1
|
Zhang R, Fang Q, Yao L, Yu X, Liu X, Zhan M, Liu D, Yan Q, Du J, Chen L. Taxifolin attenuates hepatic ischemia-reperfusion injury by enhancing PINK1/Parkin-mediated mitophagy. Eur J Pharmacol 2024; 985:177100. [PMID: 39542410 DOI: 10.1016/j.ejphar.2024.177100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Hepatic ischemia-reperfusion (I/R) injury stands as a recurring clinical challenge in liver transplantation, leading to mitochondrial dysfunction and cellular imbalance. Mitochondria, crucial for hepatocyte metabolism, are significantly damaged during hepatic I/R and the extent of mitochondrial damage correlates with hepatocyte injury. PINK1/Parkin-mediated mitophagy, is a specialized form of cellular autophagy, that maintains mitochondrial quality by identifying and removing damaged mitochondria, thereby restoring cellular homeostasis. Taxifolin (TAX), a natural flavonoid, possesses antioxidant, anti-inflammatory and anticancer properties. This study aimed at investigating the effects of TAX on hepatic I/R and the underlying mechanisms. METHODS C57BL/6 mice were pretreated with TAX or vehicle control, followed by 60 min of 70% hepatic ischemia. After 6 h of reperfusion, the mice were euthanized. In vitro, TAX-pretreated primary hepatocytes were subjected to oxygen glucose deprivation/reperfusion (OGD/R). RESULTS Hepatic I/R caused mitochondrial damage and apoptosis in hepatocytes, but TAX pretreatment mitigated these effects by normalizing mitochondrial membrane potential and inhibiting reducing apoptotic protein expression. TAX exerted its protective effects by enhancing mitophagy via the PINK1/Parkin pathway. Moreover, silencing the PINK1 gene in primary hepatocytes reversed the beneficial effects of TAX. CONCLUSION The results of the study demonstrate that promoting mitophagy through the PINK1/Parkin pathway restores mitochondrial function and protects the liver from I/R, suggesting that it may have therapeutic potential for the treatment of hepatic I/R.
Collapse
Affiliation(s)
- Ruixin Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Qi Fang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Lei Yao
- Department of Biochemistry and Molecular Biology, Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China; Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei, 230032, China
| | - Xiaolan Yu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Xingyun Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Mengting Zhan
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Deng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Qi Yan
- Department of Biochemistry and Molecular Biology, Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China; Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei, 230032, China
| | - Jian Du
- Department of Biochemistry and Molecular Biology, Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China; Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei, 230032, China.
| | - Lijian Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
2
|
Yang M, Li Q, Huang M, Liu X, Wang B. T Lymphocyte Mitochondrial Markers as Independent Risk Factors for Poor Prognosis of COVID-19. Infect Drug Resist 2024; 17:4887-4898. [PMID: 39524978 PMCID: PMC11550917 DOI: 10.2147/idr.s470530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Background Severe Acute Respiratory Syndrome Virus 2 (SARS-CoV-2) primarily targets mitochondria. However, the description of mitochondrial signaling in immune cells remains limited in COVID-19. This study aimed to elucidate the pivotal roles played by immune cells and mitochondria in the pathogenesis of COVID-19 and the resulting clinical outcomes. Methods We obtained epidemiological characteristics, laboratory parameters and T cell mitochondrial damage indicators in 296 COVID-19 patients. And we further evaluated the predictive value of novel T lymphocyte mitochondrial markers and conventional immune inflammatory markers as clinical outcomes in COVID-19 patients. Finally, Binary logistic regression analysis was conducted to identify the independent risk factors associated with the prognosis of patients with COVID-19. Results The severe group exhibited lower counts of Mito+CD3+, Mito+CD4+, and Mito+CD8+ cells compared to the non-severe group. Significantly higher positive rates of CD3+, CD3+CD4+, and CD3+CD8+T cell mitochondrial damage were observed in the severe group compared to the non-severe group. The CD3+CD8+T cells MMP-low% had the highest AUC value of 0.864 (95% CI =0.794-0.934) to evaluate COVID-19 outcome. Binary logistic regression analysis showed that CD3+T cells MMP-low%, CD3+CD4+T cells MMP-low% and CD3+CD8+T cells MMP-low% were independent risk factors for adverse outcomes in COVID-19 patients. Conclusion Our research suggests that a substantial proportion of COVID-19 patients exhibited mitochondrial impairment with T-lymphocyte. T cells mitochondrial markers can serve as predictive factors and independent risk factors for predicting adverse outcomes in COVID-19 patients.
Collapse
Affiliation(s)
- Mengying Yang
- Department of Infectious Disease, Fuyang People’s Hospital, Fuyang, Anhui, People’s Republic of China
| | - Qianqian Li
- Department of Infectious Disease, Fuyang People’s Hospital, Fuyang, Anhui, People’s Republic of China
| | - Mengxin Huang
- Department of Infectious Disease, Fuyang People’s Hospital, Fuyang, Anhui, People’s Republic of China
| | - Xiaoman Liu
- Department of Infectious Disease, Fuyang People’s Hospital, Fuyang, Anhui, People’s Republic of China
| | - Baogui Wang
- Department of Infectious Disease, Fuyang People’s Hospital, Fuyang, Anhui, People’s Republic of China
| |
Collapse
|
3
|
Halsey LG, Giofrè D, Geary DC. Does greater variation reside in the larger sex? Biol Lett 2024; 20:20240404. [PMID: 39592002 PMCID: PMC11597398 DOI: 10.1098/rsbl.2024.0404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
The question of whether males or females are the more variable sex is long-standing, and yet to be fully answered. We investigate the relationships between body mass and variation across species using a phylogenetically informed analysis of the body mass of 337 species representing six mammalian orders. Within each order, we found that the larger sex is typically the more variable sex, whether male or female, and the variation-size relationship is arguably often close to unity. Thus, size may be the main or even sole driver of variability in at least some orders. Deviations from the expected 1 : 1 relationship emerged, however, in regressions of male : female mass variance against male : female mean mass, for Chiroptera and Rodentia, which both presented hyperallometric relationships suggesting that drivers over and above size influence differences in variation between the sexes. In Chiroptera, most species have larger females. The y-intercept value for Artiodactyla and Primates were significantly greater than 0 suggesting greater male variation in species where the sexes are of commensurable size. Historic belief of exclusively greater male variability may have resulted from a focus on species with intense male-male competition and, thus, larger male body sizes. Our results suggest that it is often size, not sex per se, that influences within-sex variability, although additional sex-specific factors might be present in at least some orders.
Collapse
Affiliation(s)
- Lewis G. Halsey
- School of Life and Health Sciences, University of Roehampton, LondonSW15 4JD, UK
| | - David Giofrè
- DISFOR, University of Genoa, Corso Andrea Podestà, 2, Genoa, Italy
| | - David C. Geary
- Department of Psychological Sciences, Interdisciplinary Neuroscience, University of Missouri, Columbia, MO65211-2500, USA
| |
Collapse
|
4
|
Yang J, Wu Q, Li Y, Zhang Y, Lan S, Yuan K, Dai J, Sun B, Meng Y, Xu S, Shi H. BL-918 alleviates oxidative stress in rats after subarachnoid hemorrhage by promoting mitophagy through the ULK1/PINK1/Parkin pathway. Free Radic Biol Med 2024; 224:846-861. [PMID: 39368518 DOI: 10.1016/j.freeradbiomed.2024.10.261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND AND PURPOSE Oxidative stress plays a critical role in early brain injury (EBI) following subarachnoid hemorrhage (SAH). The small molecule ULK1 agonist, BL-918, demonstrated neuroprotective effects in other central nervous system diseases; however, its role in SAH has not yet been explored. This study aimed to evaluate whether BL-918 could provide neuroprotective effects in rats following SAH. METHODS An SAH model was established in Sprague-Dawley rats using endovascular perforation. BL-918 was administered intraperitoneally after SAH, while the ULK1 inhibitor SBI was given intraperitoneally prior to SAH modeling. PINK1 siRNA was administered into the lateral ventricle before SAH induction. The neuroprotective effects and mechanisms of BL-918 were assessed through SAH grading, brain water content measurement, blood-brain barrier permeability, neurobehavioral tests, Western blot, immunofluorescence, TUNEL staining, DHE staining, and transmission electron microscopy (TEM). RESULTS After SAH, the expression levels of p-ULK1, PINK1, Parkin, and LC3Ⅱ increased, peaking at 24 h post-SAH. BL-918 treatment improved neurological function in rats, reduced brain water content and blood-brain barrier permeability, and exhibited anti-oxidative stress and anti-apoptotic effects. Western blot analysis revealed that BL-918 increased the expression of p-ULK1, PINK1, Parkin, LC3Ⅱ, Bcl-xl, and Bcl-2 while inhibiting the expression of Bax and Cleaved Caspase-3. Oxidative stress-related indicators showed that BL-918 alleviated oxidative stress. Immunofluorescence and TEM results demonstrated that BL-918 promoted mitophagy and preserved mitochondrial morphology. Furthermore, the positive effects of BL-918 were reversed by SBI and PINK1 siRNA, respectively. CONCLUSION BL-918 improved both short-term and long-term neurological impairments in rats after SAH and reduced oxidative stress by promoting mitophagy, at least partially through the ULK1/PINK1/Parkin signaling pathway.
Collapse
Affiliation(s)
- Jinshuo Yang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiaowei Wu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuchen Li
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongzhi Zhang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuai Lan
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kaikun Yuan
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiaxing Dai
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bowen Sun
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuxiao Meng
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shancai Xu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Huaizhang Shi
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
5
|
Li X, Zhang L, Liu C, He Y, Li X, Xu Y, Gu C, Wang X, Wang S, Zhang J, Liu J. Construction of mitochondrial quality regulation genes-related prognostic model based on bulk-RNA-seq analysis in multiple myeloma. Biofactors 2024. [PMID: 39446019 DOI: 10.1002/biof.2135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024]
Abstract
Mitochondrial quality regulation plays an important role in affecting the treatment sensitivity of multiple myeloma (MM). We aimed to develop a mitochondrial quality regulation genes (MQRGs)-related prognostic model for MM patients. The Genomic Data Commons-MM of bulk RNA-seq, mutation, and single-cell RNA-seq (scRNA-seq) dataset were downloaded, and the MQRGs gene set was collected previous study. "maftools" and CIBERSORT were used for mutation and immune-infiltration analysis. Subsequently, the "ConsensusClusterPlus" was used to perform the unsupervised clustering analysis, "survminer" and "ssGSEA" R package was used for the Kaplan-Meier survival and enrichment analysis, "limma" R, univariate and Least Absolute Shrinkage and Selection Operator Cox were used for RiskScore model. The "timeROC" R package was used for Receiver Operating Characteristic Curve analysis. Finally, the "Seurat" R package was used for scRNA-seq analysis. These MQRGs are mainly located on chromosome-1,2,3,7, and 22 and had significant expression differences among age, gender, and stage groups, in which PPARGC1A and PPARG are the high mutation genes. Most MQRGs expression are closely associated with the plasma cells infiltration and can divide the patients into 2 different prognostic clusters (C1, C2). Then, 8 risk models were screened from 60 DEGs for RiskScore, which is an independent prognostic factor and effectively divided the patients into high and low risk groups with significant difference of immune checkpoint expression. Nomogram containing RiskScore can accurately predict patient prognosis, and a series of specific transcription factor PRDM1 and IRF1 were identified. We described the based molecular features and developed a high effective MQRGs-related prognostic model in MM.
