1
|
Mazzamuto MV, Santicchia F, Preatoni DG, Martinoli A, Koprowski JL, Wauters LA. Multilevel ecological interactions: Impact of weather, forest extreme events and seed production on squirrel population dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 966:178713. [PMID: 39919654 DOI: 10.1016/j.scitotenv.2025.178713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/31/2025] [Accepted: 01/31/2025] [Indexed: 02/09/2025]
Abstract
In resource-limited producer-consumer systems, environmental variables such as weather, habitat structure, and resource availability interact to shape consumer dynamics. We conducted a comparative analysis on territorial Fremont's squirrel (Tamiasciurus fremonti) in Arizona mountain ranges (three sites) and non-territorial Eurasian red squirrel (Sciurus vulgaris) in the Italian Alps (five sites) to investigate the effects of forest composition, pulsed seed resources, weather, and climate change-induced forest disturbances on population density. We also explored potential synchrony in spatial and temporal dynamics between squirrel populations, driven by endogenous and exogenous processes. Our long-term, multi-site datasets revealed shared density-dependent patterns: annual oscillations in Fremont's squirrel populations and biennial oscillations in Eurasian red squirrels. Both species exhibited strong bottom-up responses, with higher densities following tree-seed production and warmer spring temperatures. Despite the absence of synchronized trends in population density across time or regions, we found consistent responses to resource availability and abiotic conditions, demonstrating shared mechanisms across ecologically distinct systems. By integrating field data, remotely sensed forest disturbances, and multi-factorial modeling, this study highlights the role of climate, forest dynamics, and climate change-induced forest disturbance in shaping population processes in pulsed resource systems. Our findings underscore the importance of understanding producer-consumer interactions under climate change, providing globally relevant insights into the interplay of abiotic drivers, species-specific behaviours, and ecological resilience. These results contribute to advancing strategies for wildlife conservation and forest management in the face of ongoing environmental change.
Collapse
Affiliation(s)
- Maria Vittoria Mazzamuto
- Haub School of Environment and Natural Resources, University of Wyoming, Laramie, WY, USA; Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy; Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy.
| | - Francesca Santicchia
- Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Damiano G Preatoni
- Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Adriano Martinoli
- Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - John L Koprowski
- Haub School of Environment and Natural Resources, University of Wyoming, Laramie, WY, USA; School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
| | - Lucas A Wauters
- Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
2
|
Sampayo-Maldonado S, Cabrera-Santos D, Dávila-Aranda P, Rodríguez-Arévalo NI, Orozco-Segovia A, Gianella M, Bell E, Way M, Manson RH, Quintas GS, Flores-Ortíz CM, Ulian T. Using the optimal seed germination temperature approach to determine the potential distribution of Inga jinicuil in Mexico under climate change scenarios. Sci Rep 2025; 15:3951. [PMID: 39890861 PMCID: PMC11785969 DOI: 10.1038/s41598-025-88171-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/24/2025] [Indexed: 02/03/2025] Open
Abstract
Inga jinicuil is used extensively in shade coffee farms in Mexico, a diversified agroforestry system providing important environmental goods and services. However, its recalcitrant seeds represent an important barrier to its propagation. Given the climate change scenarios, it will be necessary to generate information on the effect of temperature on germination, a key stage for the establishment and conservation of the species. The objective of the study was to determine the optimal germination temperatures for I. jinicuil using linear and non-linear models, as well as the species' potential distribution under contrasting climate change scenarios using the GISS-E2-1-G model. Seeds were placed in germination chambers at constant temperatures of 5 ± 0.5 to 40 ± 0.5 °C, and their thermal responses were then modelled using a thermal timing approach. Results indicated a good fit of models of I. jinicuil germination in response to temperature. Seeds germinated across a wide temperature range; the base temperature for germination was in the range of 4.8 to 9.45 °C (average Tb: 6.21 ± 2.23 °C). and the ceiling temperature in the range of 44.51 to 49.20 °C (average Tc: 47.6 ± 2.73 °C). While the optimal temperature was found in the range of 29.58 to 33.02 °C (average To: 31.52 ± 1.43 °C). The suboptimal thermal time ([Formula: see text]1(50)) for germination of 50% of the seed lot was 117.164 ± 0.636°Cd, which under current climatic conditions is reached in 6.6 days. According to climate modeling, the distribution of I. jinicuil populations will decrease by up to 23% in the future relative to the current distribution. Results indicate that high temperatures have a negative effect on germination, which may be related to seed physiology. More research on seed germination and growth is needed to improve the management and conservation of this species and its continued use as a shade tree in coffee agroforestry systems.
Collapse
Affiliation(s)
| | - Daniel Cabrera-Santos
- Plant Physiology Laboratory, UBIPRO, FES Iztacala, UNAM, 54090, Tlalnepantla, Mexico, Mexico
| | - Patricia Dávila-Aranda
- Natural Resources Laboratory, UBIPRO, FES Iztacala, UNAM, 54090, Tlalnepantla, Mexico, Mexico
| | | | - Alma Orozco-Segovia
- Department of Functional Ecology, Institute of Ecology, UNAM, Av. Universidad 3000, 04510, Mexico, CdMx, Mexico
| | - Maraeva Gianella
- Millennium Seed Bank, Royal Botanic Gardens Kew, Wakehurst Place, Ardingly, UK
| | - Elizabeth Bell
- Millennium Seed Bank, Royal Botanic Gardens Kew, Wakehurst Place, Ardingly, UK
| | - Michael Way
- Millennium Seed Bank, Royal Botanic Gardens Kew, Wakehurst Place, Ardingly, UK
| | - Robert H Manson
- Functional Ecology Network, Institute of Ecology, A.C., Old Highway to Coatepec No. 351, El Haya, 91073, Xalapa, Veracruz, Mexico
| | - Gabina S Quintas
- College of Veracruz, Carrillo Puerto 26, Zona Centro, Centro, 91000, Xalapa, Veracruz, Mexico
| | - Cesar M Flores-Ortíz
- Plant Physiology Laboratory, UBIPRO, FES Iztacala, UNAM, 54090, Tlalnepantla, Mexico, Mexico.
| | - Tiziana Ulian
- Millennium Seed Bank, Royal Botanic Gardens Kew, Wakehurst Place, Ardingly, UK
- University of Turin, Turin, Italy
| |
Collapse
|
3
|
Flores A, Flores-Ortíz CM, Dávila-Aranda PD, Rodríguez-Arévalo NI, Sampayo-Maldonado S, Cabrera-Santos D, Gianella M, Ulian T. The Germination Performance After Dormancy Breaking of Leucaena diversifolia (Schltdl.) Benth. Seeds in a Thermal Gradient and Its Distribution Under Climate Change Scenarios. PLANTS (BASEL, SWITZERLAND) 2024; 13:2926. [PMID: 39458873 PMCID: PMC11511476 DOI: 10.3390/plants13202926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Climate change models predict temperature increases, which may affect germination, an important stage in the recruitment of individuals in agroecosystems. Therefore, it is crucial to conduct research on how temperature will impact the germination of multipurpose native species. Leucaena diversifolia (Schltdl.) Benth. is native to America and is commonly cultivated around the world due to having a high protein content in seeds, and their trees are used in agrosilvopastoral systems because they fix nitrogen and provide shade and cattle feed. However, climate change affects the critical phases of its life cycle and influences its growth, reproduction, phenology, and distribution. To assess the germination performance of Leucaena diversifolia under different temperatures throughout thermal times, we estimated germination variables and determined cardinal temperatures and thermal time; we also analysed germination and potential distribution under two climate change scenarios. We found significant variations in seed germination (78-98%) and differences in cardinal temperatures (Tb = 5.17 and 7.6 °C, To = 29.42 and 29.54 °C, and Tc = 39.45 and 39.76 °C). On the other hand, the sub-optimal and supra-optimal temperature values showed little differences: 51.34 and 55.57 °Cd. The models used showed variations in germination time for the analysed scenarios and the potential distribution. We confirm that the populations and distribution of L. diversifolia will be altered due to climate changes, but the species retains the ability to germinate under warmer conditions.
Collapse
Affiliation(s)
- Andrés Flores
- CENID-COMEF, National Institute for Forestry, Agriculture and Livestock Research, Progreso 5, Coyoacán 04010, Mexico;
| | - Cesar M. Flores-Ortíz
- National Laboratory in Health, FES Iztacala, UNAM, Tlalnepantla 54090, Estado de Mexico, Mexico
- Plant Physiology Laboratory, UBIPRO, FES Iztacala, UNAM, Tlalnepantla 54090, Estado de Mexico, Mexico; (S.S.-M.)
| | - Patricia D. Dávila-Aranda
- Natural Resources, UBIPRO, FES Iztacala, UNAM, Tlalnepantla 54090, Estado de Mexico, Mexico; (P.D.D.-A.); (N.I.R.-A.)
| | - Norma Isela Rodríguez-Arévalo
- Natural Resources, UBIPRO, FES Iztacala, UNAM, Tlalnepantla 54090, Estado de Mexico, Mexico; (P.D.D.-A.); (N.I.R.-A.)
| | - Salvador Sampayo-Maldonado
- Plant Physiology Laboratory, UBIPRO, FES Iztacala, UNAM, Tlalnepantla 54090, Estado de Mexico, Mexico; (S.S.-M.)
| | - Daniel Cabrera-Santos
- Plant Physiology Laboratory, UBIPRO, FES Iztacala, UNAM, Tlalnepantla 54090, Estado de Mexico, Mexico; (S.S.-M.)
| | - Maraeva Gianella
- Royal Botanic Gardens, Kew Wellcome Trust Millennium Building, Wakehurst, Ardingly, West Sussex RH17 6TN, UK; (M.G.); (T.U.)
| | - Tiziana Ulian
- Royal Botanic Gardens, Kew Wellcome Trust Millennium Building, Wakehurst, Ardingly, West Sussex RH17 6TN, UK; (M.G.); (T.U.)
