1
|
Gross JL, Basu R, Bradfield CJ, Sun J, John SP, Das S, Dekker JP, Weiss DS, Fraser IDC. Bactericidal antibiotic treatment induces damaging inflammation via TLR9 sensing of bacterial DNA. Nat Commun 2024; 15:10359. [PMID: 39609397 PMCID: PMC11605096 DOI: 10.1038/s41467-024-54497-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
The immunologic consequences of using bactericidal versus bacteriostatic antibiotic treatments are unclear. We observed a bacteriostatic (growth halting) treatment was more protective than a bactericidal (bacteria killing) treatment in a murine peritonitis model. To understand this unexpected difference, we compared macrophage responses to bactericidal treated bacteria or bacteriostatic treated bacteria. We found that Gram-negative bacteria treated with bactericidal drugs induced more proinflammatory cytokines than those treated with bacteriostatic agents. Bacterial DNA - released only by bactericidal treatments - exacerbated inflammatory signaling through TLR9. Without TLR9 signaling, the in vivo efficacy of bactericidal drug treatment was rescued. This demonstrates that antibiotics can act in important ways distinct from bacterial inhibition: like causing treatment failure by releasing DNA that induces excessive inflammation. These data establish a novel link between how an antibiotic affects bacterial physiology and subsequent immune system engagement, which may be relevant for optimizing treatments to simultaneously clear bacteria and modulate inflammation.
Collapse
Affiliation(s)
- Julia L Gross
- Emory University/NIAID Graduate Partnership Program, Bethesda, MD, USA
| | - Rahul Basu
- Signaling Systems Section, Laboratory of Immune System Biology, NIAID, Bethesda, MD, USA
| | - Clinton J Bradfield
- Signaling Systems Section, Laboratory of Immune System Biology, NIAID, Bethesda, MD, USA
| | - Jing Sun
- Signaling Systems Section, Laboratory of Immune System Biology, NIAID, Bethesda, MD, USA
| | - Sinu P John
- Signaling Systems Section, Laboratory of Immune System Biology, NIAID, Bethesda, MD, USA
| | - Sanchita Das
- Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, MD, USA
| | - John P Dekker
- Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, MD, USA
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, Laboratory of Clinical Immunology and Microbiology, NIAID, Bethesda, MD, USA
| | - David S Weiss
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Antibiotic Resistance Center, Atlanta, GA, USA.
| | - Iain D C Fraser
- Signaling Systems Section, Laboratory of Immune System Biology, NIAID, Bethesda, MD, USA.
| |
Collapse
|
2
|
Lyons N, Wu W, Jin Y, Lamont IL, Pletzer D. Using host-mimicking conditions and a murine cutaneous abscess model to identify synergistic antibiotic combinations effective against Pseudomonas aeruginosa. Front Cell Infect Microbiol 2024; 14:1352339. [PMID: 38808066 PMCID: PMC11130353 DOI: 10.3389/fcimb.2024.1352339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
Antibiotic drug combination therapy is critical for the successful treatment of infections caused by multidrug resistant pathogens. We investigated the efficacy of β-lactam and β-lactam/β-lactamase inhibitor combinations with other antibiotics, against the hypervirulent, ceftazidime/avibactam resistant Pseudomonas aeruginosa Liverpool epidemic strain (LES) B58. Although minimum inhibitory concentrations in vitro differed by up to eighty-fold between standard and host-mimicking media, combinatorial effects only marginally changed between conditions for some combinations. Effective combinations in vitro were further tested in a chronic, high-density murine infection model. Colistin and azithromycin demonstrated combinatorial effects with ceftazidime and ceftazidime/avibactam both in vitro and in vivo. Conversely, while tobramycin and tigecycline exhibited strong synergy in vitro, this effect was not observed in vivo. Our approach of using host-mimicking conditions and a sophisticated animal model to evaluate drug synergy against bacterial pathogens represents a promising approach. This methodology may offer insights into the prediction of combination therapy outcomes and the identification of potential treatment failures.
Collapse
Affiliation(s)
- Nikita Lyons
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Weihui Wu
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongxin Jin
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Iain L. Lamont
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Daniel Pletzer
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Rassouli A, Shihmani B, Mehrzad J, Shokrpoor S. The immunomodulatory effect of minocycline on gene expression of inflammation related cytokines in lipopolysaccharide-treated human peripheral blood mononuclear cells. Anim Biotechnol 2023; 34:2159-2165. [PMID: 35622407 DOI: 10.1080/10495398.2022.2077743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
To evaluate the immunomodulatory effect of minocycline, the present study was carried out on the gene expression of toll-like receptor type-4 (TLR4) and some pro-inflammatory (IL-1β, IL-6) and anti-inflammatory cytokines (IL-10) associated with lipopolysaccharide (LPS) -induced inflammation in human peripheral blood mononuclear cells (PBMCs). The PBMCs were collected and then 5.4 × 106 PBMCs/mL were used in eight groups as follows: control group (only media), LPS group (only LPS), methylprednisolone (Pred) group (LPS plus Pred), meloxicam (Melo) group (LPS plus Melo), three minocycline groups [M1, M5 and M25] (LPS plus 1, 5, and 25 µg/mL minocycline, respectively) and minocycline control (MC) group (5 µg/mL minocycline). After incubation for 24 h, the PBMCs were subjected to quantitative PCR assays. Gene expression levels of TLR4 were not changed in any groups. The IL-1β levels were increased in the LPS group but the increases were much more intense in the other groups except Pred group. Compared with control group, IL-6 levels increased significantly in Melo, M1 and M25 groups. Significant increases of IL-10 levels were also observed in Melo, M25 and MC groups. It can be concluded that minocycline had dual pro- and anti-inflammatory activities with potential clinical immunomodulatory effects.
Collapse
Affiliation(s)
- Ali Rassouli
- Pharmacology Division, Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Basim Shihmani
- Department of Comparative Biosciences, University of Tehran, Tehran, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sara Shokrpoor
- Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Huang H, Zhao T, Li J, Shen J, Xiao R, Ma W. Gut microbiota regulation of inflammatory cytokines and microRNAs in diabetes-associated cognitive dysfunction. Appl Microbiol Biotechnol 2023; 107:7251-7267. [PMID: 37733050 DOI: 10.1007/s00253-023-12754-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/10/2023] [Accepted: 08/26/2023] [Indexed: 09/22/2023]
Abstract
Type 2 diabetes mellitus (T2DM) has a major comorbidity known as diabetes-associated cognitive dysfunction (DACD). Studies have demonstrated that the gut microbiota is crucial in mediating the cognitive abnormalities that occur in diabetic individuals. Additionally, changes in dietary fatty acid intake levels, inflammatory cytokines, and microRNAs (miRs) have an effect on cognitive performance. However, further studies are needed to identify the link between gut microbiota and cognition in T2DM patients and the role that the above indicators play in this process. In order to provide a new rationale for the treatment of cognitive dysfunction in diabetes, this study was conducted in the middle-aged and elderly Beijing population to examine the differences in gut microbiota between DACD and T2DM patients as well as to further explore the role of erythrocyte membrane fatty acids, inflammatory cytokines, and miRs in gut microbiota-mediated cognitive impairment. According to the results, the abundance of norank_f_Eubacterium_coprostanoligenes_group, Acidaminococcus, Enterorhabdus, and norank_f_Clostridium_methylpentosum_group was higher in DACD patients compared to T2DM patients at the genus level. Compared with T2DM patients, plasma interleukin-12 (IL-12) concentrations were significantly higher in DACD patients than in T2DM patients, and IL-12 was significantly positively correlated with norank_f_Eubacterium_coprostanoligenes_group. In addition, plasma miR-142-5p was significantly positively correlated with Enterorhabdus and norank_f_Eubacterium_coprostanoligenes_group. We therefore hypothesize that cognitive impairment in T2DM patients is associated with altered gut microbial composition and that the effect of microbiota on cognition may be mediated through IL-12 and miR-142-5p. KEY POINTS: • Type 2 diabetes with or without cognitive impairment differs in gut microbiota. • Differential genera of gut microbiota were associated with inflammatory cytokines. • Differential genera of gut microbiota were associated with plasma microRNAs.
