1
|
Lange Y, Steck TL. How active cholesterol coordinates cell cholesterol homeostasis: Test of a hypothesis. Prog Lipid Res 2024; 96:101304. [PMID: 39491591 DOI: 10.1016/j.plipres.2024.101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/23/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
How do cells coordinate the diverse elements that regulate their cholesterol homeostasis? Our model postulates that membrane cholesterol forms simple complexes with bilayer phospholipids. The phospholipids in the plasma membrane are of high affinity; consequently, they are fully complexed with the sterol. This sets the resting level of plasma membrane cholesterol. Cholesterol in excess of the stoichiometric equivalence point of these complexes has high chemical activity; we refer to it as active cholesterol. It equilibrates with the low affinity phospholipids in the intracellular membranes where it serves as a negative feedback signal to a manifold of regulatory proteins that rein in ongoing cholesterol accretion. We tested the model with a review of the literature regarding fourteen homeostatic proteins in enterocytes. It provided strong albeit indirect support for the following hypothesis. Active cholesterol inhibits cholesterol uptake and biosynthesis by suppressing both the expression and the activity of the gene products activated by SREBP-2; namely, HMGCR, LDLR and NPC1L1. It also reduces free cell cholesterol by serving as the substrate for its esterification by ACAT and for the synthesis of side-chain oxysterols, 27-hydroxycholesterol in particular. The oxysterols drive cholesterol depletion by promoting the destruction of HMGCR and stimulating sterol esterification as well as the activation of LXR. The latter fosters the expression of multiple homeostatic proteins, including four transporters for which active cholesterol is the likely substrate. By nulling active cholesterol, the manifold maintains the cellular sterol at its physiologic set point.
Collapse
Affiliation(s)
- Yvonne Lange
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, United States of America.
| | - Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, United States of America
| |
Collapse
|
2
|
Nigro F, Civra A, Porporato D, Costantino M, Francese R, Poli G, Romani A, Lembo D, Marinozzi M. Cholenamide-based, antiviral fluorescent probes targeting oxysterol-binding protein. Bioorg Chem 2024; 153:107922. [PMID: 39486114 DOI: 10.1016/j.bioorg.2024.107922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/25/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Oxysterols (OSs) represent a large family of cholesterol-derived molecules, involved in several physiological and pathological processes. Recently, we reported the remarkable antiviral activity against herpes simplex virus 2 (HSV-2) infection of three cholenamide or homocholenamide derivatives, namely PFM067, PFM064, and PFM069, identified by the screening of an in-house library of OS derivatives. With the aim to shed light on the antiviral mechanism of action of this class of molecules, we assumed to exploit the use of cholenamide-based fluorescent probes. Herein, we report that PFM120 and PFM124, two fluorescent tagged version of PFM067 maintain the same antiviral properties against HSV-2 as the parent compound and localize intracellularly inside the endoplasmic reticulum and the cis-Golgi network. Moreover, we also demonstrate that both tagged molecules co-localize with oxysterol-binding protein (OSBP) and are able to induce its re-localization. Finally, we report that PFM120 and PFM124 are endowed with antiviral activity against another OSBP-dependent viral pathogen, i.e. the human rhinovirus (HRV), different in structure and replication strategy from HSV-2. Taken together, these results candidate PFM120 and PFM124 as useful tools to investigate the actual mechanism of action and molecular target(s) of cholenamide-based antivirals and provide a proof of principle to explore them as a promising broad-spectrum class of antiviral agents.
Collapse
Affiliation(s)
- Fatima Nigro
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo, 1-06123 Perugia, Italy
| | - Andrea Civra
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Regione Gonzole, 1-10043 Orbassano, Turin, Italy
| | - Domiziana Porporato
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Regione Gonzole, 1-10043 Orbassano, Turin, Italy; National PhD Programme in One Health approaches to infectious diseases and life science research, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, 27100, Italy
| | - Matteo Costantino
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Regione Gonzole, 1-10043 Orbassano, Turin, Italy
| | - Rachele Francese
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Regione Gonzole, 1-10043 Orbassano, Turin, Italy
| | - Giuseppe Poli
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Regione Gonzole, 1-10043 Orbassano, Turin, Italy
| | - Aldo Romani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto, 8-06123 Perugia, Italy
| | - David Lembo
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Regione Gonzole, 1-10043 Orbassano, Turin, Italy
| | - Maura Marinozzi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo, 1-06123 Perugia, Italy.
| |
Collapse
|
3
|
Back P, Yu M, Modaresahmadi S, Hajimirzaei S, Zhang Q, Islam MR, Schwendeman AA, La-Beck NM. Immune Implications of Cholesterol-Containing Lipid Nanoparticles. ACS NANO 2024; 18:28480-28501. [PMID: 39388645 PMCID: PMC11505898 DOI: 10.1021/acsnano.4c06369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
The majority of clinically approved nanoparticle-mediated therapeutics are lipid nanoparticles (LNPs), and most of these LNPs are liposomes containing cholesterol. LNP formulations significantly alter the drug pharmacokinetics (PK) due to the propensity of nanoparticles for uptake by macrophages. In addition to readily engulfing LNPs, the high expression of cholesterol hydroxylases and reactive oxygen species (ROS) in macrophages suggests that they will readily produce oxysterols from LNP-associated cholesterol. Oxysterols are a heterogeneous group of cholesterol oxidation products that have potent immune modulatory effects. Oxysterols are implicated in the pathogenesis of atherosclerosis and certain malignancies; they have also been found in commercial liposome preparations. Yet, the in vivo metabolic fate of LNP-associated cholesterol remains unclear. We review herein the mechanisms of cellular uptake, trafficking, metabolism, and immune modulation of endogenous nanometer-sized cholesterol particles (i.e., lipoproteins) that are also relevant for cholesterol-containing nanoparticles. We believe that it would be imperative to better understand the in vivo metabolic fate of LNP-associated cholesterol and the immune implications for LNP-therapeutics. We highlight critical knowledge gaps that we believe need to be addressed in order to develop safer and more efficacious lipid nanoparticle delivery systems.
Collapse
Affiliation(s)
- Patricia
Ines Back
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Minzhi Yu
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Shadan Modaresahmadi
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Sahelosadat Hajimirzaei
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Qisheng Zhang
- Division
of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Md Rakibul Islam
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Anna A. Schwendeman
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, North
Campus Research Complex, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Ninh M. La-Beck
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
- Department
of Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas 79601, United States
| |
Collapse
|
4
|
Ha K, Mundt-Machado N, Bisignano P, Pinedo A, Raleigh DR, Loeb G, Reiter JF, Cao E, Delling M. Cilia-enriched oxysterol 7β,27-DHC is required for polycystin ion channel activation. Nat Commun 2024; 15:6468. [PMID: 39085216 PMCID: PMC11291729 DOI: 10.1038/s41467-024-50318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Polycystin-1 (PC-1) and PC-2 form a heteromeric ion channel complex that is abundantly expressed in primary cilia of renal epithelial cells. This complex functions as a non-selective cation channel, and mutations within the polycystin complex cause autosomal dominant polycystic kidney disease (ADPKD). The spatial and temporal regulation of the polycystin complex within the ciliary membrane remains poorly understood. Using both whole-cell and ciliary patch-clamp recordings, we identify a cilia-enriched oxysterol, 7β,27-dihydroxycholesterol (DHC), that serves as a necessary activator of the polycystin complex. We further identify an oxysterol-binding pocket within PC-2 and showed that mutations within this binding pocket disrupt 7β,27-DHC-dependent polycystin activation. Pharmacologic and genetic inhibition of oxysterol synthesis reduces channel activity in primary cilia. In summary, our findings reveal a regulator of the polycystin complex. This oxysterol-binding pocket in PC-2 may provide a specific target for potential ADPKD therapeutics.
Collapse
Affiliation(s)
- Kodaji Ha
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Nadine Mundt-Machado
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Paola Bisignano
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Aide Pinedo
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Gabriel Loeb
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Erhu Cao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Markus Delling
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
5
|
Wang HY, Nguyen TP, Sternisha AC, Carroll CL, Cross B, Morlock L, Williams NS, McBrayer S, Nijhawan D, De Brabander JK. Discovery and Optimization of N-Arylated Tetracyclic Dicarboximides That Target Primary Glioma Stem-like Cells. J Med Chem 2024; 67:9277-9301. [PMID: 38804887 DOI: 10.1021/acs.jmedchem.4c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
We recently discovered a novel N-aryl tetracyclic dicarboximide MM0299 (1) with robust activity against glioma stem-like cells that potently and selectively inhibits lanosterol synthase leading to the accumulation of the toxic shunt metabolite 24(S),25-epoxycholesterol. Herein, we delineate a systematic and comprehensive SAR study that explores the structural space surrounding the N-aryl tetracyclic dicarboximide scaffold. A series of 100 analogs were synthesized and evaluated for activity against the murine glioma stem-like cell line Mut6 and for metabolic stability in mouse liver S9 fractions. This study led to several analogs with single-digit nanomolar activity in Mut6 glioblastoma cells that were metabolically stable in S9 fractions. In vivo pharmacokinetic analysis of selected analogs identified compound 52a (IC50 = 63 nM; S9 T1/2 > 240 min) which was orally available (39% plasma; 58% brain) and displayed excellent brain exposure. Chronic oral dosing of 52a during a 2-week tolerability study indicated no adverse effect on body weight nor signs of hematologic, liver, or kidney toxicity.
Collapse
Affiliation(s)
- Hua-Yu Wang
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Thu P Nguyen
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Alex C Sternisha
- Children's Medical Center Research Institute and Department of Pediatrics, UT Southwestern, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Christopher L Carroll
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Bethany Cross
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Lorraine Morlock
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Noelle S Williams
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Samuel McBrayer
- Children's Medical Center Research Institute and Department of Pediatrics, UT Southwestern, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Deepak Nijhawan
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
- Department of Internal Medicine, Division of Hematology/Oncology and Program in Molecular Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Jef K De Brabander
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| |
Collapse
|
6
|
Fenton NM, Qian L, Scott NA, Paine EG, Sharpe LJ, Brown AJ. SC5D is the sixth enzyme in cholesterol biosynthesis targeted by the E3 ubiquitin ligase MARCHF6. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159482. [PMID: 38508300 DOI: 10.1016/j.bbalip.2024.159482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Affiliation(s)
- Nicole M Fenton
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lydia Qian
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nicola A Scott
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Eloise G Paine
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
7
|
Morito K, Yamagata M, Naka F, Kobayashi K, Ueda H, Morimoto H, Yasukawa T, Takayama K, Uozumi Y, Nagasawa K. Sub-chronic and mild social defeat stress exposure to C57BL/6J mice increases visceral fat mass and causes accumulation of cholesterol and bile acids in the liver. Biochem Biophys Res Commun 2024; 702:149631. [PMID: 38335703 DOI: 10.1016/j.bbrc.2024.149631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/10/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Major depressive disorder is accompanied by a high metabolic illness comorbidity and patients with atypical depression are a subgroup with particularly high risk of obesity, dyslipidemia, and metabolic syndrome; however, the underlying mechanisms have not been fully elucidated. In this study, we examined visceral fat deposition, lipid profiles in the liver, and gut microbiota in sub-chronic and mild social defeat stress (sCSDS)-exposed C57BL/6J mice, which exhibit atypical depression-like phenotypes, i.e., increased body weight and food and water intake. We found that visceral fat mass and levels of hepatic cholesterol and bile acids in sCSDS-exposed mice were significantly increased compared to those in controls. The expression of hepatic small heterodimer partner, a negative regulator of cholesterol metabolism, was significantly elevated in sCSDS-exposed mice. We also found that gut microbial diversity and composition including lower relative abundance of Bacteroides spp. and Bifidobacterium spp. in sCSDS-exposed mice were different from those in controls. In addition, relative abundance of Bacteroides spp. and Bifidobacterium spp. was significantly and negatively correlated with body weight, visceral fat mass, and hepatic cholesterol and bile acids levels. These results indicate that sCSDS-exposure induces dysbiosis, and thereby contributes to metabolic disorder development.
