- Rheumatology &Immunology Department of Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Ying Luo
- Rheumatology &Immunology Department of Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Ang Guo
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaona Zhu
- Rheumatology &Immunology Department of Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Huifang Zhong
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Qian Luo
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Barosova R, Baranovicova E, Hanusrichterova J, Mokra D. Metabolomics in Animal Models of Bronchial Asthma and Its Translational Importance for Clinics. Int J Mol Sci 2023; 25:459. [PMID: 38203630 PMCID: PMC10779398 DOI: 10.3390/ijms25010459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Bronchial asthma is an extremely heterogenous chronic respiratory disorder with several distinct endotypes and phenotypes. These subtypes differ not only in the pathophysiological changes and/or clinical features but also in their response to the treatment. Therefore, precise diagnostics represent a fundamental condition for effective therapy. In the diagnostic process, metabolomic approaches have been increasingly used, providing detailed information on the metabolic alterations associated with human asthma. Further information is brought by metabolomic analysis of samples obtained from animal models. This article summarizes the current knowledge on metabolomic changes in human and animal studies of asthma and reveals that alterations in lipid metabolism, amino acid metabolism, purine metabolism, glycolysis and the tricarboxylic acid cycle found in the animal studies resemble, to a large extent, the changes found in human patients with asthma. The findings indicate that, despite the limitations of animal modeling in asthma, pre-clinical testing and metabolomic analysis of animal samples may, together with metabolomic analysis of human samples, contribute to a novel way of personalized treatment of asthma patients.
Collapse
Affiliation(s)
- Romana Barosova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (R.B.); (J.H.)
| | - Eva Baranovicova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Juliana Hanusrichterova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (R.B.); (J.H.)
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (R.B.); (J.H.)
| |
Collapse
|
11
|
Barosova R, Baranovicova E, Adamcakova J, Prso K, Hanusrichterova J, Mokra D. Sex differences in plasma metabolites in a guinea pig model of allergic asthma. Physiol Res 2023; 72:S499-S508. [PMID: 38165754 PMCID: PMC10861256 DOI: 10.33549/physiolres.935218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/11/2023] [Indexed: 02/01/2024] Open
Abstract
Sex seems to be a contributing factor in the pathogenesis of bronchial asthma. This study aimed to find sex-related differences in metabolome measured by hydrogen-1 nuclear magnetic resonance ((1)H NMR) spectroscopy in healthy and ovalbumin (OVA)-sensitized guinea pigs. Adult male and female animals were divided into controls and OVA-sensitized groups. OVA-sensitization was performed by OVA systemic and inhalational administration within 14 days; on day 15, animals were killed by anesthetic overdose followed by exsanguination. Blood was taken and differential white blood cell count was measured. Left lung was saline-lavaged and differential cell count in the bronchoalveolar lavage fluid (BALF) was measured. After blood centrifugation, plasma was processed for (1)H NMR analysis. Metabolomic data was evaluated by principal component analysis (PCA). Eosinophil counts elevated in the BALF confirming eosinophil-mediated inflammation in OVA-sensitized animals of both sexes. Sex differences for lactate, glucose, and citrate were found in controls, where these parameters were lower in males than in females. In OVA-sensitized males higher glucose and lower pyruvate were found compared to controls. OVA-sensitized females showed lower lactate, glucose, alanine, 3-hydroxy-butyrate, creatine, pyruvate, and succinate concentrations compared to controls. In OVA-sensitized animals, lactate concentration was lower in males. Data from females (healthy and OVA-sensitized) were generally more heterogeneous. Significant sex differences in plasma concentrations of metabolites were found in both healthy and OVA-sensitized animals suggesting that sex may influence the metabolism and may thereby contribute to different clinical picture of asthma in males and females.
Collapse
Affiliation(s)
- R Barosova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
12
|
Lopez-Ibañez J, Pazos F, Chagoyen M. MBROLE3: improved functional enrichment of chemical compounds for metabolomics data analysis. Nucleic Acids Res 2023:7161529. [PMID: 37178003 DOI: 10.1093/nar/gkad405] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
MBROLE (Metabolites Biological Role) facilitates the biological interpretation of metabolomics experiments. It performs enrichment analysis of a set of chemical compounds through statistical analysis of annotations from several databases. The original MBROLE server was released in 2011 and, since then, different groups worldwide have used it to analyze metabolomics experiments from a variety of organisms. Here we present the latest version of the system, MBROLE3, accessible at http://csbg.cnb.csic.es/mbrole3. This new version contains updated annotations from previously included databases as well as a wide variety of new functional annotations, such as additional pathway databases and Gene Ontology terms. Of special relevance is the inclusion of a new category of annotations, 'indirect annotations', extracted from the scientific literature and from curated chemical-protein associations. The latter allows to analyze enriched annotations of the proteins known to interact with the set of chemical compounds of interest. Results are provided in the form of interactive tables, formatted data to download, and graphical plots.
Collapse
Affiliation(s)
- Javier Lopez-Ibañez
- Computational Systems Biology Group, National Center for Biotechnology (CNB-CSIC), 28049 Madrid, Spain
| | - Florencio Pazos
- Computational Systems Biology Group, National Center for Biotechnology (CNB-CSIC), 28049 Madrid, Spain
| | - Monica Chagoyen
- Computational Systems Biology Group, National Center for Biotechnology (CNB-CSIC), 28049 Madrid, Spain
| |
Collapse
|
13
|
Multi-Omics Analysis of Lung Tissue Demonstrates Changes to Lipid Metabolism during Allergic Sensitization in Mice. Metabolites 2023; 13:metabo13030406. [PMID: 36984845 PMCID: PMC10054742 DOI: 10.3390/metabo13030406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Allergy and asthma pathogenesis are associated with the dysregulation of metabolic pathways. To understand the effects of allergen sensitization on metabolic pathways, we conducted a multi-omics study using BALB/cJ mice sensitized to house dust mite (HDM) extract or saline. Lung tissue was used to perform untargeted metabolomics and transcriptomics while both lung tissue and plasma were used for targeted lipidomics. Following statistical comparisons, an integrated pathway analysis was conducted. Histopathological changes demonstrated an allergic response in HDM-sensitized mice. Untargeted metabolomics showed 391 lung tissue compounds were significantly different between HDM and control mice (adjusted p < 0.05); with most compounds mapping to glycerophospholipid and sphingolipid pathways. Several lung oxylipins, including 14-HDHA, 8-HETE, 15-HETE, 6-keto-PGF1α, and PGE2 were significantly elevated in HDM-sensitized mice (p < 0.05). Global gene expression analysis showed upregulated calcium channel, G protein–signaling, and mTORC1 signaling pathways. Genes related to oxylipin metabolism such as Cox, Cyp450s, and cPla2 trended upwards. Joint analysis of metabolomics and transcriptomics supported a role for glycerophospholipid and sphingolipid metabolism following HDM sensitization. Collectively, our multi-omics results linked decreased glycerophospholipid and sphingolipid compounds and increased oxylipins with allergic sensitization; concurrent upregulation of associated gene pathways supports a role for bioactive lipids in the pathogenesis of allergy and asthma.