Collapse
Affiliation(s)
- Hongying Huang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Tong Zhao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Jinchen Li
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Jingyi Shen
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Weiwei Ma
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| |
Collapse
|
5
|
Serrano I, Luque A, Ruiz-Cerulla A, Navas S, Blom AM, Rodríguez de Córdoba S, Fernández FJ, Cristina Vega M, Rodríguez-Moranta F, Guardiola J, Aran JM. C4BP(β-)-mediated immunomodulation attenuates inflammation in DSS-induced murine colitis and in myeloid cells from IBD patients. Pharmacol Res 2023; 197:106948. [PMID: 37806602 DOI: 10.1016/j.phrs.2023.106948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
The most recent and promising therapeutic strategies for inflammatory bowel disease (IBD) have engaged biologics targeting single effector components involved in major steps of the immune-inflammatory processes, such as tumor necrosis factor, interleukins or integrins. Nevertheless, these molecules have not yet met expectations regarding efficacy and safety, resulting in a significant percentage of refractory or relapsing patients. Thus, novel treatment options are urgently needed. The minor isoform of the complement inhibitor C4b-binding protein, C4BP(β-), has been shown to confer a robust anti-inflammatory and immunomodulatory phenotype over inflammatory myeloid cells. Here we show that C4BP(β-)-mediated immunomodulation can significantly attenuate the histopathological traits and preserve the intestinal epithelial integrity in dextran sulfate sodium (DSS)-induced murine colitis. C4BP(β-) downregulated inflammatory transcripts, notably those related to neutrophil activity, mitigated circulating inflammatory effector cytokines and chemokines such as CXCL13, key in generating ectopic lymphoid structures, and, overall, prevented inflammatory immune cell infiltration in the colon of colitic mice. PRP6-HO7, a recombinant curtailed analogue with only immunomodulatory activity, achieved a similar outcome as C4BP(β-), indicating that the therapeutic effect is not due to the complement inhibitory activity. Furthermore, both C4BP(β-) and PRP6-HO7 significantly reduced, with comparable efficacy, the intrinsic and TLR-induced inflammatory markers in myeloid cells from both ulcerative colitis and Crohn's disease patients, regardless of their medication. Thus, the pleiotropic anti-inflammatory and immunomodulatory activity of PRP6-HO7, able to "reprogram" myeloid cells from the complex inflammatory bowel environment and to restore immune homeostasis, might constitute a promising therapeutic option for IBD.
Collapse
Affiliation(s)
- Inmaculada Serrano
- Immune-inflammatory Processes and Gene Therapeutics Group, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Ana Luque
- Immune-inflammatory Processes and Gene Therapeutics Group, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Alexandra Ruiz-Cerulla
- Department of Digestive Diseases, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Sergio Navas
- Structural Biology of Host-Pathogen Interactions Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain
| | - Anna M Blom
- Lund University, Department of Translational Medicine, Section of Medical Protein Chemistry, 21428 Malmö, Sweden
| | - Santiago Rodríguez de Córdoba
- Molecular Pathology/Genetics of Complement Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC) and Ciber de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
| | | | - M Cristina Vega
- Structural Biology of Host-Pathogen Interactions Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain
| | - Francisco Rodríguez-Moranta
- Department of Digestive Diseases, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Jordi Guardiola
- Department of Digestive Diseases, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Josep M Aran
- Immune-inflammatory Processes and Gene Therapeutics Group, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| |
Collapse
|
6
|
Hidalgo-García L, Ruiz-Malagon AJ, Huertas F, Rodríguez-Sojo MJ, Molina-Tijeras JA, Diez-Echave P, Becerra P, Mirón B, Morón R, Rodríguez-Nogales A, Gálvez J, Rodríguez-Cabezas ME, Anderson P. Administration of intestinal mesenchymal stromal cells reduces colitis-associated cancer in C57BL/6J mice modulating the immune response and gut dysbiosis. Pharmacol Res 2023; 195:106891. [PMID: 37586618 DOI: 10.1016/j.phrs.2023.106891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/22/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Patients with inflammatory bowel disease (IBD) have a higher risk of developing colitis-associated colorectal cancer (CAC) with poor prognosis. IBD etiology remains undefined but involves environmental factors, genetic predisposition, microbiota imbalance (dysbiosis) and mucosal immune defects. Mesenchymal stromal cell (MSC) injections have shown good efficacy in reducing intestinal inflammation in animal and human studies. However, their effect on tumor growth in CAC and their capacity to restore gut dysbiosis are not clear. METHODS The outcome of systemic administrations of in vitro expanded human intestinal MSCs (iMSCs) on tumor growth in vivo was evaluated using the AOM/DSS model of CAC in C57BL/6J mice. Innate and adaptive immune responses in blood, mesenteric lymph nodes (MLNs) and colonic tissue were analyzed by flow cytometry. Intestinal microbiota composition was evaluated by 16S rRNA amplicon sequencing. RESULTS iMSCs significantly inhibited colitis and intestinal tumor development, reducing IL-6 and COX-2 expression, and IL-6/STAT3 and PI3K/Akt signaling. iMSCs decreased colonic immune cell infiltration, and partly restored intestinal monocyte homing and differentiation. iMSC administration increased the numbers of Tregs and IFN-γ+CD8+ T cells in the MLNs while decreasing the IL-4+Th2 response. It also ameliorated intestinal dysbiosis in CAC mice, increasing diversity and Bacillota/Bacteroidota ratio, as well as Akkermansia abundance, while reducing Alistipes and Turicibacter, genera associated with inflammation. CONCLUSION Administration of iMSCs protects against CAC, ameliorating colitis and partially reverting intestinal dysbiosis, supporting the use of MSCs for the treatment of IBD.
Collapse
Affiliation(s)
- Laura Hidalgo-García
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Antonio Jesús Ruiz-Malagon
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Francisco Huertas
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Servicio de Cirugía, Hospital Universitario Virgen de las Nieves, 18012 Granada, Spain
| | - María Jesús Rodríguez-Sojo
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - José Alberto Molina-Tijeras
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Patricia Diez-Echave
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Patricia Becerra
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Servicio de Anatomía Patológica, Hospital Universitario Clínico San Cecilio, 18014 Granada, Spain
| | - Benito Mirón
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Servicio de Cirugía, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain
| | - Rocío Morón
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Servicio Farmacia Hospitalaria, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain.
| | - Julio Gálvez
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Centro de Investigación Biomédica En Red para Enfermedades Hepáticas y Digestivas (CIBER-EHD), School of Pharmacy, University of Granada, 18071 Granada, Spain.
| | - María Elena Rodríguez-Cabezas
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Per Anderson
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; Departamento de Bioquímica, Biología Molecular e Inmunología III, University of Granada, 18016 Granada, Spain
| |
Collapse
|
7
|
Zhong Z, Ye M, Yan F. A review of studies on gut microbiota and levodopa metabolism. Front Neurol 2023; 14:1046910. [PMID: 37332996 PMCID: PMC10272754 DOI: 10.3389/fneur.2023.1046910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 05/02/2023] [Indexed: 06/20/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease globally. Levodopa (L-dopa) has been the cornerstone for treating Parkinson's since the 1960s. However, complications such as "wearing-off" and dyskinesia inevitably appear with disease progression. With the further development of microbiomics in recent years, It has been recognized that gut microbiota plays a crucial role in Parkinson's disease pathogenesis. However, Little is known about the impact of gut microbiota in PD treatment, especially in levodopa metabolism. This review examines the possible mechanisms of gut microbiota, such as Helicobacter pylori, Enterobacter faecalis, and Clostridium sporogenes, affecting L-dopa absorption. Furthermore, we review the current status of gut microbiota intervention strategies, providing new insights into the treatment of PD.
Collapse
Affiliation(s)
- Zhe Zhong
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine, Research Institution of Neuropsychiatry, Southeast University, Nanjing, China
| | - Min Ye
- Department of Neurology, Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fuling Yan
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine, Research Institution of Neuropsychiatry, Southeast University, Nanjing, China
| |
Collapse
|
8
|
Carson MD, Warner AJ, Geiser VL, Hathaway-Schrader JD, Alekseyenko AV, Marshall J, Westwater C, Novince CM. Prolonged Antibiotic Exposure during Adolescence Dysregulates Liver Metabolism and Promotes Adiposity in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:796-812. [PMID: 36906264 PMCID: PMC10284030 DOI: 10.1016/j.ajpath.2023.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/24/2023] [Accepted: 02/16/2023] [Indexed: 03/12/2023]
Abstract
Antibiotic administration during early life has been shown to have lasting effects on the gut microbiota, which have been linked to sustained alterations in liver metabolism and adiposity. Recent investigations have discerned that the gut microbiota continues to develop toward an adult-like profile during adolescence. However, the impact of antibiotic exposure during adolescence on metabolism and adiposity is unclear. Herein, a retrospective analysis of Medicaid claims data was performed, which indicated that tetracycline class antibiotics are commonly prescribed for the systemic treatment of adolescent acne. The purpose of this was to discern the impact of a prolonged tetracycline antibiotic exposure during adolescence on the gut microbiota, liver metabolism, and adiposity. Male C57BL/6T specific pathogen-free mice were administered a tetracycline antibiotic during the pubertal/postpubertal adolescent growth phase. Groups were euthanized at different time points to assess immediate and sustained antibiotic treatment effects. Antibiotic exposure during adolescence caused lasting genera-level shifts in the intestinal bacteriome and persistent dysregulation of metabolic pathways in the liver. Dysregulated hepatic metabolism was linked to sustained disruption of the intestinal farnesoid X receptor-fibroblast growth factor 15 axis, a gut-liver endocrine axis that supports metabolic homeostasis. Antibiotic exposure during adolescence increased subcutaneous, visceral, and marrow adiposity, which intriguingly manifested following antibiotic therapy. This preclinical work highlights that prolonged antibiotic courses for the clinical treatment of adolescent acne may have unintended deleterious effects on liver metabolism and adiposity.