Collapse
Affiliation(s)
- Katsuya Morito
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Mayu Yamagata
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Futaba Naka
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Kayo Kobayashi
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Hikari Ueda
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Hirotoshi Morimoto
- Technical Development Division, Ako Kasei, Co., Ltd., 329 Sakoshi, Ako, 678-0193, Japan
| | - Takeshi Yasukawa
- Technical Development Division, Ako Kasei, Co., Ltd., 329 Sakoshi, Ako, 678-0193, Japan
| | - Kentaro Takayama
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Yoshinobu Uozumi
- Technical Development Division, Ako Kasei, Co., Ltd., 329 Sakoshi, Ako, 678-0193, Japan
| | - Kazuki Nagasawa
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan.
| |
Collapse
|
8
|
Decker NS, Johnson T, Le Cornet C, Behrens S, Obi N, Kaaks R, Chang-Claude J, Fortner RT. Associations between lifestyle, health, and clinical characteristics and circulating oxysterols and cholesterol precursors in women diagnosed with breast cancer: a cross-sectional study. Sci Rep 2024; 14:4977. [PMID: 38424253 PMCID: PMC10904394 DOI: 10.1038/s41598-024-55316-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
Despite increasing evidence that cholesterol precursors and oxysterols, oxidized cholesterol metabolites, play a role in numerous pathological processes and diseases including breast cancer, little is known about correlates of these sterols in women with breast cancer. In this study, 2282 women with breast cancer and blood draw post diagnosis were included and cross-sectional associations between circulating levels of 15 sterols/oxysterols and (a) lifestyle, anthropometric, reproductive characteristics, (b) comorbidities and medication use, and (c) breast cancer tumor and treatment characteristics were calculated using generalized linear models. Obesity was strongly associated with circulating levels of 7-dehydrocholesterol (DC) (body mass index ≥ 30 vs. 18.5-24.9 kg/m2: 51.7% difference) and 7-ketocholesterol (KC) (40.0% difference). After adjustment for BMI, comorbidities such as cardiovascular disease were associated with higher levels of 7-DC (26.1% difference) and lower levels of desmosterol (- 16.4% difference). Breast cancer tumor characteristics including hormone receptor status, tumor stage, and endocrine therapy were associated with lanosterol, 24-DHLan, 7b-HC, and THC (e.g., THC; tumor stage IIIa vs. I: 36.9% difference). Weaker associations were observed for lifestyle characteristics and for any of the other oxysterols. The findings of this study suggest that cholesterol precursors are strongly associated with metabolic factors, while oxysterols are associated with breast cancer tumor characteristics, warranting further investigation into the role of cholesterol precursors and oxysterols in women with breast cancer and other populations.
Collapse
Affiliation(s)
- Nina Sophia Decker
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Theron Johnson
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Charlotte Le Cornet
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nadia Obi
- Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Occupational and Maritime Medicine Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Center Hamburg, Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Renée Turzanski Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
9
|
Saito Y, Noguchi N, Niki E. Cholesterol is more readily oxidized than phospholipid linoleates in cell membranes to produce cholesterol hydroperoxides. Free Radic Biol Med 2024; 211:89-95. [PMID: 38101585 DOI: 10.1016/j.freeradbiomed.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Cholesterol is an essential component of cell membranes and serves as an important precursor of steroidal hormones and bile acids, but elevated levels of cholesterol and its oxidation products have been accepted as a risk factor for maintenance of health. The free and ester forms of cholesterol and fatty acids are the two major biological lipids. The aim of this hypothesis paper is to address the long-standing dogma that cholesterol is less susceptible to free radical peroxidation than polyunsaturated fatty acids (PUFAs). It has been observed that cholesterol is peroxidized much slower than PUFAs in plasma but that, contrary to expectations from chemical reactivity toward peroxyl radicals, cholesterol appears to be more readily autoxidized than linoleates in cell membranes. The levels of oxidation products of cholesterol and linoleates observed in humans support this notion. It is speculated that this discrepancy is ascribed to the fact that cholesterol and phospholipids bearing PUFAs are localized apart in raft and non-raft domains of cell membranes respectively and that the antioxidant vitamin E distributed predominantly in the non-raft domains cannot suppress the oxidation of cholesterol lying in raft domains which are relatively deficient in antioxidant.
Collapse
Affiliation(s)
- Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan; The Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan.
| | - Noriko Noguchi
- The Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Etsuo Niki
- Research Center for Advanced Science and Technology, The University of Tokyo, Komaba, Tokyo, Japan.
| |
Collapse
|
10
|
Saito H, Nishimura M, Sato R, Yamauchi Y. Quantitative Determination of Cholesterol Hydroxylase Specificities by GC-MS/MS in Living Mammalian Cells. Bio Protoc 2024; 14:e4924. [PMID: 38268974 PMCID: PMC10804311 DOI: 10.21769/bioprotoc.4924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
Cholesterol is oxygenated by a variety of cholesterol hydroxylases; oxysterols play diverse important roles in physiological and pathophysiological conditions by regulating several transcription factors and cell-surface receptors. Each oxysterol has distinct and overlapping functions. The expression of cholesterol hydroxylases is highly regulated, but their physiological and pathophysiological roles are not fully understood. Although the activity of cholesterol hydroxylases has been characterized biochemically using radiolabeled cholesterol as the substrate, their specificities remain to be comprehensively determined quantitatively. To better understand their roles, a highly sensitive method to measure the amount of various oxysterols synthesized by cholesterol hydroxylases in living mammalian cells is required. Our method described here, with gas chromatography coupled with tandem mass spectrometry (GC-MS/MS), can quantitatively determine a series of oxysterols endogenously synthesized by forced expression of one of the four major cholesterol hydroxylases-CH25H, CYP7A1, CYP27A1, and CYP46A1-or induction of CH25H expression by a physiological stimulus. This protocol can also simultaneously measure the amount of intermediate sterols, which serve as markers for cellular cholesterol synthesis activity. Key features • Allows measuring the amount of a variety of oxysterols synthesized endogenously by cholesterol hydroxylases using GC-MS/MS. • Comprehensive and quantitative analysis of cholesterol hydroxylase specificities in living mammalian cells. • Simultaneous quantification of intermediate sterols to assess cholesterol synthesis activity.
Collapse
Affiliation(s)
- Hodaka Saito
- Laboratory of Food Biochemistry, Department of
Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences,
The University of Tokyo, Tokyo, Japan
| | - Mizuki Nishimura
- Laboratory of Food Biochemistry, Department of
Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences,
The University of Tokyo, Tokyo, Japan
| | - Ryuichiro Sato
- Nutri-Life Science Laboratory, Department of Applied
Biological Chemistry, Graduate School of Agricultural and Life Sciences, The
University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and
Development, Tokyo, Japan
| | - Yoshio Yamauchi
- Laboratory of Food Biochemistry, Department of
Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences,
The University of Tokyo, Tokyo, Japan
- Nutri-Life Science Laboratory, Department of Applied
Biological Chemistry, Graduate School of Agricultural and Life Sciences, The
University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and
Development, Tokyo, Japan
| |
Collapse
|
11
|
Ksila M, Ghzaiel I, Sassi K, Zarrouk A, Leoni V, Poli G, Rezig L, Pires V, Meziane S, Atanasov AG, Hammami S, Hammami M, Masmoudi-Kouki O, Hamdi O, Jouanny P, Samadi M, Vejux A, Ghrairi T, Lizard G. Therapeutic Applications of Oxysterols and Derivatives in Age-Related Diseases, Infectious and Inflammatory Diseases, and Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:379-400. [PMID: 38036890 DOI: 10.1007/978-3-031-43883-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Oxysterols, resulting from the oxidation of cholesterol, are formed either by autoxidation, enzymatically, or by both processes. These molecules, which are provided in more or less important quantities depending on the type of diet, are also formed in the body and their presence is associated with a normal physiological activity. Their increase and decrease at the cellular level and in biological fluids can have significant consequences on health due or not to the interaction of some of these molecules with different types of receptors but also because oxysterols are involved in the regulation of RedOx balance, cytokinic and non-cytokinic inflammation, lipid metabolism, and induction of cell death. Currently, various pathologies such as age-related diseases, inflammatory and infectious diseases, and several cancers are associated with abnormal levels of oxysterols. Due to the important biological activities of oxysterols, their interaction with several receptors and their very likely implications in several diseases, this review focuses on these molecules and on oxysterol derivatives, which are often more efficient, in a therapeutic context. Currently, several oxysterol derivatives are developed and are attracting a lot of interest.
Collapse
Affiliation(s)
- Mohamed Ksila
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
| | - Imen Ghzaiel
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
| | - Khouloud Sassi
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Amira Zarrouk
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
- Faculty of Medicine, University of Sousse, Laboratory of Biochemistry, Sousse, Tunisia
| | - Valerio Leoni
- Department of Laboratory Medicine, University of Milano-Bicocca, Azienda Socio Sanitaria Territoriale Brianza ASST-Brianza, Desio Hospital, Desio, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Turin, Italy
| | - Leila Rezig
- University of Carthage, National Institute of Applied Sciences and Technology, LR11ES26, LIP-MB 'Laboratory of Protein Engineering and Bioactive Molecules', Tunis, Tunisia
- University of Carthage, High Institute of Food Industries, El Khadra City, Tunis, Tunisia
| | - Vivien Pires
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Smail Meziane
- Institut Européen des Antioxydants (IEA), Neuves-Maisons, France
| | - Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Magdalenka, Poland
| | - Sonia Hammami
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
- University Hospital Fattouma Bourguiba, Monastir, Tunisia
| | - Mohamed Hammami
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
| | - Olfa Masmoudi-Kouki
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
| | - Oumaima Hamdi
- University Hospital Fattouma Bourguiba, Monastir, Tunisia
- Pôle Personnes Agées, CHU de Dijon, Centre de Champmaillot, Dijon Cedex, France
| | - Pierre Jouanny
- Pôle Personnes Agées, CHU de Dijon, Centre de Champmaillot, Dijon Cedex, France
| | - Mohammad Samadi
- Laboratory of Chemistry and Physics Multi-Scale Approach to Complex Environments, Department of Chemistry, University Lorraine, Metz, France
| | - Anne Vejux
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Taoufik Ghrairi
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
| | - Gérard Lizard
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France.
| |
Collapse
|
12
|
Olivier E, Rat P. Role of Oxysterols in Ocular Degeneration Mechanisms and Involvement of P2X7 Receptor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:277-292. [PMID: 38036885 DOI: 10.1007/978-3-031-43883-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Ocular degeneration, including cataracts, glaucoma, macular degeneration, and diabetic retinopathy, is a major public health challenge, as it affects the quality of life of millions of people worldwide and, in its advanced stages, leads to blindness. Ocular degeneration, although it can affect different parts of the eye, shares common characteristics such as oxysterols and the P2X7 receptor. Indeed, oxysterols, which are cholesterol derivatives, are associated with ocular degeneration pathogenesis and trigger inflammation and cell death pathways. Activation of the P2X7 receptor is also linked to ocular degeneration and triggers the same pathways. In age-related macular degeneration, these two key players have been associated, but further studies are needed to extrapolate this interrelationship to other ocular degenerations.