Collapse
Affiliation(s)
- Xiaohui Li
- Hematology Department, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ling Zhang
- Hematology Department, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chengcheng Liu
- Hematology Department, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yi He
- Hematology Department, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xudong Li
- Hematology Department, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yichuan Xu
- Hematology Department, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Cuiyin Gu
- Hematology Department, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaozhen Wang
- Hematology Department, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shuoting Wang
- Hematology Department, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jingwen Zhang
- Hematology Department, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jiajun Liu
- Hematology Department, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
6
|
Sui C, Liu Y, Jiang J, Tang J, Yu L, Lv G. Ginsenoside Rg1 ameliorates cerebral ischemia-reperfusion injury by regulating Pink1/ Parkin-mediated mitochondrial autophagy and inhibiting microglia NLRP3 activation. Brain Res Bull 2024; 216:111043. [PMID: 39134096 DOI: 10.1016/j.brainresbull.2024.111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVE This study aimed to further elucidate the mechanism of ginsenoside Rg1 in the treatment of cerebral ischemia-reperfusion. METHODS In this study, we observed the apoptosis of RM cells (microglia) after oxygen-glucose deprivation/reoxygenation (OGD/R) modeling before and after Rg1 administration, changes in mitochondrial membrane potential, changes in the content of Reactive oxygen species (ROS) and inflammatory vesicles NLR Family Pyrin Domain Containing 3 (NLRP3), and the expression levels of autophagy-related proteins, inflammatory factors, and apoptosis proteins. We further examined the pathomorphological changes in brain tissue, neuronal damage, changes in mitochondrial morphology and mitochondrial structure, and the autophagy-related proteins, inflammatory factors, and apoptosis proteins expression levels in CI/RI rats before and after administration of Rg1 in vivo experiments. RESULTS In vitro experiments showed that Rg1 induced mitochondrial autophagy, decreased mitochondrial membrane potential, and reduced ROS content thereby inhibiting NLRP3 activation, decreasing secretion of inflammatory factors and RM cell apoptosis by regulating the PTEN induced putative kinase 1(Pink1) /Parkin signaling pathway. In vivo experiments showed that Rg1 induced mitochondrial autophagy, inhibited NLRP3 activation, improved inflammatory response, and reduced apoptosis by regulating the Pink1/Parkin signaling pathway, and Rg1 significantly reduced the area of cerebral infarcts, improved the pathological state of brain tissue, and attenuated the neuronal damage, thus improving cerebral ischemia/reperfusion injury in rats. CONCLUSION Our results suggest that ginsenoside Rg1 can ameliorate cerebral ischemia-reperfusion injury by modulating Pink1/ Parkin-mediated mitochondrial autophagy in microglia and inhibiting microglial NLRP3 activation.
Collapse
Affiliation(s)
- Changbai Sui
- Department of Neurology, Yantaishan Hospital, Yantai 264001, China
| | - Ying Liu
- Department of Neurology, Yantaishan Hospital, Yantai 264001, China
| | - Jun Jiang
- Key Laboratory of Genetics Research and Evaluation of the National Drug Administration, Shandong Institute for Food and Drug Control, Shandong, Jinan 250033, China
| | - Jianhua Tang
- Department of Neurology, Yantaishan Hospital, Yantai 264001, China
| | - Ling Yu
- Department of Neurology, Yantaishan Hospital, Yantai 264001, China
| | - Guoying Lv
- Department of Anesthesiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China.
| |
Collapse
|
7
|
Ran R, Zhang SB, Shi YQ, Dong H, Song W, Dong YB, Zhou KS, Zhang HH. Spotlight on necroptosis: Role in pathogenesis and therapeutic potential of intervertebral disc degeneration. Int Immunopharmacol 2024; 138:112616. [PMID: 38959544 DOI: 10.1016/j.intimp.2024.112616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/19/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Intervertebral disc degeneration (IDD) is the leading cause of low back pain, which is one of the major factors leading to disability and severe economic burden. Necroptosis is an important form of programmed cell death (PCD), a highly regulated caspase-independent type of cell death that is regulated by receptor-interacting protein kinase 1 (RIPK1), RIPK3 and mixed lineage kinase domain-like protein (MLKL)-mediated, play a key role in the pathophysiology of various inflammatory, infectious and degenerative diseases. Recent studies have shown that necroptosis plays an important role in the occurrence and development of IDD. In this review, we provide an overview of the initiation and execution of necroptosis and explore in depth its potential mechanisms of action in IDD. The analysis focuses on the connection between NP cell necroptosis and mitochondrial dysfunction-oxidative stress pathway, inflammation, endoplasmic reticulum stress, apoptosis, and autophagy. Finally, we evaluated the possibility of treating IDD by inhibiting necroptosis, and believed that targeting necroptosis may be a new strategy to alleviate the symptoms of IDD.
Collapse
Affiliation(s)
- Rui Ran
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Shun-Bai Zhang
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Yong-Qiang Shi
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Hao Dong
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Wei Song
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Yan-Bo Dong
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Kai-Sheng Zhou
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Hai-Hong Zhang
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China.
| |
Collapse
|
8
|
Wei YY, Ye JJ, Zhang DW, Hu L, Wu HM, Fei GH. Melatonin Rescues Influenza A Virus-Induced Cellular Energy Exhaustion via OMA1-OPA1-S in Acute Exacerbation of COPD. J Pineal Res 2024; 76:e12991. [PMID: 39039850 DOI: 10.1111/jpi.12991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/25/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
Although rapid progression and a poor prognosis in influenza A virus (IAV) infection-induced acute exacerbation of chronic obstructive pulmonary disease (AECOPD) are frequently associated with metabolic energy disorders, the underlying mechanisms and rescue strategies remain unknown. We herein demonstrated that the level of resting energy expenditure increased significantly in IAV-induced AECOPD patients and that cellular energy exhaustion emerged earlier and more significantly in IAV-infected primary COPD bronchial epithelial (pDHBE) cells. The differentially expressed genes were enriched in the oxidative phosphorylation (OXPHOS) pathway; additionally, we consistently uncovered much earlier ATP exhaustion, more severe mitochondrial structural destruction and dysfunction, and OXPHOS impairment in IAV-inoculated pDHBE cells, and these changes were rescued by melatonin. The level of OMA1-dependent cleavage of OPA1 in the mitochondrial inner membrane and the shift in energy metabolism from OXPHOS to glycolysis were significantly increased in IAV-infected pDHBE cells; however, these changes were rescued by OMA1-siRNA or melatonin further treatment. Collectively, our data revealed that melatonin rescued IAV-induced cellular energy exhaustion via OMA1-OPA1-S to improve the clinical prognosis in COPD. This treatment may serve as a potential therapeutic agent for patients in which AECOPD is induced by IAV.
Collapse
Affiliation(s)
- Yuan-Yuan Wei
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Jing-Jing Ye
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Da-Wei Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Lei Hu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Hui-Mei Wu
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
- Department of Geriatric Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Guang-He Fei
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
| |
Collapse
|
9
|
Janas K, Gudowska A, Drobniak SM. Avian colouration in a polluted world: a meta-analysis. Biol Rev Camb Philos Soc 2024; 99:1261-1277. [PMID: 38494176 DOI: 10.1111/brv.13067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 03/19/2024]
Abstract
Brilliant, diverse colour ornaments of birds were one of the crucial cues that led Darwin to the idea of sexual selection. Although avian colouration plays many functions, including concealment, thermoregulation, or advertisement as a distasteful prey, a quality-signalling role in sexual selection has attracted most research attention. Sexually selected ornaments are thought to be more susceptible to external stressors than naturally selected traits, and as such, they might be used as a test for environmental quality. For this reason, the last two decades have seen numerous studies on the impact of anthropogenic pollution on the expression of various avian colour traits. Herein, we provide the first meta-analytical summary of these results and examine whether there is an interaction between the mechanism of colour production (carotenoid-based, melanin-based and structural) and the type of anthropogenic factor (categorised as heavy metals, persistent organic pollutants, urbanisation, or other). Following the assumption of heightened condition dependence of ornaments under sexual selection, we also expected the magnitude of effect sizes to be higher in males. The overall effect size was close to significance and negative, supporting a general detrimental impact of anthropogenic pollutants on avian colouration. In contrast to expectations, there was no interaction between pollution types and colour-producing mechanisms. Yet there were significant differences in sensitivity between colour-producing mechanisms, with carotenoid-based colouration being the most affected by anthropogenic environmental disturbances. Moreover, we observed no significant tendency towards heightened sensitivity in males. We identified a publication gap on structural colouration, which, compared to pigment-based colouration, remains markedly understudied and should thus be prioritised in future research. Finally, we call for the unification of methods used in colour quantification in ecological research to ensure comparability of results among studies.
Collapse
Affiliation(s)
- Katarzyna Janas
- Ornithological Station, Museum and Institute of Zoology, Polish Academy of Sciences, Gdańsk, Poland
| | - Agnieszka Gudowska
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Szymon M Drobniak
- Evolution & Ecology Research Centre, School of Biological, Environmental and Earth Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| |
Collapse
|
10
|
Jing S, Zhang Y, Zhao W, Li Y, Wen Y. The predictive value of peripheral blood cell mitochondrial gene expression in identifying the prognosis in pediatric sepsis at preschool age. Front Cell Infect Microbiol 2024; 14:1413103. [PMID: 39113822 PMCID: PMC11303305 DOI: 10.3389/fcimb.2024.1413103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Background Sepsis represents a severe manifestation of infection often accompanied by metabolic disorders and mitochondrial dysfunction. Notably, mitochondrial DNA copy number (mtDNA-CN) and the expression of specific mitochondrial genes have emerged as sensitive indicators of mitochondrial function. To investigate the utility of mitochondrial gene expression in peripheral blood cells for distinguishing severe infections and predicting associated outcomes, we conducted a prospective cohort study. Methods We established a prospective cohort comprising 74 patients with non-sepsis pneumonia and 67 cases of sepsis induced by respiratory infections, aging from 2 to 6 years old. We documented corresponding clinical data and laboratory information and collected blood samples upon initial hospital admission. Peripheral blood cells were promptly isolated, and both total DNA and RNA were extracted. We utilized absolute quantification PCR to assess mtDNA-CN, as well as the expression levels of mt-CO1, mt-ND1, and mt-ATP6. Subsequently, we extended these comparisons to include survivors and non-survivors among patients with sepsis using univariate and multivariate analyses. Receiver operating characteristic (ROC) curves were constructed to assess the diagnostic potential. Results The mtDNA-CN in peripheral blood cells was significantly lower in the sepsis group. Univariate analysis revealed a significant reduction in the expression of mt-CO1, mt-ND1, and mt-ATP6 in patients with sepsis. However, multivariate analysis did not support the use of mitochondrial function in peripheral blood cells for sepsis diagnosis. In the comparison between pediatric sepsis survivors and non-survivors, univariate analysis indicated a substantial reduction in the expression of mt-CO1, mt-ND1, and mt-ATP6 among non-survivors. Notably, total bilirubin (TB), mt-CO1, mt-ND1, and mt-ATP6 levels were identified as independent risk factors for sepsis-induced mortality. ROC curves were then established for these independent risk factors, revealing areas under the curve (AUCs) of 0.753 for TB (95% CI 0.596-0.910), 0.870 for mt-CO1 (95% CI 0.775-0.965), 0.987 for mt-ND1 (95% CI 0.964-1.000), and 0.877 for mt-ATP6 (95% CI 0.793-0.962). Conclusion MtDNA-CN and mitochondrial gene expression are closely linked to the severity and clinical outcomes of infectious diseases. Severe infections lead to impaired mitochondrial function in peripheral blood cells. Notably, when compared to other laboratory parameters, the expression levels of mt-CO1, mt-ND1, and mt-ATP6 demonstrate promising potential for assessing the prognosis of pediatric sepsis.