- University of Turin, 10147 Turin, Italy
| |
Collapse
|
4
|
Li XQ, Zhu HY, He YD, Ochola AC, Qiong L, Yang CF. Mother-reliant or self-reliant: the germination strategy of seeds in a species-rich alpine meadow is associated with the existence of pericarps. ANNALS OF BOTANY 2024; 134:485-490. [PMID: 38809749 PMCID: PMC11341665 DOI: 10.1093/aob/mcae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND AND AIMS Some plants germinate their seeds enclosed by a pericarp, whereas others lack the outer packaging. As a maternal tissue, the pericarp might impart seeds with different germination strategies. Plants in a community with different flowering times might separately disperse and germinate their seeds; therefore, flowering time can be considered as one manifestation of maternal effects on the offspring. The mass of the seed is another important factor influencing germination and represents the intrinsic resource of the seed that supports germination. Using seeds from a species-rich alpine meadow located in the Hengduan Mountains of China, a global biodiversity hotspot, we aimed to illustrate whether and how the type of seed (with or without a pericarp) modulates the interaction of flowering time and seed mass with germination. METHODS Seeds were germinated in generally favourable conditions, and the speed of germination [estimated by mean germination time (MGT)] was calculated. We quantified the maternal conditions by separation of flowering time for 67 species in the meadow, of which 31 produced seeds with pericarps and 36 yielded seeds without pericarps. We also weighed 100 seeds of each species to assess their mass. KEY RESULTS The MGT varied between the two types of seeds. For seeds with pericarps, MGT was associated with flowering time but not with seed mass. Plants with earlier flowering times in the meadow exhibited more rapid seed germination. For seeds without a pericarp, the MGT depended on seed mass, with smaller seeds germinating more rapidly than larger seeds. CONCLUSIONS The distinct responses of germination to flowering time and seed mass observed in seeds with and without a pericarp suggest that germination strategies might be mother-reliant for seeds protected by pericarps but self-reliant for those without such protection. This new finding improves our understanding of seed germination by integrating ecologically mediated maternal conditions and inherent genetic properties.
Collapse
Affiliation(s)
- Xiao-Qing Li
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
- Key Laboratory of Biodiversity and Environmental on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa 850000, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Hong-Yu Zhu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yong-Deng He
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Anne Christine Ochola
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - La Qiong
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
- Key Laboratory of Biodiversity and Environmental on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Chun-Feng Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
5
|
Chandler JO, Wilhelmsson PKI, Fernandez-Pozo N, Graeber K, Arshad W, Pérez M, Steinbrecher T, Ullrich KK, Nguyen TP, Mérai Z, Mummenhoff K, Theißen G, Strnad M, Scheid OM, Schranz ME, Petřík I, Tarkowská D, Novák O, Rensing SA, Leubner-Metzger G. The dimorphic diaspore model Aethionema arabicum (Brassicaceae): Distinct molecular and morphological control of responses to parental and germination temperatures. THE PLANT CELL 2024; 36:2465-2490. [PMID: 38513609 PMCID: PMC11218780 DOI: 10.1093/plcell/koae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Abstract
Plants in habitats with unpredictable conditions often have diversified bet-hedging strategies that ensure fitness over a wider range of variable environmental factors. A striking example is the diaspore (seed and fruit) heteromorphism that evolved to maximize species survival in Aethionema arabicum (Brassicaceae) in which external and endogenous triggers allow the production of two distinct diaspores on the same plant. Using this dimorphic diaspore model, we identified contrasting molecular, biophysical, and ecophysiological mechanisms in the germination responses to different temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M- seeds obtained by pericarp (fruit coat) removal from IND fruits. Large-scale comparative transcriptome and hormone analyses of M+ seeds, IND fruits, and M- seeds provided comprehensive datasets for their distinct thermal responses. Morph-specific differences in co-expressed gene modules in seeds, as well as in seed and pericarp hormone contents, identified a role of the IND pericarp in imposing coat dormancy by generating hypoxia affecting abscisic acid (ABA) sensitivity. This involved expression of morph-specific transcription factors, hypoxia response, and cell wall remodeling genes, as well as altered ABA metabolism, transport, and signaling. Parental temperature affected ABA contents and ABA-related gene expression and altered IND pericarp biomechanical properties. Elucidating the molecular framework underlying the diaspore heteromorphism can provide insight into developmental responses to globally changing temperatures.
Collapse
Affiliation(s)
- Jake O Chandler
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Per K I Wilhelmsson
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg 35043, Germany
| | - Noe Fernandez-Pozo
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg 35043, Germany
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-CSIC-UMA), Málaga 29010, Spain
| | - Kai Graeber
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Waheed Arshad
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Marta Pérez
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Tina Steinbrecher
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Kristian K Ullrich
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg 35043, Germany
| | - Thu-Phuong Nguyen
- Biosystematics Group, Wageningen University, PB Wageningen 6708, The Netherlands
| | - Zsuzsanna Mérai
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Klaus Mummenhoff
- Department of Biology, Botany, University of Osnabrück, Osnabrück 49076, Germany
| | - Günter Theißen
- Matthias Schleiden Institute/Department of Genetics, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc 78371, Czech Republic
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - M Eric Schranz
- Biosystematics Group, Wageningen University, PB Wageningen 6708, The Netherlands
| | - Ivan Petřík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc 78371, Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc 78371, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc 78371, Czech Republic
| | - Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg 35043, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg 79104, Germany
| | - Gerhard Leubner-Metzger
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc 78371, Czech Republic
| |
Collapse
|
6
|
Singh S, Singh R, Priyadarsini S, Ola AL. Genomics empowering conservation action and improvement of celery in the face of climate change. PLANTA 2024; 259:42. [PMID: 38270699 DOI: 10.1007/s00425-023-04321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/23/2023] [Indexed: 01/26/2024]
Abstract
MAIN CONCLUSION Integration of genomic approaches like whole genome sequencing, functional genomics, evolutionary genomics, and CRISPR/Cas9-based genome editing has accelerated the improvement of crop plants including leafy vegetables like celery in the face of climate change. The anthropogenic climate change is a real peril to the existence of life forms on our planet, including human and plant life. Climate change is predicted to be a significant threat to biodiversity and food security in the coming decades and is rapidly transforming global farming systems. To avoid the ghastly future in the face of climate change, the elucidation of shifts in the geographical range of plant species, species adaptation, and evolution is necessary for plant scientists to develop climate-resilient strategies. In the post-genomics era, the increasing availability of genomic resources and integration of multifaceted genomics elements is empowering biodiversity conservation action, restoration efforts, and identification of genomic regions adaptive to climate change. Genomics has accelerated the true characterization of crop wild relatives, genomic variations, and the development of climate-resilient varieties to ensure food security for 10 billion people by 2050. In this review, we have summarized the applications of multifaceted genomic tools, like conservation genomics, whole genome sequencing, functional genomics, genome editing, pangenomics, in the conservation and adaptation of plant species with a focus on celery, an aromatic and medicinal Apiaceae vegetable. We focus on how conservation scientists can utilize genomics and genomic data in conservation and improvement.
Collapse
Affiliation(s)
- Saurabh Singh
- Department of Vegetable Science, Rani Lakshmi Bai Central Agricultural University, Jhansi, UP, 284003, India.
| | - Rajender Singh
- Division of Crop Improvement and Seed Technology, ICAR-Central Potato Research Institute (CPRI), Shimla, India
| | - Srija Priyadarsini
- Institute of Agricultural Sciences, SOA (Deemed to be University), Bhubaneswar, 751029, India
| | - Arjun Lal Ola
- Department of Vegetable Science, Rani Lakshmi Bai Central Agricultural University, Jhansi, UP, 284003, India
| |
Collapse
|
7
|
Losada JM. Concluding Embryogenesis After Diaspora: Seed Germination in Illicium Parviflorum. Integr Comp Biol 2023; 63:1352-1363. [PMID: 37349968 PMCID: PMC10755177 DOI: 10.1093/icb/icad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
Albuminous seeds, dispersed with a minimally developed embryo surrounded by nutrient storage tissue, are pervasive across extinct and extant early diverging angiosperm lineages. Typically, seed ontogenic studies have focused on the time between fertilization and seed release, but in albuminous seeds, embryogenesis is incomplete at the time of seed dispersal. Here, I studied the morphological and nutritional relationships between the embryo and the endosperm after seed dispersal in Illicium parviflorum (Austrobaileyales). Seeds of I. parviflorum germinate over a period of three months. Different stages during the germination process were anatomically evaluated using a combination of histochemistry and immunocytochemistry. At dispersal, the seeds of Illicium contain a tiny achlorophyllous embryo with minimal histological differentiation, surrounded by copious amounts of lipo-protein globules stored in the endosperm within cell walls rich in un-esterified pectins. Six weeks later, the embryo expanded and differentiated the vascular tissues before the emergence of the radicle through the seed coat, as the stored lipids and proteins coalesced within cells. Six weeks later, the cotyledons contained starch and complex lipids intracellularly, and accumulated low-esterified pectins in their cell walls. The proteolipid-rich albuminous seeds of Illicium exemplify how woody angiosperms of the Austrobaileyales, Amborellales, and many magnoliids release seeds with high-energy storage compounds that are reprocessed by embryos that complete development during germination. Seedlings of these lineages thrive in the understory of tropical environments, which match with the predicted habitats where angiosperms evolved.
