1
|
Dixit H, Upadhyay V, Kulharia M, Verma SK. The Study of Metalloproteome of DNA Viruses: Identification, Functional Annotation, and Diversity Analysis of Viral Metal-Binding Proteins. J Proteome Res 2024; 23:4014-4026. [PMID: 39134029 DOI: 10.1021/acs.jproteome.4c00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Metalloproteins are fundamental to diverse biological processes but still lack extensive investigation in viral contexts. This study reveals the prevalence and functional diversity of metal-binding proteins in DNA viruses. Among a subset of 1432 metalloproteins, zinc and magnesium-binding proteins are notably abundant, indicating their importance in viral biology. Furthermore, significant numbers of proteins binding to iron, manganese, copper, nickel, mercury, and cadmium were also detected. Human-infecting viral proteins displayed a rich landscape of metalloproteins, with MeBiPred (964 proteins) and Pfam (666) yielding the highest numbers. Interestingly, many essential viral proteins exhibited metal-binding capabilities, including polymerases, DNA binding proteins, helicases, dUPTase, thymidine kinase, and various structural and accessory proteins. This study sheds light on the ubiquitous presence of metalloproteins, their functional signatures, subcellular placements, and metal-utilization patterns, providing valuable insights into viral biology. A similar metal utilization pattern was observed in similar functional proteins across the various DNA viruses. Furthermore, these findings provide a foundation for identifying potential drug targets for combating viral infections.
Collapse
Affiliation(s)
- Himisha Dixit
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra, 176206, Himachal Pradesh, India
| | - Vipin Upadhyay
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra, 176206, Himachal Pradesh, India
| | - Mahesh Kulharia
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra, 176206, Himachal Pradesh, India
| | | |
Collapse
|
2
|
Dixit H, Kulharia M, Verma SK. Metal-binding proteins and proteases in RNA viruses: unravelling functional diversity and expanding therapeutic horizons. J Virol 2023; 97:e0139923. [PMID: 37982624 PMCID: PMC10734521 DOI: 10.1128/jvi.01399-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/18/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE Metal-binding proteins are pivotal components with diverse functions in organisms, including viruses. Despite their significance, many metalloproteins in viruses remain uncharacterized, posing challenges to understanding viral systems. This study addresses this knowledge gap by identifying and analyzing metal-binding proteins and proteases in RNA viruses. The findings emphasize the prevalence of these proteins as essential functional classes within viruses and shed light on the role of metal ions and metalloproteins in viral replication and pathogenesis. Moreover, this research serves as a crucial foundation for further investigations in this field, offering the potential for developing innovative antiviral strategies. Additionally, the study enhances our understanding of the distribution and evolutionary patterns of metal-binding proteases in major human viruses. Continually exploring metal-binding proteomes across diverse viruses will deepen our knowledge of metal-dependent biological processes and provide valuable insights for combating viral infections, including respiratory viruses and other life-threatening diseases.
Collapse
Affiliation(s)
- Himisha Dixit
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra, India
| | - Mahesh Kulharia
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra, India
| | | |
Collapse
|
3
|
Ruiz-Pablos M, Paiva B, Zabaleta A. Epstein-Barr virus-acquired immunodeficiency in myalgic encephalomyelitis-Is it present in long COVID? J Transl Med 2023; 21:633. [PMID: 37718435 PMCID: PMC10506247 DOI: 10.1186/s12967-023-04515-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023] Open
Abstract
Both myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS) and long COVID (LC) are characterized by similar immunological alterations, persistence of chronic viral infection, autoimmunity, chronic inflammatory state, viral reactivation, hypocortisolism, and microclot formation. They also present with similar symptoms such as asthenia, exercise intolerance, sleep disorders, cognitive dysfunction, and neurological and gastrointestinal complaints. In addition, both pathologies present Epstein-Barr virus (EBV) reactivation, indicating the possibility of this virus being the link between both pathologies. Therefore, we propose that latency and recurrent EBV reactivation could generate an acquired immunodeficiency syndrome in three steps: first, an acquired EBV immunodeficiency develops in individuals with "weak" EBV HLA-II haplotypes, which prevents the control of latency I cells. Second, ectopic lymphoid structures with EBV latency form in different tissues (including the CNS), promoting inflammatory responses and further impairment of cell-mediated immunity. Finally, immune exhaustion occurs due to chronic exposure to viral antigens, with consolidation of the disease. In the case of LC, prior to the first step, there is the possibility of previous SARS-CoV-2 infection in individuals with "weak" HLA-II haplotypes against this virus and/or EBV.
Collapse
Affiliation(s)
| | - Bruno Paiva
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Av. Pío XII 55, 31008, Pamplona, Spain
| | - Aintzane Zabaleta
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Av. Pío XII 55, 31008, Pamplona, Spain.
| |
Collapse
|
4
|
Gurukkalot K, Rajendran V. Repurposing Polyether Ionophores as a New-Class of Anti-SARS-Cov-2 Agents as Adjunct Therapy. Curr Microbiol 2023; 80:273. [PMID: 37414909 DOI: 10.1007/s00284-023-03366-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023]
Abstract
The emergence of SARS-CoV-2 and its variants have posed a significant threat to humankind in tackling the viral spread. Furthermore, currently repurposed drugs and frontline antiviral agents have failed to cure severe ongoing infections effectively. This insufficiency has fuelled research for potent and safe therapeutic agents to treat COVID-19. Nonetheless, various vaccine candidates have displayed a differential efficacy and need for repetitive dosing. The FDA-approved polyether ionophore veterinary antibiotic for treating coccidiosis has been repurposed for treating SARS-CoV-2 infection (as shown by both in vitro and in vivo studies) and other deadly human viruses. Based on selectivity index values, ionophores display therapeutic effects at sub-nanomolar concentrations and exhibit selective killing ability. They act on different viral targets (structural and non-structural proteins), host-cell components leading to SARS-CoV-2 inhibition, and their activity is further enhanced by Zn2+ supplementation. This review summarizes the anti-SARS-CoV-2 potential and molecular viral targets of selective ionophores like monensin, salinomycin, maduramicin, CP-80,219, nanchangmycin, narasin, X-206 and valinomycin. Ionophore combinations with Zn2+ are a new therapeutic strategy that warrants further investigation for possible human benefits.