Collapse
Affiliation(s)
- Siyuan Jing
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yue Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wanling Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Wen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Emergency, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Tang S, Hao D, Ma W, Liu L, Gao J, Yao P, Yu H, Gan L, Cao Y. Dysfunctional Mitochondria Clearance in Situ: Mitophagy in Obesity and Diabetes-Associated Cardiometabolic Diseases. Diabetes Metab J 2024; 48:503-517. [PMID: 38356350 PMCID: PMC11307117 DOI: 10.4093/dmj.2023.0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/29/2023] [Indexed: 02/16/2024] Open
Abstract
Several mitochondrial dysfunctions in obesity and diabetes include impaired mitochondrial membrane potential, excessive mitochondrial reactive oxygen species generation, reduced mitochondrial DNA, increased mitochondrial Ca2+ flux, and mitochondrial dynamics disorders. Mitophagy, specialized autophagy, is responsible for clearing dysfunctional mitochondria in physiological and pathological conditions. As a paradox, inhibition and activation of mitophagy have been observed in obesity and diabetes-related heart disorders, with both exerting bidirectional effects. Suppressed mitophagy is beneficial to mitochondrial homeostasis, also known as benign mitophagy. On the contrary, in most cases, excessive mitophagy is harmful to dysfunctional mitochondria elimination and thus is defined as detrimental mitophagy. In obesity and diabetes, two classical pathways appear to regulate mitophagy, including PTEN-induced putative kinase 1 (PINK1)/Parkin-dependent mitophagy and receptors/adapters-dependent mitophagy. After the pharmacologic interventions of mitophagy, mitochondrial morphology and function have been restored, and cell viability has been further improved. Herein, we summarize the mitochondrial dysfunction and mitophagy alterations in obesity and diabetes, as well as the underlying upstream mechanisms, in order to provide novel therapeutic strategies for the obesity and diabetes-related heart disorders.
Collapse
Affiliation(s)
- Songling Tang
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Di Hao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Wen Ma
- Sichuan University-The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Chengdu, China
| | - Lian Liu
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiuyu Gao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Peng Yao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Haifang Yu
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Lu Gan
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Yu Cao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
- Disaster Medical Center, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Ding Y, Zhao F, Hu J, Zhao Z, Shi B, Li S. A conjoint analysis of renal structure and omics characteristics reveal new insight to yak high-altitude hypoxia adaptation. Genomics 2024; 116:110857. [PMID: 38729453 DOI: 10.1016/j.ygeno.2024.110857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/17/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Yaks have unique adaptive mechanisms to the hypoxic environment, in which the kidney plays an important role. The aim of this study was to explore the histological changes of yak kidney at different altitudes and the metabolites and genes associated with adaptation to the hypoxic environment. METHODS We analyzed the tissue structure and transcriptomic metabolomic data of yak kidney tissue at two altitudes, 2600 and 4400 m. We compared and identified the morphological adaptations of the kidney and the metabolites and genes associated with hypoxia adaptation in yaks. Changes in renal morphological adaptations, differential metabolites and genes were compared and identified, combining the two in a joint analysis. RESULTS High-altitude yak kidneys showed significant adaptive changes: increased mitochondria, increased glomerular thylakoid area, and decreased localized ribosomes. Transcriptomics and metabolomics identified 69 DAMs (Differential metabolites) and 594 DEGs (differential genes). Functional enrichment analysis showed that the DAMs were associated with protein digestion and absorption, ABC transporter, and MTOR signaling pathway; the DEGs were significantly enriched in Cholesterol metabolism and P53 signaling pathway. The joint analysis indicated that metabolites such as lysine and arginine, as well as key genes such as ABCB5 and COL1A2, were particularly affected under hypoxic conditions, whereas changes in mitochondria in the tissue structure may be related to the expression of MFN1 and OPA1, and changes in glomerular thylakoid membranes are related to VEGFA and TGFB3. CONCLUSION The kidney regulates metabolites and gene expression related to hormone synthesis, protein metabolism, and angiogenesis by adjusting the mitochondrial and glomerular thylakoid membrane structure to support the survival of yaks in high-altitude environments.
Collapse
Affiliation(s)
- Yuan Ding
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Fangfang Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
13
|
Wei K, Chen T, Fang H, Shen X, Tang Z, Zhao J. Mitochondrial DNA release via the mitochondrial permeability transition pore activates the cGAS-STING pathway, exacerbating inflammation in acute Kawasaki disease. Cell Commun Signal 2024; 22:328. [PMID: 38872145 PMCID: PMC11177463 DOI: 10.1186/s12964-024-01677-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Kawasaki disease (KD) is an immune vasculitis of unknown origin, characterized by transient inflammation. The activation of the cGAS-STING pathway, triggered by mitochondrial DNA (mtDNA) release, has been implicated in the onset of KD. However, its specific role in the progression of inflammation during KD's acute phase remains unclear. METHODS We measured mtDNA and 2'3'-cGAMP expression in KD patient serum using RT-qPCR and ELISA. A murine model of KD was induced by injecting Lactobacillus casei cell wall extract (LCWE), after which cGAS-STING pathway activation and inflammatory markers were assessed via immunohistochemistry, western blot, and RT-qPCR. Human umbilical vein endothelial cells (HUVECs) were treated with KD serum and modulators of the cGAS-STING pathway for comparative analysis. Mitochondrial function was evaluated using Mitosox staining, mPTP opening was quantified by fluorescence microscopy, and mitochondrial membrane potential (MMP) was determined with JC-1 staining. RESULTS KD patient serum exhibited increased mtDNA and 2'3'-cGAMP expression, with elevated levels of pathway-related proteins and inflammatory markers observed in both in vivo and in vitro models. TEM confirmed mitochondrial damage, and further studies demonstrated that inhibition of mPTP opening reduced mtDNA release, abrogated cGAS-STING pathway activation, and mitigated inflammation. CONCLUSION These findings indicate that mtDNA released through the mPTP is a critical activator of the cGAS-STING pathway, contributing significantly to KD-associated inflammation. Targeting mtDNA release or the cGAS-STING pathway may offer novel therapeutic approaches for KD management.
Collapse
Affiliation(s)
- Ke Wei
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
- Research Institute of Comparative Medicine, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Tao Chen
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Hao Fang
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Xianjuan Shen
- Department of Clinical Laboratory, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Zhiyuan Tang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Jianmei Zhao
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
14
|
Ruan D, Xu J, Liu Y, Luo J, Zhao X, Li Y, Wang G, Feng J, Liang H, Yin Y, Luo J, Yin Y. CircPTEN-MT from PTEN regulates mitochondrial energy metabolism. J Genet Genomics 2024; 51:531-542. [PMID: 38184105 DOI: 10.1016/j.jgg.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
Phosphatase and tensin homolog (PTEN) is a multifunctional gene involved in a variety of physiological and pathological processes. Circular RNAs (circRNAs) are generated from back-splicing events during mRNA processing and participate in cell biological processes through binding to RNAs or proteins. However, PTEN-related circRNAs are largely unknown. Here, we report that circPTEN- mitochondria (MT) (hsa_circ_0002934) is a circular RNA encoded by exons 3, 4, and 5 of PTEN and is a critical regulator of mitochondrial energy metabolism. CircPTEN-MT is localized to mitochondria and physically associated with leucine-rich pentatricopeptide repeat-containing protein (LRPPRC), which regulates posttranscriptional gene expression in mitochondria. Knocking down circPTEN-MT reduces the interaction of LRPPRC and steroid receptor RNA activator (SRA) stem-loop interacting RNA binding protein (SLIRP) and inhibits the polyadenylation of mitochondrial mRNA, which decreases the mRNA level of the mitochondrial complex I subunit and reduces mitochondrial membrane potential and adenosine triphosphate production. Our data demonstrate that circPTEN-MT is an important regulator of cellular energy metabolism. This study expands our understanding of the role of PTEN, which produces both linear and circular RNAs with different and independent functions.
Collapse
Affiliation(s)
- Danhui Ruan
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jiancheng Xu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yang Liu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Juan Luo
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Xuyang Zhao
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yuhua Li
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Guangxi Wang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jiawen Feng
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hui Liang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yue Yin
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jianyuan Luo
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China; Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China.
| |
Collapse
|
15
|
Li J, Wang Z, Wang T. Machine-learning prediction of a novel diagnostic model using mitochondria-related genes for patients with bladder cancer. Sci Rep 2024; 14:9282. [PMID: 38654047 DOI: 10.1038/s41598-024-60068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
Bladder cancer (BC) is the ninth most-common cancer worldwide and it is associated with high morbidity and mortality. Mitochondrial Dysfunction is involved in the progression of BC. This study aimed to developed a novel diagnostic model based on mitochondria-related genes (MRGs) for BC patients using Machine Learning. In this study, we analyzed GSE13507 datasets and identified 752 DE-MRGs in BC specimens. Functional enrichment analysis uncovered the significant roles of 752 DE-MRGs in key processes such as cellular and organ development, as well as gene regulation. The analysis revealed the crucial functions of these genes in transcriptional regulation and protein-DNA interactions. Then, we performed LASSO and SVM-RFE, and identified four critical diagnostic genes including GLRX2, NMT1, OXSM and TRAF3IP3. Based on the above four genes, we developed a novel diagnostic model whose diagnostic value was confirmed in GSE13507, GSE3167 and GSE37816 datasets. Moreover, we reported the expressing pattern of GLRX2, NMT1, OXSM and TRAF3IP3 in BC samples. Immune cell infiltration analysis revealed that the four genes were associated with several immune cells. Finally, we performed RT-PCR and confirmed NMT1 was highly expressed in BC cells. Functional experiments revealed that knockdown of NMT1 suppressed the proliferation of BC cells. Overall, we have formulated a diagnostic potential that offered a comprehensive framework for delving into the underlying mechanisms of BC. Before proceeding with clinical implementation, it is essential to undertake further investigative efforts to validate its diagnostic effectiveness in BC patients.
Collapse
Affiliation(s)
- Jian Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Zhiyong Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tianen Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Koch RE, Okegbe C, Ramanathan C, Zhu X, Hare E, Toomey MB, Hill GE, Zhang Y. Captivity affects mitochondrial aerobic respiration and carotenoid metabolism in the house finch (Haemorhous mexicanus). J Exp Biol 2024; 227:jeb246980. [PMID: 38634224 DOI: 10.1242/jeb.246980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
In many species of animals, red carotenoid-based coloration is produced by metabolizing yellow dietary pigments, and this red ornamentation can be an honest signal of individual quality. However, the physiological basis for associations between organism function and the metabolism of red ornamental carotenoids from yellow dietary carotenoids remains uncertain. A recent hypothesis posits that carotenoid metabolism depends on mitochondrial performance, with diminished red coloration resulting from altered mitochondrial aerobic respiration. To test for an association between mitochondrial respiration and red carotenoids, we held wild-caught, molting male house finches in either small bird cages or large flight cages to create environmental challenges during the period when red ornamental coloration is produced. We predicted that small cages would present a less favorable environment than large flight cages and that captivity itself would decrease both mitochondrial performance and the abundance of red carotenoids compared with free-living birds. We found that captive-held birds circulated fewer red carotenoids, showed increased mitochondrial respiratory rates, and had lower complex II respiratory control ratios - a metric associated with mitochondrial efficiency - compared with free-living birds, though we did not detect a difference in the effects of small cages versus large cages. Among captive individuals, the birds that circulated the highest concentrations of red carotenoids had the highest mitochondrial respiratory control ratio for complex II substrate. These data support the hypothesis that the metabolism of red carotenoid pigments is linked to mitochondrial aerobic respiration in the house finch, but the mechanisms for this association remain to be established.