Collapse
Affiliation(s)
- Juan M Losada
- Institute of Subtropical and Mediterranean Hortofruticulture La Mayora – CSIC – UMA. Avda. Dr. Wienberg s/n., Algarrobo-Costa, Málaga, 29750, Spain
| |
Collapse
|
8
|
Hu H, Liu X, He Y, Li Y, Zhang T, Xu Y, Jing J. Asymmetric pre-growing season warming may jeopardize seed reproduction of the sand-stabilizing shrub Caragana microphylla. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166387. [PMID: 37633370 DOI: 10.1016/j.scitotenv.2023.166387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
Our current understanding of the processes and mechanisms by which seasonal asymmetric warming affects seed reproduction in semiarid regions, which are essential in preserving the stability of both vegetation ecosystem structure and function, remains poorly understood. Here, we conducted a field warming experiment, including pre-growing season warming (W1), in-growing season warming (W2), and combined pre- and in-growing season warming (W3) treatments, to investigate the seed reproductive strategy of Caragana microphylla, an important sand-stabilizing shrub, from the perspective of reproductive phenology, reproductive effort, and reproductive success. Results show that the warming treatments advanced the initial stages of reproductive phenology, prolonged its duration, and decreased its synchrony (magnitude = W3 > W2 > W1). Additionally, flowering phenology was more sensitive to warming than podding phenology. The W1 treatment inclined seed reproduction towards the conservative strategy with low reproductive effort and success. The W3 treatment tended to increase seed reproductive effort and success. While the W2 treatment did not affect reproductive success, it did increase reproductive effort. Changes in reproductive phenology explained 20 % of the variation in reproductive effort and 38 % of the variation in reproductive success. However, these changes also directly hindered reproductive success (direct effect = -0.57) while indirectly promoting reproductive success (indirect effect = 0.27) by increasing reproductive efforts. Our results reveal that the seasonal asymmetry of warming altered the seed reproduction strategy of sand-stabilizing shrubs, with warmer winters and springs before the growing season decreasing seed fecundity.
Collapse
Affiliation(s)
- Hongjiao Hu
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinping Liu
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao 028300, China.
| | - Yuhui He
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Gaolan Ecological and Agricultural Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Yuqiang Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao 028300, China
| | - Tonghui Zhang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao 028300, China
| | - Yuanzhi Xu
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Jing
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Rosbakh S, Carta A, Fernández-Pascual E, Phartyal SS, Dayrell RLC, Mattana E, Saatkamp A, Vandelook F, Baskin J, Baskin C. Global seed dormancy patterns are driven by macroclimate but not fire regime. THE NEW PHYTOLOGIST 2023; 240:555-564. [PMID: 37537732 DOI: 10.1111/nph.19173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023]
Abstract
Seed dormancy maximizes plant recruitment in habitats with variation in environmental suitability for seedling establishment. Yet, we still lack a comprehensive synthesis of the macroecological drivers of nondormancy and the different classes of seed dormancy: physiological dormancy, morphophysiological dormancy and physical dormancy. We examined current geographic patterns and environmental correlates of global seed dormancy variation. Combining the most updated data set on seed dormancy classes for > 10 000 species with > 4 million georeferenced species occurrences covering all of the world's biomes, we test how this distribution is driven by climate and fire regime. Seed dormancy is prevalent in seasonally cold and dry climates. Physiological dormancy occurs in relatively dry climates with high temperature seasonality (e.g. temperate grasslands). Morphophysiological dormancy is more common in forest-dominated, cold biomes with comparatively high and evenly distributed precipitation. Physical dormancy is associated with dry climates with strong seasonal temperature and precipitation fluctuations (e.g. deserts and savannas). Nondormancy is associated with stable, warm and wetter climates (e.g. tropical rain forest). Pyroclimate had no significant effect on the distribution of seed dormancy. The environmental drivers considered in this study had a comparatively low predictive power, suggesting that macroclimate is just one of several global drivers of seed dormancy.
Collapse
Affiliation(s)
- Sergey Rosbakh
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark
- Ecology and Conservation Biology, University of Regensburg, 93040, Regensburg, Germany
| | - Angelino Carta
- Department of Biology, University of Pisa, 56126, Pisa, Italy
- CIRSEC - Centre for Climate Change Impact, University of Pisa, 56126, Pisa, Italy
| | - Eduardo Fernández-Pascual
- IMIB Biodiversity Research Institute (University of Oviedo-CSIC-Principality of Asturias), University of Oviedo, 33600, Mieres, Spain
| | - Shyam S Phartyal
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, India
| | - Roberta L C Dayrell
- Ecology and Conservation Biology, University of Regensburg, 93040, Regensburg, Germany
- Royal Botanic Gardens, Kew, Wakehurst, TH17 6TH, Ardingly, UK
| | - Efisio Mattana
- Royal Botanic Gardens, Kew, Wakehurst, TH17 6TH, Ardingly, UK
| | - Arne Saatkamp
- Aix Marseille Université, IMBE, Avignon Univ, CNRS, IRD, 13397, Marseille, France
| | | | - Jerry Baskin
- Department of Biology, University of Kentucky, Lexington, KY, 40506-022, USA
| | - Carol Baskin
- Department of Biology, University of Kentucky, Lexington, KY, 40506-022, USA
- Department of Plants and Soil Sciences, University of Kentucky, Lexington, KY, 40506-022, USA
| |
Collapse
|
10
|
Fernández-Pascual E, Carta A, Rosbakh S, Guja L, Phartyal SS, Silveira FAO, Chen SC, Larson JE, Jiménez-Alfaro B. SeedArc, a global archive of primary seed germination data. THE NEW PHYTOLOGIST 2023; 240:466-470. [PMID: 37533134 DOI: 10.1111/nph.19143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/27/2023] [Indexed: 08/04/2023]
Affiliation(s)
- Eduardo Fernández-Pascual
- IMIB Biodiversity Research Institute (University of Oviedo - CSIC - Principality of Asturias), University of Oviedo, E-33600, Mieres, Spain
| | - Angelino Carta
- Department of Biology, Botany Unit, University of Pisa, 56122, Pisa, Italy
- CIRSEC - Centre for Climate Change Impact, University of Pisa, 56122, Pisa, Italy
| | - Sergey Rosbakh
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871, Frederiksberg C, Denmark
| | - Lydia Guja
- National Seed Bank, Australian National Botanic Gardens, Parks Australia, 2601, Acton, ACT, Australia
- Centre for Australian National Biodiversity Research (A Joint Venture Between Parks Australia and CSIRO), CSIRO, 2601, Acton, ACT, Australia
| | - Shyam S Phartyal
- School of Ecology and Environment Studies, Nalanda University, 803116, Rajgir, India
| | - Fernando A O Silveira
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, 31320290, Belo Horizonte, Brazil
| | - Si-Chong Chen
- Wuhan Botanical Garden, Chinese Academy of Sciences, 430074, Wuhan, China
- Millennium Seed Bank, Royal Botanic Gardens Kew, RH176TN, Wakehurst, UK
| | - Julie E Larson
- USDA Agricultural Research Service, Eastern Oregon Agricultural Research Center, Burns, OR, 97720, USA
| | - Borja Jiménez-Alfaro
- IMIB Biodiversity Research Institute (University of Oviedo - CSIC - Principality of Asturias), University of Oviedo, E-33600, Mieres, Spain
| |
Collapse
|
11
|
Kijowska-Oberc J, Dylewski Ł, Ratajczak E. Proline concentrations in seedlings of woody plants change with drought stress duration and are mediated by seed characteristics: a meta-analysis. Sci Rep 2023; 13:15157. [PMID: 37704656 PMCID: PMC10500006 DOI: 10.1038/s41598-023-40694-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 08/16/2023] [Indexed: 09/15/2023] Open
Abstract
Proline accumulation represents one of mechanisms used by plants to prevent the adverse consequences of water stress. The effects of increased proline levels in response to drought differ among species. Trees are exposed to the long-term effects of climate change. The reproductive success of species in a specific environment depends on the functional trait of tree seeds. We conducted a meta-analysis to evaluate the effects of drought stress on the proline concentrations in seedling leaf tissues of woody plant species and their relationships to drought duration, seed mass, seed category and coniferous/deciduous classification. Drought duration exhibited a nonlinear effect on proline accumulations. The drought effect on proline accumulations is greater for deciduous than for coniferous species and is higher for orthodox seed species than for recalcitrant. The seedlings of large-seeded species showed greater effect sizes than those of small-seeded species. Our results suggest that there is an optimum level at which proline accumulations under the influence of drought are the highest. A link between seed functional traits, as well as the coniferous/deciduous classification, and proline concentrations in tree seedlings during water stress were determined for the first time. Proline may help to identify high-quality seeds of trees used for reforestation.
Collapse
Affiliation(s)
- Joanna Kijowska-Oberc
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland.
| | - Łukasz Dylewski
- Department of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, 60-625, Poznań, Poland
| | - Ewelina Ratajczak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| |
Collapse
|
12
|
Bhatt A, Chen X, Pompelli MF, Jamal A, Mancinelli R, Radicetti E. Characterization of Invasiveness, Thermotolerance and Light Requirement of Nine Invasive Species in China. PLANTS (BASEL, SWITZERLAND) 2023; 12:1192. [PMID: 36904052 PMCID: PMC10005799 DOI: 10.3390/plants12051192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Understanding responsible functional traits for promoting plant invasiveness could be important to aid in the development of adequate management strategies for invasive species. Seed traits play an important role in the plant life cycle by affecting dispersal ability, formation of the soil seed bank, type and level of dormancy, germination, survival and/or competitive ability. We assessed seed traits and germination strategies of nine invasive species under five temperature regimes and light/dark treatments. Our results showed a considerable level of interspecific variation in germination percentage among the tested species. Both cooler (5/10 °C) and warmer (35/40 °C) temperatures tended to inhibit germination. All study species were considered small-seeded, and seed size did not affect germination in the light. Yet, a slightly negative correlation was found between germination in the dark and seed dimensions. We classified the species into three categories according to their germination strategies: (i) risk-avoiders, mostly displaying dormant seeds with low G%; (ii) risk-takers, reaching a high G% in a broad range of temperatures; (iii) intermediate species, showing moderate G% values, which could be enhanced in specific temperature regimes. Variability in germination requirements could be important to explain species coexistence and invasion ability of plants to colonize different ecosystems.