Collapse
Affiliation(s)
| | - Patrice Rat
- Université Paris Cité, CNRS, CiTCoM, Paris, France
| |
Collapse
|
13
|
Holý P, Brynychová V, Šeborová K, Haničinec V, Koževnikovová R, Trnková M, Vrána D, Gatěk J, Kopečková K, Mrhalová M, Souček P. Integrative analysis of mRNA and miRNA expression profiles and somatic variants in oxysterol signaling in early-stage luminal breast cancer. Mol Oncol 2023; 17:2074-2089. [PMID: 37491786 PMCID: PMC10552891 DOI: 10.1002/1878-0261.13495] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/19/2023] [Accepted: 07/24/2023] [Indexed: 07/27/2023] Open
Abstract
Oxysterols, oxidized derivatives of cholesterol, act in breast cancer (BC) as selective estrogen receptor modulators and affect cholesterol homeostasis, drug transport, nuclear and cell receptors, and other signaling proteins. Using data from three highly overlapping sets of patients (N = 162 in total) with early-stage estrogen-receptor-positive luminal BC-high-coverage targeted DNA sequencing (113 genes), mRNA sequencing, and full micro-RNA (miRNA) transcriptome microarrays-we describe complex oxysterol-related interaction (correlation) networks, with validation in public datasets (n = 538) and 11 databases. The ESR1-CH25H-INSIG1-ABCA9 axis was the most prominent, interconnected through miR-125b-5p, miR-99a-5p, miR-100-5p, miR-143-3p, miR-199b-5p, miR-376a-3p, and miR-376c-3p. Mutations in SC5D, CYP46A1, and its functionally linked gene set were associated with multiple differentially expressed oxysterol-related genes. STARD5 was upregulated in patients with positive lymph node status. High expression of hsa-miR-19b-3p was weakly associated with poor survival. This is the first study of oxysterol-related genes in BC that combines DNA, mRNA, and miRNA multiomics with detailed clinical data. Future studies should provide links between intratumoral oxysterol signaling depicted here, circulating oxysterol levels, and therapy outcomes, enabling eventual clinical exploitation of present findings.
Collapse
Affiliation(s)
- Petr Holý
- Third Faculty of MedicineCharles UniversityPragueCzech Republic
- Biomedical Center, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
- Toxicogenomics UnitNational Institute of Public HealthPragueCzech Republic
| | - Veronika Brynychová
- Biomedical Center, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
- Toxicogenomics UnitNational Institute of Public HealthPragueCzech Republic
| | - Karolína Šeborová
- Biomedical Center, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
- Toxicogenomics UnitNational Institute of Public HealthPragueCzech Republic
| | - Vojtěch Haničinec
- Biomedical Center, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | | | | | - David Vrána
- Comprehensive Cancer Center Novy JicinHospital Novy JicinCzech Republic
| | - Jiří Gatěk
- Department of SurgeryEUC Hospital Zlin and Tomas Bata University in ZlinCzech Republic
| | - Kateřina Kopečková
- Department of Oncology, Second Faculty of MedicineCharles University and Motol University HospitalPragueCzech Republic
| | - Marcela Mrhalová
- Department of Pathology, Second Faculty of MedicineCharles University and Motol University HospitalPragueCzech Republic
| | - Pavel Souček
- Biomedical Center, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
- Toxicogenomics UnitNational Institute of Public HealthPragueCzech Republic
| |
Collapse
|
14
|
Kennelly JP, Tontonoz P. Cholesterol Transport to the Endoplasmic Reticulum. Cold Spring Harb Perspect Biol 2023; 15:cshperspect.a041263. [PMID: 35940908 PMCID: PMC9899650 DOI: 10.1101/cshperspect.a041263] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Most cholesterol in mammalian cells is stored in the plasma membrane (PM). Cholesterol transport from the PM to low-sterol regulatory regions of the endoplasmic reticulum (ER) controls cholesterol synthesis and uptake, and thereby influences the rates of cholesterol flux between tissues of complex organisms. Cholesterol transfer to the ER is also required for steroidogenesis, oxysterol and bile acid synthesis, and cholesterol esterification. The ER-resident Aster proteins (Aster-A, -B, and -C) form contacts with the PM to move cholesterol to the ER in mammals. Mice lacking Aster-B have low adrenal cholesteryl ester stores and impaired steroidogenesis because of a defect in cholesterol transport from high-density lipoprotein (HDL) to the ER. This work reviews the molecular characteristics of Asters, their role in HDL- and low-density lipoprotein (LDL)-cholesterol movement, and how cholesterol transferred to the ER is utilized by cells. The roles of other lipid transporters and of membrane lipid organization in maintaining aspects of cholesterol homeostasis are also highlighted.
Collapse
Affiliation(s)
- John P Kennelly
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
15
|
Ma Z, Huang Z, Zhang C, Liu X, Zhang J, Shu H, Ma Y, Liu Z, Feng Y, Chen X, Kuang S, Zhang Y, Jia Z. Hepatic Acat2 overexpression promotes systemic cholesterol metabolism and adipose lipid metabolism in mice. Diabetologia 2023; 66:390-405. [PMID: 36378328 PMCID: PMC9665029 DOI: 10.1007/s00125-022-05829-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
Abstract
AIMS/HYPOTHESIS Acetyl coenzyme A acetyltransferase (ACAT), also known as acetoacetyl-CoA thiolase, catalyses the formation of acetoacetyl-CoA from acetyl-CoA and forms part of the isoprenoid biosynthesis pathway. Thus, ACAT plays a central role in cholesterol metabolism in a variety of cells. Here, we aimed to assess the effect of hepatic Acat2 overexpression on cholesterol metabolism and systemic energy metabolism. METHODS We generated liver-targeted adeno-associated virus 9 (AAV9) to achieve hepatic Acat2 overexpression in mice. Mice were injected with AAV9 through the tail vein and subjected to morphological, physiological (body composition, indirect calorimetry, treadmill, GTT, blood biochemistry, cardiac ultrasonography and ECG), histochemical, gene expression and metabolomic analysis under normal diet or feeding with high-fat diet to investigate the role of ACAT2 in the liver. RESULTS Hepatic Acat2 overexpression reduced body weight and total fat mass, elevated the metabolic rate, improved glucose tolerance and lowered the serum cholesterol level of mice. In addition, the overexpression of Acat2 inhibited fatty acid, glucose and ketone metabolic pathways but promoted cholesterol metabolism and changed the bile acid pool and composition of the liver. Hepatic Acat2 overexpression also decreased the size of white adipocytes and promoted lipid metabolism in white adipose tissue. Furthermore, hepatic Acat2 overexpression protected mice from high-fat-diet-induced weight gain and metabolic defects CONCLUSIONS/INTERPRETATION: Our study identifies an essential role for ACAT2 in cholesterol metabolism and systemic energy expenditure and provides key insights into the metabolic benefits of hepatic Acat2 overexpression. Thus, adenoviral Acat2 overexpression in the liver may be a potential therapeutic tool in the treatment of obesity and hypercholesterolaemia.
Collapse
Affiliation(s)
- Zhimin Ma
- Endocrinology Department, Suzhou Science & Technology Town Hospital, Suzhou, China
| | - Zhengyun Huang
- Cambridge-Suda Genomic Resource Center, Suzhou Medical College, Soochow University, Suzhou, China
| | - Chi Zhang
- Cambridge-Suda Genomic Resource Center, Suzhou Medical College, Soochow University, Suzhou, China
| | - Xiangpeng Liu
- Cambridge-Suda Genomic Resource Center, Suzhou Medical College, Soochow University, Suzhou, China
| | - Jie Zhang
- Cambridge-Suda Genomic Resource Center, Suzhou Medical College, Soochow University, Suzhou, China
| | - Hui Shu
- Cambridge-Suda Genomic Resource Center, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yue Ma
- Cambridge-Suda Genomic Resource Center, Suzhou Medical College, Soochow University, Suzhou, China
| | - Zhiwei Liu
- Cambridge-Suda Genomic Resource Center, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yu Feng
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiyue Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Yong Zhang
- Cambridge-Suda Genomic Resource Center, Suzhou Medical College, Soochow University, Suzhou, China
| | - Zhihao Jia
- Cambridge-Suda Genomic Resource Center, Suzhou Medical College, Soochow University, Suzhou, China.
| |
Collapse
|
16
|
Zanjani BN, Samadi A, Isikhan SY, Lay I, Beyaz S, Gelincik A, Buyukozturk S, Arda N. Plasma levels of oxysterols 7-ketocholesterol and cholestane-3β, 5α, 6β-triol in patients with allergic asthma. J Asthma 2023; 60:288-297. [PMID: 35188447 DOI: 10.1080/02770903.2022.2045310] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The prevalence of allergic asthma is increasing on a global scale, reflecting changes in air pollution, climatic changes, and other environmental stimulants. In allergic conditions, oxidative stress occurs as a result of immune system activation. Oxidation of cholesterol leads to the formation of oxysterols. The main purpose of the study was to compare plasma levels of two oxysterols, namely 7-ketocholesterol (7-KC) and cholestane-3β, 5α, 6β-triol (C-triol), and a lipid peroxidation product, malondialdehyde (MDA) in allergic asthma patients with those of healthy controls, in order to provide information about the involvement of lipid peroxidation in allergic asthma. Oxysterols were quantified by LC-MS/MS in plasma samples of 120 asthma patients (90 females + 30 males) and 120 healthy controls (matched by age and sex). Plasma MDA level was analyzed by a spectrophotometric method. Plasma 7-KC (39.45 ± 20.37 ng/mL) and C-triol (25.61 ± 10.13 ng/mL) levels in patients were significantly higher than in healthy subjects (17.84 ± 4.26 ng/mL and 10.00 ± 3.90 ng/mL, respectively) (P < 0.001). Plasma MDA levels were also higher in asthmatic patients (4.98 ± 1.77 nmol/mL) than in healthy controls (1.14 ± 0.31 nmol/mL) (P < 0.001). All data support that lipid peroxidation products are involved in allergic asthma. Oxysterols were quantified for the first time in allergic asthma. Since the high plasma 7-KC and C-triol levels of allergic asthma patients correlate with high IgE levels, detection of these oxysterols by LC-MS/MS may be helpful in the clinical monitoring of allergic asthma. Current data may also lead to new approaches for the prevention, diagnosis, and treatment of the disease. Supplemental data for this article is available online at at.