Collapse
|
14
|
Liu J, Yang N, Yi X, Wang G, Wang C, Lin H, Sun L, Wang F, Zhu D. Integration of transcriptomics and metabolomics to reveal the effect of ginsenoside Rg3 on allergic rhinitis in mice. Food Funct 2023; 14:2416-2431. [PMID: 36786409 DOI: 10.1039/d2fo03885d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Increasing studies have demonstrated that ginsenoside Rg3 (Rg3) plays an important role in the prevention and treatment of various diseases, including allergic lower airway inflammation such as asthma. To investigate the role of Rg3 in allergic upper airway disease, the effect and therapeutic mechanism of Rg3 in allergic rhinitis (AR) were studied. Ovalbumin-induced AR model mice were intragastrically administered with Rg3. Nasal symptoms, levels of IgE, IL-4, IL-5, IL-13, SOD and MDA in serum, and histopathological analysis of nasal mucosa were used to evaluate the effect of Rg3 on ameliorating AR in mice. Moreover, nasal mucosa samples from the normal control group, AR model group and high dosage of Rg3 were collected to perform omics analysis. The differentially expressed genes and significantly changed metabolites were screened based on transcriptomics and metabolomics analyses, respectively. Integrative analysis was further performed to confirm the hub genes, metabolites and pathways. After Rg3 intervention, the nasal symptoms and inflammatory infiltration were effectively improved, the levels of IgE, IL-4, IL-5, IL-13 and MDA were significantly reduced, and the level of SOD was obviously increased. The results of the qRT-PCR assay complemented the transcriptomic findings. Integrated analysis showed that Rg3 played an anti-AR role mainly by regulating the interaction network, which was constructed by 12 genes, 8 metabolites and 4 pathways. Our findings suggested that Rg3 had a therapeutic effect on ovalbumin-induced AR in mice by inhibiting inflammation development and reducing oxidative stress. The present study could provide a potential natural agent for the treatment of AR.
Collapse
Affiliation(s)
- Jianming Liu
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun 130021, China.
| | - Na Yang
- Clinical Pharmacy Department, First Hospital of Jilin University, Changchun 130021, China
| | - Xingcheng Yi
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Guoqiang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Hongqiang Lin
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Liwei Sun
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun 130021, China.
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Dongdong Zhu
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun 130021, China. .,Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases, Changchun 130021, China
| |
Collapse
|
15
|
Deciphering the Metabolomics-Based Intervention of Yanghe Decoction on Hashimoto's Thyroiditis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6215573. [PMID: 35873647 PMCID: PMC9307328 DOI: 10.1155/2022/6215573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/18/2022]
Abstract
Background Yanghe decoction is a famous formula consisting of Rehmannia, deer horn gum, cinnamon, rue, Ephedra, ginger charcoal, and licorice. However, few studies have explored the role of the potential mechanism of Yanghe decoction in the treatment of Hashimoto's thyroiditis by metabolomics. Methods Nine mice were randomly divided into three groups: control group (group C), model group (group M), and drug administration group (group T), with three mice in each group. Mice in groups M and T were established as models of Hashimoto's thyroiditis, and group T was treated with Yanghe decoction. The metabolome of plasma samples from each group of mice was determined using mass spectrometry coupled with high-performance liquid and gas phases, and nuclear magnetic resonance. Based on the three assays, principal component analysis was performed on all samples, as well as orthogonal partial least squares-discriminant analysis and differential metabolite molecules for groups M and T. Subsequently, pathway enrichment analysis was performed, and the intersection was taken for the differential metabolites screened in the M and T groups. The levels of inflammatory factors IL-35 and IL-6 within the serum of each group of mice were detected. Results The difference analysis showed that a total of 38 differential metabolites were screened based on mass spectrometry coupled with the high-performance liquid phase, 120 differential metabolites were screened based on mass spectrometry coupled with gas phase, and a total of α-glucose and β-glucose were the differential metabolites analyzed based on NMR test results. The pathways enriched by the differential metabolites in the M and T groups were intersected, and a total of 5 common pathways were obtained (amino acid tRNA biosynthesis, D-glutamine and D-glutamate metabolism, tryptophan metabolism, nitrogen metabolism, and arginine and proline metabolism). The results also showed a significant decrease in the serum inflammatory factor IL-35 and a significant increase in IL-6 in mice from group M compared with group C, while a significant increase in the serum inflammatory factor IL-35 and a significant decrease in IL-6 in mice from group T compared with group M. Conclusion Our study reveals the metabolites as well as a metabolic network that can be altered by Yanghe decoction treatment of Hashimoto's thyroiditis and shows that Yanghe decoction can effectively reduce the level of inflammatory factors in Hashimoto's thyroid.