Collapse
Affiliation(s)
- Arvind Bhatt
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 100101, China
| | - Xingxing Chen
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 100101, China
| | - Marcelo F. Pompelli
- Facultad de Ciencias Agrícolas, Universidad de Córdoba, Montería 230002, Colombia
| | - Aftab Jamal
- Department of Soil and Environmental Sciences, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar 25130, Pakistan
| | - Roberto Mancinelli
- Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, 01011 Viterbo, Italy
| | - Emanuele Radicetti
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
13
|
Sampayo-Maldonado S, Ordoñez-Salanueva CA, Mattana E, Way M, Castillo-Lorenzo E, Dávila-Aranda PD, Lira-Saade R, Téllez-Valdés O, Rodríguez-Arévalo NI, Flores-Ortiz CM, Ulian T. Potential Distribution of Cedrela odorata L. in Mexico according to Its Optimal Thermal Range for Seed Germination under Different Climate Change Scenarios. PLANTS (BASEL, SWITZERLAND) 2022; 12:150. [PMID: 36616279 PMCID: PMC9823390 DOI: 10.3390/plants12010150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Cedrela odorata is a native tree of economic importance, as its wood is highly demanded in the international market. In this work, the current and future distributions of C. odorata in Mexico under climate change scenarios were analyzed according to their optimal temperature ranges for seed germination. For the present distribution, 256 localities of the species' presence were obtained from the Global Biodiversity Information Facility (GBIF) database and modelled with MaxEnt. For the potential distribution, the National Center for Atmospheric Research model (CCSM4) was used under conservative and drastic scenarios (RCP2.6 and RCP8.5 Watts/m2, respectively) for the intermediate future (2050) and far future (2070). Potential distribution models were built from occurrence data within the optimum germination temperature range of the species. The potential distribution expanded by 5 and 7.8% in the intermediate and far future, respectively, compared with the current distribution. With the increase in temperature, adequate environmental conditions for the species distribution should be met in the central Mexican state of Guanajuato. The states of Chihuahua, Mexico, Morelos, Guerrero, and Durango presented a negative trend in potential distribution. Additionally, in the far future, the state of Chihuahua it is likely to not have adequate conditions for the presence of the species. For the prediction of the models, the precipitation variable during the driest month presented the greatest contribution. When the humidity is not limiting, the thermal climatic variables are the most important ones. Models based on its thermal niche for seed germination allowed for the identification of areas where temperature will positively affect seed germination, which will help maximize the establishment of plant populations and adaptation to different climate change scenarios.
Collapse
Affiliation(s)
- Salvador Sampayo-Maldonado
- Plant Physiology Laboratory, Biotechnology and Prototypes Unit (UBIPRO), FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Cesar A. Ordoñez-Salanueva
- Plant Physiology Laboratory, Biotechnology and Prototypes Unit (UBIPRO), FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Efisio Mattana
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath, West Sussex RH17 6TN, UK
| | - Michael Way
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath, West Sussex RH17 6TN, UK
| | - Elena Castillo-Lorenzo
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath, West Sussex RH17 6TN, UK
| | - Patricia D. Dávila-Aranda
- Natural Resources Laboratory, Biotechnology and Prototypes Unit (UBIPRO), FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Rafael Lira-Saade
- Natural Resources Laboratory, Biotechnology and Prototypes Unit (UBIPRO), FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Oswaldo Téllez-Valdés
- Natural Resources Laboratory, Biotechnology and Prototypes Unit (UBIPRO), FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Norma I. Rodríguez-Arévalo
- Natural Resources Laboratory, Biotechnology and Prototypes Unit (UBIPRO), FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Cesar M. Flores-Ortiz
- Plant Physiology Laboratory, Biotechnology and Prototypes Unit (UBIPRO), FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Tlalnepantla 54090, Estado de Mexico, Mexico
- National Laboratory in Health, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Tiziana Ulian
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath, West Sussex RH17 6TN, UK
| |
Collapse
|
14
|
Souza CS, Ramos DM, Barbosa ERM, Borghetti F. Germination of grass species from dry and wet grasslands in response to osmotic stress under present and future temperatures. AMERICAN JOURNAL OF BOTANY 2022; 109:2018-2029. [PMID: 36256476 DOI: 10.1002/ajb2.16088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
PREMISE Seed germination is controlled by the soil microclimate, which is expected to change with the temperature increase and rainfall irregularity predicted for the future. Because changes in soil characteristics directly affect species recruitment, vegetation dynamics and resilience, we investigated how caryopses of native grasses from dry and wet grasslands respond to water stress under current and future temperature regimes. METHODS Caryopses were collected from 10 grass species in dry and wet grasslands, subjected or not to a fire event, and tested for germination at increasing osmotic potential (0 to -1.0 MPa) at current (17°/27°C night/day) and future (23°/33°C) simulated temperatures. RESULTS The viability and germination percentages of caryopses from both dry and wet grassland species were progressively reduced as osmotic stress increased, irrespective of temperature regime. The viability of caryopses from wet grassland species was reduced under the future temperature regime, irrespective of osmotic potential. The slow germination of caryopses of dry grassland species at the present temperature regime was absent when they were incubated in the future temperature regime. CONCLUSIONS More intense water stress reduced the survival of caryopses for both dry and wet grassland grass species. The predicted future temperature regime reduced the viability of wet grassland species and altered the germination strategy of dry grassland species. These results indicate that increasing water stress and temperature predicted for the future may compromise the recruitment potential of dry and wet grassland species and directly impact the dynamics and resilience of these ecosystems.
Collapse
Affiliation(s)
- Cristiele S Souza
- Departamento de Botânica, Universidade de Brasília, Brasília, Brazil
| | - Desirée M Ramos
- Departamento de Biodiversidade, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| | | | - Fabian Borghetti
- Departamento de Botânica, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
15
|
Luo W, Griffin‐Nolan RJ, Felton AJ, Yu Q, Wang H, Zhang H, Wang Z, Han X, Collins SL, Knapp AK. Drought has inconsistent effects on seed trait composition despite their strong association with ecosystem drought sensitivity. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wentao Luo
- Erguna Forest‐Steppe Ecotone Research Station, Institute of Applied Ecology Chinese Academy of Sciences Shenyang China
| | | | - Andrew J. Felton
- Schmid College of Science and Technology Chapman University Orange CA USA
| | - Qiang Yu
- School of Grassland Science Beijing Forestry University Beijing China
| | - Hongyi Wang
- Heilongjiang Bayi Agricultural University Daqing China
| | - Hongxiang Zhang
- Northeast Institute of Geography and Agroecology Chinese Academy of Sciences Changchun China
| | - Zhengwen Wang
- Erguna Forest‐Steppe Ecotone Research Station, Institute of Applied Ecology Chinese Academy of Sciences Shenyang China
| | - Xingguo Han
- Erguna Forest‐Steppe Ecotone Research Station, Institute of Applied Ecology Chinese Academy of Sciences Shenyang China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany Chinese Academy of Sciences Beijing China
| | - Scott L. Collins
- Department of Biology University of New Mexico Albuquerque NM USA
| | - Alan K. Knapp
- Department of Biology Colorado State University Fort Collins CO USA
- Graduate Degree Program in Ecology Colorado State University Fort Collins CO USA
| |
Collapse
|
16
|
Del Vecchio S, Sharma SK, Pavan M, Acosta ATR, Bacchetta G, de Bello F, Isermann M, Michalet R, Buffa G. Within-species variation of seed traits of dune engineering species across a European climatic gradient. FRONTIERS IN PLANT SCIENCE 2022; 13:978205. [PMID: 36035686 PMCID: PMC9403325 DOI: 10.3389/fpls.2022.978205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Within-species variation is a key component of biodiversity and linking it to climatic gradients may significantly improve our understanding of ecological processes. High variability can be expected in plant traits, but it is unclear to which extent it varies across populations under different climatic conditions. Here, we investigated seed trait variability and its environmental dependency across a latitudinal gradient of two widely distributed dune-engineering species (Thinopyrum junceum and Calamagrostis arenaria). Seed germination responses against temperature and seed mass were compared within and among six populations exposed to a gradient of temperature and precipitation regimes (Spiekeroog, DE; Bordeaux, FR; Valencia, ES; Cagliari, IT, Rome, IT; Venice, IT). Seed germination showed opposite trends in response to temperature experienced during emergence in both species: with some expectation, in populations exposed to severe winters, seed germination was warm-cued, whereas in populations from warm sites with dry summer, seed germination was cold-cued. In C. arenaria, variability in seed germination responses disappeared once the seed coat was incised. Seed mass from sites with low precipitation was smaller than that from sites with higher precipitation and was better explained by rainfall continentality than by aridity in summer. Within-population variability in seed germination accounted for 5 to 54%, while for seed mass it was lower than 40%. Seed trait variability can be considerable both within- and among-populations even at broad spatial scale. The variability may be hardly predictable since it only partially correlated with the analyzed climatic variables, and with expectation based on the climatic features of the seed site of origin. Considering seed traits variability in the analysis of ecological processes at both within- and among-population levels may help elucidate unclear patterns of species dynamics, thereby contributing to plan adequate measures to counteract biodiversity loss.
Collapse
Affiliation(s)
- Silvia Del Vecchio
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Venice, Italy
| | - Shivam Kumar Sharma
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Venice, Italy
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mario Pavan
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Venice, Italy
| | | | - Gianluigi Bacchetta
- Sardinian Germplasm Bank (BG-SAR), Hortus Botanicus Karalitanus (HBK), University of Cagliari, Cagliari, Italy
| | - Francesco de Bello
- Centro de Investigaciones sobre Desertificación (CSIC-UV-GV), Valencia, Spain
| | - Maike Isermann
- Lower Saxon Wadden Sea National Park Authority, Wilhelmshaven, Germany
| | | | - Gabriella Buffa
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Venice, Italy
| |
Collapse
|
17
|
Vogel J. Drivers of phenological changes in southern Europe. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:1903-1914. [PMID: 35882643 PMCID: PMC9418088 DOI: 10.1007/s00484-022-02331-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
The life cycle of plants is largely determined by climate, which renders phenological responses to climate change a highly suitable bioindicator of climate change. Yet, it remains unclear, which are the key drivers of phenological patterns at certain life stages. Furthermore, the varying responses of species belonging to different plant functional types are not fully understood. In this study, the role of temperature and precipitation as environmental drivers of phenological changes in southern Europe is assessed. The trends of the phenophases leaf unfolding, flowering, fruiting, and senescence are quantified, and the corresponding main environmental drivers are identified. A clear trend towards an earlier onset of leaf unfolding, flowering, and fruiting is detected, while there is no clear pattern for senescence. In general, the advancement of leaf unfolding, flowering and fruiting is smaller for deciduous broadleaf trees in comparison to deciduous shrubs and crops. Many broadleaf trees are photoperiod-sensitive; therefore, their comparatively small phenological advancements are likely the effect of photoperiod counterbalancing the impact of increasing temperatures. While temperature is identified as the main driver of phenological changes, precipitation also plays a crucial role in determining the onset of leaf unfolding and flowering. Phenological phases advance under dry conditions, which can be linked to the lack of transpirational cooling leading to rising temperatures, which subsequently accelerate plant growth.
