1
|
Zhou X, Meng J, Zhang K, Zheng H, Xi Q, Peng Y, Xu X, Gu J, Xia Q, Wei L, Wang P. Outcome prediction comparison of ischaemic areas' radiomics in acute anterior circulation non-lacunar infarction. Brain Commun 2024; 6:fcae393. [PMID: 39574430 PMCID: PMC11580218 DOI: 10.1093/braincomms/fcae393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/16/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024] Open
Abstract
The outcome prediction of acute anterior circulation non-lacunar infarction (AACNLI) is important for the precise clinical treatment of this disease. However, the accuracy of prognosis prediction is still limited. This study aims to develop and compare machine learning models based on MRI radiomics of multiple ischaemic-related areas for prognostic prediction in AACNLI. This retrospective multicentre study consecutively included 372 AACNLI patients receiving MRI examinations and conventional therapy between October 2020 and February 2023. These were grouped into training set, internal test set and external test set. MRI radiomics features were extracted from the mask diffusion-weighted imaging, mask apparent diffusion coefficient (ADC) and mask ADC620 by AACNLI segmentations. Grid search parameter tuning was performed on 12 feature selection and 9 machine learning algorithms, and algorithm combinations with the smallest rank-sum of area under the curve (AUC) was selected for model construction. The performances of all models were evaluated in the internal and external test sets. The AUC of radiomics model was larger than that of non-radiomics model with the same machine learning algorithm in the three mask types. The radiomics model using least absolute shrinkage and selection operator-random forest algorithm combination gained the smallest AUC rank-sum among all the algorithm combinations. The AUC of the model with ADC620 was 0.98 in the internal test set and 0.91 in the external test set, and the weighted average AUC in the three sets was 0.96, the largest among three mask types. The Shapley additive explanations values of the maximum of National Institute of Health Stroke Scale score within 7 days from onset (7-d NIHSSmax), stroke-associated pneumonia and admission Glasgow coma scale score ranked top three among the features in AACNLI outcome prediction. In conclusion, the random forest model with mask ADC620 can accurately predict the AACNLI outcome and reveal the risk factors leading to the poor prognosis.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jinxi Meng
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Kangwei Zhang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Hui Zheng
- Department of Radiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Qian Xi
- Department of Radiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Yifeng Peng
- Department of Radiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Xiaowen Xu
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jianjun Gu
- Department of Radiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Qing Xia
- SenseTime Research, Shanghai 200232, China
| | - Lai Wei
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Peijun Wang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
- Institute of Medical Imaging Artificial Intelligence, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
2
|
Wu Q, Zhang YN, Zhang NN, Liu QY, Cai JR, Chen HS. Age affects the association of red blood cell indices with efficacy of remote ischemic conditioning in patients with acute moderate ischemic stroke. Sci Rep 2024; 14:22561. [PMID: 39343777 PMCID: PMC11439910 DOI: 10.1038/s41598-024-74293-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
We conducted a post hoc analysis of Remote Ischemic Conditioning for Acute Moderate Ischemic Stroke (RICAMIS) to investigate whether red blood cell (RBC) indices are associated with efficacy of remote ischemic conditioning (RIC), and whether the association is affected by age. In this post hoc analysis, patients with RBC indices at admission were enrolled. RBC indices including RBC count, hematocrit (HCT), mean corpuscular volume (MCV), hemoglobin (HB), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC) were analyzed. According to the median of these RBC indices, eligible patients were divided into high and low groups, which were further subdivided into RIC and control subgroups. Primary endpoint was excellent functional outcome defined as a modified Rankin Scale score of 0-1 at 90 days, which was used to evaluate RIC efficacy. RIC efficacy as well as effect of age on RIC efficacy were analyzed across the high and low groups of different RBC indices, and the interaction effects of RBC indices on RIC efficacy were evaluated. A total of 1640 patients were enrolled in the final analysis. In overall patients, no significant interaction effects of RIC intervention by all RBC indices were found, although there was a trend in interaction effect of RIC intervention by MCH (p = 0.116). However, we found an effect of age on the association of MCH with RIC efficacy. In patients over 60 years old, MCH significantly affected RIC efficacy (p = 0.006) and RIC significantly produced a higher proportion of primary outcome in high MCH (72.6% vs. 59.1%, P < 0.001) vs. low MCH group (61.2% vs. 62%, P = 0.829), which was not identified in patients under 60 years old. Furthermore, RIC efficacy decreased with increasing age in patients with low MCH with significant interaction effect (p = 0.012), while RIC efficacy increased with increasing age in patients with high MCH although no significant interaction (p = 0.126). No significant interaction effects of RIC intervention by RBC count, HCT, MCV, HB, and MCHC were found regardless of age. This secondary analysis of RICAMIS suggested that RIC exhibited more obvious benefit in AIS patients over 60 years old with high MCH compared with those with low MCH group, but RBC count, HCT, MCV, HB, and MCHC were not associated with the efficacy of RIC treatment regardless of age.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Neurology, General Hospital of Northern Theater Command, 83 Wen Hua Road, Shenyang, 110016, China
| | - Yi-Na Zhang
- Department of Neurology, General Hospital of Northern Theater Command, 83 Wen Hua Road, Shenyang, 110016, China
| | - Nan-Nan Zhang
- Department of Neurology, General Hospital of Northern Theater Command, 83 Wen Hua Road, Shenyang, 110016, China
| | - Quan-Ying Liu
- Department of Neurology, General Hospital of Northern Theater Command, 83 Wen Hua Road, Shenyang, 110016, China
| | - Ji-Ru Cai
- Department of Neurology, General Hospital of Northern Theater Command, 83 Wen Hua Road, Shenyang, 110016, China
| | - Hui-Sheng Chen
- Department of Neurology, General Hospital of Northern Theater Command, 83 Wen Hua Road, Shenyang, 110016, China.
| |
Collapse
|
3
|
Morais A, Imai T, Jin X, Locascio JJ, Boisserand L, Herman AL, Chauhan A, Lamb J, Nagarkatti K, Diniz MA, Kumskova M, Dhanesha N, Kamat PK, Khan MB, Dhandapani KM, Patel RB, Sutariya B, Shi Y, van Leyen K, Kimberly WT, Hess DC, Aronowski J, Leira EC, Koehler RC, Chauhan AK, Sansing LH, Lyden PD, Ayata C. Biological and Procedural Predictors of Outcome in the Stroke Preclinical Assessment Network (SPAN) Trial. Circ Res 2024; 135:575-592. [PMID: 39034919 PMCID: PMC11428171 DOI: 10.1161/circresaha.123.324139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND The SPAN trial (Stroke Preclinical Assessment Network) is the largest preclinical study testing acute stroke interventions in experimental focal cerebral ischemia using endovascular filament middle cerebral artery occlusion (MCAo). Besides testing interventions against controls, the prospective design captured numerous biological and procedural variables, highlighting the enormous heterogeneity introduced by the multicenter structure that might influence stroke outcomes. Here, we leveraged the unprecedented sample size achieved by the SPAN trial and the prospective design to identify the biological and procedural variables that affect experimental stroke outcomes in transient endovascular filament MCAo. METHODS The study cohort included all mice enrolled and randomized in the SPAN trial (N=1789). Mice were subjected to 60-minute MCAo and followed for a month. Thirteen biological and procedural independent variables and 4 functional (weight loss and 4-point neuroscore on days 1 and 2, corner test on days 7 and 28, and mortality) and 3 tissue (day 2, magnetic resonance imaging infarct volumes and swelling; day 30, magnetic resonance imaging tissue loss) outcome variables were prospectively captured. Multivariable regression with stepwise elimination was used to identify the predictors and their effect sizes. RESULTS Older age, active circadian stage at MCAo, and thinner and longer filament silicone tips predicted higher mortality. Older age, larger body weight, longer anesthesia duration, and longer filament tips predicted worse neuroscores, while high-fat diet and blood flow monitoring predicted milder neuroscores. Older age and a high-fat diet predicted worse corner test performance. While shorter filament tips predicted more ipsiversive turning, longer filament tips appeared to predict contraversive turning. Age, sex, and weight interacted when predicting the infarct volume. Older age was associated with smaller infarcts on day 2 magnetic resonance imaging, especially in animals with larger body weights; this association was most conspicuous in females. High-fat diet also predicted smaller infarcts. In contrast, the use of cerebral blood flow monitoring and more severe cerebral blood flow drop during MCAo, longer anesthesia, and longer filament tips all predicted larger infarcts. Bivariate analyses among the dependent variables highlighted a disconnect between tissue and functional outcomes. CONCLUSIONS Our analyses identified variables affecting endovascular filament MCAo outcome, an experimental stroke model used worldwide. Multiple regression refuted some commonly reported predictors and revealed previously unrecognized associations. Given the multicenter prospective design that represents a sampling of real-world conditions, the degree of heterogeneity mimicking clinical trials, the large number of predictors adjusted for in the multivariable model, and the large sample size, we think this is the most definitive analysis of the predictors of preclinical stroke outcome to date. Future multicenter experimental stroke trials should standardize or at least ensure a balanced representation of the biological and procedural variables identified herein as potential confounders.
Collapse
Affiliation(s)
- Andreia Morais
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Takahiko Imai
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Xuyan Jin
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Joseph J Locascio
- Harvard Catalyst Biostatistical Consulting Unit, Department of Biostatistics, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Harvard Medical School, Boston MA, USA
| | - Ligia Boisserand
- Department of Neurology, Yale University School of Medicine, New Haven, CT USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT USA
| | - Alison L. Herman
- Department of Neurology, Yale University School of Medicine, New Haven, CT USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT USA
| | - Anjali Chauhan
- Department of Neurology, McGovern Medical School, University of Texas HSC, Houston, TX, USA
| | - Jessica Lamb
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Los Angeles, CA USA
- Department of Neurology, Keck School of Medicine at USC, Los Angeles, CA, USA
| | - Karisma Nagarkatti
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Los Angeles, CA USA
- Department of Neurology, Keck School of Medicine at USC, Los Angeles, CA, USA
| | - Marcio A. Diniz
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mariia Kumskova
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nirav Dhanesha
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, USA
| | - Pradip K. Kamat
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA
| | | | | | - Rakesh B. Patel
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Brijesh Sutariya
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Yanrong Shi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Klaus van Leyen
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - W. Taylor Kimberly
- Department of Neurology, Massachusetts General Hospital, Boston, Harvard Medical School, Boston MA, USA
| | - David C. Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Jaroslaw Aronowski
- Department of Neurology, McGovern Medical School, University of Texas HSC, Houston, TX, USA
| | - Enrique C. Leira
- Departments of Neurology, Neurosurgery, Carver College of Medicine, and Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Raymond C. Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Anil K. Chauhan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lauren H. Sansing
- Department of Neurology, Yale University School of Medicine, New Haven, CT USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT USA
| | - Patrick D. Lyden
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Los Angeles, CA USA
- Department of Neurology, Keck School of Medicine at USC, Los Angeles, CA, USA
| | - Cenk Ayata
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Harvard Medical School, Boston MA, USA
| |
Collapse
|
4
|
Mavridis A, Reinholdsson M, Sunnerhagen KS, Abzhandadze T. Predictors of functional outcome after stroke: Sex differences in older individuals. J Am Geriatr Soc 2024; 72:2100-2110. [PMID: 38741476 DOI: 10.1111/jgs.18963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/21/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Sex differences in stroke are well documented, with females being older at onset, with more severe strokes and worse outcomes than males. Females receive less comprehensive stroke unit treatment. Similarly, older individuals receive poorer quality care than younger ones. There is limited research on sex differences in factors that impact 3-month poststroke functional outcome in people older than 80 years. METHODS This register-based and cross-sectional study analyzed data from two stroke quality registers in Sweden from 2014 through 2019. The study included patients aged ≥80 with a diagnosis of ischemic or hemorrhagic stroke. Sociodemographic features, prestroke condition, stroke severity on admission (National Institutes of Health Stroke Scale [NIHSS]), stroke unit care, rehabilitation plans, and 3-month poststroke functional outcome measured with the modified Rankin Scale were analyzed. Ordinal regression analyses stratified by sex were conducted to assess sex differences in factors that impact poststroke functional outcome 3 months after the stroke. RESULTS A total of 2245 patients were studied with the majority (59.2%) being females. Females experienced more severe strokes (NIHSS median 4 vs. 3, p = 0.01) and were older at stroke onset than males (87.0 vs. 85.4, p < 0.001). Females were also less independent prestroke (69.9% vs. 77.4%, p < 0.001) and a higher proportion of females lived alone (78.2% vs. 44.2%, p < 0.001). Males received intravenous thrombolysis more often than females (16.3% vs. 12.0%, p = 0.005). Regarding 3-month functional outcome, males benefited more from thrombolysis (odds ratio [OR] 0.52, 95% confidence interval [CI] 0.30-0.83), whereas females benefited more from thrombectomy (OR 0.40, 95% CI 0.20-0.71). CONCLUSION Stroke care should be adapted to sex disparities in older individuals, while clinicians should be aware of these sex disparities. Further research could clarify the mechanisms behind these disparities and lead to a more personalized approach to stroke care of the older population.