Collapse
Affiliation(s)
- Behnoush Nasr Zanjani
- Division of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey
| | - Afshin Samadi
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey.,Joint Laboratory of Applied Ecotoxicology, Korean Institute of Science and Technology Europe, Saarbrucken, Germany
| | - Selen Yilmaz Isikhan
- Department of Biostatistics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Incilay Lay
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Sengul Beyaz
- Division of Immunology and Allergic Diseases, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Asli Gelincik
- Division of Immunology and Allergic Diseases, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Suna Buyukozturk
- Division of Immunology and Allergic Diseases, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nazli Arda
- Division of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey.,Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey.,Center for Research and Practice in Biotechnology and Genetic Engineering, Istanbul University, Istanbul, Turkey
| |
Collapse
|
17
|
Decker NS, Johnson T, Behrens S, Obi N, Kaaks R, Chang-Claude J, Fortner RT. Association of circulating free and total oxysterols in breast cancer patients. Clin Chem Lab Med 2023; 61:285-293. [PMID: 36342239 DOI: 10.1515/cclm-2022-0705] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVES Oxysterols, a family of oxidized cholesterol derivates, are of increasing interest due to their role in cancer development and progression. Some oxysterols are estrogen receptor modulators and thus of particular interest in breast cancer research. In human studies, two forms of circulating oxysterols are commonly evaluated: "free" (unesterified) and "total" (esterified and unesterified). However, associations between free and total oxysterols are not well established. We addressed this knowledge gap in a pilot study by evaluating correlations between the free and the total form of each of the circulating oxysterols (free vs. total), and pairwise associations within the panel of total oxysterols (total vs. total) and the panel of free oxysterols (free vs. free). METHODS Concentrations of oxysterols and other non-cholesterol sterols were quantified in blood samples of 27 breast cancer patients from the MARIE breast cancer patient cohort using liquid chromatography mass spectrometry. We used Spearman rank correlations to assess associations. Overall, 12 oxysterols (including 27-hydroxycholesterol (HC), 25-HC, 24S-HC, 7a-HC, 5a6a-epoxycholesterol) and five sterols (including lanosterol and desmosterol) were analyzed. RESULTS Strong correlations (r≥0.82) were observed for seven circulating free and total oxysterols/sterols. The free and total form of 27-HC (r=0.63), 25-HC (r=0.54), and two more oxysterols were weaker correlated. Correlation patterns in the panel of total oxysterols/sterols and the panel of free oxysterols/sterols were similar. CONCLUSIONS These findings demonstrate that concentrations of most free and total oxysterols/sterols are strongly correlated. We provide further insight into the interrelationships between oxysterols in breast cancer patients.
Collapse
Affiliation(s)
- Nina Sophia Decker
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Theron Johnson
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nadia Obi
- Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Renée Turzanski Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Registry of Norway, Oslo, Norway
| |
Collapse
|
18
|
Heisler DB, Johnson KA, Ma DH, Ohlson MB, Zhang L, Tran M, Corley CD, Abrams ME, McDonald JG, Schoggins JW, Alto NM, Radhakrishnan A. A concerted mechanism involving ACAT and SREBPs by which oxysterols deplete accessible cholesterol to restrict microbial infection. eLife 2023; 12:e83534. [PMID: 36695568 PMCID: PMC9925056 DOI: 10.7554/elife.83534] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/25/2023] [Indexed: 01/26/2023] Open
Abstract
Most of the cholesterol in the plasma membranes (PMs) of animal cells is sequestered through interactions with phospholipids and transmembrane domains of proteins. However, as cholesterol concentration rises above the PM's sequestration capacity, a new pool of cholesterol, called accessible cholesterol, emerges. The transport of accessible cholesterol between the PM and the endoplasmic reticulum (ER) is critical to maintain cholesterol homeostasis. This pathway has also been implicated in the suppression of both bacterial and viral pathogens by immunomodulatory oxysterols. Here, we describe a mechanism of depletion of accessible cholesterol from PMs by the oxysterol 25-hydroxycholesterol (25HC). We show that 25HC-mediated activation of acyl coenzyme A: cholesterol acyltransferase (ACAT) in the ER creates an imbalance in the equilibrium distribution of accessible cholesterol between the ER and PM. This imbalance triggers the rapid internalization of accessible cholesterol from the PM, and this depletion is sustained for long periods of time through 25HC-mediated suppression of SREBPs and continued activation of ACAT. In support of a physiological role for this mechanism, 25HC failed to suppress Zika virus and human coronavirus infection in ACAT-deficient cells, and Listeria monocytogenes infection in ACAT-deficient cells and mice. We propose that selective depletion of accessible PM cholesterol triggered by ACAT activation and sustained through SREBP suppression underpins the immunological activities of 25HC and a functionally related class of oxysterols.
Collapse
Affiliation(s)
- David B Heisler
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Kristen A Johnson
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Duo H Ma
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Maikke B Ohlson
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Lishu Zhang
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Michelle Tran
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Chase D Corley
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Michael E Abrams
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Jeffrey G McDonald
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - John W Schoggins
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Neal M Alto
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Arun Radhakrishnan
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
19
|
Martins GL, Ferreira CN, Palotás A, Rocha NP, Reis HJ. Role of Oxysterols in the Activation of the NLRP3 Inflammasome as a Potential Pharmacological Approach in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:202-212. [PMID: 35339182 PMCID: PMC10190144 DOI: 10.2174/1570159x20666220327215245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/04/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, is a complex clinical condition with multifactorial origin posing a major burden to health care systems across the world. Even though the pathophysiological mechanisms underlying the disease are still unclear, both central and peripheral inflammation has been implicated in the process. Piling evidence shows that the nucleotide-binding domain, leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome is activated in AD. As dyslipidemia is a risk factor for dementia, and cholesterol can also activate the inflammasome, a possible link between lipid levels and the NLRP3 inflammasome has been proposed in Alzheimer's. It is also speculated that not only cholesterol but also its metabolites, the oxysterols, may be involved in AD pathology. In this context, mounting data suggest that NLRP3 inflammasome activity can be modulated by different peripheral nuclear receptors, including liver-X receptors, which present oxysterols as endogenous ligands. In light of this, the current review explores whether the activation of NLRP3 by nuclear receptors, mediated by oxysterols, may also be involved in AD and could serve as a potential pharmacological avenue in dementia.
Collapse
Affiliation(s)
- Gabriela L. Martins
- Laboratório Neurofarmacologia, Departamento de Farmacologia, ICB-UFMG, Belo Horizonte MG, 31270 - 901, Brazil
| | | | - András Palotás
- Kazan Federal University, Kazan, Russia
- Asklepios Med, Szeged, Hungary
| | - Natália P. Rocha
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Helton J. Reis
- Laboratório Neurofarmacologia, Departamento de Farmacologia, ICB-UFMG, Belo Horizonte MG, 31270 - 901, Brazil
| |
Collapse
|
20
|
Saito H, Tachiura W, Nishimura M, Shimizu M, Sato R, Yamauchi Y. Hydroxylation site-specific and production-dependent effects of endogenous oxysterols on cholesterol homeostasis: Implications for SREBP-2 and LXR. J Biol Chem 2022; 299:102733. [PMID: 36423680 PMCID: PMC9792893 DOI: 10.1016/j.jbc.2022.102733] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/26/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
The cholesterol metabolites, oxysterols, play central roles in cholesterol feedback control. They modulate the activity of two master transcription factors that control cholesterol homeostatic responses, sterol regulatory element-binding protein-2 (SREBP-2) and liver X receptor (LXR). Although the role of exogenous oxysterols in regulating these transcription factors has been well established, whether endogenously synthesized oxysterols similarly control both SREBP-2 and LXR remains poorly explored. Here, we carefully validate the role of oxysterols enzymatically synthesized within cells in cholesterol homeostatic responses. We first show that SREBP-2 responds more sensitively to exogenous oxysterols than LXR in Chinese hamster ovary cells and rat primary hepatocytes. We then show that 25-hydroxycholesterol (25-HC), 27-hydroxycholesterol, and 24S-hydroxycholesterol endogenously synthesized by CH25H, CYP27A1, and CYP46A1, respectively, suppress SREBP-2 activity at different degrees by stabilizing Insig (insulin-induced gene) proteins, whereas 7α-hydroxycholesterol has little impact on SREBP-2. These results demonstrate the role of site-specific hydroxylation of endogenous oxysterols. In contrast, the expression of CH25H, CYP46A1, CYP27A1, or CYP7A1 fails to induce LXR target gene expression. We also show the 25-HC production-dependent suppression of SREBP-2 using a tetracycline-inducible CH25H expression system. To induce 25-HC production physiologically, murine macrophages are stimulated with a Toll-like receptor 4 ligand, and its effect on SREBP-2 and LXR is examined. The results also suggest that de novo synthesis of 25-HC preferentially regulates SREBP-2 activity. Finally, we quantitatively determine the specificity of the four cholesterol hydroxylases in living cells. Based on our current findings, we conclude that endogenous side-chain oxysterols primarily regulate the activity of SREBP-2, not LXR.
Collapse
Affiliation(s)
- Hodaka Saito
- Laboratory of Food Biochemistry, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wakana Tachiura
- Laboratory of Food Biochemistry, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Mizuki Nishimura
- Laboratory of Food Biochemistry, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Makoto Shimizu
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryuichiro Sato
- Laboratory of Food Biochemistry, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Yoshio Yamauchi
- Laboratory of Food Biochemistry, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan,For correspondence: Yoshio Yamauchi
| |
Collapse
|
21
|
Targeting the cholesterol-RORα/γ axis inhibits colorectal cancer progression through degrading c-myc. Oncogene 2022; 41:5266-5278. [DOI: 10.1038/s41388-022-02515-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
AbstractDysregulated cholesterol metabolism is a hallmark of colorectal cancer (CRC). However, the usage of cholesterol-lowering agents seemed to have no benefit in CRC patients. In this study, we focused on the cholesterol-nuclear receptors (NRs) axis as a strategy. Cholesterol and its derivatives work as ligands for different nuclear receptors, thus promoting cancer progression. The key NR downstream of cholesterol in CRC is unknown. Here, we treated CRC cells with a cholesterol-lowering agent and lipoprotein-depleted conditioned medium, and then detected the change of the putative NRs. The results revealed that RORα/γ (Retinoic acid receptor-related Orphan Receptor α/γ) levels exhibited the most obvious increases in CRC cells subjected them to cholesterol deprivation. RORα/γ agonists significantly inhibited CRC cells proliferation and migration in vitro and in vivo. Also, RORα/γ overexpression repressed CRC cells proliferation and migration in vitro and in vivo and RORα/γ knockdown promoted it. Mechanistically, RORα/γ agonists promoted c-myc degradation by activating the transcription of the ubiquitinase NEDD4. Intriguingly, the combination of RORα/γ agonists and atorvastatin had a synergistic effect on inhibiting CRC cells. These findings demonstrate that the cholesterol- RORα/γ axis is important for maintaining c-myc protein levels. Combination therapy with atorvastatin and RORα/γ agonist is a promising therapeutic strategy for CRC.