Collapse
Affiliation(s)
- Johannes Vogel
- Theoretical Ecology, Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 2/4, 14195, Berlin, Germany.
- Institute of Environmental Science and Geography, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
| |
Collapse
|
18
|
Blandino C, Fernández-Pascual E, Newton RJ, Pritchard HW. Regeneration from seed in herbaceous understorey of ancient woodlands of temperate Europe. ANNALS OF BOTANY 2022; 129:761-774. [PMID: 35020780 PMCID: PMC9292608 DOI: 10.1093/aob/mcac003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/07/2022] [Indexed: 05/29/2023]
Abstract
BACKGROUND AND AIMS European ancient woodlands are subject to land use change, and the distribution of herbaceous understorey species may be threatened because of their poor ability to colonize isolated forest patches. The regeneration niche can determine the species assembly of a community, and seed germination traits may be important descriptors of this niche. METHODS We analysed ecological records for 208 herbaceous species regarded as indicators of ancient woodlands in Europe and, where possible, collated data on seed germination traits, reviewed plant regeneration strategies and measured seed internal morphology traits. The relationship between plant regeneration strategies and ecological requirements was explored for 57 species using ordination and classification analysis. KEY RESULTS Three regeneration strategies were identified. Species growing in closed-canopy areas tend to have morphological seed dormancy, often requiring darkness and low temperatures for germination, and their shoots emerge in early spring, thus avoiding the competition for light from canopy species. These species are separated into two groups: autumn and late winter germinators. The third strategy is defined by open-forest plants with a preference for gaps, forest edges and riparian forests. They tend to have physiological seed dormancy and germinate in light and at higher temperatures, so their seedlings emerge in spring or summer. CONCLUSION Seed germination traits are fundamental to which species are good or poor colonizers of the temperate forest understorey and could provide a finer explanation than adult plant traits of species distribution patterns. Seed dormancy type, temperature stratification and light requirements for seed germination are important drivers of forest floor colonization patterns and should be taken in account when planning successful ecological recovery of temperate woodland understories.
Collapse
Affiliation(s)
- Cristina Blandino
- Science Directorate, Royal Botanic Gardens, Kew, Wakehurst, Ardlingly, West Sussex, UK
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, Florence, Italy
| | - Eduardo Fernández-Pascual
- Science Directorate, Royal Botanic Gardens, Kew, Wakehurst, Ardlingly, West Sussex, UK
- IMIB – Biodiversity Research Institute, University of Oviedo, Mieres, Spain
| | - Rosemary J Newton
- Science Directorate, Royal Botanic Gardens, Kew, Wakehurst, Ardlingly, West Sussex, UK
| | - Hugh W Pritchard
- Science Directorate, Royal Botanic Gardens, Kew, Wakehurst, Ardlingly, West Sussex, UK
| |
Collapse
|
19
|
Bhatt A, Daibes LF, Gallacher DJ, Jarma-Orozco A, Pompelli MF. Water Stress Inhibits Germination While Maintaining Embryo Viability of Subtropical Wetland Seeds: A Functional Approach With Phylogenetic Contrasts. FRONTIERS IN PLANT SCIENCE 2022; 13:906771. [PMID: 35712590 PMCID: PMC9194686 DOI: 10.3389/fpls.2022.906771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Wetland species commonly exhibit a range of strategies to cope with water stress, either through drought tolerance or through avoidance of the period of limited water availability. Natural populations provide a genetic resource for ecological remediation and may also have direct economic value. We investigated the effects of drought stress on the seed germination of wetland species. Nineteen species were germinated in four concentrations of polyethylene glycol 6000 (PEG) and were evaluated daily (12-h light photoperiod) or after 35 days (continuous darkness) to determine seed germination under water stress. Germination percentage decreased with an increase in polyethylene glycol 6000 (PEG) concentration, but species' germination response to PEG concentration varied significantly. Seeds recovered their germinability after the alleviation of water stress, but the extent of recovery was species-dependent.
Collapse
Affiliation(s)
- Arvind Bhatt
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - L. Felipe Daibes
- Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, Brazil
| | - David J. Gallacher
- Northern Western Australia and Northern Territory Drought Hub, Charles Darwin University, Sydney, NT, Australia
| | - Alfredo Jarma-Orozco
- Grupo Regional de Investigación Participativa de los Pequeños Productores de la Costa Atlantica, Universidad de Córdoba, Montería, Colombia
| | - Marcelo F. Pompelli
- Grupo Regional de Investigación Participativa de los Pequeños Productores de la Costa Atlantica, Universidad de Córdoba, Montería, Colombia
| |
Collapse
|
20
|
Batlla D, Malavert C, Farnocchia RBF, Footitt S, Benech-Arnold RL, Finch-Savage WE. A quantitative analysis of temperature-dependent seasonal dormancy cycling in buried Arabidopsis thaliana seeds can predict seedling emergence in a global warming scenario. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2454-2468. [PMID: 35106531 DOI: 10.1093/jxb/erac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Understanding how the environment regulates seed-bank dormancy changes is essential for forecasting seedling emergence in actual and future climatic scenarios, and to interpret studies of dormancy mechanisms at physiological and molecular levels. Here, we used a population threshold modelling approach to analyse dormancy changes through variations in the thermal range permissive for germination in buried seeds of Arabidopsis thaliana Cvi, a winter annual ecotype. Results showed that changes in dormancy level were mainly associated with variations in the higher limit of the thermal range permissive for germination. Changes in this limit were positively related to soil temperature during dormancy release and induction, and could be predicted using thermal time. From this, we developed a temperature-driven simulation to predict the fraction of the seed bank able to germinate in a realistic global warming scenario that approximated seedling emergence timing. Simulations predicted, in accordance with seedling emergence observed in the field, an increase in the fraction of the seed bank able to emerge as a result of global warming. In addition, our results suggest that buried seeds perceive changes in the variability of the mean daily soil temperature as the signal to change between dormancy release and induction according to the seasons.
Collapse
Affiliation(s)
- Diego Batlla
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Producción Vegetal, Cátedra de Cerealicultura, Ciudad de Buenos Aires, Argentina
- Instituto de Fisiología y Ecología Vinculado a la Agricultura, Consejo Nacional de Investigaciones Científicas y Técnicas (IFEVA-CONICET), Ciudad de Buenos Aires, Argentina
| | - Cristian Malavert
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Producción Vegetal, Cátedra de Cultivos Industriales, Ciudad de Buenos Aires, Argentina
- Instituto de Fisiología y Ecología Vinculado a la Agricultura, Consejo Nacional de Investigaciones Científicas y Técnicas (IFEVA-CONICET), Ciudad de Buenos Aires, Argentina
| | - Rocío Belén Fernández Farnocchia
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Producción Vegetal, Cátedra de Cultivos Industriales, Ciudad de Buenos Aires, Argentina
- Instituto de Fisiología y Ecología Vinculado a la Agricultura, Consejo Nacional de Investigaciones Científicas y Técnicas (IFEVA-CONICET), Ciudad de Buenos Aires, Argentina
| | - Steven Footitt
- Department of Molecular Biology and Genetics, Boğaziçi University, Bebek, Istanbul, Turkey
| | - Roberto Luis Benech-Arnold
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Producción Vegetal, Cátedra de Cultivos Industriales, Ciudad de Buenos Aires, Argentina
- Instituto de Fisiología y Ecología Vinculado a la Agricultura, Consejo Nacional de Investigaciones Científicas y Técnicas (IFEVA-CONICET), Ciudad de Buenos Aires, Argentina
| | - William E Finch-Savage
- School of Life Sciences, University of Warwick, Wellesbourne Campus, Warwickshire CV35 9EF, UK
| |
Collapse
|
21
|
Hourston JE, Steinbrecher T, Chandler JO, Pérez M, Dietrich K, Turečková V, Tarkowská D, Strnad M, Weltmeier F, Meinhard J, Fischer U, Fiedler‐Wiechers K, Ignatz M, Leubner‐Metzger G. Cold-induced secondary dormancy and its regulatory mechanisms in Beta vulgaris. PLANT, CELL & ENVIRONMENT 2022; 45:1315-1332. [PMID: 35064681 PMCID: PMC9305896 DOI: 10.1111/pce.14264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/26/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
The dynamic behaviour of seeds in soil seed banks depends on their ability to act as sophisticated environmental sensors to adjust their sensitivity thresholds for germination by dormancy mechanisms. Here we show that prolonged incubation of sugar beet fruits at low temperature (chilling at 5°C, generally known to release seed dormancy of many species) can induce secondary nondeep physiological dormancy of an apparently nondormant crop species. The physiological and biophysical mechanisms underpinning this cold-induced secondary dormancy include the chilling-induced accumulation of abscisic acid in the seeds, a reduction in the embryo growth potential and a block in weakening of the endosperm covering the embryonic root. Transcriptome analysis revealed distinct gene expression patterns in the different temperature regimes and upon secondary dormancy induction and maintenance. The chilling caused reduced expression of cell wall remodelling protein genes required for embryo cell elongation growth and endosperm weakening, as well as increased expression of seed maturation genes, such as for late embryogenesis abundant proteins. A model integrating the hormonal signalling and master regulator expression with the temperature-control of seed dormancy and maturation programmes is proposed. The revealed mechanisms of the cold-induced secondary dormancy are important for climate-smart agriculture and food security.