Collapse
Affiliation(s)
- Matthew D Carson
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Endocrinology, Department of Pediatrics, College of Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Periodontics, Department of Stomatology, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Amy J Warner
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Endocrinology, Department of Pediatrics, College of Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Periodontics, Department of Stomatology, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Vincenza L Geiser
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Endocrinology, Department of Pediatrics, College of Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Periodontics, Department of Stomatology, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Jessica D Hathaway-Schrader
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Endocrinology, Department of Pediatrics, College of Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Periodontics, Department of Stomatology, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Alexander V Alekseyenko
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Biomedical Informatics Center, Program for Human Microbiome Research, Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, South Carolina; Department of Healthcare Leadership and Management, College of Health Professions, Medical University of South Carolina, Charleston, South Carolina
| | - Julie Marshall
- Division of Population Oral Health, Department of Stomatology, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Caroline Westwater
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Chad M Novince
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Endocrinology, Department of Pediatrics, College of Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Periodontics, Department of Stomatology, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
9
|
Association of Primate Veterinarians Guidelines for the Management of Diarrhea. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2023; 62:202-204. [PMID: 37208835 PMCID: PMC10230536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
|
10
|
Ruiz-Malagón AJ, Hidalgo-García L, Rodríguez-Sojo MJ, Molina-Tijeras JA, García F, Diez-Echave P, Vezza T, Becerra P, Marchal JA, Redondo-Cerezo E, Hausmann M, Rogler G, Garrido-Mesa J, Rodríguez-Cabezas ME, Rodríguez-Nogales A, Gálvez J. Tigecycline reduces tumorigenesis in colorectal cancer via inhibition of cell proliferation and modulation of immune response. Biomed Pharmacother 2023; 163:114760. [PMID: 37119741 DOI: 10.1016/j.biopha.2023.114760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND and Purpose: Colorectal cancer (CRC) is one of the cancers with the highest incidence in which APC gene mutations occur in almost 80% of patients. This mutation leads to β-catenin aberrant accumulation and an uncontrolled proliferation. Apoptosis evasion, changes in the immune response and microbiota composition are also events that arise in CRC. Tetracyclines are drugs with proven antibiotic and immunomodulatory properties that have shown cytotoxic activity against different tumor cell lines. EXPERIMENTAL APPROACH The effect of tigecycline was evaluated in vitro in HCT116 cells and in vivo in a colitis-associated colorectal cancer (CAC) murine model. 5-fluorouracil was assayed as positive control in both studies. KEY RESULTS Tigecycline showed an antiproliferative activity targeting the Wnt/β-catenin pathway and downregulating STAT3. Moreover, tigecycline induced apoptosis through extrinsic, intrinsic and endoplasmic reticulum pathways converging on an increase of CASP7 levels. Furthermore, tigecycline modulated the immune response in CAC, reducing the cancer-associated inflammation through downregulation of cytokines expression. Additionally, tigecycline favored the cytotoxic activity of cytotoxic T lymphocytes (CTLs), one of the main immune defenses against tumor cells. Lastly, the antibiotic reestablished the gut dysbiosis in CAC mice increasing the abundance of bacterial genera and species, such as Akkermansia and Parabacteroides distasonis, that act as protectors against tumor development. These findings resulted in a reduction of the number of tumors and an amelioration of the tumorigenesis process in CAC. CONCLUSION AND IMPLICATIONS Tigecycline exerts a beneficial effect against CRC supporting the use of this antibiotic for the treatment of this disease.
Collapse
Affiliation(s)
- Antonio Jesús Ruiz-Malagón
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Laura Hidalgo-García
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - María Jesús Rodríguez-Sojo
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - José Alberto Molina-Tijeras
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Federico García
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Servicio Microbiología, Hospital Universitario Clínico San Cecilio, 18100 Granada, Spain; Ciber de Enfermedades Infecciosas, CiberInfecc, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Patricia Diez-Echave
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Teresa Vezza
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Patricia Becerra
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Servicio de Anatomía Patológica, Hospital Universitario Clínico San Cecilio, 18014 Granada, Spain
| | - Juan Antonio Marchal
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, E-18100 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada E-18016, Spain
| | - Eduardo Redondo-Cerezo
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Servicio de Aparato Digestivo. Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057, Zurich, Switzerland
| | - José Garrido-Mesa
- The William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK.
| | - María Elena Rodríguez-Cabezas
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain.
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Julio Gálvez
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
11
|
A Comparison of the Immunometabolic Effect of Antibiotics and Plant Extracts in a Chicken Macrophage-like Cell Line during a Salmonella Enteritidis Challenge. Antibiotics (Basel) 2023; 12:antibiotics12020357. [PMID: 36830268 PMCID: PMC9952652 DOI: 10.3390/antibiotics12020357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Immunometabolic modulation of macrophages can play an important role in the innate immune response of chickens triggered with a multiplicity of insults. In this study, the immunometabolic role of two antibiotics (oxytetracycline and gentamicin) and four plant extracts (thyme essential oil, grape seed extract, garlic oil, and capsicum oleoresin) were investigated on a chicken macrophage-like cell line (HD11) during a Salmonella Enteritidis infection. To study the effect of these substances, kinome peptide array analysis, Seahorse metabolic assay, and gene expression techniques were employed. Oxytetracycline, to which the bacterial strain was resistant, thyme essential oil, and capsicum oleoresin did not show any noteworthy immunometabolic effect. Garlic oil affected glycolysis, but this change was not detected by the kinome analysis. Gentamicin and grape seed extract showed the best immunometabolic profile among treatments, being able to both help the host with the activation of immune response pathways and with maintaining a less inflammatory status from a metabolic point of view.
Collapse
|
12
|
Vezza T, Molina-Tijeras JA, González-Cano R, Rodríguez-Nogales A, García F, Gálvez J, Cobos EJ. Minocycline Prevents the Development of Key Features of Inflammation and Pain in DSS-induced Colitis in Mice. THE JOURNAL OF PAIN 2023; 24:304-319. [PMID: 36183969 DOI: 10.1016/j.jpain.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/30/2022] [Accepted: 09/23/2022] [Indexed: 02/07/2023]
Abstract
Abdominal pain is a common feature in inflammatory bowel disease (IBD) patients, and greatly compromises their quality of life. Therefore, the identification of new therapeutic tools to reduce visceral pain is one of the main goals for IBD therapy. Minocycline, a broad-spectrum tetracycline antibiotic, has gained attention in the scientific community because of its immunomodulatory and anti-inflammatory properties. The aim of this study was to evaluate the potential of this antibiotic as a therapy for the management of visceral pain in dextran sodium sulfate (DSS)-induced colitis in mice. Preemptive treatment with minocycline markedly reduced histological features of intestinal inflammation and the expression of inflammatory markers (Tlr4, Tnfα, Il1ß, Ptgs2, Inos, Cxcl2, and Icam1), and attenuated the decrease of markers of epithelial integrity (Tjp1, Ocln, Muc2, and Muc3). In fact, minocycline restored normal epithelial permeability in colitic mice. Treatment with the antibiotic also reversed the changes in the gut microbiota profile induced by colitis. All these ameliorative effects of minocycline on both inflammation and dysbiosis correlated with a decrease in ongoing pain and referred hyperalgesia, and with the improvement of physical activity induced by the antibiotic in colitic mice. Minocycline might constitute a new therapeutic approach for the treatment of IBD-induced pain. PERSPECTIVE: This study found that the intestinal anti-inflammatory effects of minocycline ameliorate DSS-associated pain in mice. Therefore, minocycline might constitute a novel therapeutic strategy for the treatment of IBD-induced pain.
Collapse
Affiliation(s)
- Teresa Vezza
- Department of Pharmacology, University of Granada, Granada, Spain
| | - Jose Alberto Molina-Tijeras
- Department of Pharmacology, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Rafael González-Cano
- Department of Pharmacology, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Biomedical Research Center, Institute of Neuroscience, University of Granada, Granada, Spain.
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain.
| | - Federico García
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Clinical Microbiology Service, Hospital Universitario San Cecilio, Red de Investigación en SIDA, Granada, Spain
| | - Julio Gálvez
- Department of Pharmacology, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Centro de Investigación Biomédica en Red - Enfermedades Hepáticas y Digestivas (CIBER-EHD)
| | - Enrique J Cobos
- Department of Pharmacology, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Biomedical Research Center, Institute of Neuroscience, University of Granada, Granada, Spain
| |
Collapse
|
13
|
Armstrong D, Dregan A, Ashworth M, White P. Prior antibiotics and risk of subsequent Herpes zoster: A population-based case control study. PLoS One 2022; 17:e0276807. [PMID: 36301976 PMCID: PMC9612511 DOI: 10.1371/journal.pone.0276807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Background The effect of antibiotics on the human microbiome is now well established, but their indirect effect on the related immune response is less clear. The possible association of Herpes zoster, which involves a reactivation of a previous varicella zoster virus infection, with prior antibiotic exposure might indicate a potential link with the immune response. Methods A case-control study was carried out using a clinical database, the UK’s Clinical Practice Research Datalink. A total of 163,754 patients with varicella zoster virus infection and 331,559 age/sex matched controls were identified and their antibiotic exposure over the previous 10 years, and longer when data permitted, was identified. Conditional logistic regression was used to identify the association between antibiotic exposure and subsequent infection in terms of volume and timing. Results The study found an association of antibiotic prescription and subsequent risk of varicella zoster virus infection (adjusted odds ratio of 1.50; 95%CIs: 1.42–1.58). The strongest association was with a first antibiotic over 10 years ago (aOR: 1.92; 95%CIs: 1.88–1.96) which was particularly pronounced in the younger age group of 18 to 50 (aOR 2.77; 95%CIs: 1.95–3.92). Conclusions By finding an association between prior antibiotics and Herpes zoster this study has shown that antibiotics may be involved in the reactivation of the varicella zoster virus. That effect, moreover, may be relatively long term. This indirect effect of antibiotics on viruses, possibly mediated through their effect on the microbiome and immune system, merits further study.