Collapse
|
22
|
Lipidomics: An excellent tool for chronic disease detection. Curr Res Transl Med 2022; 70:103346. [PMID: 35487168 DOI: 10.1016/j.retram.2022.103346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 03/10/2022] [Accepted: 04/04/2022] [Indexed: 01/31/2023]
Abstract
It has been known as almost all the cells consists a lipid molecule which has a considerable impact in various biological processes. Lipids have been investigated with a potential role for the formation of cellular membrane and thereby maintaining the structural integrity. Omics has placed as a combined technologies utilized for an exploaration of mechanistic actions in several kinds of molecules that make up the cells of an organism. Lipidomics has been recognized as a newly emerged branch of omics technology. This technology has the captivating factors to classify and characterize almost all the cellular lipids with the help of various analytical techniques and computational biological plateform. In lipidomics studies, structural display of several lipid biomarkers could also be analyzed and considered for actual disease diagnosis procedures. This could also replace certain traditional diagnostics method at all over the globe. Our review focuses how important this lipidomics particularly in disease diagnosis and also covers various analytical techniques and computational methods or bioinformatics tools in for the diagnosis of disease. In addtion, we also pinponted the possible role of lipids in several kinds of cellular disorders including cancer, neurodegenerative diseases, cardiovascular diseases, diabetes and obesity in human population. .
Collapse
|
23
|
Rossetti C, Laraia L. Thermal Proteome Profiling Reveals Distinct Target Selectivity for Differentially Oxidized Oxysterols. ACS Chem Biol 2022; 17:1677-1684. [PMID: 35763711 DOI: 10.1021/acschembio.2c00383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxysterols are produced physiologically by many species; however, their distinct roles in regulating human physiology have not been studied systematically. The role of differing oxidation states and sites in mediating their biological functions is also unclear. As oxysterols have been associated with atherosclerosis, neurodegeneration, and cancer, a better understanding of their protein targets is desirable. To address this, we mapped the oxysterol interactome with three A- and B-ring oxidized sterols as well as 25-hydroxy cholesterol using thermal proteome profiling, validating selected targets with the cellular thermal shift assay and isothermal dose response fingerprinting. This revealed that the site of oxidation has a profound impact on target selectivity, with each oxysterol possessing an almost unique set of target proteins. Overall, targets clustered in pathways relating to vesicular transport and phosphoinositide metabolism, suggesting that while individual oxysterols bind to a unique set of proteins, the processes they modulate are highly interconnected.
Collapse
Affiliation(s)
- Cecilia Rossetti
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs. Lyngby, Denmark
| | - Luca Laraia
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
24
|
Oxy210, a Semi-Synthetic Oxysterol, Exerts Anti-Inflammatory Effects in Macrophages via Inhibition of Toll-like Receptor (TLR) 4 and TLR2 Signaling and Modulation of Macrophage Polarization. Int J Mol Sci 2022; 23:ijms23105478. [PMID: 35628290 PMCID: PMC9141227 DOI: 10.3390/ijms23105478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammatory responses by the innate and adaptive immune systems protect against infections and are essential to health and survival. Many diseases including atherosclerosis, osteoarthritis, rheumatoid arthritis, psoriasis, and obesity involve persistent chronic inflammation. Currently available anti-inflammatory agents, including non-steroidal anti-inflammatory drugs, steroids, and biologics, are often unsafe for chronic use due to adverse effects. The development of effective non-toxic anti-inflammatory agents for chronic use remains an important research arena. We previously reported that oral administration of Oxy210, a semi-synthetic oxysterol, ameliorates non-alcoholic steatohepatitis (NASH) induced by a high-fat diet in APOE*3-Leiden.CETP humanized mouse model of NASH and inhibits expression of hepatic and circulating levels of inflammatory cytokines. Here, we show that Oxy210 also inhibits diet-induced white adipose tissue inflammation in APOE*3-Leiden.CETP mice, evidenced by the inhibition of adipose tissue expression of IL-6, MCP-1, and CD68 macrophage marker. Oxy210 and related analogs exhibit anti-inflammatory effects in macrophages treated with lipopolysaccharide in vitro, mediated through inhibition of toll-like receptor 4 (TLR4), TLR2, and AP-1 signaling, independent of cyclooxygenase enzymes or steroid receptors. The anti-inflammatory effects of Oxy210 are correlated with the inhibition of macrophage polarization. We propose that Oxy210 and its structural analogs may be attractive candidates for future therapeutic development for targeting inflammatory diseases.
Collapse
|
25
|
Ormsby TJR, Owens SE, Clement L, Mills TJ, Cronin JG, Bromfield JJ, Sheldon IM. Oxysterols Protect Epithelial Cells Against Pore-Forming Toxins. Front Immunol 2022; 13:815775. [PMID: 35154132 PMCID: PMC8825411 DOI: 10.3389/fimmu.2022.815775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/05/2022] [Indexed: 12/25/2022] Open
Abstract
Many species of bacteria produce toxins such as cholesterol-dependent cytolysins that form pores in cell membranes. Membrane pores facilitate infection by releasing nutrients, delivering virulence factors, and causing lytic cell damage - cytolysis. Oxysterols are oxidized forms of cholesterol that regulate cellular cholesterol and alter immune responses to bacteria. Whether oxysterols also influence the protection of cells against pore-forming toxins is unresolved. Here we tested the hypothesis that oxysterols stimulate the intrinsic protection of epithelial cells against damage caused by cholesterol-dependent cytolysins. We treated epithelial cells with oxysterols and then challenged them with the cholesterol-dependent cytolysin, pyolysin. Treating HeLa cells with 27-hydroxycholesterol, 25-hydroxycholesterol, 7α-hydroxycholesterol, or 7β-hydroxycholesterol reduced pyolysin-induced leakage of lactate dehydrogenase and reduced pyolysin-induced cytolysis. Specifically, treatment with 10 ng/ml 27-hydroxycholesterol for 24 h reduced pyolysin-induced lactate dehydrogenase leakage by 88%, and reduced cytolysis from 74% to 1%. Treating HeLa cells with 27-hydroxycholesterol also reduced pyolysin-induced leakage of potassium ions, prevented mitogen-activated protein kinase cell stress responses, and limited alterations in the cytoskeleton. Furthermore, 27-hydroxycholesterol reduced pyolysin-induced damage in lung and liver epithelial cells, and protected against the cytolysins streptolysin O and Staphylococcus aureus α-hemolysin. Although oxysterols regulate cellular cholesterol by activating liver X receptors, cytoprotection did not depend on liver X receptors or changes in total cellular cholesterol. However, oxysterol cytoprotection was partially dependent on acyl-CoA:cholesterol acyltransferase (ACAT) reducing accessible cholesterol in cell membranes. Collectively, these findings imply that oxysterols stimulate the intrinsic protection of epithelial cells against pore-forming toxins and may help protect tissues against pathogenic bacteria.
Collapse
Affiliation(s)
- Thomas J R Ormsby
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Sian E Owens
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Liam Clement
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Tom J Mills
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - James G Cronin
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - John J Bromfield
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Iain Martin Sheldon
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| |
Collapse
|
26
|
Daggubati V, Raleigh DR, Sever N. Sterol regulation of developmental and oncogenic Hedgehog signaling. Biochem Pharmacol 2022; 196:114647. [PMID: 34111427 PMCID: PMC8648856 DOI: 10.1016/j.bcp.2021.114647] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/03/2023]
Abstract
The Hedgehog (Hh) family of lipid-modified signaling proteins directs embryonic tissue patterning and postembryonic tissue homeostasis, and dysregulated Hh signaling drives familial and sporadic cancers. Hh ligands bind to and inhibit the tumor suppressor Patched and allow the oncoprotein Smoothened (SMO) to accumulate in cilia, which in turn activates the GLI family of transcription factors. Recent work has demonstrated that endogenous cholesterol and oxidized cholesterol derivatives (oxysterols) bind and modulate SMO activity. Here we discuss the myriad sterols that activate or inhibit the Hh pathway, with emphasis on endogenous 24(S),25-epoxycholesterol and 3β,5α-dihydroxycholest-7-en-6-one, and propose models of sterol regulation of SMO. Synthetic inhibitors of SMO have long been the focus of drug development efforts. Here, we discuss the possible utility of steroidal SMO ligands or inhibitors of enzymes involved in sterol metabolism as cancer therapeutics.
Collapse
Affiliation(s)
- Vikas Daggubati
- Departments of Radiation Oncology and Neurological Surgery, and Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA,Medical Scientist Training Program, University of California, San Francisco, CA, USA
| | - David R. Raleigh
- Departments of Radiation Oncology and Neurological Surgery, and Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | - Navdar Sever
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA,Corresponding author: Navdar Sever, Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, LHRRB 405, Boston, MA 02115, USA, , Telephone: (617) 432-1612
| |
Collapse
|
27
|
Korade Z, Heffer M, Mirnics K. Medication effects on developmental sterol biosynthesis. Mol Psychiatry 2022; 27:490-501. [PMID: 33820938 PMCID: PMC8490477 DOI: 10.1038/s41380-021-01074-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/01/2021] [Accepted: 03/19/2021] [Indexed: 02/01/2023]
Abstract
Cholesterol is essential for normal brain function and development. Genetic disruptions of sterol biosynthesis result in intellectual and developmental disabilities. Developing neurons synthesize their own cholesterol, and disruption of this process can occur by both genetic and chemical mechanisms. Many commonly prescribed medications interfere with sterol biosynthesis, including haloperidol, aripiprazole, cariprazine, fluoxetine, trazodone and amiodarone. When used during pregnancy, these compounds might have detrimental effects on the developing brain of the offspring. In particular, inhibition of dehydrocholesterol-reductase 7 (DHCR7), the last enzyme in the biosynthesis pathway, results in accumulation of the immediate cholesterol precursor, 7-dehydrocholesterol (7-DHC). 7-DHC is highly unstable, giving rise to toxic oxysterols; this is particularly pronounced in a mouse model when both the mother and the offspring carry the Dhcr7+/- genotype. Studies of human dermal fibroblasts from individuals who carry DCHR7+/- single allele mutations suggest that the same gene*medication interaction also occurs in humans. The public health relevance of these findings is high, as DHCR7-inhibitors can be considered teratogens, and are commonly used by pregnant women. In addition, sterol biosynthesis inhibiting medications should be used with caution in individuals with mutations in sterol biosynthesis genes. In an age of precision medicine, further research in this area could open opportunities to improve patient and fetal/infant safety by tailoring medication prescriptions according to patient genotype and life stage.