Collapse
Affiliation(s)
- James E. Hourston
- Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| | - Tina Steinbrecher
- Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| | - Jake O. Chandler
- Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| | - Marta Pérez
- Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| | | | - Veronika Turečková
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental BotanyCzech Academy of SciencesOlomoucCzech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental BotanyCzech Academy of SciencesOlomoucCzech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental BotanyCzech Academy of SciencesOlomoucCzech Republic
| | | | | | | | | | - Michael Ignatz
- Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| | - Gerhard Leubner‐Metzger
- Department of Biological SciencesRoyal Holloway University of LondonEghamUK
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental BotanyCzech Academy of SciencesOlomoucCzech Republic
| |
Collapse
|
22
|
Steinbrecher T, Leubner-Metzger G. Xyloglucan remodelling enzymes and the mechanics of plant seed and fruit biology. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1253-1257. [PMID: 35235657 PMCID: PMC8890615 DOI: 10.1093/jxb/erac020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This article comments on: Di Marzo M, Ebeling Viana V, Banfi C, Cassina V, Corti R, Herrera-Ubaldo H, Babolin N, Guazzotti A, Kiegle E, Gregis V, de Folter S, Sampedro J, Mantegazza F, Colombo L, Ezquer I. 2022. Cell wall modifications by α-XYLOSIDASE1 are required for the control of seed and fruit size. Journal of Experimental Botany 73, 1499–1515.
Collapse
Affiliation(s)
- Tina Steinbrecher
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Gerhard Leubner-Metzger
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| |
Collapse
|
23
|
Mattana E, Ulian T, Pritchard HW. Seeds as natural capital. TRENDS IN PLANT SCIENCE 2022; 27:139-146. [PMID: 34556418 DOI: 10.1016/j.tplants.2021.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/09/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Halting and reversing the current loss of biodiversity and habitats will be facilitated by a comprehensive valuation of all nature's contributions to people (NCPs), on which we rely. In this context, we explore the full natural capital value of seeds to reveal how this extends far beyond their economic value associated with mainstream agriculture and forestry. Seeds represent the main assets for nature-based solutions at species (i.e., unlocking neglected species properties and via seed banking) and ecosystem level (i.e., ecological restoration). Challenges remain to enhance their sustainable use in nature conservation and in supporting a sustainable development model. Such advances will depend on the comprehensive valuation of the natural capital value of seeds, which has so far been grossly underestimated.
Collapse
Affiliation(s)
- Efisio Mattana
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath, West Sussex, RH17 6TN, UK.
| | - Tiziana Ulian
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath, West Sussex, RH17 6TN, UK
| | - Hugh W Pritchard
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath, West Sussex, RH17 6TN, UK; Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, PR China.
| |
Collapse
|
24
|
Lin L, Cai L, Fan L, Ma JC, Yang XY, Hu XJ. Seed dormancy, germination and storage behavior of Magnolia sinica, a plant species with extremely small populations of Magnoliaceae. PLANT DIVERSITY 2022; 44:94-100. [PMID: 35281125 PMCID: PMC8897163 DOI: 10.1016/j.pld.2021.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 06/14/2023]
Abstract
Magnolia sinica is one of the most endangered Magnoliaceae species in China. Seed biology information concerning its long-term ex situ conservation and utilization is insufficient. This study investigated dormancy status, germination requirements and storage behavior of M. sinica. Freshly matured seeds germinated to ca. 86.5% at 25/15 °C but poorly at 30 °C; GA3 and moist chilling promoted germination significantly at 20 °C. Embryos grew at temperatures (alternating or constant) between 20 °C and 25 °C, but not at 5 °C or 30 °C. Our results indicate that M. sinica seeds possibly have non-deep simple morphophysiological dormancy (MPD). Seeds survived desiccation to 9.27% and 4.85% moisture content (MC) as well as a further 6-month storage at -20 °C and in liquid nitrogen, including recovery in vitro as excised embryos. The established protocol ensured that at least 58% of seedlings were obtained after both cold storage and cryopreservation. These results indicate that both conventional seed banking and cryopreservation have potential as long-term ex situ conservation methods, although further optimized approaches are recommended for this critically endangered magnolia species.
Collapse
Affiliation(s)
- Liang Lin
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Lei Cai
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Lei Fan
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jun-Chao Ma
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xiang-Yun Yang
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xiao-Jian Hu
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| |
Collapse
|
25
|
Can Forest Trees Cope with Climate Change?-Effects of DNA Methylation on Gene Expression and Adaptation to Environmental Change. Int J Mol Sci 2021; 22:ijms222413524. [PMID: 34948318 PMCID: PMC8703565 DOI: 10.3390/ijms222413524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic modifications, including chromatin modifications and DNA methylation, play key roles in regulating gene expression in both plants and animals. Transmission of epigenetic markers is important for some genes to maintain specific expression patterns and preserve the status quo of the cell. This article provides a review of existing research and the current state of knowledge about DNA methylation in trees in the context of global climate change, along with references to the potential of epigenome editing tools and the possibility of their use for forest tree research. Epigenetic modifications, including DNA methylation, are involved in evolutionary processes, developmental processes, and environmental interactions. Thus, the implications of epigenetics are important for adaptation and phenotypic plasticity because they provide the potential for tree conservation in forest ecosystems exposed to adverse conditions resulting from global warming and regional climate fluctuations.
Collapse
|
26
|
Squire GR, Young MW, Hawes C. Solar Radiation Flux Provides a Method of Quantifying Weed-Crop Balance in Present and Future Climates. PLANTS 2021; 10:plants10122657. [PMID: 34961128 PMCID: PMC8703587 DOI: 10.3390/plants10122657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022]
Abstract
A systematic approach to quantifying the weed–crop balance through the flux of solar radiation was developed and tested on commercial fields in a long-established Atlantic zone cropland. Measuring and modelling solar energy flux in crop stands has become standard practice in analysis and comparison of crop growth and yield across regions, species and years. In a similar manner, the partitioning of incoming radiation between crops and the in-field plant community may provide ‘common currencies’ through which to quantify positive and negative effects of weeds in relation to global change. Here, possibilities were explored for converting simple ground-cover measures in commercial fields of winter and spring oilseed rape in eastern Scotland, UK to metrics of solar flux. Solar radiation intercepted by the crops ranged with season and sowing delay from 129 to 1975 MJ m−2 (15-fold). Radiation transmitted through the crop, together with local weed management, resulted in a 70-fold range of weed intercepted radiation (14.2 to 963 MJ m−2), which in turn explained 93% of the corresponding between-site variation in weed dry mass (6.36 to 459 g m−2). Transmitted radiation explained almost 90% of the variation in number of weed species per field (12 to 40). The conversion of intercepted radiation to weed dry matter was far less variable at a mean of 0.74 g MJ−1 at both winter and spring sites. The primary cause of variation was an interaction between the temperature at sowing and the annual wave of incoming solar radiation. The high degree of explanatory power in solar flux indicates its potential use as an initial predictor and subsequent monitoring tool in the face of future change in climate and cropping intensity.
Collapse
|
27
|
Walker M, Pérez M, Steinbrecher T, Gawthrop F, Pavlović I, Novák O, Tarkowská D, Strnad M, Marone F, Nakabayashi K, Leubner-Metzger G. Molecular mechanisms and hormonal regulation underpinning morphological dormancy: a case study using Apium graveolens (Apiaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1020-1036. [PMID: 34510583 DOI: 10.1111/tpj.15489] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Underdeveloped (small) embryos embedded in abundant endosperm tissue, and thus having morphological dormancy (MD) or morphophysiological dormancy (MPD), are considered to be the ancestral state in seed dormancy evolution. This trait is retained in the Apiaceae family, which provides excellent model systems for investigating the underpinning mechanisms. We investigated Apium graveolens (celery) MD by combined innovative imaging and embryo growth assays with the quantification of hormone metabolism, as well as the analysis of hormone and cell-wall related gene expression. The integrated experimental results demonstrated that embryo growth occurred inside imbibed celery fruits in association with endosperm degradation, and that a critical embryo size was required for radicle emergence. The regulation of these processes depends on gene expression leading to gibberellin and indole-3-acetic acid (IAA) production by the embryo and on crosstalk between the fruit compartments. ABA degradation associated with distinct spatiotemporal patterns in ABA sensitivity control embryo growth, endosperm breakdown and radicle emergence. This complex interaction between gibberellins, IAA and ABA metabolism, and changes in the tissue-specific sensitivities to these hormones is distinct from non-MD seeds. We conclude that the embryo growth to reach the critical size and the associated endosperm breakdown inside MD fruits constitute a unique germination programme.