Collapse
Affiliation(s)
- David Armstrong
- School of Life Course and Population Sciences, King’s College London, London, United Kingdom
- * E-mail: (DA); (AD)
| | - Alex Dregan
- Department of Psychological Medicine, Institute of Psychiatry, Psychological and Neurosciences, King’s College London, London, United Kingdom
- * E-mail: (DA); (AD)
| | - Mark Ashworth
- School of Life Course and Population Sciences, King’s College London, London, United Kingdom
| | - Patrick White
- School of Life Course and Population Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
14
|
Kong L, Yu S, Gu L, Geng M, Zhang D, Cao H, Liu A, Wang Q, Wang S, Tao F, Liu K. Associations of typical antibiotic residues with elderly blood lipids and dyslipidemia in West Anhui, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113889. [PMID: 35853362 DOI: 10.1016/j.ecoenv.2022.113889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Growing evidence has indicated the association of clinical antibiotic use with abnormal blood lipid levels; however, no epidemiological study has examined the relationship of antibiotic exposure, probably derived from food chains, with blood lipid levels. This study investigated the relationships of urinary antibiotic levels with blood lipid levels and dyslipidemias in the older population. Baseline data of 960 participants from the Cohort of Elderly Health and Environment Controllable Factors were used in the present study. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was performed to detect antibiotic residues in the urine samples of the participants. Our findings revealed that each 1 μg/g increase in enrofloxacin and ciprofloxacin levels was associated with an increase of 0.084 (95 % confidence interval (CI): 0.030, 0.139) and 0.049 (95 % CI: 0.012, 0.086) in triglyceride levels, respectively. Enrofloxacin was associated with an increased risk of hypertriglyceridemia. Each 1 μg/g increase in the enrofloxacin level corresponded to an increase of 0.052 (95 % CI: 0.006, 0.098) in the low-density lipoprotein cholesterol level. Furthermore, florfenicol exposure increased the risks of both hyperbetalipoproteinemia and hypoalphalipoproteinemia. By contrast, each 1 μg/g increase in sulfaclozine and doxycycline levels was associated with a - 0.062 (95 % CI: -0.111, -0.020), and - 0.083 (95 % CI: -0.160, -0.007) decrease in total cholesterol levels, respectively. Sulfaclozine was closely related to a decreased risk of hypercholesterolemia. Stratification analysis revealed specific differences in the correlation between antibiotic exposure and lipid levels based on the waist circumference (WC) values of the participants. Except for sulfaclozine and doxycycline, other antibiotics exerted adverse effects on lipid levels and increased dyslipidemia prevalence. The older participants with higher WC values were vulnerable to antibiotic exposure. Therefore, an appropriate understanding of the epidemiological attributes of antibiotic residues is indispensable to prevent abdominal obesity in the older population.
Collapse
Affiliation(s)
- Li Kong
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Shuixin Yu
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Lvfen Gu
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Menglong Geng
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Dongmei Zhang
- School of Health Management, Anhui Medical University, 230032 Anhui, China
| | - Hongjuan Cao
- Lu'an Center of Disease Control and Prevention, Lu'an, Anhui 237000, China
| | - Annuo Liu
- School of Nursing, Anhui Medical University, Hefei 230032, Anhui, China
| | - Qunan Wang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Sufang Wang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Kaiyong Liu
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
15
|
Sex-Biased Immune Responses to Antibiotics during Anti-PD-L1 Treatment in Mice with Colon Cancer. J Immunol Res 2022; 2022:9202491. [PMID: 35903754 PMCID: PMC9325566 DOI: 10.1155/2022/9202491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Colitis is a frequently occurred side effect of immune checkpoint inhibitors (ICIs), which are increasingly used in cancer treatment, whereas antibiotics are widely used to treat colitis, their effectiveness in ICI-associated colitis remains controversial. In this study, we firstly assessed the effectiveness of several commonly used antibiotics and antibiotic cocktails in alleviating of dextran sulfate sodium- (DSS-) induced colitis. We observed that two narrow-spectrum antibiotics, neomycin and metronidazole, were more effective in alleviating colitis, as evidenced by the remission of loss of the body weight, enlargement of the spleen, shortening of the colon, secretion of proinflammatory cytokines, and histological score of the colon tissue. Moreover, these two antibiotics resulted in better relief of colitis symptoms in the MC38 tumor-bearing male mice receiving the anti-PD-L1 mAb (αPD-L1) treatment, compared to the females. In the meantime, an enhanced response to αPD-L1 efficiency against mice colon cancer was observed in the male mouse group upon the application of these two antibiotics. In contrast, both neomycin and metronidazole showed destructive effects on the antitumor efficiency of αPD-L1 in female mice, despite relief from colitis. We found that antibiotic treatment attenuated the increased infiltration of granulocytes and myeloid cells in colon tissue induced by DSS in female mice, while reducing the proportion of Th17 cells in male mice. These differences were further associated with the sex-biased differences in the gut microbiota. These findings indicated that sex-dependent alterations in the gut microbiota should be considered when applying antibiotics for the treatment of ICI-associated colitis.
Collapse
|
16
|
Vieujean S, Caron B, Haghnejad V, Jouzeau JY, Netter P, Heba AC, Ndiaye NC, Moulin D, Barreto G, Danese S, Peyrin-Biroulet L. Impact of the Exposome on the Epigenome in Inflammatory Bowel Disease Patients and Animal Models. Int J Mol Sci 2022; 23:7611. [PMID: 35886959 PMCID: PMC9321337 DOI: 10.3390/ijms23147611] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory disorders of the gastrointestinal tract that encompass two main phenotypes, namely Crohn's disease and ulcerative colitis. These conditions occur in genetically predisposed individuals in response to environmental factors. Epigenetics, acting by DNA methylation, post-translational histones modifications or by non-coding RNAs, could explain how the exposome (or all environmental influences over the life course, from conception to death) could influence the gene expression to contribute to intestinal inflammation. We performed a scoping search using Medline to identify all the elements of the exposome that may play a role in intestinal inflammation through epigenetic modifications, as well as the underlying mechanisms. The environmental factors epigenetically influencing the occurrence of intestinal inflammation are the maternal lifestyle (mainly diet, the occurrence of infection during pregnancy and smoking); breastfeeding; microbiota; diet (including a low-fiber diet, high-fat diet and deficiency in micronutrients); smoking habits, vitamin D and drugs (e.g., IBD treatments, antibiotics and probiotics). Influenced by both microbiota and diet, short-chain fatty acids are gut microbiota-derived metabolites resulting from the anaerobic fermentation of non-digestible dietary fibers, playing an epigenetically mediated role in the integrity of the epithelial barrier and in the defense against invading microorganisms. Although the impact of some environmental factors has been identified, the exposome-induced epimutations in IBD remain a largely underexplored field. How these environmental exposures induce epigenetic modifications (in terms of duration, frequency and the timing at which they occur) and how other environmental factors associated with IBD modulate epigenetics deserve to be further investigated.
Collapse
Affiliation(s)
- Sophie Vieujean
- Hepato-Gastroenterology and Digestive Oncology, University Hospital CHU of Liège, 4000 Liege, Belgium;
| | - Bénédicte Caron
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| | - Vincent Haghnejad
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| | - Jean-Yves Jouzeau
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Patrick Netter
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Anne-Charlotte Heba
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), National Institute of Health and Medical Research, University of Lorraine, F-54000 Nancy, France; (A.-C.H.); (N.C.N.)
| | - Ndeye Coumba Ndiaye
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), National Institute of Health and Medical Research, University of Lorraine, F-54000 Nancy, France; (A.-C.H.); (N.C.N.)
| | - David Moulin
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Guillermo Barreto
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Universidad de la Salud del Estado de Puebla, Puebla 72000, Mexico
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and University Vita-Salute San Raffaele, 20132 Milan, Italy;
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| |
Collapse
|
17
|
Medhasi S, Chindamporn A, Worasilchai N. A Review: Antimicrobial Therapy for Human Pythiosis. Antibiotics (Basel) 2022; 11:antibiotics11040450. [PMID: 35453202 PMCID: PMC9029071 DOI: 10.3390/antibiotics11040450] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 01/14/2023] Open
Abstract
Human pythiosis is associated with poor prognosis with significant mortality caused by Pythium insidiosum. Antimicrobials’ in vitro and in vivo results against P. insidiosum are inconsistent. Although antimicrobials are clinically useful, they are not likely to achieve therapeutic success alone without surgery and immunotherapy. New therapeutic options are therefore needed. This non-exhaustive review discusses the rationale antimicrobial therapy, minimum inhibitory concentrations, and efficacy of antibacterial and antifungal agents against P. insidiosum. This review further provides insight into the immunomodulating effects of antimicrobials that can enhance the immune response to infections. Current data support using antimicrobial combination therapy for the pharmacotherapeutic management of human pythiosis. Also, the success or failure of antimicrobial treatment in human pythiosis might depend on the immunomodulatory effects of drugs. The repurposing of existing drugs is a safe strategy for anti-P. insidiosum drug discovery. To improve patient outcomes in pythiosis, we suggest further research and a deeper understanding of P. insidiosum virulence factors, host immune response, and host immune system modification by antimicrobials.