Collapse
Affiliation(s)
- Zeljka Korade
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA, 68198.,Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA, 68198
| | - Marija Heffer
- J. J. Strossmayer University of Osijek, Faculty of Medicine Osijek, Department of Medical Biology and Genetics, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Károly Mirnics
- Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA. .,Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, 68105, USA.
| |
Collapse
|
28
|
You JS, Lim H, Seo JY, Kang KR, Kim DK, Oh JS, Seo YS, Lee GJ, Kim JS, Kim HJ, Yu SK, Kim JS. 25-Hydroxycholesterol-Induced Oxiapoptophagy in L929 Mouse Fibroblast Cell Line. Molecules 2021; 27:199. [PMID: 35011433 PMCID: PMC8746689 DOI: 10.3390/molecules27010199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
25-hydroxycholesterol (25-HC) is an oxysterol synthesized from cholesterol by cholesterol-25-hydroxylase during cholesterol metabolism. The aim of this study was to verify whether 25-HC induces oxiapoptophagy in fibroblasts. 25-HC not only decreased the survival of L929 cells, but also increased the number of cells with condensed chromatin and altered morphology. Fluorescence-activated cell sorting results showed that there was a dose-dependent increase in the apoptotic populations of L929 cells upon treatment with 25-HC. 25-HC-induced apoptotic cell death was mediated by the death receptor-dependent extrinsic and mitochondria-dependent intrinsic apoptosis pathway, through the cascade activation of caspases including caspase-8, -9, and -3 in L929 cells. There was an increase in the levels of reactive oxygen species and inflammatory mediators such as inducible nitric oxide synthase, cyclooxygenase-2, nitric oxide, and prostaglandin E2 in L929 cells treated with 25-HC. Moreover, 25-HC caused an increase in the expression of beclin-1 and microtubule-associated protein 1A/1B-light chain 3, an autophagy biomarker, in L929 cells. There was a significant decrease in the phosphorylation of protein kinase B (Akt) in L929 cells treated with 25-HC. Taken together, 25-HC induced oxiapoptophagy through the modulation of Akt and p53 cellular signaling pathways in L929 cells.
Collapse
Affiliation(s)
- Jae-Seek You
- Departments of Oral and Maxillofacial Surgery, School of Dentistry, Chosun University, Gwangju 61452, Korea; (J.-S.Y.); (J.-S.O.)
| | - HyangI Lim
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (H.L.); (J.-Y.S.); (K.-R.K.); (D.K.K.); (H.-J.K.); (S.-K.Y.)
| | - Jeong-Yeon Seo
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (H.L.); (J.-Y.S.); (K.-R.K.); (D.K.K.); (H.-J.K.); (S.-K.Y.)
| | - Kyeong-Rok Kang
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (H.L.); (J.-Y.S.); (K.-R.K.); (D.K.K.); (H.-J.K.); (S.-K.Y.)
| | - Do Kyung Kim
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (H.L.); (J.-Y.S.); (K.-R.K.); (D.K.K.); (H.-J.K.); (S.-K.Y.)
| | - Ji-Su Oh
- Departments of Oral and Maxillofacial Surgery, School of Dentistry, Chosun University, Gwangju 61452, Korea; (J.-S.Y.); (J.-S.O.)
| | - Yo-Seob Seo
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Chosun University, Gwangju 61452, Korea; (Y.-S.S.); (J.-S.K.)
| | - Gyeong-Je Lee
- Department of Prosthodontics, School of Dentistry, Chosun University, Gwangju 61452, Korea;
| | - Jin-Soo Kim
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Chosun University, Gwangju 61452, Korea; (Y.-S.S.); (J.-S.K.)
| | - Heung-Joong Kim
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (H.L.); (J.-Y.S.); (K.-R.K.); (D.K.K.); (H.-J.K.); (S.-K.Y.)
| | - Sun-Kyoung Yu
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (H.L.); (J.-Y.S.); (K.-R.K.); (D.K.K.); (H.-J.K.); (S.-K.Y.)
| | - Jae-Sung Kim
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (H.L.); (J.-Y.S.); (K.-R.K.); (D.K.K.); (H.-J.K.); (S.-K.Y.)
| |
Collapse
|
29
|
Suzuki A, Urano Y, Ishida T, Noguchi N. Different functions of vitamin E homologues in the various types of cell death induced by oxysterols. Free Radic Biol Med 2021; 176:356-365. [PMID: 34648906 DOI: 10.1016/j.freeradbiomed.2021.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/18/2023]
Abstract
24(S)-Hydroxycholesterol (24S-OHC) and 25-hydroxycholesterol (25-OHC) are produced by cholesterol 24-hydroxylase and cholesterol 25-hydroxylase, respectively. The purpose of the present study was to determine the type of cell death induced by these oxysterols in neuronal cells, hepatic cells, and keratinocytes, and to elucidate the inhibitory effect of vitamin E homologues on various types of cell death. In human neuronal cells (SH-SY5Y cells), 24S-OHC and 25-OHC caused a cell death that was independent of caspase activation. We reported previously that the esterification of 24S-OHC by acyl-CoA:cholesterol acyltransferase 1 (ACAT1) and the resulting formation of a lipid droplet (LD)-like structure are responsible for the 24S-OHC-induced neuronal cell death. Here, we found that 25-OHC also induced ACAT1-mediated 25-OHC esterification and LD formation in neuronal cells. 25-OHC-induced cell death was inhibited by α-tocopherol (α-Toc) but not by α-tocotrienol (α-Toc3), as observed for 24S-OHC-induced cell death in SH-SY5Y cells. In human hepatic cells (HepG2 cells), these oxysterols caused a cell death that was caspase- and oxysterol-esterification-independent. This cell death was suppressed by both α-Toc and α-Toc3, suggesting the involvement of free-radical-mediated lipid peroxidation in the cell death induced by these oxysterols in hepatic cells. In human keratinocytes (HaCaT cells), these oxysterols caused a caspase-dependent but oxysterol-esterification-independent cell death that was inhibited by α-Toc but not by α-Toc3. These results suggest that α-Toc and α-Toc3 act as radical-scavenging antioxidants against oxysterol-induced cell death in the same way in hepatic cells, whereas their behavior is different in inhibition of cell death in neuronal cells and keratinocytes. Collectively, these results demonstrated that 24S-OHC and 25-OHC induced the same type of cell death in each of the cell types examined, and that α-Toc and α-Toc3 exerted different effects, depending on the type of cell death.
Collapse
Affiliation(s)
- Atsuki Suzuki
- Systems Life Sciences Laboratory, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto, 610-0394, Japan
| | - Yasuomi Urano
- Systems Life Sciences Laboratory, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto, 610-0394, Japan
| | - Tomohisa Ishida
- Systems Life Sciences Laboratory, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto, 610-0394, Japan
| | - Noriko Noguchi
- Systems Life Sciences Laboratory, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto, 610-0394, Japan.
| |
Collapse
|
30
|
Griffiths WJ, Wang Y. Sterols, Oxysterols, and Accessible Cholesterol: Signalling for Homeostasis, in Immunity and During Development. Front Physiol 2021; 12:723224. [PMID: 34690800 PMCID: PMC8531217 DOI: 10.3389/fphys.2021.723224] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/10/2021] [Indexed: 12/14/2022] Open
Abstract
In this article we discuss the concept of accessible plasma membrane cholesterol and its involvement as a signalling molecule. Changes in plasma membrane accessible cholesterol, although only being minor in the context of total cholesterol plasma membrane cholesterol and total cell cholesterol, are a key regulator of overall cellular cholesterol homeostasis by the SREBP pathway. Accessible cholesterol also provides the second messenger between patched 1 and smoothened in the hedgehog signalling pathway important during development, and its depletion may provide a mechanism of resistance to microbial pathogens including SARS-CoV-2. We revise the hypothesis that oxysterols are a signalling form of cholesterol, in this instance as a rapidly acting and paracrine version of accessible cholesterol.
Collapse
Affiliation(s)
| | - Yuqin Wang
- Swansea University Medical School, Swansea, United Kingdom
| |
Collapse
|
31
|
Politiek FA, Waterham HR. Compromised Protein Prenylation as Pathogenic Mechanism in Mevalonate Kinase Deficiency. Front Immunol 2021; 12:724991. [PMID: 34539662 PMCID: PMC8446354 DOI: 10.3389/fimmu.2021.724991] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
Mevalonate kinase deficiency (MKD) is an autoinflammatory metabolic disorder characterized by life-long recurring episodes of fever and inflammation, often without clear cause. MKD is caused by bi-allelic pathogenic variants in the MVK gene, resulting in a decreased activity of the encoded enzyme mevalonate kinase (MK). MK is an essential enzyme in the isoprenoid biosynthesis pathway, which generates both non-sterol and sterol isoprenoids. The inflammatory symptoms of patients with MKD point to a major role for isoprenoids in the regulation of the innate immune system. In particular a temporary shortage of the non-sterol isoprenoid geranylgeranyl pyrophosphate (GGPP) is increasingly linked with inflammation in MKD. The shortage of GGPP compromises protein prenylation, which is thought to be one of the main causes leading to the inflammatory episodes in MKD. In this review, we discuss current views and the state of knowledge of the pathogenetic mechanisms in MKD, with particular focus on the role of compromised protein prenylation.
Collapse
Affiliation(s)
- Frouwkje A Politiek
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
32
|
Steck TL, Tabei SMA, Lange Y. A basic model for cell cholesterol homeostasis. Traffic 2021; 22:471-481. [PMID: 34528339 DOI: 10.1111/tra.12816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/26/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022]
Abstract
Cells manage their cholesterol by negative feedback using a battery of sterol-responsive proteins. How these activities are coordinated so as to specify the abundance and distribution of the sterol is unclear. We present a simple mathematical model that addresses this question. It assumes that almost all of the cholesterol is associated with phospholipids in stoichiometric complexes. A small fraction of the sterol is uncomplexed and thermodynamically active. It equilibrates among the organelles, setting their sterol level according to the affinity of their phospholipids. The activity of the homeostatic proteins in the cytoplasmic membranes is then set by their fractional saturation with uncomplexed cholesterol in competition with the phospholipids. The high-affinity phospholipids in the plasma membrane (PM) are filled to near stoichiometric equivalence, giving it most of the cell sterol. Notably, the affinity of the phospholipids in the endomembranes (EMs) is lower by orders of magnitude than that of the phospholipids in the PM. Thus, the small amount of sterol in the EMs rests far below stoichiometric capacity. Simulations match a variety of experimental data. The model captures the essence of cell cholesterol homeostasis, makes coherent a diverse set of experimental findings, provides a surprising prediction and suggests new experiments.