Collapse
Affiliation(s)
- Keerthana Gurukkalot
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Vinoth Rajendran
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
5
|
Mohamad NS, Tan LL, Ali NIM, Mazlan NF, Sage EE, Hassan NI, Goh CT. Zinc status in public health: exploring emerging research trends through bibliometric analysis of the historical context from 1978 to 2022. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28422-28445. [PMID: 36680719 PMCID: PMC9864505 DOI: 10.1007/s11356-023-25257-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/07/2023] [Indexed: 04/16/2023]
Abstract
The current study aims to provide a roadmap for future research by analyzing the research structures and trends in scholarly publications related to the status of zinc in public health. Only journal articles published between 1978 and 2022 are included in the refined bibliographical outputs retrieved from the Web of Science (WoS) database. The first section announces findings based on WoS categories, such as discipline heterogeneity, times cited and publications over time, and citation reports. The second section then employs VoSViewer software for bibliometric analysis, which includes a thorough examination of co-authorship among researchers, organizations, and countries and a count of all bibliographic databases among documents. The final section discusses the research's weaknesses and strengths in zinc status, public health, and potential future directions; 7158 authors contributed to 1730 papers (including 339 with publications, more than three times). "Keen, C.L." is a researcher with the most publications and a better understanding of zinc status in public health. Meanwhile, the USA has been the epicenter of research on the status of zinc in public health due to the highest percentage of publications with the most citations and collaboration with the rest of the world, with the top institution being the University of California, Davis. Future research can be organized collaboratively based on hot topics from co-occurrence network mapping and bibliographic couplings to improve zinc status and protect public health.
Collapse
Affiliation(s)
- Nur Syamimi Mohamad
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - Ling Ling Tan
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - Nurul Izzati Mohd Ali
- Environment Management Program, Center for Research in Development, Social and Environment, Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - Nur-Fadhilah Mazlan
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - Edison Eukun Sage
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - Choo Ta Goh
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| |
Collapse
|
6
|
A novel sprayable thermosensitive hydrogel coupled with zinc modified metformin promotes the healing of skin wound. Bioact Mater 2023; 20:610-626. [PMID: 35846848 PMCID: PMC9256661 DOI: 10.1016/j.bioactmat.2022.06.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/16/2022] Open
Abstract
A novel sprayable adhesive is established (ZnMet-PF127) by the combination of a thermosensitive hydrogel (Pluronic F127, PF127) and a coordination complex of zinc and metformin (ZnMet). Here we demonstrate that ZnMet-PF127 potently promotes the healing of traumatic skin defect and burn skin injury by promoting cell proliferation, angiogenesis, collagen formation. Furthermore, we find that ZnMet could inhibit reactive oxygen species (ROS) production through activation of autophagy, thereby protecting cell from oxidative stress induced damage and promoting healing of skin wound. ZnMet complex exerts better effects on promoting skin wound healing than ZnCl2 or metformin alone. ZnMet complex also displays excellent antibacterial activity against Staphylococcus aureus or Escherichia coli, which could reduce the incidence of skin wound infections. Collectively, we demonstrate that sprayable PF127 could be used as a new drug delivery system for treatment of skin injury. The advantages of this sprayable system are obvious: (1) It is convenient to use; (2) The hydrogel can cover irregular skin defect sites evenly in a liquid state. In combination with this system, we establish a novel sprayable adhesive (ZnMet-PF127) and demonstrate that it is a potential clinical treatment for traumatic skin defect and burn skin injury.
Collapse
|
7
|
Dixit H, Kulharia M, Verma SK. Metalloproteome of human-infective RNA viruses: a study towards understanding the role of metal ions in virology. Pathog Dis 2023; 81:ftad020. [PMID: 37653445 DOI: 10.1093/femspd/ftad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
Metalloproteins and metal-based inhibitors have been shown to effectively combat infectious diseases, particularly those caused by RNA viruses. In this study, a diverse set of bioinformatics methods was employed to identify metal-binding proteins of human RNA viruses. Seventy-three viral proteins with a high probability of being metal-binding proteins were identified. These proteins included 40 zinc-, 47 magnesium- and 14 manganese-binding proteins belonging to 29 viral species and eight significant viral families, including Coronaviridae, Flaviviridae and Retroviridae. Further functional characterization has revealed that these proteins play a critical role in several viral processes, including viral replication, fusion and host viral entry. They fall under the essential categories of viral proteins, including polymerase and protease enzymes. Magnesium ion is abundantly predicted to interact with these viral enzymes, followed by zinc. In addition, this study also examined the evolutionary aspects of predicted viral metalloproteins, offering essential insights into the metal utilization patterns among different viral species. The analysis indicates that the metal utilization patterns are conserved within the functional classes of the proteins. In conclusion, the findings of this study provide significant knowledge on viral metalloproteins that can serve as a valuable foundation for future research in this area.
Collapse
Affiliation(s)
- Himisha Dixit
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra 176206, Himachal Pradesh, India
| | - Mahesh Kulharia
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra 176206, Himachal Pradesh, India
| | - Shailender Kumar Verma
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra 176206, Himachal Pradesh, India
- Department of Environmental Studies, University of Delhi 110007, Delhi, India
| |
Collapse
|
8
|
Hernández-Flores TDJ, Pedraza-Brindis EJ, Cárdenas-Bedoya J, Ruíz-Carrillo JD, Méndez-Clemente AS, Martínez-Guzmán MA, Iñiguez-Gutiérrez L. Role of Micronutrients and Gut Microbiota-Derived Metabolites in COVID-19 Recovery. Int J Mol Sci 2022; 23:12324. [PMID: 36293182 PMCID: PMC9604189 DOI: 10.3390/ijms232012324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 01/08/2023] Open
Abstract
A balanced and varied diet provides diverse beneficial effects on health, such as adequate micronutrient availability and a gut microbiome in homeostasis. Besides their participation in biochemical processes as cofactors and coenzymes, vitamins and minerals have an immunoregulatory function; meanwhile, gut microbiota and its metabolites coordinate directly and indirectly the cell response through the interaction with the host receptors. Malnourishment is a crucial risk factor for several pathologies, and its involvement during the Coronavirus Disease 2019 pandemic has been reported. This pandemic has caused a significant decline in the worldwide population, especially those with chronic diseases, reduced physical activity, and elder age. Diet and gut microbiota composition are probable causes for this susceptibility, and its supplementation can play a role in reestablishing microbial homeostasis and improving immunity response against Coronavirus Disease 2019 infection and recovery. This study reviews the role of micronutrients and microbiomes in the risk of infection, the severity of disease, and the Coronavirus Disease 2019 sequelae.