Collapse
Affiliation(s)
- Rebecca E Koch
- Department of Biological Science, University of Tulsa, Tulsa, OK 74104, USA
| | - Chidimma Okegbe
- College of Health Sciences, University of Memphis, Memphis, TN 38152, USA
| | | | - Xinyu Zhu
- Department of Biological Sciences, Auburn University, Auburn, AL 36830, USA
| | - Ethan Hare
- Department of Biological Sciences, Auburn University, Auburn, AL 36830, USA
| | - Matthew B Toomey
- Department of Biological Science, University of Tulsa, Tulsa, OK 74104, USA
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36830, USA
| | - Yufeng Zhang
- College of Health Sciences, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
17
|
Su Y, Cao N, Zhang D, Wang M. The effect of ferroptosis-related mitochondrial dysfunction in the development of temporal lobe epilepsy. Ageing Res Rev 2024; 96:102248. [PMID: 38408490 DOI: 10.1016/j.arr.2024.102248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/27/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Temporal lobe epilepsy (TLE) is the most common form of epileptic syndrome. It has been established that due to its complex pathogenesis, a considerable proportion of TLE patients often progress to drug-resistant epilepsy. Ferroptosis has emerged as an important neuronal death mechanism in TLE, which is primarily influenced by lipid accumulation and oxidative stress. In previous studies of ferroptosis, more attention has been focused on the impact of changes in the levels of proteins related to the redox equilibrium and signaling pathways on epileptic seizures. However, it is worth noting that the oxidative-reduction changes in different organelles may have different pathophysiological significance in the process of ferroptosis-related diseases. Mitochondria, as a key organelle involved in ferroptosis, its structural damage and functional impairment can lead to energy metabolism disorders and disruption of the excitatory inhibitory balance, significantly increasing the susceptibility to epileptic seizures. Therefore, secondary mitochondrial dysfunction in the process of ferroptosis could play a crucial role in TLE pathogenesis. This review focuses on ferroptosis and mitochondria, discussing the pathogenic role of ferroptosis-related mitochondrial dysfunction in TLE, thus aiming to provide novel insights and potential implications of ferroptosis-related secondary mitochondrial dysfunction in epileptic seizures and to offer new insights for the precise exploration of ferroptosis-related therapeutic targets for TLE patients.
Collapse
Affiliation(s)
- Yang Su
- Department of Laboratory Medicine, West China Hospital of Sichuan University, China
| | - Ningrui Cao
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Dingkun Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, China; Department of Neurology, West China Hospital of Sichuan University, China.
| |
Collapse
|
18
|
Liu X, Cui H, Bai Q, Piao H, Song Y, Yan G. miR-128-3p alleviates airway inflammation in asthma by targeting SIX1 to regulate mitochondrial fission and fusion. Int Immunopharmacol 2024; 130:111703. [PMID: 38422767 DOI: 10.1016/j.intimp.2024.111703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
Bronchial asthma is known for airway inflammation, hyperresponsiveness, and remodeling.MicroRNAs (MiRNAs) have been involved in the development of asthma, whereas, the mechanism of various MiRNAs in asthma remains to be elucidated. In this study, we aim to explore the mechanism of miR-128-3p in asthma-related airway inflammation by targeting sine oculis homeobox homolog 1 (SIX1) to regulate the mitochondrial function. In an ovalbumin (OVA) asthma mouse model, miR-128-3p levels were found to be significantly diminished. Administration of miR-128-3p agomir decreased peribronchial inflammatory cell infiltration and improved airway inflammation. Afterwards, we used the luciferase reporter assay to predict and confirmed that SIX1 is a target gene of miR-128-3p. Overexpression of miR-128-3p attenuated IL-13-induced cellular inflammation and ROS production in bronchial epithelial cells (BEAS-2B). In vitro, overexpression of miR-128-3p and SIX1 knockdown mitigated mitochondrial fragmentation, reduced Drp1-mediated mitochondrial division, and upregulated mitochondrial membrane potential. Moreover, led to decreased production of ROS/mitochondrial ROS, P-Drp1(616) and Fis1 expression, while enhancing P-Drp1(637), MFN1, caspase-3/9, and Bax-mediated apoptosis. Our findings demonstrated that miR-128-3p could alleviate airway inflammation by downregulating SIX1 and improving mitochondrial function, positioning the miR-128-3p/SIX1/Drp1 signaling as a potential therapeutic target for asthma.
Collapse
Affiliation(s)
- Xiaohan Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, PR China
| | - Hong Cui
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Center of Medical Functional Experiment, Yanbian University Medical College, Yanji 133002, PR China
| | - Qiaoyun Bai
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, PR China
| | - Hongmei Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji 133000, PR China
| | - Yilan Song
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, PR China.
| | - Guanghai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, PR China.
| |
Collapse
|
19
|
Abdukiyum M, Tang X, Zhao N, Cui Y, Zhang J, Alim T, Zheng Y, Li W, Huang M, Feng X, Yu H, Feng X. Reduced mitochondrial-encoded NADH dehydrogenase 6 gene expression drives inflammatory CD4 +T cells in patients with systemic lupus erythematosus. Free Radic Biol Med 2024; 213:79-89. [PMID: 38242247 DOI: 10.1016/j.freeradbiomed.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Abnormal mitochondrial function has been implicated in the progression of systemic lupus erythematosus (SLE), the prototypical autoimmune disease, yet the underlying cause remains unclear. In this study, mitochondrial-encoded NADH dehydrogenase 6 gene (MT-ND6) was identified as having increased m6A methylation and decreased expression in peripheral blood mononuclear cells of SLE patients by MeRIP-seq analysis. MT-ND6 expression was negatively correlated with SLE disease activity index score and 24-h urine protein level, and lower in patients with positive anti-Sm or anti-dsDNA antibodies. With the reduction of MT-ND6 levels, CD4+ T cells in SLE patients exhibited mitochondrial dysfunction, as evidenced by increased levels of reactive oxygen species (ROS) and mitochondrial ROS and insufficient ATP production. Accordingly, in vitro MT-ND6 silencing induced abnormalities in the above mitochondrial indicators in CD4+ T cells, and promoted the development of both transcription and inflammatory factors in these cells. In contrast, treatment with targeted mitochondrial antioxidants largely counteracted the silencing effect of MT-MD6. Thus, reduced MT-ND6 in SLE patients may lead to mitochondrial dysfunction through ROS overproduction, thereby promoting inflammatory CD4+ T cells.
Collapse
Affiliation(s)
- Miheraiy Abdukiyum
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaojun Tang
- Department of Rheumatology and Immunology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Nan Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiyuan Cui
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingjing Zhang
- Department of Rheumatology and Immunology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Tohtihan Alim
- Department of Rheumatology and Immunology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuanyuan Zheng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjing Li
- Department of Rheumatology and Immunology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Mengxi Huang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuxue Feng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Honghong Yu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuebing Feng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China; Department of Rheumatology and Immunology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
20
|
Crino OL, Head ML, Jennions MD, Noble DWA. Mitochondrial function and sexual selection: can physiology resolve the 'lek paradox'? J Exp Biol 2024; 227:jeb245569. [PMID: 38206324 DOI: 10.1242/jeb.245569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Across many taxa, males use elaborate ornaments or complex displays to attract potential mates. Such sexually selected traits are thought to signal important aspects of male 'quality'. Female mating preferences based on sexual traits are thought to have evolved because choosy females gain direct benefits that enhance their lifetime reproductive success (e.g. greater access to food) and/or indirect benefits because high-quality males contribute genes that increase offspring fitness. However, it is difficult to explain the persistence of female preferences when males only provide genetic benefits, because female preferences should erode the heritable genetic variation in fitness that sexually selected traits signal. This 'paradox of the lek' has puzzled evolutionary biologists for decades, and inspired many hypotheses to explain how heritable variation in sexually selected traits is maintained. Here, we discuss how factors that affect mitochondrial function can maintain variation in sexually selected traits despite strong female preferences. We discuss how mitochondrial function can influence the expression of sexually selected traits, and we describe empirical studies that link the expression of sexually selected traits to mitochondrial function. We explain how mothers can affect mitochondrial function in their offspring by (a) influencing their developmental environment through maternal effects and (b) choosing a mate to increase the compatibility of mitochondrial and nuclear genes (i.e. the 'mitonuclear compatibility model of sexual selection'). Finally, we discuss how incorporating mitochondrial function into models of sexual selection might help to resolve the paradox of the lek, and we suggest avenues for future research.
Collapse
Affiliation(s)
- Ondi L Crino
- School of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Megan L Head
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Michael D Jennions
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Centre, 10 Marais Street, Stellenbosch 7600, South Africa
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
21
|
Pal A, Joshi M, Thaker M. Too much information? Males convey parasite levels using more signal modalities than females utilise. J Exp Biol 2024; 227:jeb246217. [PMID: 38054353 PMCID: PMC10906484 DOI: 10.1242/jeb.246217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023]
Abstract
Elaborate sexual signals are thought to have evolved and be maintained to serve as honest indicators of signaller quality. One measure of quality is health, which can be affected by parasite infection. Cnemaspis mysoriensis is a diurnal gecko that is often infested with ectoparasites in the wild, and males of this species express visual (coloured gular patches) and chemical (femoral gland secretions) traits that receivers could assess during social interactions. In this paper, we tested whether ectoparasites affect individual health, and whether signal quality is an indicator of ectoparasite levels. In wild lizards, we found that ectoparasite level was negatively correlated with body condition in both sexes. Moreover, some characteristics of both visual and chemical traits in males were strongly associated with ectoparasite levels. Specifically, males with higher ectoparasite levels had yellow gular patches with lower brightness and chroma, and chemical secretions with a lower proportion of aromatic compounds. We then determined whether ectoparasite levels in males influence female behaviour. Using sequential choice trials, wherein females were provided with either the visual or the chemical signals of wild-caught males that varied in ectoparasite level, we found that only chemical secretions evoked an elevated female response towards less parasitised males. Simultaneous choice trials in which females were exposed to the chemical secretions from males that varied in parasite level further confirmed a preference for males with lower parasites loads. Overall, we find that although health (body condition) or ectoparasite load can be honestly advertised through multiple modalities, the parasite-mediated female response is exclusively driven by chemical signals.
Collapse
Affiliation(s)
- Arka Pal
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012, India
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Mihir Joshi
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012, India
| | - Maria Thaker
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
22
|
Liu J, Liu J, Qin G, Li J, Fu Z, Li J, Li M, Guo C, Zhao M, Zhang Z, Li F, Zhao X, Wang L, Zhang Y. MDSCs-derived GPR84 induces CD8 + T-cell senescence via p53 activation to suppress the antitumor response. J Immunother Cancer 2023; 11:e007802. [PMID: 38016719 PMCID: PMC10685939 DOI: 10.1136/jitc-2023-007802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUNDS G-protein-coupled receptor 84 (GPR84) marks a subset of myeloid-derived suppressor cells (MDSCs) with stronger immunosuppression in the tumor microenvironment. Yet, how GPR84 endowed the stronger inhibition of MDSCs to CD8+ T cells function is not well established. In this study, we aimed to identify the underlying mechanism behind the immunosuppression of CD8+ T cells by GPR84+ MDSCs. METHODS The role and underlying mechanism that MDSCs or exosomes (Exo) regulates the function of CD8+ T cells were investigated using immunofluorescence, fluorescence activating cell sorter (FACS), quantitative real-time PCR, western blot, ELISA, Confocal, RNA-sequencing (RNA-seq), etc. In vivo efficacy and mechanistic studies were conducted with wild type, GPR84 and p53 knockout C57/BL6 mice. RESULTS Here, we showed that the transfer of GPR84 from MDSCs to CD8+ T cells via the Exo attenuated the antitumor response. This inhibitory effect was also observed in GPR84-overexpressed CD8+ T cells, whereas depleting GPR84 elevated CD8+ T cells proliferation and function in vitro and in vivo. RNA-seq analysis of CD8+ T cells demonstrated the activation of the p53 signaling pathway in CD8+ T cells treated with GPR84+ MDSCs culture medium. While knockout p53 did not induce senescence in CD8+ T cells treated with GPR84+ MDSCs. The per cent of GPR84+ CD8+ T cells work as a negative indicator for patients' prognosis and response to chemotherapy. CONCLUSIONS These data demonstrated that the transfer of GPR84 from MDSCs to CD8+ T cells induces T-cell senescence via the p53 signaling pathway, which could explain the strong immunosuppression of GPR84 endowed to MDSCs.