Collapse
Affiliation(s)
- Anastasios Mavridis
- School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Institute of Neuroscience and Physiology, Rehabilitation Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Malin Reinholdsson
- Institute of Neuroscience and Physiology, Rehabilitation Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Occupational Therapy and Physiotherapy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Katharina S Sunnerhagen
- Institute of Neuroscience and Physiology, Rehabilitation Medicine, University of Gothenburg, Gothenburg, Sweden
- Neurocare, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tamar Abzhandadze
- Institute of Neuroscience and Physiology, Rehabilitation Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Occupational Therapy and Physiotherapy, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
5
|
Mbs GBY, Wasek B, Bottiglieri T, Malysheva O, Caudill MA, Jadavji NM. Dietary vitamin B12 deficiency impairs motor function and changes neuronal survival and choline metabolism after ischemic stroke in middle-aged male and female mice. Nutr Neurosci 2024; 27:300-309. [PMID: 36932327 DOI: 10.1080/1028415x.2023.2188639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Nutrition is a modifiable risk factor for ischemic stroke. As people age their ability to absorb some nutrients decreases, a primary example is vitamin B12. Older individuals with a vitamin B12 deficiency are at a higher risk for ischemic stroke and have worse stroke outcome. However, the mechanisms through which these occur remain unknown. The aim of the study was to investigate the role of vitamin B12 deficiency in ischemic stroke outcome and mechanistic changes in a mouse model. Ten-month-old male and female mice were put on control or vitamin B12 deficient diets for 4 weeks prior to and after ischemic stroke to the sensorimotor cortex. Motor function was measured, and tissues were collected to assess potential mechanisms. All deficient mice had increased levels of total homocysteine in plasma and liver tissues. After ischemic stroke, deficient mice had impaired motor function compared to control mice. There was no difference between groups in ischemic damage volume. However, within the ischemic damage region, there was an increase in total apoptosis of male deficient mice compared to controls. Furthermore, there was an increase in neuronal survival in ischemic brain tissue of the vitamin B12 deficient mice compared to controls. Additionally, there were changes in choline metabolites in ischemic brain tissue because of a vitamin B12 deficiency. The data presented in this study confirms that a vitamin B12 deficiency worsens stroke outcome in male and female mice. The mechanisms driving this change may be a result of neuronal survival and compensation in choline metabolism within the damaged brain tissue.
Collapse
Affiliation(s)
- Gyllian B Yahn Mbs
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ, USA
| | - Brandi Wasek
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Olga Malysheva
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Nafisa M Jadavji
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ, USA
- College of Veterinary Medicine, Midwestern University, Glendale, AZ, USA
- College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
- Department of Neuroscience, Carleton University, Ottawa, Canada
| |
Collapse
|
6
|
Cui Y, Zhang J, Chen H. Age and efficacy of remote ischemic conditioning in acute ischemic stroke. CNS Neurosci Ther 2024; 30:e14451. [PMID: 37664879 PMCID: PMC10916442 DOI: 10.1111/cns.14451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
AIMS A post hoc analysis of RICAMIS trial to evaluate functional outcomes in relation to patient age. METHODS Patients in RICAMIS were divided into six age groups. The primary outcome was excellent functional outcome at 90 days, defined as modified Rankin Scale (mRS) score of 0-1. Compared with patients receiving usual care alone, we investigated the association of remote ischemic conditioning (RIC) effect with functional outcomes in each group and the interaction between RIC effect and age. RESULTS Of 1776 patients, 498 were assigned to <60 years, 326 to 60 to <65 years, 325 to 65 to <70 years, 278 to 70 to <75 years, 206 to 75 to <80 years, and 143 to ≥80 years. Higher proportions of primary outcome were found associated with RIC in <60 years group (72.6% vs. 64.8%; adjusted risk difference [RD], 6.8%; 95% CI, -1.6% to 15.1%; p = 0.11), 60 to <65 years group (70.7% vs. 67.1%; adjusted RD, 3.1%; 95% CI, -7.2% to 13.3%; p = 0.56), 65 to <70 years group (70.5% vs. 63.6%; adjusted RD, 3.5%; 95% CI, -6.8% to 13.8%; p = 0.51), 70 to <75 years group (59.7% vs. 54.9%; adjusted RD, 4.7%; 95% CI, -7.1% to 16.4%; p = 0.61), 75 to <80 years group (61.5% vs. 55.9%; adjusted RD, 5.7%; 95% CI, -7.8% to 19.1%; p = 0.41), and ≥ 80 years group (59.2% vs. 59.7%; adjusted RD, -2.6%; 95% CI, -18.8% to 13.5%; p = 0.75). No significant interaction between RIC effect and age was found among groups. CONCLUSIONS This is the first report that RIC effect may be attenuated with increasing age in patients with acute moderate ischemic stroke with respect to functional outcome.
Collapse
Affiliation(s)
- Yu Cui
- Department of NeurologyGeneral Hospital of Northern Theater CommandShenyangChina
| | - Jing Zhang
- Yinchuan Dingxiang Internet HospitalYinchuanChina
| | - Hui‐Sheng Chen
- Department of NeurologyGeneral Hospital of Northern Theater CommandShenyangChina
| |
Collapse
|
7
|
Mehta SL, Chelluboina B, Morris-Blanco KC, Bathula S, Jeong S, Arruri V, Davis CK, Vemuganti R. Post-stroke brain can be protected by modulating the lncRNA FosDT. J Cereb Blood Flow Metab 2024; 44:239-251. [PMID: 37933735 PMCID: PMC10993881 DOI: 10.1177/0271678x231212378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/09/2023] [Accepted: 09/29/2023] [Indexed: 11/08/2023]
Abstract
We previously showed that knockdown or deletion of Fos downstream transcript (FosDT; a stroke-induced brain-specific long noncoding RNA) is neuroprotective. We presently tested the therapeutic potential of FosDT siRNA in rodents subjected to transient middle cerebral artery occlusion (MCAO) using the Stroke Treatment Academic Industry Roundtable criteria, including sex, age, species, and comorbidity. FosDT siRNA (IV) given at 30 min of reperfusion significantly improved motor function recovery (rotarod test, beam walk test, and adhesive removal test) and reduced infarct size in adult and aged spontaneously hypertensive rats of both sexes. FosDT siRNA administered in a delayed fashion (3.5 h of reperfusion following 1 h transient MCAO) also significantly improved motor function recovery and decreased infarct volume. Furthermore, FosDT siRNA enhanced post-stroke functional recovery in normal and diabetic mice. Mechanistically, FosDT triggered post-ischemic neuronal damage via the transcription factor REST as REST siRNA mitigated the enhanced functional outcome in FosDT-/- rats. Additionally, NF-κB regulated FosDT expression as NF-κB inhibitor BAY 11-7082 significantly decreased post-ischemic FosDT induction. Thus, FosDT is a promising target with a favorable therapeutic window to mitigate secondary brain damage and facilitate recovery after stroke regardless of sex, age, species, and comorbidity.
Collapse
Affiliation(s)
- Suresh L Mehta
- Department of Neurological Surgery University of Wisconsin, Madison, WI, USA
| | - Bharath Chelluboina
- Department of Neurological Surgery University of Wisconsin, Madison, WI, USA
| | - Kahlilia C Morris-Blanco
- Department of Neurological Surgery University of Wisconsin, Madison, WI, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Soomin Jeong
- Department of Neurological Surgery University of Wisconsin, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - Vijay Arruri
- Department of Neurological Surgery University of Wisconsin, Madison, WI, USA
| | - Charles K Davis
- Department of Neurological Surgery University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery University of Wisconsin, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
- William S. Middleton Veterans Hospital, Madison, WI, USA
| |
Collapse
|
8
|
Shao C, Wang Y, Gou H, Chen T. The factors associated with the deterioration of activities of daily life in stroke patients: A retrospective cohort study. Top Stroke Rehabil 2024; 31:21-28. [PMID: 36961229 DOI: 10.1080/10749357.2023.2194095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/19/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND The activities of daily life (ADL) of stroke patients generally improves after rehabilitation. However, some patients remain at risk of ADL deterioration in the future. So far, there have been few studies on the factors related to ADL deterioration in stroke patients. OBJECTIVE To identify the factors related to ADL deterioration in stroke patients with independent mobility after discharge. METHODS We assessed 336 stroke patients with independent mobility who were discharged from the rehabilitation center between January 2016 and December 2018. The primary outcome was ADL deterioration, defined as that ADL assessed at 2 years after discharge decreased more than 15 points compared with that assessed at discharge. Univariate and multivariate statistical analyses were conducted to screen for factors related to ADL deterioration. RESULTS Overall, 62 (18.4%) patients exhibited ADL deterioration at 2 years after discharge.Age (OR = 1.114, 95%CI = 1.045-1.188, p = 0.001), vascular risk factors>3 (OR = 3.269, 95%CI = 1.189-8.986, p = 0.022) and with post-stroke depression (OR = 2.486, 95%CI = 1.011-6.114, p = 0.047) were risk factors for ADL deterioration in stroke patients. In contrast, elevated Berg Balance Scale (BBS) scores at discharge was a protective factor for ADL deterioration (OR = 0.484, 95%CI = 0.386-0.606, p < 0.001). CONCLUSIONS Nearly 1 in 5 stroke patients with independent mobility experienced ADL deterioration at 2 years after discharge. Aging, vascular risk factors>3, BBS at discharge, and post-stroke depression (PSD) were identified as factors associated with ADL deterioration.
Collapse
Affiliation(s)
- Chenlan Shao
- The Rehabilitation Medicine Center, People's Hospital of Deyang City, Sichuan Province, China
| | - Yongzheng Wang
- The Rehabilitation Medicine Center, People's Hospital of Deyang City, Sichuan Province, China
| | - Hui Gou
- The Rehabilitation Medicine Center, People's Hospital of Deyang City, Sichuan Province, China
| | - Tingting Chen
- The Rehabilitation Medicine Center, People's Hospital of Deyang City, Sichuan Province, China
| |
Collapse
|
9
|
Liu BJ, Li J, Chen HS. Age and sex affect the association of systolic blood pressure with clinical outcomes in thrombolysed stroke patient: a secondary analysis of the INTRECIS study. Front Neurol 2023; 14:1273131. [PMID: 37920835 PMCID: PMC10618343 DOI: 10.3389/fneur.2023.1273131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/25/2023] [Indexed: 11/04/2023] Open
Abstract
Background and purpose Blood pressure is associated with outcomes in acute ischemic stroke (AIS) patients receiving intravenous alteplase. The study aimed to explore the effect of sex and age on their association. Methods Based on a prospective cohort, we retrospectively enrolled consecutive AIS patients who received intravenous alteplase and had complete blood pressure data, including baseline systolic blood pressure (SBP 01), SBP at 1 h (SBP 02), and SBP at 24 h (SBP 03) after alteplase. Maximum SBP (SBP max), minimum SBP (SBP min), and mean SBP (SBP mean) were calculated. Poor outcome was defined as having a modified Rankin Scale (mRS) score of 2-6 at 90 days. We explored the effect of age and sex on the association of different SBP indicators with the 3-month outcomes. Results A total of 1,593 eligible patients were included in the present study. All SBP indicators were found to be higher in patients with poor vs. good outcomes. Multivariate logistic regression analysis showed that all SBP indicators except baseline SBP were associated with poor outcomes with good prediction powers (AUC, 0.762-0.766). More SBP indicators (SBP 02, SBP 03, SBP min, and SBP mean) were associated with poor outcomes in women vs. men, while all SBP indicators after alteplase were associated with poor outcomes in patients aged ≥ 60 years, but none was seen in patients aged < 60 years. Furthermore, all SBP indicators after alteplase were associated with poor outcomes in women aged ≥ 60 years, while only SBP 03 in men aged < 60 years. Conclusion Among Chinese stroke patients treated with intravenous alteplase, SBP after alteplase was associated with clinical outcomes, which were affected by age and sex.