Collapse
|
16
|
Metabolites of L-ARG in Exhaled Breath Condensate and Serum Are Not Biomarkers of Bronchial Asthma in Children. J Clin Med 2022; 11:jcm11010252. [PMID: 35011992 PMCID: PMC8746037 DOI: 10.3390/jcm11010252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 11/17/2022] Open
Abstract
(1) Background: L-arginine (L-ARG) and its metabolites are involved in some aspects of asthma pathogenesis (airway inflammation, oxidative stress, bronchial responsiveness, collagen deposition). Published data indicate that lungs are a critical organ for the regulation of L-ARG metabolism and that alterations in L-ARG metabolism may be significant for asthma. The aim of this study was to assess the levels of L-ARG and its metabolites in pediatric patients with asthma in serum and exhaled breath condensate (EBC) by mass spectrometric analysis and compare them with non-asthmatic children. (2) Methods: Sixty-five children (37 pediatric patients with bronchial asthma and 28 healthy control subjects) aged 6–17 participated in the study. All participants underwent a clinical visit, lung tests, allergy tests with common aeroallergens, and serum and EBC collection. The levels of biomarkers were determined in both serum and EBC. Analytical chromatography was conducted using an Acquity UPLC system equipped with a cooled autosampler and an Acquity HSS T3 column. Mass spectrometric analysis was conducted using the Xevo G2 QTOF MS with electrospray ionization (ESI) in positive ion mode. (3) Results: Asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) levels in serum and EBC did not differ significantly in asthmatic children and healthy control subjects. We found no correlation between forced expiratory volume in one second (FEV1) and L-ARG and its metabolites, as well as between interleukin-4 (IL-4) serum level and L-ARG and its metabolites. Concentrations of ADMA, SDMA, citrulline (CIT), and ornithine (ORN) were higher in serum than EBC in asthmatics and non-asthmatics. By contrast, concentrations of dimethylarginine (DMA) were higher in EBC than serum. ADMA/L-ARG, SDMA/L-ARG, and DMA/L-ARG ratios were significantly higher in EBC than in serum in asthmatics and in non-asthmatics. (4) Conclusions: Serum and EBC concentrations of L-ARG and its metabolites were not an indicator of pediatric bronchial asthma in our study.
Collapse
|
17
|
Dai P, Tang Z, Qi M, Liu D, Bajinka O, Tan Y. Dispersion and utilization of lipid droplets mediates respiratory syncytial virus-induced airway hyperresponsiveness. Pediatr Allergy Immunol 2022; 33:e13651. [PMID: 34383332 DOI: 10.1111/pai.13651] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Respiratory viral infections (RSV) can induce acute asthma attacks, thereby destroying lung function and accelerating the progression of the disease. However, medications in the stable phase of asthma are often not effective for acute attacks induced by viral infections. We aimed to clarify the possible mechanism of viral infection-induced asthma through fatty acid metabolism. METHODS AND RESULTS The airway resistances, inflammatory injuries, and oxidative stress in the RSV-induced animal models were significantly higher than those in the control group at acute phase (7 days) and chronic phase (28 days). Moreover, the concentrations of the medium- and long-chain fatty acids in lung tissue at (28 days) were significantly increased, including 14:0 (myristic acid), 16:0 (palmitic acid, PA), 18:1 (oleic acid, OA), and 18:2 (linoleic acid, LA) using non-targeted metabonomics. Airway epithelial cells treated with RSV showed the reduced expression of FSP27, RAB8A, and PLIN5, which caused the fusion and growth of lipid droplet (LD), and increased expression of the LD dispersion gene perilipin 2. There was also a decrease in PPARγ expression and an increase in the fatty acid catabolism gene PPARα, causing lipid oxidation, free fatty acid releases, and an upsurge in IL-1, IL-2, IL-4, and IL-6 expression, which could be abrogated by GPR40 inhibitor. Treated mice or epithelial cells with C18 fatty acid exhibited inhibition of epithelial proliferation, increases of inflammation, and oxidative damage. CONCLUSIONS RSV promoted lipid dispersion and utilization, causing enlarged oxidative injuries and an upsurge in the pro-inflammatory cytokines, leading to the progression of airway hyperresponsiveness (AHR).
Collapse
Affiliation(s)
- Pei Dai
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China.,China-Africa Research Centre of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhongxiang Tang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Mingming Qi
- Department of Obstetrics, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Hunan, China
| | - Dan Liu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Ousman Bajinka
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China.,China-Africa Research Centre of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yurong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China.,China-Africa Research Centre of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
18
|
Kachroo P, Sordillo JE, Lutz SM, Weiss ST, Kelly RS, McGeachie MJ, Wu AC, Lasky-Su JA. Pharmaco-Metabolomics of Inhaled Corticosteroid Response in Individuals with Asthma. J Pers Med 2021; 11:jpm11111148. [PMID: 34834499 PMCID: PMC8622526 DOI: 10.3390/jpm11111148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 12/26/2022] Open
Abstract
Metabolomic indicators of asthma treatment responses have yet to be identified. In this study, we aimed to uncover plasma metabolomic profiles associated with asthma exacerbations while on inhaled corticosteroid (ICS) treatment. We determined whether these profiles change with age from adolescence to adulthood. We utilized data from 170 individuals with asthma on ICS from the Mass General Brigham Biobank to identify plasma metabolites associated with asthma exacerbations while on ICS and examined potential effect modification of metabolite-exacerbation associations by age. We used liquid chromatography-high-resolution mass spectrometry-based metabolomic profiling. Sex-stratified analyses were also performed for the significant associations. The age range of the participating individuals was 13-43 years with a mean age of 33.5 years. Of the 783 endogenous metabolites tested, eight demonstrated significant associations with exacerbation after correction for multiple comparisons and adjusting for potential confounders (Bonferroni p value < 6.2 × 10-4). Potential effect modification by sex was detected for fatty acid metabolites, with males showing a greater reduction in their metabolite levels with ICS exacerbation. Thirty-eight metabolites showed suggestive interactions with age on exacerbation (nominal p-value < 0.05). Our findings demonstrate that plasma metabolomic profiles differ for individuals who experience asthma exacerbations while on ICS. The differentiating metabolites may serve as biomarkers of ICS response and may highlight metabolic pathways underlying ICS response variability.