Collapse
Affiliation(s)
- Jinyan Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiayin Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Guohui Qin
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiahui Li
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ziyi Fu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jieyao Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Miaomiao Li
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Caijuan Guo
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ming Zhao
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Feng Li
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuan Zhao
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liping Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & and Treatment, Zhengzhou, Henan, China
| |
Collapse
|
23
|
Zhang XD, Liu ZY, Wang MS, Guo YX, Wang XK, Luo K, Huang S, Li RF. Mechanisms and regulations of ferroptosis. Front Immunol 2023; 14:1269451. [PMID: 37868994 PMCID: PMC10587589 DOI: 10.3389/fimmu.2023.1269451] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Regulation of cell mortality for disease treatment has been the focus of research. Ferroptosis is an iron-dependent regulated cell death whose mechanism has been extensively studied since its discovery. A large number of studies have shown that regulation of ferroptosis brings new strategies for the treatment of various benign and malignant diseases. Iron excess and lipid peroxidation are its primary metabolic features. Therefore, genes involved in iron metabolism and lipid metabolism can regulate iron overload and lipid peroxidation through direct or indirect pathways, thereby regulating ferroptosis. In addition, glutathione (GSH) is the body's primary non-enzymatic antioxidants and plays a pivotal role in the struggle against lipid peroxidation. GSH functions as an auxiliary substance for glutathione peroxidase 4 (GPX4) to convert toxic lipid peroxides to their corresponding alcohols. Here, we reviewed the researches on the mechanism of ferroptosis in recent years, and comprehensively analyzed the mechanism and regulatory process of ferroptosis from iron metabolism and lipid metabolism, and then described in detail the metabolism of GPX4 and the main non-enzymatic antioxidant GSH in vivo.
Collapse
Affiliation(s)
- Xu-Dong Zhang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhong-Yuan Liu
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mao-Sen Wang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu-Xiang Guo
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiang-Kun Wang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai Luo
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuai Huang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ren-Feng Li
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Tian HY, Huang BY, Nie HF, Chen XY, Zhou Y, Yang T, Cheng SW, Mei ZG, Ge JW. The Interplay between Mitochondrial Dysfunction and Ferroptosis during Ischemia-Associated Central Nervous System Diseases. Brain Sci 2023; 13:1367. [PMID: 37891735 PMCID: PMC10605666 DOI: 10.3390/brainsci13101367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Cerebral ischemia, a leading cause of disability and mortality worldwide, triggers a cascade of molecular and cellular pathologies linked to several central nervous system (CNS) disorders. These disorders primarily encompass ischemic stroke, Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, and other CNS conditions. Despite substantial progress in understanding and treating the underlying pathological processes in various neurological diseases, there is still a notable absence of effective therapeutic approaches aimed specifically at mitigating the damage caused by these illnesses. Remarkably, ischemia causes severe damage to cells in ischemia-associated CNS diseases. Cerebral ischemia initiates oxygen and glucose deprivation, which subsequently promotes mitochondrial dysfunction, including mitochondrial permeability transition pore (MPTP) opening, mitophagy dysfunction, and excessive mitochondrial fission, triggering various forms of cell death such as autophagy, apoptosis, as well as ferroptosis. Ferroptosis, a novel type of regulated cell death (RCD), is characterized by iron-dependent accumulation of lethal reactive oxygen species (ROS) and lipid peroxidation. Mitochondrial dysfunction and ferroptosis both play critical roles in the pathogenic progression of ischemia-associated CNS diseases. In recent years, growing evidence has indicated that mitochondrial dysfunction interplays with ferroptosis to aggravate cerebral ischemia injury. However, the potential connections between mitochondrial dysfunction and ferroptosis in cerebral ischemia have not yet been clarified. Thus, we analyzed the underlying mechanism between mitochondrial dysfunction and ferroptosis in ischemia-associated CNS diseases. We also discovered that GSH depletion and GPX4 inactivation cause lipoxygenase activation and calcium influx following cerebral ischemia injury, resulting in MPTP opening and mitochondrial dysfunction. Additionally, dysfunction in mitochondrial electron transport and an imbalanced fusion-to-fission ratio can lead to the accumulation of ROS and iron overload, which further contribute to the occurrence of ferroptosis. This creates a vicious cycle that continuously worsens cerebral ischemia injury. In this study, our focus is on exploring the interplay between mitochondrial dysfunction and ferroptosis, which may offer new insights into potential therapeutic approaches for the treatment of ischemia-associated CNS diseases.
Collapse
Affiliation(s)
- He-Yan Tian
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Xili Lake, Nanshan District, Shenzhen 518000, China;
| | - Bo-Yang Huang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hui-Fang Nie
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xiang-Yu Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yue Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shao-Wu Cheng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhi-Gang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jin-Wen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
- Hunan Academy of Traditional Chinese Medicine, Changsha 410208, China
| |
Collapse
|
25
|
Kong LY, Wu YZ, Cheng RQ, Wang PH, Peng BW. Role of Mutations of Mitochondrial Aminoacyl-tRNA Synthetases Genes on Epileptogenesis. Mol Neurobiol 2023; 60:5482-5492. [PMID: 37316759 DOI: 10.1007/s12035-023-03429-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Mitochondria are the structures in cells that are responsible for producing energy. They contain a specific translation unit for synthesizing mitochondria-encoded respiratory chain components: the mitochondrial DNA (mt DNA). Recently, a growing number of syndromes associated with the dysfunction of mt DNA translation have been reported. However, the functions of these diseases still need to be precise and thus attract much attention. Mitochondrial tRNAs (mt tRNAs) are encoded by mt DNA; they are the primary cause of mitochondrial dysfunction and are associated with a wide range of pathologies. Previous research has shown the role of mt tRNAs in the epileptic mechanism. This review will focus on the function of mt tRNA and the role of mitochondrial aminoacyl-tRNA synthetase (mt aaRS) in order to summarize some common relevant mutant genes of mt aaRS that cause epilepsy and the specific symptoms of the disease they cause.
Collapse
Affiliation(s)
- Ling-Yue Kong
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yi-Ze Wu
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Run-Qi Cheng
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Pei-Han Wang
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Bi-Wen Peng
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China.
| |
Collapse
|
26
|
Li YJ, Wu RY, Liu RP, Wu KY, Ding MN, Sun R, Gu YQ, Zhou F, Wu JZ, Zheng Q, Duan SN, Li RR, Zhang YH, Li FH, Li X. Aurantio-obtusin ameliorates obesity by activating PPARα-dependent mitochondrial thermogenesis in brown adipose tissues. Acta Pharmacol Sin 2023; 44:1826-1840. [PMID: 37095199 PMCID: PMC10462708 DOI: 10.1038/s41401-023-01089-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023] Open
Abstract
Obesity contributes to the progression of various chronic diseases, and shortens life expectancy. With abundant mitochondria, brown adipose tissue (BAT) dissipates energy through heat to limit weight gain and metabolic dysfunction in obesity. Our previous studies have shown that aurantio-obtusin (AO), a bioactive ingredient in Chinese traditional medicine Cassiae semen significantly improves hepatic lipid metabolism in a steatotic mouse model. In the current study we investigated the effects of AO on lipid metabolism in the BAT of diet-induced obesity mice and in oleic acid and palmitic acid (OAPA)-stimulated primary mature BAT adipocytes. Obese mice were established by feeding a HFHS diet for 4 weeks, and then administered AO (10 mg/kg, i.g.) for another 4 weeks. We showed that AO administration significantly increased the weight of BAT and accelerated energy expenditure to protect the weight increase in the obese mice. Using RNA sequencing and molecular biology analysis we found that AO significantly enhanced mitochondrial metabolism and UCP1 expression by activating PPARα both in vivo and in vitro in the primary BAT adipocytes. Interestingly, AO administration did not improve metabolic dysfunction in the liver and white adipose tissue of obese mice after interscapular BAT excision. We demonstrated that low temperature, a trigger of BAT thermogenesis, was not a decisive factor for AO to stimulate the growth and activation of BATs. This study uncovers a regulatory network of AO in activating BAT-dependent lipid consumption and brings up a new avenue for the pharmaceutical intervention in obesity and related comorbidities.
Collapse
Affiliation(s)
- Yi-Jie Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rui-Yu Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Run-Ping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Kai-Yi Wu
- The Second Hospital of Shandong University, Shandong University, Ji-nan, 250033, China
| | - Ming-Ning Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rong Sun
- The Second Hospital of Shandong University, Shandong University, Ji-nan, 250033, China
| | - Yi-Qing Gu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fei Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jian-Zhi Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shu-Ni Duan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rong-Rong Li
- The Second Hospital of Shandong University, Shandong University, Ji-nan, 250033, China
| | - Yin-Hao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fang-Hong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
27
|
Bhowal C, Ghosh S, Ghatak D, De R. Pathophysiological involvement of host mitochondria in SARS-CoV-2 infection that causes COVID-19: a comprehensive evidential insight. Mol Cell Biochem 2023; 478:1325-1343. [PMID: 36308668 PMCID: PMC9617539 DOI: 10.1007/s11010-022-04593-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/13/2022] [Indexed: 10/31/2022]
Abstract
SARS-CoV-2 is a positive-strand RNA virus that infects humans through the nasopharyngeal and oral route causing COVID-19. Scientists left no stone unturned to explore a targetable key player in COVID-19 pathogenesis against which therapeutic interventions can be initiated. This article has attempted to review, coordinate and accumulate the most recent observations in support of the hypothesis predicting the altered state of mitochondria concerning mitochondrial redox homeostasis, inflammatory regulations, morphology, bioenergetics and antiviral signalling in SARS-CoV-2 infection. Mitochondria is extremely susceptible to physiological as well as pathological stimuli, including viral infections. Recent studies suggest that SARS-CoV-2 pathogeneses alter mitochondrial integrity, in turn mitochondria modulate cellular response against the infection. SARS-CoV-2 M protein inhibited mitochondrial antiviral signalling (MAVS) protein aggregation in turn hinders innate antiviral response. Viral open reading frames (ORFs) also play an instrumental role in altering mitochondrial regulation of immune response. Notably, ORF-9b and ORF-6 impair MAVS activation. In aged persons, the NLRP3 inflammasome is over-activated due to impaired mitochondrial function, increased mitochondrial reactive oxygen species (mtROS), and/or circulating free mitochondrial DNA, resulting in a hyper-response of classically activated macrophages. This article also tries to understand how mitochondrial fission-fusion dynamics is affected by the virus. This review comprehends the overall mitochondrial attribute in pathogenesis as well as prognosis in patients infected with COVID-19 taking into account pertinent in vitro, pre-clinical and clinical data encompassing subjects with a broad range of severity and morbidity. This endeavour may help in exploring novel non-canonical therapeutic strategies to COVID-19 disease and associated complications.