Collapse
Affiliation(s)
| | | | - Hui-Sheng Chen
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
10
|
Peeters-Scholte C, Meilin S, Berckovich Y, Westers P. 2-iminobiotin, a selective inhibitor of nitric oxide synthase, improves memory and learning in a rat model after four vessel occlusion, mimicking cardiac arrest. PLoS One 2023; 18:e0291915. [PMID: 37747911 PMCID: PMC10519591 DOI: 10.1371/journal.pone.0291915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 09/07/2023] [Indexed: 09/27/2023] Open
Abstract
Survivors of out-of-hospital cardiac arrest (OHCA) experience between 30% and 50% cognitive deficits several years post-discharge. Especially spatial memory is affected due to ischemia-induced neuronal damage in the hippocampus. Aim of this study was to investigate the potential neuroprotective effect of 2-iminobiotin (2-IB), a biotin analogue, on memory and learning in a four-vessel occlusion model of global ischemia using the Water Maze test. Sprague-Dawley rats were randomly assigned to either sham operation (n = 6), vehicle treatment (n = 20), 1.1 (n = 15), 3.3 (n = 14), 10 (n = 14), or 30 mg/kg/dose 2-IB treatment (n = 15). Treatment was subcutaneously (s.c.) administered immediately upon reperfusion, at 12h, and at 24h after reperfusion. Memory function on day 32 was significantly preserved in all doses of 2-IB rats compared to vehicle, as was the learning curve in the 1.1, 3.3 and 30 mg/kg dose group. Adult rats treated s.c. with 3 gifts of 2-IB every 12 h in a dose range of 1.1-30 mg/kg/dose directly upon reperfusion showed significant improved memory and learning after four vessel occlusion compared to vehicle-treated rats. Since 2-IB has already shown to be safe in a phase 1 clinical trial in adult human volunteers, it is a suitable candidate for translation to a human phase 2 study after OHCA.
Collapse
Affiliation(s)
| | - Sigal Meilin
- Neurology Service, MD Biosciences Ltd, Nes-Ziona, Israel
| | | | - Paul Westers
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
11
|
Zhong X, Sun Y, Lu Y, Xu L. Immunomodulatory role of estrogen in ischemic stroke: neuroinflammation and effect of sex. Front Immunol 2023; 14:1164258. [PMID: 37180115 PMCID: PMC10167039 DOI: 10.3389/fimmu.2023.1164258] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
Although estrogen is predominantly related to the maintenance of reproductive functioning in females, it mediates various physiological effects in nearly all tissues, especially the central nervous system. Clinical trials have revealed that estrogen, especially 17β-estradiol, can attenuate cerebral damage caused by an ischemic stroke. One mechanism underlying this effect of 17β-estradiol is by modulating the responses of immune cells, indicating its utility as a novel therapeutic strategy for ischemic stroke. The present review summarizes the effect of sex on ischemic stroke progression, the role of estrogen as an immunomodulator in immune reactions, and the potential clinical value of estrogen replacement therapy. The data presented here will help better understand the immunomodulatory function of estrogen and may provide a basis for its novel therapeutic use in ischemic stroke.
Collapse
Affiliation(s)
- Xiaojun Zhong
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Yulin Sun
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Yajun Lu
- Department of Internal Medicine, Sunto Women & Children’s Hospital, Jiaxing, China
| | - Lei Xu
- Department of Neurology, Zhejiang Rongjun Hospital, Jiaxing, China
| |
Collapse
|
12
|
Paniagua-Monrobel M, Escobio-Prieto I, Magni E, Galan-Mercant A, Lucena-Anton D, Pinero-Pinto E, Luque-Moreno C. Descriptive analysis of post-stroke patients in a neurological physical therapy unit. Front Neurol 2023; 14:1056415. [PMID: 36925941 PMCID: PMC10011182 DOI: 10.3389/fneur.2023.1056415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction Physical therapy (PT) is the mainstay treatment in functional recovery after suffering a stroke. It is important in the acute phase of hospitalization after a stroke and later in the ambulatory phase. Patients and methods The present study aimed to analyze the data provided by the clinical history (CH) of people with stroke (pwS) who received PT treatment in order to establish a "preferential patient profile" (PPP) that may benefit more from an early PT treatment. This was an observational, descriptive, and cross-sectional study. A total of 137 pwS who had been treated with PT were selected. Information provided age, gender, stroke type and localization, and start and end dates of the different PT treatments. A descriptive analysis of the variables was conducted using absolute frequencies and percentages for the qualitative variables. Student's t-test or the Mann-Whitney U-test was used to determine the relationship between the time and variables "stroke type," "outpatient," and "occupational therapy." The Kruskal-Wallis H-test was applied for the "localization" variable. Results Of the entire sample, 57.7% were men, 65% had an ischemic stroke, and 48.9% had a stroke on the left side. The patients with hemorrhagic stroke had an increased number of hospital PT sessions (p = 0.01) and were younger (59.58 years) than patients with ischemic stroke (65.90 years) (p = 0.04). Discussion and conclusion Our results do not show significant differences between the persons < 65 years and the number of outpatient physiotherapy sessions performed, although the resulting values are close to significance. Our results suggest that the PPP is a young person, with a hemorrhagic and left or bilateral stroke.
Collapse
Affiliation(s)
- Mercedes Paniagua-Monrobel
- Department of Physiotherapy, Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, Seville, Spain
- Neurological Physiotherapy Unit, Virgen del Rocio University Hospital, Seville, Spain
| | - Isabel Escobio-Prieto
- Department of Physiotherapy, Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, Seville, Spain
- Institute of Biomedicine of Seville (IBIS), Seville, Spain
| | - Eleonora Magni
- Department of Physiotherapy, Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, Seville, Spain
| | - Alejandro Galan-Mercant
- Department of Nursing and Physiotherapy, University of Cádiz, Cádiz, Spain
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education, Sciences University of Cádiz, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | - David Lucena-Anton
- Department of Nursing and Physiotherapy, University of Cádiz, Cádiz, Spain
- Intell-SOK (TIC-256) Research Group, Department of Informatics Engineering, University of Cadiz, Cádiz, Spain
| | - Elena Pinero-Pinto
- Department of Physiotherapy, Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, Seville, Spain
| | - Carlos Luque-Moreno
- Department of Physiotherapy, Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, Seville, Spain
- Institute of Biomedicine of Seville (IBIS), Seville, Spain
| |
Collapse
|
13
|
Reddy V, Wurtz M, Patel SH, McCarthy M, Raval AP. Oral contraceptives and stroke: Foes or friends. Front Neuroendocrinol 2022; 67:101016. [PMID: 35870646 DOI: 10.1016/j.yfrne.2022.101016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/23/2022] [Accepted: 07/06/2022] [Indexed: 01/09/2023]
Abstract
Incidents of strokes are increased in young women relative to young men, suggesting that oral contraceptive (OC) use is one of the causes of stroke among young women. Long-term exposures to the varying combinations of estrogen and progestogen found in OCs affect blood clotting, lipid and lipoprotein metabolism, endothelial function, and de novo synthesis of neurosteroids, especially brain-derived 17β-estradiol. The latter is essential for neuroprotection, memory, sexual differentiation, synaptic transmission, and behavior. Deleterious effects of OCs may be exacerbated due to comorbidities like polycystic ovary syndrome, sickle cell anemia, COVID-19, exposures to endocrine disrupting chemicals, and conventional or electronic cigarette smoking. The goal of the current review is to revisit the available literature regarding the impact of OC use on stroke, to explain possible underlying mechanisms, and to identify gaps in our understanding to promote future research to reduce and cure stroke in OC users.
Collapse
Affiliation(s)
- Varun Reddy
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Leonard M. Miller School of Medicine, University of Miami, Miami Florida 33136, USA; Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami Florida 33136, USA
| | - Megan Wurtz
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Leonard M. Miller School of Medicine, University of Miami, Miami Florida 33136, USA; Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami Florida 33136, USA
| | - Shahil H Patel
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Leonard M. Miller School of Medicine, University of Miami, Miami Florida 33136, USA; Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami Florida 33136, USA
| | - Micheline McCarthy
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami Florida 33136, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Leonard M. Miller School of Medicine, University of Miami, Miami Florida 33136, USA; Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami Florida 33136, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA.
| |
Collapse
|
14
|
Kang EM, Jia YB, Wang JY, Wang GY, Chen HJ, Chen XY, Ye YQ, Zhang X, Su XH, Wang JY, He XS. Downregulation of microRNA-124-3p promotes subventricular zone neural stem cell activation by enhancing the function of BDNF downstream pathways after traumatic brain injury in adult rats. CNS Neurosci Ther 2022; 28:1081-1092. [PMID: 35481944 PMCID: PMC9160452 DOI: 10.1111/cns.13845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022] Open
Abstract
Aims In this study, the effect of intracerebral ventricle injection with a miR‐124‐3p agomir or antagomir on prognosis and on subventricular zone (SVZ) neural stem cells (NSCs) in adult rats with moderate traumatic brain injury (TBI) was investigated. Methods Model rats with moderate controlled cortical impact (CCI) were established and verified as described previously. The dynamic changes in miR‐124‐3p and the status of NSCs in the SVZ were analyzed. To evaluate the effect of lateral ventricle injection with miR‐124‐3p analogs and inhibitors after TBI, modified neurological severity scores (mNSSs) and rotarod tests were used to assess motor function prognosis. The variation in SVZ NSC marker expression was also explored. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of predicted miR‐124‐3p targets was performed to infer miR‐124‐3p functions, and miR‐124‐3p effects on pivotal predicted targets were further explored. Results Administration of miR‐124 inhibitors enhanced SVZ NSC proliferation and improved the motor function of TBI rats. Functional analysis of miR‐124 targets revealed high correlations between miR‐124 and neurotrophin signaling pathways, especially the TrkB downstream pathway. PI3K, Akt3, and Ras were found to be crucial miR‐124 targets and to be involved in most predicted functional pathways. Interference with miR‐124 expression in the lateral ventricle affected the PI3K/Akt3 and Ras pathways in the SVZ, and miR‐124 inhibitors intensified the potency of brain‐derived neurotrophic factor (BDNF) in SVZ NSC proliferation after TBI. Conclusion Disrupting miR‐124 expression through lateral ventricle injection has beneficial effects on neuroregeneration and TBI prognosis. Moreover, the combined use of BDNF and miR‐124 inhibitors might lead to better outcomes in TBI than BDNF treatment alone.
Collapse
Affiliation(s)
- En-Ming Kang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Yi-Bin Jia
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Jia-You Wang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Guan-Yi Wang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Hui-Jun Chen
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Xiao-Yan Chen
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Yu-Qin Ye
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China.,Department of Neurosurgery, PLA 163rd Hospital (Second Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Xin Zhang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Xin-Hong Su
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Jing-Yu Wang
- Teaching and Research Support Center, Engineering University of Chinese Armed Police Force, Xi'an, Shaanxi, China
| | - Xiao-Sheng He
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| |
Collapse
|
15
|
Ma X, Zhao J, Li S, Wang Y, Liu J, Shi Y, Liu J, Chen Y, Chen Y, Pan Q. Rab27a-dependent exosomes protect against cerebral ischemic injury by reducing endothelial oxidative stress and apoptosis. CNS Neurosci Ther 2022; 28:1596-1612. [PMID: 35770324 PMCID: PMC9437240 DOI: 10.1111/cns.13902] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction Multicellular crosstalk within the brain tissue has been suggested to play a critical role in maintaining cerebral vascular homeostasis. Exosomes (EXs) mediated cell–cell communication, but its role in cerebral ischemic injury is largely unknown. Rab27a is one of the major genes controlling EX release. Here, we explored the role of Rab27a in regulating brain EXs secretion, and the effects of Rab27a‐mediated EXs on ischemia evoked cerebral vascular disruption and brain injury. Methods Cerebral ischemia was induced in Rab27a knockout (Rab27a−/−) and wide type (WT) mice by transient middle cerebral artery occlusion (tMCAO). Differential gene expression analysis was performed in ischemic brain tissue by using mRNA sequencing. EXs isolated from brain tissue of Rab27a−/− and WT mice (EXWT or EXRab27a−/−) were pre‐administrated into tMCAO operated Rab27a−/− mice or oxygen and glucose deprivation (OGD) treated primary brain vascular endothelial cells (ECs). Results We demonstrated that Rab27a expression in the peri‐infarct area of brain was significantly elevated, which was associated with local elevation in EXs secretion. Rab27a deficiency dramatically decreased the level of EXs in brain tissue of normal and tMCAO‐treated mice, and Rab27a−/− mice displayed an increase in infarct volume and NDS, and a decrease in cMVD and CBF following tMCAO. Pre‐infusion of EXWT increased the brain EXs levels in the tMCAO operated Rab27a−/− mice, accompanied with an increase in cMVD and CBF, and a decrease in infarct volume, NDS, ROS production, and apoptosis. The effects of EXRab27a−/− infusion were much diminished although in a dose‐dependent manner. In OGD‐treated ECs, EXRab27a−/− showed less effectivity than EXWT in decreasing ROS overproduction and apoptosis, paralleling with down‐regulated expression of NOX2 and cleaved caspase‐3. Conclusion Our study demonstrates that Rab27a controls brain EXs secretion and functions, contributing to cerebral vascular protection from ischemic insult by preventing oxidative stress and apoptosis via down‐regulating NOX2 and cleaved caspase‐3 expression.