Collapse
Affiliation(s)
- Priyadarshini Kachroo
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (P.K.); (S.T.W.); (R.S.K.); (M.J.M.)
| | - Joanne E. Sordillo
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care, Boston, MA 02215, USA; (J.E.S.); (S.M.L.); (A.C.W.)
| | - Sharon M. Lutz
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care, Boston, MA 02215, USA; (J.E.S.); (S.M.L.); (A.C.W.)
| | - Scott T. Weiss
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (P.K.); (S.T.W.); (R.S.K.); (M.J.M.)
| | - Rachel S. Kelly
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (P.K.); (S.T.W.); (R.S.K.); (M.J.M.)
| | - Michael J. McGeachie
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (P.K.); (S.T.W.); (R.S.K.); (M.J.M.)
| | - Ann Chen Wu
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care, Boston, MA 02215, USA; (J.E.S.); (S.M.L.); (A.C.W.)
| | - Jessica A. Lasky-Su
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (P.K.); (S.T.W.); (R.S.K.); (M.J.M.)
- Correspondence: ; Tel.: +1-617-875-9992
| |
Collapse
|
19
|
Research Progress of Metabolomics in Asthma. Metabolites 2021; 11:metabo11090567. [PMID: 34564383 PMCID: PMC8466166 DOI: 10.3390/metabo11090567] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 12/25/2022] Open
Abstract
Asthma is a highly heterogeneous disease, but the pathogenesis of asthma is still unclear. It is well known that the airway inflammatory immune response is the pathological basis of asthma. Metabolomics is a systems biology method to analyze the difference of low molecular weight metabolites (<1.5 kDa) and explore the relationship between metabolic small molecules and pathophysiological changes of the organisms. The functional interdependence between immune response and metabolic regulation is one of the cores of the body's steady-state regulation, and its dysfunction will lead to a series of metabolic disorders. The signal transduction effect of specific metabolites may affect the occurrence of the airway inflammatory immune response, which may be closely related to the pathogenesis of asthma. Emerging metabolomic analysis may provide insights into the pathogenesis and diagnosis of asthma. The review aims to analyze the changes of metabolites in blood/serum/plasma, urine, lung tissue, and exhaled breath condensate (EBC) samples, and further reveals the potential pathogenesis of asthma according to the disordered metabolic pathways.
Collapse
|
20
|
Application of Metabolomics in Pediatric Asthma: Prediction, Diagnosis and Personalized Treatment. Metabolites 2021; 11:metabo11040251. [PMID: 33919626 PMCID: PMC8072856 DOI: 10.3390/metabo11040251] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
Asthma in children remains a significant public health challenge affecting 5–20% of children in Europe and is associated with increased morbidity and societal healthcare costs. The high variation in asthma incidence among countries may be attributed to differences in genetic susceptibility and environmental factors. This respiratory disorder is described as a heterogeneous syndrome of multiple clinical manifestations (phenotypes) with varying degrees of severity and airway hyper-responsiveness, which is based on patient symptoms, lung function and response to pharmacotherapy. However, an accurate diagnosis is often difficult due to diversities in clinical presentation. Therefore, identifying early diagnostic biomarkers and improving the monitoring of airway dysfunction and inflammatory through non-invasive methods are key goals in successful pediatric asthma management. Given that asthma is caused by the interaction between genes and environmental factors, an emerging approach, metabolomics—the systematic analysis of small molecules—can provide more insight into asthma pathophysiological mechanisms, enable the identification of early biomarkers and targeted personalized therapies, thus reducing disease burden and societal cost. The purpose of this review is to present evidence on the utility of metabolomics in pediatric asthma through the analysis of intermediate metabolites of biochemical pathways that involve carbohydrates, amino acids, lipids, organic acids and nucleotides and discuss their potential application in clinical practice. Also, current challenges on the integration of metabolomics in pediatric asthma management and needed next steps are critically discussed.
Collapse
|
21
|
Prediction of sublingual immunotherapy efficacy in allergic rhinitis by serum metabolomics analysis. Int Immunopharmacol 2021; 90:107211. [DOI: 10.1016/j.intimp.2020.107211] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022]
|
22
|
Ferraro VA, Carraro S, Pirillo P, Gucciardi A, Poloniato G, Stocchero M, Giordano G, Zanconato S, Baraldi E. Breathomics in Asthmatic Children Treated with Inhaled Corticosteroids. Metabolites 2020; 10:metabo10100390. [PMID: 33003349 PMCID: PMC7600137 DOI: 10.3390/metabo10100390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/21/2020] [Accepted: 09/26/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND "breathomics" enables indirect analysis of metabolic patterns underlying a respiratory disease. In this study, we analyze exhaled breath condensate (EBC) in asthmatic children before (T0) and after (T1) a three-week course of inhaled beclomethasone dipropionate (BDP). METHODS we recruited steroid-naive asthmatic children for whom inhaled steroids were indicated and healthy children, evaluating asthma control, spirometry and EBC (in asthmatics at T0 and T1). A liquid-chromatography-mass-spectrometry untargeted analysis was applied to EBC and a mass spectrometry-based target analysis to urine samples. RESULTS metabolomic analysis discriminated asthmatic (n = 26) from healthy children (n = 16) at T0 and T1, discovering 108 and 65 features relevant for the discrimination, respectively. Searching metabolomics databases, seven putative biomarkers with a plausible role in asthma biochemical-metabolic processes were found. After BDP treatment, asthmatic children, in the face of an improved asthma control (p < 0.001) and lung function (p = 0.01), showed neither changes in EBC metabolomic profile nor in urinary endogenous steroid profile. CONCLUSIONS "breathomics" can discriminate asthmatic from healthy children, with prostaglandin, fatty acid and glycerophospholipid as putative markers. The three-week course of BDP-in spite of a significant clinical improvement-was not associated with changes in EBC metabolic arrangement and urinary steroid profile.
Collapse
Affiliation(s)
- Valentina Agnese Ferraro
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (S.C.); (P.P.); (A.G.); (G.P.); (M.S.); (G.G.); (S.Z.); (E.B.)
- Correspondence:
| | - Silvia Carraro
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (S.C.); (P.P.); (A.G.); (G.P.); (M.S.); (G.G.); (S.Z.); (E.B.)
| | - Paola Pirillo
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (S.C.); (P.P.); (A.G.); (G.P.); (M.S.); (G.G.); (S.Z.); (E.B.)