Collapse
Affiliation(s)
- Teresita de Jesús Hernández-Flores
- Departamento de Disciplinas Filosófico, Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Instituto de Investigación de Inmunodeficiencias y VIH, Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Guadalajara 44280, Jalisco, Mexico
| | - Eliza Julia Pedraza-Brindis
- Departamento de Aparatos y Sistemas I, Facultad de Medicina, Universidad Autónoma de Guadalajara, Guadalajara 44670, Jalisco, Mexico
| | - Jhonathan Cárdenas-Bedoya
- Departamento de Disciplinas Filosófico, Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Laboratorio de Inmunodeficiencias y Retrovirus Humanos, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico
| | - José Daniel Ruíz-Carrillo
- Clínica Medicina Familiar 1 del ISSSTE “Dr. Arturo González Guzmán”, Guadalajara 44340, Jalisco, Mexico
| | - Anibal Samael Méndez-Clemente
- Instituto de Investigación de Inmunodeficiencias y VIH, Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Guadalajara 44280, Jalisco, Mexico
| | - Marco Alonso Martínez-Guzmán
- Departamento de Aparatos y Sistemas I, Facultad de Medicina, Universidad Autónoma de Guadalajara, Guadalajara 44670, Jalisco, Mexico
| | - Liliana Iñiguez-Gutiérrez
- Instituto de Investigación de Inmunodeficiencias y VIH, Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Guadalajara 44280, Jalisco, Mexico
- Departamento de Aparatos y Sistemas I, Facultad de Medicina, Universidad Autónoma de Guadalajara, Guadalajara 44670, Jalisco, Mexico
| |
Collapse
|
9
|
Abstract
Zinc is an essential element for human health. Among its many functions, zinc(II) modulates the immune response to infections and, at high concentrations or in the presence of ionophores, inhibits the replication of various RNA viruses. Structural biology studies on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) revealed that zinc(II) is the most common metal ion that binds to viral proteins. However, the number of zinc(II)-binding sites identified by experimental methods is far from exhaustive, as metal ions may be lost during protein purification protocols. To better define the zinc(II)-binding proteome of coronavirus, we leveraged the wealth of deposited structural data and state-of-the-art bioinformatics methods. Through this in silico approach, 15 experimental zinc(II) sites were identified and a further 22 were predicted in Spike, open reading frame (ORF)3a/d, ORF8, and several nonstructural proteins, highlighting an essential role of zinc(II) in viral replication. Furthermore, the structural relationships between viral and eukaryotic sites (typically zinc fingers) indicate that SARS-CoV-2 can compete with human proteins for zinc(II) binding. Given the double-edged effect of zinc(II) ions, both essential and toxic to coronavirus, only the complete elucidation of the structural and regulatory zinc(II)-binding sites can guide selective antiviral strategies based on zinc supplementation.
Collapse
Affiliation(s)
- Claudia Andreini
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry and Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Fabio Arnesano
- Department of Chemistry, University of Bari “Aldo Moro,” Via Orabona 4, 70125 Bari, Italy
| | - Antonio Rosato
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry and Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
10
|
Li H, Yuan S, Wei X, Sun H. Metal-based strategies for the fight against COVID-19. Chem Commun (Camb) 2022; 58:7466-7482. [PMID: 35730442 DOI: 10.1039/d2cc01772e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The emerging COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has claimed over six million lives globally to date. Despite the availability of vaccines, the pandemic still cannot be fully controlled owing to rapid mutation of the virus that renders enhanced transmissibility and antibody evasion. This is thus an unmet need to develop safe and effective therapeutic options for COVID-19, in particular, remedies that can be used at home. Considering the great success of multi-targeted cocktail therapy for the treatment of viral infections, metal-based drugs might represent a unique and new source of antivirals that resemble a cocktail therapy in terms of their mode of actions. In this review, we first summarize the role that metal ions played in SARS-CoV-2 viral replication and pathogenesis, then highlight the chemistry of metal-based strategies in the fight against SARS-CoV-2 infection, including both metal displacement and chelation based approaches. Finally, we outline a perspective and direction on how to design and develop metal-based antivirals for the fight against the current or future coronavirus pandemic.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Shuofeng Yuan
- Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xueying Wei
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China. .,Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hongzhe Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
11
|
Major trace elements and their binding proteins in the early phase of Covid-19 infection. J Biol Inorg Chem 2022; 27:261-269. [PMID: 35150336 PMCID: PMC8853275 DOI: 10.1007/s00775-022-01931-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/31/2022] [Indexed: 12/11/2022]
Abstract
Metal ions seem to play important roles in the pathogenesis of the novel coronavirus disease of 2019 (Covid-19) and are under investigation as potential prognostic markers and supplements in therapeutic procedures. The present study was aimed at assessing the relationship between the most abundant essential microelements (iron, zinc and copper) and their major binding proteins in the circulation in the early stage of infection. The concentration of zinc ions was measured to be higher in infected than in healthy persons, as well as ratios zinc/albumin and zinc/alpha-2-macroglobulin. Increased zinc levels could be attributed to cellular redistribution of zinc ions or to a use of zinc supplementation (zinc concentration was above the upper reference limit in one-third of infected individuals). Immunoblot analysis of protein molecular forms revealed that infected persons had greater amounts of proteinase-bound alpha-2-macroglobulin tetramer and albumin monomer than healthy individuals. The quantities of these forms were correlated with the concentration of zinc ions (r = 0.42 and 0.55, respectively) in healthy persons, but correlations were lost in infected individuals, most likely due to very high zinc concentrations in some participants which were not proportionally followed by changes in the distribution of protein species. Although we still have to wait for a firm confirmation of the involvement of zinc in beneficial defense mechanisms in patients with Covid-19, it seems that this ion may contribute to the existence of circulating protein forms which are the most optimal.