Collapse
Affiliation(s)
- Sadeep Medhasi
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Ariya Chindamporn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Navaporn Worasilchai
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Immunomodulation of Natural Products Research Group, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-2218-1065
| |
Collapse
|
18
|
Garrido-Mesa J, Adams K, Galvez J, Garrido-Mesa N. Repurposing tetracyclines for acute respiratory distress syndrome (ARDS) and severe COVID-19: A critical discussion of recent publications. Expert Opin Investig Drugs 2022; 31:475-482. [PMID: 35294307 PMCID: PMC9115781 DOI: 10.1080/13543784.2022.2054325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Introduction Drug repurposing can be a successful approach to deal with the scarcity of cost-effective therapies in situations such as the COVID-19 pandemic. Tetracyclines have previously shown efficacy in preclinical acute respiratory distress syndrome (ARDS) models and initial predictions and experimental reports suggest a direct antiviral activity against SARS-CoV2. Furthermore, a few clinical reports indicate their potential in COVID-19 patients. In addition to the scarcity and limitations of the scientific evidence, the effectiveness of tetracyclines in experimental ARDS has been proven extensively, counteracting the overt inflammatory reaction and fibrosis sequelae due to a synergic combination of pharmacological activities. Areas covered This paper discusses the scientific evidence behind the application of tetracyclines for ARDS/COVID-19. Expert Opinion The benefits of their multi-target pharmacology and their safety profile overcome the limitations, such as antibiotic activity and low commercial interest. Immunomodulatory tetracyclines and novel chemically modified non-antibiotic tetracyclines have therapeutic potential. Further drug repurposing studies in ARDS and severe COVID-19 are necessary.
Collapse
Affiliation(s)
- Jose Garrido-Mesa
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, Guy's & St Thomas' NHS Foundation Trust and King's College London NIHR Biomedical Research Centre, London, UK
| | - Kate Adams
- Department of Bioscience, School of Health, Sport and Bioscience, University of East London, London, UK
| | - Julio Galvez
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, AND Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Natividad Garrido-Mesa
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry. Kingston University, London, UK
| |
Collapse
|
19
|
Abstract
Hypertension is a worldwide problem with major impacts on health including morbidity and mortality, as well as consumption of health care resources. Nearly 50% of American adults have high blood pressure, and this rate is rising. Even with multiple antihypertensive drugs and aggressive lifestyle modifications, blood pressure is inadequately controlled in about 1 of 5 hypertensive individuals. This review highlights a hypothesis for hypertension that suggests alternative mechanisms for blood pressure elevation and maintenance. A better understanding of these mechanisms could open avenues for more successful treatments. The hypothesis accounts for recent understandings of the involvement of gut physiology, gut microbiota, and neuroinflammation in hypertension. It includes bidirectional communication between gut microbiota and gut epithelium in the gut-brain axis that is involved in regulation of autonomic nervous system activity and blood pressure control. Dysfunction of this gut-brain axis, including dysbiosis of gut microbiota, gut epithelial dysfunction, and deranged input to the brain, contributes to hypertension via inflammatory mediators, metabolites, bacteria in the circulation, afferent information alterations, etc resulting in neuroinflammation and unbalanced autonomic nervous system activity that elevates blood pressure. This in turn negatively affects gut function and its microbiota exacerbating the problem. We focus this review on the gut-brain axis hypothesis for hypertension and possible contribution to racial disparities in hypertension. A novel idea, that immunoglobulin A-coated bacteria originating in the gut with access to the brain could be involved in hypertension, is raised. Finally, minocycline, with its anti-inflammatory and antimicrobial properties, is evaluated as a potential antihypertensive drug acting on this axis.
Collapse
Affiliation(s)
- Elaine M Richards
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Jing Li
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Bruce R Stevens
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Carl J Pepine
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
20
|
Xu J, Xu HM, Yang MF, Liang YJ, Peng QZ, Zhang Y, Tian CM, Wang LS, Yao J, Nie YQ, Li DF. New Insights Into the Epigenetic Regulation of Inflammatory Bowel Disease. Front Pharmacol 2022; 13:813659. [PMID: 35173618 PMCID: PMC8841592 DOI: 10.3389/fphar.2022.813659] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/06/2022] [Indexed: 01/10/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the colonic mucosa. Environmental factors, genetics, intestinal microbiota, and the immune system are all involved in the pathophysiology of IBD. Lately, accumulating evidence has shown that abnormal epigenetic changes in DNA methylation, histone markers, and non-coding RNA expression greatly contribute to the development of the entire disease. Epigenetics regulates many functions, such as maintaining the homeostasis of the intestinal epithelium and regulating the immune system of the immune cells. In the present study, we systematically summarized the latest advances in epigenetic modification of IBD and how epigenetics reveals new mechanisms of IBD. Our present review provided new insights into the pathophysiology of IBD. Moreover, exploring the patterns of DNA methylation and histone modification through epigenetics can not only be used as biomarkers of IBD but also as a new target for therapeutic intervention in IBD patients.
Collapse
Affiliation(s)
- Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hao-ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Mei-feng Yang
- Department of Hematology, Yantian District People’s Hospital, Shenzhen, China
| | | | - Quan-zhou Peng
- Department of Pathology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, China
| | - Cheng-mei Tian
- Department of Emergency, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Li-sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- *Correspondence: De-feng Li, ; Li-sheng Wang, ; Jun Yao, ; Yu-qiang Nie,
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- *Correspondence: De-feng Li, ; Li-sheng Wang, ; Jun Yao, ; Yu-qiang Nie,
| | - Yu-qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: De-feng Li, ; Li-sheng Wang, ; Jun Yao, ; Yu-qiang Nie,
| | - De-feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- *Correspondence: De-feng Li, ; Li-sheng Wang, ; Jun Yao, ; Yu-qiang Nie,
| |
Collapse
|
21
|
Florou DT, Mavropoulos A, Dardiotis E, Tsimourtou V, Siokas V, Aloizou AM, Liaskos C, Tsigalou C, Katsiari C, Sakkas LI, Hadjigeorgiou G, Bogdanos DP. Tetracyclines Diminish In Vitro IFN-γ and IL-17-Producing Adaptive and Innate Immune Cells in Multiple Sclerosis. Front Immunol 2021; 12:739186. [PMID: 34899697 PMCID: PMC8662812 DOI: 10.3389/fimmu.2021.739186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/16/2021] [Indexed: 11/28/2022] Open
Abstract
Introduction Limited data from clinical trials in multiple sclerosis (MS) reported that minocycline, a widely used antibiotic belonging to the family of tetracyclines (TCs), exerts a beneficial short-lived clinical effect A similar anti-inflammatory effect of minocycline attributed to a deviation from Th1 to Th2 immune response has been reported in experimental models of MS. Whether such an immunomodulatory mechanism is operated in the human disease remains largely unknown. Aim To assess the in vitro immunomodulatory effect of tetracyclines, and in particular minocycline and doxycycline, in naïve and treated patients with MS. Material and Methods Peripheral blood mononuclear cells from 45 individuals (35 MS patients, amongst which 15 naïve patients and 10 healthy controls, HCs) were cultured with minocycline or doxycycline and conventional stimulants (PMA/Ionomycin or IL-12/IL-18). IFN-γ and IL-17 producing T-, NK- and NKT cells were assessed by flow cytometry. The effect of TCs on cell viability and apoptosis was further assessed by flow cytometry with Annexin V staining. Results Both tetracyclines significantly decreased, in a dose dependent manner, IFN-γ production in NKT and CD4+ T lymphocytes from MS patients (naïve or treated) stimulated with IL-12/IL-18 but did not decrease IFN-γ producing CD8+ T cells from naive MS or treated RRMS patients. They also decreased IL-17+ T and NKT cells following PMA and Ionomycin-stimulation. Tetracyclines did not affect the viability of cell subsets. Conclusion Tetracyclines can in vitro suppress IFN-γ and IL-17- producing cells from MS patients, and this may explain their potential therapeutic effect in vivo.
Collapse
Affiliation(s)
- Despoina T Florou
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.,Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Athanasios Mavropoulos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Efthymios Dardiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Vana Tsimourtou
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Christos Liaskos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Christina Tsigalou
- Laboratory of Microbiology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina Katsiari
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Lazaros I Sakkas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Georgios Hadjigeorgiou
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.,Medical School, University of Cyprus, Nicosia, Cyprus
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
22
|
Gentili M, Hidalgo-Garcia L, Vezza T, Ricci E, Migliorati G, Rodriguez-Nogales A, Riccardi C, Galvez J, Ronchetti S. A recombinant glucocorticoid-induced leucine zipper protein ameliorates symptoms of dextran sulfate sodium-induced colitis by improving intestinal permeability. FASEB J 2021; 35:e21950. [PMID: 34613638 DOI: 10.1096/fj.202100778rrrr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders characterized by relapsing intestinal inflammation, but many details of pathogenesis remain to be fully unraveled. Glucocorticoid (GC)-induced leucine zipper (GILZ) is a mediator of the anti-inflammatory effects of GCs, the most powerful drugs for IBD treatment, but they cause several unwanted side effects. The fusion protein TAT-GILZ has been successfully used in some pre-clinical models of inflammatory and autoimmune diseases. To test the efficacy of TAT-GILZ for treating dextran sulfate sodium (DSS)-induced colitis and explore its impact on the gut microbiome, colitis was induced by DSS in C57BL/6J mice and treated with TAT-GILZ or dexamethasone. Various hallmarks of colitis were analyzed, including disease activity index, gut permeability, and expression of pro-inflammatory cytokines and tight junction proteins. TAT-GILZ treatment showed a therapeutic effect when administered after the onset of colitis. Its efficacy was associated with improved gut permeability, as evidenced by zonula occludens-1 and CD74 upregulation in inflamed colonic tissue. TAT-GILZ also ameliorated the changes in the gut microbiota induced by the DSS, thus potentially providing an optimal environment for colonization of the mucosa surface by beneficial bacteria. Overall, our results demonstrated for the first time that TAT-GILZ treatment proved effective after disease onset allowing restoration of gut permeability, a key pathogenic feature of colitis. Additionally, TAT-GILZ restored gut dysbiosis, thereby contributing to healing mechanisms. Interestingly, we found unprecedented effects of exogenous GILZ that did not overlap with those of GCs.