Collapse
Affiliation(s)
- Xiaotang Ma
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jia Zhao
- Emergency Department, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Suqing Li
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yan Wang
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Jinhua Liu
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yumeng Shi
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiehong Liu
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanyu Chen
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanfang Chen
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Qunwen Pan
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
16
|
Kawadkar M, Mandloi AS, Singh N, Mukharjee R, Dhote VV. Combination therapy for cerebral ischemia: do progesterone and noscapine provide better neuroprotection than either alone in the treatment? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:167-185. [PMID: 34988596 DOI: 10.1007/s00210-021-02187-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/20/2021] [Indexed: 10/19/2022]
Abstract
Ischemic stroke presents multifaceted pathological outcomes with overlapping mechanisms of cerebral injury. High mortality and disability with stroke warrant a novel multi-targeted therapeutic approach. The neuroprotection with progesterone (PG) and noscapine (NOS) on cerebral ischemia-reperfusion (I-R) injury was demonstrated individually, but the outcome of combination treatment to alleviate cerebral damage is still unexplored. Randomly divided groups of rats (n = 6) were Sham-operated, I-R, PG (8 mg/kg), NOS (10 mg/kg), and PG + NOS (8 mg/kg + 10 mg/kg). The rats were exposed to bilateral common carotid artery occlusion, except Sham-operated, to investigate the therapeutic outcome of PG and NOS alone and in combination on I-R injury. Besides the alterations in cognitive and motor abilities, we estimated infarct area, oxidative stress, blood-brain barrier (BBB) permeability, and histology after treatment. Pharmacokinetic parameters like Cmax, Tmax, half-life, and AUC0-t were estimated in biological samples to substantiate the therapeutic outcomes of the combination treatment. We report PG and NOS prevent loss of motor ability and improve spatial memory after cerebral I-R injury. Combination treatment significantly reduced inflammation and restricted infarction; it attenuated oxidative stress and BBB damage and improved grip strength. Histopathological analysis demonstrated a significant reduction in leukocyte infiltration with the most profound effect in the combination group. Simultaneous analysis of PG and NOS in plasma revealed enhanced peak drug concentration, improved AUC, and prolonged half-life; the drug levels in the brain have increased significantly for both. We conclude that PG and NOS have beneficial effects against brain damage and the co-administration further reinforced neuroprotection in the cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Manisha Kawadkar
- Department of Pharmacology, Faculty of Pharmacy, VNS Group of Institutions, Vidya Vihar, Neelbud, Bhopal, Madhya Pradesh, 462044, India
| | - Avinash S Mandloi
- Department of Pharmacology, Faculty of Pharmacy, VNS Group of Institutions, Vidya Vihar, Neelbud, Bhopal, Madhya Pradesh, 462044, India
| | - Nidhi Singh
- Department of Pharmacology, Faculty of Pharmacy, VNS Group of Institutions, Vidya Vihar, Neelbud, Bhopal, Madhya Pradesh, 462044, India
| | - Rajesh Mukharjee
- Department of Pharmacology, Faculty of Pharmacy, VNS Group of Institutions, Vidya Vihar, Neelbud, Bhopal, Madhya Pradesh, 462044, India
| | - Vipin V Dhote
- Department of Pharmacology, Faculty of Pharmacy, VNS Group of Institutions, Vidya Vihar, Neelbud, Bhopal, Madhya Pradesh, 462044, India.
| |
Collapse
|
17
|
Guo S, Wehbe A, Syed S, Wills M, Guan L, Lv S, Li F, Geng X, Ding Y. Cerebral Glucose Metabolism and Potential Effects on Endoplasmic Reticulum Stress in Stroke. Aging Dis 2022; 14:450-467. [PMID: 37008060 PMCID: PMC10017147 DOI: 10.14336/ad.2022.0905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Ischemic stroke is an extremely common pathology with strikingly high morbidity and mortality rates. The endoplasmic reticulum (ER) is the primary organelle responsible for conducting protein synthesis and trafficking as well as preserving intracellular Ca2+ homeostasis. Mounting evidence shows that ER stress contributes to stroke pathophysiology. Moreover, insufficient circulation to the brain after stroke causes suppression of ATP production. Glucose metabolism disorder is an important pathological process after stroke. Here, we discuss the relationship between ER stress and stroke and treatment and intervention of ER stress after stroke. We also discuss the role of glucose metabolism, particularly glycolysis and gluconeogenesis, post-stroke. Based on recent studies, we speculate about the potential relationship and crosstalk between glucose metabolism and ER stress. In conclusion, we describe ER stress, glycolysis, and gluconeogenesis in the context of stroke and explore how the interplay between ER stress and glucose metabolism contributes to the pathophysiology of stroke.
Collapse
Affiliation(s)
- Sichao Guo
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Alexandra Wehbe
- Department of Neurosurgery, Wayne State University School of Medicine, USA
- Harvard T.H. Chan School of Public Health, USA
| | - Shabber Syed
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Melissa Wills
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Longfei Guan
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Shuyu Lv
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China
| | - Fengwu Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China
- Correspondence should be addressed to: Dr. Xiaokun Geng, Beijing Luhe Hospital, Capital Medical University, Beijing, China. E-mail: ; Dr. Yuchuan Ding, Wayne State University School of Medicine, Detroit, MI 48201, USA. E-mail:
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, USA
- Correspondence should be addressed to: Dr. Xiaokun Geng, Beijing Luhe Hospital, Capital Medical University, Beijing, China. E-mail: ; Dr. Yuchuan Ding, Wayne State University School of Medicine, Detroit, MI 48201, USA. E-mail:
| |
Collapse
|
18
|
Quan G, Ban R, Ren JL, Liu Y, Wang W, Dai S, Yuan T. FLAIR and ADC Image-Based Radiomics Features as Predictive Biomarkers of Unfavorable Outcome in Patients With Acute Ischemic Stroke. Front Neurosci 2021; 15:730879. [PMID: 34602971 PMCID: PMC8483716 DOI: 10.3389/fnins.2021.730879] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/13/2021] [Indexed: 11/14/2022] Open
Abstract
At present, it is still challenging to predict the clinical outcome of acute ischemic stroke (AIS). In this retrospective study, we explored whether radiomics features extracted from fluid-attenuated inversion recovery (FLAIR) and apparent diffusion coefficient (ADC) images can predict clinical outcome of patients with AIS. Patients with AIS were divided into a training (n = 110) and an external validation (n = 80) sets. A total of 753 radiomics features were extracted from each FLAIR and ADC image of the 190 patients. Interquartile range (IQR), Wilcoxon rank sum test, and least absolute shrinkage and selection operator (LASSO) were used to reduce the feature dimension. The six strongest radiomics features were related to an unfavorable outcome of AIS. A logistic regression analysis was employed for selection of potential predominating clinical and conventional magnetic resonance imaging (MRI) factors. Subsequently, we developed several models based on clinical and conventional MRI factors and radiomics features to predict the outcome of AIS patients. For predicting unfavorable outcome [modified Rankin scale (mRS) > 2] in the training set, the area under the receiver operating characteristic curve (AUC) of ADC radiomics model was 0.772, FLAIR radiomics model 0.731, ADC and FLAIR radiomics model 0.815, clinical model 0.791, and clinical and conventional MRI model 0.782. In the external validation set, the AUCs for the prediction with ADC radiomics model was 0.792, FLAIR radiomics model 0.707, ADC and FLAIR radiomics model 0.825, clinical model 0.763, and clinical and conventional MRI model 0.751. When adding radiomics features to the combined model, the AUCs for predicting unfavorable outcome in the training and external validation sets were 0.926 and 0.864, respectively. Our results indicate that the radiomics features extracted from FLAIR and ADC can be instrumental biomarkers to predict unfavorable clinical outcome of AIS and would additionally improve predictive performance when adding to combined model.
Collapse
Affiliation(s)
- Guanmin Quan
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ranran Ban
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | | | - Yawu Liu
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Weiwei Wang
- Department of Radiology, Handan Central Hospital, Handan, China
| | - Shipeng Dai
- Department of Radiology, Cangzhou City Hospital, Cangzhou, China
| | - Tao Yuan
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
19
|
Tatsuno H, Hamaguchi T, Sasanuma J, Kakita K, Okamoto T, Shimizu M, Nakaya N, Abo M. Does a combination treatment of repetitive transcranial magnetic stimulation and occupational therapy improve upper limb muscle paralysis equally in patients with chronic stroke caused by cerebral hemorrhage and infarction?: A retrospective cohort study. Medicine (Baltimore) 2021; 100:e26339. [PMID: 34128880 PMCID: PMC8213260 DOI: 10.1097/md.0000000000026339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/28/2021] [Indexed: 01/04/2023] Open
Abstract
The clinical presentation of stroke is usually more severe in patients with intracerebral hemorrhage (ICH) than in those with cerebral infarction (CI); recovery of stroke-related muscle paralysis is influenced and limited by the type of stroke. To date, many patients have been treated by neurorehabilitation; however, the changes in the recovery of motor paralysis depending on the type of stroke, ICH or CI, have not been established. This study aimed to determine this difference in improvement of upper extremity paralysis using 2-week in-hospital NovEl intervention Using Repetitive transcranial magnetic stimulation combined with Occupational therapy (NEURO).We scrutinized the medical records of all patients with poststroke (ICH or CI) upper extremity muscle paralysis using Fugl-Meyer assessments (FMAs) who had been admitted to 6 hospitals between March 2010 and December 2018 for rehabilitation treatment. This was a multiinstitutional, open-label, retrospective cohort study without control patients. We evaluated the effects of NEURO on patients with CI and ICH by dividing them into 2 groups according to the type of stroke, after adjustment for age, sex, dominant hand, affected hand side, time since stroke, and prediction of recovery capacity in the upper extremity.The study included 1716 (CI [n = 876] and ICH [n = 840]) patients who had undergone at least 2 FMAs and had experienced stroke at least 6 months before. The type of stroke had no effect on the outcomes (changes in the FMA-upper extremity score, F[4,14.0] = 2.05, P = .09, partial η2 = 0.01). Patients from all 5 groups equally benefited from the treatment (improvement in FMA scores) according to the sensitivity analysis-stratified analysis (F = 0.08 to 1.94, P > .16, partial η2 < 0.001).We conclude that NEURO can be recommended for chronic stroke patients irrespective of the type of stroke.
Collapse
Affiliation(s)
- Hisashi Tatsuno
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Tokyo
| | - Toyohiro Hamaguchi
- Department of Rehabilitation, Graduate School of Health Sciences, Saitama Prefectural University, Saitama
| | | | | | | | | | - Naoki Nakaya
- Department of Rehabilitation, Graduate School of Health Sciences, Saitama Prefectural University, Saitama
| | - Masahiro Abo
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Tokyo
| |
Collapse
|
20
|
Boltze J, Aronowski JA, Badaut J, Buckwalter MS, Caleo M, Chopp M, Dave KR, Didwischus N, Dijkhuizen RM, Doeppner TR, Dreier JP, Fouad K, Gelderblom M, Gertz K, Golubczyk D, Gregson BA, Hamel E, Hanley DF, Härtig W, Hummel FC, Ikhsan M, Janowski M, Jolkkonen J, Karuppagounder SS, Keep RF, Koerte IK, Kokaia Z, Li P, Liu F, Lizasoain I, Ludewig P, Metz GAS, Montagne A, Obenaus A, Palumbo A, Pearl M, Perez-Pinzon M, Planas AM, Plesnila N, Raval AP, Rueger MA, Sansing LH, Sohrabji F, Stagg CJ, Stetler RA, Stowe AM, Sun D, Taguchi A, Tanter M, Vay SU, Vemuganti R, Vivien D, Walczak P, Wang J, Xiong Y, Zille M. New Mechanistic Insights, Novel Treatment Paradigms, and Clinical Progress in Cerebrovascular Diseases. Front Aging Neurosci 2021; 13:623751. [PMID: 33584250 PMCID: PMC7876251 DOI: 10.3389/fnagi.2021.623751] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
The past decade has brought tremendous progress in diagnostic and therapeutic options for cerebrovascular diseases as exemplified by the advent of thrombectomy in ischemic stroke, benefitting a steeply increasing number of stroke patients and potentially paving the way for a renaissance of neuroprotectants. Progress in basic science has been equally impressive. Based on a deeper understanding of pathomechanisms underlying cerebrovascular diseases, new therapeutic targets have been identified and novel treatment strategies such as pre- and post-conditioning methods were developed. Moreover, translationally relevant aspects are increasingly recognized in basic science studies, which is believed to increase their predictive value and the relevance of obtained findings for clinical application.This review reports key results from some of the most remarkable and encouraging achievements in neurovascular research that have been reported at the 10th International Symposium on Neuroprotection and Neurorepair. Basic science topics discussed herein focus on aspects such as neuroinflammation, extracellular vesicles, and the role of sex and age on stroke recovery. Translational reports highlighted endovascular techniques and targeted delivery methods, neurorehabilitation, advanced functional testing approaches for experimental studies, pre-and post-conditioning approaches as well as novel imaging and treatment strategies. Beyond ischemic stroke, particular emphasis was given on activities in the fields of traumatic brain injury and cerebral hemorrhage in which promising preclinical and clinical results have been reported. Although the number of neutral outcomes in clinical trials is still remarkably high when targeting cerebrovascular diseases, we begin to evidence stepwise but continuous progress towards novel treatment options. Advances in preclinical and translational research as reported herein are believed to have formed a solid foundation for this progress.