Collapse
|
12
|
Liu J, Yao S, Jia J, Chen Z, Yuan Y, He Y, Wasti B, Duan W, Li D, Wang G, Jia A, Sun W, Qiu S, Ma L, Li J, Liu Y, Zheng J, Xiang X, Zhang X, Liu S, He Z, Peng Z, Zhang H, Zhang D, Xiao B. Loss of MBD2 ameliorates LPS‐induced alveolar epithelial cell apoptosis and ALI in mice via modulating intracellular zinc homeostasis. FASEB J 2022; 36:e22162. [PMID: 35061304 DOI: 10.1096/fj.202100924rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 02/05/2023]
Affiliation(s)
- Jiqiang Liu
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Shuo Yao
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Jingsi Jia
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Zhifeng Chen
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Yu Yuan
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Yi He
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Binaya Wasti
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Wentao Duan
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Danhong Li
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Guyi Wang
- Department of Intensive Care Medicine The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Aijun Jia
- Department of the Third Emergency of Yuelushan Hospital District Hunan Provincial People's Hospital Changsha P.R. China
| | - Wenjin Sun
- Department of General Medicine West China Hospital, Sichuan University Chengdu P.R. China
| | - Shuangfa Qiu
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Libing Ma
- Department of Respiratory and Critical Care Medicine The Affiliated Hospital of Guilin Medical University Guangxi P.R. China
| | - Jianmin Li
- Department of Respiratory and Critical Care Medicine Hunan Provincial People's Hospital Changsha P.R. China
| | - Yi Liu
- Department of Respiratory Medicine Zhuzhou City Central Hospital Zhuzhou P.R. China
| | - Jianfei Zheng
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Xudong Xiang
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Xiufeng Zhang
- Department of Respiratory Medicine The Second Affiliated Hospital of Hainan Medical University Haikou P.R. China
| | - Shaokun Liu
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Zhibiao He
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Zhenyu Peng
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Hongliang Zhang
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Dongshan Zhang
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Bing Xiao
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| |
Collapse
|
13
|
Effect of a Nutritional Support System to Increase Survival and Reduce Mortality in Patients with COVID-19 in Stage III and Comorbidities: A Blinded Randomized Controlled Clinical Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031172. [PMID: 35162195 PMCID: PMC8835093 DOI: 10.3390/ijerph19031172] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/20/2021] [Accepted: 12/31/2021] [Indexed: 02/08/2023]
Abstract
The COVID-19 evolution depends on immunological capacity. The global hospital mortality rate is 15–20%, but in México it is 46%. There are several therapeutic protocols, however, integral nutrition is not considered. In this study, a Nutritional Support System (NSS) was employed to increase survival and reduce mortality in patients with stage III COVID-19. A randomized, blinded, controlled clinical trial was performed. Eighty patients (aged 30 to 75 years, both sexes) were assigned to (1) “Control Group” (CG) hospital diet and medical treatment or (2) “Intervention Group” (IG) hospital diet, medical treatment, and the NSS (vitamins, minerals, fiber, omega-3, amino acids, B-complex, and probiotics). IG significantly increased survival and reduced mortality compared to CG (p = 0.027). IG decreased progression to Mechanical Ventilation Assistance (MVA) by 10%, reduced the intubation period by 15 days, and increased survival in intubated patients by 38% compared to CG. IG showed improvement compared to CG in decrease in supplemental oxygen (p = 0.014), the qSOFA test (p = 0.040), constipation (p = 0.014), the PHQ-9 test (p = 0.003), and in the follow-up, saturation with oxygen (p = 0.030). The NSS increases survival and decreases mortality in patients with stage III COVID-19.
Collapse
|
14
|
Computational strategies to model the interaction and the reactivity of biologically-relevant transition metal complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Zinc ionophores: chemistry and biological applications. J Inorg Biochem 2021; 228:111691. [PMID: 34929542 DOI: 10.1016/j.jinorgbio.2021.111691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
Zinc can play a pathophysiological role in several diseases and can interfere in key processes of microbial growth. This evidence justifies the efforts in applying Zinc ionophores to restore Zinc homeostasis and treat bacterial/viral infections such as coronavirus diseases. Zinc ionophores increase the intracellular concentration of Zinc ions causing significant biological effects. This review provides, for the first time, an overview of the applications of the main Zinc ionophores in Zinc deficiency, infectious diseases, and in cancer, discussing the pharmacological and coordination properties of the Zinc ionophores.
Collapse
|
16
|
Rezazadeh A, Sadeghzadeh S, Namakin K, Tamimi A, Khanjani Z. The role of zinc in the pathogenesis and treatment of COVID-19: A review. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2021. [DOI: 10.3233/mnm-211524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Destructive outcomes of coronavirus pandemic call for medical research which can report all of the influential agents not only for the treatment of the disease but also preventing its severe impacts on the societal health in the most efficient manner. Zinc plays an integral role in the function of cellular enzymes and transcription factors. Owing to its anti-inflammatory and cellular immunity regulation activity, zinc is regarded to be effective on strengthening the immune system. Its crucial antiviral effects have long been established as well. Studies suggest that low serum zinc level predisposes the patient to severe COVID-19 infection, which makes patient’s zinc profile a potential determinant of prognosis and severity of this disease. Furthermore, zinc supplementation has indicated promising outcomes of coronavirus infection management. Zinc modulates cell-mediated immunity and participates in the killing of microorganisms in cytotoxic immune cells. Zn2 + has anti-inflammatory effects by inhibiting IL-6 production. Although there is still not enough evidence, it seems that zinc could be a promising supplementary treatment for COVID-19 especially in zinc-deficient patients. The aim of this review is to clarify the role of zinc in pathogenesis and therapy of COVID-19 in detail.