Collapse
Affiliation(s)
- Marco Gentili
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Laura Hidalgo-Garcia
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Teresa Vezza
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Erika Ricci
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Graziella Migliorati
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Alba Rodriguez-Nogales
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Carlo Riccardi
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Julio Galvez
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Simona Ronchetti
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
23
|
Wang XQ, Chen H, Gao YZ, Huang YX, Zhang RJ, Xie J, Li Y, Huang YQ, Gou LS, Yao RQ. The Potential Immunomodulatory Properties of Levornidazole Contribute to Improvement in Experimental Ulcerative Colitis. Curr Med Sci 2021; 41:746-756. [PMID: 34403100 DOI: 10.1007/s11596-021-2384-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/26/2020] [Indexed: 10/20/2022]
Abstract
The use of an antibiotic with immunomodulatory properties could be fascinating in treating multifactorial inflammatory conditions such as ulcerative colitis (UC). We report our investigations into the immunomodulatory properties of levornidazole, the S-enantiomer of ornidazole, which displayed a tremendous therapeutic potential in UC induced by dextran sodium sulfate (DSS). Levornidazole administration to DSS-colitic mice attenuated the intestinal inflammatory process, with an efficacy better than that shown by 5-amino salicylic acid. This was evidenced by decreased disease activity index, ameliorated macroscopic and microscopic colon damages, and reduced expression of inflammatory cytokines. Additionally, levornidazole displayed anti-inflammatory activity through Caveolin-1-dependent reducing IL-1β and IL-18 secretion by macrophages contributing to its improvement of the intestinal inflammation, as confirmed in vitro and in vivo. In conclusion, these results pointed out that the immunomodulatory effects of levornidazole played a vital role in ameliorating the intestinal inflammatory process, which would be crucial for the translation of its use into clinical settings.
Collapse
Affiliation(s)
- Xing-Qi Wang
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Hao Chen
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221600, China
| | - Yu-Zhi Gao
- Department of Cell Biology, Xuzhou Medical University, Xuzhou, 221009, China
| | - Yan-Xiu Huang
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Rui-Juan Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Jun Xie
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yu Li
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yu-Qing Huang
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Ling-Shan Gou
- Center for Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, 221009, China.
| | - Rui-Qin Yao
- Department of Cell Biology, Xuzhou Medical University, Xuzhou, 221009, China.
| |
Collapse
|
24
|
Miow QH, Vallejo AF, Wang Y, Hong JM, Bai C, Teo FS, Wang AD, Loh HR, Tan TZ, Ding Y, She HW, Gan SH, Paton NI, Lum J, Tay A, Chee CB, Tambyah PA, Polak ME, Wang YT, Singhal A, Elkington PT, Friedland JS, Ong CW. Doxycycline host-directed therapy in human pulmonary tuberculosis. J Clin Invest 2021; 131:e141895. [PMID: 34128838 DOI: 10.1172/jci141895] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUNDMatrix metalloproteinases (MMPs) are key regulators of tissue destruction in tuberculosis (TB) and may be targets for host-directed therapy. We conducted a phase II double-blind, randomized, controlled trial investigating doxycycline, a licensed broad-spectrum MMP inhibitor, in patients with pulmonary TB.METHODSThirty patients with pulmonary TB were enrolled within 7 days of initiating anti-TB treatment and randomly assigned to receive either 100 mg doxycycline or placebo twice a day for 14 days, in addition to standard care.RESULTSWhole blood RNA-sequencing demonstrated that doxycycline accelerated restoration of dysregulated gene expression in TB towards normality, rapidly down-regulating type I and II interferon and innate immune response genes, and up-regulating B-cell modules relative to placebo. The effects persisted for 6 weeks after doxycycline discontinuation, concurrent with suppressed plasma MMP-1. Doxycycline significantly reduced sputum MMP-1, -8, -9, -12 and -13, suppressed type I collagen and elastin destruction, reduced pulmonary cavity volume without altering sputum mycobacterial loads, and was safe.CONCLUSIONAdjunctive doxycycline with standard anti-TB treatment suppressed pathological MMPs in PTB patients. Larger studies on adjunctive doxycycline to limit TB immunopathology are merited.TRIAL REGISTRATIONClinicalTrials.gov NCT02774993.FUNDINGSingapore National Medical Research Council (NMRC/CNIG/1120/2014, NMRC/Seedfunding/0010/2014, NMRC/CISSP/2015/009a); the Singapore Infectious Diseases Initiative (SIDI/2013/013); National University Health System (PFFR-28 January 14, NUHSRO/2014/039/BSL3-SeedFunding/Jul/01); the Singapore Immunology Network Immunomonitoring platform (BMRC/IAF/311006, H16/99/b0/011, NRF2017_SISFP09); an ExxonMobil Research Fellowship, NUHS Clinician Scientist Program (NMRC/TA/0042/2015, CSAINV17nov014); the UK Medical Research Council (MR/P023754/1, MR/N006631/1); a NUS Postdoctoral Fellowship (NUHSRO/2017/073/PDF/03); The Royal Society Challenge Grant (CHG\R1\170084); the Sir Henry Dale Fellowship, Wellcome Trust (109377/Z/15/Z); and A*STAR.
Collapse
Affiliation(s)
- Qing Hao Miow
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andres F Vallejo
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Yu Wang
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jia Mei Hong
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chen Bai
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Felicia Sw Teo
- Division of Respiratory and Critical Care Medicine, University Medicine Cluster, National University Hospital, National University Health System, Singapore
| | - Alvin Dy Wang
- Department of Medicine, Ng Teng Fong General Hospital, Singapore
| | - Hong Rong Loh
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ying Ding
- National Centre for Infectious Diseases, Singapore
| | - Hoi Wah She
- Tuberculosis Control Unit, Tan Tock Seng Hospital, Singapore
| | - Suay Hong Gan
- Tuberculosis Control Unit, Tan Tock Seng Hospital, Singapore
| | - Nicholas I Paton
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Alicia Tay
- Singapore Immunology Network, A*STAR, Singapore
| | - Cynthia Be Chee
- Tuberculosis Control Unit, Tan Tock Seng Hospital, Singapore
| | - Paul A Tambyah
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Marta E Polak
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Yee Tang Wang
- Tuberculosis Control Unit, Tan Tock Seng Hospital, Singapore
| | | | - Paul T Elkington
- NIHR Respiratory Biomedical Research Centre, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | - Catherine Wm Ong
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Institute for Health Innovation and Technology, National University of Singapore, Singapore
| |
Collapse
|
25
|
Zhou J, Liu J, Gao Y, Shen L, Li S, Chen S. miRNA-Based Potential Biomarkers and New Molecular Insights in Ulcerative Colitis. Front Pharmacol 2021; 12:707776. [PMID: 34305614 PMCID: PMC8298863 DOI: 10.3389/fphar.2021.707776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic non-specific inflammatory bowel disease, which usually manifests as abdominal pain, diarrhea and hematochezia. The disease often recurs and is difficult to cure. At present, the pathogenesis is not clear, but it is believed that the disease is caused by a complex interaction among immunity, heredity, environment and intestinal microflora disorders. MicroRNA (miRNA) is endogenous single-stranded non-coding RNA of 17–25 nucleotides (nts). They target the 3'Untranslated Region of a target gene and inhibit or degrade the target gene according to the extent of complementary bases. As important gene expression regulators, miRNAs are involved in regulating the expression of most human genes, and play an important role in the pathogenesis of many autoimmune diseases including UC. Studies in recent years have illustrated that abnormal expression of miRNA occurs very early in disease pathogenesis. Moreover, this abnormal expression is highly related to disease activity of UC and colitis-associated cancer, and involves virtually all key UC-related mechanisms, such as immunity and intestinal microbiota dysregulation. Recently, it was discovered that miRNA is highly stable outside the cell in the form of microvesicles, exosomes or apoptotic vesicles, which raises the possibility that miRNA may serve as a novel diagnostic marker for UC. In this review, we summarize the biosynthetic pathway and the function of miRNA, and summarize the usefulness of miRNA for diagnosis, monitoring and prognosis of UC. Then, we described four types of miRNAs involved in regulating the mechanisms of UC occurrence and development: 1) miRNAs are involved in regulating immune cells; 2) affect the intestinal epithelial cells barrier; 3) regulate the homeostasis between gut microbiota and the host; and 4) participate in the formation of tumor in UC. Altogether, we aim to emphasize the close relationship between miRNA and UC as well as to propose that the field has value for developing potential biomarkers as well as therapeutic targets for UC.