Collapse
Affiliation(s)
- Johannes Boltze
- School of Life Sciences, University of Warwick, Warwick, United Kingdom
| | - Jaroslaw A. Aronowski
- Institute for Stroke and Cerebrovascular Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jerome Badaut
- NRS UMR 5287, INCIA, Brain Molecular Imaging Team, University of Bordeaux, Bordeaux cedex, France
| | - Marion S. Buckwalter
- Departments of Neurology and Neurological Sciences, and Neurosurgery, Wu Tsai Neurosciences Institute, Stanford School of Medicine, Stanford, CA, United States
| | - Mateo Caleo
- Neuroscience Institute, National Research Council, Pisa, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Kunjan R. Dave
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nadine Didwischus
- School of Life Sciences, University of Warwick, Warwick, United Kingdom
| | - Rick M. Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Thorsten R. Doeppner
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Jens P. Dreier
- Department of Neurology, Center for Stroke Research Berlin, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Karim Fouad
- Faculty of Rehabilitation Medicine and Institute for Neuroscience and Mental Health, University of Alberta, Edmonton, AB, Canada
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karen Gertz
- Department of Neurology, Center for Stroke Research Berlin, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Dominika Golubczyk
- Department of Neurosurgery, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Barbara A. Gregson
- Neurosurgical Trials Group, Institute of Neuroscience, The University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Daniel F. Hanley
- Division of Brain Injury Outcomes, Johns Hopkins University, Baltimore, MD, United States
| | - Wolfgang Härtig
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Friedhelm C. Hummel
- Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology Valais, Clinique Romande de Réadaptation, Sion, Switzerland
- Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Maulana Ikhsan
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Lübeck, Germany
- Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany
| | - Miroslaw Janowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, United States
| | - Jukka Jolkkonen
- Department of Neurology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Saravanan S. Karuppagounder
- Burke Neurological Institute, White Plains, NY, United States
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Richard F. Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Inga K. Koerte
- Psychiatric Neuroimaging Laboratory, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, Ludwig Maximilians University, Munich, Germany
| | - Zaal Kokaia
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Peiying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fudong Liu
- Department of Neurology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, United States
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain
| | - Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerlinde A. S. Metz
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Axel Montagne
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Andre Obenaus
- Department of Pediatrics, University of California, Irvine, Irvine, CA, United States
| | - Alex Palumbo
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Lübeck, Germany
- Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany
| | - Monica Pearl
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Miguel Perez-Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anna M. Planas
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Àrea de Neurociències, Barcelona, Spain
- Department d’Isquèmia Cerebral I Neurodegeneració, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), Munich University Hospital, Munich, Germany
- Munich Cluster of Systems Neurology (Synergy), Munich, Germany
| | - Ami P. Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Maria A. Rueger
- Faculty of Medicine and University Hospital, Department of Neurology, University of Cologne, Cologne, Germany
| | - Lauren H. Sansing
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| | - Farida Sohrabji
- Women’s Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, TX, United States
| | - Charlotte J. Stagg
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| | - R. Anne Stetler
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ann M. Stowe
- Department of Neurology and Neurotherapeutics, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, United States
| | - Dandan Sun
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, PA, United States
| | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Institute of Biomedical Research and Innovation, Kobe, Japan
| | - Mickael Tanter
- Institute of Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL University, Paris, France
| | - Sabine U. Vay
- Faculty of Medicine and University Hospital, Department of Neurology, University of Cologne, Cologne, Germany
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, United States
| | - Denis Vivien
- UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging for Neurological Disorders (PhIND), Normandy University, Caen, France
- CHU Caen, Clinical Research Department, CHU de Caen Côte de Nacre, Caen, France
| | - Piotr Walczak
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, United States
| | - Jian Wang
- Department of Human Anatomy, College of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ye Xiong
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, United States
| | - Marietta Zille
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Lübeck, Germany
- Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
21
|
Hsu KC, Lin CH, Johnson KR, Fann YC, Hsu CY, Tsai CH, Chen PL, Chang WL, Yeh PY, Wei CY. Comparison of outcome prediction models post-stroke for a population-based registry with clinical variables collected at admission vs. discharge. VESSEL PLUS 2021; 5:2. [PMID: 35356047 PMCID: PMC8963213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
AIM The ability to predict outcomes can help clinicians to better triage and treat stroke patients. We aimed to build prediction models using clinical data at admission and discharge to assess predictors highly relevant to stroke outcomes. METHODS A total of 37,094 patients from the Taiwan Stroke Registry (TSR) were enrolled to ascertain clinical variables and predict their mRS outcomes at 90 days. The performances (i.e., the area under the curves (AUCs)) of these independent predictors identified by logistic regression (LR) based on clinical variables were compared. RESULTS Several outcome prediction models based on different patient subgroups were evaluated, and their AUCs based on all clinical variables at admission and discharge were 0.85-0.88 and 0.92-0.96, respectively. After feature selections, the input features decreased from 140 to 2-18 (including age of onset and NIHSS at admission) and from 262 to 2-8 (including NIHSS at discharge and mRS at discharge) at admission and discharge, respectively. With only a few selected key clinical features, our models can provide better performance than those previously reported in the literature. CONCLUSION This study proposed high performance prognostics outcome prediction models derived from a population-based nationwide stroke registry even with reduced LR-selected clinical features. These key clinical features can help physicians to better focus on stroke patients to triage for best outcome in acute settings.
Collapse
Affiliation(s)
- Kai-Cheng Hsu
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan,Artificial Intelligence Center for Medical Diagnosis, China Medical University Hospital, Taichung, Taiwan,Department of Neurology, China Medical University Hospital, Taichung, Taiwan
| | - Ching-Heng Lin
- Center for Artificial Intelligence in Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kory R. Johnson
- Bioinformatics Section, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Yang C. Fann
- Bioinformatics Section, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Chung Y. Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chon-Haw Tsai
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan
| | - Po-Lin Chen
- Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wei-Lun Chang
- Department of Neurology, Show Chwan Memorial Hospital, Changhua County, Taiwan
| | - Po-Yen Yeh
- Department of Neurology, St. Martin De Porres Hospital, Chiayi, Taiwan
| | - Cheng-Yu Wei
- Department of Neurology, Chang Bing Show Chwan Memorial Hospital, Changhua County, Taiwan
| |
Collapse
|
22
|
Jusic A, Salgado-Somoza A, Paes AB, Stefanizzi FM, Martínez-Alarcón N, Pinet F, Martelli F, Devaux Y, Robinson EL, Novella S. Approaching Sex Differences in Cardiovascular Non-Coding RNA Research. Int J Mol Sci 2020; 21:E4890. [PMID: 32664454 PMCID: PMC7402336 DOI: 10.3390/ijms21144890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is the biggest cause of sickness and mortality worldwide in both males and females. Clinical statistics demonstrate clear sex differences in risk, prevalence, mortality rates, and response to treatment for different entities of CVD. The reason for this remains poorly understood. Non-coding RNAs (ncRNAs) are emerging as key mediators and biomarkers of CVD. Similarly, current knowledge on differential regulation, expression, and pathology-associated function of ncRNAs between sexes is minimal. Here, we provide a state-of-the-art overview of what is known on sex differences in ncRNA research in CVD as well as discussing the contributing biological factors to this sex dimorphism including genetic and epigenetic factors and sex hormone regulation of transcription. We then focus on the experimental models of CVD and their use in translational ncRNA research in the cardiovascular field. In particular, we want to highlight the importance of considering sex of the cellular and pre-clinical models in clinical studies in ncRNA research and to carefully consider the appropriate experimental models most applicable to human patient populations. Moreover, we aim to identify sex-specific targets for treatment and diagnosis for the biggest socioeconomic health problem globally.
Collapse
Affiliation(s)
- Amela Jusic
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina;
| | - Antonio Salgado-Somoza
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (A.S.-S.); (F.M.S.); (Y.D.)
| | - Ana B. Paes
- INCLIVA Biomedical Research Institute, Menéndez Pelayo 4 Accesorio, 46010 Valencia, Spain; (A.B.P.); (N.M.-A.)
| | - Francesca Maria Stefanizzi
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (A.S.-S.); (F.M.S.); (Y.D.)
| | - Núria Martínez-Alarcón
- INCLIVA Biomedical Research Institute, Menéndez Pelayo 4 Accesorio, 46010 Valencia, Spain; (A.B.P.); (N.M.-A.)
| | - Florence Pinet
- INSERM, CHU Lille, Institut Pasteur de Lille, University of Lille, U1167 F-59000 Lille, France;
| | - Fabio Martelli
- Molecular Cardiology Laboratory, Policlinico San Donato IRCCS, San Donato Milanese, 20097 Milan, Italy;
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (A.S.-S.); (F.M.S.); (Y.D.)
| | - Emma Louise Robinson
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Susana Novella
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, and INCLIVA Biomedical Research Institute, Menéndez Pelayo 4 Accesorio, 46010 Valencia, Spain
| |
Collapse
|
23
|
Datta A, Sarmah D, Kalia K, Borah A, Wang X, Dave KR, Yavagal DR, Bhattacharya P. Advances in Studies on Stroke-Induced Secondary Neurodegeneration (SND) and Its Treatment. Curr Top Med Chem 2020; 20:1154-1168. [DOI: 10.2174/1568026620666200416090820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/23/2022]
Abstract
Background:
The occurrence of secondary neurodegeneration has exclusively been observed
after the first incidence of stroke. In humans and rodents, post-stroke secondary neurodegeneration
(SND) is an inevitable event that can lead to progressive neuronal loss at a region distant to initial infarct.
SND can lead to cognitive and motor function impairment, finally causing dementia. The exact
pathophysiology of the event is yet to be explored. It is seen that the thalami, in particular, are susceptible
to cause SND. The reason behind this is because the thalamus functioning as the relay center and is
positioned as an interlocked structure with direct synaptic signaling connection with the cortex. As SND
proceeds, accumulation of misfolded proteins and microglial activation are seen in the thalamus. This
leads to increased neuronal loss and worsening of functional and cognitive impairment.
Objective:
There is a necessity of specific interventions to prevent post-stroke SND, which are not properly
investigated to date owing to sparsely reproducible pre-clinical and clinical data. The basis of this
review is to investigate about post-stroke SND and its updated treatment approaches carefully.
Methods:
Our article presents a detailed survey of advances in studies on stroke-induced secondary neurodegeneration
(SND) and its treatment.
Results:
This article aims to put forward the pathophysiology of SND. We have also tabulated the latest
treatment approaches along with different neuroimaging systems that will be helpful for future reference
to explore.
Conclusion:
In this article, we have reviewed the available reports on SND pathophysiology, detection
techniques, and possible treatment modalities that have not been attempted to date.
Collapse
Affiliation(s)
- Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kunjan R. Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Dileep R. Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
24
|
Associations between Aquaglyceroporin Gene Polymorphisms and Risk of Stroke among Patients with Hypertension. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9358290. [PMID: 32309443 PMCID: PMC7136773 DOI: 10.1155/2020/9358290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 02/06/2020] [Accepted: 03/19/2020] [Indexed: 11/17/2022]
Abstract
Background Dysregulations of AQP7 and AQP9 were found to be related to lipid metabolism abnormality, which had been proven to be one of the mechanisms of stroke. However, limited epidemiological studies explore the associations between AQP7 and AQP9 and the risk of stroke among patients with hypertension in China. Aims We aimed to investigate the associations between genetic variants in AQP7 and AQP9 and the risk of stroke among patients with hypertension, as well as to explore gene-gene and gene-environment interactions. Methods Baseline blood samples were drawn from 211 cases with stroke and 633 matched controls. Genomic DNA was extracted by a commercially available kit. Genotyping of 5 single nucleotide polymorphisms (SNPs) in AQP7 (rs2989924, rs3758269, and rs2542743) and AQP9 (rs57139208, rs16939881) was performed by the polymerase chain reaction assay with TaqMan probes. Results Participants with the rs2989924 GG genotype were found to be with a 1.74-fold increased risk of stroke compared to those with the AA+AG genotype, and this association remained significant after adjustment for potential confounders (odds ratio (OR): 1.74, 95% confidence interval (CI): 1.23-2.46). The SNP rs3758269 CC+TT genotype was found to be with a 33% decreased risk of stroke after multivariate adjustment (OR: 0.67, 95% CI: 0.45-0.99) compared to the rs3758269 CC genotype. The significantly increased risk of stroke was prominent among males, patients aged 60 or above, and participants who were overweight and with a harbored genetic variant in SNP rs2989924. After adjusting potential confounders, the SNP rs3758269 CT+TT genotype was found to be significantly associated with a decreased risk of stroke compared to the CC genotype among participants younger than 60 years old or overweight. No statistically significant associations were observed between genotypes of rs2542743, rs57139208, or rs16939881 with the risk of stroke. Neither interactions nor linkage disequilibrium had been observed in this study. Conclusions This study suggests that SNPs rs2989924 and rs3758269 are associated with the risk of stroke among patients with hypertension, while there were no statistically significant associations between rs2542743, rs57139208, and rs16939881 and the risk of stroke being observed.