Collapse
Affiliation(s)
- Arezoo Rezazadeh
- Department of Community Nutrition, NationalNutrition and Food Technology Research Institute, Faculty ofNutrition Sciences and Food Technology, Shahid Behehshti Universityof Medical Sciences, Tehran, Iran
| | - Sara Sadeghzadeh
- StudentResearch Committee, Faculty of Medicine, Shahid Beheshti Universityof Medical Sciences, Tehran, Iran
| | - Kosar Namakin
- StudentResearch Committee, Faculty of Medicine, Shahid Beheshti Universityof Medical Sciences, Tehran, Iran
| | - Atena Tamimi
- StudentResearch Committee, Faculty of Medicine, Shahid Beheshti Universityof Medical Sciences, Tehran, Iran
| | - Zahra Khanjani
- StudentResearch Committee, Faculty of Medicine, Shahid Beheshti Universityof Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Petrosino M, Stellato F, Chiaraluce R, Consalvi V, La Penna G, Pasquo A, Proux O, Rossi G, Morante S. Zn-Induced Interactions Between SARS-CoV-2 orf7a and BST2/Tetherin. ChemistryOpen 2021; 10:1133-1141. [PMID: 34791819 PMCID: PMC8600262 DOI: 10.1002/open.202100217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/27/2021] [Indexed: 12/19/2022] Open
Abstract
We present in this work a first X-ray Absorption Spectroscopy study of the interactions of Zn with human BST2/tetherin and SARS-CoV-2 orf7a proteins as well as with some of their complexes. The analysis of the XANES region of the measured spectra shows that Zn binds to BST2, as well as to orf7a, thus resulting in the formation of BST2-orf7a complexes. This structural information confirms the the conjecture, recently put forward by some of the present Authors, according to which the accessory orf7a (and possibly also orf8) viral protein are capable of interfering with the BST2 antiviral activity. Our explanation for this behavior is that, when BST2 gets in contact with Zn bound to the orf7a Cys15 ligand, it has the ability of displacing the metal owing to the creation of a new disulfide bridge across the two proteins. The formation of this BST2-orf7a complex destabilizes BST2 dimerization, thus impairing the antiviral activity of the latter.
Collapse
Affiliation(s)
- Maria Petrosino
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaPiazzale Aldo Moro 500185RomaItaly
| | - Francesco Stellato
- Dipartimento di FisicaUniversità di Roma Tor Vergata and INFNVia della Ricerca Scientifica, 100133RomaItaly
- INFN - Sezione di Roma Tor VergataVia della Ricerca Scientifica, 100133RomaItaly
| | - Roberta Chiaraluce
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaPiazzale Aldo Moro 500185RomaItaly
| | - Valerio Consalvi
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaPiazzale Aldo Moro 500185RomaItaly
| | - Giovanni La Penna
- INFN - Sezione di Roma Tor VergataVia della Ricerca Scientifica, 100133RomaItaly
- CNR - Istituto di chimica dei composti organometallici50019 –Sesto FiorentinoItaly
| | - Alessandra Pasquo
- ENEA CR FrascatiDiagnostics and Metrology Laboratory FSN-TECFIS-DIMVia Enrico Fermi, 4500044FrascatiRM
| | - Olivier Proux
- Observatoire des Sciences de l'Univers de GrenobleUAR 832 CNRSUniversitè Grenoble Alpes38041GrenobleFrance
| | - Giancarlo Rossi
- Dipartimento di FisicaUniversità di Roma Tor Vergata and INFNVia della Ricerca Scientifica, 100133RomaItaly
- INFN - Sezione di Roma Tor VergataVia della Ricerca Scientifica, 100133RomaItaly
- Centro Fermi – Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”00184RomaItaly
| | - Silvia Morante
- Dipartimento di FisicaUniversità di Roma Tor Vergata and INFNVia della Ricerca Scientifica, 100133RomaItaly
- INFN - Sezione di Roma Tor VergataVia della Ricerca Scientifica, 100133RomaItaly
| |
Collapse
|
18
|
Vargas-Mendoza N, García-Machorro J, Angeles-Valencia M, Martínez-Archundia M, Madrigal-Santillán EO, Morales-González Á, Anguiano-Robledo L, Morales-González JA. Liver disorders in COVID-19, nutritional approaches and the use of phytochemicals. World J Gastroenterol 2021; 27:5630-5665. [PMID: 34629792 PMCID: PMC8473593 DOI: 10.3748/wjg.v27.i34.5630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/19/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), has affected millions of people globally. It was declared a pandemic by the World Health Organization in March 2020. The hyperinflammatory response to the entry of SARS-CoV-2 into the host through angiotensin-converting enzyme 2 is the result of a "cytokine storm" and the high oxidative stress responsible for the associated symptomatology. Not only respiratory symptoms are reported, but gastrointestinal symptoms (diarrhea, vomiting, and nausea) and liver abnormalities (high levels of aspartate aminotransferase, alanine aminotransferase transaminases, and bilirubin) are observed in at least 30% of patients. Reduced food intake and a delay in medical services may lead to malnutrition, which increases mortality and poor outcomes. This review provides some strategies to identify malnutrition and establishes nutritional approaches for the management of COVID-19 and liver injury, taking energy and nutrient requirements and their impact on the immune response into account. The roles of certain phytochemicals in the prevention of the disease or as promising target drugs in the treatment of this disease are also considered.