Collapse
Affiliation(s)
- Jing Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jialing Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yangyang Gao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liwei Shen
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sheng Li
- Center for Health Policy & Drug Affairs Operation Management, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Simin Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
26
|
Diez-Echave P, Martín-Cabrejas I, Garrido-Mesa J, Langa S, Vezza T, Landete JM, Hidalgo-García L, Algieri F, Mayer MJ, Narbad A, García-Lafuente A, Medina M, Rodríguez-Nogales A, Rodríguez-Cabezas ME, Gálvez J, Arqués JL. Probiotic and Functional Properties of Limosilactobacillus reuteri INIA P572. Nutrients 2021; 13:1860. [PMID: 34072532 PMCID: PMC8228662 DOI: 10.3390/nu13061860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Limosilactobacillus reuteri INIA P572 is a strain able to produce the antimicrobial compound reuterin in dairy products, exhibiting a protective effect against some food-borne pathogens. In this study, we investigated some probiotic properties of this strain such as resistance to gastrointestinal passage or to colonic conditions, reuterin production in a colonic environment, and immunomodulatory activity, using different in vitro and in vivo models. The results showed a high resistance of this strain to gastrointestinal conditions, as well as capacity to grow and produce reuterin in a human colonic model. Although the in vitro assays using the RAW 264.7 macrophage cell line did not demonstrate direct immunomodulatory properties, the in vivo assays using a Dextran Sulphate Sodium (DSS)-induced colitic mice model showed clear immunomodulatory and protective effects of this strain.
Collapse
Affiliation(s)
- Patricia Diez-Echave
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Izaskun Martín-Cabrejas
- Departamento Tecnología de Alimentos, INIA-CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (I.M.-C.); (S.L.); (J.M.L.); (M.M.); (J.L.A.)
| | - José Garrido-Mesa
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Susana Langa
- Departamento Tecnología de Alimentos, INIA-CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (I.M.-C.); (S.L.); (J.M.L.); (M.M.); (J.L.A.)
| | - Teresa Vezza
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - José M. Landete
- Departamento Tecnología de Alimentos, INIA-CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (I.M.-C.); (S.L.); (J.M.L.); (M.M.); (J.L.A.)
| | - Laura Hidalgo-García
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Francesca Algieri
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Melinda J. Mayer
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich NR4-7UZ, UK; (A.N.); (M.J.M.)
| | - Arjan Narbad
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich NR4-7UZ, UK; (A.N.); (M.J.M.)
| | - Ana García-Lafuente
- Centro para la Calidad de los Alimentos, INIA-CISC, c/José Tudela s/n, 42004 Soria, Spain;
| | - Margarita Medina
- Departamento Tecnología de Alimentos, INIA-CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (I.M.-C.); (S.L.); (J.M.L.); (M.M.); (J.L.A.)
| | - Alba Rodríguez-Nogales
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - María Elena Rodríguez-Cabezas
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Julio Gálvez
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Juan L. Arqués
- Departamento Tecnología de Alimentos, INIA-CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (I.M.-C.); (S.L.); (J.M.L.); (M.M.); (J.L.A.)
| |
Collapse
|
27
|
Limosilactobacillus fermentum CECT5716: Mechanisms and Therapeutic Insights. Nutrients 2021; 13:nu13031016. [PMID: 33801082 PMCID: PMC8003974 DOI: 10.3390/nu13031016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Probiotics microorganisms exert their health-associated activities through some of the following general actions: competitive exclusion, enhancement of intestinal barrier function, production of bacteriocins, improvement of altered microbiota, and modulation of the immune response. Among them, Limosilactobacillus fermentum CECT5716 has become one of the most promising probiotics and it has been described to possess potential beneficial effects on inflammatory processes and immunological alterations. Different studies, preclinical and clinical trials, have evidenced its anti-inflammatory and immunomodulatory properties and elucidated the precise mechanisms of action involved in its beneficial effects. Therefore, the aim of this review is to provide an updated overview of the effect on host health, mechanisms, and future therapeutic approaches.
Collapse
|
28
|
Liu Y, Wang Q, Wen J, Wu Y, Man C. MiR-375: A novel multifunctional regulator. Life Sci 2021; 275:119323. [PMID: 33744323 DOI: 10.1016/j.lfs.2021.119323] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/20/2021] [Accepted: 02/27/2021] [Indexed: 01/23/2023]
Abstract
MiR-375, a primitively described beta cell-specific miRNA, is confirmed to function as multi-functional regulator in diverse typical cellular pathways according to the follow-up researches. Based on the existing studies, miR-375 can regulate many functional genes and ectopic expressions of miR-375 are usually associated with pathological changes, and its expression regulation mechanism is mainly related to promoter methylation or circRNA. In this review, the regulatory functions of miR-375 in immunity, such as its relevance with macrophages, T helper cells and autoimmune diseases were briefly discussed. Also, the functions of miR-375 involved in inflammation, development and virus replication were reviewed. Finally, the mechanisms and application prospects of miR-375 in cancers were analyzed. Studies show that the application of miR-375 as therapeutic target and biomarker has a broad developing space in future. We hope this paper can provide reference for its further study.
Collapse
Affiliation(s)
- Yang Liu
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Qiuyuan Wang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Jie Wen
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Yiru Wu
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Chaolai Man
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China.
| |
Collapse
|
29
|
Singh H, Chauhan P, Singh J, Saurabh S, Gautam CS, Kakkar AK. Concomitant use of dexamethasone and tetracyclines: a potential therapeutic option for the management of severe COVID-19 infection? Expert Rev Clin Pharmacol 2021; 14:315-322. [PMID: 33586566 PMCID: PMC7938652 DOI: 10.1080/17512433.2021.1888714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Introduction: The global coronavirus disease-2019 (COVID-19) pandemic has posed a critical challenge to the research community as well as to the healthcare systems. Severe COVID-19 patients are at a higher risk of developing serious complications and mortality. There is a dire need for safe and effective pharmacotherapy for addressing unmet needs of these patients. Concomitant use of dexamethasone and tetracyclines, by virtue of their immunomodulatory and other relevant pharmacological properties, offers a potential strategy for synergy aimed at improving clinical outcomes.Areas covered: Here we review the potential benefits of combining dexamethasone and tetracyclines (minocycline or doxycycline) for the management of severe COVID-19 patients. We have critically examined the evidence obtained from in silico, experimental, and clinical research. We have also discussed the plausible mechanisms, advantages, and drawbacks of this proposed combination therapy for managing severe COVID-19.Expert opinion: The concomitant use of dexamethasone and one of the tetracyclines among severe COVID-19 patients offers several advantages in terms of additive immunomodulatory effects, cost-effectiveness, wide-availability, and well-known pharmacological properties including adverse-effect profile and contraindications. There is an urgent need to facilitate pilot studies followed by well-designed and adequately-powered multicentric clinical trials to generate conclusive evidence related to utility of this approach.
Collapse
Affiliation(s)
- Harmanjit Singh
- Department of Pharmacology, Government Medical College and Hospital, Chandigarh, India
| | - Prerna Chauhan
- Multidisciplinary Research Unit, Government Medical College and Hospital, Chandigarh, India
| | - Jasbir Singh
- Department of Pharmacology, Government Medical College and Hospital, Chandigarh, India
- Department of Pharmacology, Rajindra Hospital, Patiala, India
| | - Saurabh Saurabh
- Department of Neurosurgery, Dayanand Medical College and Hospital, Ludhiana, India
| | - CS Gautam
- Department of Pharmacology, Government Medical College and Hospital, Chandigarh, India
| | - Ashish Kumar Kakkar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
30
|
Fitz C, Goodroe A, Wierenga L, Mejia A, Simmons H. Clinical Management of Gastrointestinal Disease in the Common Marmoset (Callithrix jacchus). ILAR J 2020; 61:199-217. [PMID: 33989417 PMCID: PMC9214573 DOI: 10.1093/ilar/ilab012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/10/2020] [Accepted: 12/20/2020] [Indexed: 12/17/2022] Open
Abstract
Gastrointestinal disease is a frequently encountered problem among captive common marmoset (Callithrix jacchus) colonies. Management can be challenging due to the number of etiologies responsible for gastrointestinal disease in this species, limitations on diagnostic capabilities, and lack of effective treatments. Understanding commonly described GI diseases in the captive marmoset can provide insight on the impact these diseases have on research studies and aid in the development of appropriate management strategies. A review of commonly encountered GI disease processes as well as routinely implicated causes of GI disease in the common marmoset are provided. Current strategies in clinical management of GI disease in the common marmoset, including approaches to colony health, diagnostic testing, and commonly employed treatments are discussed.