Collapse
Affiliation(s)
- Chandan Bhowal
- Amity Institute of Biotechnology, Amity University, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Sayak Ghosh
- Amity Institute of Biotechnology, Amity University, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Debapriya Ghatak
- Indian Association for the Cultivation of Science, Jadavpur, 700032, Kolkata, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India.
| |
Collapse
|
28
|
Lai P, Xu S, Xue JH, Zhang HZ, Zhong YM, Liao YL. Current hotspot and study trend of innate immunity in COVID-19: a bibliometric analysis from 2020 to 2022. Front Immunol 2023; 14:1135334. [PMID: 37234160 PMCID: PMC10206249 DOI: 10.3389/fimmu.2023.1135334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Background Since the coronavirus disease 2019 (COVID-19) has spread throughout the world, many studies on innate immunity in COVID-19 have been published, and great progress has been achieved, while bibliometric analysis on hotspots and research trends in this field remains lacking. Methods On 17 November 2022, articles and reviews on innate immunity in COVID-19 were recruited from the Web of Science Core Collection (WoSCC) database after papers irrelevant to COVID-19 were further excluded. The number of annual publications and the average citations per paper were analyzed by Microsoft Excel. Bibliometric analysis and visualization of the most prolific contributors and hotspots in the field were performed by VOSviewer and CiteSpace software. Results There were 1,280 publications that met the search strategy on innate immunity in COVID-19 and were published from 1 January 2020 to 31 October 2022. Nine hundred thirteen articles and reviews were included in the final analysis. The USA had the highest number of publications (Np) at 276 and number of citations without self-citations (Nc) at 7,085, as well as an H-index of 42, which contributed 30.23% of the total publications, followed by China (Np: 135, Nc: 4,798, and H-index: 23) with 14.79% contribution. Regarding Np for authors, Netea, Mihai G. (Np: 7) from the Netherlands was the most productive author, followed by Joosten, Leo A. B. (Np: 6) and Lu, Kuo-Cheng (Np: 6). The Udice French Research Universities had the most publications (Np: 31, Nc: 2,071, H-index: 13), with an average citation number (ACN) at 67. The journal Frontiers in Immunology possessed the most publications (Np: 89, Nc: 1,097, ACN: 12.52). "Evasion" (strength 1.76, 2021-2022), "neutralizing antibody" (strength 1.76, 2021-2022), "messenger RNA" (strength 1.76, 2021-2022), "mitochondrial DNA" (strength 1.51, 2021-2022), "respiratory infection" (strength 1.51, 2021-2022), and "toll-like receptors" (strength 1.51, 2021-2022) were the emerging keywords in this field. Conclusion The study on innate immunity in COVID-19 is a hot topic. The USA was the most productive and influential country in this field, followed by China. The journal with the most publications was Frontiers in Immunology. "Messenger RNA," "mitochondrial DNA," and "toll-like receptors" are the current hotspots and potential targets in future research.
Collapse
Affiliation(s)
- Ping Lai
- Department of Cardiology, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Shuquan Xu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Jin-hua Xue
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Hong-zhou Zhang
- Department of Cardiology, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Yi-ming Zhong
- Department of Cardiology, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Yong-ling Liao
- Department of Cardiology, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| |
Collapse
|
29
|
Li Y, Xiong B, Miao Y, Gao Q. Silibinin supplementation ameliorates the toxic effects of butyl benzyl phthalate on porcine oocytes by eliminating oxidative stress and autophagy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121734. [PMID: 37120001 DOI: 10.1016/j.envpol.2023.121734] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Butyl benzyl phthalate (BBP) is a common environmental pollutant, it is high in paints, adhesives and other decorative materials, food packaging bags, cleaning agents, is a plasticizer is very widely used in daily life. However, it remains unknown whether BBP causes damage to oocytes cultured in vitro and whether there is an effective rescue strategy. Here, we evaluated the effects of exposure to different concentrations of BBP (10, 50, and 100 μM) on the meiosis of porcine oocytes. The results showed that exposure to BBP (100 μM) severely impaired expansion of cumulus-oocyte complex (COCs) and PBE (control:71.6% vs 100 μM: 48.8%). Spindle conformation and chromosome alignment were also significantly abnormal (34.8% and 46.0%, respectively) compared to the control (11.1% and 17.5%, respectively), and BBP caused damage to microfilaments and cortical granules (CGs). In addition, oocyte exposure to BBP induced impaired mitochondrial function and disrupted mitochondrial integrity. Silibinin is a natural active substance isolated from the seeds of Silybum marianum (L.) Gaertneri with strong antioxidant and anti-inflammatory effects. Noteworthy, we added different concentrations of silibinin (10, 20, and 50 μM) to BBP-exposed oocytes for rescue experiments, where 50 μM effectively rescued BBP-induced meiotic failure (70.6%). It also prevented the generation of excessive autophagy and apoptosis in oocytes by inhibiting the production of ROS. In a word, our results suggest that supplementation of silibinin attenuates the impaired oocyte development caused by BBP exposure,which provides a potential strategy to protect oocytes from environmental pollutants.
Collapse
Affiliation(s)
- Yu Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yilong Miao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Gao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
30
|
Li G, Wang K, Zuo K, Shi G, Cai Q, Huang M. TDP-43 is a potential marker of dopaminergic neuronal damage caused by atrazine exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114780. [PMID: 36933483 DOI: 10.1016/j.ecoenv.2023.114780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/01/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Atrazine (ATR) is one of the herbicides widely used worldwide. Meanwhile, it is an environmental endocrine disruptor that can cross the blood-brain barrier and cause damage to the endocrine-nervous system, especially by affecting the normal secretion of dopamine (DA). Regrettably, effector markers and cascade response mechanisms in damaged dopaminergic neurons induced by ATR exposure remain elusive. In this paper, we focus on investigating aggregation and position change of transactive response DNA-binding protein-43 (TDP-43) after ATR exposure, and illustrating whether TDP-43 can serve as a potential marker of mitochondrial dysfunction which causes damage to dopaminergic neurons. In our study, we used rat adrenal pheochromocytoma cell line 12 (PC12) to establish an in vitro model of dopaminergic neurons. After PC12 was intervened by ATR, we found reduced DA cycling and DA levels, and that TDP-43 aggregated continuously in the cytoplasm and then translocated to mitochondria. Furthermore, the studies we have performed showed that the translocation can cause mitochondrial dysfunction through activating the unfolded mitochondrial protein response (UPRmt), ultimately causing damage to dopaminergic neuron. The research we have done suggests that TDP-43 can serve as a potential effector marker of dopaminergic neuron damaged caused by ATR exposure.
Collapse
Affiliation(s)
- Guoliang Li
- School of Public Health and Management, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Kaidong Wang
- School of Public Health and Management, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Kai Zuo
- School of Public Health and Management, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Ge Shi
- School of Public Health and Management, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Qian Cai
- School of Public Health and Management, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.
| | - Min Huang
- School of Public Health and Management, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.
| |
Collapse
|
31
|
Chen Q, Ruan D, Shi J, Du D, Bian C. The multifaceted roles of natural products in mitochondrial dysfunction. Front Pharmacol 2023; 14:1093038. [PMID: 36860298 PMCID: PMC9968749 DOI: 10.3389/fphar.2023.1093038] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
Mitochondria are the primary source of energy production in cells, supporting the metabolic demand of tissue. The dysfunctional mitochondria are implicated in various diseases ranging from neurodegeneration to cancer. Therefore, regulating dysfunctional mitochondria offers a new therapeutic opportunity for diseases with mitochondrial dysfunction. Natural products are pleiotropic and readily obtainable sources of therapeutic agents, which have broad prospects in new drug discovery. Recently, many mitochondria-targeting natural products have been extensively studied and have shown promising pharmacological activity in regulating mitochondrial dysfunction. Hence, we summarize recent advances in natural products in targeting mitochondria and regulating mitochondrial dysfunction in this review. We discuss natural products in terms of their mechanisms on mitochondrial dysfunction, including modulating mitochondrial quality control system and regulating mitochondrial functions. In addition, we describe the future perspective and challenges in the development of mitochondria-targeting natural products, emphasizing the potential value of natural products in mitochondrial dysfunction.
Collapse
Affiliation(s)
| | | | - Jiayan Shi
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Gynecology and Obstetrics, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Dongru Du
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Gynecology and Obstetrics, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | | |
Collapse
|
32
|
Zhai R, Fang B, Lai Y, Peng B, Bai H, Liu X, Li L, Huang W. Small-molecule fluorogenic probes for mitochondrial nanoscale imaging. Chem Soc Rev 2023; 52:942-972. [PMID: 36514947 DOI: 10.1039/d2cs00562j] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mitochondria are inextricably linked to the development of diseases and cell metabolism disorders. Super-resolution imaging (SRI) is crucial in enhancing our understanding of mitochondrial ultrafine structures and functions. In addition to high-precision instruments, super-resolution microscopy relies heavily on fluorescent materials with unique photophysical properties. Small-molecule fluorogenic probes (SMFPs) have excellent properties that make them ideal for mitochondrial SRI. This paper summarizes recent advances in the field of SMFPs, with a focus on the chemical and spectroscopic properties required for mitochondrial SRI. Finally, we discuss future challenges in this field, including the design principles of SMFPs and nanoscopic techniques.
Collapse
Affiliation(s)
- Rongxiu Zhai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China. .,School of Materials Science and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Yaqi Lai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Xiaowang Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China. .,The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, Fujian, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China. .,The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
33
|
Dai Z, Xia C, Zhao T, Wang H, Tian H, Xu O, Zhu X, Zhang J, Chen P. Platelet-derived extracellular vesicles ameliorate intervertebral disc degeneration by alleviating mitochondrial dysfunction. Mater Today Bio 2023; 18:100512. [DOI: 10.1016/j.mtbio.2022.100512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
|
34
|
Makinde E, Ma L, Mellick GD, Feng Y. Mitochondrial Modulators: The Defender. Biomolecules 2023; 13:biom13020226. [PMID: 36830595 PMCID: PMC9953029 DOI: 10.3390/biom13020226] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Mitochondria are widely considered the "power hub" of the cell because of their pivotal roles in energy metabolism and oxidative phosphorylation. However, beyond the production of ATP, which is the major source of chemical energy supply in eukaryotes, mitochondria are also central to calcium homeostasis, reactive oxygen species (ROS) balance, and cell apoptosis. The mitochondria also perform crucial multifaceted roles in biosynthetic pathways, serving as an important source of building blocks for the biosynthesis of fatty acid, cholesterol, amino acid, glucose, and heme. Since mitochondria play multiple vital roles in the cell, it is not surprising that disruption of mitochondrial function has been linked to a myriad of diseases, including neurodegenerative diseases, cancer, and metabolic disorders. In this review, we discuss the key physiological and pathological functions of mitochondria and present bioactive compounds with protective effects on the mitochondria and their mechanisms of action. We highlight promising compounds and existing difficulties limiting the therapeutic use of these compounds and potential solutions. We also provide insights and perspectives into future research windows on mitochondrial modulators.