Collapse
Affiliation(s)
- Matthew Walker
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
- Tozer Seeds, Tozer Seeds Ltd, Cobham, KT11 3EH, UK
| | - Marta Pérez
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Tina Steinbrecher
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | | | - Iva Pavlović
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, Olomouc, CZ-78371, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, Olomouc, CZ-78371, Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, Olomouc, CZ-78371, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, Olomouc, CZ-78371, Czech Republic
| | - Federica Marone
- Swiss Light Source, Paul Scherrer Institute, Villigen, CH-5232, Switzerland
| | - Kazumi Nakabayashi
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Gerhard Leubner-Metzger
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, Olomouc, CZ-78371, Czech Republic
| |
Collapse
|
28
|
Fernández-Pascual E, Carta A, Mondoni A, Cavieres LA, Rosbakh S, Venn S, Satyanti A, Guja L, Briceño VF, Vandelook F, Mattana E, Saatkamp A, Bu H, Sommerville K, Poschlod P, Liu K, Nicotra A, Jiménez-Alfaro B. The seed germination spectrum of alpine plants: a global meta-analysis. THE NEW PHYTOLOGIST 2021; 229:3573-3586. [PMID: 33205452 DOI: 10.1111/nph.17086] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
Assumptions about the germination ecology of alpine plants are presently based on individual species and local studies. A current challenge is to synthesise, at the global level, the alpine seed ecological spectrum. We performed a meta-analysis of primary data from laboratory experiments conducted across four continents (excluding the tropics) and 661 species, to estimate the influence of six environmental cues on germination proportion, mean germination time and germination synchrony; accounting for seed morphology (mass, embryo : seed ratio) and phylogeny. Most alpine plants show physiological seed dormancy, a strong need for cold stratification, warm-cued germination and positive germination responses to light and alternating temperatures. Species restricted to the alpine belt have a higher preference for warm temperatures and a stronger response to cold stratification than species whose distribution extends also below the treeline. Seed mass, embryo size and phylogeny have strong constraining effects on germination responses to the environment. Globally, overwintering and warm temperatures are key drivers of germination in alpine habitats. The interplay between germination physiology and seed morphological traits further reflects pressures to avoid frost or drought stress. Our results indicate the convergence, at the global level, of the seed germination patterns of alpine species.
Collapse
Affiliation(s)
| | - Angelino Carta
- Dipartimento di Biologia, Botany Unit, University of Pisa, Pisa, 56126, Italy
| | - Andrea Mondoni
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, 27100, Italy
| | - Lohengrin A Cavieres
- Departamento de Botánica|Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, 4070386, Chile
- Chile and Institute of Ecology and Biodiversity (IEB), Santiago, Chile
| | - Sergey Rosbakh
- Chair of Ecology and Conservation Biology, Institute of Plant Sciences, University of Regensburg, Regensburg, 93053, Germany
| | - Susanna Venn
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, 3125, Australia
| | - Annisa Satyanti
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, ACT, 2600, Australia
| | - Lydia Guja
- Centre for Australian National Biodiversity Research, a joint venture between Parks Australia and CSIRO, Canberra, ACT, 2601, Australia
- National Seed Bank, Australian National Botanic Gardens, Canberra, ACT, 2601, Australia
| | | | | | - Efisio Mattana
- Natural Capital and Plant Health Department, Royal Botanic Gardens, Kew, Ardingly, RH17 6TN, UK
| | - Arne Saatkamp
- Aix Marseille Université, Université d'Avignon, CNRS, IRD, IMBE, Facultés St Jérôme, case 421, Marseille, 13397, France
| | - Haiyan Bu
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, 730000, China
| | - Karen Sommerville
- The Australian PlantBank, Australian Institute of Botanical Science, The Royal Botanic Gardens & Domain Trust, Mount Annan, NSW, 2567, Australia
| | - Peter Poschlod
- Chair of Ecology and Conservation Biology, Institute of Plant Sciences, University of Regensburg, Regensburg, 93053, Germany
| | - Kun Liu
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, 730000, China
| | - Adrienne Nicotra
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, ACT, 2600, Australia
| | - Borja Jiménez-Alfaro
- Research Unit of Biodiversity (CSUC/UO/PA), University of Oviedo, Mieres, 33600, Spain
| |
Collapse
|
29
|
Del Vecchio S, Mattana E, Ulian T, Buffa G. Functional seed traits and germination patterns predict species coexistence in Northeast Mediterranean foredune communities. ANNALS OF BOTANY 2021; 127:361-370. [PMID: 33090204 PMCID: PMC7872124 DOI: 10.1093/aob/mcaa186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIMS The structure of plant communities, which is based on species abundance ratios, is closely linked to ecosystem functionality. Seed germination niche plays a major role in shaping plant communities, although it has often been neglected when explaining species coexistence. The aim of this work is to link the seed germination niche to community ecology, investigating how functional seed traits contribute to species coexistence. METHODS Species selection was based on a database of 504 vegetation surveys from the Veneto coast (Italy). Through cluster analysis we identified the foredune community and selected all of its 19 plant species. By using the 'Phi coefficient' and frequency values, species were pooled in different categories (foundation species, accidental species of the semi-fixed dune and aliens), then the 19 species were grouped according to their germination responses to temperature and photoperiod through cluster analyses. For each germination cluster, we investigated germination trends against temperature and photoperiod by using generalized linear mixed models. KEY RESULTS We identified four germination strategies: (1) high germination under all tested conditions ('high-germinating'); (2) high germination at warm temperatures in the dark ('dark warm-cued'); (3) high germination at warm temperatures in the light ('light warm-cued'); and (4) low germination, regardless of conditions ('low-germinating'). Foredune foundation species showed a narrow germination niche, being 'low-germinating' or 'dark warm-cued'. Annual species of semi-fixed dunes were 'high-germinating', while alien species were the only members of the 'light warm-cued' cluster. CONCLUSIONS Our research suggests that different categories of species have dissimilar seed germination niches, which contributes to explaining their coexistence. Climatic events, such as rising temperature, could alter germination patterns, favouring seed regeneration of certain categories (i.e. alien and semi-fixed dune species) at the expense of others (i.e. foundation species, pivotal to ecosystem functioning), and hence potentially altering the plant community structure.
Collapse
Affiliation(s)
- Silvia Del Vecchio
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Venice, Italy
| | - Efisio Mattana
- Natural Capital and Plant Health, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, UK
| | - Tiziana Ulian
- Natural Capital and Plant Health, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, UK
| | - Gabriella Buffa
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Venice, Italy
| |
Collapse
|
30
|
Mertens D, Boege K, Kessler A, Koricheva J, Thaler JS, Whiteman NK, Poelman EH. Predictability of Biotic Stress Structures Plant Defence Evolution. Trends Ecol Evol 2021; 36:444-456. [PMID: 33468354 DOI: 10.1016/j.tree.2020.12.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022]
Abstract
To achieve ecological and reproductive success, plants need to mitigate a multitude of stressors. The stressors encountered by plants are highly dynamic but typically vary predictably due to seasonality or correlations among stressors. As plants face physiological and ecological constraints in responses to stress, it can be beneficial for plants to evolve the ability to incorporate predictable patterns of stress in their life histories. Here, we discuss how plants predict adverse conditions, which plant strategies integrate predictability of biotic stress, and how such strategies can evolve. We propose that plants commonly optimise responses to correlated sequences or combinations of herbivores and pathogens, and that the predictability of these patterns is a key factor governing plant strategies in dynamic environments.
Collapse
Affiliation(s)
- Daan Mertens
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| | - Karina Boege
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-275, Coyoacán, C.P. 04510, Ciudad de México, Mexico
| | - André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Julia Koricheva
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | | | - Noah K Whiteman
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| |
Collapse
|
31
|
Kumar A, Memo M, Mastinu A. Plant behaviour: an evolutionary response to the environment? PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:961-970. [PMID: 32557960 DOI: 10.1111/plb.13149] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/01/2020] [Indexed: 05/21/2023]
Abstract
Plants are not just passive living beings that exist in nature. They are complex and highly adaptable species that react sensitively to environmental forces/stimuli with movement, morphological changes and through the communication via volatile molecules. In a way, plants mimic some traits of animal and human behaviour; they compete for limited resources by gaining more area for more sunlight and spread their roots underground. Furthermore, in order to survive and thrive, they evolve and 'learn' to control various environmental stress factors in order to increase the yield of flowering, fertilization and germination processes. The concept of associating complex behaviour, such as intelligence, with plants is still a highly debatable topic among researchers worldwide. Recent studies have shown that plants are able to discriminate between positive and negative experiences and 'learn' from them. Some botanists have interpreted these behavioural data as a form of primitive cognitive processes. Others have evaluated these responses as biological automatisms of plants determined by adaptation to the environment and absence of intelligence. This review aims to explore adaptive behavioural aspects of various plant species distributed in different ecosystems by emphasizing their biological complexity and survival instincts.
Collapse
Affiliation(s)
- A Kumar
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - M Memo
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - A Mastinu
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
32
|
Porceddu M, Pritchard HW, Mattana E, Bacchetta G. Differential Interpretation of Mountain Temperatures by Endospermic Seeds of Three Endemic Species Impacts the Timing of In Situ Germination. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1382. [PMID: 33081420 PMCID: PMC7603068 DOI: 10.3390/plants9101382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 11/18/2022]
Abstract
Predicting seed germination in the field is a critical part of anticipating the impact of climate change on the timing of wild species regeneration. We combined thermal time and soil heat sum models of seed germination for three endemic Mediterranean mountain species with endospermic seeds and morphophysiological dormancy: Aquilegia barbaricina, Paeonia corsica, and Ribes sandalioticum. Seeds were buried in the soil within the respective collection sites, both underneath and outside the tree canopy, and their growth was assessed regularly and related to soil temperatures and estimates of the thermal characteristics of the seeds. The thermal thresholds for embryo growth and seed germination of A. barbaricina assessed in previous studies under controlled conditions were used to calculate soil heat sum accumulation of this species in the field. Thermal thresholds of seed germination for P. corsica and R. sandalioticum were not previously known and were estimated for the first time in this field study, based on findings of previous works carried out under controlled conditions. Critical embryo length and maximum germination for A. barbaricina were reached in April, and in December for R. sandalioticum. Seeds of P. corsica stay dormant in the ground until the following summer, and the critical embryo length and highest germination were detected from September to December. Soil heat sum models predicted earlier germination by one month for all three species under two Intergovernmental Panel on Climate Change (IPCC) scenarios, based on the assumption that the estimated thermal thresholds will remain constant through climate changes. This phenological shift may increase the risk of mortality for young seedlings. The models developed provide important means of connecting the micro-environmental niche for in situ seed germination and the macro-environmental parameters under a global warming scenario.