Collapse
Affiliation(s)
- Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - S M Ali Tabei
- Department of Physics, University of Northern Iowa, Cedar Falls, Iowa, USA
| | - Yvonne Lange
- Department of Pathology, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
33
|
5,6-Epoxycholesterol Isomers Induce Oxiapoptophagy in Myeloma Cells. Cancers (Basel) 2021; 13:cancers13153747. [PMID: 34359648 PMCID: PMC8345143 DOI: 10.3390/cancers13153747] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary As the second most frequent hematological malignancy, multiple myeloma remains incurable with recurrent patient relapse due to drug resistance. Therefore, the development of novel and potent therapies is urgently required. Herein, we demonstrated the anti-tumor activity of 5,6 α- and 5,6 β-epoxycholesterol isomers against human myeloma cells. Our results highlighted a striking anti-myeloma efficiency of these bioactive molecules and their added value in future potential treatments including combination therapy of multiple myeloma. Abstract Multiple myeloma (MM) is an incurable plasma cell malignancy with frequent patient relapse due to innate or acquired drug resistance. Cholesterol metabolism is reported to be altered in MM; therefore, we investigated the potential anti-myeloma activity of two cholesterol derivatives: the 5,6 α- and 5,6 β-epoxycholesterol (EC) isomers. To this end, viability assays were used, and isomers were shown to exhibit important anti-tumor activity in vitro in JJN3 and U266 human myeloma cell lines (HMCLs) and ex vivo in myeloma patients’ sorted CD138+ malignant cells. Moreover, we confirmed that 5,6 α-EC and 5,6 β-EC induced oxiapoptophagy through concomitant oxidative stress and caspase-3-mediated apoptosis and autophagy. Interestingly, in combination treatment a synergistic interaction was observed between 5,6 α-EC and 5,6 β-EC on myeloma cells. These data highlight a striking anti-tumor activity of 5,6 α-EC and 5,6 β-EC bioactive molecules against human myeloma cells, paving the way for their potential role in future therapeutic strategies in MM.
Collapse
|
34
|
Affiliation(s)
- Mark Nixon
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ruth Andrew
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
35
|
Nury T, Yammine A, Ghzaiel I, Sassi K, Zarrouk A, Brahmi F, Samadi M, Rup-Jacques S, Vervandier-Fasseur D, Pais de Barros J, Bergas V, Ghosh S, Majeed M, Pande A, Atanasov A, Hammami S, Hammami M, Mackrill J, Nasser B, Andreoletti P, Cherkaoui-Malki M, Vejux A, Lizard G. Attenuation of 7-ketocholesterol- and 7β-hydroxycholesterol-induced oxiapoptophagy by nutrients, synthetic molecules and oils: Potential for the prevention of age-related diseases. Ageing Res Rev 2021; 68:101324. [PMID: 33774195 DOI: 10.1016/j.arr.2021.101324] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/18/2022]
Abstract
Age-related diseases for which there are no effective treatments include cardiovascular diseases; neurodegenerative diseases such as Alzheimer's disease; eye disorders such as cataract and age-related macular degeneration; and, more recently, Severe Acute Respiratory Syndrome (SARS-CoV-2). These diseases are associated with plasma and/or tissue increases in cholesterol derivatives mainly formed by auto-oxidation: 7-ketocholesterol, also known as 7-oxo-cholesterol, and 7β-hydroxycholesterol. The formation of these oxysterols can be considered as a consequence of mitochondrial and peroxisomal dysfunction, leading to increased in oxidative stress, which is accentuated with age. 7-ketocholesterol and 7β-hydroxycholesterol cause a specific form of cytotoxic activity defined as oxiapoptophagy, including oxidative stress and induction of death by apoptosis associated with autophagic criteria. Oxiaptophagy is associated with organelle dysfunction and in particular with mitochondrial and peroxisomal alterations involved in the induction of cell death and in the rupture of redox balance. As the criteria characterizing 7-ketocholesterol- and 7β-hydroxycholesterol-induced cytotoxicity are often simultaneously observed in major age-related diseases (cardiovascular diseases, age-related macular degeneration, Alzheimer's disease) the involvement of these oxysterols in the pathophysiology of the latter seems increasingly likely. It is therefore important to better understand the signalling pathways associated with the toxicity of 7-ketocholesterol and 7β-hydroxycholesterol in order to identify pharmacological targets, nutrients and synthetic molecules attenuating or inhibiting the cytotoxic activities of these oxysterols. Numerous natural cytoprotective compounds have been identified: vitamins, fatty acids, polyphenols, terpenes, vegetal pigments, antioxidants, mixtures of compounds (oils, plant extracts) and bacterial enzymes. However, few synthetic molecules are able to prevent 7-ketocholesterol- and/or 7β-hydroxycholesterol-induced cytotoxicity: dimethyl fumarate, monomethyl fumarate, the tyrosine kinase inhibitor AG126, memantine, simvastatine, Trolox, dimethylsufoxide, mangafodipir and mitochondrial permeability transition pore (MPTP) inhibitors. The effectiveness of these compounds, several of which are already in use in humans, makes it possible to consider using them for the treatment of certain age-related diseases associated with increased plasma and/or tissue levels of 7-ketocholesterol and/or 7β-hydroxycholesterol.
Collapse
|
36
|
Vejux A, Ghzaiel I, Nury T, Schneider V, Charrière K, Sghaier R, Zarrouk A, Leoni V, Moreau T, Lizard G. Oxysterols and multiple sclerosis: Physiopathology, evolutive biomarkers and therapeutic strategy. J Steroid Biochem Mol Biol 2021; 210:105870. [PMID: 33684483 DOI: 10.1016/j.jsbmb.2021.105870] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis is an autoimmune disease that affects the central nervous system. Dysfunction of the immune system leads to lesions that cause motor, sensory, cognitive, visual and/or sphincter disturbances. In the long term, these disorders can progress towards an irreversible handicap. The diagnosis takes time because there are no specific criteria to diagnose multiple sclerosis. To realize the diagnosis, a combination of clinical, biological, and radiological arguments is therefore required. Hence, there is a need to identify multiple sclerosis biomarkers. Some biomarkers target immunity through the detection of oligoclonal bands, the measurement of the IgG index and cytokines. During the physiopathological process, the blood-brain barrier can be broken, and this event can be identified by measuring metalloproteinase activity and diffusion of gadolinium in the brain by magnetic resonance imaging. Markers of demyelination and of astrocyte and microglial activity may also be of interest as well as markers of neuronal damage and mitochondrial status. The measurement of different lipids in the plasma and cerebrospinal fluid can also provide suitable information. These different lipids include fatty acids, fatty acid peroxidation products, phospholipids as well as oxidized derivatives of cholesterol (oxysterols). Oxysterols could constitute new biomarkers providing information on the form of multiple sclerosis, the outcome of the disease and the answer to treatment.
Collapse
Affiliation(s)
- Anne Vejux
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France.
| | - Imen Ghzaiel
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France; Faculty of Medicine, LR12ES05, Lab-NAFS "Nutrition - Functional Food & Vascular Health", University of Monastir, Monastir, Tunisia
| | - Thomas Nury
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France
| | - Vincent Schneider
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France; University Hospital, Department of Neurology, Dijon, France
| | - Karine Charrière
- Centre Hospitalier Universitaire de Besançon, Centre d'Investigation Clinique, INSERM CIC 1431, 25030, Besançon Cedex, France
| | - Randa Sghaier
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France
| | - Amira Zarrouk
- Faculty of Medicine, LR12ES05, Lab-NAFS "Nutrition - Functional Food & Vascular Health", University of Monastir, Monastir, Tunisia; Laboratory of Biochemistry, Faculty of Medicine, University of Sousse, Sousse, Tunisia
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospital of Varese, ASST-Settelaghi, Varese, Italy
| | - Thibault Moreau
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France; University Hospital, Department of Neurology, Dijon, France
| | - Gérard Lizard
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France.
| |
Collapse
|
37
|
Sharpe LJ, Coates HW, Brown AJ. Post-translational control of the long and winding road to cholesterol. J Biol Chem 2021; 295:17549-17559. [PMID: 33453997 DOI: 10.1074/jbc.rev120.010723] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/12/2020] [Indexed: 01/19/2023] Open
Abstract
The synthesis of cholesterol requires more than 20 enzymes, many of which are intricately regulated. Post-translational control of these enzymes provides a rapid means for modifying flux through the pathway. So far, several enzymes have been shown to be rapidly degraded through the ubiquitin-proteasome pathway in response to cholesterol and other sterol intermediates. Additionally, several enzymes have their activity altered through phosphorylation mechanisms. Most work has focused on the two rate-limiting enzymes: 3-hydroxy-3-methylglutaryl CoA reductase and squalene monooxygenase. Here, we review current literature in the area to define some common themes in the regulation of the entire cholesterol synthesis pathway. We highlight the rich variety of inputs controlling each enzyme, discuss the interplay that exists between regulatory mechanisms, and summarize findings that reveal an intricately coordinated network of regulation along the cholesterol synthesis pathway. We provide a roadmap for future research into the post-translational control of cholesterol synthesis, and no doubt the road ahead will reveal further twists and turns for this fascinating pathway crucial for human health and disease.
Collapse
Affiliation(s)
- Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Hudson W Coates
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
38
|
Zakyrjanova GF, Giniatullin AR, Mukhutdinova KA, Kuznetsova EA, Petrov AM. Early differences in membrane properties at the neuromuscular junctions of ALS model mice: Effects of 25-hydroxycholesterol. Life Sci 2021; 273:119300. [PMID: 33662433 DOI: 10.1016/j.lfs.2021.119300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/13/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022]
Abstract
AIMS Plasma hyperlipidemia is a protective factor in amyotrophic lateral sclerosis (ALS) while cholesterol-lowering drugs aggravate the pathology. We hypothesize that this phenomenon can be linked with membrane lipid alterations in the neuromuscular junctions (NMJs) occurring before motor neuron loss. METHODS Neurotransmitter release in parallel with lipid membrane properties in diaphragm NMJs of SOD1G93A (mSOD) mice at nine weeks of age (pre-onset stage) were assessed. KEY FINDINGS Despite on slight changes in spontaneous and evoked quantum release of acetylcholine, extracellular levels of choline at resting conditions, an indicator of non-quantum release, were significantly increased in mSOD mice. The use of lipid-sensitive fluorescent probes points to lipid raft disruption in the NMJs of mSOD mice. However, content of cholesterol, a key raft component was unchanged implying another pathway responsible for the loss of raft integrity. In the mSOD mice we found marked increase in levels of raft-destabilizing lipid ceramide. This was accompanied by enhanced ability to uptake of exogenous ceramide in NMJs. Acute and chronic administration of 25-hydroxycholesterol, whose levels increase due to hypercholesterolemia, recovered early alterations in membrane properties. Furthermore, chronic treatment with 25-hydroxycholesterol prevented increase in ceramide and extracellular choline levels as well as suppressed lipid peroxidation of NMJ membranes and fragmentation of end plates. SIGNIFICANCE Thus, lipid raft disruption likely due to ceramide accumulation could be early event in ALS which may trigger neuromuscular abnormalities. Cholesterol derivative 25-hydroxycholesterol may serve as a molecule restoring the membrane and functional properties of NMJs at the early stage.