- Institute of Pediatric Research (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| | - Antonina Gucciardi
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (S.C.); (P.P.); (A.G.); (G.P.); (M.S.); (G.G.); (S.Z.); (E.B.)
- Institute of Pediatric Research (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| | - Gabriele Poloniato
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (S.C.); (P.P.); (A.G.); (G.P.); (M.S.); (G.G.); (S.Z.); (E.B.)
- Institute of Pediatric Research (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| | - Matteo Stocchero
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (S.C.); (P.P.); (A.G.); (G.P.); (M.S.); (G.G.); (S.Z.); (E.B.)
- Institute of Pediatric Research (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| | - Giuseppe Giordano
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (S.C.); (P.P.); (A.G.); (G.P.); (M.S.); (G.G.); (S.Z.); (E.B.)
- Institute of Pediatric Research (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| | - Stefania Zanconato
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (S.C.); (P.P.); (A.G.); (G.P.); (M.S.); (G.G.); (S.Z.); (E.B.)
| | - Eugenio Baraldi
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (S.C.); (P.P.); (A.G.); (G.P.); (M.S.); (G.G.); (S.Z.); (E.B.)
- Institute of Pediatric Research (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| |
Collapse
|
23
|
Pal A, Al‐Shaer AE, Guesdon W, Torres MJ, Armstrong M, Quinn K, Davis T, Reisdorph N, Neufer PD, Spangenburg EE, Carroll I, Bazinet RP, Halade GV, Clària J, Shaikh SR. Resolvin E1 derived from eicosapentaenoic acid prevents hyperinsulinemia and hyperglycemia in a host genetic manner. FASEB J 2020; 34:10640-10656. [PMID: 32579292 PMCID: PMC7497168 DOI: 10.1096/fj.202000830r] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
Eicosapentaenoic acid (EPA) has garnered attention after the success of the REDUCE-IT trial, which contradicted previous conclusions on EPA for cardiovascular disease risk. Here we first investigated EPA's preventative role on hyperglycemia and hyperinsulinemia. EPA ethyl esters prevented obesity-induced glucose intolerance, hyperinsulinemia, and hyperglycemia in C57BL/6J mice. Supporting NHANES analyses showed that fasting glucose levels of obese adults were inversely related to EPA intake. We next investigated how EPA improved murine hyperinsulinemia and hyperglycemia. EPA overturned the obesity-driven decrement in the concentration of 18-hydroxyeicosapentaenoic acid (18-HEPE) in white adipose tissue and liver. Treatment of obese inbred mice with RvE1, the downstream immunoresolvant metabolite of 18-HEPE, but not 18-HEPE itself, reversed hyperinsulinemia and hyperglycemia through the G-protein coupled receptor ERV1/ChemR23. To translate the findings, we determined if the effects of RvE1 were dependent on host genetics. RvE1's effects on hyperinsulinemia and hyperglycemia were divergent in diversity outbred mice that model human genetic variation. Secondary SNP analyses further confirmed extensive genetic variation in human RvE1/EPA-metabolizing genes. Collectively, the data suggest EPA prevents hyperinsulinemia and hyperglycemia, in part, through RvE1's activation of ERV1/ChemR23 in a host genetic manner. The studies underscore the need for personalized administration of RvE1 based on genetic/metabolic enzyme profiles.
Collapse
Affiliation(s)
- Anandita Pal
- Department of NutritionGillings School of Global Public Health and School of MedicineThe University of North Carolina at Chapel HillChapel HillNCUSA
| | - Abrar E. Al‐Shaer
- Department of NutritionGillings School of Global Public Health and School of MedicineThe University of North Carolina at Chapel HillChapel HillNCUSA
| | - William Guesdon
- Department of Biochemistry & Molecular BiologyBrody School of MedicineEast Carolina UniversityGreenvilleNCUSA
- Present address:
School of Immunology and Microbial SciencesKing's College LondonGuy's CampusLondonSE1 9RTUK
| | - Maria J. Torres
- Department of PhysiologyEast Carolina Diabetes & Obesity InstituteEast Carolina UniversityGreenvilleNCUSA
- Present address:
Duke Molecular Physiology InstituteDuke University300 North Duke StreetDurhamNC27701USA
| | - Michael Armstrong
- Department of Pharmaceutical SciencesUniversity of Colorado Denver Anschutz Medical CampusAuroraCOUSA
| | - Kevin Quinn
- Department of Pharmaceutical SciencesUniversity of Colorado Denver Anschutz Medical CampusAuroraCOUSA
| | - Traci Davis
- Department of NutritionGillings School of Global Public Health and School of MedicineThe University of North Carolina at Chapel HillChapel HillNCUSA
| | - Nichole Reisdorph
- Department of Pharmaceutical SciencesUniversity of Colorado Denver Anschutz Medical CampusAuroraCOUSA
| | - P. Darrell Neufer
- Department of PhysiologyEast Carolina Diabetes & Obesity InstituteEast Carolina UniversityGreenvilleNCUSA
| | - Espen E. Spangenburg
- Department of PhysiologyEast Carolina Diabetes & Obesity InstituteEast Carolina UniversityGreenvilleNCUSA
| | - Ian Carroll
- Department of NutritionGillings School of Global Public Health and School of MedicineThe University of North Carolina at Chapel HillChapel HillNCUSA
| | | | - Ganesh V. Halade
- Division of Cardiovascular SciencesDepartment of MedicineThe University of South FloridaTampaFLUSA
| | - Joan Clària
- Department of Biochemistry and Molecular GeneticsUniversity of BarcelonaHospital ClínicBarcelonaSpain
| | - Saame Raza Shaikh
- Department of NutritionGillings School of Global Public Health and School of MedicineThe University of North Carolina at Chapel HillChapel HillNCUSA
| |
Collapse
|
24
|
Kertys M, Grendar M, Kosutova P, Mokra D, Mokry J. Plasma based targeted metabolomic analysis reveals alterations of phosphatidylcholines and oxidative stress markers in guinea pig model of allergic asthma. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165572. [PMID: 31672552 DOI: 10.1016/j.bbadis.2019.165572] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/17/2019] [Accepted: 10/15/2019] [Indexed: 01/03/2023]
Abstract
Bronchial asthma is one of the most common, chronic respiratory diseases, characterized by reversible airway obstruction, eosinophil and Th2 infiltration, airway hyperresponsiveness and airway remodelling; with many cells and mediators involved. Metabolomics is a relatively new field in "omics" sciences enabling the identification of metabolome for better diagnostics and studying of diseases phenotype. The aim of this study was to investigate the role of targeted metabolomics study for better understanding of the bronchial asthma pathophysiology and finding potential biomarkers in experimental models of eosinophilic inflammation. Plasma level of 185 metabolites was measured with the AbsoluteIDQ™ p180 kit in guinea pigs with experimentally-induced allergic inflammation (n = 15) compared to naïve non-sensitised and non-challenged controls (n = 18). Of the 185 metabolites identified in plasma, 22 were significantly different and changed in ovalbumin sensitised animals. Plasma level of 13 phosphatidylcholines with saturated and unsaturated long-chain fatty acids, total phosphatidylcholines count, carnitine, symmetric dimethylarginine and its ratio to total unmodified arginine, and kynurenine to tryptophan ratio were found to be decreased, while phospholipase A2 activity indicator, tryptophan, taurine and ratio of methionine sulfoxide to unmodified methionine were found to be increased in sensitised guinea pigs compared to naïve controls. Targeted metabolomic analysis revealed significant differences in plasma metabolome of sensitised guinea pigs. Our observations point to the activation of inflammatory and immune pathways, as well as the involvement of oxidative stress.