Collapse
|
35
|
Wolf SE, Sanders TL, Beltran SE, Rosvall KA. The telomere regulatory gene POT1 responds to stress and predicts performance in nature: Implications for telomeres and life history evolution. Mol Ecol 2022; 31:6155-6171. [PMID: 34674335 DOI: 10.1111/mec.16237] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 09/25/2021] [Accepted: 10/12/2021] [Indexed: 02/02/2023]
Abstract
Telomeres are emerging as correlates of fitness-related traits and may be important mediators of ecologically relevant variation in life history strategies. Growing evidence suggests that telomere dynamics can be more predictive of performance than length itself, but very little work considers how telomere regulatory mechanisms respond to environmental challenges or influence performance in nature. Here, we combine observational and experimental data sets from free-living tree swallows (Tachycineta bicolor) to assess how performance is predicted by the telomere regulatory gene POT1, which encodes a shelterin protein that sterically blocks telomerase from repairing the telomere. First, we show that lower POT1 gene expression in the blood was associated with higher female quality, that is, earlier breeding and heavier body mass. We next challenged mothers with an immune stressor (lipopolysaccharide injection) that led to "sickness" in mothers and 24 h of food restriction in their offspring. While POT1 did not respond to maternal injection, females with lower constitutive POT1 gene expression were better able to maintain feeding rates following treatment. Maternal injection also generated a 1-day stressor for chicks, which responded with lower POT1 gene expression and elongated telomeres. Other putatively stress-responsive mechanisms (i.e., glucocorticoids, antioxidants) showed marginal responses in stress-exposed chicks. Model comparisons indicated that POT1 mRNA abundance was a largely better predictor of performance than telomere dynamics, indicating that telomere regulators may be powerful modulators of variation in life history strategies.
Collapse
Affiliation(s)
- Sarah E Wolf
- Department of Biology, Indiana University, Bloomington, Indiana, USA.,Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana, USA
| | - Tiana L Sanders
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana, USA
| | - Sol E Beltran
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana, USA
| | - Kimberly A Rosvall
- Department of Biology, Indiana University, Bloomington, Indiana, USA.,Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
36
|
Metcalfe NB, Olsson M. How telomere dynamics are influenced by the balance between mitochondrial efficiency, reactive oxygen species production and DNA damage. Mol Ecol 2022; 31:6040-6052. [PMID: 34435398 DOI: 10.1111/mec.16150] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 01/31/2023]
Abstract
It is well known that oxidative stress is a major cause of DNA damage and telomere attrition. Most endogenous reactive oxygen species (ROS) are produced in the mitochondria, producing a link between mitochondrial function, DNA integrity and telomere dynamics. In this review we will describe how ROS production, rates of damage to telomeric DNA and DNA repair are dynamic processes. The rate of ROS production depends on mitochondrial features such as the level of inner membrane uncoupling and the proportion of time that ATP is actively being produced. However, the efficiency of ATP production (the ATP/O ratio) is positively related to the rate of ROS production, so leading to a trade-off between the body's energy requirements and its need to prevent oxidative stress. Telomeric DNA is especially vulnerable to oxidative damage due to features such as its high guanine content; while repair to damaged telomere regions is possible through a range of mechanisms, these can result in more rapid telomere shortening. There is increasing evidence that mitochondrial efficiency varies over time and with environmental context, as do rates of DNA repair. We argue that telomere dynamics can only be understood by appreciating that the optimal solution to the trade-off between energetic efficiency and telomere protection will differ between individuals and will change over time, depending on resource availability, energetic demands and life history strategy.
Collapse
Affiliation(s)
- Neil B Metcalfe
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Mats Olsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
37
|
Qin L, Xi S. The role of Mitochondrial Fission Proteins in Mitochondrial Dynamics in Kidney Disease. Int J Mol Sci 2022; 23:ijms232314725. [PMID: 36499050 PMCID: PMC9736104 DOI: 10.3390/ijms232314725] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022] Open
Abstract
Mitochondria have many forms and can change their shape through fusion and fission of the outer and inner membranes, called "mitochondrial dynamics". Mitochondrial outer membrane proteins, such as mitochondrial fission protein 1 (FIS1), mitochondrial fission factor (MFF), mitochondrial 98 dynamics proteins of 49 kDa (MiD49), and mitochondrial dynamics proteins of 51 kDa (MiD51), can aggregate at the outer mitochondrial membrane and thus attract Dynamin-related protein 1 (DRP1) from the cytoplasm to the outer mitochondrial membrane, where DRP1 can perform a scissor-like function to cut a complete mitochondrion into two separate mitochondria. Other organelles can promote mitochondrial fission alongside mitochondria. FIS1 plays an important role in mitochondrial-lysosomal contacts, differentiating itself from other mitochondrial-fission-associated proteins. The contact between the two can also induce asymmetric mitochondrial fission. The kidney is a mitochondria-rich organ, requiring large amounts of mitochondria to produce energy for blood circulation and waste elimination. Pathological increases in mitochondrial fission can lead to kidney damage that can be ameliorated by suppressing their excessive fission. This article reviews the current knowledge on the key role of mitochondrial-fission-associated proteins in the pathogenesis of kidney injury and the role of their various post-translational modifications in activation or degradation of fission-associated proteins and targeted drug therapy.
Collapse
|
38
|
Gao H, Xing F. A novel signature model based on mitochondrial-related genes for predicting survival of colon adenocarcinoma. BMC Med Inform Decis Mak 2022; 22:277. [PMID: 36273131 PMCID: PMC9587559 DOI: 10.1186/s12911-022-02020-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/12/2022] [Indexed: 11/21/2022] Open
Abstract
Background Colon cancer is the foremost reason of cancer-related mortality worldwide. Colon adenocarcinoma constitutes 90% of colon cancer, and most patients with colon adenocarcinoma (COAD) are identified until advanced stage. With the emergence of an increasing number of novel pathogenic mechanisms and treatments, the role of mitochondria in the development of cancer, has been studied and reported with increasing frequency. Methods We systematically analyzed the effect of mitochondria-related genes in COAD utilizing RNA sequencing dataset from The Cancer Genome Atlas database and 1613 mitochondrial function-related genes from MitoMiner database. Our approach consisted of differentially expressed gene, gene set enrichment analysis, gene ontology terminology, Kyoto Encyclopedia of Genes and Genomes, independent prognostic analysis, univariate and multivariate analysis, Kaplan–Meier survival analysis, immune microenvironment correlation analysis, and Cox regression analysis. Results Consequently, 8 genes were identified to construct 8 mitochondrial-related gene model by applying Cox regression analysis, CDC25C, KCNJ11, NOL3, P4HA1, QSOX2, Trap1, DNAJC28, and ATCAY. Meanwhile, we assessed the connection between this model and clinical parameters or immune microenvironment. Risk score was an independent predictor for COAD patients’ survival with an AUC of 0.687, 0.752 and 0.762 at 1-, 3- and 5-year in nomogram, respectively. The group with the highest risk score had the lowest survival rate and the worst clinical stages. Additionally, its predictive capacity was validated in GSE39582 cohort. Conclusion In summary, we established a prognostic pattern of mitochondrial-related genes, which can predict overall survival in COAD, which may enable a more optimized approach for the clinical treatment and scientific study of COAD. This gene signature model has the potential to improve prognosis and treatment for COAD patients in the future, and to be widely implemented in clinical settings. The utilization of this mitochondrial-related gene signature model may be benefit in the treatments and medical decision-making of COAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12911-022-02020-3.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.,Tumor Stem Cell and Transforming Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China. .,Tumor Stem Cell and Transforming Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
39
|
Role of K63-linked ubiquitination in cancer. Cell Death Dis 2022; 8:410. [PMID: 36202787 PMCID: PMC9537175 DOI: 10.1038/s41420-022-01204-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022]
Abstract
Ubiquitination is a critical type of post-translational modifications, of which K63-linked ubiquitination regulates interaction, translocation, and activation of proteins. In recent years, emerging evidence suggest involvement of K63-linked ubiquitination in multiple signaling pathways and various human diseases including cancer. Increasing number of studies indicated that K63-linked ubiquitination controls initiation, development, invasion, metastasis, and therapy of diverse cancers. Here, we summarized molecular mechanisms of K63-linked ubiquitination dictating different biological activities of tumor and highlighted novel opportunities for future therapy targeting certain regulation of K63-linked ubiquitination in tumor.
Collapse
|
40
|
Xiong NX, Kuang XY, Fang ZX, Ou J, Li SY, Zhao JH, Huang JF, Li KX, Wang R, Fan LF, Luo SW, Liu SJ. Transcriptome analysis and co-expression network reveal the mechanism linking mitochondrial function to immune regulation in red crucian carp (Carassius auratus red var) after Aeromonas hydrophila challenge. JOURNAL OF FISH DISEASES 2022; 45:1491-1509. [PMID: 35749280 DOI: 10.1111/jfd.13677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Aeromonas hydrophila is a common pathogen of freshwater fish. In this study, A. hydrophila infection was shown to cause tissue damage, trigger physiological changes as well as alter the expression profiles of immune- and metabolic-related genes in immune tissues of red crucian carp (RCC). Transcriptome analysis revealed that acute A. hydrophila infection exerted a profound effect on mitochondrial oxidative phosphorylation linking metabolic regulation to immune response. In addition, we further identified cellular senescence, apoptosis, necrosis and mitogen-activated protein kinase signal pathways as crucial signal pathways in the kidney of RCC subjected to A. hydrophila infection. These findings may have important implications for understanding modulation of immunometabolic response to bacterial infection.
Collapse
Affiliation(s)
- Ning-Xia Xiong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Xu-Ying Kuang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Zi-Xuan Fang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jie Ou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Shi-Yun Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jia-Hui Zhao
- Foreign studies college, Hunan Normal University, Changsha, China
| | - Jin-Fang Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Ke-Xin Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Rou Wang
- Foreign studies college, Hunan Normal University, Changsha, China
| | - Lan-Fen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Sheng-Wei Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Shao-Jun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| |
Collapse
|
41
|
Koch RE, Dowling DK. Effects of mitochondrial haplotype on pre-copulatory mating success in male fruit flies (Drosophila melanogaster). J Evol Biol 2022; 35:1396-1402. [PMID: 35988150 DOI: 10.1111/jeb.14080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 01/07/2023]
Abstract
While mitochondria have long been understood to be critical to cellular function, questions remain as to how genetic variation within mitochondria may underlie variation in general metrics of organismal function. To date, studies investigating links between mitochondrial genotype and phenotype have largely focused on differences in expression of genes and physiological and life-history traits across haplotypes. Mating display behaviours may also be sensitive to mitochondrial functionality and so may also be affected by sequence variation in mitochondrial DNA, with consequences for sexual selection and fitness. Here, we tested whether the pre-copulatory mating success of male fruit flies (Drosophila melanogaster) varies across six different mitochondrial haplotypes expressed alongside a common nuclear genetic background. We found a significant effect of mitochondrial haplotype on our measure of competitive mating success, driven largely by the relatively poor performance of males with one particular haplotype. This haplotype, termed 'Brownsville', has previously been shown to have complex and sex-specific effects, most notably including depressed fertility in males but not females. Our study extends this disproportionate effect on male reproductive success to pre-copulatory aspects of reproduction. Our results demonstrate that mutations in mitochondrial DNA can plausibly affect pre-copulatory mating success, with implications for future study into the subcellular underpinnings of such behaviours and the information they may communicate.
Collapse
Affiliation(s)
- Rebecca E Koch
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.,Department of Biological Science, The University of Tulsa, Tulsa, Oklahoma, USA
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
42
|
Yin Y, Shen H. Common methods in mitochondrial research (Review). Int J Mol Med 2022; 50:126. [PMID: 36004457 PMCID: PMC9448300 DOI: 10.3892/ijmm.2022.5182] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/09/2022] [Indexed: 01/18/2023] Open
Affiliation(s)
- Yiyuan Yin
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Haitao Shen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
43
|
Potential Methods of Targeting Cellular Aging Hallmarks to Reverse Osteoarthritic Phenotype of Chondrocytes. BIOLOGY 2022; 11:biology11070996. [PMID: 36101377 PMCID: PMC9312132 DOI: 10.3390/biology11070996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/12/2022] [Accepted: 06/20/2022] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease that causes pain, physical disability, and life quality impairment. The pathophysiology of OA remains largely unclear, and currently no FDA-approved disease-modifying OA drugs (DMOADs) are available. As has been acknowledged, aging is the primary independent risk factor for OA, but the mechanisms underlying such a connection are not fully understood. In this review, we first revisit the changes in OA chondrocytes from the perspective of cellular hallmarks of aging. It is concluded that OA chondrocytes share many alterations similar to cellular aging. Next, based on the findings from studies on other cell types and diseases, we propose methods that can potentially reverse osteoarthritic phenotype of chondrocytes back to a healthier state. Lastly, current challenges and future perspectives are summarized.