Collapse
Affiliation(s)
- Casey Fitz
- Wisconsin National Primate Research Center at the University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Anna Goodroe
- Texas Biomedical Research Institute and Southwest National Primate Research Center in San Antonio, Texas, USA
| | - Lauren Wierenga
- Wisconsin National Primate Research Center at the University of Wisconsin-Madison, Madison, Wisconsin, USA
- Research Animal Resources and Compliance at the University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andres Mejia
- Wisconsin National Primate Research Center at the University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Heather Simmons
- Wisconsin National Primate Research Center at the University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
31
|
Effects of Antibiotics upon the Gut Microbiome: A Review of the Literature. Biomedicines 2020; 8:biomedicines8110502. [PMID: 33207631 PMCID: PMC7696078 DOI: 10.3390/biomedicines8110502] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
The human gastrointestinal tract carries a large number of microorganisms associated with complex metabolic processes and interactions. Although antibiotic treatment is crucial for combating infections, its negative effects on the intestinal microbiota and host immunity have been shown to be of the utmost importance. Multiple studies have recognized the adverse consequences of antibiotic use upon the gut microbiome in adults and neonates, causing dysbiosis of the microbiota. Repeated antibiotic treatments in clinical care or low-dosage intake from food could be contributing factors in this issue. Researchers in both human and animal studies have strived to explain this multifaceted relationship. The present review intends to elucidate the axis of the gastrointestinal microbiota and antibiotics resistance and to highlight the main aspects of the issue.
Collapse
|
32
|
Bi K, Zhang X, Chen W, Diao H. MicroRNAs Regulate Intestinal Immunity and Gut Microbiota for Gastrointestinal Health: A Comprehensive Review. Genes (Basel) 2020; 11:genes11091075. [PMID: 32932716 PMCID: PMC7564790 DOI: 10.3390/genes11091075] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/24/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs are small non-coding RNAs regulating gene expression at the post-transcriptional level. The regulation of microRNA expression in the gut intestine is gradually recognized as one of the crucial contributors of intestinal homeostasis and overall health. Recent studies indicated that both the microRNAs endogenous in the gut intestine and exogenous from diets could play influential roles in modulating microbial colonization and intestinal immunity. In this review, we discuss the biological functions of microRNAs in regulating intestinal homeostasis by modulating intestinal immune responses and gut microbiota. We particularly focus on addressing the microRNA-dependent communication and interactions among microRNA, gut microbiota, and intestinal immune system. Besides, we also summarize the roles of diet-derived microRNAs in host-microbiome homeostasis and their benefits on intestinal health. A better understanding of the relationships among intestinal disorders, microRNAs, and other factors influencing intestinal health can facilitate the application of microRNA-based therapeutics for gastrointestinal diseases.
Collapse
|
33
|
Wang J, Xia L, Wang R, Cai Y. Linezolid and Its Immunomodulatory Effect: In Vitro and In Vivo Evidence. Front Pharmacol 2019; 10:1389. [PMID: 31849655 PMCID: PMC6894011 DOI: 10.3389/fphar.2019.01389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022] Open
Abstract
Recent studies have explored the effects of some antibacterial agents on various aspects of the immune response to infection in addition to their bactericidal effects. As a synthetic oxazolidinone class of antibacterial agent, linezolid (LZD) exhibits activity against a broad range of Gram-positive bacteria. In the present review, we summarized the effects of LZD on the immune response and new approaches that can exploit such interactions for the treatment of bacterial infections. In vitro and pre-clinical evidence demonstrate that LZD suppresses the phagocytic ability, cytokine synthesis, and secretion of immune cells as well as the expressions of immune-related genes at the mRNA level under the stimulation of endotoxin or pathogens. Immunomodulatory effects of LZD can not only reduce the inflammatory damage induced by exaggerated or prolonged release of pro-inflammatory cytokines during infections but can also be applied to alleviate the symptoms of non-infectious inflammatory conditions. Further research is necessary to explore the molecular mechanisms involved and confirm these findings in clinical practice.
Collapse
Affiliation(s)
- Jin Wang
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, Beijing, China
| | - Lei Xia
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, Beijing, China
| | - Rui Wang
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, Beijing, China
| | - Yun Cai
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, Beijing, China
| |
Collapse
|
34
|
Quercini L, Brunetti J, Riolo G, Bindi S, Scali S, Lampronti I, D'Aversa E, Wronski S, Pollini S, Gentile M, Lupetti P, Rossolini GM, Falciani C, Bracci L, Pini A. An antimicrobial molecule mitigates signs of sepsis in vivo and eradicates infections from lung tissue. FASEB J 2019; 34:192-207. [PMID: 31914681 DOI: 10.1096/fj.201901896rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022]
Abstract
The peptide sequence KKIRVRLSA was synthesized in a dimeric structure (SET-M33DIM) and evaluated as a candidate drug for infections due to multidrug-resistant (MDR) Gram-negative pathogens. SET-M33DIM showed significant antibacterial activity against MDR strains of Klebsiella pneumoniae, Acinetobacter baumannii, and Escherichia coli (Minimal Inhibitory Concentration [MICs], 1.5-11 µM), and less activity against Pseudomonas aeruginosa (MICs, 11-22 µM). It showed very low toxicity in vitro, ex vivo, and in vivo; in cytotoxicity tests, its EC50 was as much as 22 times better than that of SET-M33, a peptide with the same amino-acid sequence, but synthesized in tetra-branched form (638 vs 28 µM). In in vivo and ex vivo experiments, SET-M33DIM cleared P. aeruginosa infection, significantly reducing signs of sepsis in animals, and restoring cell viability in lung tissue after bacterial challenge. It also quelled inflammation triggered by LPS and live bacterial cells, inhibiting expression of inflammatory mediators in lung tissue, cultured macrophages, and bronchial cells from a cystic fibrosis patient.
Collapse
Affiliation(s)
| | - Jlenia Brunetti
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Giulia Riolo
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Stefano Bindi
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Silvia Scali
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Elisabetta D'Aversa
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Sabine Wronski
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Member of Fraunhofer international Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Simona Pollini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | | | - Pietro Lupetti
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Chiara Falciani
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Luisa Bracci
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Alessandro Pini
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| |
Collapse
|
35
|
Garrido-Mesa J, Rodríguez-Nogales A, Algieri F, Vezza T, Hidalgo-Garcia L, Garrido-Barros M, Utrilla MP, Garcia F, Chueca N, Rodriguez-Cabezas ME, Garrido-Mesa N, Gálvez J. Immunomodulatory tetracyclines shape the intestinal inflammatory response inducing mucosal healing and resolution. Br J Pharmacol 2018; 175:4353-4370. [PMID: 30184260 DOI: 10.1111/bph.14494] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Immunomodulatory tetracyclines are well-characterized drugs with a pharmacological potential beyond their antibiotic properties. Specifically, minocycline and doxycycline have shown beneficial effects in experimental colitis, although pro-inflammatory actions have also been described in macrophages. Therefore, we aimed to characterize the mechanism behind their effect in acute intestinal inflammation. EXPERIMENTAL APPROACH A comparative pharmacological study was initially used to elucidate the most relevant actions of immunomodulatory tetracyclines: doxycycline, minocycline and tigecycline; other antibiotic or immunomodulatory drugs were assessed in bone marrow-derived macrophages and in dextran sodium sulfate (DSS)-induced mouse colitis, where different barrier markers, inflammatory mediators, microRNAs, TLRs, and the gut microbiota composition were evaluated. The sequential immune events that mediate the intestinal anti-inflammatory effect of minocycline in DSS-colitis were then characterized. KEY RESULTS Novel immunomodulatory activity of tetracyclines was identifed; they potentiated the innate immune response and enhanced resolution of inflammation. This is also the first report describing the intestinal anti-inflammatory effect of tigecycline. A minor therapeutic benefit seems to derive from their antibiotic properties. Conversely, immunomodulatory tetracyclines potentiated macrophage cytokine release in vitro, and while improving mucosal recovery in colitic mice, they up-regulated Ccl2, miR-142, miR-375 and Tlr4. In particular, minocycline initially enhanced IL-1β, IL-6, IL-22, GM-CSF and IL-4 colonic production and monocyte recruitment to the intestine, subsequently increasing Ly6C- MHCII+ macrophages, Tregs and type 2 intestinal immune responses. CONCLUSIONS AND IMPLICATIONS Immunomodulatory tetracyclines potentiate protective immune pathways leading to mucosal healing and resolution, representing a promising drug reposition strategy for the treatment of intestinal inflammation.
Collapse
Affiliation(s)
- J Garrido-Mesa
- CIBER-EHD, Department of Pharmacology, ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - A Rodríguez-Nogales
- CIBER-EHD, Department of Pharmacology, ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - F Algieri
- CIBER-EHD, Department of Pharmacology, ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - T Vezza
- CIBER-EHD, Department of Pharmacology, ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - L Hidalgo-Garcia
- CIBER-EHD, Department of Pharmacology, ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - M Garrido-Barros
- CIBER-EHD, Department of Pharmacology, ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - M P Utrilla
- CIBER-EHD, Department of Pharmacology, ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - F Garcia
- Clinical Microbiology Service, Hospital Universitario San Cecilio, ibs. GRANADA, Red de, Investigación en SIDA, Granada, Spain
| | - N Chueca
- Clinical Microbiology Service, Hospital Universitario San Cecilio, ibs. GRANADA, Red de, Investigación en SIDA, Granada, Spain
| | - M E Rodriguez-Cabezas
- CIBER-EHD, Department of Pharmacology, ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - N Garrido-Mesa
- School of Health, Sport and Bioscience, University of East London, London, UK
| | - J Gálvez
- CIBER-EHD, Department of Pharmacology, ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| |
Collapse
|