Collapse
Affiliation(s)
- Martin Kertys
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | - Marian Grendar
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Petra Kosutova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
25
|
Ma K, Lu N, Zou F, Meng FZ. Sirtuins as novel targets in the pathogenesis of airway inflammation in bronchial asthma. Eur J Pharmacol 2019; 865:172670. [PMID: 31542484 DOI: 10.1016/j.ejphar.2019.172670] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/03/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022]
Abstract
Sirtuins are NAD-dependent class III histone deacetylase, which modulate the epigenetic changes to influence the functions in normal and diseased conditions. Preclinical studies have described an increase in the levels of sirtuin 2 and decrease in the levels of sirtuin 6 in the lungs. Sirtuin 2 exerts proinflammatory actions and hence, its blockers reduce the airway inflammation and symptoms of asthma. On the other hand, sirtuin 6 is anti-inflammatory and its activators produce beneficial actions in asthma. The beneficial effects of sirtuin 6 have been attributed to decrease in acetylation of transcriptional factor GATA3 in the T cells, which is associated with decrease in the TH2 immune response. However, there seems to be dual role of sirtuin 1 in airway inflammation as its proinflammatory as well as anti-inflammatory actions have been described in asthma. The anti-inflammatory actions of sirtuin 1 have been attributed to decrease in acetylation of GATA3 and inhibition of Akt/NF-kappaB signaling. On the other hand, proinflammatory actions of sirtuin 1 have been attributed to increase in the expression of HIF-1α and VEGF along with repression of PPAR-γ activity. The present review discusses the role of different sirtuins in the pathogenesis of bronchial asthma. Moreover, it also discusses sirtuin-triggered signaling pathways that may contribute in modulating the disease state of bronchial asthma.
Collapse
Affiliation(s)
- Ke Ma
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Na Lu
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Fei Zou
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Fan-Zheng Meng
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
26
|
Xiong Y, Hu S, Zhou H, Zeng H, He X, Huang D, Li X. High-throughput 16S rDNA sequencing of the pulmonary microbiome of rats with allergic asthma. Genes Dis 2019; 7:272-282. [PMID: 32215297 PMCID: PMC7083718 DOI: 10.1016/j.gendis.2019.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/20/2019] [Indexed: 02/01/2023] Open
Abstract
A decrease in microbial infection in adolescents is implicated with an increase in the incidence of asthma and allergic diseases in adulthood, indicating that the microbiome plays a critical role in asthma. However, the microbial composition of the lower respiratory tract remains unclear, hindering the further exploration of the pathogenesis of asthma. This study aims to explore the microbial distribution and composition in the lungs of normal rats and rats with allergic asthma via 16S rDNA sequencing. The DNA of the pulmonary microbiome was extracted from the left lungs collected from normal control group (NC), saline control group (SC), and allergic asthma group (AA) under aseptic conditions. After the 16s rDNA V4—V5 region was amplified, the products were sequenced using Illumina high-throughput technology and subjected to operational taxonomic unit (OTU) cluster and taxonomy analysis. The OTU values of AA increased significantly compared with those of NC and SC. Microbiome structure analysis showed that the dominant phylum of the pulmonary microbiome changed from Proteobacteria in NC to Firmicutes in AA. Linear discriminant analysis indicated that the key microbiomes involved in the three groups varied. Numerous microbiomes stably settled in the lungs of the rats in NC and AA. The structure and diversity of the pulmonary microbiome in AA differed from those in NC.
Collapse
Affiliation(s)
- Yang Xiong
- Department of the First Clinical Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Sen Hu
- Department of the First Clinical Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hongyao Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, 401331, China
| | - Hui Zeng
- Department of the Second Clinical Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xuan He
- Department of the Second Clinical Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Dongni Huang
- Department of Obstetrics, First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoyu Li
- Laboratory of Innovation, Basic Medical Experimental Teaching Center, Chongqing Medical University, Chongqing, 401331, China
- Corresponding author.