Collapse
Affiliation(s)
- Marco Porceddu
- Sardinian Germplasm Bank (BG-SAR), Hortus Botanicus Karalitanus (HBK), University of Cagliari, Viale S. Ignazio da Laconi, 9-11, 09123 Cagliari, Italy;
- Centre for the Conservation of Biodiversity (CCB), Life and Environmental Sciences Department, University of Cagliari, Viale S. Ignazio da Laconi 11-13, 09123 Cagliari, Italy
| | - Hugh W. Pritchard
- Royal Botanic Gardens, Kew, Wellcome Trust Millennium Building, Wakehurst, Ardingly, West Sussex RH17 6TN, UK; (H.W.P.); (E.M.)
| | - Efisio Mattana
- Royal Botanic Gardens, Kew, Wellcome Trust Millennium Building, Wakehurst, Ardingly, West Sussex RH17 6TN, UK; (H.W.P.); (E.M.)
| | - Gianluigi Bacchetta
- Sardinian Germplasm Bank (BG-SAR), Hortus Botanicus Karalitanus (HBK), University of Cagliari, Viale S. Ignazio da Laconi, 9-11, 09123 Cagliari, Italy;
- Centre for the Conservation of Biodiversity (CCB), Life and Environmental Sciences Department, University of Cagliari, Viale S. Ignazio da Laconi 11-13, 09123 Cagliari, Italy
| |
Collapse
|
33
|
Cochrane JA. Thermal Requirements Underpinning Germination Allude to Risk of Species Decline from Climate Warming. PLANTS 2020; 9:plants9060796. [PMID: 32630588 PMCID: PMC7355932 DOI: 10.3390/plants9060796] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 11/16/2022]
Abstract
The storage of seeds is a commonly used means of preserving plant genetic diversity in the face of rising threats such as climate change. Here, the findings of research from the past decade into thermal requirements for germination are synthesised for more than 100 plant species from southern Western Australia. This global biodiversity hotspot is predicted to suffer major plant collapse under forecast climate change. A temperature gradient plate was used to assess the thermal requirements underpinning seed germination in both commonly occurring and geographically restricted species. The results suggest that the local climate of the seed source sites does not drive seed responses, neither is it indicative of temperatures for optimal germination. The low diurnal phase of the temperature regime provided the most significant impact on germination timing. Several species germinated optimally at mean temperatures below or close to current wet quarter temperatures, and more than 40% of species were likely to be impacted in the future, with germination occurring under supra-optimal temperature conditions. This research highlights both species vulnerability and resilience to a warming climate during the regeneration phase of the life cycle and provides vital information for those aiming to manage, conserve and restore this regional flora.
Collapse
Affiliation(s)
- Jennifer Anne Cochrane
- Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Western Australia 6983, Australia; ; Tel.: +61-429-698-644
- Division of Ecology and Evolution, College of Science, Australian National University, Canberra ACT 0200, Australia
| |
Collapse
|
34
|
Cuena-Lombraña A, Porceddu M, Dettori CA, Bacchetta G. Predicting the consequences of global warming on Gentiana lutea germination at the edge of its distributional and ecological range. PeerJ 2020; 8:e8894. [PMID: 32411511 PMCID: PMC7210811 DOI: 10.7717/peerj.8894] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 03/11/2020] [Indexed: 11/20/2022] Open
Abstract
Background Temperature is the main environmental factor controlling seed germination; it determines both the percentage and the rate of germination. According to the Intergovernmental Panel on Climate Change, the global mean surface temperature could increase of approximately 2–4 °C by 2090–2099. As a consequence of global warming, the period of snow cover is decreasing on several mountain areas. Thermal time approach can be used to characterise the seed germination of plants and to evaluate the germination behaviour under the climate change scenarios. In this study, the effect of different cold stratification periods on seed dormancy release and germination of Gentiana lutea subsp. lutea, a taxon listed in Annex V of the Habitats Directive (92/43/EEC), was evaluated. Furthermore, the thermal requirements and the consequences of the temperature rise for seed germination of this species were estimated. In addition, a conceptual representation of the thermal time approach is presented. Methods Seeds of G. lutea subsp. lutea were harvested from at least 50 randomly selected plants in two representative localities of the Gennargentu massif (Sardinia). Germination tests were carried out under laboratory conditions and the responses at 5, 10, 15, 20, 25 and 30 °C were recorded. Different cold stratification pre-treatments at 1 ± 1 °C (i.e. 0, 15, 30, 60 and 90 days) were applied. Successively, the base temperature (Tb) and the number of thermal units (θ, °Cd) for germination were estimated. Additionally, this study examined the consequences of an increase in temperatures based on the Representative Concentration Pathways (RPC) scenarios. Results The results indicated that from 0 to 30 days of cold stratification, the germination was null or very low. After 60 and 90 days of cold stratification the seed dormancy was removed; however, 25 and 30 °C negatively affected the germination capacity of non-dormant seeds. Seeds cold-stratified for 90 days showed a lower Tb than those stratified for 60 days. However, 60 and 90 days of cold stratification did not cause great variations in the thermal time units. Analysing the RPC scenarios, we detected that the number of days useful for dormancy release of seeds of G. lutea may be less than 30 days, a condition that does not permit an effective dormancy release. Conclusions We conclude that seeds of G. lutea need at least 60 days of cold stratification to remove dormancy and promote the germination. The thermal time model developed in this work allowed us to identify the thermal threshold requirements of seed germination of this species, increasing the knowledge of a plant threatened by global warming. Our results emphasise the need for further studies aiming at a better characterisation of germination efficiency, especially for species that require cold stratification. This would improve the knowledge on the germination mechanisms of adaptation to different future global warming conditions.
Collapse
Affiliation(s)
- Alba Cuena-Lombraña
- Sardinian Germplasm Bank (BG-SAR), Hortus Botanicus Karalitanus (HBK), University of Cagliari, Cagliari, Italy.,Department of Life and Environmental Sciences, Centre for the Conservation of Biodiversity (CCB), University of Cagliari, Cagliari, Italy
| | - Marco Porceddu
- Sardinian Germplasm Bank (BG-SAR), Hortus Botanicus Karalitanus (HBK), University of Cagliari, Cagliari, Italy.,Department of Life and Environmental Sciences, Centre for the Conservation of Biodiversity (CCB), University of Cagliari, Cagliari, Italy
| | - Caterina Angela Dettori
- Department of Life and Environmental Sciences, Centre for the Conservation of Biodiversity (CCB), University of Cagliari, Cagliari, Italy
| | - Gianluigi Bacchetta
- Sardinian Germplasm Bank (BG-SAR), Hortus Botanicus Karalitanus (HBK), University of Cagliari, Cagliari, Italy.,Department of Life and Environmental Sciences, Centre for the Conservation of Biodiversity (CCB), University of Cagliari, Cagliari, Italy
| |
Collapse
|
35
|
Abstract
Climate change leads to global drought-induced stress and increased plant mortality. Tree species living in rapidly changing climate conditions are exposed to danger and must adapt to new climate conditions to survive. Trees respond to changes in the environment in numerous ways. Physiological modulation at the seed stage, germination strategy and further development are influenced by many different factors. We review forest abiotic threats (such as drought and heat), including biochemical responses of plants to stress, and biotic threats (pathogens and insects) related to global warming. We then discus the varied adaptations of tree species to changing climate conditions such as seed resistance to environmental stress, improved by an increase in temperature, affinity to specific fungal symbionts, a wide range of tolerance to abiotic environmental conditions in the offspring of populations occurring in continental climate, and germination strategies closely linked to the ecological niche of the species. The existing studies do not clearly indicate whether tree adaptations are shaped by epigenetics or phenology and do not define the role of phenotypic plasticity in tree development. We have created a juxtaposition of literature that is useful in identifying the factors that play key roles in these processes. We compare scientific evidence that species distribution and survival are possible due to phenotypic plasticity and thermal memory with studies that testify that trees’ phenology depends on phylogenesis, but this issue is still open. It is possible that studies in the near future will bring us closer to understanding the mechanisms through which trees adapt to stressful conditions, especially in the context of epigenetic memory in long-lived organisms, and allow us to minimize the harmful effects of climatic events by predicting tree species’ responses or by developing solutions such as assisted migration to mitigate the consequences of these phenomena.
Collapse
|
36
|
Zhang C, Ma Z, Zhou H, Zhao X. Long-term warming results in species-specific shifts in seed mass in alpine communities. PeerJ 2019; 7:e7416. [PMID: 31396451 PMCID: PMC6679644 DOI: 10.7717/peerj.7416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 07/05/2019] [Indexed: 11/20/2022] Open
Abstract
Background Global warming can cause variation in plant functional traits due to phenotypic plasticity or rapid microevolutionary change. Seed mass represents a fundamental axis of trait variation in plants, from an individual to a community scale. Here, we hypothesize that long-term warming can shift the mean seed mass of species. Methods We tested our hypothesis in plots that had been warmed over 18 years in alpine meadow communities with a history of light grazing (LG) and heavy grazing (HG) on the Qinghai-Tibet plateau. In this study, seeds were collected during the growing season of 2015. Results We found that warming increased the mean seed mass of 4 (n = 19) species in the LG meadow and 6 (n = 20) species in the HG meadow, while decreasing the mean seed mass of 6 species in the LG and HG meadows, respectively. For 7 species, grazing history modified the effect of warming on seed mass. Therefore, we concluded that long-term warming can shift the mean seed mass at the species level. However, the direction of this variation is species-specific. Our study suggests that mean seed mass of alpine plant species appears to decrease in warmer (less stressful) habitats based on life-history theory, but it also suggests there may be an underlying trade-off in which mean seed mass may increase due to greater thermal energy inputs into seed development. Furthermore, the physical and biotic environment modulating this trade-off result in complex patterns of variation in mean seed mass of alpine plant species facing global warming.
Collapse
Affiliation(s)
- Chunhui Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China.,Key Laboratory of Restoration Ecology for Cold Regions in Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Zhen Ma
- Key Laboratory of Restoration Ecology for Cold Regions in Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China.,Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Huakun Zhou
- Key Laboratory of Restoration Ecology for Cold Regions in Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China.,Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Xinquan Zhao
- Key Laboratory of Restoration Ecology for Cold Regions in Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China.,Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| |
Collapse
|