Collapse
Affiliation(s)
- Nancy Vargas-Mendoza
- Laboratorio de Medicina de Conservacion, Instituto Politécnico Nacional, México 11340, Mexico
| | - Jazmín García-Machorro
- Laboratorio de Medicina de Conservacion, Instituto Politécnico Nacional, México 11340, Mexico
| | | | - Marlet Martínez-Archundia
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica, Instituto Politécnico Nacional, México 11340, Mexico
| | | | | | | | - José A Morales-González
- Laboratorio Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México 11340, Mexico
| |
Collapse
|
19
|
Lai YJ, Chang HS, Yang YP, Lin TW, Lai WY, Lin YY, Chang CC. The role of micronutrient and immunomodulation effect in the vaccine era of COVID-19. J Chin Med Assoc 2021; 84:821-826. [PMID: 34282078 DOI: 10.1097/jcma.0000000000000587] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Different dietary nutrients have distinct effects, including enhancing immune response activity and supporting mucous membrane integrity. These effects are critical in fighting against pathogenic agents, which cover coronavirus disease 2019 (COVID-19), the coronavirus disease that shuts down globally. Recent researches have shown that micronutrient deficiency is commonly associated with compromised immune responses, respiratory tract infections, or even susceptibility to COVID-19. The relationship between Vit A and infection is its role in mucosal epithelium integrity (skin and mucous membrane), the supplementation could be an option for assisted-treating the SARS-CoV-2 virus and a possible prevention of lung infection. Vit C/ascorbic acid stimulates oxygen radical scavenging activity of the skin and enhances epithelial barrier function. Ascorbic acid alone or with other natural compounds (baicalin and theaflavin) may inhibit the expression of angiotensin-converting enzyme II in human small alveolar epithelial cells and limited the entry of SARS-CoV-2. Vitamin D receptors can be expressed by immune cells, and different immune cells (macrophages, monocytes, dendritic cells, T cells, and B cells) can convert Vit D into its active form 1,25-(OH)2 D. Oral vitamin D intake can be a readily way to restrict the viral infection through downregulation of ACE2 receptor and to attenuate the disease severity by decreasing the frequency of cytokine storm and pulmonary pro-inflammatory response. Vit E supports T-cell mediated functions, optimization of Th1 response, and suppression of Th2 response. Vitamin E supplementation can lower the production of superoxides and may favors the antioxidants and benefit the progress of COVID-19 treatment. Zinc plays an essential role in both innate and adaptive immune systems and cytokine production, and Zinc-dependent viral enzymes to initiate the infectious process have proved the Zinc levels are directly associated with symptoms relieved of COVID-19. Iron is an essential component of enzymes involved in the activation of immune cells, lower iron levels predispose to severe symptoms of SARS-CoV-2, and monitoring the status can predict the disease severity and mortality. Selenium participates in the adaptive immune response by supporting antibody production and development. Deficiency can reduce antibody concentration, decreased cytotoxicity of NK cells, compromised cellular immunity, and an attenuated response to vaccination. The COVID-19 vaccines including three broad categories, protein-based vaccines, gene-based vaccines (mRNA vaccines and DNA vaccines), combination of gene and protein-based vaccines. Micronutrients are involved in immunity from the virus entering the human to innate immune response and adaptive immune response. Micronutrients are indispensable in immune response of vaccination.
Collapse
Affiliation(s)
- Yu-Ju Lai
- Department of Obstetrics and Gynecology, Tri-service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Huan-Shuo Chang
- School of Agricultural and Environmental Sciences, Global Disease Biology, UC Davis, Davis, CA, USA
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, National Yang Ming Chao Tung University, Taipei, Taiwan, ROC
| | - Tzu-Wei Lin
- Department of Medical Research, Taipei Veterans General Hospital, National Yang Ming Chao Tung University, Taipei, Taiwan, ROC
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, National Yang Ming Chao Tung University, Taipei, Taiwan, ROC
| | - Yi-Ying Lin
- Department of Medical Research, Taipei Veterans General Hospital, National Yang Ming Chao Tung University, Taipei, Taiwan, ROC
| | - Cheng-Chang Chang
- Department of Obstetrics and Gynecology, Tri-service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| |
Collapse
|
20
|
Story MJ. Essential sufficiency of zinc, ω-3 polyunsaturated fatty acids, vitamin D and magnesium for prevention and treatment of COVID-19, diabetes, cardiovascular diseases, lung diseases and cancer. Biochimie 2021; 187:94-109. [PMID: 34082041 PMCID: PMC8166046 DOI: 10.1016/j.biochi.2021.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Despite the development of a number of vaccines for COVID-19, there remains a need for prevention and treatment of the virus SARS-CoV-2 and the ensuing disease COVID-19. This report discusses the key elements of SARS-CoV-2 and COVID-19 that can be readily treated: viral entry, the immune system and inflammation, and the cytokine storm. It is shown that the essential nutrients zinc, ω-3 polyunsaturated fatty acids (PUFAs), vitamin D and magnesium provide the ideal combination for prevention and treatment of COVID-19: prevention of SARS-CoV-2 entry to host cells, prevention of proliferation of SARS-CoV-2, inhibition of excessive inflammation, improved control of the regulation of the immune system, inhibition of the cytokine storm, and reduction in the effects of acute respiratory distress syndrome (ARDS) and associated non-communicable diseases. It is emphasized that the non-communicable diseases associated with COVID-19 are inherently more prevalent in the elderly than the young, and that the maintenance of sufficiency of zinc, ω-3 PUFAs, vitamin D and magnesium is essential for the elderly to prevent the occurrence of non-communicable diseases such as diabetes, cardiovascular diseases, lung diseases and cancer. Annual checking of levels of these essential nutrients is recommended for those over 65 years of age, together with appropriate adjustments in their intake, with these services and supplies being at government cost. The cost:benefit ratio would be huge as the cost of the nutrients and the testing of their levels would be very small compared with the cost savings of specialists and hospitalization.
Collapse
Affiliation(s)
- Michael J Story
- Story Pharmaceutics Pty Ltd, PO Box 6086, Linden Park, South Australia, 5065, Australia.
| |
Collapse
|
21
|
Asl SH, Nikfarjam S, Majidi Zolbanin N, Nassiri R, Jafari R. Immunopharmacological perspective on zinc in SARS-CoV-2 infection. Int Immunopharmacol 2021; 96:107630. [PMID: 33882442 PMCID: PMC8015651 DOI: 10.1016/j.intimp.2021.107630] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
The novel SARS-CoV-2 which was first reported in China is the cause of infection known as COVID-19. In comparison with other coronaviruses such as SARS-CoV and MERS, the mortality rate of SARS-CoV-2 is lower but the transmissibility is higher. Immune dysregulation is the most common feature of the immunopathogenesis of COVID-19 that leads to hyperinflammation. Micronutrients such as zinc are essential for normal immune function. According to the assessment of WHO, approximately one-third of the world's society suffer from zinc deficiency. Low plasma levels of zinc are associated with abnormal immune system functions such as impaired chemotaxis of polymorphonuclear cells (PMNs) and phagocytosis, dysregulated intracellular killing, overexpression of the inflammatory cytokines, lymphopenia, decreased antibody production, and sensitivity to microbes especially viral respiratory infections. Zinc exerts numerous direct and indirect effects against a wide variety of viral species particularly RNA viruses. The use of zinc and a combination of zinc-pyrithione at low concentrations impede SARS-CoV replication in vitro. Accordingly, zinc can inhibit the elongation step of RNA transcription. Furthermore, zinc might improve antiviral immunity by up-regulation of IFNα through JAK/STAT1 signaling pathway in leukocytes. On the other hand, zinc supplementation might ameliorate tissue damage caused by mechanical ventilation in critical COVID-19 patients. Finally, zinc might be used in combination with antiviral medications for the management of COVID-19 patients. In the current review article, we review and discuss the immunobiological roles and antiviral properties as well as the therapeutic application of zinc in SARS-CoV-2 and related coronaviruses infections.