| |
Collapse
|
27
|
Liu Y, Zheng J, Zhang HP, Zhang X, Wang L, Wood L, Wang G. Obesity-Associated Metabolic Signatures Correlate to Clinical and Inflammatory Profiles of Asthma: A Pilot Study. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:628-647. [PMID: 30306746 PMCID: PMC6182193 DOI: 10.4168/aair.2018.10.6.628] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/27/2018] [Accepted: 06/01/2018] [Indexed: 02/05/2023]
Abstract
PURPOSE Obesity is associated with metabolic dysregulation, but the underlying metabolic signatures involving clinical and inflammatory profiles of obese asthma are largely unexplored. We aimed at identifying the metabolic signatures of obese asthma. METHODS Eligible subjects with obese (n = 11) and lean (n = 22) asthma underwent body composition and clinical assessment, sputum induction, and blood sampling. Sputum supernatant was assessed for interleukin (IL)-1β, -4, -5, -6, -13, and tumor necrosis factor (TNF)-α, and serum was detected for leptin, adiponectin and C-reactive protein. Untargeted gas chromatography time-of-flight mass spectrometry (GC-TOF-MS)-based metabolic profiles in sputum, serum and peripheral blood monocular cells (PBMCs) were analyzed by orthogonal projections to latent structures-discriminate analysis (OPLS-DA) and pathway topology enrichment analysis. The differential metabolites were further validated by correlation analysis with body composition, and clinical and inflammatory profiles. RESULTS Body composition, asthma control, and the levels of IL-1β, -4, -13, leptin and adiponectin in obese asthmatics were significantly different from those in lean asthmatics. OPLS-DA analysis revealed 28 differential metabolites that distinguished obese from lean asthmatic subjects. The validation analysis identified 18 potential metabolic signatures (11 in sputum, 4 in serum and 2 in PBMCs) of obese asthmatics. Pathway topology enrichment analysis revealed that cyanoamino acid metabolism, caffeine metabolism, alanine, aspartate and glutamate metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, pentose phosphate pathway in sputum, and glyoxylate and dicarboxylate metabolism, glycerolipid metabolism and pentose phosphate pathway in serum are suggested to be significant pathways related to obese asthma. CONCLUSIONS GC-TOF-MS-based metabolomics indicates obese asthma is characterized by a metabolic profile different from lean asthma. The potential metabolic signatures indicated novel immune-metabolic mechanisms in obese asthma with providing more phenotypic and therapeutic implications, which needs further replication and validation.
Collapse
Affiliation(s)
- Ying Liu
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Zheng
- Department of Integrated Traditional Chinese and Western Medicine, Xinqiao Hospital, Third Military University, Chongqing, China
| | - Hong Ping Zhang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Zhang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Wang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lisa Wood
- Center for Asthma and Respiratory Diseases, Department of Respiratory and Sleep Medicine, John Hunter Hospital, Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
28
|
Pité H, Morais-Almeida M, Rocha SM. Metabolomics in asthma: where do we stand? Curr Opin Pulm Med 2018; 24:94-103. [PMID: 29059088 DOI: 10.1097/mcp.0000000000000437] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Metabolomics has been used to uncover the metabolic signatures of asthma, both for biomarker identification and pathophysiologic mechanisms research. We aimed to review recent advances in this field, published since 2016, and discuss these findings implications to future research and application into clinical practice. RECENT FINDINGS Experimental asthma models and clinical studies in both children and adults supported independent metabolic signatures of asthma. Common reported pathways included purine, glycerophospholipid, glutathione, fatty acids, and arginine and proline metabolism. Metabolomics-based studies identified candidate biomarkers related to asthma severity and corticosteroid resistance, and supported the definition of the obesity-related phenotype at the molecular level. A systematic review with meta-analysis and recent prospective studies favored exhaled volatile organic compounds as one of the most promising biomarkers in asthma diagnosis and monitoring. SUMMARY Metabolomics has provided unique and novel insights into asthma profiling at the molecular level. Current challenges include procedures standardization and control of potentially confounding variables for external validation. Point-of-care technology developments bring metabolomics closer to clinical practice. In addition to biomarkers identification, relating metabolites to their biologic role will serve as critical foundations for understanding the biology underpinning asthma heterogeneity and for specific-targeted therapies. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Helena Pité
- Allergy Center, CUF Descobertas Hospital and CUF Infante Santo Hospital.,CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon
| | | | - Sílvia M Rocha
- Department of Chemistry & QOPNA, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
29
|
Walmsley S, Cruickshank-Quinn C, Quinn K, Zhang X, Petrache I, Bowler RP, Reisdorph R, Reisdorph N. A prototypic small molecule database for bronchoalveolar lavage-based metabolomics. Sci Data 2018; 5:180060. [PMID: 29664467 PMCID: PMC5903367 DOI: 10.1038/sdata.2018.60] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/09/2018] [Indexed: 02/06/2023] Open
Abstract
The analysis of bronchoalveolar lavage fluid (BALF) using mass spectrometry-based metabolomics can provide insight into lung diseases, such as asthma. However, the important step of compound identification is hindered by the lack of a small molecule database that is specific for BALF. Here we describe prototypic, small molecule databases derived from human BALF samples (n=117). Human BALF was extracted into lipid and aqueous fractions and analyzed using liquid chromatography mass spectrometry. Following filtering to reduce contaminants and artifacts, the resulting BALF databases (BALF-DBs) contain 11,736 lipid and 658 aqueous compounds. Over 10% of these were found in 100% of samples. Testing the BALF-DBs using nested test sets produced a 99% match rate for lipids and 47% match rate for aqueous molecules. Searching an independent dataset resulted in 45% matching to the lipid BALF-DB compared to<25% when general databases are searched. The BALF-DBs are available for download from MetaboLights. Overall, the BALF-DBs can reduce false positives and improve confidence in compound identification compared to when general databases are used.