Collapse
|
25
|
Genetic Variations of CYP19A1 Gene and Stroke Susceptibility: A Case-Control Study in the Chinese Han Population. J Cardiovasc Pharmacol 2020; 75:344-350. [PMID: 31895872 DOI: 10.1097/fjc.0000000000000793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE This study aimed to explore the association between genetic variations of CYP19A1 and stroke susceptibility in the Chinese Han population. METHODS A total of 477 stroke patients and 480 healthy controls were recruited in this study. The genotyping of CYP19A1 polymorphisms (rs4646, rs6493487, rs1062033, rs17601876, and rs3751599) was performed by the Agena MassARRAY platform. Under logistic regression models, we evaluated the associations of CYP19A1 polymorphisms and stroke susceptibility by odds ratio and 95% confidence interval. RESULTS Our study showed that rs4646 (codominant: P = 0.020; recessive: P = 0.016) and rs17601876 (allele: P = 0.044; codominant: P = 0.011; dominant: P = 0.009; recessive: P = 0.046) significantly decreased the risk of stroke. In the stratification analysis, rs4646 is associated with decreased stroke risk among the individuals older than 64 years (codominant: P = 0.028; recessive: P = 0.010) and women (codominant: P = 0.029; recessive: P = 0.029), whereas rs1062033 increased stroke risk in the subgroup of age 64 years and younger (recessive: P = 0.042). The rs17601876 polymorphism has a strong relationship with stroke susceptibility, which is age and gender dependent. In haplotype analysis, we found a block (rs17601876 and rs3751599), and Ars17601876Grs3751599 haplotype is related to an increased stroke risk (P < 0.05). In addition, CYP19A1 variations had effects on clinical characteristics. CONCLUSION CYP19A1 polymorphisms were significantly associated with stroke susceptibility in the Chinese Han population.
Collapse
|
26
|
Shvedova M, Litvak MM, Roberts JD, Fukumura D, Suzuki T, Şencan İ, Li G, Reventun P, Buys ES, Kim HH, Sakadžić S, Ayata C, Huang PL, Feil R, Atochin DN. cGMP-dependent protein kinase I in vascular smooth muscle cells improves ischemic stroke outcome in mice. J Cereb Blood Flow Metab 2019; 39:2379-2391. [PMID: 31423931 PMCID: PMC6893979 DOI: 10.1177/0271678x19870583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/18/2019] [Indexed: 11/15/2022]
Abstract
Recent works highlight the therapeutic potential of targeting cyclic guanosine monophosphate (cGMP)-dependent pathways in the context of brain ischemia/reperfusion injury (IRI). Although cGMP-dependent protein kinase I (cGKI) has emerged as a key mediator of the protective effects of nitric oxide (NO) and cGMP, the mechanisms by which cGKI attenuates IRI remain poorly understood. We used a novel, conditional cGKI knockout mouse model to study its role in cerebral IRI. We assessed neurological deficit, infarct volume, and cerebral perfusion in tamoxifen-inducible vascular smooth muscle cell-specific cGKI knockout mice and control animals. Stroke experiments revealed greater cerebral infarct volume in smooth muscle cell specific cGKI knockout mice (males: 96 ± 16 mm3; females: 93 ± 12 mm3, mean±SD) than in all control groups: wild type (males: 66 ± 19; females: 64 ± 14), cGKI control (males: 65 ± 18; females: 62 ± 14), cGKI control with tamoxifen (males: 70 ± 8; females: 68 ± 10). Our results identify, for the first time, a protective role of cGKI in vascular smooth muscle cells during ischemic stroke injury. Moreover, this protective effect of cGKI was found to be independent of gender and was mediated via improved reperfusion. These results suggest that cGKI in vascular smooth muscle cells should be targeted by therapies designed to protect brain tissue against ischemic stroke.
Collapse
Affiliation(s)
- Maria Shvedova
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Maxim M Litvak
- Tomsk Polytechnic University, RASA Center, Tomsk, Russian Federation
| | - Jesse D Roberts
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Dai Fukumura
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital, Boston, MA, USA
| | - Tomoaki Suzuki
- Department of Radiology, Neurovascular Research Laboratory, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - İkbal Şencan
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Ge Li
- Department of Radiology, Neurovascular Research Laboratory, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Paula Reventun
- Department of Biology Systems, School of Medicine, University of Alcalá, Madrid, Spain
| | - Emmanuel S Buys
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hyung-Hwan Kim
- Department of Radiology, Neurovascular Research Laboratory, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Cenk Ayata
- Department of Radiology, Neurovascular Research Laboratory, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Paul L Huang
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Robert Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Dmitriy N Atochin
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
27
|
Wu X, Liu G, Zhou W, Ou A, Liu X, Wang Y, Zhou S, Luo W, Liu B. Outcome prediction for patients with anterior circulation acute ischemic stroke following endovascular treatment: A single-center study. Exp Ther Med 2019; 18:3869-3876. [PMID: 31641377 PMCID: PMC6796376 DOI: 10.3892/etm.2019.8054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/21/2019] [Indexed: 12/28/2022] Open
Abstract
Previous studies have identified various factors associated with the outcomes of acute ischemic stroke (AIS) but considered only 1 or 2 predictive factors. The present study aimed to use outcome-related factors derived from biochemical, imaging and clinical data to establish a logistic regression model that can predict the outcome of patients with AIS following endovascular treatment (EVT). The data of 118 patients with anterior circulation AIS (ACAIS) who underwent EVT between October 2014 and August 2018 were retrospectively analyzed. The patients were divided into 2 groups based on the modified Rankin Scale score at three months after surgery, where 0–2 points were considered to indicate a favorable outcome and 3–6 points were considered a poor outcome. Non-conditional logistic stepwise regression was used to identify independent variables that were significantly associated with patient outcome, which were subsequently used to establish a predictive statistical model, receiver operating characteristic (ROC) curve was used to show the performance of statistical model and analyze the specific association between each factor and outcome. Among the 118 patients, 47 (39.83%) exhibited a good and 71 (60.17%) exhibited a poor outcome. Multivariate analysis revealed that the predictive model was statistically significant (χ2=78.92; P<0.001), and that the predictive accuracy of the model was 83.1%, which was higher compared with that obtained using only a single factor. ROC curve analysis shows the area under curve of the statistical model was 0.823, the analysis of diagnostic threshold for prognostic factors indicated that age, diffusion-weighted imaging lesion volume, glucose on admission, National Institutes of Health Stroke Scale score on admission and hypersensitive C-reactive protein were valuable predictive factors for the outcome of EVT (P<0.05). In conclusion, a predictive model based on non-conditional logistic stepwise regression analysis was able to predict the outcome of EVT for patients with ACAIS.
Collapse
Affiliation(s)
- Xiao Wu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Guoqing Liu
- Department of Radiology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Wu Zhou
- The Medical Imaging Laboratory, School of Medical Information Engineering, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Aihua Ou
- Department of Statistics and Epidemiology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Xian Liu
- Department of Radiology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Yuhan Wang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Sifan Zhou
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Wenting Luo
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Bo Liu
- Department of Radiology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
28
|
Kim T, Chelluboina B, Chokkalla AK, Vemuganti R. Age and sex differences in the pathophysiology of acute CNS injury. Neurochem Int 2019; 127:22-28. [PMID: 30654116 PMCID: PMC6579702 DOI: 10.1016/j.neuint.2019.01.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/11/2019] [Indexed: 12/21/2022]
Abstract
Despite the immeasurable burden on patients and families, no effective therapies to protect the CNS after an acute injury are available yet. Furthermore, the underlying mechanisms that promote neuronal death and functional deficits after injury remain to be poorly understood. The prevalence, age of onset, pathophysiology, and symptomatology of many CNS insults differ significantly between males and females. In the case of stroke, younger males tend to show a higher risk than younger females, while this trend reverses with age. Accumulating evidence from preclinical studies have shown that sex hormones play a crucial role in providing neuroprotection following ischemic stroke and other acute CNS injuries. Estrogen, in particular, exerts a neuroprotective effect by modulating the immune responses after injury. In addition, there exists a sexual dimorphism in cell death pathways between males and females that are independent of hormones. Meanwhile, recent studies suggest that microRNAs are critically involved in the sex-specific mechanisms of cell death. This review discusses the current knowledge on the contribution of sex and age to outcome after stroke. Implication of the interplay between these two factors on other CNS injuries (spinal cord injury and traumatic brain injury) from the experimental evidence were also discussed.
Collapse
Affiliation(s)
- TaeHee Kim
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Bharath Chelluboina
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Anil K Chokkalla
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; Cellular and Molecular Pathology Program, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; Cellular and Molecular Pathology Program, University of Wisconsin, Madison, WI, USA; William S. Middleton Veterans Administration Hospital, Madison, WI, USA.
| |
Collapse
|
29
|
Kim T, Mehta SL, Morris-Blanco KC, Chokkalla AK, Chelluboina B, Lopez M, Sullivan R, Kim HT, Cook TD, Kim JY, Kim H, Kim C, Vemuganti R. The microRNA miR-7a-5p ameliorates ischemic brain damage by repressing α-synuclein. Sci Signal 2018; 11:eaat4285. [PMID: 30538177 PMCID: PMC7005928 DOI: 10.1126/scisignal.aat4285] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ischemic stroke, which is caused by a clot that blocks blood flow to the brain, can be severely disabling and sometimes fatal. We previously showed that transient focal ischemia in a rat model induces extensive temporal changes in the expression of cerebral microRNAs, with a sustained decrease in the abundance of miR-7a-5p (miR-7). Here, we evaluated the therapeutic efficacy of a miR-7 mimic oligonucleotide after cerebral ischemia in rodents according to the Stroke Treatment Academic Industry Roundtable (STAIR) criteria. Rodents were injected locally or systemically with miR-7 mimic before or after transient middle cerebral artery occlusion. Decreased miR-7 expression was observed in both young and aged rats of both sexes after cerebral ischemia. Pre- or postischemic treatment with miR-7 mimic decreased the lesion volume in both sexes and ages studied. Furthermore, systemic injection of miR-7 mimic into mice at 30 min (but not 2 hours) after cerebral ischemia substantially decreased the lesion volume and improved motor and cognitive functional recovery with minimal peripheral toxicity. The miR-7 mimic treatment substantially reduced the postischemic induction of α-synuclein (α-Syn), a protein that induces mitochondrial fragmentation, oxidative stress, and autophagy that promote neuronal cell death. Deletion of the gene encoding α-Syn abolished miR-7 mimic-dependent neuroprotection and functional recovery in young male mice. Further analysis confirmed that the transcript encoding α-Syn was bound and repressed by miR-7. Our findings suggest that miR-7 mimics may therapeutically minimize stroke-induced brain damage and disability.
Collapse
Affiliation(s)
- TaeHee Kim
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | | | - Anil K Chokkalla
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Bharath Chelluboina
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Mary Lopez
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Ruth Sullivan
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hung Tae Kim
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Thomas D Cook
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Joo Yong Kim
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - HwuiWon Kim
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Chanul Kim
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA.
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI 53792, USA
- Williams S. Middleton Veterans Administration Hospital Madison, Madison, WI 53705, USA
| |
Collapse
|
30
|
Zhang H, Lin S, Chen X, Gu L, Zhu X, Zhang Y, Reyes K, Wang B, Jin K. The effect of age, sex and strains on the performance and outcome in animal models of stroke. Neurochem Int 2018; 127:2-11. [PMID: 30291954 DOI: 10.1016/j.neuint.2018.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/26/2022]
Abstract
Stroke is one of the leading causes of death worldwide, and the majority of cerebral stroke is caused by occlusion of cerebral circulation, which eventually leads to brain infarction. Although stroke occurs mainly in the aged population, most animal models for experimental stroke in vivo almost universally rely on young-adult rodents for the evaluation of neuropathological, neurological, or behavioral outcomes after stroke due to their greater availability, lower cost, and fewer health problems. However, it is well established that aged animals differ from young animals in terms of physiology, neurochemistry, and behavior. Stroke-induced changes are more pronounced with advancing age. Therefore, the overlooked role of age in animal models of stroke could have an impact on data quality and hinder the translation of rodent models to humans. In addition to aging, other factors also influence functional performance after ischemic stroke. In this article, we summarize the differences between young and aged animals, the impact of age, sex and animal strains on performance and outcome in animal models of stroke and emphasize age as a key factor in preclinical stroke studies.