Collapse
Affiliation(s)
- Sima Heydarzadeh Asl
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Sepideh Nikfarjam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Naime Majidi Zolbanin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
| | - Reza Nassiri
- Departments of Pharmacology and Community Medicine, Michigan State University, East Lansing, MI, USA.
| | - Reza Jafari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
22
|
Sun AM, Hoffman T, Luu BQ, Ashammakhi N, Li S. Application of lung microphysiological systems to COVID-19 modeling and drug discovery: a review. Biodes Manuf 2021; 4:757-775. [PMID: 34178414 PMCID: PMC8213042 DOI: 10.1007/s42242-021-00136-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/13/2021] [Indexed: 01/08/2023]
Abstract
There is a pressing need for effective therapeutics for coronavirus disease 2019 (COVID-19), the respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The process of drug development is a costly and meticulously paced process, where progress is often hindered by the failure of initially promising leads. To aid this challenge, in vitro human microphysiological systems need to be refined and adapted for mechanistic studies and drug screening, thereby saving valuable time and resources during a pandemic crisis. The SARS-CoV-2 virus attacks the lung, an organ where the unique three-dimensional (3D) structure of its functional units is critical for proper respiratory function. The in vitro lung models essentially recapitulate the distinct tissue structure and the dynamic mechanical and biological interactions between different cell types. Current model systems include Transwell, organoid and organ-on-a-chip or microphysiological systems (MPSs). We review models that have direct relevance toward modeling the pathology of COVID-19, including the processes of inflammation, edema, coagulation, as well as lung immune function. We also consider the practical issues that may influence the design and fabrication of MPS. The role of lung MPS is addressed in the context of multi-organ models, and it is discussed how high-throughput screening and artificial intelligence can be integrated with lung MPS to accelerate drug development for COVID-19 and other infectious diseases.
Collapse
Affiliation(s)
- Argus M. Sun
- Department of Bioengineering, Samueli School of Engineering, University of California - Los Angeles, 420 Westwood Plaza 5121 Engineering V University of California, Los Angeles, CA 90095-1600 USA
- UC San Diego Healthcare, UCSD, La Jolla, CA 92037 USA
| | - Tyler Hoffman
- Department of Bioengineering, Samueli School of Engineering, University of California - Los Angeles, 420 Westwood Plaza 5121 Engineering V University of California, Los Angeles, CA 90095-1600 USA
| | - Bao Q. Luu
- Pulmonary Diseases and Critical Care, Scripps Green Hospital, Scripps Health, La Jolla, CA 92037 USA
| | - Nureddin Ashammakhi
- Department of Bioengineering, Samueli School of Engineering, University of California - Los Angeles, 420 Westwood Plaza 5121 Engineering V University of California, Los Angeles, CA 90095-1600 USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - Song Li
- Department of Bioengineering, Samueli School of Engineering, University of California - Los Angeles, 420 Westwood Plaza 5121 Engineering V University of California, Los Angeles, CA 90095-1600 USA
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 USA
| |
Collapse
|
23
|
Abstract
Since the discovery of manifest Zn deficiency in 1961, the increasing number of studies demonstrated the association between altered Zn status and multiple diseases. In this chapter, we provide a review of the most recent advances on the role of Zn in health and disease (2010-20), with a special focus on the role of Zn in neurodegenerative and neurodevelopmental disorders, diabetes and obesity, male and female reproduction, as well as COVID-19. In parallel with the revealed tight association between ASD risk and severity and Zn status, the particular mechanisms linking Zn2+ and ASD pathogenesis like modulation of synaptic plasticity through ProSAP/Shank scaffold, neurotransmitter metabolism, and gut microbiota, have been elucidated. The increasing body of data indicate the potential involvement of Zn2+ metabolism in neurodegeneration. Systemic Zn levels in Alzheimer's and Parkinson's disease were found to be reduced, whereas its sequestration in brain may result in modulation of amyloid β and α-synuclein processing with subsequent toxic effects. Zn2+ was shown to possess adipotropic effects through the role of zinc transporters, zinc finger proteins, and Zn-α2-glycoprotein in adipose tissue physiology, underlying its particular role in pathogenesis of obesity and diabetes mellitus type 2. Recent findings also contribute to further understanding of the role of Zn2+ in spermatogenesis and sperm functioning, as well as oocyte development and fertilization. Finally, Zn2+ was shown to be the potential adjuvant therapy in management of novel coronavirus infection (COVID-19), underlining the perspectives of zinc in management of old and new threats.
Collapse
Affiliation(s)
- Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia.
| |
Collapse
|
24
|
Zeng HL, Yang Q, Yuan P, Wang X, Cheng L. Associations of essential and toxic metals/metalloids in whole blood with both disease severity and mortality in patients with COVID-19. FASEB J 2021; 35:e21392. [PMID: 33577131 PMCID: PMC7995111 DOI: 10.1096/fj.202002346rr] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
The variations and dynamics of essential and toxic metal(loid)s in patients with COVID-19 may associate with the progression and fatal outcome of the disease, which still remains to investigate. In the present study, a retrospective analysis was performed in a cohort of 306 confirmed COVID-19 patients admitted to Tongji hospital (Wuhan, China) from February 10 to March 15, 2020. Whole blood levels of essential and/or toxic metal(loid)s were analyzed, including magnesium, calcium, chromium, manganese, iron, copper, zinc, arsenic, cadmium, mercury, thallium, and lead according to the disease severity and outcome. Compared to the non-severe COVID-19 patients, severe cases showed significant higher levels of whole blood calcium, chromium, and copper, but lower levels of magnesium, manganese, iron, zinc, arsenic, thallium, and lead. These differences were further found consistently across the clinical course since the disease onset by longitudinal analysis. Among the severe patients, chromium and cadmium were higher in the deceased group compared to the recovered group, while arsenic was lower. Whole blood iron, age, and sex were determined to be independent factors associated with the disease severity, while chromium, cadmium, and the comorbidity of cardiovascular disease were determined to be independent factors associated with the mortality. These results suggest that variations of whole blood metal(loid)s may be associated with the severe illness and fatal outcome of COVID-19, which could be persistently monitored and would be helpful in the evaluation of the dynamic changes in patients with COVID-19.