Collapse
Affiliation(s)
- Guzel F Zakyrjanova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, box 30, Kazan 420111, Russia; Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, Kazan, 420012, Russia
| | - Arthur R Giniatullin
- Department of Normal Physiology, Kazan State Medial University, 49 Butlerova Street, Kazan 420012, Russia
| | - Kamilla A Mukhutdinova
- Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, Kazan, 420012, Russia
| | - Eva A Kuznetsova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, box 30, Kazan 420111, Russia
| | - Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, box 30, Kazan 420111, Russia; Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, Kazan, 420012, Russia.
| |
Collapse
|
39
|
Miyamoto S, Lima RS, Inague A, Viviani LG. Electrophilic oxysterols: generation, measurement and protein modification. Free Radic Res 2021; 55:416-440. [PMID: 33494620 DOI: 10.1080/10715762.2021.1879387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cholesterol is an essential component of mammalian plasma membranes. Alterations in sterol metabolism or oxidation have been linked to various pathological conditions, including cardiovascular diseases, cancer, and neurodegenerative disorders. Unsaturated sterols are vulnerable to oxidation induced by singlet oxygen and other reactive oxygen species. This process yields reactive sterol oxidation products, including hydroperoxides, epoxides as well as aldehydes. These oxysterols, in particular those with high electrophilicity, can modify nucleophilic sites in biomolecules and affect many cellular functions. Here, we review the generation and measurement of reactive sterol oxidation products with emphasis on cholesterol hydroperoxides and aldehyde derivatives (electrophilic oxysterols) and their effects on protein modifications.
Collapse
Affiliation(s)
- Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Rodrigo S Lima
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Alex Inague
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Lucas G Viviani
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
40
|
Wang Y, Yutuc E, Griffiths WJ. Cholesterol metabolism pathways - are the intermediates more important than the products? FEBS J 2021; 288:3727-3745. [PMID: 33506652 PMCID: PMC8653896 DOI: 10.1111/febs.15727] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/04/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022]
Abstract
Every cell in vertebrates possesses the machinery to synthesise cholesterol and to metabolise it. The major route of cholesterol metabolism is conversion to bile acids. Bile acids themselves are interesting molecules being ligands to nuclear and G protein‐coupled receptors, but perhaps the intermediates in the bile acid biosynthesis pathways are even more interesting and equally important. Here, we discuss the biological activity of the different intermediates generated in the various bile acid biosynthesis pathways. We put forward the hypothesis that the acidic pathway of bile acid biosynthesis has primary evolved to generate signalling molecules and its utilisation by hepatocytes provides an added bonus of producing bile acids to aid absorption of lipids in the intestine.
Collapse
|
41
|
Wang Y, Yutuc E, Griffiths WJ. Standardizing and increasing the utility of lipidomics: a look to the next decade. Expert Rev Proteomics 2020; 17:699-717. [PMID: 33191815 DOI: 10.1080/14789450.2020.1847086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction: We present our views on the current application of mass spectrometry (MS) based lipidomics and how lipidomics can develop in the next decade to be most practical use to society. That is not to say that lipidomics has not already been of value. In-fact, in its earlier guise as metabolite profiling most of the pathways of steroid biosynthesis were uncovered and via focused lipidomics many inborn errors of metabolism are routinely clinically identified. However, can lipidomics be extended to improve biochemical understanding of, and to diagnose, the most prevalent diseases of the 21st century? Areas covered: We will highlight the concept of 'level of identification' and the equally crucial topic of 'quantification'. Only by using a standardized language for these terms can lipidomics be translated to fields beyond academia. We will remind the lipid scientist of the value of chemical derivatization, a concept exploited since the dawn of lipid biochemistry. Expert opinion: Only by agreement of the concepts of identification and quantification and their incorporation in lipidomics reporting can lipidomics maximize its value.
Collapse
Affiliation(s)
- Yuqin Wang
- Swansea University Medical School , Swansea, Wales, UK
| | - Eylan Yutuc
- Swansea University Medical School , Swansea, Wales, UK
| | | |
Collapse
|
42
|
Sigma-2 Receptor-A Potential Target for Cancer/Alzheimer's Disease Treatment via Its Regulation of Cholesterol Homeostasis. Molecules 2020; 25:molecules25225439. [PMID: 33233619 PMCID: PMC7699687 DOI: 10.3390/molecules25225439] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
The sigma receptors were classified into sigma-1 and sigma-2 receptor based on their different pharmacological profiles. In the past two decades, our understanding of the biological and pharmacological properties of the sigma-1 receptor is increasing; however, little is known about the sigma-2 receptor. Recently, the molecular identity of the sigma-2 receptor has been identified as TMEM97. Although more and more evidence has showed that sigma-2 ligands have the ability to treat cancer and Alzheimer’s disease (AD), the mechanisms connecting these two diseases are unknown. Data obtained over the past few years from human and animal models indicate that cholesterol homeostasis is altered in AD and cancer, underscoring the importance of cholesterol homeostasis in AD and cancer. In this review, based on accumulated evidence, we proposed that the beneficial roles of sigma-2 ligands in cancer and AD might be mediated by their regulation of cholesterol homeostasis.
Collapse
|
43
|
Yang A, Alrosan AZ, Sharpe LJ, Brown AJ, Callaghan R, Gelissen IC. Regulation of ABCG4 transporter expression by sterols and LXR ligands. Biochim Biophys Acta Gen Subj 2020; 1865:129769. [PMID: 33141061 DOI: 10.1016/j.bbagen.2020.129769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/01/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Oxysterols, which are derivatives of cholesterol produced by enzymic or non-enzymic pathways, are potent regulators of cellular lipid homeostasis. Sterol homeostasis in the brain is an important area of interest with regards to neurodegenerative conditions like Alzheimer's disease (AD). Brain cells including neurons and astrocytes express sterol transporters belonging to the ABC transporter family of proteins, including ABCA1, ABCG1 and ABCG4, and these transporters are considered of interest as therapeutic targets. Although regulation of ABCA1 and ABCG1 is well established, regulation of ABCG4 is still controversial, in particular whether the transporter is an Liver X receptor (LXR) target. ABCG4 is thought to transport cholesterol, oxysterols and cholesterol synthesis intermediates, and was recently found on the blood brain barrier (BBB), implicated in amyloid-beta export. In this study, we investigate the regulation of ABCG4 by oxysterols, cholesterol-synthesis intermediates and cholesterol itself. METHODS ABC transporter expression was measured in neuroblastoma and gliablastoma cell lines and cells overexpressing ABCG4 in response to synthetic LXR ligands, oxysterols and cholesterol-synthesis intermediates. RESULTS In contrast to previous reports, ABCG4 expression was induced by a synthetic LXR ligand in U87-MG astrocytes but not in neuroblastoma and BBB endothelial cell lines. In addition, ABCG4 protein was stabilized by cholesterol as was previously shown for ABCG1. ABCG4 protein was furthermore stabilized by cholesterol-synthesis intermediates, desmosterol, lathosterol and lanosterol. CONCLUSIONS These results identify new aspects of the post-translational control of ABCG4 that warrant further exploration into the role of this transporter in the maintenance of sterol homeostasis in the brain.
Collapse
Affiliation(s)
- Alryel Yang
- Sydney Pharmacy School, Faculty of Medicine and Health, Pharmacy Bank Building A15, Science Road, The University of Sydney, Sydney, NSW 2006, Australia
| | - Amjad Z Alrosan
- Sydney Pharmacy School, Faculty of Medicine and Health, Pharmacy Bank Building A15, Science Road, The University of Sydney, Sydney, NSW 2006, Australia
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, Chancellery Walk, The University of New South Wales, Kensington, NSW 2033, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, Chancellery Walk, The University of New South Wales, Kensington, NSW 2033, Australia
| | - Richard Callaghan
- Research School of Biology and Medical School, Linnaeus Way, Australian National University, ACT 2600, Australia
| | - Ingrid C Gelissen
- Sydney Pharmacy School, Faculty of Medicine and Health, Pharmacy Bank Building A15, Science Road, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
44
|
Kloudova-Spalenkova A, Holy P, Soucek P. Oxysterols in cancer management: From therapy to biomarkers. Br J Pharmacol 2020; 178:3235-3247. [PMID: 32986851 DOI: 10.1111/bph.15273] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 12/20/2022] Open
Abstract
Oxysterols are oxidized derivatives of cholesterol, both endogenous and exogenous. They have been implicated in numerous pathologies, including cancer. In addition to their roles in carcinogenesis, proliferation, migration, apoptosis, and multiple signalling pathways, they have been shown to modulate cancer therapy. They are known to affect therapy of hormonally positive breast cancer through modulating oestrogen receptor activity. Oxysterols have also been shown in various in vitro models to influence efficacy of chemotherapeutics, such as doxorubicin, vincristine, cisplatin, 5-fluorouracil, and others. Their effects on the immune system should also be considered in immunotherapy. Selective anti-cancer cytotoxic properties of some oxysterols make them candidates for new therapeutic molecules. Finally, differences in oxysterol levels in blood of cancer patients in different stages or versus healthy controls, and in tumour versus non-tumour tissues, show potential of oxysterols as biomarkers for cancer management and patient stratification for optimization of therapy. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Alzbeta Kloudova-Spalenkova
- Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic.,Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Petr Holy
- Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic.,Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Pavel Soucek
- Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
45
|
Gonen A, Miller YI. From Inert Storage to Biological Activity-In Search of Identity for Oxidized Cholesteryl Esters. Front Endocrinol (Lausanne) 2020; 11:602252. [PMID: 33329402 PMCID: PMC7715012 DOI: 10.3389/fendo.2020.602252] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/23/2020] [Indexed: 12/31/2022] Open
Abstract
Esterification of cholesterol is a universal mechanism to store and transport large quantities of cholesterol between organs and tissues and to avoid toxicity of the excess of cellular cholesterol. Intended for transport and storage and thus to be inert, cholesteryl esters (CEs) reside in hydrophobic cores of circulating lipoproteins and intracellular lipid droplets. However, the inert identity of CEs is dramatically changed if cholesterol is esterified to a polyunsaturated fatty acid and subjected to oxidative modification. Post-synthetic, or epilipidomic, oxidative modifications of CEs are mediated by specialized enzymes, chief among them are lipoxygenases, and by free radical oxidation. The complex repertoire of oxidized CE (OxCE) products exhibit various, context-dependent biological activities, surveyed in this review. Oxidized fatty acyl chains in OxCE can be hydrolyzed and re-esterified, thus seeding oxidized moieties into phospholipids (PLs), with OxPLs having different from OxCEs biological activities. Technological advances in mass spectrometry and the development of new anti-OxCE antibodies make it possible to validate the presence and quantify the levels of OxCEs in human atherosclerotic lesions and plasma. The article discusses the prospects of measuring OxCE levels in plasma as a novel biomarker assay to evaluate risk of developing cardiovascular disease and efficacy of treatment.
Collapse
|