Collapse
Affiliation(s)
- Hongxia Zhang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Siyang Lin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xudong Chen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Lei Gu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiaohong Zhu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yinuo Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Kassandra Reyes
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Brian Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
31
|
Xu WX, Yu JL, Feng Y, Yan QX, Li XY, Li Y, Liu Z, Wang D, Sun X, Li KX, Wang LQ, Qiao GF, Li BY. Spontaneous activities in baroreflex afferent pathway contribute dominant role in parasympathetic neurocontrol of blood pressure regulation. CNS Neurosci Ther 2018; 24:1219-1230. [PMID: 30044043 DOI: 10.1111/cns.13039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022] Open
Abstract
AIM To study the dominant role of parasympathetic inputs at cellular level of baroreflex afferent pathway and underlying mechanism in neurocontrol of blood pressure regulation. METHODS Whole-cell patch-clamp and animal study were conducted. RESULTS For the first time, we demonstrated the spontaneous activities from resting membrane potential in myelinated A- and Ah-type baroreceptor neurons (BRNs, the 1st-order), but not in unmyelinated C-types, using vagus-nodose slice of adult female rats. These data were further supported by the notion that the spontaneous synaptic currents could only be seen in the pharmacologically and electrophysiologically defined myelinated A- and Ah-type baroreceptive neurons (the 2nd-order) of NTS using brainstem slice of adult female rats. The greater frequency and the larger amplitude of the spontaneous excitatory postsynaptic currents (EPSCs) compared with the inhibitory postsynaptic currents (IPSCs) were only observed in Ah-types. The ratio of EPSCs:IPSCs was estimated at 3:1 and higher. These results confirmed that the afferent-specific spontaneous activities were generated from baroreflex afferent pathway in female-specific subpopulation of myelinated Ah-type BRNs in nodose and baroreceptive neurons in NTS, which provided a novel insight into the dominant role of sex-specific baroreflex-evoked parasympathetic drives in retaining a stable and lower blood pressure status in healthy subjects, particularly in females. CONCLUSION The data from current investigations establish a new concept for the role of Ah-type baroreceptor/baroreceptive neurons in controlling blood pressure stability and provide a new pathway for pharmacological intervention for hypertension and cardiovascular diseases.
Collapse
Affiliation(s)
- Wen-Xiao Xu
- Department of Orthopedic Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jin-Ling Yu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yan Feng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Qiu-Xin Yan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xin-Yu Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ying Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhuo Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Di Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Xun Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ke-Xin Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lu-Qi Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,Department of Biomedical Engineering, Indiana University Purdue University Indianapolis School of Engineering and Technology, Indianapolis, Indiana
| | - Guo-Fen Qiao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Bai-Yan Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
32
|
Lee S, Lee SO, Kim GL, Rhee DK. Estrogen receptor-β of microglia underlies sexual differentiation of neuronal protection via ginsenosides in mice brain. CNS Neurosci Ther 2018. [PMID: 29524300 DOI: 10.1111/cns.12842] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AIMS Streptococcus pneumoniae infection in acute bacterial meningitis can lead to widespread brain damage and mortality. Inflammatory responses by immune cells in the brain are thought to determine the degree of brain injury. Yet, the mechanisms underlying host responses to pneumococcal meningitis are largely unknown. To explore host responses as a potential therapeutic target for preventing brain injury after pneumococcal meningitis. METHODS We evaluated signaling mechanisms that minimize neuronal damage caused by pneumococcal infection; specifically, we assessed pathways related to neuronal survival after enhancing estrogen receptor-β (ER-β) expression using a natural therapeutic substance known as ginsenoside Rb1 and Rg3 enhanced ginseng. RESULTS Tissue damage caused by bacterial infection was reduced in Rb1/Rg3-treated mice as a result of microglial activation and the inhibition of apoptosis. Furthermore, Rb1 upregulated the expression of brain-derived neurotrophic factor (BDNF) as well as anti-apoptotic factors including Bcl-2 and Bcl-xL. Using BV2 microglial cells in vitro, Rb1 treatment inhibited microglial apoptosis in a manner associated with JAK2/STAT5 phosphorylation. CONCLUSION After S. pneumoniae infection in mice, particularly in female mice, Rb1-containing ginseng increased bacterial clearance and survival. These findings inform our understanding of the host immune response to pneumococcal meningitis.
Collapse
Affiliation(s)
- Seungyeop Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Si-On Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Gyu-Lee Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
33
|
Ohbuchi M, Kimura T, Nishikawa T, Horiguchi T, Fukuda M, Masaki Y. Neuroprotective Effects of Fasudil, a Rho-Kinase Inhibitor, After Spinal Cord Ischemia and Reperfusion in Rats. Anesth Analg 2018; 126:815-823. [DOI: 10.1213/ane.0000000000002602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Chang BP, Wira C, Miller J, Akhter M, Barth BE, Willey J, Nentwich L, Madsen T. Neurology Concepts: Young Women and Ischemic Stroke-Evaluation and Management in the Emergency Department. Acad Emerg Med 2018; 25:54-64. [PMID: 28646558 PMCID: PMC6415947 DOI: 10.1111/acem.13243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/09/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Ischemic stroke is a leading cause of morbidity and mortality worldwide. While the incidence of ischemic stroke is highest in older populations, incidence of ischemic stroke in adults has been rising particularly rapidly among young (e.g., premenopausal) women. The evaluation and timely diagnosis of ischemic stroke in young women presents a challenging situation in the emergency department, due to a range of sex-specific risk factors and to broad differentials. The goals of this concepts paper are to summarize existing knowledge regarding the evaluation and management of young women with ischemic stroke in the acute setting. METHODS A panel of six board-certified emergency physicians, one with fellowship training in stroke and one with training in sex- and sex-based medicine, along with one vascular neurologist were coauthors involved in the paper. Each author used various search strategies (e.g., PubMed, PsycINFO, and Google Scholar) for primary research and reviewed articles related to their section. The references were reviewed and evaluated for relevancy and included based on review by the lead authors. RESULTS Estimates on the incidence of ischemic stroke in premenopausal women range from 3.65 to 8.9 per 100,000 in the United States. Several risk factors for ischemic stroke exist for young women including oral contraceptive (OCP) use and migraine with aura. Pregnancy and the postpartum period (up to 12 weeks) is also an important transient state during which risks for both ischemic stroke and cerebral hemorrhage are elevated, accounting for 18% of strokes in women under 35. Current evidence regarding the management of acute ischemic stroke in young women is also summarized including use of thrombolytic agents (e.g., tissue plasminogen activator) in both pregnant and nonpregnant individuals. CONCLUSION Unique challenges exist in the evaluation and diagnosis of ischemic stroke in young women. There are still many opportunities for future research aimed at improving detection and treatment of this population.
Collapse
Affiliation(s)
- Bernard P. Chang
- Department of Emergency Medicine, Columbia University Medical Center
| | - Charles Wira
- Department of Emergency Medicine, Yale-New Haven Medical Center
| | - Joseph Miller
- Department of Emergency Medicine, Henry Ford Medical Center
| | - Murtaza Akhter
- Department of Emergency Medicine, University of Arizona College of Medicine–Phoenix, Maricopa Integrated Health System, Phoenix, AZ
| | - Bradley E. Barth
- Department of Emergency Medicine, University of Kansas Medical Center
| | - Joshua Willey
- Department of Neurology, Stroke Service, Columbia University Medical Center
| | | | - Tracy Madsen
- Department of Emergency Medicine, Alpert Medical School of Brown University, Providence, RI
| |
Collapse
|
35
|
Bindawas SM, Vennu V, Mawajdeh H, Alhaidary H. Functional outcomes by age after inpatient stroke rehabilitation in Saudi Arabia. Clin Interv Aging 2017; 12:1791-1797. [PMID: 29123384 PMCID: PMC5661488 DOI: 10.2147/cia.s145402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background Among various risk factors, age has been identified as a nonmodifiable risk factor for stroke that influences functional outcomes after inpatient stroke rehabilitation in the developed world as well as in Saudi Arabia (SA). The demand for inpatient stroke rehabilitation services increases with population aging and stroke incidence; however, these services are limited in SA. Objective To examine functional outcomes by age after inpatient stroke rehabilitation in SA. Patients and methods Data from 418 patients with stroke who underwent inpatient stroke rehabilitation at the King Fahad Medical City-Rehabilitation Hospital, Riyadh, SA, between November 2008 and December 2014 were collected from electronic medical records. According to the patients’ age, we classified participants into two groups: adults, aged <65 years (n=255), and older adults, aged ≥65 years (n=163). All patients’ functional statuses at admission and discharge from inpatient stroke rehabilitation were assessed using the functional independence measure (FIM) scale. Results The mean age was 59.9 years (SD =9.4). Older adults had significantly smaller changes in functional outcome from admission to discharge on both the total FIM (23 [SD =15.9]) and the motor FIM (21 [SD =15.4]), and they were significantly less independent (36%) compared to adults. In the adjusted models, older adults had significantly lower scores than adults, by 11 points (p<0.0001) for the total FIM score and by 10 points (p<0.0001) for the motor FIM subscale score. There was no significant change with age in the cognitive FIM subscale score. Conclusion After inpatient stroke rehabilitation, older adults had limited functional outcomes or were less independent than adults. However, the clinical relevance of this finding is questionable, so there is currently no justification to deny patients access to intensive stroke rehabilitation solely because of advanced age. Future large-scale research is needed to confirm rehabilitation outcomes by including confounders such as social support, socioeconomics, comorbidities, and the patient’s opinion after rehabilitation.
Collapse
Affiliation(s)
- Saad M Bindawas
- Department of Rehabilitation Sciences, King Saud University, Riyadh
| | - Vishal Vennu
- Department of Rehabilitation Sciences, King Saud University, Riyadh
| | - Hussam Mawajdeh
- Comprehensive Rehabilitation Care Department, Rehabilitation Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Hisham Alhaidary
- Comprehensive Rehabilitation Care Department, Rehabilitation Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
36
|
Yang W, Paschen W. Is age a key factor contributing to the disparity between success of neuroprotective strategies in young animals and limited success in elderly stroke patients? Focus on protein homeostasis. J Cereb Blood Flow Metab 2017; 37:3318-3324. [PMID: 28752781 PMCID: PMC5624400 DOI: 10.1177/0271678x17723783] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Neuroprotection strategies to improve stroke outcome have been successful in the laboratory but not in clinical stroke trials, and thus have come under scrutiny by the medical community. Experimental stroke investigators are therefore under increased pressure to resolve this problem. Acute ischemic stroke represents a severe form of metabolic stress that activates many pathological processes and thereby impairs cellular functions. Traditionally, neuroprotection strategies were designed to improve stroke outcome by interfering with pathological processes triggered by ischemia. However, stroke outcome is also dependent on the brain's capacity to restore cellular functions impaired by ischemia, and this capacity declines with age. It is, therefore, conceivable that this age-dependent decline in the brain's self-healing capacity contributes to the disparity between the success of neuroprotective strategies in young animals, and limited success in elderly stroke patients. Here, prosurvival pathways that restore protein homeostasis impaired by ischemic stress should be considered, because their capacity decreases with increasing age, and maintenance of proteome fidelity is pivotal for cell survival. Boosting such prosurvival pathways pharmacologically to restore protein homeostasis and, thereby, cellular functions impaired by ischemic stress is expected to counterbalance the compromised self-healing capacity of aged brains and thereby help to improve stroke outcome.
Collapse
Affiliation(s)
- Wei Yang
- 1 Laboratory of Molecular Neurobiology, Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Wulf Paschen
- 1 Laboratory of Molecular Neurobiology, Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,2 Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
37
|
Abstract
Ischemic stroke is one of the leading causes of morbidity and mortality worldwide. Females are protected against stroke before the onset of menopause. Menopause results in increased incidence of stroke when compared to men. The mechanisms of these differences remain to be elucidated. Considering that there is a postmenopausal phenomenon and females in general, are living longer sex hormone-dependent mechanisms have been postulated to be the primary factors responsible for the premenopausal protection from stroke and later to be responsible for the higher incidence and increased the severity of stroke after menopause. Animal studies suggest that administration of estrogen and progesterone is neuroprotective and decreases the incidence of stroke. However, the real-world outcomes of hormone replacement therapy have failed to decrease the stroke risk. Despite the multifactorial nature of sex differences in stroke, here, we briefly discuss the pathophysiology of sex steroid hormones, the molecular mechanisms of estrogen receptor-dependent signaling pathways in stroke, and the potential factors that determine the discrepant effects of hormone replacement therapy in stroke.