Collapse
Affiliation(s)
- Hao-Long Zeng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Qing Yang
- Institute of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Peihong Yuan
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xu Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
25
|
Doboszewska U, Wlaź P, Nowak G, Młyniec K. Targeting zinc metalloenzymes in coronavirus disease 2019. Br J Pharmacol 2020; 177:4887-4898. [PMID: 32671829 PMCID: PMC7405164 DOI: 10.1111/bph.15199] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/22/2020] [Accepted: 07/05/2020] [Indexed: 12/15/2022] Open
Abstract
Several lines of evidence support a link between the essential element zinc and the coronavirus disease 2019 (COVID-19). An important fact is that zinc is present in proteins of humans and of viruses. Some zinc sites in viral enzymes may serve as drug targets and may liberate zinc ions, thus leading to changes in intracellular concentration of zinc ions, while increased intracellular zinc may induce biological effects in both the host and the virus. Drugs such as chloroquine may contribute to increased intracellular zinc. Moreover, clinical trials on the use of zinc alone or in addition to other drugs in the prophylaxis/treatment of COVID-19 are ongoing. Thereby, we aim to discuss the rationale for targeting zinc metalloenzymes as a new strategy for the treatment of COVID-19. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
Collapse
Affiliation(s)
- Urszula Doboszewska
- Department of PharmacobiologyJagiellonian University Medical CollegeKrakówPoland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological SciencesMaria Curie‐Skłodowska UniversityLublinPoland
| | - Gabriel Nowak
- Department of PharmacobiologyJagiellonian University Medical CollegeKrakówPoland
- Laboratory of Trace Elements Neurobiology, Department of Neurobiology, Maj Institute of PharmacologyPolish Academy of SciencesKrakówPoland
| | - Katarzyna Młyniec
- Department of PharmacobiologyJagiellonian University Medical CollegeKrakówPoland
| |
Collapse
|
26
|
Galmés S, Serra F, Palou A. Current State of Evidence: Influence of Nutritional and Nutrigenetic Factors on Immunity in the COVID-19 Pandemic Framework. Nutrients 2020; 12:E2738. [PMID: 32911778 PMCID: PMC7551697 DOI: 10.3390/nu12092738] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
The pandemic caused by the new coronavirus has caused shock waves in many countries, producing a global health crisis worldwide. Lack of knowledge of the biological mechanisms of viruses, plus the absence of effective treatments against the disease (COVID-19) and/or vaccines have pulled factors that can compromise the proper functioning of the immune system to fight against infectious diseases into the spotlight. The optimal status of specific nutrients is considered crucial to keeping immune components within their normal activity, helping to avoid and overcome infections. Specifically, the European Food Safety Authority (EFSA) evaluated and deems six vitamins (D, A, C, Folate, B6, B12) and four minerals (zinc, iron, copper and selenium) to be essential for the normal functioning of the immune system, due to the scientific evidence collected so far. In this report, an update on the evidence of the contribution of nutritional factors as immune-enhancing aspects, factors that could reduce their bioavailability, and the role of the optimal status of these nutrients within the COVID-19 pandemic context was carried out. First, a non-systematic review of the current state of knowledge regarding the impact of an optimal nutritional status of these nutrients on the proper functioning of the immune system as well as their potential role in COVID-19 prevention/treatment was carried out by searching for available scientific evidence in PubMed and LitCovid databases. Second, a compilation from published sources and an analysis of nutritional data from 10 European countries was performed, and the relationship between country nutritional status and epidemiological COVID-19 data (available in the Worldometers database) was evaluated following an ecological study design. Furthermore, the potential effect of genetics was considered through the selection of genetic variants previously identified in Genome-Wide Association studies (GWAs) as influencing the nutritional status of these 10 considered nutrients. Therefore, access to genetic information in accessible databases (1000genomes, by Ensembl) of individuals from European populations enabled an approximation that countries might present a greater risk of suboptimal status of the nutrients studied. Results from the review approach show the importance of maintaining a correct nutritional status of these 10 nutrients analyzed for the health of the immune system, highlighting the importance of Vitamin D and iron in the context of COVID-19. Besides, the ecological study demonstrates that intake levels of relevant micronutrients-especially Vitamins D, C, B12, and iron-are inversely associated with higher COVID-19 incidence and/or mortality, particularly in populations genetically predisposed to show lower micronutrient status. In conclusion, nutrigenetic data provided by joint assessment of 10 essential nutrients for the functioning of the immune system and of the genetic factors that can limit their bioavailability can be a fundamental tool to help strengthen the immune system of individuals and prepare populations to fight against infectious diseases such as COVID-19.
Collapse
Affiliation(s)
- Sebastià Galmés
- Laboratory of Molecular Biology, Nutrition and Biotechnology, NUO Group, Universitat de les Illes Balears, 07122 Palma, Spain; (S.G.); (A.P.)
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- Alimentómica S.L., Spin-off n.1 of the University of the Balearic Islands, 07121 Palma, Spain
| | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology, NUO Group, Universitat de les Illes Balears, 07122 Palma, Spain; (S.G.); (A.P.)
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- Alimentómica S.L., Spin-off n.1 of the University of the Balearic Islands, 07121 Palma, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology, NUO Group, Universitat de les Illes Balears, 07122 Palma, Spain; (S.G.); (A.P.)
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
| |
Collapse
|