Collapse
|
44
|
Powers MJ, Baty JA, Dinga AM, Mao JH, Hill GE. Chemical manipulation of mitochondrial function affects metabolism of red carotenoids in a marine copepod (Tigriopus californicus). J Exp Biol 2022; 225:275691. [PMID: 35695335 DOI: 10.1242/jeb.244230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/07/2022] [Indexed: 01/25/2023]
Abstract
The shared-pathway hypothesis offers a cellular explanation for the connection between ketocarotenoid pigmentation and individual quality. Under this hypothesis, ketocarotenoid metabolism shares cellular pathways with mitochondrial oxidative phosphorylation such that red carotenoid-based coloration is inextricably linked mitochondrial function. To test this hypothesis, we exposed Tigriopus californicus copepods to a mitochondrially targeted protonophore, 2,4-dinitrophenol (DNP), to induce proton leak in the inner mitochondrial membranes. We then measured whole-animal metabolic rate and ketocarotenoid accumulation. As observed in prior studies of vertebrates, we observed that DNP treatment of copepods significantly increased respiration and that DNP-treated copepods accumulated more ketocarotenoid than control animals. Moreover, we observed a relationship between ketocarotenoid concentration and metabolic rate, and this association was strongest in DNP-treated copepods. These data support the hypothesis that ketocarotenoid and mitochondrial metabolism are biochemically intertwined. Moreover, these results corroborate observations in vertebrates, perhaps suggesting a fundamental connection between ketocarotenoid pigmentation and mitochondrial function that should be explored further.
Collapse
Affiliation(s)
- Matthew J Powers
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - James A Baty
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Alexis M Dinga
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - James H Mao
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
45
|
Kanbay M, Copur S, Demiray A, Sag AA, Covic A, Ortiz A, Tuttle KR. Fatty kidney: A possible future for chronic kidney disease research. Eur J Clin Invest 2022; 52:e13748. [PMID: 35040119 DOI: 10.1111/eci.13748] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Metabolic syndrome is a growing twenty-first century pandemic associated with multiple clinical comorbidities ranging from cardiovascular diseases, non-alcoholic fatty liver disease and polycystic ovary syndrome to kidney dysfunction. A novel area of research investigates the concept of fatty kidney in the pathogenesis of chronic kidney disease, especially in patients with diabetes mellitus or metabolic syndrome. AIM To review the most updated literature on fatty kidney and provide future research, diagnostic and therapeutic perspectives on a disease increasingly affecting the contemporary world. MATERIALS AND METHOD We performed an extensive literature search through three databases including Embase (Elsevier) and the Cochrane Central Register of Controlled Trials (Wiley) and PubMed/Medline Web of Science in November 2021 by using the following terms and their combinations: 'fatty kidney', 'ectopic fat', 'chronic kidney disease', 'cardiovascular event', 'cardio-metabolic risk', 'albuminuria' and 'metabolic syndrome'. Each study has been individually assessed by the authors. RESULTS Oxidative stress and inflammation, Klotho deficiency, endoplasmic reticulum stress, mitochondrial dysfunction and disruption of cellular energy balance appear to be the main pathophysiological mechanisms leading to tissue damage following fat accumulation. Despite the lack of large-scale comprehensive studies in this novel field of research, current clinical trials demonstrate fatty kidney as an independent risk factor for the development of chronic kidney disease and cardiovascular events. CONCLUSION The requirement for future studies investigating the pathophysiology, clinical outcomes and therapeutics of fatty kidney is clear.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Atalay Demiray
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Alan A Sag
- Division of Vascular and Interventional Radiology, Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Adrian Covic
- Department of Nephrology, Grigore T. Popa' University of Medicine, Iasi, Romania
| | - Alberto Ortiz
- Department of Medicine, Universidad Autonoma de Madrid and IIS-Fundacion Jimenez Diaz, Madrid, Spain
| | - Kathherine R Tuttle
- Division of Nephrology, University of Washington, Seattle, Washington, USA.,Providence Medical Research Center, Providence Health Care, Spokane, Washington, USA
| |
Collapse
|
46
|
Crino OL, Falk S, Katsis AC, Kraft FLOH, Buchanan KL. Mitochondria as the powerhouses of sexual selection: Testing mechanistic links between development, cellular respiration, and bird song. Horm Behav 2022; 142:105184. [PMID: 35596967 DOI: 10.1016/j.yhbeh.2022.105184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/04/2022]
Abstract
The developmental environment can affect the expression of sexually selected traits in adulthood. The physiological mechanisms that modulate such effects remain a matter of intense debate. Here, we test the role of the developmental environment in shaping adult mitochondrial function and link mitochondrial function to expression of a sexually selected trait in males (bird song). We exposed male zebra finches (Taeniopygia guttata) to corticosterone (CORT) treatment during development. After males reached adulthood, we quantified mitochondrial function from whole red blood cells and measured baseline CORT and testosterone levels, body condition/composition, and song structure. CORT-treated males had mitochondria that were less efficient (FCRL/R) and used a lower proportion of maximum capacity (FCRR/ETS) than control males. Additionally, CORT-treated males had higher baseline levels of CORT as adults compared to control males. Using structural equation modelling, we found that the effects of CORT treatment during development on adult mitochondrial function were indirect and modulated by baseline CORT levels, which are programmed by CORT treatment during development. Developmental treatment also had an indirect effect on song peak frequency. Males treated with CORT during development sang songs with higher peak frequency than control males, but this effect was modulated through increased CORT levels and by a decrease in FCRR/ETS. CORT-treated males had smaller tarsi compared to control males; however, there were no associations between body size and measures of song frequency. Here, we provide the first evidence supporting links between the developmental environment, mitochondrial function, and the expression of a sexually selected trait (bird song).
Collapse
Affiliation(s)
- Ondi L Crino
- Research School of Biology, Australian National University, Canberra, ACT, Australia; Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia.
| | - Steph Falk
- School of Biological Science Monash University, Melbourne, VIC, Australia; Institute of Immunology and Epigenetics, Max Planck Institute, Baden-Württemberg, Germany
| | - Andrew C Katsis
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia; College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Fanny-Linn O H Kraft
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia; Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Katherine L Buchanan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
47
|
Pikus E, Dunn PO, Minias P. High MHC diversity confers no advantage for phenotypic quality and reproductive performance in a wild bird. J Anim Ecol 2022; 91:1707-1718. [PMID: 35521665 PMCID: PMC9542035 DOI: 10.1111/1365-2656.13737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/24/2022] [Indexed: 11/28/2022]
Abstract
1. Genes of the major histocompatibility complex (MHC) encode antigen binding molecules and are an integral part of the acquired immune response of vertebrates. In general, high individual MHC diversity is expected to increase fitness by broadening the spectrum of pathogens recognized by the immune system, in accordance with the heterozygote advantage mechanism. On the other hand, the optimality hypothesis assumes that individuals with optimal (intermediate), rather than maximum diversity of the MHC will achieve the highest fitness because of inherent costs associated with expressing diverse MHC alleles. 2. Here, we tested for associations between individual diversity of the MHC class I and class II genes (binding antigens of intra- and extra-cellular pathogens, respectively) and a range of fitness-related traits (condition, ornament expression and reproduction) in an urban population of the Eurasian coot Fulica atra. 3. Contrary to our expectation, we found that high within-individual allelic diversity of MHC genes (both class I and II) was associated with poorer condition (lower blood haemoglobin concentrations), weaker expression of the putative ornament (smaller frontal shield), later onset of breeding and smaller clutches. An analysis of functional MHC allele clusters (supertypes) provided further support for negative associations of MHC diversity with phenotypic quality and reproductive performance, but most of these relationships could not be explained by the presence of specific maladaptive supertypes. Finally, we found little empirical support for the optimality hypothesis in the Eurasian coot. 4. Our results suggest that the costs of high MHC diversity outweighed any benefits associated with broad MHC repertoire, which could be driven by depauperate pathogen diversity in an urban landscape. To the best of our knowledge, this is one of the first studies providing consistent evidence for negative associations of MHC diversity with a range of fitness-related traits in a natural avian population.
Collapse
Affiliation(s)
- Ewa Pikus
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland
| | - Peter O Dunn
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-, Milwaukee
| | - Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland
| |
Collapse
|
48
|
Mitochondria-Targeting and ROS-Responsive Nanocarriers via Amphiphilic TPP-PEG-TK-Ce6 for Nanoenabled Photodynamic Therapy. ADVANCES IN POLYMER TECHNOLOGY 2022. [DOI: 10.1155/2022/1178039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Designing targeted-delivering and stimuli-responsive nanocarriers for photodynamic therapy (PDT) is an appealing method, especially, targeting delivery of photosensitizers to mitochondria as the most sensitive cellular organelles to reactive oxygen species (ROS) could significantly enhance the therapeutic efficacy of PDT. In this study, we synthesized triphenylphosphonium bonded PEG-NH2 (TPP-PEG-NH2) and bridged to chlorin e6 (Ce6) via thioketal (TK) linkage to obtain red light-triggered, amphiphilic copolymer (TPP-PEG-TK-Ce6), which could self-assemble into micelles with an average size of 160 nm and zeta potential of +20.1 mV. The in vitro release behavior of TPP-PEG-TK-Ce6 nanocarriers showed a light-activated way and was dependent on the H2O2 concentration. TPP-PEG-TK-Ce6 nanocarriers exhibited high cytotoxicity against C6 cells with illumination. Confocal laser scanning microscopy observation indicated that TPP-PEG-TK-Ce6 nanocarriers were efficiently internalized into the mitochondrion of C6 cells, released Ce6 via light activated. By contrast, in the case of TPP-PEG-NH2 directly bonded Ce6 (TPP-PEG-Ce6) nanocarriers, little Ce6 was found in the mitochondrion. The stronger fluorescence in the mitochondrion of TPP-PEG-TK-Ce6 nanocarriers originated from the mitochondrial-targeting capability of TPP and the cleavage of TK linkages activated by light irradiation, which greatly improved the cellular uptake of TPP-PEG-TK-Ce6 nanocarriers and released more Ce6 in the mitochondrion. This work provided a facile strategy to improve PDT efficacy.
Collapse
|
49
|
Xia R, Wang W, Gao B, Ma Q, Wang J, Dai X, Li Q. Moxibustion alleviates chronic heart failure by regulating mitochondrial dynamics and inhibiting autophagy. Exp Ther Med 2022; 23:359. [PMID: 35493422 PMCID: PMC9019604 DOI: 10.3892/etm.2022.11286] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/08/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Ran Xia
- Graduate School, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Wei Wang
- Graduate School, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Bing Gao
- Graduate School, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Qiang Ma
- Graduate School, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Jing Wang
- Key Laboratory of Xin'an Medicine of Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, P.R. China
| | - Xiaohua Dai
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Qingling Li
- School of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| |
Collapse
|
50
|
Weiss K, Schneider JM. Female sex pheromone emission is affected by body condition, but not immune system function, in the orb‐web spider
Argiope bruennichi. Ethology 2022. [DOI: 10.1111/eth.13280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|