Collapse
Affiliation(s)
- Shashank Shekhar
- Department of Neurology, University of Mississippi Medical Center, USA.,Institute of Clinical Medicine, University of Turku, Finland
| | - Olivia K Travis
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, USA
| | - Xiaochen He
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, USA
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, USA
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, USA
| |
Collapse
|
38
|
Poststroke Induction of α-Synuclein Mediates Ischemic Brain Damage. J Neurosci 2017; 36:7055-65. [PMID: 27358461 DOI: 10.1523/jneurosci.1241-16.2016] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/23/2016] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED α-Synuclein (α-Syn), one of the most abundant proteins in the CNS, is known to be a major player in the neurodegeneration observed in Parkinson's disease. We currently report that transient focal ischemia upregulates α-Syn protein expression and nuclear translocation in neurons of the adult rodent brain. We further show that knockdown or knock-out of α-Syn significantly decreases the infarction and promotes better neurological recovery in rodents subjected to focal ischemia. Furthermore, α-Syn knockdown significantly reduced postischemic induction of phospho-Drp1, 3-nitrotyrosine, cleaved caspase-3, and LC-3 II/I, indicating its role in modulating mitochondrial fragmentation, oxidative stress, apoptosis, and autophagy, which are known to mediate poststroke neuronal death. Transient focal ischemia also significantly upregulated serine-129 (S129) phosphorylation (pα-Syn) of α-Syn and nuclear translocation of pα-Syn. Furthermore, knock-out mice that lack PLK2 (the predominant kinase that mediates S129 phosphorylation) showed better functional recovery and smaller infarcts when subjected to transient focal ischemia, indicating a detrimental role of S129 phosphorylation of α-Syn. In conclusion, our studies indicate that α-Syn is a potential therapeutic target to minimize poststroke brain damage. SIGNIFICANCE STATEMENT Abnormal aggregation of α-synuclein (α-Syn) has been known to cause Parkinson's disease and other chronic synucleinopathies. However, even though α-Syn is linked to pathophysiological mechanisms similar to those that produce acute neurodenegerative disorders, such as stroke, the role of α-Syn in such disorder is not clear. We presently studied whether α-Syn mediates poststroke brain damage and more importantly whether preventing α-Syn expression is neuroprotective and leads to better physiological and functional outcome after stroke. Our study indicates that α-Syn is a potential therapeutic target for stroke therapy.
Collapse
|
39
|
Kim T, Vemuganti R. Mechanisms of Parkinson's disease-related proteins in mediating secondary brain damage after cerebral ischemia. J Cereb Blood Flow Metab 2017; 37:1910-1926. [PMID: 28273718 PMCID: PMC5444552 DOI: 10.1177/0271678x17694186] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Both Parkinson's disease (PD) and stroke are debilitating conditions that result in neuronal death and loss of neurological functions. These two conditions predominantly affect aging populations with the deterioration of the quality of life for the patients themselves and a tremendous burden to families. While the neurodegeneration and symptomology of PD develop chronically over the years, post-stroke neuronal death and dysfunction develop rapidly in days. Despite the discrepancy in the pathophysiological time frame and severity, both conditions share common molecular mechanisms that include oxidative stress, mitochondrial dysfunction, inflammation, endoplasmic reticulum stress, and activation of various cell death pathways (apoptosis/necrosis/autophagy) that synergistically modulate the neuronal death. Emerging evidence indicates that several proteins associated with early-onset familial PD play critical roles in mediating the neuronal death. Importantly, mutations in the genes encoding Parkin, PTEN-induced putative kinase 1 and DJ-1 mediate autosomal recessive forms of PD, whereas mutations in the genes encoding leucine-rich repeat kinase 2 and α-synuclein are responsible for autosomal dominant PD. This review discusses the significance of these proteins with the emphasis on the role of α-synuclein in mediating post-ischemic brain damage.
Collapse
Affiliation(s)
- TaeHee Kim
- 1 Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.,2 Neuroscience Training Program, Madison, WI, USA
| | - Raghu Vemuganti
- 1 Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.,2 Neuroscience Training Program, Madison, WI, USA.,3 Cellular & Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA.,4 William S. Middleton Memorial Veterans Administration Hospital, Madison, WI, USA
| |
Collapse
|
40
|
Balog J, Mehta SL, Vemuganti R. Mitochondrial fission and fusion in secondary brain damage after CNS insults. J Cereb Blood Flow Metab 2016; 36:2022-2033. [PMID: 27677674 PMCID: PMC5363672 DOI: 10.1177/0271678x16671528] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 08/15/2016] [Accepted: 09/05/2016] [Indexed: 11/15/2022]
Abstract
Mitochondria are dynamically active organelles, regulated through fission and fusion events to continuously redistribute them across axons, dendrites, and synapses of neurons to meet bioenergetics requirements and to control various functions, including cell proliferation, calcium buffering, neurotransmission, oxidative stress, and apoptosis. However, following acute or chronic injury to CNS, altered expression and function of proteins that mediate fission and fusion lead to mitochondrial dynamic imbalance. Particularly, if the fission is abnormally increased through pro-fission mediators such as Drp1, mitochondrial function will be impaired and mitochondria will become susceptible to insertion of proapototic proteins. This leads to the formation of mitochondrial transition pore, which eventually triggers apoptosis. Thus, mitochondrial dysfunction is a major promoter of neuronal death and secondary brain damage after an insult. This review discusses the implications of mitochondrial dynamic imbalance in neuronal death after acute and chronic CNS insults.
Collapse
Affiliation(s)
- Justin Balog
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.,William S. Middleton Veterans Administration Hospital, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA .,Neuroscience Training Program, University of Wisconsin, Madison, WI, USA.,Cellular & Molecular Pathology Training Program, University of Wisconsin, Madison, WI, USA.,William S. Middleton Veterans Administration Hospital, Madison, WI, USA
| |
Collapse
|
41
|
Mitochondrial function in hypoxic ischemic injury and influence of aging. Prog Neurobiol 2016; 157:92-116. [PMID: 27321753 DOI: 10.1016/j.pneurobio.2016.06.006] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 03/30/2016] [Accepted: 06/12/2016] [Indexed: 12/11/2022]
Abstract
Mitochondria are a major target in hypoxic/ischemic injury. Mitochondrial impairment increases with age leading to dysregulation of molecular pathways linked to mitochondria. The perturbation of mitochondrial homeostasis and cellular energetics worsens outcome following hypoxic-ischemic insults in elderly individuals. In response to acute injury conditions, cellular machinery relies on rapid adaptations by modulating posttranslational modifications. Therefore, post-translational regulation of molecular mediators such as hypoxia-inducible factor 1α (HIF-1α), peroxisome proliferator-activated receptor γ coactivator α (PGC-1α), c-MYC, SIRT1 and AMPK play a critical role in the control of the glycolytic-mitochondrial energy axis in response to hypoxic-ischemic conditions. The deficiency of oxygen and nutrients leads to decreased energetic reliance on mitochondria, promoting glycolysis. The combination of pseudohypoxia, declining autophagy, and dysregulation of stress responses with aging adds to impaired host response to hypoxic-ischemic injury. Furthermore, intermitochondrial signal propagation and tissue wide oscillations in mitochondrial metabolism in response to oxidative stress are emerging as vital to cellular energetics. Recently reported intercellular transport of mitochondria through tunneling nanotubes also play a role in the response to and treatments for ischemic injury. In this review we attempt to provide an overview of some of the molecular mechanisms and potential therapies involved in the alteration of cellular energetics with aging and injury with a neurobiological perspective.
Collapse
|
42
|
Schnitzer S, von dem Knesebeck O, Kohler M, Peschke D, Kuhlmey A, Schenk L. How does age affect the care dependency risk one year after stroke? A study based on claims data from a German health insurance fund. BMC Geriatr 2015; 15:135. [PMID: 26499064 PMCID: PMC4619540 DOI: 10.1186/s12877-015-0130-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/14/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The objective of this study is to investigate the effect of age on care dependency risk 1 year after stroke. Two research questions are addressed: (1) How strong is the association between age and care dependency risk 1 year after stroke and (2) can this association be explained by burden of disease? METHODS The study is based on claims data from a German statutory health insurance fund. The study population was drawn from all continuously insured members with principal diagnoses of ischaemic stroke, hemorrhagic stroke, or transient ischaemic attack in 2007 who survived for 1 year after stroke and who were not dependent on care before their first stroke (n = 2864). Data were collected over a 1-year period. People are considered to be dependent on care if they, due to a physical, mental or psychological illness or disability, require substantial assistance in carrying out activities of daily living for a period of at least 6 months. Burden of disease was assessed by stroke subtype, history of stroke, comorbidities as well as geriatric multimorbidity. Regression models were used for data analysis. RESULTS 21.6 % of patients became care dependent during the observation period. Post-stroke care dependency risk was significantly associated with age. Relative to the reference group (0-65 years), the odds ratio of care dependency was 11.30 (95 % CI: 7.82-16.34) in patients aged 86+ years and 5.10 (95 % CI: 3.88-6.71) in patients aged 76-85 years. These associations were not explained by burden of disease. On the contrary, age effects became stronger when burden of disease was included in the regression model (by between 1.1 and 28 %). CONCLUSIONS Our results show that age has an effect on care dependency risk that cannot be explained by burden of disease. Thus, there must be other underlying age-dependent factors that account for the remaining age effects (e.g., social conditions). Further studies are needed to explore the causes of the strong age effects observed.
Collapse
Affiliation(s)
- Susanne Schnitzer
- Department of Medical Sociology and Rehabilitation Science, Charité-Universitätmedizin Berlin, Luisenstr. 57, D-10117, Berlin, Germany.
| | - Olaf von dem Knesebeck
- Department of Medical Sociology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany.
| | - Martin Kohler
- Central Research Institute of Ambulatory Health Care in Germany, Herbert-Lewin-Platz 3, D-10623, Berlin, Germany.
| | - Dirk Peschke
- Department of Structural Advancement and Quality Management in Health Care, Technische Universität Berlin, Steinplatz 2, D-10623, Berlin, Germany.
| | - Adelheid Kuhlmey
- Department of Medical Sociology and Rehabilitation Science, Charité-Universitätmedizin Berlin, Luisenstr. 57, D-10117, Berlin, Germany.
| | - Liane Schenk
- Department of Medical Sociology and Rehabilitation Science, Charité-Universitätmedizin Berlin, Luisenstr. 57, D-10117, Berlin, Germany.
| |
Collapse
|
43
|
Liu ZJ, Chen C, Li XR, Ran YY, Xu T, Zhang Y, Geng XK, Zhang Y, Du HS, Leak RK, Ji XM, Hu XM. Remote Ischemic Preconditioning-Mediated Neuroprotection against Stroke is Associated with Significant Alterations in Peripheral Immune Responses. CNS Neurosci Ther 2015; 22:43-52. [PMID: 26384716 DOI: 10.1111/cns.12448] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 12/16/2022] Open
Abstract
AIMS Remote ischemic preconditioning (RIPC) of a limb is a clinically feasible strategy to protect against ischemia-reperfusion injury after stroke. However, the mechanism underlying RIPC remains elusive. METHODS We generated a rat model of noninvasive RIPC by four repeated cycles of brief blood flow constriction (5 min) in the hindlimbs using a tourniquet. Blood was collected 1 h after preconditioning and 3 days after brain reperfusion. The impact of RIPC on immune cell and cytokine profiles prior to and after transient middle cerebral artery occlusion (MCAO) was assessed. RESULTS Remote ischemic preconditioning protects against focal ischemia and preserves neurological functions 3 days after stroke. Flow cytometry analysis demonstrated that RIPC ameliorates the post-MCAO reduction of CD3(+)CD8(+) T cells and abolishes the reduction of CD3(+)/CD161a(+) NKT cells in the blood. In addition, RIPC robustly elevates the percentage of B cells in peripheral blood, thereby reversing the reduction in the B-cell population after stroke. RIPC also markedly elevates the percentage of CD43(+)/CD172a(+) noninflammatory resident monocytes, without any impact on the percentage of CD43(-)/CD172a(+) inflammatory monocytes. Finally, RIPC induces IL-6 expression and enhances the elevation of TNF-α after stroke. CONCLUSION Our results reveal dramatic immune changes during RIPC-afforded neuroprotection against cerebral ischemia.
Collapse
Affiliation(s)
- Zong-Jian Liu
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Beijing, China
| | - Chen Chen
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Beijing, China
| | - Xiao-Rong Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Beijing, China
| | - Yuan-Yuan Ran
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Beijing, China
| | - Tao Xu
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Beijing, China
| | - Ying Zhang
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Beijing, China
| | - Xiao-Kun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Beijing, China
| | - Yu Zhang
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hui-Shan Du
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Beijing, China
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Xun-Ming Ji
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Beijing, China
| | - Xiao-Ming Hu
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|