Collapse
Affiliation(s)
- Scott Walmsley
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Charmion Cruickshank-Quinn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kevin Quinn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Xing Zhang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Irina Petrache
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Russell P Bowler
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Richard Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nichole Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
30
|
Camateros P, Kanagaratham C, Najdekr L, Holub D, Vrbkova J, Coté L, Fournier J, Gourdon J, Creery D, Olivenstein R, Kopriva F, Adam T, Friedecký D, Džubák P, Hajdúch M, Radzioch D. Toll-Like Receptor 7/8 Ligand, S28463, Suppresses Ascaris suum-induced Allergic Asthma in Nonhuman Primates. Am J Respir Cell Mol Biol 2018; 58:55-65. [PMID: 28850259 DOI: 10.1165/rcmb.2017-0184oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
S28463 (S28), a ligand for Toll-like receptor 7/8, has been shown to have antiinflammatory properties in rodent models of allergic asthma. The principle goal of this study was to assess whether these antiinflammatory effects can also be observed in a nonhuman primate (NHP) model of allergic asthma. NHPs were sensitized then challenged with natural allergen, Ascaris suum extract. The animals were treated with S28 orally before each allergen challenge. The protective effect of S28 in NHPs was assessed by measuring various asthma-related phenotypes. We also characterized the metabolomic and proteomic signatures of the lung environment and plasma to identify markers associated with the disease and treatment. Our data demonstrate that clinically relevant parameters, such as wheal and flare response, blood IgE levels, recruitment of white blood cells to the bronchoalveolar space, and lung responsiveness, are decreased in the S28-treated allergic NHPs compared with nontreated allergic NHPs. Furthermore, we also identified markers that can distinguish allergic from nonallergic or allergic and drug-treated NHPs, such as metabolites, phosphocreatine and glutathione, in the plasma and BAL fluid, respectively; and inflammatory cytokines, IL-5 and IL-13, in the bronchoalveolar lavage fluid. Our preclinical study demonstrates that S28 has potential as a treatment for allergic asthma in primate species closely related to humans. Combined with our previous findings, we demonstrate that S28 is effective in different models of asthma and in different species, and has the antiinflammatory properties clinically relevant for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Pierre Camateros
- 1 Faculty of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Cynthia Kanagaratham
- 1 Faculty of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.,2 The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Lukáš Najdekr
- 3 Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic
| | - Dušan Holub
- 3 Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic
| | - Jana Vrbkova
- 3 Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic
| | - Lucie Coté
- 2 The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada.,4 Institut National de la Recherche Scientifique at the Armand Frappier, Laval, Quebec, Canada
| | - Jocelyn Fournier
- 5 Sir Frederick G. Banting Research Centre, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Jim Gourdon
- 6 Comparative Medicine, McGill University, Montreal, Quebec, Canada
| | - David Creery
- 7 Faculty of Medicine, University of Ottawa, Pediatric Critical Care, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Ron Olivenstein
- 8 Respiratory Division, McGill University, Montreal, Quebec, Canada
| | - Frantisek Kopriva
- 3 Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic.,9 Department of Pediatrics, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic; and
| | - Tomáš Adam
- 3 Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic
| | - David Friedecký
- 3 Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic
| | - Petr Džubák
- 3 Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic
| | - Marian Hajdúch
- 3 Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic
| | - Danuta Radzioch
- 1 Faculty of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.,2 The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada.,10 Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
31
|
Affiliation(s)
- Danielle Karo-Atar
- 1 Biotherapeutics Cluster Augmanity Nano LTD Rehovot, Israel and.,2 Sackler School of Medicine Tel-Aviv University Ramat Aviv, Israel
| | - Ariel Munitz
- 2 Sackler School of Medicine Tel-Aviv University Ramat Aviv, Israel
| |
Collapse
|
32
|
Reisdorph NA, Cruickshank-Quinn C, Nkrumah-Elie Y, Reisdorph R. Application of Metabolomics in Lung Research. Methods Mol Biol 2018; 1809:263-288. [PMID: 29987794 DOI: 10.1007/978-1-4939-8570-8_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Advancements in omics technologies have increased our potential to evaluate molecular changes in a rapid and comprehensive manner. This is especially true in mass spectrometry-based metabolomics where improvements, including ease of use, in high-performance liquid chromatography (HPLC), column chemistries, instruments, software, and molecular databases, have advanced the field considerably. Applications of this relatively new omics technology in clinical research include discovering disease biomarkers, finding new drug targets, and elucidating disease mechanisms. Here we describe a typical clinical metabolomics workflow, which includes the following steps: (1) extraction of metabolites from the lung, plasma, bronchoalveolar lavage, or cells; (2) sample analysis via liquid chromatography-mass spectrometry; and (3) data analysis using commercial and freely available software packages. Overall, the methods delineated here can help investigators use metabolomics to discovery novel biomarkers and to understand lung diseases.
Collapse
Affiliation(s)
- Nichole A Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | | | - Yasmeen Nkrumah-Elie
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Richard Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
33
|
Mathews JA, Kasahara DI, Cho Y, Bell LN, Gunst PR, Karoly ED, Shore SA. Effect of acute ozone exposure on the lung metabolomes of obese and lean mice. PLoS One 2017; 12:e0181017. [PMID: 28704544 PMCID: PMC5509247 DOI: 10.1371/journal.pone.0181017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/23/2017] [Indexed: 12/27/2022] Open
Abstract
Pulmonary responses to the air pollutant, ozone, are increased in obesity. Both obesity and ozone cause changes in systemic metabolism. Consequently, we examined the impact of ozone on the lung metabolomes of obese and lean mice. Lean wildtype and obese db/db mice were exposed to acute ozone (2 ppm for 3 h) or air. 24 hours later, the lungs were excised, flushed with PBS to remove blood and analyzed via liquid-chromatography or gas-chromatography coupled to mass spectrometry for metabolites. Both obesity and ozone caused changes in the lung metabolome. Of 321 compounds identified, 101 were significantly impacted by obesity in air-exposed mice. These included biochemicals related to carbohydrate and lipid metabolism, which were each increased in lungs of obese versus lean mice. These metabolite changes may be of functional importance given the signaling capacity of these moieties. Ozone differentially affected the lung metabolome in obese versus lean mice. For example, almost all phosphocholine-containing lysolipids were significantly reduced in lean mice, but this effect was attenuated in obese mice. Glutathione metabolism was also differentially affected by ozone in obese and lean mice. Finally, the lung metabolome indicated a role for the microbiome in the effects of both obesity and ozone: all measured bacterial/mammalian co-metabolites were significantly affected by obesity and/or ozone. Thus, metabolic derangements in obesity appear to impact the response to ozone.
Collapse
Affiliation(s)
- Joel Andrew Mathews
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - David Itiro Kasahara
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Youngji Cho
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Lauren Nicole Bell
- Metabolon Incorporated, Research Triangle Park, North Carolina, United States of America
| | - Philip Ross Gunst
- Metabolon Incorporated, Research Triangle Park, North Carolina, United States of America
| | - Edward D. Karoly
- Metabolon Incorporated, Research Triangle Park, North Carolina, United States of America
| | - Stephanie Ann Shore
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|